

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

CHARACTERIZING THE EVOLUTION OF OPERATING SYSTEMS

By
Yi Peng

Examining the development and trends in software engineering technology is a huge

undertaking. It is constantly evolving and affected by a large number of factors, which

are themselves driven by a wide range of sub-factors. This dissertation is part of a long

term project intended to analyze software engineering technology trends and how they

evolve. This project is intended to analyze operating system trends and what are the

factors that drive how they evolve. Basically, the following questions will be answered:

"How to watch, predict, adapt to, and affect operating system's evolution trends?"

In previous research, YF Chen used statistical models to analyze the evolution of

programming languages. Building upon Chen's work, the author uses operating systems

as the subject, derives the statistical models and applies them to analyze the trend and the

relationships between different factors that characterize an operating system.

After the history of several operating systems is reviewed, it shows that two kinds

of factors, intrinsic factors and extrinsic factors, could affect the evolution of an operating

system. Intrinsic factors are used to describe the general design criteria of an operating

system. On the other hand, extrinsic factors are the factors that are not directly related to

the general attributes of an operating system. In order to describe the relationship of these

factors and how they affect operating system trends, they need to be quantified. For

intrinsic factors, data are collected from different trustable data sources and analyzed. For

extrinsic factors, historical data are collected and established as a data warehouse. The

operating system trends are described and evaluated by using all the data that have been

collected and analyzed.

In this dissertation, statistical methods are used to describe historical operating

system trends and predict the future trends. Several statistics models are constructed to

describe the relationships among these factors. Canonical correlation is used to do the

factor analysis. Multivariate multiple regression method has been used to construct the

statistics models for the evolution of operating system trends. The models are validated

by comparing the predicted data with the actual data.

CHARACTERIZING THE EVOLUTION OF OPERATING SYSTEMS

by
Yi Peng

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

January 2005

Copyright CO 2005 by Yi Peng

ALL RIGHTS RESERVED

APPROVAL PAGE

CHARACTERIZING THE EVOLUTION OF OPERATING SYSTEMS

Yi Peng

Dr. A 1 ion, Distation Advisor
Professor of Computer and In, ormation Science, NJIT

(date)

Joseph Leung, Committee Member 	 (date)
istinguished Professor of Computer Science, NJIT

Dr. Dimitri Theodoratos, Committee Member	 (date)
Associate Professor of Computer Science, NJIT

Dr. Vincent Oria, Committee Member	 (date)
Assistant Professor of Computer Science, NJIT

Dr. Fu Li, Committee Member	 (date)
PhD of Mathematics, NJIT

BIOGRAPHICAL SKETCH

Author:	 Yi Peng

Degree:	 Doctor of Philosophy

Date:	 January 2005

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2004

• Master in Computer Engineering,
Northeastern University, Shenyang, P.R. China, 1999

• Bachelor in Computer Engineering,
Northeastern University, Shenyang, P.R. China, 1996

Major:	 Computer Science

Publications and Presentations:

Yi Peng, Fu Li, Ali Milli, Shaheen Zainuddm. "Modeling the Evolution of Operating
Systems: An Empirical Study", Submit to IEEE Transactions on Software
Engineering 2004.

Yi Peng, Michael Halper, Yehoshua Pearl, and James. Geller. "Auditing the UMLS for
redundant classifications", Proceedings of the 2002 American Medical Informatics
Association (AMIA) Annual Symposium.

Hellen. Gu, Yehoshua Pearl, G. Elhanan, Hua. Min, Li. Zhang, Yi Peng. "Auditing
Concept Categorizations in the UMLS". Artificial Intelligence in Medicine. (31) 1,
pages 29-44, May 2004.

Yehoshua. Pearl, Zong. Chen, Michael. Halper, James. Geller, Li. Zhang, and Yi. Peng.
"The cohesive metaschema: A higher-level abstraction of the UMLS Semantic
Network". Journal of Biomedical Informatics, 35(3), pages 194-212, June 2003.

iv

Hellen Gu, Hua Min, Yi Peng, Li. Zhang, and Yehoshua Pearl. "Using the metaschema to
audit UMLS classification errors". In Proceedings of the 2002 American Medical
Informatics Association (AMIA) Annual Symposium, pages 310-314, San Antonio, TX
November 2002.

Yi Peng, Xiaohu Zhang, Chuanxiang Rong, Guirang Chang, "On Query Improvement in
Web Search Engine", China's CERNET'98 Conference Proceedings.

Presentation: Software Architecture, NJIT 2004.

Presentation: Software Trend Watch, NJIT 2004.

Presentation: Auditing the UMLS for redundant classifications. San Antonio, TX
November 2002.

Presentation: Using the metaschema to audit UMLS classification errors. San Antonio,
TX November 2002.

Participation: SNOMED Users Group Conference. San Antonio, TX, November 2002.

To my parents

for letting me pursue my dream

for so long and so far away from home

To my husband Chen Zhang

For all his support through all these years

To myself

For all persistency

vi

ACKNOWLEDGMENT

First and foremost, I would like to thank my advisor, Professor Ali Milli, for his support

over the years. His advice on technical matters was invaluable, and his guidance on the

Operating system evolution project was critical to the project's success.

I would like to thank the members of my thesis committee: Prof. Ali Mili, Prof.

Joseph Leung, Prof. Dimitri Theodoratos, Prof. Vincent Oria and Dr. Fu Li, for their

valuable feedback and advice.

I would like to thank Shaheen for his wonderful and very diligent efforts in

developing the web pages for this project.

Also, early in the years of achieving my Master's degree, Dr. Guiran Chang gave

tremendous help and invaluable instructions. His patience and advice always encourages

me.

I would like to thank my family, for being very supportive and patiently listening to

me trying to explain my research. I would like to thank my parents for believing me

every time I said I was graduating "next year."

vii

TABLE OF CONTENTS

Chapter	 Page

1 SOFTWARE ENGINEERING TRENDS 	 1

1.1 Introduction 	 1

1.2 Questionnaire Structure 	 2

1.3 Watching Software Engineering Trends 	 3

1.4 Predicting Software Engineering Trends 	 4

1.5 Adapting to Software Engineering Trends 	 4

1.6 Affecting Software Engineering Trends 	 5

1.7 Conclusion 	 6

2 FOCUS ON A FAMILY OF TRENDS: OPERATING SYSTEMS 	 7

2.1 Introduction 	 7

2.2 History of Operating Systems 	 8

2.3 Operating Systems Trends 	 10

2.4 Research Methods 	 11

3 SELECTING RELEVANT FACTORS 	 12

3.1 Intrinsic Factors 	 13

3.1.1 Resource Management 	 13

3.1.2 Usability 	 15

3.1.3 Usefulness from Functional Point of View 	 16

3.1.4 Usefulness from Operational Point of View 	 17

3.1.5 Versatility 	 18

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.1.6 Design 	 19

3.1.7 Cost 	 20

3.2 Extrinsic Factors 	 21

	

4 QUANTIFYING THE FACTORS 24

4.1 Methods to Quantify the Factors 	 24

4.1.1 Numeric Formula 	 24

4.1.2 Hierarchical Sub-features 	 24

4.1.3 Cumulative Sub-features 	 26

4.1.4 Discrete Scale Sub-features 	 26

4.1.5 Exclusive Rating Sub-features 	 27

4.2 Quantifying the Factors 	 28

5 WATCHING OPERATING SYSTEMS 	 41

5.1 Unix 	 41

5.2 Solaris/Sun OS 	 42

	

5.3 BSD 43

5.4 OS 360 	 44

5.5 Windows 	 45

5.6 MS-DOS 	 46

5.7 MAC OS 	 48

5.8 Linux 	 49

ix

TABLE OF CONTENTS
(Continued)

Chapter	 Page

5.9 NetWare 	 50

5.10 HP-UX 	 52

5.11 GNU Hurd 	 53

5.12 IBM AIX 	 53

5.13 Compaq/DEC VMS 	 54

5.14 Multics 	 55

5.15 OS/2 	 56

6 DATA COLLECTION 	 57

6.1 Resources of the data	 57

6.2 Survey Webpage 	 58

6.3 Data Collection for Intrinsic Factors 	 61

6.4 Data Collection for Extrinsic Factors 	 69

6.4.1 Institutional Support 	 70

6.4.2 Industrial Support 	 71

6.4.3 Governmental Support 	 71

6.4.4 Organizational Support 	 72

6.4.5 Grassroots Support 	 72

7 DATA ANALYSIS & MODEL CONSTRUCTION 	 74

7.1 Constructing Statistics Models 	 74

7.2 Independent Data Analysis 	 75

TABLE OF CONTENTS
(Continued)

Chapter	 Page

7.2.1 Factor Analysis 	 75

7.2.2 Canonical Correlation Analysis 	 78

7.2.3 Statistics Conclusion 	 80

8 TOWARDS A PREDICTIVE MODEL 	 82

8.1 Regression Model 	 82

8.1.1 Regression Analyses 	 82

8.1.2 Multiple Regression Model 	 83

8.1.3 Regression Model for Historical Trends 	 84

8.2 Predictive Mode 	 87

9 EXTENDED FEATURE ANALYSIS 	 93

9.1 Extended Feature 	 93

9.2 Analysis of Results 	 94

9.3 Conclusion 	 99

10 MODEL VALIDATION AND IMPROVEMENTS 	 100

10.1 Model Validation 	 100

10.2 Model Improvement 	 102

10.2.1 Weakness 	 102

10.2.2 Possible Improvement 	 103

11 CONCLUSION AND FUTURE WORK 	 109

11.1 Summary 	 109

xi

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

11.2 Evaluation 	 112

11.3 Future Work 	 114

REFERENCES 	 116

xii

LIST OF TABLES

Table Page

4.1 Hierarchical Sub-feature Quantifying Methods: Memory Management 	 25

4.2 Quantifying Methods. 29

4.3 Features used to quantify Scalability.... 	 30

4.4 Features used to quantify CPU Management 30

4.5 Features used to quantify Memory Management 	 30

4.6 Features used to quantify 1/0 Management 	 31

4.7 Features used to quantify Ease of Use 	 31

4.8 Features used to quantify Range of Services 33

4.9 Features used to quantify Distributed Computing 	 34

4.10 Features used to quantify Network Services 	 34

4.11 Features used to quantify Deadlock/Starvation Management 	 35

4.12 Features used to quantify Security & Protection 	 35

4.13 Features used to quantify Openness 	 38

4.14 Features used to quantify Design Principles: Survey Results 	 39

6.1 Scores for Scalability, CPU Management and I/O Management 	 61

6.2 Scores for Memory Management 62

6.3 Scores for Ease of Learning and Ease of Use 	 63

6.4 Scores for Consistency of Interaction Protocol,
System Services and Range of Programming Languages Supported 	 64

LIST OF TABLES
(Continued)

Table	 Page

6.5 Scores for Distributed Computing,
Network Services and Deadlock Management 	 65

6.6 Scores for Reliability, Security and Protection Management 	 66

6.7 Scores for Portability, Compatibility and Openness 	 67

6.8 Scores for Design 	 68

6.9 Scores for Cost 	 69

6.10 Scores for Institutional Support 	 70

6.11 Scores for Industrial Support 	 71

6.12 Scores for Governmental Support 	 72

6.13 Scores for Organizational Support 	 73

6.14 Scores for Grassroots Support 	 73

7.1 Factor Analysis for Intrinsic Factor Matrix: Total Variance 	 77

7.2 Rotated Factor Pattern for Intrinsic Factors Component Matrix 	 77

7.3 Factor Analysis for Extrinsic Factor Matrix 	 79

7.4 Rotated Factor Pattern for Extrinsic Factors 	 79

7.5 Sample Correlation Results for Intrinsic Factors Only 	 80

10.1 Difference between Actual Value and Predictive Value in 2003 	 101

xiv

LIST OF FIGURES

Figure Page

4.1 Standards Hierarchy for Openness 	 37

6.1 Operating System Survey Website 	 60

8.1 Regression Model for Operating System Trend 	 84

8.2 Sample SPSS Regression Model Reports for One Extrinsic Factor 	 86

8.3 Trends of Government Support in 2006 	 89

8.4 Trends of Organization Support in 2006 	 90

8.5 Organization Support from 1997 to 2006 	 90

8.6 Grassroots Support in 2006 	 91

8.7 Trends of Grassroots Support from 1997 to 2006 	 92

9.1 Sample Extended Feature Analysis for Organizational Support 	 95

9.2 Sample Extended Feature Analysis for Grassroots Support 	 96

9.3 Sample Extended Feature Analysis for Institutional Support 	 97

9.4 Sample Extended Feature Analysis for Industrial Support 	 98

9.5 Sample Extended Feature Analysis for Governmental Support 	 98

10.1 F-value Validation 	 101

11.1 General Lifecycle for Technique Adoption 	 114

Dv

CHAPTER 1

SOFTWARE ENGINEERING TRENDS

1.1 Introduction

Software engineering is an engineering discipline whose goal is the cost-effective

development of software systems. It was first proposed in 1968 at a conference held to

discuss what was then called the "software crisis". Tremendous progress has been

achieved since 1968 and the development of the software engineering discipline has

markedly improved the practice of software development. A much better understanding

of the activities involved in software development has been observed in past years.

Although there is a lot of progress, many researchers still consider software engineering

as a relatively young discipline. After a period of research about software engineering,

there is more and more interest in the evolution of software engineering.

Predicting the evolution of software engineering technology is, at best, a dubious

proposition. The recent evolution of software technology is a prime example; it is fast

paced and affected by many factors, which are themselves driven by a wide range of

sources. Many of the factors are outside the arena of software engineering and most of

them cannot even be identified. Right now, this doctoral work is at the early, and

tentative, stage of a project to analyze software engineering technology trends and how

they evolve. In this dissertation, the author will discuss the tentative venture in this

domain and sketch prospects for future research.

The purpose of this project is to analyze technology trends and try to gain some

insight into how they evolve. While this doctoral dissertation is at the very early, and

1

2

very tentative, stages of the whole project, research approaches of this problem could be

characterized by two premises:

1. Structuring the problem. When approaching the problem of software engineering
technology watch, there are many questions that need to be known. All of these
questions are interrelated: some questions refine others; some questions
complement others; some questions provide the background for others; some
questions overlap with others, etc. The first order of business, for this project, is to
build a questionnaire structure, which arranges all these questions in a way that
attempts to highlight their interrelations. Also, questionnaire structure should be
improved by refining questions that are too vague, merging identical questions, or
synthesizing related questions.

2. Specifying the solution. Three research methods can be deployed: analytical
research, which attempts to understand the phenomena that underlie observed
behavior, and build models that capture these phenomena: empirical research,
which makes no attempt to understand cause/effect relationships, but merely
attempts to capture observed behaviors by empirical models; experimental
research, which intervenes after analytical or empirical research to validate the
proposed models. For each issue, it is useful to deploy a judicious combination of
these three methods.

1.2 Questionnaire Structure

To focus the effort on specific issues and to lend some structure to this inherently

complex problem, a questionnaire has been built on a hierarchy of the following

questions:

1. How to watch software engineering trends? This question deals with what
indicators are needed to monitor, where to find them, and how to interpret
them.

2. How to predict software engineering trends? This question deals with what life
cycle do software engineering trends follow, and what triggers the passage of a
trend from one phase to another along the lifecycle.

3. How to adapt to software engineering trends? This question deals with how
does one define institutional strategy in such a way as to maximize benefit
from what is known about a trend and minimize risk from what is not known
about it.

3

4. How to affect software engineering trends? Perhaps more crucial is whether
trends can in fact be affected by any single entity. This question tries to
identify where, in the cycle of a trend, is it possible to alter the course of the
trend, and eventually how and by whom.

At the center of this hierarchy is the question of how to predict software

engineering trends. If this question can be understood well, the others can be answered

with adequate precision.

1.3 Watching Software Engineering Trends

The general goal of watching software engineering trends is to determine what

information must be maintained in order to gain a comprehensive view of the discipline

and its evolution. The information in question must be sufficiently rich to support

discipline-wide assessments as well as trend-specific analysis. The following questions

will be asked to watch software engineering trends:

• What is the relevant information that must be collected/monitored?

• Where this information could be found, or where did it infer from?

• How to interpret this information?

• How often does it need to update this information?

A number of software engineering-specific and technology-generic indicators have

been identified, which have been divided into the following categories: classification

Standing, Research and Development, Science and Technology Output, Human

Resources, Costs and Funding, Standards and regulations, and Best Practices.

4

1.4 Predicting Software Engineering Trends

The general goal of predicting software engineering trends is probably the most important

and the most difficult goal of this whole study. The focus of this goal is on identifying a

lifecycle that trends follow. Once this lifecycle is identified, the software engineering

trends can be predicated.

• Research Trends, which are a favorite topic of panel sessions and surveys.

• Technology Trends, which are driven by the maturation of applicable
research ideas, and by the successful evolution of the idea to a useful,
technologically viable, product.

• Market Trends, which are created either by the supply side or by the
demand side in different situations.

For different trends, different methods will be used to analyze and predict them. In

this point of view, empirical methods should be used to analyze research trends and

technology trends, analytical research should be used for market trends. There are already

some good analytical models for market trends, such as the Chasm Theory by Geoffrey A.

Moore. This tentative research concentrates on research trends and technology trends.

1.5 Adapting to Software Engineering Trends

The general goal of adapting to software engineering trends is: "how to adapt to a trend if

the trend has been known?" For example, a corporate manager hears about a particular

trend (e.g. XML, .NET, Linux) and wants to know what to do about it: Ignore it? Adapt

the corporate products and support it? Develop a new set of products that support it? Etc.

When a party has particular stake in the evolution of a trend, he/she may need a distinct

information profile to make a judicious decision.

5

Adapting to technology trends depends to a large extend on watching technology

trends and on predicting technology trends. If a corporate manager wants to make a

decision on a given trend, what does he/she need to know about it? It is recognized that

several features must be analyzed and/or quantified in order to provide support for this

kind of decisions:

• What are the stakes of this trend for the organization?

