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ABSTRACT

COMPUTATIONAL STUDIES OF VISCOELASTIC MULTIPHASE FLOWS

by

Shriram B. Pillapakkam

A finite element code based on the level set method is developed for performing two and

three dimensional direct numerical simulations (DNS) of viscoelastic two-phase flow

problems. The Oldroyd-B constitutive equation is used to model the viscoelastic liquid.

The code is used to study transient and steady state shapes of Newtonian and viscoelastic

drops in simple shear and buoyancy driven flows. The roles of the governing

dimensionless parameters: Capillary number (Ca), Deborah Number (De) and the

polymer concentration parameter c, in determining deformation of drops and bubbles, are

also analyzed.

The numerical code permits us to vary Ca, De and c independently, which is

difficult to achieve experimentally. This capability is used to isolate the roles of these

parameters on the nature of viscoelastic stress near the drop surface and their effect on

drop deformation. Results for simple shear flows indicate that when the drop phase is

Newtonian and the matrix phase viscoelastic, the viscoelastic stresses pull the ends of the

drop near the tips of the major axis and near the tips of the minor axes they are tangential,

and thus have the net effect of increasing drop deformation. Viscoelastic stresses have the

opposite effect when the drop phase is viscoelastic and the matrix phase is Newtonian.

Additionally, due to the extensional nature of viscoelastic stresses, drops sheared by



viscoelastic fluids develop pointed ends, a phenomenon observed experimentally and

popularly known as tip-streaming.

For buoyancy driven bubbles rising in quiescent viscoelastic fluids, simulations show

that the rise velocity oscillates before reaching a steady value. The shape of the bubble,

the magnitude of velocity overshoot and the amount of damping depend mainly on c and

the bubble radius. Simulations show that there is a critical bubble volume range in which

there is a sharp increase in the terminal velocity with increasing bubble volume similar to

the behavior observed in experiments. An explanation for this phenomenon is offered

based on the transient oscillations and shape change.

The structure of the wake of a bubble rising in a Newtonian fluid is strikingly

different from that of a bubble rising in a viscoelastic fluid. In addition to the two

recirculation zones at the equator of the bubble rising in a Newtonian fluid, two more

recirculation zones exist in the wake of a bubble rising in viscoelastic fluids which

influence the shape of a rising bubble. Also, the direction of motion of the fluid a short

distance below the trailing edge of a bubble rising in a viscoelastic fluid is in the opposite

direction to the direction of motion of the bubble. The wake is 'negative' in the sense that

the direction of fluid velocity behind the bubble is the opposite of that for a Newtonian

fluid.
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CHAPTER 1

INTRODUCTION

The aim of this work is to develop a stable and efficient numerical method for the direct

numerical simulation (DNS) of viscoelastic multiphase flows and to use it to investigate

the following problems: Analysis of deformation of neutrally buoyant drops in shear

flows and the transient behavior of bubbles rising in viscoelastic fluids due to buoyancy

and to examine the reason for the discontinuity observed in the velocity-volume plot.

Before proceeding with the details of these two problems, it behooves me to

introduce the reader to the key fundamental properties of viscoelastic liquids. Broadly

speaking, matter can be categorized into elastic solids, viscous fluids and everything in

between. For linear elastic solids, the stress is related to the strain via a constant of

proportionality known as the modulus of elasticity. For viscous Newtonian liquids, the

stress is related to the rate of change of strain through a constant of proportionality

known as dynamic viscosity. In the in-between category, lies a class of matter for which

viscosity changes with applied shear force, known as non-Newtonian fluids. We

encounter such fluids in our everyday life; honey, mayonnaise and ketchup are typical

examples. There are many subcategories within the non-Newtonian category such as

power law fluids, plastic solids, viscoelastic fluids etc. Viscoelastic fluids exhibit both

elastic characteristics of solids as well as viscous properties of fluids. Polymeric liquids

and solutions containing long chained molecules are classical examples of viscoelastic

liquids.

1
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Before introducing the properties of non-Newtonian fluids, it seems appropriate at

this stage to review the governing equations, the mass and momentum conservation of

fluids and to understand the role of viscoelastic stresses which, as will be discussed later,

alter the velocity field from that for a Newtonian liquid.

The mass conservation law states that mass can neither be created nor destroyed,

and hence the total mass of fluid within an arbitrary volume V increases only due to net

influx across the surface S

Rate of change of	 Rate of change of mass
mass of fluid in V	 across the surface S

Here t is the time, p is the density and v is the velocity with which the fluid is crossing

the surface of an arbitrary volume V.

According to the law of momentum conservation, or Newton's second law

applied to an arbitrary volume V, the total momentum of the fluid within V will increase

because of a net influx of momentum across the bounding surface—both by bulk flow and

by molecular motions—and because of body forces acting on the fluid:

Rate of	 Rate of	 Rate of change of	 Rate of
change of	 change of	 momentum due to	 change of
momentum	 momentum	 surface forces	 momentum
of fluid	 due to	 acting on S	 due to body
within V	 convection	 force

across S
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The integral fan • aidS in the above equation can be interpreted as the force of
s

the fluid outside V acting on the fluid inside V across S, where a is the the stress tensor.

There is a wealth of information in the term a, and one of the greatest challenges in the

field of non-Newtonian fluid dynamics is to come up with model that gives the closest

approximations to the relationship between stress and strain for the fluid under

examination. The notion of a relation between stress and strain will be explored in detail

in Chapter 2 while discussing constitutive equations.

With this cursory overview of equations governing fluid flow, we are sufficiently

equipped to explore some properties that make non-Newtonian fluids so strikingly

different from Newtonian fluids through many illustrative examples that bring out these

properties.

1.1 Shear Dependent Viscosity

One of the key features that distinguish a non-Newtonian fluid from a Newtonian one is

that the viscosity of Newtonian fluid does not change upon external loading while the

viscosity of a non-Newtonian fluid varies upon shearing.

For a Newtonian incompressible fluid in simple steady shear flow, the term a in

constitutive equation for such fluids where D is the rate of strain tensor, or the symmetric
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fluid, the stress T 	 -11(7)Y yx and the viscosity i which depends on the shear rate 7 , is

called non-Newtonian viscosity or shear-rate dependent viscosity.

The viscosity of non-Newtonian fluids either increases or decreases with shear

rates. Fluids for which viscosity increases with shear rate are called shear thickening

fluids and for those for which viscosity decreases with shear rate are called shear thinning

fluids as illustrated in a Figure 1.1.

Stress vs. Shear Rate for non-Newtonian shear thickening and shear thinning
fluid. The dashed line is the linear stress-shear rate relationship for a Newtonian fluid.

1.2 Normal Stress Difference

Consider the simple shear flow of a Newtonian fluid, with the components of velocity

given by:



5

where U is the velocity of the upper plate and h is the height of fluid below the plate (See

Figure 1.2). The axial components of the stress tensor are then:

Therefore for a Newtonian fluid the normal stress difference coefficients,

.
N2( y ). Non-zero normal stress coefficients indicate that non-Newtonian fluids exhibit

longitudinal extensional stress along streamlines.
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The normal stress difference is responsible for several striking differences

between the behavior of viscoelastic and Newtonian liquids. One such example is the

rod-climbing experiment (See Figure 1.3). When a rod is rotated in a beaker containing a

Newtonian liquid the liquid is pushed outward due to centrifugal force and the liquid

level near the rod falls. In a viscoelastic fluid on the other hand the fluid is drawn closer

to the rod and even overcomes gravitational force as the fluid level near the rod rises. The

fluid climbs the rod because of non-zero normal stress difference coeffecients. "In the

rod-climbing experiment, the streamlines are in closed circles and the extra tension

along these lines "strangulates" the fluid and forces it inwards against the centrifugal

force and upwards against the gravitational force." aBird et al. (1987)i



7

Figure 1.3 Rod-climbing experiment—when the rod is rotated in a non-Newtonian fluid,
the fluid climbs up the rod. Such behavior is unique to viscoelastic fluid. Image taken by
Dr. J Bico, Mr. R. Welsh and Prof. G. H. McKinley, MIT Non-Newtonian Fluids
Laboratory.

1.3 Fading Memory Effect

Another behavioral aspect of non-Newtonian fluids which fascinates a wide-eyed kid as

much as it does a rational adult is the recoil effect: Why the last bit of maple syrup

touches the pancake and retracts back to the spoon in a hurry? This is because non-

Newtonian fluids, filament of syrup in this case, has "fading memory effect," an ability to

remember its past state. It is called "fading memory," because it does not always recover

fully to its original condition before it was set to deform. This idea of fluid having

memory leads us to an important property of a viscoelastic fluid called the relaxation

time, which will be discussed in detail in Chapter 2.
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In summary, the features that distinguish a Newtonian fluid from a non-

Newtonian fluid are:

• The viscosity of a Newtonian fluid depends on temperature and pressure, but is
independent of the shear rate. The viscosity of a non-Newtonian fluid is shear-
dependent. For certain fluids, viscosity decreases with an increase in shear rate,
commonly referred to as shear-thinning fluid. A fluid whose viscosity increases with
increasing shear rate is called shear-thickening or dilatant.

• In simple shear flow, Non-Newtonian fluids have non-zero normal stress difference
coefficients. Newtonian fluids have zero first and second normal stress difference
coeffocients.

• Non-Newtonian fluids also exhibit extensional viscosity.

• An important property of a non-Newtonian fluid is its ability to partially remember its
past state of strain, a property better known as the fading memory effect. The stress at
a present time t depends the rate of strain at time t as well as the rate of strain at all
past times t 1 , with a weighting factor (the relaxation modulus) that decays
exponentially as one goes back in time. This leads us to concept of relaxation time of
a material that quantifies the delayed response of a viscoelastic molecule to externally
applied force. Polymer solutions typically have relaxation time of the order of 10 -2 —
10 seconds, while the relaxation time for a Newtonian fluids ~ 0 (The relaxation
time for water is 10 -13 seconds).

This brief introduction to the nature and properties of non-Newtonian fluids sets

up the stage to present the two problems around which this dissertation is centered--the

shape of a neutrally buoyant drop in simple shear flows and the shape and velocity of a

buoyant bubble rising in a viscoelastic fluid.

The shape of a neutrally buoyant drop in a shear flow of a Newtonian fluid is

determined by the balance of forces at the interface, between the flow-induced viscous

stresses which deform the drop and the interfacial tension which resists deformation. This

equilibrium is however multifaceted when either phase is viscoelastic and the mechanism

of shape change is quite complicated.
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For many years, analysis of the behavior of drops immiscible with the

surrounding fluid in simple shear flows has been used as a starting point to understand

the effects of many parameters that influence the shape of a fluid-fluid interface. Until the

1970s, research was predominantly focused on the study of Newtonian fluids, governed

by Navier-Stokes equations. In the 1980s, and more so in the last decade, the analysis of

deformation of drops involving viscoelastic fluids has been used to understand the role of

viscoelasticity, such as on tip streaming.

The problem of a bubble rising due to buoyancy in a column of viscoelastic fluid

is very interesting for several reasons. A casual investigation of a shampoo bottle turned

upside down will reveal that the air bubble rising in the shampoo (a viscoelastic liquid) is

initially spherical and changes shape to resemble an inverted tear drop with a cusp like

trailing end. If the shampoo bottle were to be rotated 90 ° , one can notice that the shape of

the trailing end of the bubble is markedly different and resembles a knife edge. The above

is just one of the peculiarities of this problem where a perfectly symmetrical bubble

looses its symmetry. The other aspect of the problem that makes this problem quite

interesting is that when bubbles of different volumes are allowed to rise in a column

filled with a viscoelastic fluid and their terminal velocities are recorded and plotted

against their volume, a striking discontinuity is seen at a critical volume, at which the

velocity suddenly increases by a large amount. Another facet to an already interesting

problem is the direction of the velocity vectors in the wake of the bubble. Contrary to

what is seen for a bubble rising in a Newtonian liquid such as water, the velocity vectors

in the wake of the bubble are in a direction opposite to the direction of motion of the

bubble. All of the above mentioned aspects make this problem a very interesting study,
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both from a point of view of satisfying human inquisitiveness as well as thorough

scientific investigation.

It is not a simple task to numerically model deformation of a drop when either

fluid phase is viscoelastic, given the existence of jump in fluid properties such as density

and viscosity across the interface that poses severe mathematical restrictions.

Complications also arise because the interface position is a priori unknown and must be

tracked as the drop deforms with time. The direct numerical simulation (DNS) technique

for solving problems in fluid dynamics has made rapid progress in recent years and has

become increasingly sophisticated and reliable. It is invaluable in the context of

analyzing viscoelastic flows since it is difficult to extract dynamical data through

experimental observations. Direct simulations give us definitive insight into transient

aspects of viscoelastic stresses which are difficult to measure experimentally.