• What are the intrinsic technical merits of this trend?

• What are the adoption costs of this trend?

• What are the adoption risks of this trend?

• What are the adoption benefits of this trend?

• How long is the trend expected to have an impact?

• What is the optimal time to make an adoption decision?

1.6 Affecting Software Engineering Trends

In this aspect of the project, there is an interest in analyzing to what extend it is possible

to affect/control technology trends. It is not sufficient to have an impact on a trend. It is

more necessary that the impact can be premeditated and preplanned.

Detailing the general goals discussed above, the following questions have been

derived:

• Is it possible to affect technology trends?

• Who can affect technology trends?

• How can technology trends be affected?

• How to quantify the impact?

6

1.7 Conclusion

Software engineering trends are briefly discussed in this chapter. The following is what

need to be done in this tentative effort.

Because the problem is formulated in all its generality, a bottom up approach is

adopted. Similar as what has been done in YF Chen [1], in this project, the following

work is done:

• First, try to formulate the problem of technology watch in terms of a hierarchy of
increasingly specific questions. This hierarchy of questions serves two purposes:
first to focus the effort on specific issues that need to be addressed; second to lend
some structure to this inherently complex problem.

• Second, show how a systematic combination of empirical, experimental, and
analytical approaches can give the researchers means to gain some understanding
of the problem. Analytical approaches, mostly inspired from earlier work, will be
used to derive candidate models for the complex evolution of software
engineering trends; empirical approaches will be used to derive evolutionary
models, or model aspects, without emphasis on analytical explanation of the
models;, and experimental approaches will be used to collect the necessary data to
fill in the parameters of the candidate models and to test them for adequacy.

CHAPTER 2

FOCUS ON A FAMILY OF TRENDS: OPERATING SYSTEMS

2.1 Introduction

As the early stage of the software engineering trends project, it is a good practice to

concentrate on one particular field first. For example, what is the evolution process of

programming languages, computer networking, or databases? Some good practice in

programming languages have been done before. Now this dissertation will focus on a

family of software engineering trends: operating system trends.

Why should the operating system be selected as an example for software

engineering.trends project? The followings are the reasons:

• First, there is no modern software if there is no operating system. It is well known
that operating system is the most fundamental system program which controls all
the computer's resources and provides the base upon which the application
programs can be written.

• Second, without the development of operating system, there is not development of
software engineering. The development of operating system took a very important
role in the development of software engineering. By reviewing the history of
operating systems, a somewhat clearer view on software engineering could
emerge.

• Third, hundreds of operating systems were created in the past, some of them were
very successful, and some of them failed although a lot of resources were spent on
them.

• Fourth, they represent a unity of purpose and general characteristics, across
several decades of evolution.

• Fifth, they offer a wide diversity of features and a long historical context, thereby
enabling precise analysis.

• Sixth, their history is relatively well documented, and their important
characteristics relatively well understood.

7

8

For the above reasons, it is clear that there is a good set and a rich history of

operating systems that are well worth discussing. Therefore, operating systems will be

used as a good sample set for this research project.

2.2 History of Operating Systems

Operating system is an extended machine. It is the most fundamental system program

which controls all the computer's resources and provides the base upon which the

application programs can be written. Operating systems have been evolving through the

years. The development of operating systems has been historically closely tied to the

architecture of the compute on which they run [2].

The first generation computers (1945-55) are vacuum tubes and plug boards.

Operating systems were unheard of, even assembly languages were unknown.

The second generation computers (1955-65) are transistors and the corresponding

solution operating systems are batch systems. The idea behind it was to collect a tray full

of jobs in the input and then read them onto a magnetic tape using a small, relatively

inexpensive computer, such as IBM 1401. The ancestor of today's operating system is to

read and run one of the jobs. Large second-generation computers were used mostly for

scientific and engineering calculations, such as solving partial differential equations.

They were largely programmed in FORTRAN and assembly language. Typical operating

systems were FMS (the FORTRAN Monitor System) and IBSYS, IBM's operating

system for the 7094 [2,3].

The third generation operating system (19651980) are ICs and multiprogramming

operating systems. One of the leading one is IBM OS/360 (also known as System/360). It

9

was designed for a series of software-compatible machines from 1401-sized to much

more powerful than the 7094. Furthermore, the OS/360 was designed to handle both

scientific and commercial computing. The 360 line was the first major computer line to

use Integrated Circuits (ICs), thus providing a major price/performance advantage over

the second generation computers [2,4].

The fourth-generation computers (1980—Present) are personal computers. With the

development of LSI (Large Scale Integration) circuits, chips containing thousands of

thousands transistors on a square centimeter of silicon, the age of the personal computer

dawned. The most powerful personal computers are usually called workstations. Two

operating systems initially dominated the personal computer and workstation scene:

Microsoft's MS-DOS and UNIX. Later on, Microsoft also has a series of operating

systems from Windows 95, Windows 98, Windows NT, and Windows 2000 to Windows

XP, the latest version of Windows. And UNIX derives UNIX based operating systems

like Solaris, FreeBSD, OpenBSD, Netware, etc. and the newest member of UNIX family

Linux [2,5].

An interesting development that began taking place during the mid-1980s is the

growth of networks of personal computers running network operating systems and

distributed operating systems. In a network operating system, the users are aware of the

existence of multiple computers and can log in to remote machines and copy files from

one machine to another. Each machine runs its own local operating system and has its

own local user.

A distributed operating system, in contrast, is one that appears to its users a

traditional uni-processor system, even though it is actually composed of multiple

10

processors. The users should not be aware of where their programs are being run or

where their files are located; that should all be handled automatically and efficiently by

the operating systems.

2.3 Operating Systems Trends

Because operating system trends are part of software engineering trends, similar methods

will be used to analyze them. This dissertation will concentrate on how to watch, predict,

adapt to, and affect operating system trends.

The methods of how to watch, predict, adapt to, and affect software engineering

trends have been discussed in Chapter 1. The historical trends of operating system will be

discussed in the similar way. After having better understanding on the past trends, the

author will concentrate on how to predict operating system trends. Empirical method will

be used in this project.

To research the operating system trends, the following questions will be discussed:

• Is it possible to predict if an operating system will succeed or fail?

• What will be the operating systems that will be studied?

• What are the possible factors which can affect the trend?

• What information should be collected in order to determine if an operating
system succeed or fail?

• How to quantify the factors and find a model/function to predict the trends?

• What are the results of the evolution analysis for operating system?

• Beyond the analysis of the evolution of individual operating system, this
project also analyzes the evolution of the features. So that, even if whether an
operating system is successful or not could not be predicted, the main
attributes that affect the future of operating systems can be characterized.

11

In this dissertation, all of these questions will be discussed. The answers of all these

questions will form an outline for the whole operating system trends.

2.4 Research Methods

In this dissertation, the author will concentrate on how to watch, predict, adapt to, and

affect operating system trends. From the evolution of software technology, the author

thinks this evolution is affected by a dizzying array of factors, which are themselves

driven by a wide range of sources. Monitoring operating system trends is not as

untraceable as it may sound, that it does not have to be an ad-hoc, erratic process.

The following is the process that are adopted in this project:

• Find out the possible factors that maybe affect operating system trends

• Quantify those factors

• Analyze the history of operating system

• Build statistical models) to watch evolution of operating system

• Predict the future trends of operating system

• Validate the statistical model(s)

Although it is impossible to find out "exact accurate" model for operating system

trends, these model are useful and can be used to describe the history of operating system.

By extending the historical models, it could also be used to predict the future evolution of

operating system.

CHAPTER 3

SELECTING RELEVANT FACTORS

What are the possible factors that can affect the trend of operating systems? This is the

question which will be discussed in Chapter 3. To answer this question, research should

be done in both the internal properties of operating system themselves and the outside

world which may have some influences on the operating system trends. Although it is not

sure how they could affect the operating system.

In previous research, the author has identified that two kinds of factors, intrinsic

factors and extrinsic factors, could affect the operating system trends. Section 3.1 will

discuss what intrinsic factors are and how to identify those factors. Section 3.2 will

discuss extrinsic factors via the same methods.

When choosing the factors, the following criteria are followed: completeness,

orthogonality and general significance. For completeness, the author would like to make

sure that the chosen factors are complete to describe an operating system. The purpose is

to find out a useful framework which can be used to evaluate an operating system.

Orthogonality means that each factor is concentrating on one particular part of an

operating system. Different factors are dealing with different aspects. General

significance insures that the factors are fair for every operating system and no factors are

"designed" for a specific operating system.

Two quantitative factors are summarized to characterize an operating system:

• Intrinsic factors that describe the technical features of an operating system and
are usually time independent.

12

13

• Extrinsic factors that describe the outer environment in which the OS exists
and evolves and are typically time relevant.

3.1 Intrinsic Factors

The following 19 factors have been identified as intrinsic factors of operating system.

These factors will be divided into categories: Resource Management; Usability;

Usefulness from Functional point of view; Usefulness from Operational point of view;

Versatility; Design; Cost. These factors will be discussed in the following.

3.1.1 Resource Management

1. Scalability

Scalability is an operating system's ability to increase its processing capacity as

CPUs are added. If the processing capacity increases in direct proportion to the number

of CPUs, a system is said to exhibit 100% scaling. In practice, a system's ability to scale

is limited by contention between the CPUs for resources and depends on the mix of

applications being run [6]. Scalability encompasses a broad range of issues, but the

development community has primarily targeted these areas for improvements:

• Providing better administrative tools for managing very large installations

• Improving the scalability characteristics of the operating system and
removing the architectural constraints from the kernel

• Optimizing the system throughput to accommodate enterprise-class
networking

• Expanding support for high-end hardware solutions[7]

This is a very significant factor of operating systems as modern multi-processor

computing getting more and more popular.

14

2. CPU Management

CPU management is an operating system's ability to mange the CPU resource.

CPU resource management is commonly known as scheduling. The scheduling policy is

determined by the way the computer will be used, although most policies can use a

common scheduling mechanism. This mechanism determines how CPU will be allocated

to processes and the policy determines the order in which ready processes will receive

services. A group of CPU management methodologies are considered such as First-

Come-First-Served, Shortest Job Next, Priority Scheduling, Deadline Scheduling, Round

robin, Multiple-level Queues, Multiple-Processor Scheduling, Real-Time Scheduling

[3,4,5,8]. CPU is one of the most important resources and the scheduling policy

determines the way the computer will be used.

3. Memory Management

Memory is an important resource that must be carefully managed. The memory

hierarchy is composed with several parts: a small amount of very fast, expensive, volatile

ache memory; medium-speed, medium-price, volatile main memory (RAM); and slow,

cheap, nonvolatile disk storage. It is the job of the operating system to coordinate how

these memories are used. The part of the operating system that manages the memory

hierarchy is called the memory manager. Its job is to keep track of which parts of

memory are in use and which parts are not in use, to allocate memory to processes when

they need it and de-allocate it when they are done, and to manage swapping between

main memory and disk when main memory is too small to hold all the processes. There

are kinds of memory management methods that have been applied by a lot of operating

systems. [2,3,4,5,8,9,1 0].

15

4. I-o Management

One of the main functions of an operating system is to control all the computer's

I/O (Input-output) devices. It must issue commands to the devices, catch interrupts, and

handle errors. It should also provide an interface between the devices and the rest of the

system that is simple and easy to use. To extend the possible, the interface should be the

same for all devices (device independence). The I-o code represents a significant fraction

of the total operating system [4]. I/O management plays a key role in that it provides an

interface between the devices and the rest of the system that is simple and easy to use.

3.1.2 Usability

Usability property of operating system shows the degree of how easy an operator can

operate the system. There are three different aspects for usability.

1. Ease of Learning

Ease of learning involves effort required to master the interfaces provided by the

system in terms of formal schooling, on the job training and associated misuse of the

system at various intervals in the learning curve [2].

2. Ease of Use

Ease of use is the property to indicate the ease of operating the operating system.

Christian Green said: "It takes more than a graphical user interface to make a computer

easy to use. It takes tight integration between software and hardware. It requires an

operating system that's graphical 'from the ground up', so that users don't have to deal

with character-based code. And it requires a company that focuses on the user, and helps

guide software developers to make the user experience more consistent." [11]

16

3. Consistency of Interaction Protocols

Consistency of interaction protocols refer to the conformity of descriptions of

standard patterns of interaction between a human being and a computer system [12]. It is

of great magnitude for an operating system to provide consistent interaction protocols for

user.

3.1.3 Usefulness from Functional Point of View

The property of usefulness indicates the how the operating system is useful for the

operators. There are two parts for usefulness: functional and operational.

1. Range of Services

Operating system services are responsible for the management of platform

resources, including the processor, memory, files, and input and output. They generally

shield applications from the implementation details of the machine. There are a lot of

services provided by operating systems, like kernel operations, command

interpreter,utility services, batch processing services, File and directory synchronization

services [13].

2. Range of Programming Languages Support

After reviewing the brief history and language features of each programming

language, the author decide to investigate the operating system's support within the

following set of programming languages: Ada, ALGOL, Pascal, C, C++, COBOL,

FORTRAN, Java, Perl, LISP.

3. Distributed Computing

Distributed computing is a programming model in which processing occurs in

many different places (or nodes) around a network or across a facility. Processing can

17

occur wherever it makes the most sense, whether that is on a server, web site, personal

computer, handheld device, or other smart device [14].

4. Network Services

Network services are provided to support distributed applications requiring data

access and applications interoperability in heterogeneous or homogeneous networked

environments. A network service consists of both an interface and an underlying protocol

[13]. In the era of network, the network services are very important for an operating

system.

5. Deadlock Management

Deadlock management is the ability for operating systems to detect, prevent, avoid

and recover from deadlock. Deadlock is a significant problem that can arise in a

community of cooperating or competing processes. Therefore, deadlock management

feasibility is an important factor of operating systems

3.1.4 Usefulness from Operational Point of View

1. Reliability

Reliability is the ability of a system perform its required functions under stated

conditions for a specified period of time [6,15]. Reliability is generally considered

important by end users. Not all companies making operating systems have a similar

standard. Even among operating systems where reliability is a priority, there is a range of

quality. Also, an operating system may be extremely reliable at one kind of task and

extremely unreliable at another. For example, reliability includes following features:

Stability, Back-ups, Error reporting, Fail over, Hot-swapping hardware.

18

2. Security & Protection

Security and Protection is the ability of a system to manage, protect, and distribute

sensitive information. There are kinds of methods to implement security and protection

features [13]. Throughout the discussion of the operating system managers, various ways

to protect resources from unauthorized access have been mentioned --- protection and

security are pervasive in the operating system [3].

3.1.5 Versatility

1. Portability

Portability is the ease with which an operating system can be transferred from one

hardware or software environment to another [6]. For example, diverse hardware support

and File system support methodologies are aspects for portability properties. At a time

when different computer lines of the same vendor didn't talk to each other --- but alone

machines of multiple vendors --- portability means a great savings in both hardware and

software upgrades and thus are very important operating system factor.

2. Compatibility

Compatibility is the ability of two or more operating systems to perform their

required functions while sharing the same hardware or software environment [6]. This

could include Upward Compatibility and Downward Compatibility. On computers that

contain multiple operating systems, compatibility becomes more complex and important.

3. Openness

Openness is the degree to which an operating system complies with standards [6].

For openness property of operating system, following features should be considered:

• Open source

19

• Open system:

o the use of interface standards [16]

o the use of implementations that conform to those standard interfaces[16]

• Network management [16]

• Protocols

It establishes no sharp boundary between the OS itself and the user's programs, and

the techniques used to make the system robust. Therefore it is an important feature of

operating system.

3.1.6 Design

Design of integrity indicates the ability an operating system omit certain anomalous

features and improvements but to reflect one set of design ideas, than to have on that

contain many good but independent and uncoordinated ideas [17]. The design principles

combine traditional wisdom with extensions to address the evolution of future interfaces.

Existing design principles are based on IBM's experiences in user interface design, on the

design experiences of others, and on insights from linguistics and psychology. These

design principles have been extended to address evolving interfaces that will provide a

more friendly appearance and behavior in the future. The increasing use of 3-D and real-

world representations as well as the blossoming popularity of the Internet and the World

Wide Web has strongly influenced these progressions [18].

There are several design principles such as:

■ Simplicity: Don't compromise usability for function. Keep the interface
simple and straightforward.

20

■ Support: Place the user in control and provide proactive assistance. To give
users control over the system, enable them to accomplish tasks using any
sequence of steps that they would naturally use.

■ Familiarity: Build on users' prior knowledge. Allow users to build on prior
knowledge, especially knowledge they have gained from experience in the
real world.

■ Obviousness: Make objects and their controls visible and intuitive. Where
you can, use real-world representations in the interface.

■ Encouragement: Make actions predictable and reversible. A user's actions
should cause the results the user expects.

■ Satisfaction: Create a feeling of progress and achievement. Allow the user to
make uninterrupted progress and enjoy a sense of accomplishment.

■ Availability: Make all objects available at all times. Users should be able to
use all of their objects in any sequence and at any time.

■ Safety: Keep the user out of trouble. Users should be protected from making
errors.

■ Versatility: Support alternate interaction techniques. Allow users to choose
the method of interaction that is most appropriate to their situation. Interfaces
that are flexible in this way are able to accommodate a wide range of user
skills, physical abilities, interactions, and usage environments.

■ Personalization: Allow users to customize. The interface should be tailorable
to individual users' needs and desires. No two users are exactly alike.

■ Affinity: Bring objects to life through good visual design. The goal of visual
design in the user interface is to surface to the user in a cohesive manner all
aspects of the design principles.

3.1.7 Cost

Most technology committees concentrate their budget and planning efforts on the

acquisition of next-generation software and hardware. But hardware and software costs

represent a small fraction of the total expense of networked computers. Accordingly, this

21

focus overlooks the most important factors driving the rising costs of computer systems.

The neglected costs are management and labor expense [19].

Which is cheaper? Hardware costs, software licenses, technical support agreements,

prices of upgrades/service packs, costs of hardware upgrades, profits lost for every hour

of downtime, personnel costs for recovering/recreating data lost due to product defects in

the operating system and/or hardware platform required by your choice of operating

systems, these are only some of the factors that contribute to the overall budget resulting

from the decision. It is not a trivial consideration. Although money is the bottom line for

a manager, given the complex set of factors The author have just presented, a technically

superior combination of server hardware and operating systems could prove to be less

expensive in the long run [20].

3.2 EDtrinsic Factors

Intrinsic factors are the attributes of an operating system itself. After a set of intrinsic

factors is determined, the following questions are raised out:

1) Are intrinsic factors enough to determine the future of an operating system?

2) Are there any other factors which can also affect the trend of an operating system?

3) If the answer is "Yes" in (2), what should be the other factors?

Naturally, the outside world will also have impact on the trend of an operating

system. Next, the following question is explored: "What could be the possible factors

which can affect the trend of an operating system?"

Extrinsic factors are the factors which are not directly related to the general

attributes of an operating system, but still can affect the trend of operating system.

22

The purpose is to find out as many as possible factors from "outside world" which

may affect the trend of an operating system. In order to find a desirable set of extrinsic

factors, aspects in the real world are checked. Right now, the extrinsic factors are

classified into the following seven categories: Institutional Support, Industrial Support,

Governmental Support, Organizational Support, and Grassroots Support. Each category

includes several questions.

I. Institutional Support

1. Support the OS: the institutional unit provides the environment for a given
operating system and allows people using it.

2. Teach using the OS: the lecturers in the institutional unit use the operating
system during their teaching process.

3. Teach the OS: the lectures in the institutional unit teach a given operating
system in a course.

4. Research using the OS: in the institutional unit, a given operating system is
used in the research activities.

5. Research on the OS: in the institutional unit, a given operating system is a
research object.

Here, institutional unit could be colleges, universities, research center, lab,

academic center and other institutional units.

II. Industrial Support .

1. Not Support using OS: the industrial unit does not provide the environment for
a given operating system and does not allow employee using it.

2. Support using OS: the industrial unit provides the environment for a given
operating system and allows employee using it.

3. Encourage using the OS: the industrial unit encourages the usage of a given
operating system within the unit.

4. Require using the OS: the industrial unit requires the usage of a given operating
system within the unit.

23

III. Governmental Support

1. Not Support the OS: the governmental unit does not provide the environment
for a given operating system and does not allow employee using it.

2. Support the OS: the governmental unit provides the environment for a given
operating system and allows employee using it.

3. Encourage using the OS: the governmental unit encourages the usage of a given
operating system within the unit.

4. Require using the OS: the governmental unit requires the usage of a given
operating system within the unit.

IV. Organizational Support

1. Is this OS introduced and supported by any (international) organization?

2. Are there any organization standards?

3. How many conferences for this OS?

4. How many conference papers/articles are published on this OS?

5. How many conference papers/articles are published by using OS?

V. Grassroots Support

1. Know the OS: people are aware of a given operating system.

2. Use the OS: people use a given operating system.

3. Prefer to use the OS: people prefer to use a given operating system.

In the author's point of view, both intrinsic factors and extrinsic factors could

impact on the evolution of operating systems. Identifying these factors is the first step for

this empirical study.

CHAPTER 4

QUANTIFYING THE FACTORS

In this chapter, after selecting a set of factors, How to quantify the factors is discussed.

Quantifying means assigning a numeric function to each factor.

4.1 Methods to Quantify the Factors

All of the factors should be considered when one designs an operating system. So, all

features of an operating system should be checked to see if it matches these factors.

Several methods are introduced to quantify the selected factors.

4.1.1 Numeric Formula

The first group factors have been given a numeric formula which is understandable and

widely acceptable. For example, the average number of system failures per month is used

to quantify Reliability. Another example here is that the quantifying method for Cost is

the prices in U.S. dollars for U.S. delivery. Except these two factors, ease of learning,

portability, compatibility and organizational support can be categorized into the same

group in regards of its quantifying method. This method is very straightforward and easy

to understand.

4.1.2 Hierarchical Sub-features

The second set of factors use different quantifying methods. In order to quantify these

factors, a set of discrete features that are usually associated with the factor are chosen,

respectively. Then rank these features from 1 (lowest) to N (highest), where N is the

24

25

number of features into a partial hierarchical level. The score of an operating system is

then derived as the sum of all the scores that correspond to the features it has.

For example, in order to quantify memory management, 11 sub-factors are taken

into consideration, and range them from garbage collection (score:1) to shared-memory

multiprocessor (score:6), as shown in Table 4.1. Some of the sub-features may have

same score because they are in the same level in the hierarchy. For example, both

variable partition memory strategy and address translation have been assigned 2, but

they belong to different categories. For a particular operating system, all the sub-factors

are looked into, and then the final score for this operating system is derived by summing

up the scores of all the supported sub-factors.

Table 4.1 Hierarchical Sub-feature Quantifying Methods: Memory Management

For detail, check the next section. The author acknowledges that this method is

controversial as it may sound arbitrary; but the author finds it adequate for the current

purposes, as it generally reflects the intuition about how candidate operating systems

compare with respect to the intrinsic factors.

26

In this group, included intrinsic factors are: scalability, CPU management, I/O

management, range of services, distributed computing, network services, deadlock

management, security and protections, openness and institutional support.

4.1.3 Cumulative Sub-features

Similar to hierarchical sub-factors, for the third group of factors, a set of distinct features

that are usually associated with this factor are also picked. But instead to assign an order

to them, they are considered to be of equal quantifying. The final score will be the

number of features that an OS has taking into account that one feature contributes one

point and so on.

For example, ten programming languages are summarized to quantify the factor of

range of programming languages support. ten programming languages are in the

investigated set. For a given OS, if it supports one programming language, it will get 1

point. Then the final score for this OS will be the number of all the programming

languages it supports. The same methodology is applied for consistency of interaction

protocols.

4.1.4 Discrete Scale Sub-features .

The fourth category of factors, again, has a list of separate features. Rather than order

them into a hierarchy or just cumulate the number, for a given OS, each of the features

will be qualified according to a set of mutual exclusive scales. A score is assigned to

these scales from "excellent" to "not good" as 5 to 1. Therefore, the score for the feature

is the score of the corresponding scale. Thus, the score for the upper factor is the average

of all these features scores.

27

For example, eight sub-features are used to quantify ease of use. (For detail, see

next section) For each of the eight sub-features, its score is decided by comprehending

which scale it is provided. If, for a particular OS, it provides "excellent" help and manual

feature, which is one of the eight sub-features for ease of use. Five points are added to the

final score for this particular operating system on ease of use. Again, it provides "very

good" multimedia support, another sub-feature, thus turns a four points. After decide all

the feature points, the scores from all the sub-feature and summed up, and divided by the

number of the sub-features (here, it's eight), thus the final score of the factor is obtained.

All the eight sub-features are listed in following. Besides ease of use, the same

methodology to quantify design is applied.

4.1.5 EDclusive Rating Sub-features

This method is applied on most of the extrinsic factors. Most of the questions are asking

for the numbers. But different questions have different priorities. For example,

Governmental Supports has four different behaviors: not support, support, encourage,

require. For the author's point of view, they contribute different priority points for

scoring the governmental support. Encourage means that the a governmental unit

encourages the use of the OS, which means that compare to another governmental unit

that does not encourage (e.g., only support or even not support) the use of the OS, the

first one "add" more point to the final score of Governmental support than the later one

for this particular OS. In other words, for a particular OS, if more governmental units

encourage using it than a second OS, it can be concluded that the first OS gets more

points than the later one on the aspects of encouraging using. Similarly, require

contributes more than encourage for the final score.

28

Based on these observations, four level supports are sorted from weakest to

strongest and assign them points. Not support gets 0, support gets 1, encourage gets 2,

require gets 3. Note that the four supports are defined in an exclusive fashion. For

example, if one OS gets 2 for governmental support, which means that a governmental

unit encourages to use the OS, in other words, the unit already supports to use the OS,

then it will get 2 points rather than 1 point, because 2 is enough to explain the support

level. In this way, for a particular OS, the average score of all governmental support is

used as the final score.

Same methodology described above is applied on Industrial Support, Governmental

Support and Grassroots Support.

In Table 4.2, all the factors and their corresponding quantifying methods are listed.

4.2 Quantifying the Factors

In this section, the author will check each factor and discuss how to quantify it.

1. Scalability: All the sub-factors are considered and sorted from weakest to the strongest

one, as shown in Table 4.3 [7].

2. CPU Management: All the sub-factors are considered and sorted from weakest to the

strongest one, as shown in Table 4.4 [2,3,4,5,8,9,21].

3. Memory Management: All the sub-factors are considered and sorted from weakest to

the strongest one, as shown in Table 4.5 [3,4,14,22,23,24].

4. I/O Management: All the sub-factors are considered and sorted from weakest to the

strongest one, as shown in Table 4.6 [3,4,5].

Table 4.2 Quantifying Methods

29

Table 4.3 Features used to quantify Scalability

30

Table 4.4 Features used to quantify CPU Management

Table 4.5 Features used to quantify Memory Management

5. Ease of Learning: The number of average hours to learn this system, including in terms

of formal schooling, on the job training and associated misuse of the system at various

intervals in the learning curve, are used. Obviously, the lower the number is, the better

the ease of learning property for the operating system.

31

Table 4.6 Features used to quantify 1/0 Management

Table 4.7 Features used to quantify Ease of Use

6. Ease of Use: The level for the property of ease of use. Some criteria are listed in order

to judge the level of ease of use [25].

• Text based command shells vs. Graphic command shells

• Multimedia

• Animation

• The look and feel of the interface

• Simple interne access

• Quick setup

• Simple operation

• Help and manual

According to the ability of complying with these criteria, five levels of ease of use

are categorized from strongest to weakest: excellent, very good, good, acceptable and not

good. And assign them scores from 5 to 1 as shown in Table 4.7.

32

7. Consistency of Interaction Protocols: Total numbers of interaction protocols that are

consistent the bigger the better. A list of interaction protocols are summarized and are

applied to all the operating systems that are chosen [26].

(1) Formulate queries/Interpret responses: Uniform across all queries/responses.

(2) Command format are identical for all commands.

(3) File names: All the files in an OS have the same format.

(4) Interface consistency: The "look and feel" of the interface is consistent. For
example, there is a common background and/or color scheme for all screens;
common screen layouts.

(5) Function/Appearance consistency: All object appear the same, function the
same. For example, "Help", "Exit", and "Search" objects are in the same
spot on all screens. They have the same design, color, etc.

(6) Text characteristics consistency: The text characteristics are constant from
screen to screen. For example, Ariel 14 point bold italics are always used
only for chapter titles. Blue underlined text always represents a hyperlink.

(7) Semantic characteristics consistency: Metaphors and icons are used
consistently throughout the interface. For example, a magnifying glass
means the same thing every place it is used; a green cat always means Help.

(8) Navigation consistency: Navigation objects and steps are consistent
throughout the interface. Screens are linked consistently.

(9) Interaction tools consistency: Interaction tools like mouse pointers, touch
screens, joysticks are used consistently.

(10) Conventions consistency: Conventions are familiar to the user employed
consistently.

(11) Screen configurations consistency: All related items on the screen are
grouped together visually in a format that makes sense.

(12) Labels consistency: Labels on buttons, menus, and titles are used
consistently.

(13) The number of interaction protocols that a particular operating system has
implemented are added up and assigned as the grade for this operating
system.

33

8. Range of Services: Number of Services supported. Table 4.8 lists the basic services

that an operating system should provide. In order to quantify the services property for

every operating system, the corresponding score is assigned for every service according

to their features [13].

9. Range of Programming Languages: The number of programming languages supported

is used as the method to quantify the characteristics of range of programming languages

supported. The number of programming languages that a particular operating system

supports are added up and used to evaluate the range of PL factor. The set of

programming languages used is: Ada, Algol, C, C++, PASCAL, COBOL, FORTRAN,

JAVA, Pearl, LISP.

34

10. Distributed Computing: Number of Distributed Computing Features Supported. Table

4.9 lists the basic distributed computing features that an operating system can provide. In

order to quantify the property for every operating system, the corresponding score is

assigned for every feature according to their characteristics [13].

Table 4.9 Features used to quantify Distributed Computing

11. Network services: The cumulated number of network services supported is used as

the method to quantify the feature of network services supported by an operating system.

Table 4.10 lists the basic network services that an operating system should provide. In

order to quantify the networking property for every operating system, the corresponding

score is assigned for every network service according to their features from strongest to

weakest [27].

Table 4.10 Features used to quantify Network Services

12. Deadlock/Starvation Management: Deadlock management levels [4].

Table 4.11 Features used to quantify Deadlock/Starvation Management

13. Reliability: Average number of system failures during a specific time zone.

14. Security & Protection: Security and protection services supported level [4].

Table 4.12 Features used to quantify Security & Protection

35

15. Portability: Average number of man-month to transfer the system from one hardware

or software environment to another.

16. Compatibility: Average number of man-month to upgrade or downgrade an operating

system.

17. Openness: Cumulated levels of public standards that the system complies. A list of 23

standards that could be implemented is considered. Here is the list:

A. Single Unix Specification

B. POSIX 1 Library functions i.e. kernel calls

C. POSIX 2 Shell and utilities

D. Pthreads IEEE POSLX 1003.1c.

E. XNFS X/Open Network File System

36

F. X Window System Protocol

G. Xlib - C Language X Interface

H. X Toolkit Intrinsic - C Language Interface

I. Inter-Client Communication Conventions Manual

J. Motif 1.2 IEEE Std 1295

K. CDE Common Desktop Environment

L.HSI network

M. Netware Protocol

N. SNA

0. TCP/IP

P. Ipv4

Q. Ipv6

R. TCP

S. UDP

T. ICMP

U. DLPI

V. NetBIHS

W. RPC

According to the relationships between each other, the hierarchy of these standards

is constructed, as shown in Figure 4.1. It can be seen that standard of "Pthreads IEEE

PHSIX 1003.1c." is a subset of standard "PHSIX 1 Library functions i.e. kernel calls".

And furthermore, "PHSIX 1 Library functions i.e. kernel calls" is a subset of standard

"Single Unix Specification". There are similar situation for most of other standards in the

37

list. Standard V --- NetBIHS and standard E XNFS X/Open Network File System are

independent standards that are not subset and neither superset of any other standards.

By analyzing the standards hierarchy, different scores are assigned for different

standards according to their position in the hierarchy, as shown in Table 4.13. For

example, Pthreads IEEE PHSIX 1003.1c. (D) has a point of 1. This means that there is no

standard that is a subset of D. And D is a comparative simple and more specific standard

that cover a small range. Standard HSI network (L) is assigned the highest points because

Figure 4.1 Standards Hierarchy for Hpenness.

38

it is the super set of 0 (TCP/IP) which has point of 5. The broader scope that the standard

has covered, the higher the points that has assigned to it. For each operating system,

according to its implementation for every standard, a score is given. For example, UNIX

has implemented every standard and it gets a score of 47 [20,28,29,30,31,32,33,34,35].

Table 4.13 Features used to quantify Openness

18. Design: According to the degree of how a given operating system complies with the

design principles, it is categorized to one of the five levels, from "excellent" to "not

good" [18].

19. Cost: There are three issues to consider in cost: Acquisition, Maintenance and

Operation.

39

1) Acquisition. This part indicates the cost required to obtain an operating system or

set up an operating system. It includes three different types of costs:

• hardware costs: prices in U.S. dollars for U.S. delivery

• software costs: prices in U.S. dollars for U.S. delivery

• end use costs: prices in U.S. dollars for U.S. delivery

Table 4.14 Features used to quantify Design Principles: Survey Results

3) Maintenance. Maintenance cost is the overall cost of maintaining a computer

system to include the costs associated with personnel, training, maintenance

control, hardware and software maintenance, and requirements growth. Four

types of costs compose the maintenance cost:

• User support costs: profits lost for every hour of downtime, hiring and paying
personnel to support

• Requirement growth: prices of upgrades/service packs

• Hardware maintenance: costs of hardware upgrades

• Software maintenance: technical support agreements

40

3) Hperation. Hperation cost is the overall cost of operating a computer system to

include the costs associated with personnel, training, and system operations. It has

three types:

• Communication costs: prices in terms of man-month

• Development costs: prices in terms of man-month

• Downtime costs: prices in terms of man-month

In the next chapter, the chosen operating systems are discussed.

CHAPTER 5

WATCHING OPERATING SYSTEMS

To watch and predict the trends of operating system, a set of operating system should be

selected as sample. By analyzing this set of operating system, statistics models will be

constructed to describe the past trends of operating system. By extending the statistics

models, they will also be sued to predict the future trend of an operating system.

In this chapter, the following fifteen of operating system will be investigated:

UNIX, Solaris/Sun HS, BSDs (including FreeBSD, HpenBSD and NetBSD), HS/2,

Windows, MS-DHS, MAC HS, Linux, NetWare, HP-UX, GNU Hurd, IBM AIX,

Compaq/DEC VMS, Multics, 0S360.

5.1 UniD

UNIX history goes back to 1969 and the famous "little-used PDP-7 in a corner" on which

Ken Thompson, Dennis Ritchie and others started work on what was to become UNIX.

The name "Unix" was intended as a pun on Multics (and was written "Unics" at first --

UNiplexed Information and Computing System) [29].

For the first 10 years, UNIX development was essentially confined to Bell Labs.

These initial versions were labeled "Version n" or "Nth Edition" (of the manuals), and

were for DEC's PDP-11 (16 bits) and later VAXen (32 bits). Some significant versions

include:

• V1 (1971): 1st UNIX version, in assembler on a PDP-11. Included file system,
fork(), roff, ed. Was used as a text processing tool for preparation of patents.
Pipe() appeared first in V2.

41

42

• V4 (1973): Rewritten in C, which is probably the most significant event in this
HS's history: it means UNIX can be ported to a new hardware in months, and
changes are easy. The C language was originally designed for the UNIX operating
system, and hence there is a strong synergy between C and UNIX.