There is substantial interest in modeling viscoelastic fluids because processing

flows involving viscoelastic fluids are very commonly encountered in the polymer

industry. For example, to model operations such as emulsification, which involves

dispersing droplets of one medium in another, we must account for the stretching of

droplets, as well as stresses in the viscoelastic fluid in the immediate vicinity of each

droplet. Additionally, complexity rises due to the lack of symmetry, the unsteady nature

of the problem and the presence of stagnation points in flow near where the flow is highly

extensional and the polymer molecules highly stretched. The first and the logical step in

modeling a problem as complex as this, is to model the effect of viscoelasticity on a

single droplet in deforming flows. A comprehensive understanding of the rheology of an

isolated drop will help in generalizing the effect of many such drops in processing flows.
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The goal of my work therefore is to develop a stable and efficient numerical

method for simulating multi-phase viscoelastic flows involving a single drop. This

dissertation is organized as follows: Chapter 2 provides a quick overview of the

deforming flows and fundamental concepts of non-Newtonian fluid dynamics. The theory

behind deformation of drops, shape and velocity of bubbles, including literature review is

presented in Chapter 3. The finite element discritization, numerical scheme and interface

tracking method are discussed in Chapter 4. In Chapters 5 and 6 the results of numerical

simulations of the drop deformation problem and buoyant bubble problem will be

discussed, which will be followed by the concluding section.

At many instances in this document, computational results are compared both

quantitatively with experimental results and published numerical data. However, since

the choice of constitutive model is ad hoc and the relation between experimental

parameters and those of the model is not precise, quantitative comparison is not possible.



CHAPTER 2

PROBLEM DESCRIPTION AND GOVERNING EQUATIONS

2.1 Drop Deformation in Simple Shear Flow

2.1.1 Problem Description

The velocity field in a simple shear flow is given by

where yyx is the shear rate or strength of the shear flow. Simple steady shear flow can be

generated experimentally by moving the upper plate of a parallel plate apparatus at a

constant velocity.

A simple shear flow has equal components of shear and vorticity. The velocity

gradient tensor Vu, the rate of strain tensor D, and vorticity tensor SZ for simple shear

flow are as indicated below:

where G = yyy is the shear rate. In simulations, simple shear flow is generated by moving

a pair of opposite walls of the domain in opposite direction as shown in Figure 2.1. The

velocity on the remaining side walls varies linearly, as shown in Figure 2.1.

12
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Figure 2.1 A two-dimensional and three-dimensional depiction of a drop subjected to
simple shear flow. Moving the opposite walls of the domain generates shear flow in
each case.

The parameters affecting deformation are the drop radius a, the interfacial tension

y, G, and the viscosity ratio A, = a , where it, is the viscosity of the matrix fluid (fluidilk

outside the drop) and id is the viscosity of the fluid inside the drop. The parameters G,

fib, y and a can be combined to form a dimensionless group called the capillary number

Ca = G1La/y. The Deborah number, a dimensionless measure of viscoelastic stresses is

defined as De = Ar G, where kr  is the relaxation time

When the densities of the drop and matrix fluid are equal, in the absence of

imposed flow, the drop would remain spherical due to the interfacial tension. When a

shear flow is imposed, the equilibrium is altered in the following ways:

1. If both phases are Newtonian, the imposed velocity field gives rise to viscous stresses
that deform the drop while the interfacial force resists deformation. The final shape of
the drop is a balance between these two effects.

2. In the event of either phase being viscoelastic, the viscoelastic stresses affect the
drop shape in two ways
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a) The viscoelastic contribution at the interface affects the normal stress balance at
the interface and consequently the shape of the drop.

b) The viscoelastic stresses in the vicinity of the interface alter the strain rate and
consequently the stresses on the interface.

Upon imposing flow, the drop shape changes and either attains equilibrium at a deformed

shape or continues to deform until breakup, depending on whether the deforming forces

are strong enough to overcome the effect of interfacial tension forces which keep the drop

spherical.

The parameters that affect the drop shape can be classified into dimensionless

groups. The dimensionless parameters that will be analyzed in this work are, Capillary

number (Ca), Deborah Number (De) and viscosity ratio (X). The capillary number is

defined to be Ca = Gjia/y, where G is the flow strength, 11 the viscosity of the matrix or

continuous phase and a is the radius of the undeformed drop. The capillary number may

be interpreted as the ratio of viscous stresses exerted on the drop to the interfacial tension

force that resists deformation. The Deborah number is a dimensionless measure of

viscoelastic stresses. The viscosity ratio, defined as the ratio of viscosity of the drop to

the viscosity of the matrix fluid, plays a critical role in determining the shape of the drop

and modes of breakup. However, the effect of the viscosity ratio will not be analyzed as

the focus is on the effect of viscoelasticity. For all cases discussed in this document the

viscosity ratio X = 1.

2.1.2 Governing Equations and Dimensionless Parameters

The governing equations are the same for both the drop deformation problem and the

buoyant bubble problems. However, the characteristic velocity scales are different for the



15

two problems; the velocity scale for the drop problem is the wall velocity and for the

bubble problem it is the terminal velocity of the bubble U.

The domain containing the drop (or a bubble) is denoted by C2, and the domain

boundary by F. The upstream part of F will be denoted by F . The governing equations

for the two fluid system are:

The evolution of the configuration tensor A is given by

Equation 2.2 is the continuity equation and Equation 2.3 is the momentum conservation

equation which must be solved using the boundary condition of Equation 2.4. Equation

2.5 is the constitutive equation for the Oldroyd-B model. The constitutive equation is

discussed in detail later in this chapter. Here u is the velocity, p is the pressure, i s is the

solvent viscosity, p is the density, D is the symmetric part of the velocity gradient tensor,

c is a measure of polymer concentration in terms of the zero shear viscosity, n is the outer

normal, y is the surface tension, K is the surface curvature, 4 is the scalar distance from

the interface, 8 is the delta function, and X, is the relaxation time. The zero shear viscosity

= i s + li p, where dip = ci s is the polymer contribution to viscosity. The fluid retardation



16

time is equal to 2'" 1. . The surface tension force acts only along the interface where the
1 + c

level set function (I) is zero. Also note that in the Newtonian region since the relaxation

time is zero, A = I and the viscoelastic stress term in Equation 2.5 drops out because

V • A is zero.

2.2 Gravity Driven Flow

2.2.1 Problem Description

A drop of a fluid with viscosity lid and density pd is placed in an ambient fluid with

viscosity TAIL and density pi, (the outside fluid will be referred to as the matrix fluid). The

drop is immiscible with the matrix fluid. If the densities of the drop and the matrix fluid

are equal, in the absence of an imposed flow the drop assumes a spherical shape due to

the interfacial tension force. If the density of the drop is smaller than that of the matrix

fluid, due to the buoyancy effect, the drop will rise (See Figure 2.2).

In buoyancy driven flows, it is assumed that there is no externally imposed

velocity field and the bubble (immiscible with the bulk fluid), rises in the bulk fluid due

to differences in densities. Simulations were started by releasing the bubble at a distance

of 1 cm from the bottom of the domain and the transient velocities and shape changes

were monitored. At start the viscoelastic stresses are assumed to be zero.



Figure 2.2 A bubble placed at the bottom rises up due to buoyancy.

2.2.2 Governing Equations and Dimensionless Parameters

The governing Equations 2.2-2.5 are non-dimensionalized using the following

length, time, velocity, pressure and stress scales: a, alU, U, pU2 and pU2 , respectively.

Using this scaling, the dimensionless equations, written using the same symbols

for the dimensional variables are:



the Froude number, which is the ratio of inertial and gravitational forces. The other useful

parameter which gives the relative importance of the inertial and the surface tension force

is the Weber number, We = Re Ca .

2.3 Constitutive Equations

The fundamental assumptions of Newtonian fluid dynamics, upon which the Navier-

Stokes equations are based, are that the fluid is isotropic and the stress is linearly related

to the strain rate. When a Newtonian fluid is subjected to a simple shear flow, as

indicated by Equation 2.9, the shear stress is given by

The shear stress at time t is proportional to the velocity gradient at the same time t. The

flow of many naturally occurring fluids, such as water, air, etc., is governed by Equation

2.9.

If, instead of Newtonian fluid, a Hookean solid was placed between the plates and the

upper plate moved by an infinitesimal distance U(t 0 , t), the shear stress for the Hookean

solid is given by
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where G is the elastic modulus (not to be confused with shear rate G). The stress at time t

is proportional to the strain at time t, referred to the isotropic stress at time t o. The

Hookean solid remembers its state at time t 0 , in contrast to the Newtonian fluid, which

has no memory of past events.

There are some fluids that exhibit both viscous and elastic properties and are

hence referred to as viscoelastic fluids. And for such fluids the governing constitutive

equation is one that combines the elastic as well as viscous response exhibited by these

fluids.

The term constitutive equation refers to an equation relating the stress in some

fluid to its past state of motion. The constitutive equation for an ideal fluid is, T = - p I,

deformation gradient tensor. A constitutive equation should satisfy coordinate invariance,

material objectivity and it should be deterministic, i.e., the state of stress should depend

only past states.

In dealing with constitutive equations for viscoelastic fluids, linear viscoelastic

models will be considered first. The idea is to combine Newton's law of viscosity and

the Hooke's law of elasticity, and arrive at a stress-strain relationship to represent a

viscoelastic fluid.
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2.3.1 Linear Viscoelastic Models

If the stress act) and the strain yet) are assumed to be linearly related, then

Let us consider some special cases:

1) When bo 0, and all other a's and b's are zeros, a = b oy, which implies a= G y This is

Hooke's law for elastic solids, where G is the elasticity modulus.

2) When b1 0, and all other a's and b's are zero

of viscosity, where p is the viscosity.

3) When b0 = G and b1 = p, and all other a's
called Kelvin's model and is one of the simplest models of Viscoelastic.

This is called Maxwell's model, the solution to which is of the form

The quantity within parenthesis is called the relaxation modulus for Maxwell's fluid.
Equation 2.13 states that the stress at the present time t depends on the rate of strain at the
present time as well as on the rate of strain at all past times A lwith a weighting factor
`relaxation modulus' that decays exponentially as one goes backward in time (fading
memory). aBird et. al. (1987)i

5) When al, b1, b2	 0 and all other a's and b's are set to be equal to zero, the model
obtained is called Jeffery's model:
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2.3.2 Retarded Motion Expansion

The idea behind this approach is to obtain an expansion about the Newtonian fluid in

which subsequent higher order terms correspond to deviation from Newtonian behavior

towards elastic behavior.

The velocity gradient tensor when split into its symmetric and anti-symmetric part

gives us the rate of strain tensor and the vorticity tensor. Higher order strain rate tensors

are defined by the recurrence relationship:

In order to construct constitutive equation that describe small departure from

Newtonian behavior, the stress tensor is written as a function of the rate of strain tensor

and higher order rate of strain tensors.

Rearranging the terms in polynomial order,

Note:

1) If only b1 = u and all the other b's are zero, the resulting fluid is a Newtonian
fluid.

2) If all terms in the second parenthesis are included, it results in a second order fluid
and including the third parenthesis produces a third order fluid, and so forth.

The retarded motion expansion is a purely theoretical model. Though it is limited in use,

it still gives some valuable insight about behavior of elastic molecules and structure of

wakes in rising bubbles or falling spheres aJoseph (1995)i.
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2.3.3 Differential Form of Constitutive Equations

In the previous sections two forms of constitutive equations were considered that were

useful in a limited way, but those models are not sufficiently robust to fully describe

these complex fluids in different flows.

One of the requirements of a constitutive equation is that it must be frame

invariant, i.e. frame invariance ensures that one will not obtain a new law every time a

new coordinate system is chosen.

Oldroyd proposed that frame invariance could be recovered by writing the

constitutive equation in the frame of reference that is convected or deformed with the

material elements. This can be done by redefining the time derivative in a convected co-

ordinate system. There are two convected coordinate systems, contravariant and

covariant.

Contravariant: The base vectors are parallel to the material lines. They stretch and rotate

with the material lines. This is also called the upper convected derivative

Covariant: The base vectors are normal to the material planes. The base vectors rotate to

remain normal and stretch so that their lengths remain proportional to the area of the

material planes to which they are normal. This is also the lower convected derivative.