• V6 (1975): First version of UNIX widely available outside Bell Labs (esp. in
universities). This was also the start of UNIX diversity and popularity. l.xBSD
(PDP-11) was derived from this version. J. Lions published "A commentary on
the Unix Hperating System" based on V6.

• V7 (1979): For many, this is the "last true Unix", an "improvement over all
preceding and following Unices". It included full K&R C, uucp, Bourne shell. V7
was ported to the VAX as 32V. The V7 kernel was a mere 40 Kbytes.

These Vn versions were developed by the Computer Research Group (CRG) of Bell

Labs. Another group, the Unix System Group (USG), was responsible for support. A

third group at Bell Labs was also involved in UNIX development, the Programmer's

WorkBench. (PWB), for example, sccs, named pipes and other important ideas. Both

groups were merged into Unix System Development Lab in 1983 [36].

Work on UNIX continued at Bell Labs in the 1980s. The V series was further

developed by the CRG (Stroustrup mentions V10 in the 2nd edition of his book on C++).

The company now responsible for Unix (System V) is called Unix System Laboratories

(US) and is majority-owned by AT&T. Novell has bought USL (early 93)! Novell has

given rights to the "UNIX" trademark to X/Hpen (late 93).

5.2 Solaris/Sun OS

Sun's implementation of BSD was called SunHS. Sun extended the networking tools of

the operating system to include the Networked File System (NFS), which was to become

an industry Standard. 1993, Sun announced that SunHS, release 4.1.4, would be its last

release of an operating system based on BSD. Sun moved to System V, release 4, which

43

they named Solaris. Sun and AT&T started promoting HPEN LHHK, which they jointly

developed. Their goal was to create a consistent look and feel for all flavors of UNIX;

unfortunately, HSF had its own GUI called HSF/MHTIF. Thus, round two of the fight for

standards began, with MHTIF beating out HPEN LHHK. When MHTIF beat HPEN

LHHK in the standards war, Sun conceded, and started to provide a package that

contained both HPEN LHHK and MHTIF—called the Common Desktop Environment

(CDE)—as standard equipment beginning with Solaris 2.5.1, then after a series of

updates, Solaris 7 came out in 1998; Solaris 8 came out in 2001 and Solaris 9 came out in

2002 [37].

5.3 BSD

BSD stands for "Berkeley Software Distribution", the Unix developed at the University

of California in Berkeley. Berkeley's Unix was originally derived from AT&T's Unix,

but due to legal issues most of AT&T's release was removed and replaced with new code.

Eventually, this was ported to the PC in the form of 386BSD, which is what FreeBSD

was based on [38].

Despite sharing a common ancestry, the BSD family of operating systems provides

a number of complete operating systems packages to meet every need. Basically, there

are three BSDs that are well known in the BSD family: HpenBSD, FreeBSD and NetBSD.

• FreeBSD: Perhaps what sets FreeBSD apart most is its technical simplicity. The
FreeBSD installation program is widely regarded as the simplest Unix installation
tool in existence. Further, its third party software system, the Ports Collection, has
been modeled by NetBSD and HpenBSD and remains the most powerful
application installation tool available. Through simple one-line commands, entire
applications are downloaded, integrity checked, built, and installed making
system administration amazingly simple [39,40].

44

• NetBSD: Today, NetBSD's focus lies in providing a stable, multiplatform,
research oriented operating system. NetBSD's portability leads it to run on 33
platforms as of January 2001. Even more impressive is the list of hardware
including traditional modern server equipment like standard Intel-based PCs,
Compaq's Alpha, or Sun Microsystem's SPARC architectures. Hlder server and
workstation class hardware like the Digital Equipment Corporation's VAX
hardware, Apple's Macintosh computers based on Motorola's 68000 processor
series are also support. But what really sets NetBSD apart is its support for more
exotic hardware including Sega's Dreamcast, Cobalt Network's server appliances,
and George Scolaro's and Dave Rand's PC532 hobbyist computer [41,42].

• OpenBSD: HpenBSD diverged from NetBSD around the release of NetBSD 1.1
in November of 1995. HpenBSD's first release came a year later when HpenBSD
2.0 was released in Hctober of 1996. HpenBSD quickly began focusing on
producing the most secure operating system available. HpenBSD also advanced
the state of code auditing. Beginning in 1996, the HpenBSD team began a line-
by-line analysis of the entire operating system searching for security holes and
potential bugs. UNIX systems have been plagued for decades by the use of fixed-
sized buffers. Besides being inconvenient for the programmer, they have lead to
numerous security holes like the fingered exploit in 4.2BSD. Hther security holes
relating to mishandling temporary files are easily caught. HpenBSD's ground
breaking audit has also discovered security-related bugs in related operating
systems including FreeBSD, NetBSD, and mainstream System V derivatives.
[39,40,42,43,44,45,46].

5.4 OS 360

In April 1964, IBM announced HS/360, an operating system developed to support the

new generation and architecture of Systern/360 hardware - hardware capable of

supporting both commercial and scientific applications. Prior to Systern/360, those

applications ran on separate lines of hardware [47].

HS/360 included three control program options, delivered in stages beginning in

March 1966. The first stage was the simplest -a sequential scheduler called the primary

control program (PCP). PCP performed only one task at a time, and ran in 32KB of

memory. With PCP, a processor could spend considerable time waiting for I/H. HS/360

was the first operating system to require direct access devices.

45

Multiprogramming introduced the technique of assigning control of the processor to

another task while the first task was waiting for I/H. This technique utilized resources

more effectively. Prior to HS/360, even the most dedicated programmers found I/0

programming to be a painful process repetitive, inconsistent and error-prone. HS/360

supplied data and telecommunications access methods that simplified the task.

HS/360 was originally developed as a batch operating system. However, users soon

asked for interactive capability. In 1971, IBM released the time-sharing option (TSH),

which became an integral part of the operating system. TSo used TCAM, a new

telecommunications access method that was developed and released at the same time.

5.5 Windows

over the past two decades, Microsoft Windows® products have evolved from a single,

one-size-fits-all desktop operating system into a diverse family of operating systems and

mobile technologies. on November 10, 1983, Microsoft announced Microsoft

Windows®, an extension of the MS-DHS operating system that would provide a

graphical operating environment for PC users. With Windows, the graphical user

interface (GUI) era at Microsoft had begun. Here is some brief introduction for part of its

major releases [14,48,49].

• Windows 1.0 (1985):. The first version of Windows provided a new software
environment for developing and running applications that use bitmap displays and
mouse pointing devices.

• Windows 3.0 (1990): The third major release of the Windows platform from
Microsoft offered improved performance, advanced graphics with 16 colors, and
full support of the more powerful Intel 386 processor. A new wave of 386 PCs
helped drive the popularity of Windows 3.0, which offered a wide range of useful
features and capabilities.

46

• Windows NT Workstation 3.5 (1993): This release provided the highest degree of
protection yet for critical business applications and data. With support for the
OpenGL graphics standard, this operating system helped power high-end
applications for software development, engineering, financial analysis, scientific,
and business-critical tasks.

• Windows 95 (1995): Windows 95 integrated a 32-bit TCP/IP (Transmission
Control Protocol/Internet Protocol) stack for built-in Internet support, dial-up
networking, and new Plug and Play capabilities that made it easy for users to
install hardware and software.

• Windows NT Workstation 4.0 (1996): This upgrade to the Microsoft business
desktop operating system brought increased ease of use and simplified
management, higher network throughput, and tools for developing and managing
intranets. This release included the popular Windows 95 user interface yet
provided improved networking support for easier and more secure access to the
Internet and corporate intranets.

• Windows 2000 Professional (2000): Workstation 4.0, Windows 2000 Professional
was also designed to replace Windows 95, Windows 98, and Windows NT
Workstation 4.0 on all business desktops and laptops. Built on top of the proven
Windows NT Workstation 4.0 code base, Windows 2000 added major
improvements in reliability, ease of use, Internet compatibility, and support for
mobile computing.

• Windows XP (2001): With the release of Windows XP in October 2001,
Microsoft merged its two Windows operating system lines for consumers and
businesses, uniting them around the Windows 2000 code base [491

5.6 MS-DOS

Known variously as Seattle Computer 86-DHS, IBM Personal Computer DOS, and

Zenith Z-DOS, MS-DOS was developed by Seattle Computer Products for its 8086-based

computer system. The MS-DOS history is intertwined with the general development of

software for 8086-based computers.

In May 1979, Seattle Computer made the first prototype of its 8086 microprocessor

card for the S-100 bus. There were brief discussions with Digital Research about using

one of Seattle Computer's prototypes to aid in developing CP/M-86, which was to be

47

ready "soon". Although Seattle Computer was considering using CPIM-86 when it

became available (expected no later than the end of 1979), there were only two working

prototypes of the 8086 processor card, and it was felt that both were needed in house.

Therefore, there wasn't one free for Digital Research.

Microsoft had already started a strong 8086 software-development program. The

firm was ready to try the 8086 version of Stand-Alone Disk BASIC, which is a version of

its BASIC interpreter with a built-in operating system. During the last two weeks of May

1979, this BASIC was made completely functional using the hardware that Seattle

Computer provided for Microsoft. Seattle Computer Products displayed the complete

package (8086 running disk BASIC) in New York the first week of June at the 1979

National Computer Conference. (This was the first-ever public display of an 8086 BASIC

and of an 8086 processor card for the S-100 bus.)

In the last few days of 1980, a new version of the DOS was released, now known as

86-DOS version 0.3. Seattle Computer passed this new version on to Microsoft, which

had bought non-exclusive rights to market 86-DOS and had one customer for it at the

time. Also about this time, Digital Research released the first copies of CPIM-86. In April

1981, Seattle Computer Products released 86-DHS version 1.00, which was very similar

to the versions of MS-DOS that are widely distributed today.

In July 1981, Microsoft bought all rights to the DOS from Seattle Computer, and

the name MS-DHS was adopted. Shortly afterward, IBM announced the Personal

Computer, using as its operating system what was essentially Seattle Computer's 86-DHS

1.14. Microsoft has been continuously improving the DHS, providing version 1.24 to

IBM (as IBM's version 1.1) with MS-DOS version 1.25 as the general release to all MS-

48

DHS customers in March 1982. Now version 2.0, released in February 1983, has just

been announced with IBM's new XT computer [50].

5.7 MAC OS

Macintosh HS X, 9, HS 8, HS 7 and HS 6 are desktop operating systems made by Apple

Computer that run on Motorola/IBM PowerPC and Motorola 680x0.

In 1987, Apple introduced the Mac II. Built with expandability in mind, the Mac II

made the Macintosh line a viable, powerful family of computers. Apple was a "Wall

Street darling" again, shipping 50,000 Macs a month. It seemed in 1989 that Windows

would be a flop, and the Mac would be riding high for the next decade.

But it didn't. By 1990 the market was saturated with PC-clones of every

conceivable configuration, and Apple was the only company selling Macs. In late May,

Microsoft rolled out Windows 3.0, which could run on virtually all of the PC-clones in

the world. Apple was in trouble.

In 1994 Apple announced the PowerMac family, the first Macs to be based on the

PowerPC chip, an extremely fast processor co-developed with IBM and Motorola. The

PowerPC processor allowed Macs to compete with, and in many cases surpass, the speed

of Intel's newer processors.

In late December 1996, Apple made an industry-shattering announcement that it

would be acquiring NeXT, and that Steven Jobs would be returning to the fold. The

merger was brought about in order to acquire NeXTstep, which was to become the basis

for Apple's next-generation HS, Rhapsody, which was slated for a 1998 release [51,52].

49

5.8 LinuD

Linux is an operating system that was initially created as a hobby by a young student,

Linus Torvalds, at the University of Helsinki in Finland. Linus had an interest in Minix, a

small UNIX system, and decided to develop a system that exceeded the Minix standards.

He began his work in 1991 when he released version 0.02 and worked steadily until 1994

when version 1.0 of the Linux Kernel was released. The kernel, at the heart of all Linux

systems, is developed and released under the GNU General Public License and its source

code is freely available to everyone. It is this kernel that forms the base around which a

Linux operating system is developed. There are now literally hundreds of companies and

organizations and an equal number of individuals that have released their own versions of

operating systems based on the Linux kernel. The current full-featured version is 2.6

(released December 2003) and development continues.

Apart from the fact that it's freely distributed, Linux's functionality, adaptability

and robustness, has made it the main alternative for proprietary Unix and Microsoft

operating systems. IBM, Hewlett-Packard and other giants of the computing world have

embraced Linux and support its ongoing development. More than a decade after its initial

release, Linux is being adopted worldwide as a server platform primarily. Its use as a

home and office desktop operating system is also on the rise. The operating system can

also be incorporated directly into microchips in a process called "embedding" and is

increasingly being used this way in appliances and devices.

Linus didn't want to use Windows and searched for an inexpensive alternative that

would run on low cost IBM PC clones. The GNU open source project was progressing

very slowly because of political infighting and an attempt to make the same operating

50

system run the same on numerous processors. Linus received permission to use MINIX

as the foundation for his own efforts. MINIX was a small version of UNIX created by

Andrew S. Tanenbaum to provide college students with a working version of UNIX with

no AT&T owned source code. Linus opened a web site on his university student account

and started posting free copies of his source code. During the early days of the project,

Linus was posting updated versions several times a day, which directly contradicted the

commercial approach of only releasing new versions on an infrequent basis after

extensive testing. With the help of a growing number of volunteers (literally tens of

thousands), Linus quickly replaced all of MINIX with new all new source code. As Linux

caught on in popularity (because it allowed college students and hobbyists to experiment

with very cheap Intel hardware), other groups of volunteers ported Linux to a wide

variety of additional processors. The success of Linux proved the viability of open source

software projects and Linus's approach of rapid and continual incremental updates

proved to be an effective method for harnessing volunteer effort and an excellent method

for widespread testing on a wide variety of hardware.

Linux has achieved a measure of success. In only a few years, the program has

evolved from a hacker's toy into software that is, at least in part, technically superior to

Windows NT [53,54,55,56,57,58,59].

5.9 NetWare

NetWare was developed by Novell Data Systems in the late 1970s. Using CPIM (Control

Program for Microprocessors, the operating system of choice before the PC solidified

DHS) and Unix as the guidelines, a multiuser microcomputer was being built. This was a

51

typical time-sharing system, with dumb terminals attached by serial cables to a central

box containing the CPU, disk, memory, and printer attachments.

With NetWare 4.10, the tools that network managers asked for, and more, were

included. The network manager now had complete control over the NDS tree, able to

prune, graft, split, and merge sections of the tree from the graphical NetWare

Administrator program. With the Simplified and Custom Installation options, new

networks were installed and running in about 10 minutes of hands-on work. Novell set

the pricing to match NetWare 3.12, making smaller companies that avoided NetWare 4

because they didn't feel they needed NDS at a premium happy to try it on a "free" basis.

Add the extra disk space provided by the file compression and other storage

enhancements, and NetWare 4.10 actually cost less than a comparable NetWare 3.12

system.

For NetWare 5, the biggest change was with TCP/IP support. Yes, Novell had been

talking about it for a long time, and, yes, it had supported TCP/IP to varying degrees for

years, but, finally, with version 5 it had true support for TCP/IP. In the past, all requests

of the file server were submitted in 1PX. True, there may have been a TCP/IP connection

to the server, but inside each TCP/IP packet was an 1PX packet (a technology called

tunneling).

Today, NetWare 5.1 turns a NetWare server into a complete e-commerce

powerhouse, including all the server software necessary for full Web site building.

Management through a browser interface is part of this package. People may claim that

Windows NT or 2000 is a better application server than NetWare, but not if they honestly

examine all the software inside the red box [60].

52

5.10 HP-UX

HP-UX is a UN1X-based operating system made by Hewlett-Packard that runs on HP PA

R1SC. It wasfirst released in year 1986. Now there are two current versions: 11.11 (aka

11 iv 1.0) for PA-R1SC based hardware and 11.20 (aka 11i v1.3) for Intel Itanium

Processor Family (IPF) based hardwaree129. HP-UX support serverImainframe for small

to large scale servers. It also has databases server support and mainframe support. HP-

UX started earlier than 1986 on their HP9000/300 family, with the HP Focus CPU, it was

a multi CPU system, up to 7 CPUs in one box. Then came the HP9000/300 family, these

where workstations, also running HP-UX. These where built on the Motorola 680X0

CPU. After that HP introduced the HP9000/400 family also called Apollo, since they

merged with them. At this time the PA-R1SC based HP-UX came along. The 300 and 400

family was supported up to HP-UX 9.10, this included some of the new things in HP-UX

10.X.

The HP-UX operating system is based on UN1X System V Release 2, with

important features from Berkeley Software Distribution 4.2. It also incorporates features

of subsequent System V and BSD releases, as well as HP extensions and enhancements.

Hther contributors to HP-UX include Hpen Software Foundation, Inc. (HSF (Tm

Carnegie-Mellon University, Cornell University, Massachusetts Institute of Technology,

and numerous other commercial and educational firms and institutions. In short, HP-UX

is essentially an AT&T-type of UN1X with numerous extensions [61,62].

53

5.11 GNU Hurd

The GNU Hurd is the GNU project's replacement for the UNIX kernel. "Hurd" stands for

"Hird of Unix-Replacing Daemons". And, then, "Hird" stands for "Hurd of Interfaces

Representing Depth". The Hurd is a collection of servers that run on the Mach

microkernel to implement file systems, network protocols, file access control, and other

features that are implemented by the Unix kernel or similar kernels (such as Linux).

Currently, the Hurd runs on IA32 machines. The Hurd should, and probably will,

be ported to other hardware architectures or other microkernels in the future.

The GNU system (also called GNUIHurd) is completely self-contained (you can

compile all parts of it using GNU itself). You can run several instances of the Hurd in

parallel, and debug even critical servers in one Hurd instance with gdb running on

another Hurd instance. You can run the X window system, applications that use it, and

advanced server applications like the Apache web server.

On the negative side, the support for character devices (like sound cards) and other

hardware is mostly missing. Although the POSIX interface is provided, some additional

interfaces like PHSIX shared memory or semaphores are still under development. All this

applies to the current development version, and not to the last release (0.2) [63,64].

5.12 IBM AIX

AIX is based on UNIX System V and Berkeley Software Distribution 4.3 but is more of a

hybrid of these two types of UNIX than HP-UX. AIX conforms to the Portable Hperating

System Interface for Computer Environments (PHSIX) and to HSF. It also contains

several 1BM-proprietary features, such as the Hbject Data Manager (ODM) and System

54

Resource Controller (SRC). Its windowing system, AIXwindows Environment/6000 is

based on the X Window System with OSFIMotif and is an optional product.

The success of AI 3L as the native platform for 1BM pSeries continues to attract

extensive support from the UNIX industry's most successful application vendors. In

addition, the affinity features of AIX with Linux provide customers the flexibility to

leverage AIX and Linux together where appropriate, helping to preserve investments in

skills and applications [63,66,67].

5.13 CompaqIDEC VMS

VMS is a high performance operating system made by DEC that runs on DEC VAX.

OpenVMS is an updated version of VMS and runs on both the DEC VAX and the DEC

Alpha.

VMS and OpenVMS are the same operating system under two different names (the

name changed to OpenVMS about the time POSIX support and a few other "open" items

were added.)

OpenVMS, originally called VMS (Virtual Memory System), was first conceived in

1976 as a new operating system for Digital's new, 32-bit, virtual memory line of

computers, eventually named VAX (Virtual Address eXtension). The first VAX model,

the 11/780, was code-named "Star", hence the code name for the VMS operating system,

"Starlet", a name that remains to this day the name for the system library files

(STARLET.OLB, etc.). VMS version X0.3 was the first released to customers, in support

of the hardware beta test of the VAX-11/780, in 1977. VAXIVMS Version V1.0 shipped

in 1978, along with the first revenue-ship 11/780s.

55

OpenVMS is a 32-bit, multitasking, multiprocessing virtual memory operating

system. Current implementations run on Digital's VAX and Alpha computer systems

[68,69,70].

5.14 Multics

Multics (Multiplexed Information and Computing Service) is a mainframe timesharing

operating system begun in 1963 and used until 2000. Multics began as a research project

and was an important influence on operating system development. The system became a

commercial product sold by Honeywell to education, government, and industry. This web

site describes the hardware, software, and people that made the system the best thing of

its kind for many years.

The Compatible Timesharing System (CTSS) was one of the first timesharing

systems. It was developed at the MIT Computation Center in 1961 on an IBM 709. In

November 1962, MIT Prof. Robert M. Fano leaded the development of MAC (Multiple

Access Computers) Bell Labs decided to buy a GE-643 in early 1963 and joined the

software development effort, and GE also agreed to contribute. The three organizations

worked out a structure for cooperation.

GE sold its computer business to Honeywell in 1970. The last Multics system

running, the Canadian Department of National Defence Multics site in Halifax, Nova

Scotia, Canada, shut down October 30, 2000 at 17:08Z. This system was modified to be

Y2K compliant and was the main production system until Sept/00 [71,72].

56

5.15 OS/2

A long time ago, IBM and Microsoft still were great pals. At first, Microsoft developed

DOS for IBM PC's, and later on, the company started - again by order of Big Blue - the

development of OS/2, or Operating System 2. Microsoft and IBM split up a long time

ago. That was because Microsoft started to develop its own graphical operating system:

Windows and that during the development of the joint-venture between IBM and

Microsoft. IBM felt deceived and decided to continue development of OS/2 itself.

Debugging and rewriting large portions of OS/2's source code led to a new 32 bit

operating system that was rock-stable.

When both operating systems appeared on the market, Microsoft and IBM faced

each other. With the popularity of Windows and OS/2, the competition between the two

former pals grew. The final collision had place in 1993. OS/2 Warp 3.0, a powerful

upgrade of HS/2, had just appeared, and after some months, Microsoft introduced its

Windows 93. Though OS/2 had been released some months earlier, and seemed

extremely fast and stable, most PC users decided to wait to see which way the cat jumps.

Next, Windows 93 was released with such a great advertising campaign that mankind

spontaneously forgot about the existence of other alternative operating systems. In 1996,

Warp 4.0 (aka Merlin) was released, but in fact, Microsoft had already won [13,73].

After reviewing the brief history and system features of each operating system, how

to collect data for intrinsic factors and extrinsic factors will be discussed and the results

of the collection will be presented.

CHAPTER 6

DATA COLLECTION

6.1 Resources of the data

In Chapter 4, the methods of how to quantify intrinsic factors and extrinsic factors have

been defined. In this chapter, how to collect data based on these rules will be discussed.

Data collection is a hard and time-consuming job. The operating system trends

group has used different methods to collect data for the answers:

1. Books: Text books, authorial books about operating system are the first resources.
Most of these books have discussed part of the intrinsic factors in the contents. For
example, the famous dinosaur book "Operating system concepts" by Abraham
Siiberschatz, el is a general text book about operating systems. And there are a lot of

books especially for a particular operating system. For example, "Mac OS X" by
David Pogue is just for Mac OS, "Microsoft Windows XP inside out by" Ed Bott; el.
is special for Windows XP. These books provide high level introduction to operating
systems.

2. System manuals and handbooks: Every operating system has its own system manual
and hand books for user. They provide all the detailed technical information about the
system from installation, configuration to all high level technical details for the
operating systems.

3. Journals, papers and other articles: There are a lot of papers and articles published
about operating system. Actually, operating system is always among the hottest topics
for most of the computer technical international conferences, journals and magazines,
for example IEEE, ACM, to name but a few. These excellent articles and papers are
very good reference.

4. Internet: It is well known that Internet is big resource. There are thousands of thousand
of websites, links that are talking about operating systems. Most of the famous
organizations have their online website and provide services sometimes more quick
and more detail than any other format. Almost for every operating system, there are
forum, groups, online organizations, standard, etc that are actively online. These web
pages provide the newest information for the operating system research.

5. Surveys: Some of the factors have limited resources or the data obtained from the
above sources can not be used. For example, the extrinsic factor of Grassroots Support,

57

58

it is difficult to know how many people who prefer to use a particular operating
system. In order to get these kinds of information, a survey web page is set up. To
store all of the data, a data warehouse is established in software engineering lab in
New Jersey Institute of Technology. For the details, visit:

http ://swlab.nj it. edu/OSIsurvey.htm

By analyzing the data in this data ware house, good understand could be gained in

historical trends of each operating system.

6.2 Survey Webpage

A survey webpage is set up to collect data for some intrinsic and extrinsic factors. By

asking survey users to answer the questions designed for each factor, the information

about the factor is gathered. Because different questions are designed for different groups

of people, the survey is divided into six categories. Survey users are directed to a

category of survey questions according to their background.

The six categories are as such: basic survey; feature survey; institutional survey;

industrial survey; governmental survey; design survey.

Institutional survey, industrial survey and governmental survey are for institutional

support, industrial support and governmental support respectively. They are taken by

institutional survey users, industrial survey users and governmental survey users

correspondingly. The sub-features of these three factors are listed for survey user to

answer for different periods of time.

For example, in institutional survey, users from institutional units are going to

answer the following questions for each of the sub-features:

• Whether your institutional unit supports any of the following operating system in
each of the following specified years?

59

• Whether in your institutional unit, you ever teachItake a course using any of the
following operating system in each of the following specified years?

• Whether in your institutional unit, you ever teachItake a course or teaching any of
the following operating system in each of the following specified years?

• Whether in your institutional unit, you do research by using any of the following
operating system in each of the following specified years?

• Whether in your institutional unit, you do research on any of the following
operating system in each of the following specified years?

Basic survey includes questions for grassroots support. Unlike the above three

supports, grassroots support can be applied to all survey users. Therefore, all users from

the above surveys are directed to this category. In this survey, users need to answer the

three questions for grassroots support for each specified year.

Feature survey contains questions to be answered for ease of learning, ease of use

and reliability. For ease of learning, survey users are asked to enter the approximate time

for them to learn an operating system. For ease of use, all the sub-features are listed. For

each of the sub-feature, based on user's experience for this sub-feature, user can choose

one of the five ratings from "excellent" to "not good" for a given operating system. For

reliability, users are asked to provide the number of system failures per month when they

use an operating system.

Design survey is used particularly for design factors. In this survey, all the sub-

features of design are listed. For each of the sub-feature, user is asked to choose whether

the feature is "excellent", "very good", "good", "acceptable" or "not good" for a given

operating system.

All information gathered from the survey webpage is stored in a data warehouse.

The survey webpage is open publicly on the Internet. All NJIT students, faculties and

60

staff, various interested parties are welcome to participate in the survey. Besides, survey

invitations are posted to public websites as well as user groups, comp.os.linux,

comp.os.ms .windows, comp.os.research, comp.os.unix.misc, comp.os.mach, etc. These

operating system related sites are chosen, because they have considerable traffic and

people on these websites are balanced. Therefore, it is not favorable to any operating

system and thus the results are trustable. In total, up until May 2004, about 800 records

are gathered from the survey websites. Figure 6.1 is a screen shot of the web survey page.

Also, the research is demonstrated to high school and college students and invited them

to participate in the web survey. In order to attract more users, several announcement

messages are posted to NJIT web sites, inviting students to participate in the survey.

Figure 6.1 Operating System Survey Website.

61

6.3 Data Collection for Intrinsic Factors

To collect data for intrinsic factors, the operating system evolution research group uses

all the methods mentioned in previous sections and tries to evaluate intrinsic factors

based on all of these resources.

1. Scalability. All of the above resources are used except the survey web pages to get the

data for scalability. By going through all the resources, for each operating system, which

sub-factors are supported is decided. Because the quantifying method of scalability is

hierarchical sub-feature, the scores for all the supported sub-factors are summarized and

the final grade for scalability is derived. Following references are used:

[15,24,36,43,46,56,57,58,65,73,74,75,76,77,78,79,80,81,82,83,84,85].

Table 6.1 Scores for Scalability, CPU Management and 1/0 Management

2. CPU Management. Similar as scalability, all of the above resources are used except the

survey web pages to get the data for scalability. By going through all the resource, for

each operating system, which sub-factors are supported are decided. The quantifying

62

method of CPU Management is hierarchical sub-feature. The scores for all the supported

suh - factors are summarized and the final grade for CPU Management is derived_

3. Memory Management. Recourse used for memory management is all the first 4

resources mentioned above. After deciding which sub-factors are supported by a

particular operating system, using hierarchical sub-features quantifying method to get the

final score of memory management. The references are listed as following.

4. I/O Management. Recourse used for I/O management is all the non-survey resources

mentioned above. After deciding which sub-factors are supported by a particular

63

operating system, using hierarchical sub-features quantifying method to get the final

score of 1/0 management. The references include:

[15,24,36,43,46,56,57,58,65,73,74,75,76,77,78,79,80,81,82,83,84,85].

5. Ease of Learning. The score of ease of learning are derived from the webpage. Users of

survey are asked to enter the approximate time (number of hours) for them to learn the

operating system. Then the score of a particular operating system is the average number.

The scores of ease of learning in Table 6.3 are derived from about 500 records.

6. Ease of Use. Same as ease of learning, the score for ease of use is derived from the

survey webpage. All 8 sub-features of ease of use are listed and have the discrete scale

from "excellent" to "not good" for survey user to choose. When user chose one of the

choices, the score for its corresponding sub-features are stored in the data warehouse.

After a user evaluates all the sub-features, the user's score for this given operating system

is the average value of all the sub-features. And the final score of this operating system is

the average value of all users grading. The scores of ease of use in Table 6.3 are derived

from about 500 records.

64

7. Consistency of Interaction Protocol. Similar as scalability, all the non-survey resources

are used to gather information for consistency of interaction protocol and decide which

protocols are supported by a particular operating system. The final score of a given

operating system is the number of protocols that is supported by this operating system.

The following references are used: [24,36,56,58,74,75,77,85,86].

Table 6.4 Scores for Consistency of Interaction Protocol, System Services and Range of
Programming Languages Supported

8. System Services. All the non-survey resources are used to gather information for

system services and to decide which system services are provided by a particular

operating system. Hierarchical sub-factors quantifying method is used to calculate the

corresponding score. The following references are used:

[15,24,36,43,46,56,57,58,65,73,74,75,76,77,78,79,80,81,82,83,84,85].

9. Range of Programming Languages. All the non-survey resources are used to gather

information for range of programming languages and to decide which programming

65

languages are supported by a particular operating system. The final score of range of

programming languages for a given operating system is the number of programming

languages that are supported. The following references are used:

10. Distributed Computing. All the non-survey resources are used to gather information

for distributed computing and to decide which distributed computing sub-feature are

provided by a particular operating system. Hierarchical sub-factors quantifying method is

used to calculate the corresponding score. The following references are used:

Table 6.5 Scores for Distributed Computing, Network Services and Deadlock
Management

11. Network Services. All the non-survey resources are used to gather information for

network services and to decide which network services are provided by a particular

operating system. Hierarchical sub-factors quantifying method is used to calculate the

corresponding score. The following references are used:

66

12. Deadlock Management. All the non-survey resources are used to gather information

for deadlock management and to decide which deadlock management strategies are

provided by a particular operating system. Hierarchical sub-factors quantifying method is

used to calculate the corresponding score. The following references are used:

13. Reliability. The score of reliability are derived from the webpage. Users of survey

are asked to enter the approximate number of failure per month for the operating system.

Then the score of a particular operating system is the average value. The scores of

reliability in Table 6.6 are derived from about 500 records that are gathered from the

survey page.

14. Security and Protection Management. All the non-survey resources are used to gather

information for security/protection management and to decide which security/protection

management strategies that are discussed before are provided by a particular operating

67

system. Hierarchical sub-factors quantifying method is used to calculate the

corresponding score. The following references are used:

15. Portability. All the non-survey resources are used to gather information for portability

and to decide how much effort (number of man-month) to transfer the operating system

from one hardware or software environment to another. Straightforward numeric formula

quantifying method is used to calculate the corresponding score. The average value of all

the numbers obtained is the final score. The following references are used:

16. Compatibility. All the non-survey resources are used to gather information for

compatibility and to decide how much effort (number of man-month) to upgrade or

downgrade an operating system. Straightforward numeric formula quantifying method is

68

used to calculate the corresponding score. The average value of all the numbers obtained

is the final score. The following references are used:

17. Openness. All the non-survey resources are used to gather information for openness

and to decide which standards are complied by a given operating system. Hierarchical

Sub-feature quantifying method is used to get the final score for every operating system.

18. Scores for Design. The score of design are derived from the webpage. Every sub-

feature of design is listed and has the discrete scale from "excellent" to "not good" for

survey user to choose. When user chose one of the choices, the score for its

corresponding sub-features are stored in the data warehouse. After user evaluates all the

sub-features, the user's score for this given operating system is the average value of all

the sub-features. And the final score of this operating system is the average value of all

users grading. The scores of design in Table 6.8 are derived from about 400 records.

19. Cost. All the non-survey resources are used to gather information for cost.

Straightforward numeric formula quantifying method is used to calculate the

corresponding score. The average value of all the numbers obtained is the final score.

6.4 Data Collection for Extrinsic Factors

Similar to intrinsic factors, the operating system trends research group uses all the

methods mentioned above and tries to evaluate extrinsic factors based on all of these

resources. Most of the extrinsic supports have their results from the survey webpage.

Some of the extrinsic support, for example, organizational support, data is collected from

other resources as in the references. Different from intrinsic factors, extrinsic is historical

based. For each of the extrinsic factors, three groups of historical data are collected: 1997,

2000, and 2003. These historical data are used for the trend watch analysis.

70

6.4.1 Institutional Support

Table 6.10 shows the results for institutional support. As discussed in Chapter 4, there are

five different supports for institutional supports: support the OS, teach using the OS,

teach the OS, research using the OS and research on the OS, from weakest support (score:

1) to the strongest (score: 5) respectively. One survey instance will result a score from 5

to 0, providing that if a user does not provide information for this OS will results 0 point

for this instance. The average score of all the survey results is used for institutional

support as the final score for a given year.

From Table 6.10, it can be seen that during the time span, UNIX and Solaris/Sun

OS are one of the most popular operating systems in academic area. Instructors use

UNIX and Solaris/Sun OS as examples more often than most of other operating systems

when they teach operating system courses. OS/2, HP-UX, MAC-OS are less widely used

and researched by institutional purposes compared to other popular OS. Also, people like

to use Windows as a tool in classrooms as well in libraries.

71

6.4.2 Industrial Support

From Table 6.11, it can be seen that Solaris, IBM AIX and Windows have very strong

industrial support. They remain a strong position in winning industrial support throughout

the time span. But what's mentioning is that in 1997, Linux was in the second tier in

terms of industrial support, however, during the six years period from 1997 to 2003, it

has gained considerable momentum in gaining up speed. By 2003, Linux has come up to

the second place, which is just behind Windows operating system.

6.4.3 Governmental Support

From Table 6.12, it can be seen that Unix, Windows and IBM AIX has considerable

governmental support continuously from 1997 and 2003. Though each of them gained

some field in winning more governmental support, they stay relatively stable as far as

their ranking is concerned. Similar to organizational support, Linux catches up from

behind very quickly and gained rather impressive progress in winning more government

support.

72

6.4.4 Organizational Support

Table 6.13 shows the results for organizational support. Unlike other extrinsic factors, the

data of organizational support are not obtained from survey; instead it's from a lot of

other resources as listed in the references. It can be seen that UNIX, Windows, Linux,

BSDs are the most popular platform that are used by people in order to publish papers

and articles during 1999 through 2000. But in year 20012002, most of the number for

this category dropped down except Linux. The following references are used:

6.4.5 Grassroots Support

From the definition of grassroots support in Chapter 4, it refers more to the general

audience of operating system. From Table 6.14, it can be seen that Windows and IBM

AIX are far ahead as far as Grassroots support is concerned. The relative ranking of

grassroots support remains stable.