Using the upper and lower convected derivates in the Maxwell model, Equation

2.12, and applying tensorial generalization yields:



2.3.4 Oldroyd-B Fluid

For an Oldroyd-B fluid, the stress a is given by:

where, a s = 2 [1.1) is the solvent contribution to stress (purely viscous) and a p is the

polymeric contribution to stress, and it is given by (2.20).

The evolution of the configuration tensor is given by aOldroyd (1958)i

Constitutive equations have been generated in several ways and in addition to the few

discussed there are several constitutive models to choose between like the FENE-CR

dumbell-based model of Chilcott and Rallison (1988) to name one. The Oldroyd-B model

is used in this analysis; it is popularly accepted and has been used to model flow of

viscoelastic fluid past spheres aTiefenbruck and Leal (1982)i and is somewhat closer to

experimental facts aBodart and Crochet (1992)i.

2.4 Relaxation Time and Deborah Number

When a Newtonian fluid, such as water is subjected to shear stress, it responds

instantaneously and begins to flow. Contrary to what is seen in Newtonian fluids,

viscoelastic fluids have memory of their past state and their response to shear stress is not

instantaneous. Similarly, the relaxation time also quantifies the amount of time a

viscoelastic fluid takes to regain equilibrium zero stress state after the flow stops. In a

23
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time dependent flow, the stress in a material element depends on the past strain history

over the time interval of X,. Though no fluid response is perfectly instantaneous, a fluid

such as water with Xr 10-11 s and can be considered Newtonian. Lubricating oils have

relaxation time 10 -6s, while polymeric melts typically have relaxation time of 0.1 —10s.

The nature of the fluid response depends both on the relaxation time as well as the time

scale of observation. "Silly Putty" is a good example of a viscoelastic fluid which

behaves like an elastic ball when thrown to the floor (exhibits elastic response), but when

left in a container for a long period of time it takes the shape of the container (viscous

behavior). The difference between the two experiments described above is the time scale

of observation. The same material shows elastic response when force is applied for time

durations shorter than kr, but behaves like a viscous liquid when the force is applied for

time durations longer than Ar .

To quantify the relative importance of the viscous and elastic responses, Reiner

(1964) introduced a new dimensionless parameter called the Deborah number (De),

which is defined to be the ratio of the fluid relaxation time to the characteristic time of

the flow

In the limit of Dew 0, the fluid behaves like a Newtonian liquid and behaves like an

elastic Hookean solid when De —> 00. The elastic effects becomes significant when De

1.

At small values of De, the thermal motions keep the polymer molecules more or less in

equilibrium configuration, and thus the response of polymeric fluids are approximately
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the same as that of a Newtonian fluid. But, when De is large the polymer molecules that

are highly stretched and hence the stress at a material point is related to the past strain

rate history at that point.

In this document, the characteristic time scale of flow depends on the nature of

the flow. For simple shear flows, it is defined based on the shear rate G, and for the

buoyancy driven flow it is defined based on the terminal velocity of the bubble and its

undeformed radius. In a simple shear flow, the time scale of the flow is the reciprocal of

the strain rate, and thus Deborah number is defined as,

Notice that in this definition De does not depend on the drop radius. For buoyancy driven

U
flow of a bubble in a quiescent liquid, the time scale of the flow is — where U is the

a

terminal rise velocity of the bubble and a is the undeformed bubble radius. The Deborah





CHAPTER 3

LITERATURE REVIEW

3.1 Drop Deformation in Simple Shear Flow

Using a parallel band apparatus to generate simple shear flows, Taylor (1932) was one of

the first to study the deformation of drops. Over the last seventy years different aspects of

drop deformation have come into focus. While analysts have come up with higher order

schemes to model large deformations from spherical shapes, experimentalists have

studied different aspects of deformation — critical capillary number, modes of break-up,

effect of viscosity ratio, effect of surfactants, etc. It was not until the early 70's that

research on the influence of viscoelasticity on drop deformation gained prominence. In

the last two decades, direct numerical schemes have also been developed for

investigating the dynamics of drop deformation. While greater emphasis in this document

is on the effect of viscoelasticity on drop deformation, the effects of drop deformation in

Newtonian flows are be briefly touched upon.

Taylor (1934) was the first to observe experimentally that in the absence of

inertial effects the shape of the drop of radius a, subjected to a simple shear flow of

strength G in a matrix fluid of viscosity IA is a function of two dimensionless groups. The

capillary number Ca = Gpa/y, the ratio of viscous stress exerted on the drop to the

interfacial tension force that resist deformation and the viscosity ratio X.. Here y is the

interfacial tension. He observed that for a fixed k, the deformation parameter which he

defined as D =
L — B 

is a linear function of Ca for small values of the shear rate G. But
L + B

27
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beyond a certain range the slope of the curve increased rapidly and until no steady state

shape could be obtained and the drop burst rapidly. Rumscheidt and Mason (1961)

extended Taylor's experimental work and dealt with deformation and break-up of drops

in shear flows while Grace (1971) studied the deformation of drops for a wide range of

viscosity ratios.

Theoretically, the deformation of drops in shear flows was approached in two

ways — one that modeled small deformations from sphericity aTaylor (1934), Barthes-

Biesel and Acrivos (1973a)i and the slender body theory aTaylor (1964), Acrivos and Lo

(1978), Hinch and Acrivos (1979, 1980)i that modeled large deformation from spherical

shapes. For a greater overview of Newtonian effects on drop deformation the reader is

referred to reviews that elaborate on different aspects of deformation of a drop in

Newtonian simple shear flows aRallison (1984) and Stone (1994)i.

Fulmerfelt (1972) reported one of the first experimental observations on the effect

of elasticity on drop deformation. For Newtonian drops sheared by viscoelastic fluid, he

obtained the value for Dmin, the minimum diameter below which no break-up was

possible, for different matrix elasticities. He observed that Dmin, as well as the critical

shear rate required to cause breakup increased with an increase in matrix elasticity. In the

same year, Tavgac (1972) published experimental results for deformation of viscoelastic

drops in viscoelastic shear flows. He observed that the elastic forces due to the matrix

phase either inhibits or initiates break-up depending on the viscosity ratio.

Elmendorp and Maalcke (1985) established a relation between the deformation

and normal stress contribution to the stress balance at the interface. They concluded that

for a drop of viscoelastic fluid placed in a simple shear flow of a Newtonian fluid, the
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drop having higher normal stress appeared to be more stable. They further noted that

normal stress of the viscoelastic matrix phase destabilized a Newtonian droplet in a

simple shear flow when the matrix fluid is viscoelastic. Ramaswamy and Leal (1999)

later showed that though this argument seemed logical and reasonable, such an agreement

is merely fortuitous. The relationship between the viscoelastic stresses and deformation

was found to be far more complicated and a simple picture based on the normal stress

balance at the interface.

Another behavioral aspect of drop deformation, when one or both fluid are

viscoelastic which is strikingly different from that involving Newtonian fluids is the

process of breakup. For Newtonian fluids, break-up occurs either via drop fracture or due

to the onset of capillary wave instabilities. When either phase is viscoelastic, the drop

loses fluid from the ends, a phenomenon better known as tip streaming. De Bruijn (1989,

1993) analyzed the break-up of droplets in simple shear flows. He observed that at higher

shear rates the drops were ellipsoidal in shape while at lower shear rates, the drops were

sigmoidal in shape.

Varanasi et al. (1994) characterized the deformation of viscoelastic drops in

Newtonian simple shear flows. They noted for any given value of viscosity ratio, Ca c-the

critical capillary number required for breakup increased with increasing shear rate unlike

Newtonian fluids for which Ca, is independent of shear rate. Further, when both viscosity

ratio and shear rate are held fixed, Ca  was found to increase with increase in weight

fraction of the polymer in the solution (elasticity of the dispersed phase). Levitt and

Macosko (1996) carried out drop deformation studies in which both the drop phase and

the matrix fluid were viscoelastic. They observed that for high matrix elasticities, the
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drops stretched perpendicular to the flow direction. They also established an analytical

relation between the second normal stress difference of the phases and the degree of drop

widening. Guido and Villone (1998) also noted that cross-sections of ellipsoidal drops

were not circular. The short axis measured in the shearing plane was slightly shorter than

that measured in the perpendicular plane.

Deformation and break-up mechanisms of viscoelastic drops in Newtonian simple

shear flows at large capillary numbers were studied by Tsakalos et al. (1998). It can be

observed from their results that the viscoelastic drops in Newtonian shear flows are

consistently less deformed than Newtonian drops in Newtonian shear flows. In an

experimental set up in which the matrix as well as the drop phase were viscoelastic,

Mighri et al. (1998) showed that drop resistance to deformation increases as elasticity

ratio increases (defined as the ratio of relaxation time of the drop to that of the fluid).

They showed that the deformation decreases with increasing drop elasticity while

deformation increases with increase in matrix elasticity.

One fact that stands out consistently from all of the above published results is that

when one phase is viscoelastic and the other Newtonian, the net effect of viscoelasticity

is a reduction in deformation when the drop phase is viscoelastic and an increase in

deformation when the matrix phase is viscoelastic. In the event of both the drop and

matrix phases being viscoelastic, the behavior is governed by the ratio of elasticity of the

two fluids. The reasons for these observations however are not well understood.

Moreover, since in experiments, elasticity of the fluid is controlled by increasing or

decreasing the polymer concentration, the relaxation time also changes. It is difficult to

generate a range of fluids having the same level of polymer concentrations with varying



31

relaxation times, which clouds our ability to draw a distinction between the effect of

varying concentration and varying relaxation time. Numerically, it is much easier to study

the effects of polymer concentration at constant relaxation time and vice versa. This

ability to vary one parameter while keeping the other fixed helps us isolating the effect of

contributions to fluid elasticity and their role in deformation of drops.

3.2 Buoyant Bubble Rising in a Viscoelastic Fluid

The motion of a bubble rising in a viscoelastic fluid is one of the fundamental research

problems in the field of non-Newtonian fluid mechanics. This problem is interesting in

more than one way due the presence of a negative wake at the trailing edge, the loss of

fore-aft symmetry due to the formation of a cusp shaped trailing end and an apparent

discontinuity in the plot of the steady state velocity vs. bubble volume.

The wake behind a bubble rising in a viscoelastic fluid is called negative wake

because the velocity in the wake, very close to the trailing end, is in the direction of

motion of the bubble, but, a short distance away from the trailing end, the velocity

reverses direction. (For a bubble rising in a Newtonian liquid, the wake is normal, as the

velocity in the wake is in the same direction as the motion of the bubble). Hassagar

(1979) was the first to observe this behavior and coined the term negative wake. Negative

wake is also observed for spheres falling in viscoelastic liquids asee Arigo and McKinley

(2001) and references thereini.

Funfschilling and Li (2001) using particle image velocimetry (DIV) and Bisgaard

(1983) using laser doppler anemometry (LDA), investigated the detailed flow field

behind rising bubbles. From the DIV plots, Funfschilling and Li (2001) noted the
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presence of three distinct zones around a rising bubble: a central downward flow zone

behind the bubble or negative wake, a conical upward flow surrounding the negative

wake zone and an upward flow zone in front of the bubble. Bisgaard (1983) analyzed the

flow around a rising bubble and a falling sphere, and observed that the negative wake is

much closer to the trailing end of a bubble than it is to the trailing end of a sphere, i.e.,

the distance from the trailing end where the velocity reverses direction is smaller for a

bubble.

The second interesting feature of a bubble rising in a viscoelastic fluid is the cusp

like shape of trailing end of the bubble for volumes larger than a critical value.

Dhilippoff (1937) was the first to notice this phenomenon aalso see Chabra and DeKee

(1992), Chhabra (1993), and references listed therein). Liu, Liao and Joseph (1995)

performed experiments for bubbles rising in viscoelastic fluids, inside columns of

different cross-sections and found that the trailing end is not axisymmetric. Specifically

when the bubble is viewed from a side a cusp can be observed in the wide window and a

broad trailing edge appears in the narrow window.

Astarita and Apuzzo (1965) noted that in addition to the aforementioned shape

change, "the steady state velocity-volume curve in highly elastic liquids shows a striking

peculiarity: a critical volume exists corresponding to an abrupt increase in the velocity."