Table 6.13 Scores for Organizational Support

73

CHAPTER 7

DATA ANALYSIS & MODEL CONSTRUCTION

In the previous chapters, the following questions have been discussed: how to find out the

relevant factors, how to quantify those relevant factors, and how to collect data for them.

After the data warehouse has been established, the new questions are: how to analyze

these data, how to construct the proper statistical models to describe the history of

operating systems, and how to extend the statistical models to predict the evolution of

operating systems.

7.1 Constructing Statistics Models

In this project, SPSS statistic toolbox [133] will be used to help describe historical

operating system trends and predict the evolution of future trends. First, the data collected

will be analyzed to extract some descriptive properties to characterize the evolution of

operating system over time. Second, the available data will be used to predict the future

trends of operating systems.

Before the statistical model is presented, the following premises are considered:

• Intrinsic factors are adopted as independent variables for the model, as they
influence the destiny of an operating system.

• Extrinsic factors are adopted as dependent variables in the model; the status of
an operating system is not represented by the simple binary term of

successfullunsuccessful, as this would be arbitrarily judgmental. Rather, the
status of an operating system is represented by the vector of all the extrinsic
factors.

• Because many extrinsic factors feed unto themselves (e.g. the more grassroots
support an operating system has, the more grassroots support it may have in the

74

75

future) and many influence others (e.g. institutional support influences
industrial support), past values of extrinsic factors are adopted as independent
variables.

Overall, the independent variables of the model include the intrinsic factors and the

historical data of extrinsic factors, and the dependent variables include the future values

of the extrinsic factors.

The statistical model is built to use principle component analysis (PCA)[134],

Pearson correlation analysis in this project to elucidate the relationships between

independent variables and dependent variables. After analyzing the inputs, multiple

regression is used to predict future evolution of an operating system by feeding it time-

independent intrinsic factors, as well as past and present values of the extrinsic factors.

Section 7.2 will discuss how to analyze factors, and how to construct models will be

discussed in Section 7.3.

7.2 Independent Data Analysis

7.2.1 Factor Analysis

The factor analysis [134] is used to do the startup research on raw data. The

independence of the variables in groups is evaluated for further research. The relatively

small number of latent factors proved that many variables are highly correlated and need

either adjustment or combination, which make it necessary to do canonical analysis.

Factor analysis is a generic term for a family of statistical techniques concerned

with the reduction of a set of observable variables in terms of a small number of latent

factors. It has been developed primarily for analyzing relationships among a number of

measurable entities (such as survey items or test scores). The underlying assumption of

76

factor analysis is that there exist a number of unobserved latent variables (or "factors")

that account for the correlations among observed variables, such that if the latent

variables are partially out or held constant, the partial correlations among observed

variables all become zero. In other words, the latent factors determine the values of the

observed variables. Each observed variable could be expressed as a weighted composite

of a set of latent variables. The primary purpose of factor analysis is data reduction and

summarization. Factor analysis has been widely used, especially in the behavioral

sciences, to assess the construct validity of a test or a scale.

Once the input data are prepared for the analysis, it is necessary to decide on a

factoring technique, that is, a method of extracting factors. There are a variety of different

methods of factor extraction available in SPSS and PCA statistical analysis methodology

is used to identify a small number of factors that explain most of the variance observed in

a much larger number of manifest variables. The following goals are to be reached:

• Reduce the number of components.

• The extracted components should preserve most of the relations with the
initial factors.

In this project, three sets of extrinsic factors data (1997, 2000, and 2003), and 13

operating systems will be used as observations. So in final model, the construction of

each factor is based on 43 observations.

Table 7.1 shows the factor analysis for intrinsic factors. From Table 7.1, six factors

could be used to cover 93.903% of the variance. That means that six-factor model could

be used to do factor analysis, while keeping most of the information. Hence for all intents

and purposes, the six derived components represent a space of dimension six rather than

nineteen. Thus, six components from the initial nineteen intrinsic factors are extracted.

77

Table 7.1 Factor Analysis for Intrinsic Factor Matrix: Total Variance (Extraction Method:
Principal Component Analysis.)

Table 7.2 Rotated Factor Pattern for Intrinsic Factors Component Matrix (Extraction
Method: Principal Component Analysis.)

78

From another perspective ; by using previous intrinsic factor matrix, the six-factor

model could be constructed. Table 7.2 shows the relationships between new independent

factors (components) and original intrinsic factors. As it shows, each of the 19 factors is

actually covered by at least one of the six refined components. For instance, component 1

is highly related to factor distributed computing (0.933), security protection (0.883), CPU

(0.746). Component 4 covers factors of system services (0.964) and range of

programming languages (0.637).

Therefore, the extracted 6 components satisfy the criteria listed at the beginning of

this section.

For extrinsic factors, the same method will be used. Table 7.3 shows the factor

analysis for extrinsic factors. From this table, the following conclusion can be drawn. For

the extrinsic factors, three extrinsic factors will cover 98.036% information. Also, an

interesting fact shows that five extrinsic factors will cover 100% information. Table 7.4

shows the five-factor models. However since there are only five extrinsic factors, all of

them will be used.

7.2.2 Canonical Correlation Analysis

There are several measures of correlation to express the relationship between two or more

variables. Canonical Correlation [133] is an additional procedure for assessing the

relationship between variables. Specifically, this analysis allows the analysis of the

relationship between two sets of variables. If the square root of the eigenvalues is taken,

then the resulting numbers can be interpreted as correlation coefficients. Because the

correlations pertain to the canonical varieties, they are called Canonical Correlations.

Like the eigenvalues, the correlations between successively extracted canonical variants

79

are smaller and smaller. Therefore, as an overall index of the canonical correlation

between two sets of variables, it is customary to report the largest correlation, that is, the

one for the first root. However, the other canonical variants can also be correlated in a

meaningful and interpretable manner.

Table 7.3 Factor Analysis for Extrinsic Factor Matrix (Extraction Method: Principal
Component Analysis.)

Table 7.4 Rotated Factor Pattern for Extrinsic Factors

In this project, Pearson Correlation [134,133] is used to analyze the relationship

among all factors. By doing this, the association between several intrinsic factors and one

extrinsic factor is observed. Most results show a relationship, which counts for part of the

feature. Different intrinsic factors of an operating system do have different impact on the

overall performance by using this model. Please check Table 7.3 for the question: "How

is the extrinsic factor government support affected by the intrinsic factors?"

80

Table 7.3 shows that different intrinsic factors have different impact on the

extrinsic factor of Organizational support. Among all these intrinsic factors, some of

them are more weighted: security protection, scalability, design and network service have

more correlation value for this extrinsic factor than other intrinsic factors.

Table 7.5 Sample Correlation Results for Intrinsic Factors Only

7.2.3 Statistics Conclusion

From the previous sections, two aspects of data analysis are discussed.

First, for intrinsic factors, the factor analysis showed that only six extracted

components sufficient to contain more than 93% of the operating systems internal

information. Consequently, it shows that the nineteen latent intrinsic factors are highly

correlated and they are not independent from each other. To construct useful regression

model for the historical trends, the independent extracted components, instead of original

factors, will be used. From the factor analysis, it can be inferred that the six components

81

that are derived from the intrinsic factors do represent important features of the operating

systems.

The canonical correlation analysis result shows which factors are mostly related

and how much are they related. It is also a good startup to construct regression model,

because the newly constructed independent factors, instead of the original factors, will be

used to construct the regression model.

CHAPTER 8

TOWARDS A PREDICTIVE MODEL

In the previous chapter, factor analysis has been done; the independent variables

(including the new six components extracted from the original 19 intrinsic factors and all

the 3 extrinsic factors) have been derived. By doing canonical correlation analysis, two

correlation models for intrinsic factors only and for all factors have been made to show

the correlation among those factors. This chapter will discuss how to construct regression

models by using these independent intrinsic and extrinsic factors and analysis results

from the constructed model.

8.1 Regression Model

8.1.1 Regression Analyses

Regression analyses [134,133] are a set of statistical techniques that allow one to assess

the relationship between one dependent variable (DV) and several independent variables

(TVs). Multiple regression method is an extension of bivariate regression in which several

independent variables are combined to predict the dependent variable. Regression may be

assessed in a variety of manners, two of the common used are as follows:

• Partial regression and correlation: Isolates the specific effect of a particular
independent variable controlling for the effects of other independent variables.
This method will try to find out the relationship between pairs of variables by
recognizing the relationship with other variables.

• Multiple regression and correlation: Multiple regression and correlation method
combines the effect of all the variables acting on the dependent variable; for a net,
combined effect. Thus the resulting R2 value provides an indication of the
goodness of fit of the model.

82

83

In the social and natural sciences multiple regression procedures are very widely

used in research. In general, multiple regression allows the researcher to ask (and

hopefully answer) the general question "what is the best predictor?". For example,

educational researchers might want to learn what the best predictors of success are in

high-school [136].

8.1.2 Multiple Regression Model

Therefore, when using multiple regression and correlation it is often the case that a

dependent (or response) variable may depend on more than one independent (or

explanatory) variable. Based on the requirements and the different usages of the above

two dissimilar regression and correlation methodology, multiple regression method are a

good choice to analyze the operating systems revolution.

The multiple regression equation is of the form:

Where:

T= the predicted value on the DV,

a = the intercept, the value of 'Y when all Xs are zero,

X= the various Ws,

(3= the various coefficients assigned to the IVs during the regression,

E = an error term.

q= dimensional hyperplane (number of factors)

Accordingly, a different Yvalue is derived for each different case of independent

variable. The goal of the regression is then to derive the values, the regression

coefficients, or beta coefficients. The beta coefficients allow the computation of

84

reasonable ''values with the regression equation, and provide that calculated values are

close to actual measured values.

Computation of the regression coefficients provides two major results:

• Minimization of deviations (residuals) between predicted and obtained
values for the data set.

• Optimization of the correlation between predicted and obtained ''values for
the data set.

As a result, the correlation between the obtained and predicted values for ''relates

the strength of the relationship between the dependent variable (DV) and independent

variables (IV). Although regression analysis reveals relationships between variables, this

does not imply that the relationships are causal. Demonstration of causality is not a

statistical problem, but an experimental and logical problem [136].

8.1.3 Regression Model for Historical Trends

When using multiple regression models for this project, the derived regress model is

established to analyze the data. Figure 8.1 gives an illustration for the model.

Figure 8.1 Regression Model for Operating System Trend.

85

In this model, all of the intrinsic factors will be considered as input factors. On the

other hand, extrinsic factors actually change across different time period. Thus, the earlier

past data will be considered as input factors and the later present and future data will be

considered as output factors.

• Input data: intrinsic factors and past extrinsic factors

• Output data: present and future extrinsic factors

The general purpose of multivariate regression is to learn more about the

relationship between several independent or predictor variables and a dependent or

criterion variable. Multivariate multiple regression can easily be extended to deal with

situations where the response consists of q > 1 different variables. The input matrix will

be constructed by factors obtained from factor analysis; this analysis is necessary to build

independent factors so the regression model can be made and interpreted.

86

Figure 8.2.A~C Sample SPSS Regression Model Reports for One Extrinsic Factor.

87

Multiple regression model for operating systems trends consists of 3 parts, one for

each dimension. Due to the number of factors used in the model, there will be a balance

between model reliability and the information completion. The more factors are used, the

more information will be included, but regression model will be less reliable. The fewer

factors you used, the less information will be included, but the regression model will be

more reliable. The following set of figures (Figure 8.2 A~C) shows an example of the

process to create a report based on the SPSS analysis model for extrinsic factor of

Governmental Support.

In Figure 8.2, one historical extrinsic factor and 19 independent intrinsic factors are

used as input factors against on the multivariate regression model. This report will show

the regression model for one extrinsic factor: "How much government support an

operating system will receive?" The parameter will show the impact of each input

independent factor to the output extrinsic factor. The other regression reports can be

found in the website this project uses. By using all of the parameters, the regression

models are constructed for historical operating system trends.

8.2 Predictive Model

From the previous section, the derivative prediction models have been constructed for

each extrinsic factor in 2006, by submitting the value in 2000 to the 97 position and 03 to

the 2000 position in the model.

Where:

E2006: Value of extrinsic factors in 2006

88

I: Value of intrinsic factors

a: Parameter matrix for intrinsic factors

E2003: Value of extrinsic factors in 2003

j3: Parameter matrix for extrinsic factors in 2003

E2000: Value of extrinsic factors in 2000

7: Parameter matrix for extrinsic factors in 2000

€: Constant value

Both intrinsic factors and extrinsic factors are considered in the model. Least square

[134,133] is used as the criteria to judge whether the regression model converges. SPSS

is used to calculate the parameter matrix so that the least square goal is met. When least

square is met, the output with this parameter matrix is the closest to all observations that

are fed into the model. Therefore, the model can be used to describe the trends of

operating systems.

Some of the predictions are showed in the rest of this chapter. Please check "Trends

of Government Support in 2006". Figure 8.3 is the predictive results.

From above graphs, the five operating systems that will receive most of the

government support in 2006 will be: Linux, Solaris, UNIX, IBM AIX and Windows.

Figure 8.3 shows interesting trends for operating system. It seems like from 2003 to 2006,

Linux will overtake windows as the operating systems that will receive the most

organizations support. All other operating systems will stay relatively stable in terms of

the level of organizational support they receive.

From another figure (Figure 8.4), it can be seen that Linux, Windows, Solaris and

UNIX will still gain more organizational supports than most of the other operating

systems. Some operating systems will again remain similar as before, for example, OS/2,

GNU Hurd, and HP-UX. Then another question is for a specific operating system, what

are the changes for it during these periods of time. The changes of the organizational

support from year 1997 to 2006 are shown in Figure 8.5. From this figure, most of the

"popular" OS will remain stable even gain more support for the organizational support.

For example, UNIX and Solaris maintain quite good position. Linux and Windows are

very "healthy" and even jump very fast across the year, especially for Linux. Some OS

are losing their organizational support, for example, BSDs, OS/2. Some operating system

remains almost same, for example, NetWare, Compaq, etc, which actually could be found

in the bottom of the figure.

Notice that this prediction is based on historical trends, which means that if future

trends remain the same as current trends, Linux will still keep growing.

Figure 8.6 shows another interesting question for grassroots support: "How the

grassroots support is going to change from 1997 to 2006?"

Figure 8.4 Trends of Organization Support in 2006.

90

Figure 8.5 Organization Support from 1997 to 2006.

91

Figure 8.6 Grassroots Support in 2006.

From above graph, the top operating systems that will receive the most grassroots

support in 2006 will be: UNIX, Solaris/Sun OS, Windows, Linux, and MAC OS. And

some other OS still have their small portion of support, such as NetWare, GNU Hurd,

HP-UX, etc. General population's point of view is considered to decide the grassroots

supports. Popular PC operating systems such as Windows and Linux gain more support

because they are widely used on PC. On the other hand, Unix and Solaris are commonly

installed on workstations thus people are familiar with them.

Because the metrics are kept the same when the data is gathered and when the

prediction is done so the values are comparable across the whole time period.

Figure 8.7 also shows interesting trends of grassroots support for operating system.

From this figure, some of the operating systems stay relatively stable for their support, for

example, HP-UX, IBM AIX, NetWare, BSDs. These operating systems usually are used

in specific areas and these fields are not changing too much in 2006. As a result, the

corresponding operating systems remain similar for their grassroots support. Some are

92

climbing up, such as Linux, Windows. These are "bright" points for those operating

systems that are very good in PC environment and thus gain more support. Some curve is

falling down, such as OS/2. It may because this is comparatively old operating system;

with more and more modern systems emerged the old ones are going to loss their old

support.

A very important fact is that the parameter matrices are not unique. All of these

parameter matrices could be used to describe past and current trends of operating systems,

because that is how they are constructed. But by replacing the data of 1997 by those of

2000 and replacing the data of 2000 by those of 2003, the results of 2006 are not the

same by using different parameter matrices. That means each predictive derivation model

will generate different prediction results. Although the predictions are not unique, these

derivative models are still very helpful for researchers to understand the trends. After

collecting more data in the future, these derivative models can be refined.

Figure 8.7 Trends of Grassroots Support from 1997 to 2006.

CHAPTER 9

EXTENDED FEATURE ANALYSIS

After the trends of individual operating system are predicted by considering all the

independent variables, another perspective observation is worth looking at. What will the

operating system looks like in the future? Or what features are important in the future? A

more concrete example of this is, for instance, how does openness affect the evolution of

operating systems? Or more specifically, how does openness affect the future

organizational support of an operating system?

9.1 EDtended Feature

In order to find out answers for such kinds of questions and provide some quantitative

proof, the concepts of intrinsic factors and extrinsic factors need to be expanded. And

thus comes the concept of Extended Feature. The extended feature is calculated in the

following way:

Given an intrinsic factor and an extrinsic factor, the corresponding Extended

Feature is defined as the sum of the product of an operating system's extrinsic factor and

its intrinsic factor, including all operating systems under consideration.

So the mathematical representation is as follows:

Where:

Extended(feature, year): the extended feature of the year

feature: an intrinsic factor

93

94

os: an operating system in the candidate operating systems

Extrinsic(os, year): one extrinsic factor of the OS in the year

Intrinsic(factor, os): the intrinsic factor of the corresponding operating system

According to the above description, the properties of extended feature could be

summarized as below:

• Extended Feature is related to one extrinsic factor and one intrinsic factor.

• Extended Feature changes over time.

• Extended Feature is not attached to one particular operating system. It is an
overall concept that reflects characteristics of all operating systems in general.

Since most of the intrinsic factors are quantified in different dimensions, first they

need to be normalized into a single magnitude. After normalization, the relationship

between a certain intrinsic factor and extrinsic factor are considered. For a given extrinsic

factor, a diagram for every intrinsic factor's variation through the years is picked out. By

integrating all the curves- for the same extrinsic factor in one diagram, the quantitative

impact of different features on one extrinsic factor can be compared.

9.2 Analysis of Results

In Figure 9.1, some extended feature analysis for one extrinsic factor — organizational

support are shown. In this group of analysis, five intrinsic factors are picked out:

openness, security/protection, design, range of services and compatibility. For each of the

intrinsic factor, the extended feature against organizational support for every observed

year is derived. So that from the figure, not only the changes of extended features could

be exposed, but also the comparison between extended feature of two different intrinsic

factors could be discovered.

95

For example, in Figure 9.1, most of the lines are increasing through the year, which

means that most of these intrinsic factors are important to extrinsic factor of

organizational support and have more and more impact on organizational support. Or in

other words, in order to attract the attention from organizations supports, one operating

system need to enhance its feature of the above intrinsic factors. Recalling the method to

judge organizational support, there are five different aspects that are been considered, for

instance, organization standards, paperlarticles published onlusing the OS. Each of these

sub-features actually is related to one or more of the above mentioned intrinsic factor, e.g.

openness, design and range of system services vs. organization standards,

security/protection and compatibility vs. paper/articles published on the OS, range of

system services vs. paperlarticles published using the OS, etc. Compare to other intrinsic

features, the curve for range of services is not so steep. Probably this is because that

range of system services that are provided by operating systems are getting more and

more stable through the year and thus less paper/article are published on the

Figure 9.1 Sample Extended Feature Analysis for Organizational Support.

96

corresponding fields and not a lot of new standards are involving these topics.

Using the constructed statistical model that is discussed in previous chapters, the

values of extended features for 2006 are derived. Range of services will remain similar;

at the same time, most of other factors are getting more, with openness the top one.

From another perspective, different factors need to be compared horizontally. For

example, in year 1997, Extended(SecuritylProtection) is greater than other values.

However, in year 2000, the ranking for this value falls down to No.3 that almost as same

as Extended(Range of Services), with Extended(openness) the top one, slightly bigger

than the second one of Extended(Design). Different curves sometimes across each other

through different years. This indicates that within different year, there could be different

extended feature value for a single factor and a single support, as a result that within

different year, the importance of a certain intrinsic factor against an extrinsic factor vary.

Another example is shown in Figure 9.2. Grassroots support is used and five

Figure 9.2 Sample Extended Feature Analysis for Grassroots Support.

97

intrinsic factors are selected as compatibility, ease of use, ease of learning, consistency of

interaction protocol and range of services.

During the studied time periods, most of the values for the lines are increasing,

which indicates the importance for these five intrinsic factors to grassroots support. Back

to the definition of grassroots support, it includes the view from general computer users

such as whether they know them, whether they use them or whether they like them.

Therefore, the above factors are getting important. For example, people tend to like using

those systems that are easy to learn and ease to use. Also, the wide the range of services

and consistency of interaction protocols that an OS could provide the more convenient

for people to use it and thus choose it.

It is predicted that in year 2006, Extended(ease of learning) will exceed

compatibility and become the first one. Extended (Ease of use) will also raise and become

more important. Consistency of interaction protocols remains similar.

Figure 9.3 Sample Extended Feature Analysis for Institutional Support.

98

In Figure 9.3 ~ Figure 9.5, the samples of extended feature analysis for institutional

support, industrial support and governmental support are presented respectively.

Figure 9.5 Sample Extended Feature Analysis for Governmental Support.

99

9.3 Conclusion

In this chapter, the following questions are addressed by introducing concept of Extended

Feature: What will the operating system looks like in the future? What features are

important in the future? Extended Feature is related to one extrinsic factor and one

intrinsic factor and changes over time. Furthermore, Extended Feature is not attached to

one particular operating system. It is an over-all concept that reflects characteristics of all

operating systems in general.

By analyzing the extended features, the relationships between selected intrinsic

factors and the given extrinsic factor can be concluded as following:

• Openness, security/protection, design, range of services and compatibility are
important features for organizational support and will continue to be crucial for
organizational support in 2006. Among these factors, openness,
security/protection and design will increasingly be more important than range of
services and compatibility in 2006.

• Ease of use, ease of learning, compatibility, consistency of interaction protocols
and range of services are important features for grassroots support and will
continue to be crucial for grassroots support in 2006. Among these factors, ease of
use, ease of learning and compatibility will increasingly be more important than
range of services and consistency of interaction protocols in 2006.

• Ease of use, ease of learning, reliability, openness and range of services are
important features for institutional support and will continue to be crucial for
institutional support in 2006. Among these factors, range of services, ease of
learning, ease of use, and openness will increasingly be more important than
reliability in 2006.

• Compatibility, reliability, portability, design and security/protection are important
features for industrial support and will continue to be crucial for industrial support
in 2006. Among these factors, Compatibility, reliability and portability will
increasingly be more important than design and security/protection in 2006.

• Security/protection, reliability, ease of use, portability and openness are important
features for governmental support and will continue to be crucial for
governmental support in 2006. Among these factors, Security/protection,
reliability and ease of use will increasingly be more important than portability and
openness in 2006.

CHAPTER 10

MODEL VALIDATION AND IMPROVEMENTS

10.1 Model Validation

In this empirical study, operating systems trends were considered, their evolution over

time was observed, the evolution by means of time series was recorded, and the general

statistics models for how these trends evolve and feature analysis have been constructed.

After the statistics models for operating system evolution have been constructed, a

number of methods need to be introduced to assess the reliability of these models.

Assessing the quality of a model is called model validation. Model validation is

something that needs to be done both by producers and users of models. A model is just a

human being's hypothesis of a simplified representation of the real world, so it is always

a good practice to do validation to check the reliability of a model.

In this project, the following methods will be used to validate the statistics models:

• Check the difference between the actual values and the predictive values
from the statistical models.

• Use historical data of the other operating systems that are not in the
operating system list to validate and correct the model.

• Revise these models based on the newest evolution of operating system.

F-Statistic[134,133], which is a standard statistical method to check if there are

significant differences between groups, is used to validate the prediction.

In the F-table, for significant level a = 0.03, F must be greater than 4.49 to reject

the hypothesis of statistical correlation; because the value of F is much less, the

hypothesis is validated.

100

Table 10.1 Difference between Actual Value and Predictive Value in 2003

101

Table 10.1 shows the difference between the actual values and the predictive

values for the extrinsic factor of Governmental Support. It shows that the predictive

102

values match actual values very well and this statistical model is valid to describe the

historical and current trends of operating systems.

10.2 Model Improvement

10.2.1 Weakness

There are no perfect statistics models. A famous statistic statement is: "All models are

wrong, but they are useful." Instead of perfect models, reasonable models are maintained

to describe the historical trends and current evolution of operating systems. Somehow,

these models can also be used as good references to predict the future trends of operating

systems. This multiple regression model for operating systems trends has the following

weaknesses.

The first weakness of the regression model is that the number of the variables is

larger than the number of observations. It makes the regression models to be not unique.

To avoid that problem, two ways will be used to refine the models. Most correlated

variables are always manually selected into the model first. SPSS will also automatically

delete the dependent 19 variables until variables (equal to the number of the observations)

can be decided. In the future, it is hoped that more operating system will be included into

the research so the number of observation can increase and make the model sounder.

The second weakness is that the data may not in proper format or not complete. In

the data survey process, some problems are difficult to solve. And bias may be caused.

For example, not every company responds to the survey, so the information is incomplete.

If the silent companies are tending more to use one kind of specific operating system, a

103

bias will be caused by the available data. Also, it is hard to get cooperation from

government, because they are not willing to participate in the survey.

The features of the operating systems may prove that multiple regression models

are not the best model for analysis. The feature of a new operating system may appear to

be like the description below: "An operating system will first expand after it's created,

increasing even in exponent way. Then, it goes to the summit in a few years. As time is

going on and newer operating system comes out, it begins a decreasing period. Then after

a change period, it keeps somehow constant. There will not have much vibration for the

rest of its life. The lifecycle of an operating system likes a bell curve."

This description is reasonable based on the common sense of an operating system.

However, it is far from what is obtained in this multiple multivariate models. So that

multiple multivariate regression may not be very appropriate here, or can be considered

just as an approximation. However, more data is needed to track the whole process

instead of three periods.

10.2.2 Possible Improvement

To investigate the future data, more observations are needed. And based on more data,

TIME SERIES method can be used to construct better statistics models. There are two

main goals of time series analysis: identifying the nature of the phenomenon represented

by the sequence of observations, and predicting future values of the time series variable.

Both of these goals require that the pattern of observed time series data is identified and

more or less formally described.

Time series data often arise when monitoring industrial processes or tracking

corporate business metrics. Time series analysis accounts for the fact that data points

104

taken over time may have an internal structure, such as autocorrelation, trend or seasonal

variation. The below introduction of Time Series: [133,134,133]

Time series model is an ordered sequence of values of a variable at equally spaced

time intervals. The usage of time series models is two fold:

• Obtain an understanding of the underlying forces and structure that produced
the observed data.

• Fit a model and proceed to forecasting, monitoring or even feedback and feed
forward control.

The fitting of time series models can be an ambitious undertaking. There are many

kinds of models, such as Box-Jenkins AMNIA models, Box-Jenkins Multivariate Models,

Holt-Winters Exponential Smoothing (single, double, triple), and Box-Jenkins ANIMA

models.

The term "univariate time series" refers to a time series that consists of single

(scalar) observations recorded sequentially over equal time increments. Some examples

are monthly CO2 concentrations and southern oscillations to predict El Nino effects.

Although a univariate time series data set is usually given as a single column of

numbers, time is in fact an implicit variable in the time series. If the data are equi-spaced,

the time variable, or index, does not need to be explicitly given. The time variable may

sometimes be explicitly used for plotting the series. However, it is not used in the time

series model itself.

BoD-Jenkins Multivariate Models

The multivariate form of the Box-Jenkins univariate models is sometimes called the

ARMAV model, for Auto Regressive Moving Average Vector or simply vector ARMA

process.

105

The ARMAV model for a stationary multivariate time series, with a zero mean

vector, represented by

where a is the dispersion or covariance matrix of at at

106

The estimation of the matrix parameters and covariance matrix is complicated and

very difficult without computer software. The estimation of the Moving Average matrices

is especially an ordeal. The ARV model is given without the MA components:

Where

Ft is a vector of observations, xi t, xit, ... , Ent at time t

at is a vector of white noise, all, alt, ... , ant at time t

is a n x n matrix of autoregressive parameters

107

Where Ai = E[at,at-k] is the dispersion or covariance matrix

A model with p autoregressive matrix parameters is an ARV(p) model or a vector

AR model. The parameter matrices may be estimated by multivariate least squares, but

there are other methods such as maximum likelihood estimation.

There are a few interesting properties associated with the phi or AR parameter

matrices. Consider the following example for a bivariate series with n =2, p = 2, and q =

0. The ARMAV(2,0) model is:

Without loss of generality, assume that the X series is input and the Y series are

output and that the mean vector = (0,0). Therefore, transform the observation by

subtracting their respective averages.

The diagonal terms of each Phi matrix are the scalar estimates for each series, in

this case:

01.11, 0i.11 for the input series X, 01.ii9 0i.ii for the output series Y.

The lower off-diagonal elements represent the influence of the input on the output.

This is called the transfer mechanism or transfer-function model as discussed by Box and

Jenkins. The terms here correspond to their terms.

The upper off-diagonal terms represent the influence of the output on the input.

This is called "feedback". The presence of feedback can also be seen as a high value for a

coefficient in the correlation matrix of the residuals. A "true" transfer model exists when

there is no feedback. This can be seen by expressing the matrix form into scalar form:

108

Finally, delay or "dead" time can be measured by studying the lower off-diagonal

elements again. If, for example, 01.i1 is non-significant, the delay is 1 time period.

Holt-Winters EDponential Smoothing (single, double, triple)

This is a very popular scheme to produce a smoothed Time Series. Whereas in

Single Moving Averages the past observations are weighted equally, Exponential

Smoothing assigns exponentially decreasing weights as the observation get older. In other

words, recent observations are given relatively more weight in forecasting than the older

observations.

In the case of moving averages, the weights assigned to the observations are the

same and are equal to 1/N. In exponential smoothing, however, there are one or more

smoothing parameters to be determined (or estimated) and these choices determine the

weights assigned to the observations.

By previous analysis, Time Series method can focus on the internal trend of the

data, which is just the purpose — to find the internal trend of the development of an

operating system. However, Time Series requires much more data. It needs a long time

following and correct recording.

CHAPTER 11

CONCLUSION AND FUTURE WORK

11.1 Summary

In this dissertation, a tentative effort has been discussed to characterize operating system

evolution and how they evolve.

In Chapter 2, the following questions are point out:

• Is it possible to predict if an operating system will succeed or fail?

• What will be the operating systems that will be studied?

• What are the possible factors which can affect the trend?

• What information should be collected in order to determine if an operating
system succeed or fail?

• How to quantify the factors and find a modelIfunction to predict the trends?

• What are the results of the evolution analysis for operating system?

• Beyond the analysis of the evolution of individual operating system, the
evolution of operating system features is also analyzed. So that, even if
operating system's success or failure can not be told, the future of operating
systems can be characterized by their main attributes.

From this project, the answers for the above questions are addressed:

• Yes, it is possible to predict if an operating system will succeed or fail.

• 13 selected operating systems are investigated. They are UNIX, SolarisISun
OS, BSDs (including FreeBSD, OpenBSD, NetBSD), OS/2, Windows, MS-
DOS, MAC OS, Linux, NetWare, HP-UX, GNU Hurd, IBM AIX,
CompaqIDEC VMS, Multics, OS360.

• Information of two categories of factors: Intrinsic factors and extrinsic factors
are collected to predict the trends of operating systems.

• Five different quantifying methods are applied on all the factors and a
statistical model is built to predict the trends.

109

110

• The detailed results of the evolution analysis for operating system are
discussed in Chapter 7 and Chapter 8.

• Beyond the analysis of the evolution of an individual operating system,
evolution of operating system features are analyzed by introducing the
concept of extended features. Thus the future of operating systems is
characterized by their main attributes.

As part of computing engineering technology evolutions, this dissertation is

concentrated on a family of the evolutions: operating systems. First, the author discussed

what could be the possible factors that can affect the trends of operating systems. The

evolution of operating systems is affected by a dizzying array of factors, which are

themselves driven by a wide range of sources, such as market forces, corporations,

government agencies, standards bodies, academics, etc. In author's point of view, both

intrinsic factors and extrinsic factors would have impact on the evolution of operating

systems. After discussing the definition of intrinsic factors and extrinsic factors, a group

of factors that could be used to watch operating systems trends are identified.

In order to use empirical method to analyze the evolution, an approach must be

found to quantify intrinsic factors and extrinsic factors of operating systems. To quantify

intrinsic factors, all features of an operating system are reviewed to check if they match

these factors, and scores are assigned for them. Extrinsic factors are not the same as

intrinsic factors. Basically, they are questions for different fields. Extrinsic factors are

questions that ask for the numbers, so the answers will be used as the value of this

extrinsic factor.

Different quantifying methods have been applied to different factors according to

their nature. For intrinsic factors, the methodologies include numeric formula,

111

hierarchical sub-feature, cumulative sub-feature and discrete scale sub-feature. For

extrinsic factor, similar techniques are applied.

Furthermore, collecting data involves many resources and approaches. Text books,

authorial books; system manuals and hand books; journals, papers and other articles;

internet resources all have been referenced. In addition, for those that are lack of

resources or do not match the requirements for this project, a survey web has been set up

for the purpose.

A set of operating systems (13) has been selected, and intrinsic factors are

evaluated based on the applicable version of each operating system. For extrinsic factors,

surveys have been done for each field of them in 1997, 2000 and 2003. The value of

intrinsic factor will not change during the time, while the value of extrinsic factor does

change in different period. All data that are collected through survey webpage are stored

in the database. Check the complete survey results at: http://swlab.njit.edu/OSIsurvey.htm.

Based on all the collected data, statistics methods are used to analyze these data.

Principle components analysis (PCA) models and Canonical Correlation analysis are

constructed to analyze the data and describe the relationships among these factors and the

historical advancements of each operating system. Correlation among these factors has

been analyzed and new independent components are constructed by using factor analysis.

Multiple regression method has been used to construct the statistics models for operating

system evolutions.

Beyond the analysis of the evolution of individual operating system, the evolution

of operating system features are also analyzed. So that, even if an operating system's

112

success or failure can not be told, the future of operating systems can be characterized by

their main attributes.

After statistics models that are constructed will be extended to do provisional

prediction for future trends and characterizing the future attributes. The prediction model

can be validated by future data.

11.2 Evaluation

In this study for operating system evolution characterization, the author merely attempt to

capture observed behaviors by empirical laws. After having collected enough data and

constructed statistics models, the trends of operating systems and the individuality of

operating system attributes could be understood better. By factor analysis, each factor

gets a parameter. The guess is that the factors with larger parameter will have bigger

impact to evolution of operating systems. By this means, the following conclusions can

be drawn:

• From the statistics models, generally, the parameters of extrinsic factors are
greater than the parameters of intrinsic factors. So, extrinsic factors have
bigger impact than intrinsic factors.

• Extrinsic factors can be used to check if an operating system succeeds or fails.
They are also very important factors to predict the future evolution of an
operating system. In author's point of view, if an operating system can earn
support from the majority of one field, it can be called a successful operating
system, such as Sun Solaris, UNIX. If an operating system can earn support
from the majority of grassroots and every field, it can be considered as very
successful operating system, such as Windows, Linux.

• Although intrinsic factors have less impact than extrinsic factors, they do
impact the trends of operating systems, especially security & protection,
openness, and ease of use.

113

Besides, the concept of extended feature is defined and analyzed and compare

different extended features are compared. How the intrinsic factors have affected the

evolution of extrinsic factors is found out.

The following conclusions could be drawn for extended feature analysis:

• Extended feature can be used to analyze the relationship between intrinsic
factors and certain extrinsic factors.

• Because extended feature is not bound to a particular operating system, it
can be utilized to analyze intrinsic factors in general rather than one specific
to an operating system.

• The relative value of different extended feature can be used to rank the
importance of different extended feature as to the evolution of an operating
system.