They studied terminal velocities of bubbles rising in four different liquids — aqueous

solutions of carbopol which is a purely viscous highly pseudo plastic liquid, aqueous

solutions of carboxy methyl cellulose - CMC which is slightly elastic, aqueous solution

of ET497 which is highly elastic and aqueous solution of J100 a fluid rheologically

similar to ET497. The gas bubbles rising in viscous carbopol and slightly elastic CMC
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solutions, deform from spherical to oblate ellipsoidal shape and then to spherical cap with

increasing volume, qualitatively similar to bubbles rising in Newtonian liquids. Bubbles

rising in highly elastic ET497 and J100 deform from spherical to prolate shapes with

marked cusp shaped trailing edges with increasing volume. Moreover, at a critical

volume Mc , there is an abrupt increase in the rise velocity, which varies between 2.2 to

5.86 times the velocity before the onset of this sudden increase, depending on the

percentage of polymer additives ET497 or J100 added. They further noted that "The

shape of the bubble also undergoes a transition at Mc , although not very marked at

critical volume when v < M c , although the rear pole is cuspidal, the whole bubble surface

appears to be convex. In contrast to this, when v > Mc., the protruding tip at the rear pole

is more marked and the bubble surface appears to be concave along an horizontal circle

slightly above the protruding tip." They explained that this abrupt increase in the velocity

is due to the transition from the Stokes regimet to the Hadamard regimet. Since a similar

transition in Newtonian liquid is not accompanied by an abrupt increase in rise velocity,

they concluded that viscoelasticity is responsible for this transition.

Following the work of Astarita and Apuzzo (1965), several researchers

investigated this phenomenon experimentally-Barnett and Humphrey (1966), Calderbank,

Johnson and London (1970) and Leal, Skoog and Acrivos (1971). Leal et al. (1971)

compared the terminal velocities for rising bubbles and falling glass spheres in a

Separan-AD30 solution ranging in concentration from 0.04 to 1% by weight. The density

1. According to Astarita and Apuzzo (1965) , "A gas bubble moves in the Stokes regime

when the liquid is in creeping flow, the bubble is spherical, and the interface is rigid. A

gas bubble moves in the Hadamard regime when the liquid is in creeping flow, the bubble

is spherical, and the interface is free."
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of the sphere was conveniently chosen to match the terminal rise velocity of an air

bubble. Since they did not observe any velocity transition for the sphere, they concluded

that the observed velocity discontinuity for a bubbles at the critical volume is due to a

change in the boundary condition at the interface from no-slip to shear free. They also

analyzed the relative importance of the contributions of shear dependent viscosity and

elasticity to the discontinuity and suggested that a "relatively modest elastic contribution

to force balance at the interface would be sufficient to explain the experimentally

observed discontinuity."

Liu, Liao and Joseph (1995) proposed a new explanation for the discontinuity in

the rise velocity at the critical volume for the bubbles rising in 1.5% aqueous polyox

solution inside channels with rectangular, square and circular cross-sections. They argued

that the jump in the rise velocity is due to a reduction in the drag which happens due to a

change in the bubble shape. They noticed that the bubbles below the critical volume were

prolate and those above the critical volume were pointed with a cusp-like trailing edge.

Interestingly, a few years later, Belmonte (2000), observed experimentally that the

discontinuity in the velocity-volume plot occurred at the same volume at which the cusp

appeared for a bubble rising in a standard weakly elastic power law fluid.

Wagner, Giraud and Scott (2002) developed a two-dimensional Lattice-

Boltzmann scheme for two phase flows and used this method to simulate bubbles rising

in viscoelastic fluids. They did not observe a significant discontinuity as observed in

experiments by Liu et al. (1995) and concluded that "the discontinuity observed in

experiments was due to the presence of impurities or surfactant molecules that were

absent in their numerical simulation."



35

Hererra-Velarge, Zenit, Chehata and Mena (2003) analyzed the flow around

bubbles using the DIV technique (Darticle Image Velocimetry) for bubbles with volume

close to the critical volume at which the discontinuous change in rise velocity occurs.

They reported that when the bubble volume is smaller than the critical volume, the flow

resembled that of a bubble rising in a Fewtonian fluid, i.e., the velocity in the wake of the

rising bubble was positive. For bubbles with volumes greater than the critical volume,

they observed a markedly modified velocity distribution and a negative wake.

The presence of surface active agents affects the surface tension and consequently

the rise velocity and the jump in velocity at a certain critical volume. Rodrigue, DeKee

and Chan Man Fong (1996) experimentally investigated the effects of surfactants on the

velocity of a bubble rising in a viscoelastic fluid. They analyzed the effects of various

concentrations of sodium dodecyl sulphate (tDt), an ionic surfactant on four different

viscoelastic fluids — 1 mass% CMC, 1 mass % gellan gum (GEL) in distilled water, 3

mass % polyethylene oxide, and ployacrylamide AD-237 (concentration varying between

0.075 and 0.25). They concluded that surface active agents as well as elastic forces must

be simultaneously present in order to modify the surface and generate a sudden jump in

the velocities. A summary of published results concerning the discontinuous jump at

critical volume is presented in Table 1.

In the past few years, considerable advances have been made in understanding the

transient motion and the presence of negative wake behind spheres falling in viscoelastic

liquids. Detailed numerical simulations as well as experimental results and elegant

explanations have been reported for the falling sphere problem. A review of the articles

published on the settling sphere problem can be found in McKinley (2001). The transient
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motion of a bubble rising in a viscoelastic fluid however, has not been investigated as

rigorously as the falling sphere problem.

Table 1. Summary of the magnitude of jump and the reasons given for the jump.

Handzy and Belmonte (2003) analyzed the transient oscillatory motion of air

bubbles rising in micellar system consisting of an aqueous solution of cetylpyridinium

chloride (CDC1) and sodium salicylate (Fatal). For a fixed ratio of aNatalil aCDC1i and

concentrations from 4 to 40 mM, they analyzed the transient behavior of bubbles with

volumes ranging from 14 mm 3 to 110 mm3 in cylindrical tanks. They observed that when

the concentration of aFatalil aCDC1i is between 5mM — 15mM, bubbles form a cusp

shaped tails which lengthen as the bubbles rise during which the velocity of the leading

end remains constant. However, the tail suddenly retracts and the bubble jumps upward

and then decelerates to a constant velocity and these oscillations persisted for a rise

distance of over one meter. For higher concentrations between 25mM - 40mM, the shape

of the entire bubbles changes, in contrast to the lower concentrations when only the tail

shape changes. Additionally, for intermediate concentrations, no oscillations were

observed. They noted that since falling spheres also oscillate aJayaraman and Belmonte
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(2003)i in wormlike micellar fluids, it was unlikely that the surface tension played a role

in bubble oscillations, and that "the common aspect to all these oscillations is the

nonpermanence of the macromolecular structures which are responsible for the fluid

stress and therefore the drag."

Though the rise of a bubble in a viscoelastic fluid has been analyzed via two-

dimensional numerical simulations in the past aWagner, Giraud and tcott (2002) and

references thereini, a three-dimensional analysis is necessary to understand the nuances

of this asymmetrical problem.



CHAPTER 4

INTERFACE TRACKING AND NUMERICAL METHOD

4.1 Interface Tracking

The problem of computing the motion of two-phase flows with interfaces is difficult even

for Fewtonian fluids because the interface shape changes in response to fluid motion.

Across the interface the fluid properties change suddenly and an interfacial force acts

along the interface of the two fluids. When one or both phases are viscoelastic the

numerical problem is even more complex, as one must also solve for the viscoelastic

stresses.

Tracking the interface shape that changes in response to fluid motion is the first

step to obtaining a numerical solution to the problem of deformation of drops. Once the

position of the interface is known, the equations of flow must be solved in both phases.

The level set method atussman et al. (1998)i is used to track the interface and the

governing equations are discretized using the finite element method. Operater splitting is

used to decouple the governing equation into simpler sub-problems.

Another issue requiring numerical dexterity is the discretization of the convection

term u • VA that appears in the constitutive equation. Fumerical errors at higher De occur

primarily because of poor approximation of the convection term in the governing

equation of the configuration tensor. In this numerical scheme, the third order upwinding

developed by tingh and Leal (1993) is used to overcome this difficulty. Additionally, a

common observation for both Maxwell's and Oldroyd type model, a De exists at which

detA becomes negative aKing et al. (1988), Marachal and Crochet (1986, 1987)). This De

38
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delineates the upper limit for which reasonably smooth numerical solutions can be

obtained. It can be shown in an analytical solution that the configuration tensor cannot

become negative atingh and Leal (1993)i. The fact that it does become negative in a

numerical scheme is therefore a consequence of numerical error. A technique used to

overcome the above mentioned difficulty will be discussed in this chapter.

The study of deformation of drops falls into a well-known category of problem

known as free-boundary problems, wherein the interface shape at which the boundary

conditions must be applied is not a priori known. Boundary conditions are available at the

solid wall in contact with the matrix fluid. It is the boundary condition at the moving

interface that is of concern. In this work the real interfacial region, in which physical

properties vary rapidly but continuously, is replaced by a macroscopic surface, with

properties such as density and viscosity that are modeled as retaining their bulk values

right up to the surface and then changing discontinuously aLeal (1992)i. The interface is

characterized by interfacial tension and the boundary conditions prescribed at the

interface are continuity of velocity and shear stress across the interface, normal

component of velocity is continuous and the normal stress suffers a jump across the

interface which equals the surface tension force.

There are several numerical approaches available for tracking the interface

between two immiscible Fewtonian liquids such as the surface tracking method aUnverdi

and Tryggvason (1992)i, volume of fluid method aFatemi and Odeh (1992), Hirt and

Fichols (1982)i, the mapping method aRyskin and Leal (1984)i and the level set method

atussman et al. (1998), Osher and tethian (1988), tussman et. al. (1994), tussman and

tmereka (1997)i. These methods have been used extensively to simulate viscous and
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inviscid two-phase flows. Due to the inherent complexity of viscoelastic flows, there are

relatively fewer numerical schemes such as the moving grid method aBousfield et al.

(1988)i, the mapping method aNoh et al. (1993), Ramaswamy and Leal (1999)i, and the

references listed in these papers. In this study the level set method is used to track the

interface.

In the level set method atussman et al. (1998)i, the interface position is not

explicitly tracked, but is defined to be the zero level set of a smooth function 43,, which is

assumed to be the signed distance from the interface. In implementing the level set

method, 4) is assumed to be negative inside the drop surface and positive outside. Along

the interface 4) is assumed to be zero. In order to track the interface, the level set function

is advected according to the velocity field, i.e.,

Clearly, if 4) satisfies the above equation and 4) = 0 at t = 0 along the interface, the

zero level set of 4 marks the interface for all t > 0. When 4) is advected according to

Equation 4.1 it will not remain the distance function for the points away from the

interface, and therefore it must be reinitialized to be a distance function. But, since only

the zero level set is physically relevant, as noted in aChang et al. (1996)i, "we have a lot

of freedom in extending the level set function outside the interface."

It is worth noting that since an explicit scheme is used to advect the interface

according to Equation 4.1, the CFL criterion is pertinent to calculations and thus when

the time step is too large the numerical method fails.
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Re-initialization of 4)

The level set function 4 is reinitialized to be a distance function after each time step by

solving the following equation obtained in atussman et al. (1994)i, to the steady state

avoid discontinuities, the following smoothed sign function is used

where h is equal to one and half times the element size. Equation 4.2 is a first order

hyperbolic partial differential equation which is solved using a positive only upwinding

scheme described in aGlowinski et al. (1999)i. Clearly, the characteristics of Equation 4.2

point in the direction of w. Therefore, for the points outside the drop w points away from

the drop and for the points inside the drop it points inwards. Thus, Equation 4.2 can be

solved by specifying the boundary condition 4) = 4)0 at the two-fluid interface 4) = 0.

4.2 Variation of Density, Viscosity, and Relaxation Time Across The Interface

In the finite element scheme the fluid viscosity is assumed to take a jump across the

interface, i.e.,
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Here id and rib are the viscosities of the fluids inside and outside the drop,

respectively. In other words, the nodes that are inside the drop have the drop viscosity

and the nodes that are outside have the fluid viscosity. The fluid density, on the other

hand, is assumed to vary smoothly across the interface

where h is equal to one and half times the element size, and pd and pi, are the densities of

the fluids inside and outside the drop, respectively. This smoothing of the density is

similar to that in atussman et al. (1994)i, and is needed for avoiding numerical

instabilities for relatively large density ratio p dlpL . The fluid relaxation time is assumed to

jump across the interface

Here Xrd and Xri are the relaxation times of the fluids inside and outside the drop,

respectively. If the fluid inside (or outside) the drop is Fewtonian its relaxation time is set

to zero. A relaxation time of zero ensures that the fluid relaxes instantaneously and thus

behaves like a Fewtonian fluid. This permits the use of the same equations for both

Fewtonian and viscoelastic liquids.
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The surface tension force is smoothed and acts only on the elements for which 4)

is smaller than h. This is done by approximating 8(4)) in Equation 3.2 by a mollified delta

function 8 h (4)) using the approach described in atussman et al. (1994)i:

For the two-dimensional approach an unstructured mesh is used, while a

structured mesh is used for the three-dimensional case. The element size is constant for

the three-dimensional case but for the two-dimensional case the element size near the

drop is kept approximately constant which is used to define h to be one and half times the

average element size near the drop, where the element size is equal to the side of a square

whose area is two times that of a triangle.

The error introduced by smoothing of the surface tension force is 0(h) atee

Brackbill et al. (1992)i for a detailed discussion). Also note that Equations 4.7 and 4.8

require that 4) be maintained as a distance function which is done by reinitializing 4) after

each time step.

One of the attractive features of this approach is that it is relatively easy to

implement in both two and three dimensions. In fact, an algorithm developed for two

dimensions can be easily generalized to three dimensions. The level set function can be

represented using the same finite element basis functions as that for the velocity field.

Also, the method does not require any special treatment when a front splits into two or

when two fronts merge.
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4.3 Numerical Method

In this method the governing equations are solved simultaneously everywhere, i.e., both

inside and outside the dropslbubbles in the domain. This approach is different from the

methods where the flow fields inside and outside the drop are decoupled and solved

separately aRamaswamy and Leal (1999)i. In a decoupled approach one must apply

suitable boundary conditions at the interface, i.e., impose the continuity of velocity and

shear stress across the interface, and the jump in the normal stress across the interface is

set to be equal to the surface tension force. tince in this approach the governing

equations are solved in a coupled manner, the method is stable and allows us to take

relatively large time steps.

The finite element scheme uses the Marchuk-Yanenko operator-splitting

technique to decouple the difficulties associated with the incompressibility constraint, the

nonlinear convection term, the interface motion, and the viscoelastic term aMarchuk

(1990), Glowinski et al. (1999), and tingh et al. (2000)i. The operator splitting scheme

gives rise to the following four sub-problems: A ttokes like problem for the velocity and

pressure; a non-linear convection-diffusion problem for the velocity; an advection

problem for the configuration tensor; and an advection problem for the interface. The first

problem is solved by using a conjugate gradient (CG) method aGlowinski et al. (1992)i

and the second problem is solved using a least square conjugate gradient method

aBristeau et al. (1987)i. The third problem is a hyperbolic partial differential equation for

the configuration tensor. As mentioned earlier while discussing the Oldroyd-B

constitutive model, the convection term u • VA poses certain numerical difficulties. The

two key features of the numerical method used for solving this problem are: a scheme
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that ensures the positive definiteness of the configuration tensor, and a third order

upwinding scheme for discritizing the advection term in the constitutive equation atingh

and Leal (1993)i. These two features are important for obtaining a split scheme that is

stable at relatively large Deborah numbers. The fourth problem is for the advection of

the level set function 4), which is solved using a third order upwinding scheme aGlowinski

and Dironneau (1992)i. The advected (I) is then reinitialized to be a distance function,

which, as noted in atussman et al. (1994)i, is essential for ensuring that the scheme

accurately conserves mass. Also note that the linear systems in the ttokes-like and

nonlinear problems are symmetric, and hence can be solved by using the conjugate

gradient algorithm. The product of the global matrix and vectors, required in the

conjugate gradient algorithm, is computed directly without assembling the global matrix

of the linear system. This reduces the memory requirement of the computer program.

4.4 Weak Form

The weak form of the governing equations is obtained by multiplying Equations 3.1, 3.2,

3.4 and 3.5 by the test functions, and integrating the second order term by parts. This is a

straightforward procedure with an additional complication that the fluid properties are

not constant in the domain. Furthermore, since the fluid is viscoelastic, the constitutive

Equation 3.4 also needs to be solved along with the momentum and continuity equations.

In obtaining this weak form, the hydrodynamic stresses acting at the interface are

completely eliminated.

To state the combined weak form for the equation of motion need the following

spaces are needed:
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4.5 Finite-Element Approximation

In order to solve the above problem numerically, the domain is discretized using a regular

finite element triangulation Th for the velocity and configuration tensor, where h is the

mesh size, and a regular triangulation T2h for the pressure. The following finite

dimensional spaces are defined for approximating BO , wo , WA , wA0 , L2 (C/) L20 (C2) ,

W and Who
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Using these finite dimensional spaces, the following finite-element approximation to the

Equations (4.10) - (4.14) is obtained:
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4.6 Time Discretization Using the Marchuk-Yanenko Operator Splitting Scheme

The initial value problem (E2uation 4.21) is solved by using the Marchuk-Yanenko

operator splitting scheme which allows us to decouple its four primary difficulties:

1. The incompressibility condition, and the related unknown pressure ph,

2. The nonlinear advection term,

3. The interface problem, and the related unknown level set distribution (1)h

4. The e2uation for the configuration tensor, and the viscoelastic stress tensor which

appears in the momentum e2uation.

The Marchuk-Yanenko operator splitting scheme can be applied to an initial value

problem of the form

where the operators A 1 , A2, A3, and A4 can be multiple-valued. Let At be the time step,

and a, 13 and y be three constants: (',113c, 13, y 1 and a + 13 + y = 1. Be use the following

version of the Marchuk-Yanenko operator splitting to simulate the motion of particles in

a viscoelastic fluid:

For n=0,1,2 5 ... assuming Dun, An, and I)n are known, find the values for n+1 using the

following:

STEP 1:
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Remarks:

1. The first step gives rise to a ttokes-like problem for the velocity and pressure
distributions which is solved by using a conjugate gradient method aGlowinski et al.
(1992)i.

2. The second step is a nonlinear problem for the velocity, which is solved by using a
least s2uare conjugate gradient algorithm aBristeau et al. (1987)i.
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3. The third step is a linearized hyperbolic problem for the configuration tensor or stress.
This problem is solved by using a third order upwinded positive only scheme atingh and
Leal (1993)i. The two key features of this scheme are: a positive only scheme that
guarantees the positive definiteness of the configuration tensor, and a third order
upwinding scheme for discretizing the convection term in the constitutive e2uation.
These two features are important for obtaining a scheme that is stable at relatively large
Deborah numbers.

4. The fourth step is a hyperbolic problem for the scalar level set function 4). This
problem is solved by using a upwinding scheme where the convection term is discretized
using a third order scheme atingh and Leal (1993)i. After advecting 4), the distance
function is reinitialized to be a distance function near the interface by performing two
iterations of E2uation 4.26.



CHAPTER 5

RESULTS AND DISCUSSION-SIMPLE SHEAR FLOW

5.1 Introduction

Fumerical simulations were carried out in two dimensions as well as three dimensions.

The results of the two-dimensional simulation will be discussed first which will be

followed by results of three-dimensional simulations. Though a two-dimensional analysis

brings out many aspects of deformation of drops in viscoelastic flows, a three-

dimensional analysis becomes imperative due to the asymmetric nature of the problem.

Even when both fluids involved are Fewtonian, the deformed drop shape is not

symmetrical. Bhen one or both of the li2uids involved are viscoelastic the drop

asymmetry is greater which is due to the development of viscoelastic stress boundary

layers near the interface that are not symmetrically located about the major axis of the

deformed drop. Therefore, strictly speaking, for understanding the deformation and

breakup of drops in viscoelastic simple shear flows, simulations must be performed in

three dimensions. The effect of different parameter on the shape of the drop will however

be discussed in both two the three dimensions.

The deformation of a drop in both two and three-dimensional case is measured in

terms of the Taylor deformation parameter D= L -B , where L is half the major axis and
L+B

B is half the minor axis of the ellipsoidal drop. Before flow is imposed, the drop is

spherical and the deformation parameter D = 0. The value of D ranges between zero and

one depending on the extent of deformation.

53
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Before discussing the results, it is worth repeating here that the Deborah number,

a dimensionless measure of the viscoelastic stresses is defined as.

the relaxation time of the fluid and G is the shear rate (for simple shear flow). c is a

measure of polymer concentration in terms of the zero shear viscosity. The zero shear

Capillary number Ca = GriLafry, where a is the radius on the drop, ribs is the viscosity of

the matrix li2uid and 7 is the interfacial tension.

The polymer response, as it travels on any of the streamlines will depend on the

strain rate, flow type at each point in the flow and the strain rate history experienced prior

to that point atzeri, et al. (1988)i. To understand the polymer response to flow type, it is

useful to define two 2uantities. The trA i.e. the trace of the configuration tensor A is a

measure of the extension of the polymer molecule. In its relaxed state when A = I, the trA

will be 2 for the two-dimensional case and 3 for the three-dimensional case. Another

2uantity that helps us visualize the effect of viscoelasticity is the component of

viscoelastic force plotted along the outer normal. This is obtained by taking the normal

component of the viscoelastic contribution to the momentum balance e2uation, i.e.

where n is the outer normal. A positive value of this 2uantity indicates

that the forces act in the direction of the outer normal and a negative value indicated that

the force acts in the opposite direction.

The orientation of the principle Eigen vector of A is another useful feature that

helps understand the directional orientation of the polymer molecules. Each of the above

feature will be used to provide a basis for comparing flows of different types.
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5.2 Results of Two-Dimensional Simulations

5.2.1 Convergence with mesh refinement for two-dimensional simulations

The code was verified by performing a convergence study that shows that the steady state

shape of the drop is independent of the mesh resolution and also of the time step used in

calculations. The time step is varied between 0.001 and 0.0005.

timulations are started by placing a circular drop of diameter 1 at t = 0 at the

center of the computational domain where it is subjected to a viscoelastic simple shear

flow of strength 0.4 /s. The fluid viscosity is 300 and A, = 1. The relaxation time of the

fluid is 1, and the surface tension is 250. For the above parameters, Re = 0.0003, De =

0.4, and Ca = 0.24. As will be discuss later, for these parameter values the drop attains a

steady state shape.

From Table 5.1 it is worth noting that when the number of nodes is increased

from 9129 to 11567, and further to 17493, the steady state deformation as well as the

drop area is comparable. The drop area for the finest mesh is —1.5% smaller than the

initial area. The mesh was refined such that in all three cases the elements near the

interface were 4 times smaller than the elements farther away. For a mesh with 17493

nodes the drop area and deformation are shown in Table 5.2 for two different values of

the time step. From the results presented above it is established that the steady state

results are also approximately independent of the time step. The time evolution curves of

the drop shape shown in Figure 5.1 for two different values of time step and mesh

resolution are also approximately identical. From the aforementioned results and

discussions it may be concluded that both the transient and the steady state solutions are

independent of the mesh resolution and the time step used.
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For the simple shear flow problem, simulations were convergent for flows up to

De = 16. The method converges for Re < 0(1000), including ttokes flow (Re = 0). The

Reynolds number for most cases described in this paper is much smaller than one and is

approximately of the same order as for results described in aDillapakkam and tingh

(2001)i.
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5.2.2 Deformation of a Newtonian Drop in a Simple Shear Flow of a Viscoelastic
fluid

In this section results are presented for the case when the drop phase is Fewtonian and

the matrix phase is viscoelastic. To demonstrate the behavior of polymer molecules, a

drop with initial diameter 1 is subjected to a simple shear flow of strength 0.4 s -1 . The

fluid viscosity is 300 and the viscosity ratio X, = 1. For the above parameters, the

dimensionless Ca = 0.4, De = 0.6 and the Reynolds number is 0.0003.

In simple shear flow, the polymer molecules experience considerable degree of

stretch along the principle axis of deformation close to the interface as can be seen from

the isovalues of trA (tee Figure 5.2). This is because for a fixed non-homogeneous
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spatial distribution of velocity gradient tensor along a streamline, the spatial gradient of

the velocity gradient tensor along a streamline, the spatial gradient of the configuration

tensor increases as the transnational velocity of the polymer molecules decreases aSingh

and Leal (1993)].

Figure 5.2 Isovalues of trA are shown for the case of a Newtonian drop subjected to a
viscoelastic shear flow with Ca = 0.24, De = 0.6 and Re = 0.0003. (a) The time step is
0.0001 and the number of nodes is 9129. The steady state deformation D = 0.4758.
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Figure 5.3 A magnified view of distribution of principal direction of A is shown. Fotice
that the viscoelastic stresses near the tip of major axis act in the direction approximately
normal to the drop surface.

The orientation of the principal eigenvector of A is shown in Figure 5.3. Fotice

that the polymer molecules tend to align themselves along the principal axis of

deformation that corresponds to a region of high strain. Also notice that the principal

direction of viscoelastic stress is normal to the drop surface near the tips of the major axis

and parallel to the drop surface at the tips of the minor axis. The viscoelastic polymer

molecules have a tendency to align and stretch along regions in the flow that are

extensional in nature. The normal component of viscoelastic stresses locally pull out the

drop surface, leading to the formation of pointed edges.



Figure 5.4 Isovalues of the normal component of viscoelastic stress are shown for a
Newtonian drop subjected to viscoelastic shear flow. The normal component of the
viscoelastic stresses is positive and extensional near the tip but negative near the e2uator.

Figure 5.4 shows isovalues of the normal component of viscoelastic stress for a

Newtonian drop subjected to a viscoelastic simple shear flow. The dark region along the

principal axis of the drop indicates that viscoelastic stresses in that region are positive and

act away from the center. The lighter region in the direction normal to the principal axis

of the drop indicates that the viscoelastic stresses act inwards. Clearly, the combined

effect of the viscoelastic stress is to increase the drop deformation from that for the

corresponding Newtonian case.
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The effect of increase in De on drop deformation will be explained while

discussing the results of three-dimensional simulation. However, it is worth noting that

the contribution of the normal component of the viscoelastic stress increases with

increase in De as can be seen from Figure 5.5.

5.2.3 Deformation of a Viscoelastic Drop in a Simple Shear Flow of a Newtonian
Fluid

In this section the behavior of a viscoelastic drop subjected to a simple shear flow of a

Fewtonian fluid is discussed. The drop diameter is 1 and the shear rate 0.4 ls. The fluid

viscosity is 300 and X = 1. The Reynolds number is 0.0016.



From Figure 5.6 it can be seen that for Ca = 0.6 and De = 0.4, the distribution of

trA is not symmetrical about the major axis. The thin boundary layers of high velocity

gradients exist inside the drop where trA is relatively large. However it is not

symmetrically located about the major axis. Due to this asymmetry of viscoelastic
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stresses the deformed drop is not exactly symmetric about the major axis and therefore a

two dimensional analysis is insufficient for a complete analysis of the deformation of

drops involving viscoelastic fluids. Also notice that, just as in the case of Fewtonian drop

in viscoelastic shear flow, the maximum value of trA is near the tip of the major axis.

Figure 5.7 A magnified view of distribution of principal direction of A is shown for the
case described in Figure 5.6.

As seen in Figure 5.7, the orientation of the principal eigenvector of A for the

fluid inside the drop is normal to the drop surface near the tips of the major axis and this

pulls the drop inwards as can be seen from Figure 5.8. The dark region along the normal

to the principal axis of the drop indicates that the viscoelastic stresses in that region are
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positive and act away from the center. The lighter region near the tip of the major axis

indicates that the viscoelastic stresses are negative and this act inwards and the combined

effect results in deformation that are smaller than for a corresponding Fewtonian drop.

Figure 5.8 Iso-values of the normal component of viscoelastic stress near the interface.
The dark region near the tip of the major axis of the deformed drop indicates that
viscoelastic stress in this region is positive and acts away from the center. The lighter
region near the tip of the minor axis of the deformed drop indicates negative viscoelastic
stresses that act inwards.

Also note from Figure 5.9 that, as in the case of a Newtonian drop in a

viscoelastic simple shear flow, the maximum value of the normal component of

viscoelastic stress increases with increase in De.
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5.3 Results of Three-Dimensional Simulations

The primary goal of this analysis of drop deformation is to analyze the effect of

viscoelastic stress on the in drop shape that result from independently varying the

polymer concentration c and the polymer relaxation time X,.

timulations were carried out for a range of Ca, De and c. tince only the steady

state shapes are analyzed, the choice of Ca, De and c are restricted to values that yield

steady state shapes. Even though the numerical code is capable of handling transient

deformation and drop breakup, the results discussed are limited to steady state

deformations since greater emphasis is on the effect of viscoelasticity on deformation and

not on 2ualitative nature of deformation or modes of break up. The viscosity ratio will be
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restricted to 1 throughout this chapter. Figure 5.10 shows an undeformed drop at the

center of the domain before flow is imposed on the drop.
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5.3.1 Convergence and Comparison

The code was verified by performing a convergence study that shows that the steady state

shape of the drop is independent of the mesh resolution and also of the time step used in

calculations as shown in Figure 5.11. The time step is varied between 0.001 and 0.0005.

Figure 5.11 Transient deformation of a Newtonian drop subjected to viscoelastic
simple shear flow for Ca = 0.1, De = 0.1, c = 0.1. The figure shows that for varying
resolutions and time steps the transient deformations are approximately the same.

The result of the convergence test indicates that the three-dimensional numerical

scheme is independent of resolution as well as time step sizes.

Since the deformation of drops when both phases involved are Newtonian is a

problem that has been analyzed experimentally as well as numerically, comparisons

could be drawn to verify accuracy of the numerical scheme as shown in Figure 5.12

where the steady state drop deformation parameter D is shown as a function of Ca. The

above plot shows results obtained using the Volume of fluid method by Li, et al. (2000),
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boundary integral computations of Rallison (1984), experimental results by Rumscheidt

and Mason (1961) and boundary integral computations of Kwak, et al.(1998).

Figure 5.12 Deformation of a Fewtonian drop in a Fewtonian simple shear flow. The
steady state drop deformation parameter D is shown for the volume of fluid method by
Li, et al. (2000), boundary integral computations of Rallison (1984), experimental results
by Rumscheidt and Mason (1961) and boundary integral computations of Kwak, et al.
(1998).

5.3.2 Deformation of a Newtonian Drop in a Simple Shear Flow of a Viscoelastic
Fluid

As already mentioned, the results are restricted to the parameter range for which the

drops deform to steady state shapes. The parameters that will be varied are, Ca, De and c.

In simulations, the capillary number is varied by varying the interfacial tension acting at

the interface of the two fluids while keeping the shear rate a constant. timulations were

performed for Ca = 0.1 and 0.13, with polymer concentrations ranging from c = 0.01 to 1

and for a set of De between 0.01 and 3. The viscosity ratio is taken to be unity.
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5.3.2.1 Effect of Polymer Concentration c

At extremely low concentration levels, even though the polymer molecules stretch in

flow, the change in strain rates is not very significant. Therefore, at very low polymer

concentration levels, the fluid behaves like a Fewtonian fluid regardless of the fluid

relaxation time.

In Figure 5.13, trA, a dimensionless measure of the extent to which the polymer

molecules are stretched relative to their e2uilibrium radius of gyration is plotted against

De for two different values of polymer concentrations. For these calculations, Ca = 0.1.

Figure 5.13 trA is plotted against De for two different polymer concentrations, Ca = 0.1.

Fotice that trA is larger for the smaller concentration. As polymer concentration

increases, the maximum value of trA and thus also the maximum polymer extension

decreases. At low c's, though the polymer molecules exhibit a high degree of stretch, its

effect on the flow and the drop deformation is not significant. For example, the

deformation of a Fewtonian drop in a simple Fewtonian shear flow at Ca = 0.1 is
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DNewtonian = 0.09730, while that of a Fewtonian drop in a viscoelastic shear flow at c =

0.01 and Ca = 0.1 is Dviscoeiastic = 0.09926. It is justifiable to say that the viscoelastic

contribution is not very significant as c —> 0. As c increases, the viscoelastic contribution

to flow becomes significant and drop deformation increases as seen in Figure 5.14.

5.3.2.2 Effect of Deborah Number De

It is known that in the limit of De--> 0, the fluid behaves like a Fewtonian li2uid and that

the viscoelastic effects become significant only when De :=L 1.

To study the effect of De on the deformation of drops, simulations were

performed for a range of De from 0.01 to 3 for Ca = 0.1 and 0.13. From Figure 5.13 it can

be seen that trA increases with increase in De, but decreases with increase in c. Though
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the deformation of drops in viscoelastic shear flows is always greater than in Fewtonian

shear flow (for a given Ca), the deformation of a Fewtonian drop in viscoelastic shear

flow decreases with increase in De. When zero-shear viscosity is maintained constant, the

deviation from Fewtonian behavior varies as a function of c as can be seen from Figures

5.15 and 5.16.

A couple of interesting observations from the above results are that even at

extremely low values of De the deviation from Fewtonian behavior is very significant,

provided the value of c is not small. Only in the limit of c---> 0 and De-+ 0 does the drop

deformation in a viscoelastic fluid approaches that in a Fewtonian li2uid. tecondly, the

deviation from Fewtonian behavior also increases with increase in Ca.



It was observed in the two-dimensional case (tee Figure 5.5) that the normal

component of viscoelastic stress increases with increase in De. If one were to base an

explanation for deformation of a drop based on normal viscoelastic stresses alone, as

noted by Elmendorp and Maalcke (1985), such reasoning would not be able to account

for a decrease in drop deformation with an increase in De. Clearly the modification in

velocity field due to a reduction in the velocity gradients also plays an important role in

determining drop deformation.

Another interesting feature that merits explanation is that with an increase in De,

the maximum value of trA is no longer near the tip of the major axis of the deformed

drop. A comparison of the isovalues of trA at two different values of De will reveal the

difference in alignment of the eigen directions of A (see Figure 5.17 and Figure 5.18).
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This shift in the location of maximum of trA away from the tip of the major axis, cause

an asymmetric deformation of the drop.

Finally, it is worth noting that at small values of c, the drop attained an ellipsoidal

steady shape (See Figure 15.19). However, at larger cgs (See Figure 15.20), the drop

developed pointed ends and in simulations lost volume from the tips. The drops

continued to deform and lose fluid and thus no steady state shapes were possible.



Figure 5.18 Isovalues of trA at Ca = 0.1, De = 3 and c = 1. Note that the maximum value
of trA is no longer along the major axis of the elliptical drop.



5.3.3 Deformation of a Viscoelastic Drop in a Simple Shear Flow of a Newtonian
Fluid

In this section we will look at the problem when drop phase is viscoelastic and matrix

phase is Newtonian and analyze the variation in drop shape as a function of De and

polymer concentration c. From discussions in previous sections it is known that

viscoelasticity of the matrix phase results in drops that are more deformed than their

Newtonian counterparts, but the effect of increase in elasticity does not always result in

an increased deformation.

Simulations were performed for Ca = 0.1, c was varied between 0.01 and 1 and

De was varied between 0.01 and 3. Deformation was analyzed as a function of De at

constant c and vice versa to independently study the effect of each parameter on

deformation of drop.



76

Effect of Polymer Concentration c and Deborah Number De

To understand the effect of De and c on the deformation of viscoelastic drops in

Fewtonian simple shear flows, the variation in the maximum values of trA was plotted as

a function of c and De. From Figure 5.21, it can be seen that just as in the case of a

Fewtonian drop in viscoelastic shear flow, the trA increases with increase in De and

decreases with increase in c.

However, their effect on the deformation of the drop is the opposite. Bhile

increasing c increases the deformation of a Fewtonian drop in viscoelastic shear flow, it

decreases the deformation of a viscoelastic drop. It can be noticed from Figure 5.22 that

at higher value of c the drop deformation is smaller.
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To analyze the effect of De on the deformation of a viscoelastic drop in a

Newtonian simple shear flow, numerical simulations were performed for De between

0.01 and De = 3. The value of Ca was held constant at Ca = 0.1. From Figure 5.21 it is

known that for a constant value of Ca, the maximum value of trA increases with

increasing De. The extensional viscoelastic stresses pull the drop surface near the tip of

the major axis inwards, and therefore the drop deformation decreases when De increases.

This trend, however, reverses for the higher values of De for which the drop deformation

increases with increasing De (See Figure 5.23). This behavior of viscoelastic liquids is

not unexpected. For example, the drag coefficient for a cylinder placed in an Oldroyd-B

fluid decreases with De for De < ~ 0(1). But, for the higher values of De the drag

coefficient increases with increasing De. This is a consequence of the memory, and
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resulting nonlinearly, of the Oldroyd-B fluid. It has been suggested in aBousfield et al.

(1988)i, that this reversal trend at higher De's is due to the modification of velocity field

from that for a Fewtonian li2uid. tpecifically, at higher De's the shear rate in the region

where the polymer stretch is relatively large is smaller than that for a Fewtonian fluid in

the same flow geometry.







CHAPTER 6

RESULTS AND DISCUSSION — BUOYANCY DRIVEN BUBBLES

6.1 Introduction

The case of a Fewtonian bubble rising in an Oldroyd-B fluid is studied in this chapter.

The goal is to analyze the transient and the steady state velocity of the bubble and the

effect of viscoelastic stresses on the shape of the bubble. timulations were carried out for

a range of bubble radii varying between 0.1 and 0.4 cm and relaxation times, between

0.1s and 0.2s sec. The interfacial tension was held constant at 10 dyneslcm and the zero-

shear viscosity OW was maintained at 10.25 Poise. timulations were stopped when the

bubble assumed a fixed shape and attained a constant rise velocity. tince the viscosity of

the ambient fluid affects the rise velocity of the bubble, the zero-shear viscosity was

maintained constant and only the relative magnitudes of viscous and elastic contribution

to the zero-shear viscosity were varied. This was achieved by varying the polymer

concentration factor c in the Oldroyd-B model, which controls the polymer contribution

to zero-shear viscosity. By choosing this approach, it is easier to focus on the effect of the

elastic and viscous components of the ambient viscoelastic fluid on the behavior of the

rising bubble, without having to worry about additional complications introduced by the

change in viscosity ratio.

The variation in rise velocity with bubble volume was investigated for different

values of polymer concentration parameter c = 19.5, 12.667, 9.25, 5.8375 and 4.125. The

relative magnitudes of polymer (ri p) and solvent (i s) contributions to zero shear viscosity
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Table 6.1. The magnitudes of i s and lip for different values of c. Fotice that rh o = 10.25 for
all cases.

timulations were started with a spherical bubble placed at a distance of 0.5 cm

from the bottom of the computational domain. The velocity on the domain boundary is

set to zero. The initial velocities of the bubble and the ambient fluid are assumed to be

zero and the configuration tensor A = I, which is the relaxed state of the Oldroyd-B fluid.

. The bubble velocity u(t) is defined to be the volume averaged velocity of the fluid

inside. Bhen the bubble reaches a steady state, u(t) is a constant, and the shape is fixed.

Two computational domains with dimensions 2x2x4 cm (Domain A) and

1.5x1.5x3 cm (Domain B), were used in our simulations. The reason for choosing

domains with two different cross sections is that for small bubbles, radius < 0.125 cm,

higher spatial resolution is necessary to obtain convergent results. It is computationally

expensive to have high resolution for a big domain and hence a smaller domain was used

for bubbles with radius < 0.125 cm.

In order to be able to use two different sized domains, it is necessary to show that

the bubble velocity is not affected by the proximity of the bubble to the domain wall. In
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Figure 6.1, the transient velocity of bubbles of radii 0.125 cm and 0.2 cm rising in the

above mentioned domains are plotted. Bhen the radius is 0.2 cm, we see that the bubble

velocity, both transient as well as steady state, is consistently higher for the bubble rising

in the bigger domain. Clearly, for the bubble of radius 0.2 cm, the wall effects are

significant. But, when the bubble radius is 0.125 cm, the transient and the steady state

velocities of the bubble in the two domain are approximately e2ual which justifies the use

of smaller domain for bubbles whose radius is 0.125 cm or smaller.

6.2 Oscillatory Transient Response

The transient behavior of buoyant bubbles accelerating from rest in a viscoelastic fluid

depends on its volume, its initial shape, the magnitudes of the viscous and elastic stresses

which depend on the fluid viscosity and the relaxation time. The bubble is driven by the

force of buoyancy and the viscous and elastic forces resist its motion. The problem of a
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rising bubbles differs from that of a falling sphere, since, in addition to these forces, the

surface tension force acts on the bubble surface and the shape of the bubble does not stay

spherical. If the deforming stresses at the interface are sufficiently smaller than the

surface tension force, the bubble shape remains approximately spherical. But, when these

deforming forces are significant the interface deforms and the bubble shape changes from

spherical to either prolate or oblate shapes depending on the nature of the ambient fluid.

Results of simulations indicate that a change in the bubble shape is accompanied by a

change in the fluid velocity around the bubble which in turn affects the net drag force

acting on the bubble. Given the transient interaction between the shape, velocity and

drag, it is reasonable to expect that a rising bubble will experience a longer period of

transience than a falling sphere for which the shape is fixed.

The transient velocity of a bubble of radius 0.25 cm rising in a viscoelastic fluid is

shown in Figure. 6.2a:
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Clearly, the initial motion of the bubble is dominated by the viscous effects, as the

viscoelastic stresses take some time to build up. The velocity field and the trA at the time

marked 1 in Figure 6.2a are shown in 6.2b-c. After the viscoelastic stresses build up, the

bubble velocity decreases and this causes the first overshoot in the velocity vs. time curve

of Figure 6.2a.



Figure 6.2b Isovalues of trA at t r:-.1. 0.015s, corresponding to point 1 in Figure. 6.2a, the bubble
radius = 0.25cm. The parameters are c = 12.667, 2 = 0.1s, 7 = 10 dyneslcm. At this time, the
maximum value of trA is 3.75, which occurs at the trailing end of the bubble. Since the
maximum value is only slightly greater than 3.0, the viscoelastic stresses have are not
important at this time.
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Figure 6.2c The velocity vectors around the bubble at t 0.015s. The bubble radius =
0.25cm. The parameters are c = 12.667, Xi. = 0.1s, y = 10 dyneslcm. Fote that at this
stage, the velocity in the wake of the bubble is in the direction of motion of the bubble.
The centers of the two recirculation zones are indicated by black dots.

Following this rapid initial acceleration, the viscoelastic effects start to become

significant, and the bubble starts to decelerate. The distribution of trA at stage 2 marked

in Figure 6.2a is shown in Figure 6.2d. The maximum value of trA has grown to 4.5. It is

at this point in the rise of the bubble that the structure of the wake changes, i.e., the

velocity vectors near the trailing end of the bubble now point in the direction opposite to

the direction of motion of the bubble (see Figure 6.2e).
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Figure 6.2d Isovalues of trA at t 0.05s, corresponding to point 2 in Figure. 6.2a, the
bubble radius = 0.25cm. The parameters are c = 12.667, Br = 0.1s, y = 10 dyneslcm. At
this time, the maximum value of trA is 4.5, which occurs at the trailing end of the bubble.
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At the end of the deceleration phase, either of the two situations entail: the bubble

attains terminal velocity and a steady state shape which is either prolate with a rounded

trailing end (See bottom image in Figure 6.3, corresponding to a = 0.2 cm) or the bubble

undergoes a shape change from prolate to one with a cusp like tail (top image in Figure

6.3 corresponding to a = 0.30 cm) and accelerates again to attain a higher terminal

velocity. Thus, there appears to be a connection between the bubble shape and its rise
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velocity, which will be discussed in detail while explaining the sharp increase in velocity-

volume curve observed in a critical bubble volume range.

King and Walters a1972i, in their analysis of unsteady motion of spheres in

Elastico-viscous li2uids noticed a similar behavior for falling spheres. They observed that

the velocity overshoots the steady state velocity, and showed that the elastic contribution

becomes significant, the sphere starts to decelerate.

The results of our simulation indicate a similar behavior up to the end of the

deceleration stage. It is beyond this stage that the transient response of a bubble deviates

from that of a sphere because the bubble starts to deform due to the extensional nature of
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viscoelastic stresses near the trailing end of the bubble. When the interfacial forces

dominate, the bubble attains a steady shape that is either spherical or prolate without a

pronounced tail and the bubble attains a constant velocity. However, when the viscous

and viscoelastic stresses at the interface overcome the interfacial tension, the bubble

develops a cusp like trailing end and this change in the bubble shape is accompanied by

an increase in the velocity as can be noticed from the upper two curves in Figure 6.3,

corresponding to a = 0.3 cm and 0.4 cm.

6.2.1 Transient Response as a Function of c

In this section the transient response of a rising bubble is analyzed as a function of the c,

and the other parameters are kept constant. tince rh o is kept constant, changing c merely

changes rip and i s while keeping rip + is constant.

The transient response of a bubble with a = 0.35 cm rising in a viscoelastic fluid

with 110 = 10.25 Poise, Br = 0.1s is shown in Figure 6.4 for three different values of c. Be

note from this figure that the magnitudes of velocity overshoot increase with increase in c

and that the velocity is more oscillatory at higher values of c. From Figure 6.4 we also

note that the amplitude of oscillations is higher when c is larger, as the viscoelastic

stresses become stronger with increasing c. After the initial overshoot, the bubble starts to

decelerate due to the build up of elastic stresses. After the deceleration phase, for c =

4.125, the bubble remains approximately spherical, and its rise velocity reaches a steady

value without further oscillations. For c = 9.25, on the other hand, the shape of the bubble

changes and the bubble velocity oscillates before reaching a steady value.
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6.2.2 Convergence of Transient Results at Large cgs

In this section the numerical results obtained for relatively large values of c are shown to

converge with increase in spatial resolution and decrease in time step. In Figure 6.5a—f,

the rise velocity is plotted as a function of time for different resolutions and time steps.

The results are identical for t < 0.04s, but deviate as t increases. The deviation at larger

times is due to the fact that when the mesh is not sufficiently refined or when time step is

not sufficiently small, the bubble volume decreases which in turn alters its rise velocity.

However, we find that by increasing the resolution and reducing the time step, the
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volume loss can be kept approximately constant. It is critical that the bubble volume does

not change since it affects the buoyant lift, the drag, and thus also the rise velocity.
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Figure 6.5b Convergence with time step; 'g o = 10.25 Poise, B ra = 0.1s, c = 4.125 and a =
0.25cm.

Time

Figure 6.5c Convergence with resolution; rh o = 10.25 Poise, A = 0.1s, c = 9.25 and a =
0.25cm.



Figure 6.5e Convergence with resolution; 11c = 10.25 Poise, 24.= 0.1s, c = 19.5 and a

= 0.25cm. As c increases, the bubble with lower resolutions loose more volume than

it would for a lower c
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6.2.3 Transient Response as a Function of Reixation Time

The transient response of a rising bubble is analyzed as a function of B ra. The values of c

and a are held constant. The transient response of a bubble with a = 0.25 cm rising in a

viscoelastic fluid with 110 = 10.25 and c = 19.5 for two values of X,- are shown in Figure

6.6. The figure shows that both the overshoot in the bubble velocity and the steady state

velocity are higher for the case with X i. = 0.25s. Also notice that the peak value of

overshoot occurs at a later time for B ra= 0.25s.

As discussed in the previous sub-section, the overshoot occurs because the

viscoelastic stresses take some time to build up and for the case with larger B ra, the time

re2uired for build up is larger.
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The above difference in the steady value of the bubble velocity is due to the

viscoelastic stresses which are different for the two cases, and cause the shapes for the

two cases to be different. As can be seen from Figure 6.7a and b, for Xi. = 0.2s, the

trailing end of the bubble is pulled out further and the curvature of the bubble at the

trailing end is reversed. As will be discussed later, the bubble shape is critical in

determining its rise velocity.
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Figure 6.7a Isovalues of trA at steady state for a bubble rising in a viscoelastic fluid
with, n o = 10.25 Poise, c = 4.125, a = 0.25cm and X, = 0.1s. Note that the maximum
value of trA, which occurs at the trailing end of the bubble, is --t: 15.



99

6.3 Sharp Change in Rise Veiocity in the Veiocity-Voiume Piot

Another interesting aspect of the problem of a bubble rising in a viscoelastic fluid is the

discontinuity or an abrupt change, in the terminal velocity of the bubble at a critical value

of the bubble volume. It is worth noting that even for a bubble rising in a Fewtonian

fluid, the terminal velocity increases by a factor 1.5, which is the ratio of the drag
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coefficients of a falling sphere and a rising bubble as discussed in Chapter 3. Many

researchers have investigated the phenomenon of bubbles rising in viscoelastic li2uids

and observed that, as expected, the rise velocity of a bubble increases when its volume

increases. In addition, it has been observed in experiments that in some viscoelastic

li2uids there is a critical bubble volume at which a tenfold increase in the rise velocity

has been observed (Liu et al. a1995i).

The results of this simulation indicate that when the terminal velocity of rising

bubbles is plotted against their volume, there is a small but finite volume range within

which the terminal velocity increases very rapidly with increasing bubble volume. This

steep increase has been analyzed below in terms of the transient behavior of bubbles, in

and around this critical volume range.

Clearly, when the bubble volume is increased, the capillary number also

increases, and thus larger bubbles are easier to deform. The viscoelastic stresses are also

larger for larger sized bubbles as they have higher terminal velocities. timulations show

that the viscoelastic stresses are particularly large near the trailing ends of the bubbles

and cause the bubbles trailing end to pull out. Bhen the bubble volume is even larger, its

trailing end assumes a two dimensional cusp-like shape.

In Figure 6.7 the transient velocities of the bubbles of three different radii rising

in a viscoelastic fluid with c = 19.5 are shown. Fotice that the overshoot is rather large

for all three cases and that for a = 0.15 cm the bubble velocity, after the overshoot,

undershoots and becomes negative. This phenomenon has been also observed for sphere

falling in viscoelastic fluid (Zheng and Dhan-Thien a1992i).
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The transient velocities of several bubbles with radius between 0.1 cm and 0.3 cm

are shown in Figure 6.9. Fote that the bottom three curves, which correspond to bubbles

of radii 0.1 cm, 0.125 cm and 0.15 cm, respectively, attain steady state at the end of

deceleration phase while the top three continue to accelerate. The velocities of the

bubbles with a > 0.2 cm, continued to oscillate and did not reach steady state values

before the bubbles reached the top of the domain. From Figure 6.10 in which the steady

state velocity is plotted against the bubble volume on a log-log plot, one can notice that

the terminal velocity of the bubble with a = 0.175 cm is 4.7 cols, which is approximately

6.5 times larger than the velocity of a bubble with a = 0.15 cm, which is 0.78 cols. Also

notice that the velocities of bubbles with a < 0.15 cm, vary very little with change in

radius. The six fold increase in terminal velocity occurs for a small change in volume

when the bubble volume is approximately 0.015 cm3.
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The simulation results indicate that bubbles for which the velocity oscillates after

initial overshoot, the bubble shape changes from spherical to prolate with an extended or

cusp like trailing end and for these bubbles the terminal velocity is relatively larger. This

leads us to believe that the change in the bubble shape and rise velocity of the bubble are

coupled. This in our opinion is the reason for the apparent sharp change in velocity at

critical volume, i.e., bubbles with volumes on either side of the critical volume have

markedly different transient behavior and a sizable difference in terminal velocities, as is

evident from comparing the shapes of the bubble on either side of the sharp change in

velocity-volume log-log plot (tee Figure 6.3). Be may therefore conclude that bubble

shape plays a critical role in determining both the transient and terminal velocity of

bubbles rising in viscoelastic fluids.

In analyzing the change in the transient behavior of a rising bubble as a function

of c, it is readily apparent that terminal velocities are higher for larger c values. This

corresponds to a steeper change in velocity at the critical volume at which the sharp

change in the rise velocity occurs. From Figure 6.10 and Figure 6.lla-c, we note that the

magnitude of velocity changes across either side of the critical range of volume at which

the sharp increase in volume occurs increases with increase in c. As c ---> 0, we expect

that that the velocity-volume log-log plot will not have any apparent jump but instead

have a 1.5 times increase in velocity as is observed for the Fewtonian case.
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6.4 Negative Wake and Recircuiation Zones

The fluid velocity in the wake of a bubble rising in a viscoelastic fluid, very close to the

trailing end, is in the direction of motion of the bubble. But, at a small distance from the

trailing end, the velocity direction reverses (tee Figure 6.14). For a bubble rising in a

Fewtonian li2uid, the fluid velocity near the bubble is in the same direction as the motion

of the bubble (tee Figure 6.13).

The presence of a negative wake can also be seen more clearly in Figure 6.12

where the velocity vectors at a horizontal plane at a distance of 0.3 cm below the trailing

end of the bubble are shown. Arrows indicate all vectors pointing out of the plane and

dots indicate velocity vectors pointing into the plain. The vectors point downward in a

circular region right below the trailing edge of the bubble and in the surrounding annular
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region they point upward. Since the velocity vectors below the trailing end of the bubble

point downward, the wake is considered to be negative.

Additionally, we also observe that apart from to the two recirculation zones at the

equator of the bubble, which are also present for bubbles rising in Newtonian fluids (see

Figure 6.13), there are two additional recirculation zones in the wake of a bubble (See

Figure 6.14).



N
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Figure 6.13 Stream traces on the domain mid-plane for a bubble rising in a Newtonian
fluid with viscosity 11 = 10.25 Doise and a = 0.3cm. Notice that the velocity in the wake
is in the upward direction, the direction of motion of the bubble.
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Figure 6.14 Stream traces on the domain mid-plane for a bubble rising in a viscoelastic
fluid; a = 0.35, c = 19.5, 110 = 10.25 Poise and B r = 0.1s. Notice that in addition to the two
recirculation zones at the equator, there are two additional recirculation zones in the wake
of the bubble.
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It is 2uite interesting to see how the positions of the recirculation zones and the

point of inflection, i.e., the point in the wake of the bubble where the velocity reverses

direction, change as the c and Bra are varied. The velocity vectors on a plane at the mid-

section of the domain, with the recirculation zones indicated by black dots, are shown in

Figure 6.15. Fotice that as ? increases, the recirculation zone near the e2uator move

away from the axis of the bubble, while the recirculation zones in the wake move closer

to the axis of the bubble and the trailing edge (tee Figure 6.15). On the other hand, when

c increases, the recirculation zones in the wake move upward, closer to the trailing end,

but do not move significantly in the horizontal direction (tee Figure 6.16a-b), but the

point of inflection (indicated by circle ) moves upwards when c increases.
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Figure 6.16a For X. = 0.1s, c = 4.125, 11 0 = 10.25 Poise and a = 0.2cm, the positions of
the four recirculation zones are indicated by large black dots and the point of
inflection in the wake of the bubble is indicated by a circle. The point of inflection is
at a distance approximately equal to the radius of the undeformed bubble from the
trailing end of the bubble.
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From Figure 6.17, it can be noticed that the magnitude of maximum negative

velocity in the wake of the bubble increases as the relaxation time of the ambient fluid is

increased.
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It is worth noting that the result of numerical simulation indicates that negative

wake was observed even for cases when the bubble reaches steady state shapes which

were almost spherical, i.e. for volumes less than volume at which there is a steep rise in

terminal velocity of the bubble. This result differs from those published by Hererra-

Velarge et al. a2003i who observed a negative wake only when the bubble volume is

greater than the critical volume at which a sharp change in velocity occurred. This

apparent discrepancy is due to the fact that they investigated a different range of

parameter space.
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6.5 Two-Dimensionai Cusp

Liu et al a1995i experimentally studied the rise of air bubbles in viscoelastic li2uids

inside channels with rectangular cross sections and found that the bubbles develop two-

dimensional cusps with pointed trailing ends in one view and broad ends in an orthogonal

view. Interestingly, in the narrow window the bubble appears to have a broad end, and in

the broad window the bubble has a pointed end.

Unlike in the experiments conducted by Liu et al a1995i in which the shape of the

trailing edge was different in the above two orthogonal views, we observed that due the

s2uare cross-section of our domain the bubble has a broad trailing edge in both

orthogonal views (See Figure 6.18a-b). However, when viewed along the diagonal, the

bubble had a pointed trailing end (See Figure 6.19).
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Figure 6.19 Pointed cusp-like trailing edge is seen when viewed along the cross-
sectional diagonal of the computational domain, for the same parameters as above.

6.6 Anaiysis of Surface Tension Forces on Bubbies With Singuiar Surfaces

Let B be a bubble with a smooth (= C 2 ) closed surface S. The net surface force on the

bubble assuming a constant surface tension coefficient y is given as

where, H is the mean curvature of S and ti is the unit outer normal on S. It is known (see

Blackmore and Ting a1985i and references therein) that F = 0. We shall show that for

certain types of singularities in the surface at the trailing edge of the bubble, F is no

longer zero and there is a net upward force that accelerates the bubble. The smooth and

the singular versions are illustrated below (See Figure 6.20a-b).
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6.6.1 Surface Forces

The most direct way of seeing that F = 0 when t is C2 is to observe that the right hand

side of E2uation 6.1 can be written as the surface integral of a vector-valued two-form
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Then a simple application of Stokes' theorem yields the derived result (Blackmore and

Ting a1985i)

Blackmore and Ting a1i proved that the vector-valued one-form Ti is given as

(•,*) is the standard inner (dot) product of the vectors.

It is natural to ask if E2uation 6.3 is still valid if the smoothness assumption on

the surface S if the bubble is weakened. In particular, what happens if S has an isolated

cusp or cone like pointing singularity or a line segment singularity? Be shall show that

E2uation 6.3 holds for surfaces with isolated cusp-like or cone like singularities, but an

additional nonzero upward force due to surface tension occurs for a trailing-edge

singularity comprised of a line segment.

6.6.2 Cusp and Cone Point Singuiarities

Here we consider singularities at the trailing-edge of the bubble that can be modeled

locally in the form (for z > 0) in a neighborhood of the region (trailing-point) in R3:



as illustrated in Figure 6.21a.
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Figure 6.21a Cone point at origin (2 = 1) Figure 6.21b Cusp point at origin (0 < 2 1)

In the case under consideration the bubble surface is smooth except at the origin,

so we can apply Stokes' theorem to the portion Szo of the surface S on or above the plane
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Fote that we have chosen the orientation of C Z to be consistent with the orientationo 

of S.. From E2uation 6.8 we compute that the unit outward normal to S in a smallo 

neighborhood of Coo  is

accordingly E2uation 6.6 also holds for a bubble having a cone or cusp point singularity

on its trailing-edge.

6.6.3 Chisei Type Singuiarity

In this section we consider a bubble whose surface S has a whole line segment of singular

points (chisel edge) on its trailing-edge as shown in Figure 6.22.



Figure 6.22 Chisel edge along x-axis

For sufficiently small z ( > 0), such a chisel-edge can be represented as follows:

is as in E2uation 6.8. If z. > 0 is small enough, it follows from

E2uation 6.12 that the plane z = zoo intersects in the ellipse

when z. J. 0, the ellipse degenerates into a line segment lxi < a on the x-axis coinciding

with the singular chisel-edge on the bubble surface. From E2uation 6.12 we calculate the

outward unit normal to t in a small neighborhood of the curve Coo to be

ll9
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and therefore conclude that the chisel-edge is the edge of a symmetric wedge with sides

:	 1
0 < 2 < 1, the limiting normal directions are j and -j respectively. Conse2uently, in case

(ii), we obtain

In either of the above two cases, we see that there is an unbalanced force on the

singular bubble due to surface tension, which must be balances according to Fewton's

third law by an additional upward force on the bubble given by

Therefore, the development of a chisel-edge singularity on the trailing-edge of the bubble

should be accompanied by an increase in the upward force on the bubble that is

proportional to the width of the singular edge.



CONCLUSIONS

In this thesis, the direct numerical simulation (DFt) approach is used to study

two free surface problems. In the first problem, the role of viscoelasticity in deformation

of neutrally buoyant drops subjected to simple shear flows is investigated, and in the

second problem, the shape and the rise velocity of bubbles rising in viscoelastic fluids is

analyzed.

Our results for the first problem, where the deformation of neutrally buoyant

Fewtonian drops in viscoelastic simple shear flows and viscoelastic drops in Fewtonian

simple shear flows is analyzed, indicate that the viscoelastic stresses near the principal

axis of the deformed drop are extensional and near the e2uator they are tangential. Thus,

viscoelastic stresses reduce drop deformation when the drop phase is viscoelastic and

increase deformation when the matrix phase is viscoelastic. Additionally, when the

outside fluid is viscoelastic, the drop develops pointed ends due to the extensional nature

of viscoelastic stresses while in Fewtonian fluids the ends are rounded.

In the second problem, simulations are used to study the following key issues for

Fewtonian bubbles rising due to buoyancy in viscoelastic fluids: the transient changes in

bubble shape and velocity, and their role in the sharp increase in terminal velocity at a

critical volume, the presence of negative wake and recirculation zones, and the

asymmetry in the shape of a deforoed bubble. These analysis were carried out as a

function of the polymer concentration parameter c, relaxation time Bra, and the bubble

radius a, keeping other factors such as the interfacial tension, density ratio, viscosity ratio

and the zero shear viscosity constant.
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The DFt results indicate that the bubble accelerates rather 2uickly from rest, but

start to decelerate once the elastic stresses develop. For a fixed value of X,- and sufficiently

small bubble volume, the bubble attains a steady shape and a constant rise velocity. This

is however not the case for the larger sized bubbles, at least for the finite sized

computational domains used here as the bubbles reached the top before reaching a steady

state shape or velocity. timulations also show that the viscoelastic stresses near the

trailing end of the bubble are significant, and when the bubble volume is larger than a

critical volume they cause the trailing end of the bubble to be pulled out. Results indicate

that after the trailing end is pulled out the velocity of the bubble increases.

Bhen terminal velocity is plotted as a function of the bubble volume, a steep

increase in terminal velocity was observed over a very small range of volume. The

increase in the rise velocity is more pronounced when c is larger.

The flow pattern in the wake of the bubble was analyzed and the presence of two

recirculation zone in the wake of the bubble and their positions were found to depend on

the parameter values. Upon increasing the relaxation time of the fluid, the recirculation

zones moved closer to the axis of the bubble and closer to the trailing edge, and the

bubble has a more pronounced tail compared to the shape of a bubble rising in a

viscoelastic fluid with a smaller relaxation time.
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