Another very important factor is the time. The data collected show that the feature

of a new operating system may appear to be like the description below: When an

operating system is introduced, there are some enthusiasts who are willing to learn it. The

operating system could expand at first, increases even in exponent ways. After a while,

there will be more people who would like to use this operating system. Then, as newer

operating systems come out, the older operating system will pass its pinnacle and begin

to decrease. After a changing period, it keeps somewhat constant because there are

certain groups of people who would like to stick to this operating system. The operating

system will exist without much vibration in the rest of its life. The life cycle of an

operating system is very similar with Geoffrey A. Moore's technology adoption life

cycle[137]. Figure 11.1 shows the general lifecycle of an operating system.

The bell curve in Figure 11.1 is very useful as the general analytical model for the

trends of operating systems. The empirical results could be used to explain why a

114

successful operating system could earn the support from majority programmer and why

the other ones failed although a lot of innovators support them.

11.3 Future Work

A lot of data and interesting survey results have been collected in this empirical research

for operating system trends, but they are still not enough. If more data could be collected

in the future, they can be used to improve current statistics models. Instead of using

correlation and regression models, more advanced statistics methods, such as time series

method, can be used to improve current models in the future.

Empirical study for operating systems is just an exploratory beginning of the whole

project of computing engineering trends. After using empirical method, analytical method

will be used for operating system trends. Future work will not only attempt to capture

observed behaviors by empirical laws, but also attempts to understand the phenomena

that underlie observed behavior and build models that capture these phenomena.

115

After studying the trends of operating systems, the other fields of software

engineering will be done in near future. For example: the trends of networking, the trends

of database, the trends of management system, etc. All of these trends will use the similar

methods to analyze. Generally, empirical method will be used first. After having better

understanding of trends behavior, analytical method will used for them to understand the

causeleffect relationships.

REFERENCES

[1] Y.Chen, A.Mili, L.Wu, R.Dios, K.Wang. Programming Language Trends: an
Empirical Study. Submitted to 26th International Conference on Software
Engineering.

[2] H.Lorin, H.M.Deitel. Operating Systems. Addison-Wesley Publishing Company,
Inc, 1981.

[3] Gary J.Nutt. Operating Systems: A Modem Perspective. 2nd ed. 2000.

[4] Andrew S.Tanenbaum. Modem Operating System. Second Edition ed. Upper
Saddle River, New Jersey: Prentice Hall, 2001.

[5] Avi Silberschatz, Peter Galvin, Greg Gagne. Operating System Concepts. Sixth
ed. John Wiley & Sons, Inc, 2003.

[6] Carnegie Mellon Software Institute. View the Quality Measures Taxonomy.
http://www.sei.cmu.edu/str/indexesIglossary. 2003.

[7] Intel Corporation. Intel Solution Services white paper: Linux Scalability.
http://www.intel.com/internetservices/intelsolutionservicesIdownloads/linux_scal
ability.pdf. 2003.

[8] Donald R.Homer. Operating Systems: Concepts and Applications. London: Scott,
Foresman and Company, 1989.

[9] Stanley A.Kurzban, Thomas S.Heines, Anthony P.Sayers. Operating Systems
Principles. Second ed. New York: Van Nostrand Reinhold Company, 1984.

[10] Andrew S.Tanenbaum, Albert S.Woodhull. Operating Systems, Design and
Implementation (second edition). Prentice Hall, 1996.

[11] Christian Green. "EASE OF USE",
http:lIproduct.info.apple.com/productinfo/macadvantage/30advantages/ease.html .
1996.

[12] S.Cranefield MPMNaPH. Ontologies for interaction protocols. In Proceedings of
the Workshop on Ontologies in Agent Systems 2002.

[13] The Open Group. Operating System Services; http://www.opengroup.org . 1998.

[14] Microsoft MSDN, http://msdn.microsoft.com . 2003.

116

117

[15] The OS/2 WWW Homepage,
http://www.mit.edu:8001/activities/os2/os2world.html . 2004.

[16] OS/2 Wrap, http://wwvv-3.ibm.comIsoftware/os/warpl . 2003.

[17] Frederick P.Brooks J. The Mythical Man-Month. Addison Wesley Longman,
Inc.,1993.

[18] IBM. Design Basic, http://www-306.ibm.com/ibm/easy/eou_ext.nsfIPublish/6 .
2004.

[19] Kingsley Martin. Total Asset Administration,
http://www.ljx.comlltpn/october97/total_p32.html . 1998.

[20] John Kirsch. Microsoft Windows NT Server 4.0 versus UNIX. http:/lwww.unix-
vs-nt.org/. 1998.

[21] Lubomir Bic, Alan C.Shaw. The Logical Design of Operating Systems. 2nd ed.
Prentice Hall, 1988.

[22] Walczak, Anatole. Unix and Linux programming manual. Addison-Wesley, 2001.

[23] Walczak A. The Kom Shell: Unix and Linux programming manual /. Addison-
Wesley, 2001.

[24] UNIX system V/386, release 3.2: programmer's reference manual. 1988.
Prentice Hall.

[25] Stephen Whalley. Making PCs easier to use.
ftp://download.intel.com/technology/easeofuse/eous2ps.pdf. Intel Corporation,
1999.

[26] User Interface Consistency Checklist;
http://www.csc.calpoly.edu/-jdalbey/SWE/QA/UIConsistency.html . 2002.

[27] Yannis Grammatis. Network Hierarchy.
http://www.chaminade.org/MISIlanhier.htm . 1998.

[28] The XFree86 Project http://www.xfree86.org/ . 2004.

[29] The UNIX System http://www.unix-systems.org/ . 2004.

[30] The ISBN Standards http://www.isbn.org/standardsIhome/index.asp . 2004.

[31]	 IEEE Standards Association http://standards.ieee.org/ . 2004.

118

[32] IEEE Online; http:lIwww.ieee.org . 2004.

[33] Free Soft, http:lIwww.freesoft.org/ . 2004.

[34] Association of Computing Machinery Digital Library; http://www.acm.org/dl .
2004.

[35] The Open Group http://www.opengroup.org/ . 2004.

[36] Gancarz M. Linux and the Unix philosophy. Amsterdam; Boston: Digital Press,
2003.

[37] Ken Frazer. History of Solaris
http://home.earthlink.nett-krfrazer3/Solaris_History_2per.pdf. 2003.

[38] The BSD Family Tree; http://www.daemonnews.org/200104/bsd_family.html.
2003.

[39] Free BSD Official Homepage. http://www.freebsd.org/, http://www.freebsd.com/ .
2004.

[40] FreeBSD Forums http://www.freebsdforums.org . 2004.

[41] NetBSD Manual Pages, http://netbsd.gw.com/cgi-binIman-cgi?++NetBSD-
current. 2001.

[42] NetBSD website http://www.netbsd.org/ . 2004.

[43] FreeBSD Handbook, http://www.freebsd.orgIdoc/en_US.IS08839-
1/booksIhandbook/. 2003.

[44] The FreeBSD Handbook, http://www.freebsd.org/handbookIhandbook.html . 2004.

[45] OpenBSD website http://www.openbsd.org/ . 2004.

[46] Marshall Kirk McKusick, Keith Bostic, Michael J.Karels, John S.Quarterrnan.
The design and implementation of the 4.4BSD operating system. Reading, Mass.:
Addison-Wesley, 1996.

[47] Thierry Falissard. MVS... a long history: HS/360;
http://mcraeclan.com/LinksIComputers/IBMMainframeHistory/mvshistl.htm .
2003.

[48] Microsoft Corp. Architectural Services Firm Draws on .NET Platform to Retain
Competitive Edge, Trim TCO, Build IT Functionality. 2002.

[49] Microsoft Corporation http:l/www.microsoft.com . 2004.

[50] A Short History of MS-DOS
http:llwww.patersontech.comlDosIByte/History.html . 1988.

[51] Craig Danuloff MRB. The Mac OS 8 Book: The Ultimate Macintosh User's
Guide. Ventana Communications Group Inc., 1997.

[52] Robin Williams. The Little Mac Book. 3th edition ed. PeacHPit Press, 1998.

[53] Mark G.Sobell. A Practical Guide to Linux. Addison-Wesley Pub Co, 1997.

[54] John Purcell, Amanda Robinson. Linux Encyclopedia. 3th edition ed.
Independent Pub Group (Computer); 1997.

[55] Steve Oualline. Discover Linux. IDG Books Worldwide, 1997.

[56] Petersen R. Linux: the complete reference. Berkeley, Calif. Osborne, 2001.

[57] History of Linux (version 2.1). 2003.

[58] The Linux Home Page, http://www.linux.org/ . 2003.

[59] Linux Online http://www.linux.org. 2004.

[60] James E.Gaskin JGJG. Mastering Netware 5.1. Sybex, 2000.

[61] Onword Press Development Team JR. Five Steps to HP-UX. OnWord Press,
1993.

[62] Martin Pomatowski. Leaming the HP-UIX Operating System. Hall Press, 1996.

[63] HURD home http://www.gnu.org/home.html . 2003.

[64] The GNU Hurd - GNU Project - Free Software Foundation (FSF),
http://vvvvw.gnu.orgIsoftware/hurd . 2003.

[65] IBM AI: UNIX operating system - an open UNIX solution,
http://www.ibm.com/servers/aix/ . 2003.

[66] IBM AI 3L. http://wvvw-Libm.com/servers/aix/ . 2004.

[67] Andreas Siegert. The AIX Survival Guide. Addison-Wesley Pub Co, 11001.

[68] David Donald Miller. Open VMS Operating System Concepts. 2nd edition ed.
Digital Press, 1997.

119

120

[69] OpenVMS homepage. http:l/www.openvms.digital.com/. 2004.

[70] http://www.OpenVMS.org.2004 .

[71] Multics Home page, http://www.mit.edu:8001/afsInet/user/srzIwwwImultics.html .
2000.

[72] Multics, http://www.multicians.org/ . 2003.

[73] OS/2 Supersite; http://www.os2ss.com . 2001.

[74] George Eckel. Inside Windows NT workstation. Indianapolis, Ind.: New Riders
Pub., 1996.

[75] Windows XP and Windows .NET Server Technical Overview.
http://wvvw.studentconsultant.org/germany/augsburgIfiles/Win-
TechnicalOverview.pdf. 2003.

[76] HP-UX 11i Operating System, http://wvvw.HP.com/productsl/unix/operating/ .
2003.

[77] Robbins A. UNIX in a nutshell: a desktop quick reference for System V Release
4 and Solaris 7. O'Reilly, 1999.

[78] Uresh Vahalia. UNIX Intemals: the new frontiers. Prentice-Hall, Inc, 1996.

[79] Unix Manual. 2000.

[80] Ray Duncan. The MS-DOS encyclopedia. Redmond, Wash.: Microsoft Press,
1988.

[81] Watters PA. Solaris 8: the complete reference. McGraw-Hill, 2000.

[82] Paul A.Watters. Solaris 9: The Complete Reference (1st edition). McGraw-Hill
Osbome Media, 2002.

[83] Mauro J. Solaris Intemals: core kernel components. Palo Alto, CA: Sun
Microsystems, Inc., 2001.

[84] NOVELL: Novell NetWare 6.3, http:/lwww.novell.com/products/netware/ . 2003.

[85] Linux Online: Solution and Sizing. http://www.linux.orgIdocsIldpIhowto/HP-
HOWTO/sizing.html . 2003.

[86] Moody G. The rebel code: the inside story of Linux and the open source
revolution. Cambridge, Mass.: Perseus Pub., 2001.

121

[87] McMahan S. Automating Windows with Pearl. Lawrence, Kan. R&D Books ;
Emeryville, CA : Distributed in the U.S. and Canada by Publishers Group West,
1999.

[88] Wyke RA. The Peril 3 programmer's reference: Windows 93/NT, Macintosh,
OSl2 & UNIX. Research Triangle Park, NC: Ventana Communications Group,
1997.

[89] Ledgard HF. ADA, a first introduction. New York: Springer-Verlag, 1986.

[90] Keamey DS. The ADA in practice. Kingston, MA: R.S. Means Co., 1993.

[91] Chapman RB. OS/2 presentation manager programming for COBOL
programmers. Boston: QED Pub. Group, 1993.

[92] Stroustrup B. The C++ programming language. Reading, Mass: Addison-Wesley,
1995.

[93] Kemighan BW. The C programming language. Englewood Cliffs, N.J.: Prentice
Hall, 1988.

[94] Andrews M. C++ Windows NT programming. New York, N.Y.: M&T Books,
1996.

[95] Lindsey CH. Informal introduction to ALGOL 68. New York: North-Holland Pub.
Co., 1977.

[96] Pagan FG. A practical guide to Algol 68. London; New York: Wiley: Wiley,
1976.

[97] Amold K. The JAVA programming language. Reading, MA: Addison-Wesley,
1998.

[98] Meyers N. Java programming on Linux. Waite Group Press, 2000.

[99] Apple - Mac OS X, http://www.apple.com/macosx/ . 2003.

[100] GNU Hurd 0.2 Kemel Source Tour, http://tamacom.com/tour/hurd/ . 2003.

[101] Mac OS X Development, http://developer.apple.comImacosx/ . 2003.

[102] Hewlett-Packard Technical Documentation, http://docs.HP.com/ . 2003.

[103] Jim Boyce. Microsoft Windows 98 user manual. Indianapolis, IN, 1998.

[104] Rob Tidrow. Windows 98 installation and configuration handbook. Indianapolis,
Ind, 1998.

122

[105] Tim O'Reilly, Troy Mott, Mott T. Windows 93 in a nutshell: a desktop quick
reference. Cambridge, O'Reilly, 1998.

[106] Duane Hellums, Hellums Duane. Red Hat Linux: installation and configuration
handbook. Indianapolis, Ind. Que Macmillan USA, 2000.

[107] Nazeeh Amin E1-Dirghami, Youssef A.Abu Kwaik. SuSE Linux installation and
configuration handbook. Indianapolis, Ind.: Que, 2000.

[108] Bob DuCharme. The operating systems handbook: UNIX, OpenVMS, HS/400,
VM, and MVS. New York: McGraw-Hill, 1994.

[109] Greg Lehey. Porting UNIX software: from download to debug. Sebastopol, CA:
O'Reilly & Associates, 1993.

[110] Dale Dougherty, Richard Koman. The Mosaic handbook for the Macintosh.
Sebastopol, CA: O'Reilly & Associates, Inc., 1994.

[111] Kelley J.P.Lindberg, Jeffrey L.Harris. Novell's NetWare 6 administrator's
handbook. Jeffrey L. Harris, 2002.

[112] Susan Powers. 1BM Server iSeries handbook, version 3 release 1. 22nd ed. IBM,
Intemational Technical Support Organization, 2001.

[113] David Wai-lok Cheung. Open Source Software and its impact to Technology
Development. E-Commerce Strategies for Development, 2003.

[114] The Portable Application Standards Committee, http://www.pasc.org/ . 2004.

[115] TZ JI. OS/2: features, functions, and applications: standard edition 1.0. New York:
Wiley, 1988.

[116] Netware Standards Sub-Committee. Netware Administration Standards. John
Hopkins Institutional Computing Standards, 2003.

[117] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer
Glossaries. New York, NY: 1990.

[118] Citeseer Scientific Literature Digital Library, http://citeseer.nj.nec.com/ . 2004.

[119] Gartner Inc. WFS Financial Support Study. 2002.

[120] Cybersource® Pty. Ltd. Linux vs. Windows: Total Cost of Ownership
Comparison. 2002.

123

[121] Al Gillen, Dan Kusnetzky, Scott McLamon, Scott McLarnon, Randy Perry.
Linux and Intel-Based Servers: A Powerful Combination to Reduce the Cost of
Enterprise Computing. 2002.

[122] Meta Group. The Impact of OSlPlatform: Selection on the Cost of ERP,
Implementation, Use and Management. 2002.

[123] Lorraine L.Cosgrove, Christian A.Christiansen. Server Selection: Reversing the
Trend of Rising IT Costs. Intemational Data Corporation, 2002.

[124] CIOview Corp. A Business Case for Windows Server Optimization. 2002.

[125] Netcraft Services; http:l/www.netcraft.com. 2001.

[126] http://www.netsys.com/ . 2004.

[127] Computing and Information Technology Interactive Digital Educational Library
(CITIDEL), http://www.citidel.org/ . 2004.

[128] http://www.allconferences.com/ . 2004.

[129] Apple Corporation: http://www.apple.com . 2004.

[130] Hewlett Packard Corporation, http://www.hp.com . 2004.

[131] Rebecca Buckman. Face-Off over People's PCs. The Wall Street Joumal Online
2003.

[132] James Gray. The State of Linux. Linux Journal 2003.

[133] Paul L.Stephenson, Neal T.Rogness, Justine M.Ritchie, Patricia A.B.Stephenson.
SPSS Manual for Moore and McCabe's Introduction to the Practice of Statistics.
3rd ed. W H Freeman & Co, 1998.

[134] David G.Kleinbaum, Lawrence L.Kupper, Keith E.Muller, Azhar Nizam. Applied
Regression Analysis and Multivariable Methods. 3rd edition ed. Duxbury Press,
1997.

[135] Richard A.Johnson. Applied multivariate statistical analysis. Prentice Hall, 2002.

[136] StatSoft I. Multiple Regression,
http://www.statsoflinc.com/textbookIstmulreg.html . StatSoft, Inc., 2004.

[137] G.A.Moore. Crossing the Chasm. New York: Harper Business, 1999.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Dedication
	Copyright
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Software Engineering Trends
	Chapter 2: Focus on a Family of Trends: Operating Systems
	Chapter 3: Selecting Relevant Factors
	Chapter 4: Quantifying the Factors
	Chapter 5: Watching Operating Sytems
	Chapter 6: Data Collection
	Chapter 7: Data Analysis and Model Construction
	Chapter 8: Towards a Predictive Model
	Chapter 9: Extended Feature Analysis
	Chapter 10: Model Validation and Improvements
	Chapter 11: Conclusion and Future Work
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures

