Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

Mew |ersey’s Science &
Technology University

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT
CHARACTERIZING THE EVOLUTION OF OPERATING SYSTEMS

By
Yi Peng

Examining the development and trends in software engineering technology is a huge
undertaking. It is constantly evolving and affected by a large number of factors, which
are themselves driven by a wide 'fange of sub-factors. This dissertation is part of a long
term project infended to analyze software engineering technology trends and how they
evolve. This project is intended to analyze operating system trends and what are the
factors that drive how they evolve. Basically, the following questions will be answered:
“How to watch, predict, adapt to, and affect operating system’s evolution trends?”

In previous research, YF Chen used statistical models to analyze the evolution of
programming languages. Building upon Chen’s work, the author uses operating systems
as the subject, derives the statistical models and applies them to analyze the trend and the
relationships between different factors that characterize an operating system.

After the history of several operating systems is reviewed, it shows that two kinds
of factors, intrinsic factors and extﬁhsic factors, could affect the evolution of an operating
system. Intrinsic factors are used to describe the general design criteria of an operating
system. On the other hand, extrinsic factors are the factors that are not directly related to
the general attributes of an operating system. In order to describe the relationship of these
factors and how they affect operating system trends, they need to be quantified. For
intrinsic factors, data are collected from different trustable data sources and analyzed. For

extrinsic factors, historical data are collected and established as a data warehouse. The

operating system trends are described and evaluated by using all the data that have been
collected and analyzed.

In this dissertation, statistical methods are used to describe historical operating
system trends and predict the future trends. Several statistics models are constructed to
describe the relationships among these factors. Canonical correlation is used to do the
factor analysis. Multivariate multiple regression method has been used to construct the
statistics models for the evolution of operating system trends. The models are validated

by comparing the predicted data with the actual data.

CHARACTERIZING THE EVOLUTION OF OPERATING SYSTEMS

Yi Peng

A Dissertation
_ Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Computer Science

Department of Computer Science

January 2005

Copyright © 2005 by Yi Peng

ALL RIGHTS RESERVED

APPROVAL PAGE

CHARACTERIZING THE EVOLUTION OF OPERATING SYSTEMS

Yi Peng

Dr. ATTSHT DI ion, Dissg¢rtation Advisor (date)
Professor of Computer and Information Science, NJIT

. Jostph Leung, Comsfittee Member (date)
istinguished Professor of Computer Science, NJIT

Dr. Dimitri Theodoratos, Committee Member (date)
Associate Professor of Computer Science, NJIT

Dr. Vincent Oria, Committee Member (date)
Assistant Professor of Computer Science, NJIT

Dr. Fu Li, Committee Member (date)
PhD of Mathematics, NJIT

BIOGRAPHICAL SKETCH

Author: Yi Peng

Degree: Doctor of Philosophy
Date: January 2005 |

Undergraduaté and Graduate Education:

e Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2004

e Master in Computer Engineering,
Northeastern University, Shenyang, P.R. China, 1999

e Bachelor in Computer Engineering,
Northeastern University, Shenyang, P.R. China, 1996

Major: Computer Science
Publications and Presentations:

Yi Peng, Fu Li, Ali Mili, Shaheen Zainuddin. “Modeling the Evolution of Operating
Systems: An Empirical Study”, Submit to IEEE Transactions on Software
Engineering 2004. B

Yi Peng, Michael Halper, Yehoshua Perl, and James. Geller. “Auditing the UMLS for
redundant classifications”, Proceedings of the 2002 American Medical Informatics
Association (AMIA) Annual Symposium.

Hellen. Gu, Yehoshua Perl, G. Elhanan, Hua. Min, Li. Zhang, Yi Peng. “Auditing
Concept Categorizations in the UMLS”. Artificial Intelligence in Medicine. (31) 1,
pages 29-44, May 2004.

Yehoshua. Perl, Zong. Chen, Michael. Halper, James. Geller, Li. Zhang, and Yi. Peng.

“The cohesive metaschema: A higher-level abstraction of the UMLS Semantic
Network”. Journal of Biomedical Informatics, 35(3), pages 194-212, June 2003.

iv

Hellen Gu, Hua Min, Yi Peng, Li. Zhang, and Yehoshua Perl. “Using the metaschema to
audit UMLS classification errors”. In Proceedings of the 2002 American Medical
Informatics Association (AMIA) Annual Symposium, pages 310-314, San Antonio, TX,
November 2002.

Yi Peng, Xiaohu Zhang, Chuanxiang Rong, Guirang Chang, “On Query Improvement in
Web Search Engine”, China’s CERNET 98 Conference Proceedings.

Presentation: Software Architecture, NJIT 2004.
Presentation: Software Trend Watch, NJIT 2004.

Presentation: Auditing the UMLS for redundant classifications. San Antonio, TX,
November 2002.

Presentation: Using the metaschema to audit UMLS classification errors. San Antonio,
TX, November 2002.

Participation: SNOMED Users Group Conference. San Antonio, TX, November 2002.

"To my parents
for letting me pursue my dream

for so long and so far away from home

To my husband Chen Zhang

For all his support through all these years

To myself

For all persistency

vi

ACKNOWLEDGMENT

First and foremost, I would like to thank my advisor, Professor Ali Mili, for his support
over the years. His advice on technical matters was invaluable, and his guidance on the
Operating system evolution project was critical to the project’s success.

I would like to thank the memberé of my thesis committee: Prof. Ali Mili, Prof.
Joseph Leung, Prof. Dimitri Theodoratos, Prof. Vincent Oria and Dr. Fu Li, for their
valuable feedback and advice.

I would like to thank Shaheen for his wonderful and very diligent efforts in
developing the web pages for this project.

Also, early in the years of achieving my Master’s degree, Dr. Guiran Chang gave
tremendous help and invaluable instructions. His patience and advice always encourages
me.

I would like to thank my family, for being very supportive and patiently listening to
me trying to explain my research. I would like to thank my parents for believing me

every time I said I was graduating “next year.”

vii

TABLE OF CONTENTS

Chapter : Page
1 SOFTWARE ENGINEERING TRENDS....ooovoooeoooooooeoeeoooeeeeeeseoeoesessesessesesesesesennees 1

) IO T 10 ¢ Yo 11107 5 o) s PPNt 1

1.2 Questionnaire Structure ettt eeeeeaeeer et e et tenreeran e een e enaes 2
1.3 Watching Software Engineerin‘g Trends....ooovveiiniii 3
1.4 Predicting Software Engineering Trends............c.coooviiiiiiiiiii 4
1.5 Adapting to Software Engineering Trends.............ccccvveiinneeriennennennnn. 4
1.6 Affecting Software Engineering Trends...........c.cooovviiiiiiiiini. 5
1.7 CONCIUSION. ..etuininiieiieiit et e e e 6

2 FOCUS ON A FAMILY OF TRENDS: OPERATING SYSTEMS................. 7
2.1 INtroductionc.oeiiiiiininiiiiiiiiii e 7
2.2 History of Operating SYSteImMScoevevuiureiiriereiiiieiiieiiiieneaneneen 8
2.3 Operating Systems Trends.........ccoeiiiiiiiiiiiiiiiiiiiiiiiiie 10
2.4 Research Methods...........ccoeiiiiiiiiiiiiiiiiii 11

3 SELECTING RELEVANT FACTORS ..ottt 12
3.1 Intrinsic Factorscccueviuiiiiiiiiiiiiiiiii e 13
3.1.1 Resource Managementccooeeuueieeiniieiiiiiiieiineinii. 13

3.1.2 Usability S 15

3.1.3 Usefulness from Functional Point of View................ooooiiianin. 16

3.1.4 Usefulness from Operational Point of View..............ccoooovviviinn 17

3015 Versatility.oneineiniie i e e 18

viii

TABLE OF CONTENTS
(Continued)

Chapter

I8 BT B 1< T D P

317 C0St. . e

3.2 Extrinsic Factors e eesetsrentteteteenntaessateonanerorantennearsacs

4 QUANTIFYING THE FACTORS........ceetiirrccceeccnensnesessssseassassees

4.1 Methods to Quantify the Factorscoociiiiiiiiiiiiiiiiiii

4.1.1 Numeric FOrmula.oovuiinneeeit e e,

4.1.2 Hierarchical SUD-TEAtUIES.covviiiiiiiiiii it e iiiieeenaneraens

4.1.3 Cumulative SubD-TeatUIES. .. .ooviiiiei ittt rereeeiaasanas

4.1.4 Discrete Scale SUD-fEatUres.uueeetiiiie it eeieeieeeeeriainnnnns

4.1.5 Exclusive Rating Sub-features...........cccooeviiiiiiiiiiiiininniinnan,

4.2 Quantifying the Factors.........ccciuvuviiuiieniiintiiiiieeieiie e

5 WATCHING OPERATING SYSTEMS........ccooiiiiiiiiiiiiiei e,

5.1

53

5.4

55

5.6

5.7

5.8

L0 40 N

ix

TABLE OF CONTENTS

(Continued)

Chapter Page
5.9 NEWATE.eooveeeeeeeseeseeeeseseesessssessssesess s esessseesess s 50

LI 0N 5 1 0) G PP PSSP 52
511 GNUHUIG. ..cconiiitiei ettt a e e e e 53
512 IBM AIX.....coovnnee (... 53
5.13 Compaq/DEC VMS...... .. 54
514 MUILICS. ...eneeineeeiee e et e et e et e eeee et e e e e eraeebneaen e tnneeennennans 55
I8 BT O 17 56

6 DATA COLLECTION.ottt ettt e eena e 57
6.1 Resdurces ofthedata...........coooiiiiiiiiiiiii 57
6.2 SUIVEY WebPage. . .oueieiinii et et e 58
6.3 Data Collection for Intrinsic Factors............c.cccooviiiiiiiiiiiiiiiiiiin.. 61
6.4 Data Collection for Extrinsic Factors.............cocveviiiiiiiiiniiinnnn. 69
6.4.1 Institutional Support............cocoevvinininnn. et e e 70

6.4.2 Industrial SUPPOTt......ccevnniniiiiiiiiiiii 71

6.4.3 Governmental Suppoﬁ ... 71

6.4.4 Organizational SUPPOTt........c.oceuiuiiiiiiiiiiiiiiiiiiiiinnea 72

6.4.5 Grassroots Supﬁort ... 72

7 DATA ANALYSIS & MODEL CONSTRUCTION.........cccviiiiiiiiiiiin 74
7.1 Constructing Statistics Models..............cooiiiiiiiiii 74
7.2 Independent Data AnalysiS.........cc.ccouieiiiiiiiiiiiiiiiiiiiiiiiiieineeeeane 75

TABLE OF CONTENTS

(Continued)

Chapter Page
7.2.1 Factor ANALYSIS. . .oeieiniiiieiii e 75

7.2.2 Canonical Correlation AnalysiS............coovuieiiiiiriiniiiaiiieineienen 78

7.2.3 Statistics Conclusion......... S U 80

8 TOWARDS A PREDICTIVE MODEL..........ovuvmrminiinieissenserseenisnen 82
8.1 Regression Model........ e 82
8.1.1 Regression ANAlYSES..........uvevunrvueernerreeennenneernerneeneeereenennn 82

8.1.2 Multiple Regression Model..............oooviiiiiiiii 83

8.1.3 Regression Model for Historical Trends.............cccoveiiiniininnnn.. 84

8.2 Predictive MOde.........couvniniiiiiiiiiiiiiii 87

9 EXTENDED FEATURE ANALYSIS......c.ciiiiiiiiiiiiiiine e 93
9.1 Extended Feature............cccooviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeie e 93
9.2 Analysis Of ReSults.........coeiiiiiiiiiiiiiiiiiiii 94
R T 0] 1103 11 1 1o « PP 99
10 MODEL VALIDATION AND IMPROVEMENTS........ccocoiiiiiiiiiiiinnn, 100
10.1 Model Validation............cooviiiiiiiiiiiiiiiiiiiiie e 100
10.2 Model IMProvement.ouveveiniiieiiiniiiiiiiiiiiiiiieeneatea e, 102
10.2.1 Weakness.... ... 102

10.2.2 Possible Improvement..............coeviininiiiiiiiiiiiiiiiieeee 103

11 CONCLUSION AND FUTURE WORK..........cccoiiiiiiiiiiiiiiiiiiiiciee e 109
11,1 SUIMIMATY. ...euitinieie ettt et e e e et e e en e e e e e ane e nenas 109

xi

TABLE OF CONTENTS

(Continued)

Chapter Page
11.2 Evalﬁation .. 112
11.3 Future WOrK.....coouiniiiiitiiit it e 114

REFERENCES..........ccciiitiiiiiutiteesteieeeneeeseeneeeseense et e neeenneenesaeesesenee e 116

xii

Table

4.1
4.2 |
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
6.1
6.2
6.3

6.4

LIST OF TABLES

Hierarchical Sub-feature Quantifying Methods: Memory Management......
Quantifying Methods.........cco.iiiiiii i e,
Features used to quantify Scaiability ...
Features used to quantify CPU Management....
Featuresbused to quantify Memory Management...............c...ccoeenienen..
Features used to quantify [/O Management............c.cooveiieiieiiniinenene..
Features used to quantify Ease of Use..........cccccoeiiiiiiiiiiiiiiiinnnn.,
Features used to quantify Range of Services............coociuiiiiiiiieiiinn.

Features used to quantify Distributed Computing.............cccocevvieeennn...

Features used to quantify Network Services............coveiiiiiininninnnn.n.

Features used to quantify Deadlock/Starvation Management..................
Features used to quantify Security & Protection..............c...cociiiinaen.
Features used to quantify Openness................ccoooovviiinnni

Features used to quantify Dési gn Principles: Survey Results...................
Scores for Scalability, CPU Management and IO Management...............
Scores for Memory Management............c.cociiiiiiiiiiiiiiiiiiiiii
Scores for Ease of Learning and Ease of Use............cooeviviieiienninan.

Scores for Consistency of Interaction Protocol,
System Services and Range of Programming Languages Supported..........

xiii

Page
25
29
30
30
30
31
31
33
34
34
35
35

38

(Continued)

Table \ Page
6.5 Scores for Distributed Computing,

Network Services and Deadlock Managementccoiiiiiiiniin, 65
6.6 Scores for Reliability, Security and Protection Management.................... 66
6.7 Scores for Portability, Compatibility and Openness..................ccceerrrrns 67
6.8 ScOres for Desighl. . ..o.eerereiiiiiiiiiiiiiieiii e 68
6.9 Scores fOr Cost. . uvvnninieieiiieai i 69
6.10 Scores for Institutional SUPPOTL.......ccvuivirtiiiiiiiiiiiiii i 70
6.11 Scores for Industrial SUPPOIt.......c.oieieiiiiiiiiiiiiiiiiiiii e _71
6.12 Scores for Governmental Support...........ccoovviiiiiiiiiiiiiiiiii 72
6.13 Scores for Organizational Support...........ccceeiiiiiieiiiiiiiiiiiiiiin, 73
6.14 Scores for Grassroots Support........c.ccoeeviiiiiiiiiiiiiiiiiii 73
7.1 Factor Analysis for Intrinsic Factor Matrix: Total Variance.................... 77
7.2 Rotated Factor Pattern for Intrinsic Factors Component Matrix............... 77
7.3 Factor Analysis for Extrinsic Factor MatriX.............ccovvviniinnin 79
7.4 Rotated Factor Pattern for Extrinsic Factors............c..cooeiviiiiiiiiiin 79
7.5 Sample Correlation Results for Intrinsic Factors Only.......................... 80
10.1 Difference between Actual Value and Predictive Value in 2003............... 101

LIST OF TABLES

xiv

LIST OF FIGURES

Figure }} Page
4.1 Standards Hierarchy for Openness.............ccoeveiiiuiniiiiiiinieieninnenenenn. 37
6.1 Operating System Survey Website.........c.veveviiiiiiiiiiiiiiiiiiiieiiiienne 60
8.1 Regression Model for Operating System Trend..........cccoovvviiiiiiinnnni. 84
8.2 Sample SPSS Regression Model Reports for One Extrinsic Factor........... 86
83 Trends of Government Support in 2006.........coooeiiiiiiiiiii 89
8.4 Trends of Organization Support in 2006.............cocivvniiiiiininiinnnn. 90
8.5 Organization Support from 1997 t0 2006..........c.coeveiiiiiiiiiiiniiiin 90
8.6 Grassroots Support in 20006..........cccoviiiiiiniiiiiiiiiiii e 91
8.7 Trends of Grassroots Support from 1997 t0 2006...............cooceiiiiiiin. 92
9.1 Sample Extended Feature Analysis for Organizational Support............... 95
9.2 Sample Extended Feature Analysis for Grassroots Support.................... 96
9.3 Sample Extended Feature Analysis for Institutional Support.................. 97
9.4 Sample Extended Feature Analysis for Industrial Support..................... 98
9.5 Sample Extended Feature Aﬁalysis for Governmental Support................ 98
10.1 F-value Validation...........c.ovvuvniiiiiiiiiiiiiii e 101
11.1 General Lifecycle for Technique Adoption........ e 114

CHAPTER1

SOFTWARE ENGINEERING TRENDS

1.1 Introduction

Software engineering is an engineering discipline whose goal is the cost-effective
development of software systems. It was first proposed in 1968 at a conference held to
discuss what was then called the “software crisis”. Tremendous progress has been
achieved since 1968 and the developmeﬁt of the software engineering discipline has
markedly improved the practice of software development. A much better understanding
of the activities involved in software development has been observed in past years.
Although there is a lot of progress, many researchers still consider software engineering
as a relatively young discipline. After a period of research about software engineering,
there is more and more interest in the evolution of software engineering.

Predicting the evolution of software engineering technology is, at best, a dubious
proposition. The recent evolution of software technology is a prime example; it is fast
paced and affected by many factors, which are themselves driven by a wide range of
sources. Many of the factors are outside the arena of software engineering and most of
them cannot even be identified. Right now, this doctoral work is at the early, and
tentative, stage of a project to analyze software engineering technology trends and how
they evolve. In this dissertation, the author will discuss the tentative venture in this
domain and sketch prospects for future research.

The purpose of this project is to analyze technology trends and try to gain some

insight into how they evolve. While this doctoral dissertation is at the very early, and

very tentative, stages of the whole project, research approaches of this problem could be

characterized by two premises:

1.

Structuring the problem. When approaching the problem of software engineering
technology watch, there are many questions that need to be known. All of these
questions are interrelated: some questions refine others; some questions
complement others; some questions provide the background for others; some
questions overlap with others, etc. The first order of business, for this project, is to
build a questionnaire structure, which arranges all these questions in a way that
attempts to highlight their interrelations. Also, questionnaire structure should be
improved by refining questions that are too vague, merging identical questions, or
synthesizing related questions.

Specifying the solution. Three research methods can be deployed: analytical
research, which attempts to understand the phenomena that underlie observed
behavior, and build models that capture these phenomena: empirical research,
which makes no attempt to understand cause/effect relationships, but merely
attempts to capture observed behaviors by empirical models; experimental
research, which intervenes after analytical or empirical research to validate the
proposed models. For each issue, it is useful to deploy a judicious combination of
these three methods.

1.2 Questionnaire Structure

To focus the effort on specific issues and to lend some structure to this inherently

complex problem, a questionnaire has been built on a hierarchy of the following

questions:

1. How to watch software engineering trends? This question deals with what
indicators are needed to monitor, where to find them, and how to interpret
them.

2. How to predict software engineering trends? This question deals with what life
cycle do software engineering trends follow, and what triggers the passage of a
trend from one phase to another along the lifecycle.

3. How to adapt to software engineering trends? This question deals with how
does one define institutional strategy in such a way as to maximize benefit
from what is known about a trend and minimize risk from what is not known
about it.

4. How to affect software engineering trends? Perhaps more crucial is whether
trends can in fact be affected by any single entity. This question tries to
identify where, in the cycle of a trend, is it possible to alter the course of the
trend, and eventually how and by whom.

At the ‘ center of this hierarchy is the question of how to predict software

engineering trends. If this question can be understood well, the others can be answered

with adequate precision.

1.3 Watching Software Engineering Trends

The general goal of watching software engineering trends is to determine what
information must be maintained in order to gain a comprehensive view of the discipline
and its evolution. The information in question must be sufficiently rich to support
discipline-wide assessments as well as trend-specific analysis. The following questions
will be asked to watch software engineering trends:

e What is the relevant information that must be collected/monitored?

e Where this information could be found, or where did it infer from?

e How to interpret this information?

e How often does it need to update this information?

A number of software engineering-specific and technology-generic indicators have

been identified, which have been divided into the following categories: classification
Standing, Research and Development, Science and Technology Output, Human

Resources, Costs and Funding, Standards and regulations, and Best Practices.

1.4 Predicting Software Engineering Trends

The general goal of predicting software engineering trends is probably the most important
and the most difficult goal of this whole study. The focus of this goal is on identifyihg a
lifecycle that trends follow. Once this lifecycle is identified, the software engineering
trends can be predicated.
e Research Trends, which are a favorite topic of panel sessions and surveys.
e Technology Trends, which are driven by the maturation of applicable
research ideas, and by the successful evolution of the idea to a useful,

technologically viable, product.

e Market Trends, which are created either by the supply side or by the
demand side in different situations.

For different trends, different methods will be used to analyze and predict them. In
this point of view, empirical methods should be used to analyze research trends and
technology trends, analytical research should be used for market trends. There are already
some good analytical models for market trends, such as the Chasm Theory by Geoffrey A.

Moore. This tentative research concentrates on research trends and technology trends.

1.5 Adapting to Software Engineering Trends

The general goal of adapting to software engineering trends is: “how to adapt to a trend if
the trend has been known?” For example, a corporate manager hears about a particular
trend (e.g. XML, .NET, Linux) and wants to know what to do about it: Ignore it? Adapt
the corporate products and support it? Develop a new set of products that support it? Etc.
When a party has particular stake in the evolution of a trend, he/she may need a distinct

information profile to make a judicious decision.

Adapting to technology trends depends to a large extend on watching technology
trends and on predicting technology trends. If a corporate manager wants to make a
decision on a given trend, what does he/she need to know about it? It is recognized that
several features must be analyzed and/or quantified in order to provide support for this
kind of decisions:

e What are the stakes of this trend for the organization?
e What are the intrinsic technical merits of this trend?
e What are the adoption costs of this trend?

e What are the adoption risks of this trend?

e What are the adoption benefits of this trend?

e How long is the trend expected to have an impact?

e What is the optimal time to make an adoption decision?

1.6 Affecting Software Engineering Trends

In this aspect of the project, there is an interest in analyzing to what extend it is possible
to affect/control technology trend‘s.. It is not sufficient to have an impact on a trend. It is
more necessary that the impact can be premeditated and preplanned.
Detailing the general goals discussed above, the following questions have been

derived:

e Isit possible to affect technology trends?

e Who can affect technology trends?

e How can technology trends be affected?

e How to quantify the impact?

1.7 Conclusion

Software engineering trends are briefly discussed in this chapter. The following is what
need to be done in this tentative effort.

Because the problem is formulated in all its generality, a bottom up approach is
adopted. Similar as what has been done in YF Chen [1], in this project, the following
work is done:

e First, try to formulate the problem of technology watch in terms of a hierarchy of
increasingly specific questions. This hierarchy of questions serves two purposes:
first to focus the effort on specific issues that need to be addressed; second to lend
some structure to this inherently complex problem.

e Second, show how a systematic combination of empirical, experimental, and
analytical approaches can give the researchers means to gain some understanding
of the problem. Analytical approaches, mostly inspired from earlier work, will be
used to derive candidate models for the complex evolution of software
engineering trends; empirical approaches will be used to derive evolutionary
models, or model aspects, without emphasis on analytical explanation of the
models; and experimental approaches will be used to collect the necessary data to
fill in the parameters of the candidate models and to test them for adequacy.

CHAPTER 2

FOCUS ON A FAMILY OF TRENDS: OPERATING SYSTEMS

2.1 Introduction

As the early stage of the sofiware engineering trends project, it is a good practice to

concentrate on one particular field first. For example, what is the evolution process of

programming languages, computer networking, or databases? Some good practice in

programming languages have been done before. Now this dissertation will focus on a

family of software engineering trends: operating system trends.

Why should the operating system be selected as an example for software

engineering trends project? The followings are the reasons:

First, there is no modern software if there is no operating system. It is well known
that operating system is the most fundamental system program which controls all
the computer’s resources and provides the base upon which the application
programs can be written.

Second, without the development of operating system, there is not development of
software engineering. The development of operating system took a very important
role in the development of sofiware engineering. By reviewing the history of
operating systems, a somewhat clearer view on software engineering could
emerge.

Third, hundreds of operating systems were created in the past, some of them were
very successful, and some of them failed although a lot of resources were spent on
them.

Fourth, they represent a unity of purpose and general characteristics, across
several decades of evolution.

Fifth, they offer a wide diversity of features and a long historical context, thereby
enabling precise analysis.

Sixth, their history is relatively well documented, and their important
characteristics relatively well understood.

For the above reasons, it is clear that there is a good set and a rich history of
operating systems that are well worth discussing. Therefore, operating systems will be

used as a good sample set for this research project.

2.2 History of Operating Systems
Operating system is an extended machiﬁe. It is the most fundamental system program
which controls all the computer’s resources and provides the base upon which the
application programs can be written. Operating systems have been evolving through the
years. The development of operating systems has been historically closely tied to the
architecture of the compute on which they run [2].

The first generation computers (1945~55) are vacuum tubes and plug boards.
- Operating systems were unheard of, even assembly languages were unknown.

The second generation computers (1955~65) are transistors and the corresponding
solution operating systems are batch systems. The idea behind it was to collect a tray full
of jobs in the input and then read them onto a magnetic tape using a small, relatively
inexpensive computer, such as IBM 1401. The ancestor of today’s operating system is to
read and run one of the jobs. Large second-generation computers were used mostly for
scientific and éngineeﬁng calculatibns, such as solving partial differential equations.
They were largely programmed in FORTRAN and assembly language. Typical operating
systems were FMS (the FORTRAN Monitor System) and IBSYS, IBM’s operating
system for the 7094 [2,3].

The third generation operating system (1965~1980) are ICs and multiprogramming

operating systems. One of the leading one is IBM OS/360 (also known as System/360). It

was designed for a series of software-compatible machines from 1401-sized to much
more powerful than the 7094. Furthermore, the OS/360 was designed to handle both
scientific and commercial computing. The 360 line was the first major computer line to
use Integrated Circuits (ICs), thus providing a major price/performance advantage over
the second generation computers [2,4].

The fourth-generation computers (i980~Present) are personal computers. With the
development of LSI (Large Scale Integration) circuits, chips containing thousands of
thousands transistors on a square centimeter of silicon, the age of the personal computer
dawned. The most powerful personal computers are usually called workstations. Two
operating systems initially dominated the personal computer and workstation scene:
Microsoft’s MS-DOS and UNIX. Later on, Microsoft also has a series of operating
systems from Windows 95, Windows 98, Windows NT, and Windows 2000 to Windows
XP, the latest version of Windows. And UNIX derives UNIX based operating systems
like Solaris, FreeBSD, OpenBSD, Netware, etc. and the newest member of UNIX family
--- Linux [2,5].

An interesting development that began taking place during the mid-1980s is the
growth of networks of personal computers running network operating systems and
distributed operéting sy;stems. In a network operatiné system, the users are aware of the
existence of multiple computers and can log in to remote machines and copy files from
one machine to another. Each machine runs its own local operating system and has its
own local user.

A distributed operating system, in contrast, is one that appears to its users a

traditional uni-processor system, even though it is actually composed of multiple

10

processors. The users should not be aware of where their programs are being run or
where their files are located; that should all be handled automatically and efficiently by

the operating systems.

2.3 Operating Systems Trends
Because operating system trends are part 6f software engineering trends, similar methods
will be used to analyze them. This dissertation will concentrate on how to watch, predict,
adapt to, and affect operating system trends.

The methods of how to watch, predict, adapt to, and affect software engineering
trends have been discussed in Chapter 1. The historical trends of operating system will be
discussed in the similar way. After having better understanding on the past trends, the
author will concentrate on how to predict operating system trends. Empirical method will
be used in this project.

To research the operating system trends, the following questions will be discussed:

e Is it possible to predict if an operating system will succeed or fail?
e What will be the operating systems that will be studied?
e What are the possible factors which can affect the trend?

e What information should be collected in order to determine if an operating
system succeed or fail?

e How to quantify the factors and find a model/function to predict the trends?

e What are the results of the evolution analysis for operating system?

e Beyond the analysis of the evolution of individual operating system, this
project also analyzes the evolution of the features. So that, even if whether an

operating system is successful or not could not be predicted, the main
attributes that affect the future of operating systems can be characterized.

11

In this dissertation, all of these questions will be discussed. The answers of all these

questions will form an outline for the whole operating system trends.

2.4 Research Methods
In this dissertation, the author will concentrate on how to watch, predict, adapt to, and
affect operating system trends. From thé evolution of software technology, the author
thinks this evolution is affected by a dizzying array of factors, which are themselves
driven by a wide range of sources. Monitoring operating system trends is not as
untraceable as it may sound, that it does not have to be an ad-hoc, erratic process.
The following is the process that are adopted in this project:
o Find out the possible factors that maybe affect operating system trends
¢ Quantify those factors
¢ Analyze the history of operating system
e Build statistical model(s) to watch evblution of operating syétem
e Predict the future trends of operating system
e Validate the statistical model(s)
Although it is impossible to find out “exact accurate” model for operating system
trends, these model are useful and can be used to describe the history of operating system.
By extending the historical models, it could also be used to predict the future evolution of

operating system.

CHAPTER 3

SELECTING RELEVANT FACTORS

What are the possible factors that can affect the trend of operating systems? This is the
question which will be discussed in Chapter 3. To answer this question, research should
be done in both the internal properties of operating system themselves and the outside
world which may have some influences on the operating system trends. Although it is not

sure how they could affect the operating system.

In previous research, the author has identified that two kinds of factors, intrinsic
factors and extrinsic factors, cduld affect the operating system trends. Section 3.1 will
discuss what intrinsic factors are and how to identify those factors. Section 3.2 will
discuss extrinsic factors via the same methods.

When choosing the factors, the following criteria are followed: completeness,
orthogonality and general significance. For completeness, the author would like to make
sure that the chosen factors are complete to describe an operating system. The purpose is
to find out a useful framework which can be used to evaluate an operating system.
Orthogonality means that each factor is concentrating on one particular part of an
operating system. Differen’; factors are dealing with different aspects. General
significance insures that the factors are fair for every operating system and no factors are
“designed” for a specific operating system.

Two quantitative factors are summarized to characterize an operating system:

e Intrinsic factors that describe the technical features of an operating system and
are usually time independent.

12

13

e Extrinsic factors that describe the outer environment in which the OS exists
and evolves and are typically time relevant.

3.1 Intrinsic Factors
The following 19 factors have been identified as intrinsic factors of operating system.
These factors will be divided into categories: Resource Management; Usability;
Usefulness from Functional point of view; Usefulness from Operational point of view;

Versatility; Design; Cost. These factors will be discussed in the following.

3.1.1 Resource Management
1. Scalability

Scalability is an operating system's ability to increase its processing capacity as
CPUs are added. If the processing capacity increases in direct proportion to the number
of CPUs, a system 1is said to exhibit 100% scaling. In practice, a system's ability to scale
is limited by contention between the CPUs for resources and depends on the mix of
applications being run [6]. Scalability encompasses a broad range of issues, but the
development community has primarily targeted these areas for improvements:

. Providing better administrative tools for managing very large installations

. Improving the scalability characteristics of the operating system and
removing the architectural constraints from the kernel

J Optimizing the system throughput to accommodate enterprise-class
networking

e Expanding support for high-end hardware solutions[7]
This is a very significant factor of operating systems as modern multi-processor

computing getting more and more popular.

14

2. CPU Management

CPU management is an operating system’s ability to mange the CPU resource.
CPU resource management is commonly known as scheduling. The scheduling policy is
determined by the way the computer will be used, although most policies can use a
common scheduling mechanism. This mechanism determines how CPU will be allocated
to processes and the policy determines tile order in which ready processes will receive
services. A group Qf CPU management methodologies are considered such as First-
Come-First-Served, Shortest Job Next, Priority Scheduling, Deadline Scheduling, Round
robin, Multiple-level Queues, Multiple-Processor Scheduling, Real-Time Scheduling
[3,4,5,8]. CPU is one of the most important resources and the scheduling policy
determines the way the computer will be used.
3. Memory Management

Memory is an important resource that must be carefully managed. The memory
hierarchy is composed with several parts: a small amount of very fast, expensive, volatile
ache memory; medium-speed, medium-price, volatile main memory (RAM); and slow,
cheap, nonvolatile disk storage. It is the job of the operating system to coordinate how
these memories are used. The part of the operating system that manages the memory
hierarchy is calied thel memory manager. Its job is to keep track of which parts of
memory are in use and which parts are not in use, to allocate memory to processes when
they need it and de-allocate it when they are done, and to manage swapping between
main memory and disk when main memory is too small to hold all the processes. There
are kinds of memory management methods that have been applied by a lot of operating

systems. [2,3,4,5,8,9,10].

15

4. I/0O Management

One of the main functions of an operating system is to control all the computer’s
I/O (Input/Output) devices. It must issue commands to the devices, catch interrupts, and
handle errors. It should also provide an interface between the devices and the rest of the
system that is simple and easy to use. To extend the possible, the interface should be the
same for all devices (device independence). The I/O code represents a significant fraction
of the total operating system [4]. /O management plays a key role in that it provides an

interface between the devices and the rest of the system that is simple and easy to use.

3.1.2 Usability
Usability property of operating system shows the degree of how easy an operator can
operate the system. There are three different aspects for usability.
1. Ease of Learning

Ease of learning involves effort required to master the interfaces provided by the
system in terms of formal schooling, on the job training and associated misuse of the
system at various intervals in the learning curve [2].
2. Ease of Use

Ease of use is the property to indicate the ease of operating the operating system.
Christian Green said: “It takes more than a graphical user interface to make a computer
easy to use. It takes tight integration between software and hardware. It requires an
operating system that’s graphical ‘from the ground up’, so that users don’t have to deal
with character-based code. And it requires a company that focuses on the user, and helps

guide software developers to make the user experience more consistent.” [11]

16

3. Consistency of Interaction Protocols

Consistency of interaction protocols refer to the conformity of descriptions of
standard patterns of interaction between a human being and a computer system [12]. It is
of great magnitude for an operating system to provide consistent interaction protocols for

user.

3.1.3 Usefulness from Functional Point of View
The property of usefulness indicates the how the operating system is useful for the
operators. There are two parts for usefulness: functional and operational.
1. Range of Services

Operating system services are responsible for the management of platform
resources, including the processor, memory, files, and input and output. They generally
shield applications from the implementation details of the machine. There are a lot of
services provided by operating systems, like kernel operations, command
interpreter,utility services, batch processing services, File and directory synchronization
services [13].
2. Range of Programming Languages Support

After reviewing the brief ﬁistory and language features of each programming
language, the author decide to investigate the operating system’s support within the
following set of programming languages: Ada, ALGOL, Pascal, C, C++, COBOL,
FORTRAN, Java, Perl, LISP.
3. Distributed Computing

Distributed computing is a programming model in which processing occurs in

many different places (or nodes) around a network or across a facility. Processing can

17

occur wherever it makes the most sense, whether that is on a server, web site, personal
computer, handheld device, or other smart device [14].
4. Network Services

Network services are provided to support distributed applications requiring data
access and applications interoperability in heterogeneous or homogeneous networked
environments. A network service consisté of both an interface and an underlying protocol
[13]. In the era of network, the network services are very important for an operating
system.
5. Deadlock Management

Deadlock management is the ability for operating systems to detect, prevent, avoid
and recover from deadlock. Deadlock is a significant problem that can arise in a
community of cooperating or competing processes. Therefore, deadlock management

feasibility is an important factor of operating systems

3.1.4 Usefulness from Operational Point of View
1. Reliability

Reliability is the ability of a system perform its required functions under stated
conditions for a specified perio& of time [6,15]. Reliability is generally considered
important by end users. Not all companies making operating systems have a similar
standard. Even among operating systems where reliability is a priority, there is a range of
quality. Also, an operating system may be extremely reliable at one kind of task and
extremely unreliable at another. For example, reliability includes following features:

Stability, Back-ups, Error reporting, Fail over, Hot-swapping hardware.

18

2. Security & Protection

Security and Protection is the ability of a system to manage, protect, and distribute
sensitive information. There are kinds of methods to implement security and protection
features [13]. Throughout the discussion of the operating system managers, various ways
to protect resources from unauthorized access have been mentioned --- protection and

security are pervasive in the operating system [3].

3.1.5 Versatility
1. Portability

Portability is the ease with which an operating system can be transferred from one
hardware or software environment to another [6]. For example, diverse hardware support
and File system support methodologies are aspects for portability properties. At a time
when different computer lines of the same vendor didn't talk to each other --- but alone
machines of multiple vendors --- portability means a great savings in both hardware and
software upgrades and thus are very important operating system factor.
2. Compatibility

Compatibility is the ability of two or more operating systems to perform their
required functions while sharing tﬁe same hardware or sofiware environment [6]. This
could include Upward Compatibility and Downward Compatibility. On computers that
contain multiple operating systems, compatibility becomes more complex and important.
3. Openness

Openness is the degree to which an operating system complies with standards [6].
For openness property of operating system, following features should be considered:

e Open source

19

e Open system:
o the use of interface standards [16]
o the use of implementations that conform to those standard interfaces[16]
e Network management [16]
e Protocols
It establishes no sharp boundary between the OS itself and the user’s programs, and
the techniques used to make the system robust. Therefore it is an important feature of

operating system.

3.1.6 Design

Design of integrity indicates the ability an operating system omit certain anomalous
features and improvements but to reflect one set of design ideas, than to have on that
contain many good but independent and uncoordinated ideas [17]. The design principles
combine traditional wisdom with extensions to address the evolution of future interfaces.
Existing design principles are based on IBM’s experiences in user interface design, on the
design experiences of others, and on insights from linguistics and psychology. These
design principles have been extended to address evolving interfaces that will provide a
more friendly appearance and bcha;/ior in the future. The increasing use of 3-D and real-
world representations as well as the blossoming popularity of the Internet and the World
Wide Web has strongly inﬂuénced these progressions [18].

There are several design principles such as:

. Simplicity: Don’t compromise usability for function. Keep the interface
simple and straightforward.

20

. Support: Place the user in control and provide proactive assistance. To give
users control over the system, enable them to accomplish tasks using any
sequence of steps that they would naturally use.

= Familiarity: Build on users' prior knowledge. Allow users to build on prior
knowledge, especially knowledge they have gained from experience in the

real world.

= QObviousness: Make objects and their controls visible and intuitive. Where
you can, use real-world representations in the interface.

» Encouragement: Make actions predictable and reversible. A user's actions
should cause the results the user expects.

= Satisfaction: Create a feeling of progress and achievement. Allow the user to
make uninterrupted progress and enjoy a sense of accomplishment.

= Auvailability: Make all objects available at all times. Users should be able to
use all of their objects in any sequence and at any time.

= Safety: Keep the user out of trouble. Users should be protected from making
erTors.

. Versatility: Support alternate interaction techniques. Allow users to choose
the method of interaction that is most appropriate to their situation. Interfaces
that are flexible in this way are able to accommodate a wide range of user
skills, physical abilities, interactions, and usage environments.

. Personalization: Allow users to customize. The interface should be tailorable
to individual users' needs and desires. No two users are exactly alike.

. Affinity: Bring objects to life through good visual design. The goal of visual
design in the user interface is to surface to the user in a cohesive manner all
aspects of the design principles.

3.1.7 Cost
Most technology committees concentrate their budget and planning efforts on the

acquisition of next-generation software and hardware. But hardware and software costs

represent a small fraction of the total expense of networked computers. Accordingly, this

21

focus overlooks the most important factors driving the rising costs of computer systems.
The neglected costs are management and labor expense [19].

Which is cheaper? Hardware costs, software licenses, technical support agreements,
prices of upgrades/service packs, costs of hardware upgrades, profits lost for every hour
of downtime, personnel costs for recovering/recreating data lost due to product defects in
the operating system and/or hardware piatfonn required by your choice of operating
systems, these are only some of the factors that contribute to the overall budget resulting
from the decision. It is not a trivial consideration. Although money is the bottom line for
a manager, given the complex set of factors The author have just presented, a technically
superior combination of server hardware and operating systems could prove to be less

expensive in the long run [20].

3.2 Extrinsic Factors
Intrinsic factors are the attributes of an operating system itself. After a set of intrinsic
factors is determined, the following questions are raised out:
1) Are intrinsic factors enough to determine the future of an operating system?

2) Are there any other factors which can also affect the trend of an operating system?

3) If the aﬁswer is.“Yes” in (2), what should be the other factors?

Naturally, the outside world will also have impact on the trend of an operating
system. Next, the following quest{on is explored: “What could be the possible factors
which can affect the trend of an operating system?”

Extrinsic factors are the factors which are not directly related to the general

attributes of an operating system, but still can affect the trend of operating system.

22

The purpose is to find out as many as possible factors from “outside world” which

‘may affect the trend of an operating system. In order to find a desirable set of extrinsic

factors, aspects in the real world are checked. Right now, the extrinsic factors are

classified into the following seven categories: Institutional Support, Industrial Support,

Governmental Support, Organizational Support, and Grassroots Support. Each category

includes several questions.

L Institutional Support

1.

Support the OS: the institutional unit provides the environment for a given
operating system and allows people using it.

Teach using the OS: the lecturers in the institutional unit use the operating
system during their teaching process.

Teach the OS: the lectures in the institutional unit teach a given operating
system in a course.

Research using the OS: in the institutional unit, a given operating system is
used in the research activities.

Research on the OS: in the institutional unit, a given operating system is a
research object.

Here, institutional unit could be colleges, universities, research center, lab,

academic center and other institutional units.

II. Industrial Support.

1.

Not Support using OS: the industrial unit does not provide the environment for
a given operating system and does not allow employee using it.

Support using OS: the industrial unit provides the environment for a given
operating system and allows employee using it.

Encourage using the OS: the industrial unit encourages the usage of a given
operating system within the unit.

Require using the OS: the industrial unit requires the usage of a given operating
system within the unit.

23

II1. Governmental Support

1.

Not Support the OS: the governmental unit does not provide the environment
for a given operating system and does not allow employee using it.

Support the OS: the governmental unit provides the environment for a given
operating system and allows employee using it.

Encourage using the OS: the governmental unit encourages the usage of a given
operating system within the unit.

Require using the OS: the governmental unit requires the usage of a given
operating system within the unit.

IV. Organizational Support

1.

Is this OS introduced and supported by any (international) organization?

2. Are there any organization standards?

3. How many conferences for this OS?

4. How many conference papers/articles are published on this OS?

5. How inany conference papers/articles are published by using OS?
V. Grassroots Support

1. Know the OS: people are aware of a given operating system.

2. Use the OS: people use a given operating system.

3. Prefer to use the OS: peofle prefer to use a given operating system.

In the author’s point of view, both intrinsic factors and extrinsic factors could

impact on the evolution of operating systems. Identifying these factors is the first step for

this empirical study.

CHAPTER 4

QUANTIFYING THE FACTORS

In this chapter, after selecting a set of factors, How to quantify the factors is discussed.

Quantifying means assigning a numeric function to each factor.

4.1 Methods to Quantify the Factors
All of the factors should be considered when one designs an operating system. So, all
features of an operating system should be checked to see if it matches these factors.

Several methods are introduced to quantify the selected factors.

4.1.1 Numei'ic Formula

The first group factors have been given a numeric formula which is understandable and
widely acceptable. For example, the average number of system failures per month is used
to quantify Reliability. Another example here is that the quantifying method for Cost is
the prices in U.S. dollars for U.S. delivery. Except these two factors, ease of learning,
portability, compatibility and organizational support can be cétegorized into the same
group in regards of its quantifying ﬁlethod. This method is very straightforward and easy

to understand.

4.1.2 Hierarchical Sub-features
The second set of factors use different quantifying methods. In order to quantify these
factors, a set of discrete features that are usually associated with the factor are chosen,

respectively. Then rank these features from 1 (lowest) to N (highest), where N is the

24

26

In this group, included intrinsic factors are: scalability, CPU management, 1/0
management, range of services, distributed computing, network services, deadlock

management, security and protections, openness and institutional support.

4.1.3 Cumulative Sub-features

Similar to hierarchical sub-factors, for the third group of factors, a set of distinct features
that are usually associated with this "factor are also picked. But instead to assign an order
to them, they are considered to‘ be of equal quantifying. The final score will be the
number of features that an OS has taking into account that one feature contributes one
point and so on.

For example, ten programming languages are summarized to quantify the factor of
range of programming languages support. ten programming languages are in the
investigated set. For a given OS, if it supports one programming language, it will get 1
| point. Then the final score for this OS will be the number of all the programming
languages it supports. The same methodology is applied for consistency of interaction

protocols.

4.1.4 Discrete Scale Sub-features

The fourth category of. factors, again, has a list of separate features. Rather than order
them into a hierarchy or just cumulate the number, for a given OS, each of the features
will be qualified according to a set of mutual exclusive scales. A score is assigned to
these scales from “excellent” to “not good” as 5 to 1. Therefore, the score for the feature -
is the score of the corresponding scale. Thus, the score for the upper factor is the average

of all these features scores.

27

For example, eight sub-features are used to quantify ease of use. (For detail, see
next section) For each of the eight sub-features, its score is decided by comprehending
which scale it is provided. If, for a particular OS, it provides “excellent” help and manual
Sfeature, which is one of the eight sub-features for ease of use. Five points are added to the
final score for this particular operating system on ease of use. Again, it provides “very
good” multimedia .guppbrt, another sub-féature, thus turns a four points. After decide all
the feature points, the scores from all the sub-feature and summed up, and divided by the
number of the spb-features (here, it’s eight), thus the final score of the factor is obtained.

All the eight sub-features are listed in following. Besides ease of use, the same

methodology to quantify design is applied.

4.1.5 Exclusive Rating Sub-features

This method is applied on inost of the extrinsic factors. Most of the questions are asking
for the numbers. But different questions have different priorities. For example,
Governmental Supports has four different behaviors: not support, support, encourage,
require. For the author’s point of view, they contribute different priority points for
scoring the governmental support. Encourage means that the a govermnmental unit
encourages the use of the OS, which means that compare to another governmental unit
that does not encourage (e.g., only support or even not support) the use of the OS, the
first one “add” more point to fhe final score of Governmental support than the later one
for this particular OS. In other words, for a particular OS, if more governmental units
encourage using it than a second OS, it can be concluded that the first OS gets more
points than the later one on the aspects of encouraging using. Similarly, require

contributes more than encourage for the final score.

28

Based on these observations, four level supports are sorted from weakest to
strongest and assign them points. Not support gets 0, support gets 1, encourage gets 2,
require gets 3. Note that the four supports are defined in an exclusive fashion. For
example, if one OS gets 2 for governmental support, which means that a governmental
unit encourages to use the OS, in other words, the unit already supports to use the OS,
then it will get 2 points rather than 1 pdint, because 2 is enough to explain the support
level. In this way, for a particular OS, the average score of all governmental support is
used as the final score.

Same methodology described above is applied on Industrial Support, Governmental
Support and Grassroots Support.

In Table 4.2, all the factors and their corresponding quantifying methods are listed.

4.2 Quantifying the Factors
In this section, the author will check each factor and discuss how to quantify it.
1. Scalability: All the sub-factors are considered and sorted from weakest to the strongest
one, as shown in Table 4.3 [7].
2. CPU Management: All the sub-factors are considered and sorted from weakest to the
strongest one, as shown in Table 4.4 [2,3,4,5,8,9,21].
3. Memory Management: All the sub-factors are considered and sorted from weakest to
the strongest one, as shown in Table 4.5 [3,4,14,22,23,24].
4. I/0 Management: All the sub-factors are considered and sorted from weakest to the

strongest one, as shown in Table 4.6 [3,4,5].

32

7. Consistency of Interaction Protocols: Total numbers of interaction protocols that are

consistent the bigger the better. A list of interaction protocols are summarized and are

applied to all the operating systems that are chosen [26].

(D)

@)

€)

(4)

&)

©

(M

®)

®

Formulate queries/Interpret responses: Uniform across all queries/responses.
Command format are identical for all commands.

File names: All the files in an OS have the same format.

Interface consistency: The "look and feel" of the interface is consistent. For
example, there is a common background and/or color scheme for all screens;
common screen layouts.

Function/Appearé.nce consistency: All object appear the same, function the

same. For example, “Help”, “Exit”, and “Search” objects are in the same
spot on all screens. They have the same design, color, etc.

‘Text characteristics consistency: The text characteristics are constant from

screen to screen. For example, Ariel 14 point bold italics are always used
only for chapter titles. Blue underlined text always represents a hyperlink.

Semantic characteristics consistency: Metaphors and icons are used
consistently throughout the interface. For example, a magnifying glass
means the same thing every place it is used; a green cat always means Help.

Navigation consistency: Navigation objects and steps are consistent
throughout the interface. Screens are linked consistently.

Interaction tools consistency: Interaction tools like mouse pointers, touch
screens, joysticks are used consistently.

(10) Conventions consistency: Conventions are familiar to the user employed

consistently.

(11) Screen configurations consistency: All related items on the screen are

grouped together visually in a format that makes sense.

(12) Labels consistency: Labels on buttons, menus, and titles are used

consistently.

(13) The number of interaction protocols that a particular operating system has

implemented are added up and assigned as the grade for this operating
system.

36

F. X Window System Protocol

G. Xlib - C Language X Interface

H. X Toolkit Intrinsic - C Language Interface
I. Inter-Client Communication Conventions Manual
J. Motif 1.2 IEEE Std 1295

K. CDE Common Desktop Environ"ment‘

L. OSInetwork

M. Netware Protocol

N. SNA

O. TCP/IP

P. Ipv4

Q. Ipv6

R. TCP

S. UDP

T. ICMP

U. DLPI

V. NetBIOS

W. RPC

According td the relationships between each other, the hierarchy of these standards
is constructed, as shown in Figure 4.1. It can be seen that standard of “Pthreads IEEE
POSIX 1003.1¢c.” is a subset of standard “POSIX 1 Library functions i.e. kernel calls”.
And furthermore, “POSIX 1 Library functions i.e. kernel calls” is a subset of standard

“Single Unix Specification”. There are similar situation for most of other standards in the

37

list. Standard V --- NetBIOS and standard E --- XNFS X/Open Network File System are
independent standards that are not subset and neither superset of any other standards.

By analyzing the standards hierarchy, different scores are assigned for different
standards according to their position in the hierarchy, as shown in Table 4.13. For
example, Pthreads IEEE POSIX 1003.1c. (D) has a point of 1. This means that there is no
standard that is a subset of D. And D is é comparative simple and more specific standard

that cover a small range. Standard OSI network (L) is assigned the highest points because

Figure 4.1 Standards Hierarchy for Openness.

40

3) Operation. Operation cost is the overall cost of operating a computer system to
include the costs associated with personnel, training, and system operations. It has
three types:

e Communication costs: prices in terms of man-month
e Development costs: prices in terms of man-month
e Downtime costs: prices in tenﬁs of man-month

In the next chapter, the chosen operating systems are discussed.

CHAPTER 5

WATCHING OPERATING SYSTEMS

To watch and predict the trends of operating system, a set of operating system should be
selected as sample. By analyzing this set of operating system, statistics models will be
constructed to describe the past trends of operating system. By extending the statistics

models, they will also be sued to predict the future trend of an operating system.

In this chapter, the following fifteen of operating system will be investigated:
UNIX, Solaris/Sun OS, BSDs (including FreeBSD, OpenBSD and NetBSD), OS/2,
Windows, MS-DOS, MAC OS, Linux, NetWare, HP-UX, GNU Hurd, IBM AIX,

Compagq/DEC VMS, Multics, OS360.

5.1 Unix
UNIX history goes back to 1969 and the famous “little-used PDP-7 in a corner” on which
Ken Thompson, Dennis Ritchie and others started work on what was to become UNIX.
The name “Unix” was intended as a pun on Multics (and was written “Unics” at first --
UNiplexed Information and Compﬁting System) [29].

For the first 10 years, UNIX development was essentially confined to Bell Labs.
These initial versions were labeled “Version n” or “Nth Edition” (of the manuals), and
were for DEC’s PDP-11 (16 bits) and later VAXen (32 bits). Some significant versions
include:

e V1 (1971): 1st UNIX version, in assembler on a PDP-11/20. Included file system,

fork(), roff, ed. Was used as a text processing tool for preparation of patents.
Pipe() appeared first in V2.

41

42

e V4 (1973): Rewritten in C, which is probably the most significant event in this
OS's history: it means UNIX can be ported to a new hardware in months, and
changes are easy. The C language was originally designed for the UNIX operating
system, and hence there is a strong synergy between C and UNIX.

e V6 (1975): First version of UNIX widely available outside Bell Labs (esp. in
universities). This was also the start of UNIX diversity and popularity. 1.xBSD
(PDP-11) was derived from this version. J. Lions published “A commentary on
the Unix Operating System” based on V6.

e V7 (1979): For many, this is the “last true Unix”, an “improvement over all
preceding and following Unices”. It included full K&R C, uucp, Bourne shell. V7
was ported to the VAX as 32V. The V7 kernel was a mere 40 Kbytes.

These Vn versions were developed by the Computer Research Group (CRG) of Bell
Labs. Another group, the Unix System Group (USG), was responsible for support. A
third group at Bell Labs was also involved in UNIX development, the Programmer's
WorkBench (PWB), for example, sccs, named pipes and other important ideas. Both
groups were merged into Unix System Development Lab in 1983 [36].

Work on UNIX continued at Bell Labs in the 1980s. The V series was further
developed by the CRG (Stroustrup mentions V10 in the 2nd edition of his book on C++).
The company now responsible for Unix (System V) is called Unix System Laboratories

(USL) and is majority-owned by AT&T. Novell has bought USL (early 93)! Novell has

given rights to the “UNIX” trademark to X/Open (late 93).

5.2 Solaris/Sun OS

Sun’s implementation of BSD was called SunOS. Sun extended the networking tools of
the operating system to include the Networked File System (NFS), which was to become
an industry Standard. 1993, Sun announced that SunOS, release 4.1.4, would be its last

release of an operating system based on BSD. Sun moved to System V, release 4, which

43

they named Solaris. Sun and AT&T started promoting OPEN LOOK, which they jointly
developed. Their goal was to create a consistent look and feel for all flavors of UNIX;
unfortunately, OSF had its own GUI called OSF/MOTIF. Thus, round two of the fight for
standards began, with MOTIF beating out OPEN LOOK. When MOTIF beat OPEN
LOOK in the standards war, Sun conceded, and started to provide a package that
contained both OPEN LOOK and MOTIF—called the Common Desktop Environment
(CDE)—as standard equipment beginning with Solaris 2.5.1, then after a series of
updates, Solaris 7 came out in 1998; Solaris 8 came out in 2001 and Solaris 9 came out in

2002 [37].

5.3 BSD

BSD stands for “Berkeley Software Distribution”, the Unix developed at the University
of California in Berkeley. Berkeley’s Unix was originally derived from AT&T’s Unix,
but due to legal issues most of AT&T’s release was removed and replaced with new code.
Eventually, this was ported to the PC in the form of 386BSD, which is what FreeBSD
was based on [38].

Despite sharing a common ancestry, the BSD family of operating systems provides
a number of corﬁplete 6perating systems packages to meet every nepd. Basically, there
are three BSDs that are well known in the BSD family: OpenBSD, FreeBSD and NetBSD.

o FreeBSD: Perhaps what sets FreeBSD apart most is its technical simplicity. The
FreeBSD installation program is widely regarded as the simplest Unix installation
tool in existence. Further, its third party software system, the Ports Collection, has
been modeled by NetBSD and OpenBSD and remains the most powerful
application installation tool available. Through simple one-line commands, entire
applications are downloaded, integrity checked, built, and installed making
system administration amazingly simple [39,40].

44

e NetBSD: Today, NetBSD’s focus lies in providing a stable, multiplatform,
research oriented operating system. NetBSD’s portability leads it to run on 33
platforms as of January 2001. Even more impressive is the list of hardware
including traditional modern server equipment like standard Intel-based PCs,
Compagq’s Alpha, or Sun Microsystem’s SPARC architectures. Older server and
workstation class hardware like the Digital Equipment Corporation’s VAX
hardware, Apple’s Macintosh computers based on Motorola’s 68000 processor
series are also support. But what really sets NetBSD apart is its support for more
exotic hardware including Sega’s Dreamcast, Cobalt Network’s server appliances,
and George Scolaro’s and Dave Rand’s PC532 hobbyist computer [41,42].

o OpenBSD: OpenBSD diverged from NetBSD around the release of NetBSD 1.1
in November of 1995. OpenBSD's first release came a year later when OpenBSD
2.0 was released in October of 1996. OpenBSD quickly began focusing on
producing the most secure operating system available. OpenBSD also advanced
the state of code auditing. Beginning in 1996, the OpenBSD team began a line-
by-line analysis of the entire operating system searching for security holes and
potential bugs. UNIX systems have been plagued for decades by the use of fixed-
sized buffers. Besides being inconvenient for the programmer, they have lead to
numerous security holes like the fingered exploit in 4.2BSD. Other security holes
relating to mishandling temporary files are easily caught. OpenBSD's ground
breaking audit has also discovered security-related bugs in related operating
systems including FreeBSD, NetBSD, and mainstream System V derivatives.
[39,40,42,43,44,45,46].

5.4 OS 360
In April 1964, IBM announced OS/360, an operating system developed to support the
new generation and architecture of System/360 hardware - hardware capable of
supporting both commercial and scientific applications. Prior to System/360, those

applications ran on separate lines of hardware [47].
0OS/360 included three control program options, delivered in stages beginning in
March 1966. The first stage was the simplest -a sequential scheduler called the primary
control program (PCP). PCP performed only one task at a time, and ran in 32KB of
memory. With PCP, a processor could spend considerable time waiting for I/O. OS/360

was the first operating system to require direct access devices.

45

Multiprogramming introduced the technique of assigning control of the processor to
another task while the first task was waiting for I/O. This technique utilized resources
more effectively. Prior to OS/360, even the most dedicated programmers found I/O
programming to be a painful process repetitive, inconsistent and error-prone. OS/360
supplied data and telecommunications access methods that simplified the task.

0S/360 was Qriginally developed as a batch operating system. However, users soon
asked for interactive capability. In 1971, IBM released the time-sharing option (TSO),
which became‘ an integral part of the operating system. TSO used TCAM, a new

telecommunications access method that was developed and released at the same time.

5.5 Windows

Over the past two decades, Microsoft Windows® products have evolved from a single,
one-size-fits-all desktop operating system into a diverse family of operating systems and
mobile technologies. On November 10, 1983, Microsoft announced Microsoft
Windows®, an extension of the MS-DOS operating system that would provide a
graphical operating environment for PC users. With Windows, the graphical user
interface (GUI) era at Microsoft had begun. Here is some brief introduction for part of its
major releases [14,48,49].

e Windows 1.0 (1985): The first version of Windows provided a new software
environment for developing and running applications that use bitmap displays and
mouse pointing devices.

e Windows 3.0 (1990): The third major release of the Windows platform from
Microsoft offered improved performance, advanced graphics with 16 colors, and
full support of the more powerful Intel 386 processor. A new wave of 386 PCs

helped drive the popularity of Windows 3.0, which offered a wide range of useful
features and capabilities.

46

e Windows NT Workstation 3.5 (1993): This release provided the highest degree of
protection yet for critical business applications and data. With support for the
OpenGL graphics standard, this operating system helped power high-end
applications for software development, engineering, financial analysis, scientific,
and business-critical tasks.

e Windows 95 (1995): Windows 95 integrated a 32-bit TCP/IP (Transmission
Control Protocol/Internet Protocol) stack for built-in Internet support, dial-up
networking, and new Plug and Play capabilities that made it easy for users to
install hardware and software.

e Windows NT Workstation 4.0 (1996): This upgrade to the Microsoft business
desktop operating system brought increased ease of use and simplified
management, higher network throughput, and tools for developing and managing
intranets. This release included the popular Windows 95 user interface yet
provided improved networking support for easier and more secure access to the
Internet and corporate intranets.

¢ Windows 2000 Professional (2000): Workstation 4.0, Windows 2000 Professional
was also designed to replace Windows 95, Windows 98, and Windows NT
Workstation 4.0 on all business desktops and laptops. Built on top of the proven
Windows NT Workstation 4.0 code base, Windows 2000 added major
improvements in reliability, ease of use, Internet compatibility, and support for
mobile computing.

e Windows XP (2001): With the release of Windows XP in October 2001,

Microsoft merged its two Windows operating system lines for consumers and
businesses, uniting them around the Windows 2000 code base [49].

5.6 MS-DOS
Known variously as Seattle Comi)uter 86-DOS, IBM Personal Computer DOS, and
Zenith Z-DOS, MS-DOS was developed by Seattle Computer Products for its 8086-based
computer system. The MS-DbS history is intertwined with the general development of
software for 8086-based computers.
In May 1979, Seattle Computer made the first prototype of its 8086 microprocessor
card for the S-100 bus. There were brief discussions with Digital Research about using

one of Seattle Computer’s prototypes to aid in developing CP/M-86, which was to be

47

ready “soon”. Although Seattle Computer was considering using CP/M-86 when it
became available (expected no later than the end of 1979), there were only two working
prototypes of the 8086 processor card, and it was felt that both were needed in house.
Therefore, there wasn’t one free for Digital Research.

Microsoft had already started a strong 8086 software-development program. The
firm was ready to try the 8086 version of Stand-Alone Disk BASIC, which is a version of
its BASIC interpreter with a built-in operating system. During the last two weeks of May
1979, this BASIC was made completely functional using the hardware that Seattle
Computer provided for Microsoft. Seattle Computer Products displayed the complete
package (8086 running disk BASIC) in New York the first week of June at the 1979
National Computer Conference. (This was the first-ever public display of an 8086 BASIC
and of an 8086 processor card for the S-100 bus.)

In the last few days of 1980, a new version of the DOS was released, now known as
‘86-DOS version 0.3. Seattle Computer passed this new version on to Microsoft, which
had bought non-exclusive rights to market 86-DOS and had one customer for it at the
time. Also about this time, Digital Research released the first copies of CP/M-86. In April
1981, Seattle Computer Products released 86-DOS version 1.00, which was very similar
to the versions 6f MS-DOS that are widely distributed today.

In July 1981, Microsoft bought all rights to the DOS from Seattle Computer, and
the name MS-DOS was adopted. Shortly aﬂerward, IBM announced the Personal
Computer, using‘as its operating system what was essentially Seattle Computer’s 86-DOS
1.14. Microsoft has been continuously improvihg the DOS, providing version 1.24 to

IBM (as IBM’s version 1.1) with MS-DOS version 1.25 as the general release to all MS-

48

DOS customers in March 1982. Now version 2.0, released in February 1983, has just

been announced with IBM's new XT computer [50].

5.7MAC OS
Macintosh OS X, 9, OS 8, OS 7 and OS 6 are desktop operating systems made by Apple
Computer that run on Motorola/IBM PowérPC and Motorola 680x0.

In 1987, Apple introduced the Mac II. Built with expandability in mind, the Mac II
made the Macintosh line a viable, powerful family of computers. Apple was a “Wall
Street darling” again, shipping 50,000 Macs a month. It seemed in 1989 that Windows
would be a flop, and the Mac would be riding high for the next decade.

But it didn’t. By 1990 the market was saturated with PC-clones of every
conceivable configuration, and Apple was the only company selling Macs. In late May,
Microsoft rolled-out Windows 3.0, which could run on virtually all of the PC-clones in
the world. Apple was in trouble.

In 1994 Apple announcéd the PowerMac family, the first Macs to be based on the
PowerPC chip, an extremely fast processor co-developed with IBM- and Motorola. The
PowerPC processor allowed Macs to compete with, and in many cases surpass, the speed
of Intel’s newer i)roceséors.

In late December 1996, Apple made an industry-shattering announcement that it
would be acquiring NeXT, and that Steven Jobs would be returning to the fold. The
merger was brought about in order to acquire NeXTstep, which was to become the basis

for Apple’s next-generation OS, Rhapsody, which was slated for a 1998 release [51,52].

49

5.8 Linux

Linux is an operating system that was initially created as a hobby by a young student,
Linus Torvalds, at the University of Helsinki in Finland. Linus had an interest in Minix, a
small UNIX system, and decided to develop a system that exceeded the Minix standards.
He began his work in 1991 when he released version 0.02 and worked steadily until 1994
when version 1.0 Qf the Linux Kernel wés released. The kernel, at the heart of all Linux
systems, is developed and released under the GNU General Public License and its source
code is freely available to everyone. It is this kernel that forms the base around which a
Linux operating system is developed. There are now literally hundreds of companies and
organizations and an equal number of individuals that have released their own versions of
. operating systems based on the Linux kernel. The current full-featured version is 2.6
(released December 2003) and development continues. |

Apart from the fact that it’s freely distributed, Linux's functionality, adaptability
and robustness, has made it the main alternative for proprietary Unix and Microsoft
operating systems. IBM, Hewlett-Packard and other giants of the computing world have
embraced Linux and support its ongoing development. More than a decade after its initial
release, Linux is being adopted worldwide as a server platform primarily. Its use as a
home and ofﬁcei desktoia operating system is also on the rise. The operating system can
also be incorporated directly into microchips in a process called “embedding” and is
increasingly being used this way in appliances and devices.

Linus didn’t want to use Windows and searched for an inexpensive alternative that
would run on low cost IBM PC clones. The GNU open source project was progressing

very slowly because of political infighting and an attempt to make the same operating

50

system run the same on numerous processors. Linus received permission to use MINIX
as the foundation for his own efforts. MINIX was a small version of UNIX created by
Andrew S. Tanenbaum to provide college students with a working version of UNIX with
no AT&T owned source code. Linus opened a web site on his university student account
and started posting free copies of his source code. During the early days of the project,
Linus was posting updated versions sevefal times a day, which directly contradicted the
commercial approach of only releasing new versions on an infrequent basis after
extensive testipg. With the help of a growing number of volunteers (literally tens of
thousands), Linus quickly replaced all of MINIX with new all new source code. As Linux
caught on in popularity (because it allowed college students and hobbyists to experiment
with very cheap Intel hardware), other groups of volunteers ported Linux to a wide
variety of additional processors. The success of Linux proved the viability of open source
software projects and Linus’s approach of rapid and continual incremental updates
proved to be an effective method for harnessing volunteer effort and an excellent method
for widespread testing on a wide variety of hardware.

Linux has achieved a measure of success. In only a few years, the program has
evolved from a hacker’s toy into software that is, at least in part, technically superior to

Windows NT [53,54,55,56,57,58,59].

5.9 NetWare
NetWare was developed by Novell Data Systems in the late 1970s. Using CP/M (Control
Program for Microprocessors, the operating system of choice before the PC solidified

DOS) and Unix as the guidelines, a multiuser microcomputer was being built. This was a

S1

typical time-sharing system, with dumb terminals attached by serial cables to a central
box containing the CPU, disk, memory, and printer attachments.

With NetWare 4.10, the tools that network managers asked for, and more, were
included. The network manager now had complete control over the NDS tree, able to
prune, graft, split, and merge sections of the tree from the graphical NetWare
Administrator program. With the Simi)liﬁed and Custom Installation options, new
networks were installed and running in about 10 minutes of hands-on work. Novell set
the pricing to match NetWare 3.12, making smaller companies that avoided NetWare 4
because they didn’t feel they needed NDS at a premium happy to try it on a “free” basis.
Add the extra disk space provided by the file compression and other storage
enhancements, and NetWare 4.10 actually cost less than a comparable NetWare 3.12
system.

For NetWare 5, the biggest change was with TCP/IP support. Yes, Novell had been
talking about it for a long time, and, yes, it had supported TCP/IP to varying degrees for
years, but, finally, with version 5 it had true support for TCP/IP. In the past, all requests
of the file server were submitted in IPX. True, there may have been a TCP/IP connection
to the server, but inside each TCP/IP packet was an IPX packet (a technology called
tunneling). |

Today, NetWare 5.1 turns a NetWare server into a complete e-commerce
powerhouse, including all the server software necessary for full Web site building.
Management through a browser interface is part of this package. People may claim that
Windows NT or 2000 is a better application server than NetWare, but not if they honestly

examine all the software inside the red box [60].

52

5.10 HP-UX

HP-UX is a UNIX-based operating system made by Hewlett-Packard that runs on HP PA
RISC. It was first released in year 1986. Now there are two current versions: 11.11 (aka
11iv1.0) for PA-RISC based hardware and 11.20 (aka 11i v1.5) for Intel Itanium
Processor Family (IPF) based hardwaree129. HP-UX support server/mainframe for small
to large scale servers. It also has databases server support and mainframe support. HP-
UX started earlier than 1986 on their hp9000/500 family, with the HP Focus CPU, it was
a multi CPU system, up to 7 CPUs in one box. Then came the HP9000/300 family, these
where workstations, also running HP-UX. These where built on the Motorola 680X0
CPU. After that HP introduced the HP9000/400 fémily also called Apollo, since they
merged with them. At this time the PA-RISC based HP-UX came along. The 300 and 400
family was supported up to HP-UX 9.10, this included some of the new things in HP-UX
10.X.

The HP-UX operating system is based on UNIX System V Release 2, with
important features from Berkeley Software Distribution 4.2. It also incorporates features
of subsequent System V and BSD releases, as well as HP extensions and enhancements.
Other contributors to HP-UX include Open Software Foundation, Inc. (OSF(TM)),
Carnegie-Mellon Univérsity, Cornell University, Massachusetts Institute of Technology,
and numerous other commercial and educational firms and institutions. In short, HP-UX

is essentially an AT&T-type of UNIX with numerous extensions [61,62].

33

5.11 GNU Hurd
The GNU Hurd is the GNU project’s replacement for the UNIX kernel. “Hurd” stands for
“Hird of Unix-Replacing Daemons”. And, then, “Hird” stands for “Hurd of Interfaces
Representing Depth”. The Hurd is a collection of servers that run on the Mach
microkernel to implement file systems, network protocols, file access control, and other
features that are implemented by the Uni); kernel or similar kernels (such as Linux).

Currently, the Hurd runs on IA32 machines. The Hurd should, and probably will,
be ported to other hardware architectures or other microkemels in the future.

The GNU system (also called GNU/Hurd) is completely self-contained (you can
compile all parts of it using GNU itself). You can run several instances of the Hurd in
parallel, and debug even critical servers in one Hurd instance with gdb running on
another Hurd instance. You can run the X window system, applications that use it, and
advanced server applications like the Apache web server.

On the negative side, the support for character devices (like sound cards) and other
hardware is mostly missing. Although the POSIX interface is provided, some additional
interfaces like POSIX shared memory or semaphores are still under development. All this

applies to the current development version, and not to the last release (0.2) [63,64].

5.12 IBM AIX
AIX is based on UNIX System V and Berkeley Software Distribution 4.3 but is more of a
hybrid of these two types of UNIX than HP-UX. AIX conforms to the Portable Operating
System Interface for Computer Environments (POSIX) and to OSF. It also contains

several IBM-proprietary features, such as the Object Data Manager (ODM) and System

54

Resource Controller (SRC). Its windowing system, AIXwindows Environment/6000 is
based on the X Window System with OSF/Motif and is an optional product.

The success of AIX 5L as the native platform for IBM pSeries continues to attract
extensive support from the UNIX industry’s most successful appiication vendors. In
addition, the affinity features of AIX with Linux provide customers the flexibility to
leverage AIX and Linux together where .appropriate, helping to preserve investments in

skills and applications [65,66,67].

5.13 Compaq/DEC YMS

VMS is a high performance operating system made by DEC that runs on DEC VAX.
OpenVMS fs an updated version of VMS and runs on both the DEC VAX and the DEC
Alpha.

VMS and OpenVMS are the same operating system under two different names (the
name changed to OpenVMS about the time POSIX support and a few other “open” items
were added.)

OpenVMS, originally called VMS (Virtual Memory System), was first conceived in
1976 as a new operating systerﬁ- for Digital's new, 32-bit, virtual memory line of
computers, eventually named VAX (Virtual Address eXtension). The first VAX model,
the 11/780, was code-named ;‘Star”, hence the code name for the VMS operating system,
“Starlet”, a name that remains to this day the name for the system library files
(STARLET.OLB, etc.). VMS version X0.5 was the first released to customers, in support
of the ilardware beta test of the VAX- 1-1/780, in 1977. VAX/VMS Version V1.0 shipped

in 1978, along with the first revenue-ship 11/780s.

55

OpenVMS is a 32-bit, multitasking, multiprocessing virtual memory operating
system. Current implementations run on Digital’s VAX and Alpha computer systems

[68,69,70].

5.14 Multics
Multics (Multiplexed Information and Computing Service) is a mainframe timesharing
operating system begun in 1965 and used until 2000. Multics began as a research project
and was an important influence on operating sysfem development. The system became a
commercial product sold by Honeywell to education, government, and industry. This web
site describes the hardware, software, and people that made the system the best thing of
its kind for many years.

The Compatible Timesharing System (CTSS) was one of the first timesharing
systems. It was developed at the MIT Computation Center in 1961 on an IBM 709. In
November 1962, MIT Prof. Robert M. Fano leaded the development of MAC (Multiple
Access Computers) Bell Labs decided to buy a GE-645 in early 1965 and joined the
software development effort, and GE also agreed to contribute. The three organizations
worked out a structure for cooperation.

GE sold ifs comﬁuter business to Honeywell in 1970. The last Multics system
running, the Canadian Department of National Defence Multics site in Halifax, Nova
Scotia, Canada, shut down October 30, 2000 at 17:08Z. This system was modified to be

Y2K compliant and was the main production system until Sept/00 [71,72].

56

5.15 0S/2

A long time ago, IBM and Microsoft still were great pals. At first, Microsoft developed
DOS for IBM PC’s, and later on, the company started - again by order of Big Blue - the
development of 0S/2, or Operating System 2. Microsoft and IBM split up a long time
ago. That was because Microsoft started to develop its own graphical operating system:
Windows and that during the development of the joint-venture between IBM and
Microsoft. IBM felt deceived and decided to continue development of OS/2 itself.
Debugging and rewriting large portions of OS/2’s source code led to a new 32 bit
operating system that was rock-stable.

When both operating systems appeared on the market, Microsoft and IBM faced
each other. With the popularity of Windows and OS/2, the competition between the two
former pals grew. The final collision had place in 1995. OS/2 Warp 3.0, a powerful
upgrade of 0OS/2, had just appeared, and after some months, Microsoft introduced its
Windows 95. Though OS/2 had been released some months earlier, and seemed
extremely fast and stable, most PC users decided to wait to see which way the cat jumps.
Next, Windows 95 was released with such a great advertising campaign that mankind
spontaneously forgot about the existence of other alternative operating systems. In 1996,
Warp 4.0 (aka Merlin) was released, but in fact, Microsoft had already won [15,73].

After reviewing the brief history and system features of each operating system, how
to collect data for intrinsic factors and extrinsic factors will be discussed and the results

of the collection will be presented.

CHAPTER 6

DATA COLLECTION

6.1 Resources of the data

In Chapter 4, the methods of how to quantify intrinsic factors and extrinsic factors have

been defined. In this chapter, how to collect data based on these rules will be discussed.

Data collection is a hard and time-consuming job. The operating system trends

group has used different methods to collect data for the answers:

1.

Books: Text books, authorial books about operating system are the first resources.
Most of these books have discussed part of the intrinsic factors in the contents. For
example, the famous dinosaur book “Operating system concepts” by Abraham
Silberschatz, el is a general -text book about operating systems. And there are a lot of
books especially for a particular operating system. For example, “Mac OS X” by
David Pogue is just for Mac OS, “Microsoft Windows XP inside out by” Ed Bott; el.
is special for Windows XP. These books provide high level introduction to operating
systems.

System manuals and handbooks: Every operating system has its own system manual
and hand books for user. They provide all the detailed technical information about the
system from installation, configuration to all high level technical details for the
operating systems.

. Journals, papers and other articles: There are a lot of papers and articles published

about operating system. Actually, operating system is always among the hottest topics
for most of the computer technical international conferences, journals and magazines,
for example IEEE, ACM, to name but a few. These excellent articles and papers are
very good reference.

Internet: It is well known that Internet is big resource. There are thousands of thousand
of websites, links that are talking about operating systems. Most of the famous
organizations have their anline website and provide services sometimes more quick
and more detail than any other format. Almost for every operating system, there are
forum, groups, online organizations, standard, etc that are actively online. These web
pages provide the newest information for the operating system research.

. Surveys: Some of the factors have limited resources or the data obtained from the

above sources can not be used. For example, the extrinsic factor of Grassroots Support,

57

58

it is difficult to know how many people who prefer to use a particular operating

system. In order to get these kinds of information, a survey web page is set up. To

store all of the data, a data warehouse is established in software engineering lab in

New Jersey Institute of Technology. For the details, visit:
http://swlab.njit.eduw/OS/survey.htm

By analyzing the data in this data ware house, good understand could be gained in

historical trends of each operating system.

6.2 Survey Webpage
A survey webpage is set up to collect data for some intrinsic and extrinsic factors. By
asking survey users to answer the questions designed for each factor, the information
about the factor is gathered. Because different questions are designed for different groups
of people, the survey is divided into six categories. Survey users are directed to a
category of survey questions according to their background.

The six categories are as such: basic survey; feature survey; institutional survey;
industrial survey; governmental survey; design survey.

Institutiona1 survey, industrial survey and governmental survey are for institutional
support, industrial support and governmental support respectively. They 'cire taken by
institutional survey users, industrial survey users and governmental survey users
correspondingly. The sﬁb-features of these three factors are listed for survey user to
answer for different periods of time.

For example, in institutional survey, users from institutional units are going to
answer the following questions for each of the sub-features:

e Whether your institutional unit supports any of the following operating system in
each of the following specified years?

59

e Whether in your institutional unit, you ever teach/take a course using any of the
following operating system in each of the following specified years?

e Whether in your institutional unit, you ever teach/take a course or teaching any of
the following operating system in each of the following specified years?

e Whether in your institutional unit, you do research by using any of the following
operating system in each of the following specified years?

e Whether in your institutional unit, you do research on any of the following
operating system in each of the following specified years?

Basic survey includes questions for grassroots support. Unlike the above three
supports, grassroots support can be applied to all survey users. Therefore, all users from
the above surveys are directed to this category. In this survey, users need to answer the
three questions for grassroots support for each specified year.

Feature survey contains questions to be answered for ease of learning, ease of use
and reliability. For ease of learning, survey users are asked to enter the approximate time
for them to learn an operating system. For ease of use, all the sub-features are listed. For
each of the sub-feature, based on user’s experience for this sub-feature, user can choose
one of the five ratings from “excellent” to “not good” for a given operating system. For
reliability, users are asked to provide the number of system failures per month when they
use an operating system.

Design survey is used particularly for design factors. In this survey, all the sub-
features of design are listed. For each of the sub-feature, user is asked to choose whether
the feature is “excellent”, “very good”, “good”, “acceptable” or “not good” for a given
operating system.

All information gathered from the survey webpage is stored in a data warehouse.

The survey webpage is open publicly on the Internet. All NJIT students, faculties and

CHAPTER 7

DATA ANALYSIS & MODEL CONSTRUCTION

In the previous chapters, the following questions have been discussed: how to find out the
relevant factors, how to quantify those relevant factors, and how to collect data for them.
After the data warehouse has been established, the new questions are: how to analyze
these data, how to construct the proper statistical models to describe the history of
operating systems, and how to extend the statistical models to predict the evolution of

operating systems.

7.1 Constructing Statistics Models
In this project, SPSS statistic toolbox [133] will be used to help describe historical
operating system trends and predict the evolution of future trends. First, the data collected
will be analyzed to extract some descriptive properties to characterize the evolution of
operating system over time. Second, the available data will be used to predict the future
trends of operating systems.
Before the statistical model is. presented, the following premises are considered:

o Intrinsic factors are adopted as independent variables for the model, as they
influence the destiny of an operating system.

e Extrinsic factors are adopted as dependent variables in the model; the status of
an operating system is not represented by the simple binary term of
successful/unsuccessful, as this would be arbitrarily judgmental. Rather, the
status of an operating system is represented by the vector of all the extrinsic
factors.

e Because many extrinsic factors feed unto themselves (e.g. the more grassroots
support an operating system has, the more grassroots support it may have in the

74

75

future) and many influence others (e.g. institutional support influences
industrial support), past values of extrinsic factors are adopted as independent
variables.

Overall, the independent variables of the model include the intrinsic factors and the
historical data of extrinsic factors, and the dependent variables include the future values
of the extrinsic factors.

The statistical model is built to ﬁse principle component analysis (PCA)[134],
Pearson correlation analysis in this project to elucidate the relationships between
independent variables and dependent variables. After analyzing the inputs, multiple
regression is used to predict future evolution of an operating system by feeding it time-
independent intrinsic factors, as well as past and present values of the extrinsic factors.

Section 7.2 will discuss how to analyze factors, and how to construct models will be

discussed in Section 7.3.

7.2 Independent Data Analysis

7.2.1 Factor Analysis
The factor analysis [134] is used to do the startup research on raw data. The
independence of the variables in gxioups is evaluated for further research. The relatively
small number of latent factors proved that many variables are highly correlated and need
either adjustment or combination, which make it necessary to do canonical analysis.
Factor analysis is a generic term for a family of statistical techniques concerned
with the reduction of a set of observable variables in terms of a small number of latent
factors. It has been developed primarily for analyzing relationshipé among a number of

measurable entities (such as survey items or test scores). The underlying assumption of

76

factor analysis is that there exist a number of unobserved latent variables (or “factors™)
that account for the correlations among observed variables, such that if the latent
variables are partially out or held constant, the partial correlations among observed
variables all become zero. In other words, the latent factors determine the values of the
observed variables. Each observed variable could be expressed as a weighted composite
of a set of latent variables. The primary i)urpose of factor analysis is data reduction and
summarization. Factor analysis has been widely used, especially in the behavioral
sciences, to assess the construct validity of a test or a scale.

Once the input data are prepared for the analysis, it is necessary to decide on a
factoring technique, that is, a method of extracting factors. There are a variety of different
methods of factor extraction available in SPSS and PCA statistical analysis methodology
1s used to identify a small number of factors that explain most of the variance observed in
a much larger number of manifest variables. The following goals are to be reaéhed:

e Reduce the number of components.

e The extracted components should preserve most of the relations with the
initial factors.

In this project, three sets of extrinsic factors data (1997, 2000, and 2003), and 15
operating systems will be used as kobservations. So in final model, the construction of
each factor is based on 45 observations.

Table 7.1 shows the facfor analysis for intrinsic factors. From Table 7.1, six factors
could be used to cover 95.903% of the variance. That means that six-factor model could
be used to do factor analysis, while keeping most of the information. Hence for all intents
and purposes, the six derived components represent a space of dimension six rather than

nineteen. Thus, six components from the initial nineteen intrinsic factors are extracted.

77

Table 7.1 Factor Analysis for Intrinsic Factor Matrix: Total Variance (Extraction Method:
Principal Component Analysis.)

Component Eigenvalues % of Variance Cumulative %
1 9.511 55.949 55.949
2 2.435 14.326 70.276
3 1.992 11.719 81.994
4 1.017 5.981 87.975
5 0.983 5.780 93.755
6 0.365 2.148 95.903
7 0.270 1.586 97.489
8 0.239 1.404 98.892
9 0.116 0.680 99.573
10 0.064 0.377 99.950
11 0.008 0.050 100.000
12 0.000 0.000 100.000
13 0.000 0.000 100.000
14 0.000 0.000 100.000
15 0.000 0.000 100.000
16 0.000 0.000 100.000
17 0.000 0.000 100.000

Table 7.2 Rotated Factor Pattern for Intrinsic Factors Component Matrix (Extraction
Method: Principal Component Analysis.)

. Component

Intrinsic Factors I > 3 4 5 5
CPU 0.746 10.3120.407{-0.190{ 0.331 | 0.026
Memory 0.620 10.202]0.699{0.198] 0.004 | 0.118
Scalability 0.462 |10.540}0.5271-0.125| 0.261 | 0.172
10 : 0.391 10.354]0.664{0.407{ 0.178 | 0.217
Consistency Of Interaction Protocol | 0.485]0.215/0.56410.5901-0.027 | -0.090
System Services -0.040{0.222{-0.007/0.964| 0.027 | 0.041
Range Of Programming Languages 0.700 {0.113]0.232]0.637} 0.111 | 0.035
Distributed Computing 0.933 1-0.131{0.301 {-0.049{ 0.010 { 0.047
Network Service 0.340]10.441]0.530]0.330§ 0.259 | 0.451
Deadlock 0.39510.572]0.175]0.134] 0.587 | 0.251
Security Protection 0.883 10.200]0.057]0.296| 0.289 | 0.040
Compatibility 0.064 10.212/0.274]0.149] 0.862 | -0.258
Openness 0.175 |-0.004/0.871}-0.008| 0.412 | -0.073
Design 0.335 10.676]0.229{0.480{ 0.240 | 0.014
Ease of Use 0.018 |10.952]0.005{0.070{ 0.177 | -0.025
Reliability 0.170 10.155]0.112}-0.033] 0.909 | 0.233
Ease Of Learning -0.027{0.82410.2310.487] 0.092 | 0.081

78

From another perspective, by using previous intrinsic factor matrix, the six-factor
model could be constructed. Table 7.2 shows the relationships between new independent
factors (components) and original intrinsic factors. As it shows, each of the 19 factors is
actually covered by at least one of the six refined components. For instance, component 1
is highly related to factor distributed computing (0.933), security protection (0.883), CPU
(0.746). Component 4 covers factofs of system services (0.964) and range of
programming languages (0.637).

Thereforg, the extracted 6 components satisfy the criteria listed at the beginning of
this section.

For extrinsic factors, the same method will be used. Table 7.3 shows the factor
analysis for extrinsic factors. From this table, the following conclusion can be drawn. For
the extrinsic factors, three extrinsic factors will cover 98.056% information. Also, an
interesting fact shows that five extrinsic factors will cover 100% information. Table 7.4
shows the five-factor models. However since there are only five extrinsic factors, all of

them will be used.

7.2.2 Canonical Correlation Analysis

There are several measures of correlation to express the relationship between two or more
variables. Canonical Correlation [135] is an additional procedure for assessing the
relationship between variables. Specifically, this analysis allows the analysis of the
relationship between two sets of variables. If the square root of the eigenvalues is taken,
then the resulting numbers can be interpreted as correlation coefficients. Because the
correlations pertain to the canonical varieties, they are called Canonical Correlations.

Like the eigenvalues, the correlations between successively extracted canonical variants

79

are smaller and smaller. Therefore, as an overall index of the canonical correlation
between two sets of variables, it is customary to report the largest correlation, that is, the
one for the first root. However, the other canonical variants can also be correlated in a
meaningful and interpretable manner.

Table 7.3 Factor Analysis for Extrinsic Factor Matrix (Extraction Method: Principal
Component Analysis.)

Compdncnt Eigenvalues % of Variance Cumulative %
1 4.246 84.927 84.927
2 0.420 8.396 93.323
3 0.237 4.732 98.056
4 0.078 1.556 99.611
5 0.019 0.389 100.000

Table 7.4 Rotated Factor Pattern for Extrinsic Factors

Component 1 Component 2 Component 3
Government 0.967 -0.080 -0.041
Institution 0.906 0.190 -0.371
Industrial 0.965 -0.206 -0.003
Grassroots 0.925 -0.322 0.176
Organization 0.838 ' 0.481 0.257

In this project, Pearson Correlation [134,135] is used to analyze the relationship
among all factors. By dbing this, the association between several intrinsic factors and one
extrinsic factor is observed. Most results show a relationship, which counts for part of the
feature. Different intrinsic factors of an operating system do have different impact on the
overall performance by using this model. Please check Table 7.5 for the question: “How

is the extrinsic factor government support affected by the intrinsic factors?”

80

Table 7.5 shows that different intrinsic factors have different impact on the
extrinsic factor of Organizational support. Among all these intrinsic factors, some of
them are more weighted: security protection, scalability, design and network service have
more correlation value for this extrinsic factor than other intrinsic factors.

Table 7.5 Sample Correlation Results for Intrinsic Factors Only

Factor Government
Support

Security Protection 0.883
Scalability 0.789
Design 0.750
Network Service 0.747
Deadlock 0.709
(0) 0.666
CPU 0.643
Range Of Programming Languages 0.612
Memory 0.589
Compatibility 0.589
Consistency of Interaction Protocol 0.578
Ease of Learning 0.553
Reliability 0.455
Openness - 0.426
Ease of Use 0.425
Distributed Computing 0.408
System Services 0.291

7.2.3 Statistics Conclusion
From the previonis sectiéns, two aspects of data analysis are discussed.

First, for intrinsic factors, the factor analysis showed that only six extracted
components sufficient to contain more than 95% of the operating systems internal
information. Consequently, it shows that the nineteen latent intrinsic factors are highly
correlated and they are not independent from each other. To construct useful regression
model for the historical trends, the independent extracted components, instead of original

factors, will be used. From the factor analysis, it can be inferred that the six components

81

that are derived from the intrinsic factors do represent important features of the operating
systems.

The canonical correlation analysis result shows which factors are mostly related
and how much are they related. It is also a good startup to construct regression model,
because the newly constructed independent factors, instead of the original factors, will be

used to construct the regression model.

CHAPTER 8

TOWARDS A PREDICTIVE MODEL

In the previous chapter, factor analysis has been done; the independent variables
(including the new six components extracted from the original 19 intrinsic factors and all
the 5 extrinsic factors) have been deﬁvéd. By doing canonical correlation analysis, two
correlation models for intrinsic factors only and for all factors have been made to show
the correlation among those factors. This chapter will discuss how to construct regression
models by using these independent intrinsic and extrinsic factors and analysis results

from the constructed model.

8.1 Regression Model

8.1.1 Regression Analyses
Regression analyses [134,135] are a set of statistical techniques that allow one to assess
the relationship between one dependent variable (DV) and several independent variables
(IVs). Multiple regression method is an extension of bivariate regression in which several
independent variables are combined' to predict the dependent variable. Regression may be
assessed in a variety of manners, two of the common used are as follows:
o Partial regression and correlation: Isolates the specific effect of a particular
independent variable controlling for the effects of other independent variables.
This method will try to find out the relationship between pairs of variables by
recognizing the relationship with other variables.
e Multiple regression and correlation: Multiple regression and correlation method
combines the effect of all the variables acting on the dependent variable; for a net,

combined effect. Thus the resulting R2 value provides an indication of the
goodness of fit of the model.

82

83

In the social and natural sciences multiple regression procedures are very widely
used in research. In general, multiple regression allows the researcher to ask (and
hopefully answer) the general question “what is the best predictor?”. For example,
educational researchers might want to learn what the best predictors of success are in

high-school [136].

8.1.2 Multiple Regression Model
Therefore, when using multiple regression and correlation it is often the case that a
dependent (or response) variable may depend on more than one independent (or
explanatory) variable. Based on the requirements and the different usages of the above
two dissimilar regression and correlation methodology, multiple regression method are a
good choice to analyze the operating systems revolution.
The multiple regression equation is of the form:
Y=a+BXi+B26+ ..+t +E€
Where:
o= the predicted value on the DV,
o= the 7 intercept, the value of & when all X's are zefo,
X = the various IVs; |
8 = the various coefficients assigned to the IVs during the regression,
€ = an error term.
q = dimensional hyperplane (number of factors)
Accordingly, a different 9 value is derived for each different case of independent
variable. The goal of the regression is then to derive the B values, the regression

coefficients, or beta coefficients. The beta coefficients allow the computation of

87

Multiple regression model for operating systems trends consists of 5 parts, one for
each dimension. Due to the number of factors used in the model, there will be a balance
between model reliability and the information completion. The more factors are used, the
more information will be included, but regression model will be less reliable. The fewer
factors you used, the less information will be included, but the regression model will be
more reliable. The following set of ﬁgu?es (Figure 8.2 A~C) shows an example of the
process to create a report based on the SPSS analysis model for extrinsic factor of
Governmental Support.

In Figure 8.2, one historical extrinsic factor and 19 independent intrinsic factors are
used as input factors against on the multivariate regression model. This report will show
the regression model for one extrinsic factor: “How much government support an
operating system will receive?” The parameter will show the impact of each input
independent factor to the output extrinsic factor. The other regression reports can be
found in the website this project uses. By using all of the parameters, the regression

models are constructed for historical operating system trends.

8.2 Predictive Model
From the previous secfion, the derivative prediction models have been constructed for
each extrinsic factor in 2006, by submitting the value in 2000 to the 97 position and 03 to
the 2000 position in the model.
Eo06 = at* I+ B * Exp3 + ¥ * Eao00 + €
Where:

Esp06: Value of extrinsic factors in 2006

88

I: Value of intrinsic factors

oc Parameter matrix for intrinsic factors

Eyg03: Value of extrinsic factors in 2003

B: Parameter matrix for extrinsic factors in 2003

-Eap00: Value of extrinsic factors in 2000

7. Parameter matrix for extrinsic fa<;,tors in 2000

¢: Constant value -

Both intrinsic factors and extrinsic factors are considered in the model. Least square
[134,135] is used as the criteria to judge whether the regression model converges. SPSS
is used to calculate the parameter matrix so that the least square goal is met. When least
square is met, the output with this parameter matrix is the closest to all observations that
are fed into the model. Therefore, the model can be used to describe the trends of
operating systems.

Some of the predictions are showed in the rest of this chapter. Please check “Trends
of Government Support in 2006”. Figure 8.3 is the predictive results.

From above graphs, the five operating systems that will receive most of the
government support in 2006 will be: Linux, Solaris, UNIX, IBM AIX and Windows.
Figure 8.3 shows interesting trends for operating system. It seems like from 2003 to 2006,
Linux will overtake windows as the operating systems that will receive the most
organizations support. All other operating systems will stay relatively stable in terms of

the level of organizational support they receive.

CHAPTER 9

EXTENDED FEATURE ANALYSIS

After the trends of individual operating system are predicted by considering all the
independent variables, another perspective observation is worth looking at. What will the
operating system looks like in the fuune? Or what features are important in the future? A
more concrete example of this is, for instance, how does openness affect the evolution of
operating systems? Or more specifically, how does openness affect the future

organizational support of an operating system?

9.1 Extended Feature

In order to find out answers for such kinds of questions and provide some quantitative
proof, the concepts of intrinsic factors and extrinsic factors need to be expanded. And
thus comes the concept of Extended Feature. The extended feature is calculated in the
following way:

Given an intrinsic factor and an extrinsic factor, the corresponding Extended
Feature is defined as the sum of the produét of an operating system’s extrinsic factor and
its intrinsic factor, including all operating systems under consideration.

So the mathematical representation is as follows:

Extended (feature, year) = Z Extrinsic(os, year) * Intrinsic(feature, os)
0seOS

Where:
Extended(feature, year): the extended feature of the year

feature: an intrinsic factor

93

94

os: an operating system in the candidate operating systems
Extrinsic(os, year): one extrinsic factor of the OS in the year
Intrinsic(factor, osj: the intrinsic factor of the corresponding operating system
According to the above description, the properties of extended feature could be
summarized as below:
e Extended Feature is related to oné extrinsic factor and one intrinsic factor.
e Extended Feature changes over time.

e Extended Feature is not attached to one particular operating system. It is an
overall concept that reflects characteristics of all operating systems in general.

Since most of the intrinsic factors are quantified in different dimensions, first they
need to be normalized into a single magnitude. After normalization, the relationship
between a cértain intrinsic factor and extrinsic factor are considered. For a given extrinsic
factor, a diagram for every intrinsic factor’s variation through the years is picked out. By
integrating all the curves for the same extrinsic factor in one diagram, the quantitative

impact of different features on one extrinsic factor can be compared.

9.2 Analysis of Results
In Figure 9.1, some extended featﬁre analysis for one extrinsic factor — organizational
support are shown. In this group of analysis, five intrinsic factors are picked out:
openness, security/protection, design, range of services and compatibility. For each of the
intrinsic factor, the extended feature against organizational support for every observed
year is derived. So that from the figure, not only the changes of extended features could
be exposed, but also the comparison between extended feature of two different intrinsic

factors could be discovered.

99

9.3 Conclusion

In this chapter, the following questions are addressed by introducing concept of Extended
Feature: What will the operating system looks like in the future? What features are
important in the future? Extended Feature is related to one extrinsic factor and one
intrinsic factor and changes over time. Furthermore, Extended Feature is not attached to
one particular operating system. It is an olver-all concept that reflects characteristics of all
operating systems in general.

By analyzing the extended features, the relationships between selected intrinsic
factors and the given extrinsic factor can be concluded as following:

e Openness, security/protection, design, range of services and compatibility are
important features for organizational support and will continue to be crucial for
organizational support in 2006. Among these factors, openness,
security/protection and design will increasingly be more important than range of
services and compatibility in 2006.

o Ease of use, ease of learning, compatibility, consistency of interaction protocols
and range of services are important features for grassroots support and will
continue to be crucial for grassroots support in 2006. Among these factors, ease of
use, ease of learning and compatibility will increasingly be more important than
range of services and consistency of interaction protocols in 2006.

o FEase of use, ease of learning, reliability, openness and range of services are
important features for institutional support and will continue to be crucial for
institutional support in 2006. Among these factors, range of services, ease of
learning, ease of use, and openness will increasingly be more important than
reliability in 2006.

o Compatibility, reliability, portability, design and security/protection are important
features for industrial support and will continue to be crucial for industrial support
in 2006. Among these factors, Compatibility, reliability and portability will
increasingly be more important than design and security/protection in 2006.

e Security/protection, reliability, ease of use, portability and openness are important
features for governmental support and will continue to be crucial for
governmental support in 2006. Among these factors, Security/protection,
reliability and ease of use will increasingly be more important than portability and
openness in 2006.

CHAPTER 10

MODEL VALIDATION AND IMPROVEMENTS

10.1 Model Validation

In this empirical study, operating systems trends were considered, their evolution over
time was observed; the evolution by means of time series was recorded, and the general
statistics models for how these trends evolve and feature analysis have been constructed.

After the statistics models for operating system evolution have been constructed, a
number of methods need to be introduced to assess the reliability of these models.
Assessing the quality of a model is called mo&el validation. Model validation is
something that needs to be done both by producers and users of models. A model is just a
human being's hypothesis of a simplified representation of the real world, so it is always
a good practice to do validation to check the reliability of a model.

In this project, the following methods will be used to validate the statistics models:

. Check the difference between the actual values and the predictive values
from the statistical models.

. Use historical data of the other operating systems that are not in the
operating system list to validate and correct the model.

. Revise these models based on the newest evolution of operating system.

F-Statistic[134,135], which is a standard statistical method to check if there are
significant differences between groups, is used to validate the prediction.

In the F-table, for significant level a = 0.05, F must be greater than 4.49 to reject
the hypothesis of statistical correlation; because the value of F is much less, the

hypothesis is validated.

100

102

values match actual values very well and this statistical model is valid to describe the

historical and current trends of operating systems.

10.2 Model Improvement

10.2.1 Weakness
There are no perfect statistics modéls. A famous statistic statement is: “All models are
wrong, but they are useful.” Instéad of perfect models, reasonable models are maintained
to describe the historical trends and current evolution of operating systems. Somehow,
these models can also be used as good references to predict the future trends of operating
systems. This multiple regression model for operating systems trends has the following
weaknesses.r |

The first weakness of the regression model is that the number of the variables is
larger than the number of observations. It makes the regression models to be not unique.
To avoid that problem, two ways will be uséd to refine the models. Most correlated
variables are always manually selected into the model first. SPSS will also automatically
delete the dependent 19 variables until variables (equal to the number of the observations)
can be decided. In the future, it is ﬂoped that more operating system will be included into
the research so the number of observation can increase and make the model sounder.

The second weakness 1s that the data may not in proper format or not complete. In
the data survey process, some problems are difficult to solve. And bias may be caused.
For example, not every company responds to the survey, so the information is incomplete.

If the silent companies are tending more to use one kind of specific operating system, a

103

bias will be caused by the available data. Also, it is hard to get cooperation from
government, because they are not willing to participate in the survey.

The features of the operating systems may prove that multiple regression models
are not the best model for analysis. The feature of a new operating system may appear to
be like the description below: “An operating system will first expand after it’s created,
increasing even in exponent way. Then, it goes to the summit in a few years. As time is
going on and newer operating system comes out, it begins a decreasing period. Then after
a change period, it keeps somehow constant. There will not have much vibration for the
rest of its life. The lifecycle of an operating system likes a bell curve.”

This description is reasonable based on the common sense of an operating system.
However, it is far from what is obtained in this multiple multivariate models. So that
multiple multivariate regression may not be very appropriate here, or can be considered
just as an approximation. However, more data is needed to track the whole process

instead of three periods.

10.2.2 Possible Improvement
To investigate the future data, more observations are needed. And based on more data,
TIME SERIES method can be used to construct better statistics models. There are two
main goals of time series analysis: identifying the nature of the phenomenon represented
by the sequence of observations, and predicting future values of the time series variable.
Both of these goals require that the pattern of observed time series data is identified and
more or less formally described.

Time series data often arise when monitoring industrial processes or tracking

corporate business metrics. Time series analysis accounts for the fact that data points

104

taken over time may have an internal structure, such as autocorrelation, trend or seasonal
variation. The below introduction of Time Series: [133,134,135]

Time series model is an ordered sequence of values of a variable at equally spaced
time intervals. The usage of time series models is two fold:

e Obtain an understanding of the underlying forces and structure that produced
the observed data. ’

. Fit a model and proceed to forecasting, monitoring or even feedback and feed
forward control. ‘

The fitting of time series models can be an ambitious undertaking. There are many
kinds of models, such as Box-Jenkins ARIMA models, Box-Jenkins Multivariate Models,
Holt-Winters Exponential Smoothing (single, double, triple), and Box-Jenkins ARIMA
models.

The term “univariate time series” refers to a time series that consists of single
(scalar) observations recorded sequentially over equal time increments. Some examples
are monthly CO, concentrations and southemn oscillations to predict El Nino effects.

Although a univariate time series data set is usually given as a single column of
numbers, time is in fact an implicit variable in the time series. If the data are equi-spaced,
the time variable, or index, does not need to be explicitly given. The time variable may
sometimes be explicitly used for plotting the series. However, it is not used in the time
series model itself.

Box-Jenkins Multivariate Models

The multivariate form of the Box-Jenkins univariate models is sometimes called the

ARMAYV model, for Auto Regressive Moving Average Vector or simply vector ARMA

process.

105

The ARMAYV model for a stationary multivariate time series, with a zero mean
vector, represented by

%y = (T1e, Tapy ooy Tnt)? —00<L< 00

is of the form

=L+ L at+...+ ¢p$£—p +a;
—ba;_, —bha; o — .. - '9q0:—q

Where
ﬁiz{m.jjb k=1,2,...,p
ﬂfi‘-:{eﬁ-ﬁ}s k=1,2,...,¢

X; and at are n x 1 column vectors with at representing multivariate white noise are

n x n matrices for autoregressive and moving average parameters
E[at]=0
E(“%“;—k) =0 k#0
Bloe, =%, k=0
where a is the dispersion or covariance matrix of at a,

As an example, for a bivariate series withn =2, p =2, and q = 1, the ARMAV(2,1)

model is:

106
Fae § Prar Prie Xre—1
(-'521) B (o1 P) (Loty) +
(Pon1 Pouo) (T2)
$221 dam T2
+(G) _ (P Priz) (Gu_l)
Gt Pra1 Prez i1

With

a
a, = 1¢
T
The estimation of the matrix parameters and covariance matrix is complicated and

very difficult without computer software. The estimation of the Moving Average matrices

is especially an ordeal. The ARV model is given without the MA components:
Ty =P1%) +PaZi ot ...t Gy + Gy
Where
o =1t} k=12,...,p

Xt is a vector of observations, Xlt, X2, ..r » Xne at time t
a, is a vector of white noise, ajq, ay, ... , ay at time t
is a n X n matrix of autoregressive parameters

E[a] =0

Elma, =0 k#0

Elae,)=%, k=0

107

Where Y, = E[a,,a.] is the dispersion or covariance matrix

A model with p autoregressive matrix parameters is an ARV(p) model or a vector
AR model. The parameter matrices may be estimated by multivariate least squares, but
there are other methods such as maximum likelihood estimation.

There are a few interesting properties associated with the phi or AR parameter
matrices. Consider the following example for a bivariate series withn =2, p =2, and q =

0. The ARMAV(2,0) model is:

(Xy) = (L Pz) (T) + (Pou1 PD2uz) (T2) + (ay)

Y 121 Dz Y1 Poo1 Doz Y2 Gt

Without loss of generality, assume that the X series is input and the Y series are
output and .that the mean vector = (0,0). Therefore, transform the observation by
subtracting their respective averages.

The diagonal terms of each Phi matrix are the scalar estimates for each series, in
this case:

?51,11, ?”2,11 for the input series X, ¢1.22, ¢2'22 for the output series Y.

The lower off-diagonal elements represent the influence of the input on the output.
This is called the transfer mechanism or transfer-function model as discussed by Box and
Jenkins. The terms here correspond to their terms.

The upper off-diagonal terms represent the influence of the output on the input.
This is called “feedback”. The presence of feedback can also be seen as a high value for a

coefficient in the correlation matrix of the residuals. A “true” transfer model exists when

there is no feedback. This can be seen by expressing the matrix form into scalar form:

Ty = P11 + Poa1%i_o+ Pras¥i_1 + Poaali_2 + @i

108

Yi = Prooty + domle 2+ Pr2iTiy + P2+ G

Finally, delay or “dead” time can be measured by studying the lower off-diagonal
elements again. If, for example, #’1,21 is non-significant, the delay is 1 time period.
Holt-Winters Exponential Smoothing (single, double, triple)

~ This is a very popular scheme to produce a smoothed Time Series. Whereas in
Single Moving Averages the past obsérvations are weighted equally, Exponential
Smoothing assigns exponentially decreasing weights as the observation get older. In other
words, recent observations are given relatively more weight in forecasting than the older
observations.

In the case of moving averages, the weights assigned to the observations are the
same and are equal to 1/N. In exponential smoothing, however, there are one or more
smoothing parameters to be determined (or estimated) and these choices determine the
weights assigned to the observations.

By previous analysis, Time Series method can focus on the internal trend of the
data, which is just the purpose — to find the internal trend of the development of an
operating system. However, Time Series requires much more data. It needs a long time

following and correct recording.

CHAPTER 11

CONCLUSION AND FUTURE WORK

11.1 Summary

In this dissertation, a tentative effort has been discussed to characterize operating system

evolution and how they evolve.

In Chapter 2, the following questions are point out:

Is it possible to predict if an operating system will succeed or fail?
What will be the operating systems that will be studied?
What are the possible factors which can affect the trend?

What information should be collected in order to determine if an operating
system succeed or fail?

How to quantify the factors and find a model/function to predict the trends?
What are the results of the evolution analysis for operating system?

Beyond the analysis of the evolution of individual operating system, the
evolution of operating system features is also analyzed. So that, even if

operating system’s success or failure can not be told, the future of operating
systems can be characterized by their main attributes.

From this project, the answers for the above questions are addressed:

Yes, it is possible to predict if an operating system will succeed or fail.

15 selected operating systems are investigated. They are UNIX, Solaris/Sun
OS, BSDs (including FreeBSD, OpenBSD, NetBSD), 0S/2, Windows, MS-
DOS, MAC OS, Linux, NetWare, HP-UX, GNU Hurd, IBM AIX,
Compaq/DEC VMS, Multics, OS360.

Information of two categories of factors: Intrinsic factors and extrinsic factors
are collected to predict the trends of operating systems.

Five different quantifying methods are applied on all the factors and a
statistical model is built to predict the trends.

109

110

e The detailed results of the evolution analysis for operating system are
discussed in Chapter 7 and Chapter 8.

e Beyond the analysis of the evolution of an individual operating system,
evolution of operating system features are analyzed by introducing the
concept of extended features. Thus the future of operating systems is
characterized by their main attributes.

As part of computing engineering technology evolutions, this dissertation is
concentrated on a family of the evolutions: operating systems. First, the author discussed
what could be the possible factors that can affect the trends of operating systems. The
evolution of operating systems is affected by a dizzying array of factors, which are
themselves driven by a wide range of sources, such as market forces, corporations,
government agencies, standards bodies, academics, etc. In author’s point of view, both
intrinsic factors and extrinsic factors would have impact on the evolution of operating
systems. After discussing the definition of intrinsic factors and extrinsic factors, a group
of factors that could be used to watch operating systems trends are identified.

In order to use empirical method to analyze the evolution, an approach must be
found to quantify intrinsic factors and extrinsic factors of operating systems. To quantify
intrinsic factors, all features of an operating system are reviewed to check if they match
these factors, and scores are assigned for them. Extrinsic factors are not the same as
intrinsic factors. Basically, they are questions for different fields. Extrinsic factors are
questions that ask for the nilmbers, so the answers will be used as the value of this
extrinsic factor.

Different quantifying methods have been applied to different factors according to

their nature. For intrinsic factors, the methodologies include numeric formula,

111

hierarchical sub-feature, cumulative sub-feature and discrete scale sub-feature. For
extrinsic factor, similar techniques are applied.

Furthermore, collecting data involves many resources and approaches. Text books,
authorial books; system manuals and hand books; journals, papers and other articles;
internet resources all have been referenced. In addition, for those that are lack of
resources or do not match the requirg:meﬁts for this project, a survey web has been set up
for the purpose.

A set of operating systems (15) has been selected, and intrinsic factors are
evaluated based on the applicable version of each operating system. For extrinsic factors,
surveys have been done for each field of them in 1997, 2000 and 2003. The value of
intrinsic factor will not change during the time, while the value of extrinsic factor does
change in different period. All data that are collected through survey webpage are stored
in the database. Check the complete survey results at: http://swlab.njit.edu/OS/survey.htm.

Based on all the collected data, statistics methods are used to analyze these data.
Principle components analysis (PCA) models and Canonical Correlation analysis are
constructed to analyze the data and describe the relationships among these factors and the
historical advancements of each operating system. Correlation among these factors has
been analyzed and newi independent components are constructed by using factor analysis.
Multiple regression method has been used to construct the statistics models for operating
system evolutions.

Beyond the analysis of the evolution of individual operating system, the evolution

of operating system features are also analyzed. So that, even if an operating system’s

112

success or failure can not be told, the future of operating systems can be characterized by
their main attributes.

After statistics models that are constructed will be extended to do provisional
prediction for future trends and characterizing the future attributes. The prediction model

can be validated by future data.

11.2 Evaluation

In this study for operating system evolution characterization, the author merely attempt to
capture observed behaviors by empirical laws. After having collected enough data and
constructed statistics models, the trends of operating systems and the individuality of
operating system attributes could be understood better. By factor analysis, each factor
gets a parameter. The guess is that the factors with larger parameter will have bigger
impact to evolution of operating systems. By this means, the following conclusions can
be drawn:

e From the statistics models, generally, the parameters of extrinsic factors are
greater than the parameters of intrinsic factors. So, extrinsic factors have
bigger impact than intrinsic factors.

e Extrinsic factors can be used to check if an operating system succeeds or fails.
They are also very important factors to predict the future evolution of an
operating system. In author’s point of view, if an operating system can earn
support from the majority of one field, it can be called a successful operating
system, such as Sun Solaris, UNIX. If an operating system can earn support
from the majority of grassroots and every field, it can be considered as very
successful operating system, such as Windows, Linux.

e Although intrinsic factors have less impact than extrinsic factors, they do

impact the trends of operating systems, especially security & protection,
openness, and ease of use.

113

Besides, the concept of extended feature is defined and analyzed and compare
different extended features are compared. How the intrinsic factors have affected the
evolution of extrinsic factors is found out.

The following conclusions could be drawn for extended feature analysis:

e Extended feature can be used to analyze the relationship between intrinsic
factors and certain extrinsic factors.

. Because extended feature is not bound to a particular operating system, it
can be utilized to analyze intrinsic factors in general rather than one specific
to an operating system.

. The relative value of different extended feature can be used to rank’ the
importance of different extended feature as to the evolution of an operating
system.

Another very important factor is the time. The data collected show that the feature
of a new of)erating system may appear to be like the description below: When an
operating system is introduced, there are some enthusiasts who are willing to learn it. The
operating system could expand at first, increases even in exponent ways. After a while,
there will be more people who would like to use this operating system. Then, as newer
operating systems come out, the older operating system will pass its pinnacle and begin
to decrease. After a changing period, it keeps somewhat constant because there are
certain groups of people who would like to stick to this operating system. The operating
system will exist without much vibration in the rest of its life. The life cycle of an
operating system is very similar with Geoffrey A. Moore’s technology adoption life
cycle[137]. Figure 11.1 shows the general lifecycle of an operating system.

The bell curve in Figure 11.1 is very useful as the general analytical model for the

trends of operating systems. The empirical results could be used to explain why a

114

successful operating system could earn the support from majority programmer and why

the other ones failed although a lot of innovators support them.

11.3 Future Work
A lot of data and interesting survey results have been collected in this empiriba] research
for operating system trends, but they are étill not enough. If more data could be collected
in the future, they can be used to improve current statistics models. Instead of using
correlation and regression models, more advanced statistics methods, such as time series
method, can be used to improve current models in the future.

Empirical study for operating systems is just an exploratory beginning of the whole
project of computing engineering trends. After using empirical method, analytical method
will be used for operating system trends. Future work will not only attempt to capture
observed behaviors by empirical laws, but also attempts to understand the phenomena

that underlie observed behavior and build models that capture these phenomena.

Innovators Early Early Late Laggards
Adopters Majority Majority

Figure 11.1 General Lifecycle for Technique Adoption.

115

After studying the trends of operating systems, the other fields of software
engineering will be done in near future. For example: the trends of networking, the trends
of database, the trends of management system, etc. All of these trends will use the similar
methods to analyze. Generally, empirical method will be used first. After having better
understanding of trends behavior, analytical method will used for them to understand the

cause/effect relationships.

[1]

(2]

(3]
(4]

(5]

[6]

(7]

(8]

(9]

(10]

[11]

[12]

(13]

[14]

REFERENCES

Y.Chen, AMili, L.Wu, R.Dios, K.Wang. Programming Language Trends: an
Empirical Study. Submitted to 26th International Conference on Software
Engineering.

H.Lorin, H.M.Deitel. Operating Systems. Addison-Wesley Publishing Company,
Inc, 1981.

Gary J.Nutt. Operating Systems: A Modern Perspective. 2nd ed. 2000.

Andrew S.Tanenbaum. Modern Operating System. Second Edition ed. Upper
Saddle River, New Jersey: Prentice Hall, 2001.

Auvi Silberschatz, Peter Galvin, Greg Gagne. Operating System Concepts. Sixth
ed. John Wiley & Sons, Inc, 2003.

Carnegie Mellon Software Institute. View the Quality Measures Taxonomy.
http://www.sei.cmu.edu/str/indexes/glossary. 2003.

Intel Corporation. Intel Solution Services white paper: Linux Scalability.
http://www.intel.com/internetservices/intelsolutionservices/downloads/linux_scal
ability.pdf. 2003.

Donald R.Horer. Operating Systems: Concepts and Applications. London: Scott,
Foresman and Company, 1989.

Stanley A.Kurzban, Thomas S.Heines, Anthony P.Sayers. Operating Systems
Principles. Second ed. New York: Van Nostrand Reinhold Company, 1984.

Andrew S.Tanenbaum, Albert S.Woodhull. Operating Systems, Design and
Implementation (second edition). Prentice Hall, 1996.

Christian Green. "EASE OF USE",
http://product.info.apple.com/productinfo/macadvantage/50advantages/ease.html.
1996.

S.Cranefield MPMNaPH. Ontologies for interaction protocols. In Proceedings of
the Workshop on Ontologies in Agent Systems 2002.

The Open Group. Operating System Services; http://www.opengroup.org. 1998.

Microsoft MSDN, http://msdn.microsoft.com. 2003.

116

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]
[29]
[30]

[31]

117

The OS/2 WWW Homepage,
http://www.mit.edu:8001/activities/os2/os2world.html. 2004.

OS/2 Wrap, http://www-3.ibm.com/software/os/warp/. 2003.

Frederick P.Brooks J. The Mythical Man-Month. Addison Wesley Longman,
Inc.,1995.

IBM. Design Basic, http://www-306.ibm.com/ibm/easy/eou_ext.nsf/Publish/6.
2004. :

Kingsley Martin. Total Asset Administration,
http://www.ljx.com/ltpn/october97/total _p32.html. 1998.

John Kirsch. Microsoft Windows NT Server 4.0 versus UNIX. http://www.unix-
vs-nt.org/. 1998.

Lubomir Bic, Alan C.Shaw. The Logical Design of Operating Systems. 2nd ed.
Prentice Hall, 1988.

Olczak, Anatole. Unix and Linux programming manual. Addison-Wesley, 2001.

Olczak A. The Korn Shell: Unix and Linux programming manual /. Addison-
Wesley, 2001.

UNIX system V/386, release 3.2: programmer's reference manual. 1988.
Prentice Hall.

Stephen Whalley. Making PCs easier to use.
ftp://download.intel.com/technology/easeofuse/eous2ps.pdf. Intel Corporation,
1999.

User Interface Consistency Checklist;
http://www.csc.calpoly.edu/~jdalbey/SWE/QA/UIConsistency.html. 2002.

Yamﬁs Grammatis. Network Hierarchy.
http://www.chaminade.org/MIS/lanhier.htm. 1998.

The XFree86 Project http://www.xfree86.org/. 2004.

~ The UNIX System http://www.unix-systems.org/. 2004.

The ISBN Standards http://www.isbn.org/standards/home/index.asp. 2004.

IEEE Standards Association http://standards.iece.org/. 2004.

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

118

IEEE Online; http://www.ieee.org. 2004.
Free Soft, http://www.freesoft.org/. 2004.

Association of Computing Machinery Digital Library; http://www.acm.org/dl.
2004.

The Open Group http://www.opengroup.org/. 2004.

Gancarz M. Linux and the Unix philosophy. Amsterdam; Boston: Digital Press,
2003.

Ken Frazer. History of Solaris .
http://home.earthlink.net/~krfrazer3/Solaris_History 2per.pdf. 2003.

The BSD Family Tree; http://www.daemonnews.org/200104/bsd_family.html.
2003.

Free BSD Official Homepage. http://www.freebsd.org/, http://www.freebsd.com/.
2004.

FreeBSD Forums http://www.freebsdforums.org. 2004.

NetBSD Manual Pages, http://netbsd.gw.com/cgi-bin/man-cgi?++NetBSD-
current. 2001.

NetBSD website http://www.netbsd.org/. 2004.

FreeBSD Handbook, http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/. 2003.

The FreeBSD Handbook, http://www.freebsd.org/handbook/handbook.html. 2004.
OpenBSD website htm://Ww.openbsd.org/. 2004.

Marshall Kirk McKusick, Keith Bostic, Michael J.Karels, John S.Quarterman.
The design and implementation of the 4.4BSD operating system. Reading, Mass.:
Addison-Wesley, 1996.

Thierry Falissard. MVS... a long history: OS/360;
http://mcraeclan.com/Links/Computers/IBMMainframeHistory/mvshist1.htm.
2003.

Microsoft Corp. Architectural Services Firm Draws on .NET Platform to Retain
Competitive Edge, Trim TCO, Build IT Functionality. 2002.

[49]

[50]
[51]

[52]
[53]

[54]

[55]
[56]
[57]
[58]
[59]
[60]

[61]

[62]
[63]

[64]
[65]

[66]
[67]

[68]

119

Microsoft Corporation http://www.microsoft.com. 2004.

A Short History of MS-DOS
http://www.patersontech.com/Dos/Byte/History.html. 1988.

Craig Danuloff MRB. The Mac OS 8 Book: The Ultimate Macintosh User's
Guide. Ventana Communications Group Inc., 1997.

Robin Williams. The Little Mac Book. 5th edition ed. Peachpit Press, 1998.
Mark G.Sobell. A Practical Guide to Linux. Addison-Wesley Pub Co, 1997.

John Purcell, Amanda Robinson. Linux Encyclopedia. 5th edition ed.
Independent Pub Group (Computer); 1997.

Steve Oualline. Discover Linux. IDG Books Worldwide, 1997.

Petersen R. Linux: the complete reference. Berkeley, Calif. Osborne, 2001.
History of Linux (version 2.1). 2003.

The Linux Home Page, http://www.linux.org/. 2003.

Linux Online http://www.linux.org. 2004.

James E.Gaskin JGJG. Mastering Netware 5.1. Sybex, 2000.

Onword Press Development Team JR. Five Steps to HP-UX. OnWord Press,
1993.

Martin Poniatowski. Learning the HP-UX Operating System. Hall Press, 1996.
HURD home http://www.gnu.org/home.html. 2003.

The GNU Hurd - GNU Project - Free Software Foundation (FSF),
http://www.gnu.org/software/hurd. 2003.

IBM AIX: UNIX operating system - an open UNIX solution,
http://www.ibm.com/servers/aix/. 2003.

IBM AIX SL. http://www-1.ibm.com/servers/aix/. 2004.
Andreas Siegert. The AIX Survival Guide. Addison-Wesley Pub Co, 11001.

David Donald Miller. Open VMS Operating System Concepts. 2nd edition ed.
Digital Press, 1997.

[69]
[70]

[71]

[72]
[73]

[74]

[75]

[76]

[77]

[78]
[79]

[80]

[81]

[82]

(83]

[84]

[85]

[86]

120

OpenVMS homepage. http://www.openvms.digital.com/. 2004.
http://www.OpenVMS.org. 2004.

Multics Home page, http://www.mit.edu:8001/afs/net/user/srz/www/multics.html.
2000.

Multics, http://www.multicians.org/ . 2003.
OS/2 Supersite; http://www.os2ss.com. 2001.

George Eckel. Inside Windows NT workstation. Indianapolis, Ind.: New Riders
Pub., 1996.

Windows XP and Windows .NET Server Technical Overview.
http://www.studentconsultant.org/germany/augsburg/files/Win-
TechnicalOverview.pdf. 2003.

HP-UX 11i Operating System, http://www.hp.com/products1/unix/operating/.
2003.

Robbins A. UNIX in a nutshell: a desktop quick reference for System V Release
4 and Solaris 7. O'Reilly, 1999.

Uresh Vahalia. UNIX Internals: the new frontiers. Prentice-Hall, Inc, 1996.
Unix Manual. 2000.

Ray Duncan. The MS-DOS encyclopedia. Redmond, Wash.: Microsoft Press,
1988.

Watters PA. Solaris 8: the complete reference. McGraw-Hill, 2000.

Paul A.Watters. Solaris 9: The Complete Reference (1st edition). McGraw-Hill
Osborne Media, 2002.

Mauro J. Solaris Internals: core kernel components. Palo Alto, CA: Sun
Microsystems, Inc., 2001.

NOVELL: Novell NetWare 6.5, http://www.novell.com/products/netware/. 2003.

Linux Online: Solution and Sizing. http://www .linux.org/docs/ldp/howto/HP-
HOWTO/sizing.html. 2003. '

Moody G. The rebel code: the inside story of Linux and the open source
revolution. Cambridge, Mass.: Perseus Pub., 2001.

[87]

[88]

[89]
[90]

[91]

[92]

[93]

(94]

[95]

[96]

[97]

(98]
[99]
[100]
[101]
[102)]
[103]

[104]

121

McMahan S. Automating Windows with Perl. Lawrence, Kan. R&D Books ;
Emeryville, CA : Distributed in the U.S. and Canada by Publishers Group West,
1999.

Wyke RA. The Perl 5 programmer's reference: Windows 95/NT, Macintosh,
0OS/2 & UNIX. Research Triangle Park, NC: Ventana Communications Group,
1997.

Ledgard HF. ADA, a first introduction. New York: Springer-Verlag, 1986.
Kearney DS. The ADA in practice. Kingston, MA: R.S. Means Co., 1995.

Chapman RB. OS/2 presentation manager programming for COBOL
programmers. Boston: QED Pub. Group, 1993.

Stroustrup B. The C++ programming language. Reading, Mass: Addison-Wesley,
1995.

Kernighan BW. The C programming language. Englewood Cliffs, N.J.: Prentice
Hall, 1988.

Andrews M. C++ Windows NT programming. New York, N.Y.: M&T Books,
1996.

Lindsey CH. Informal introduction to ALGOL 68. New York: North-Holland Pub.
Co., 1977.

Pagan FG. A practical guide to Algol 68. London; New York: Wiley: Wiley,
1976.

Arnold K. The JAVA programming language. Reading, MA: Addison-Wesley,
1998.

Meyers N. Java programming on Linux. Waite Group Press, 2000.

Apple - Mac OS X, http://www.apple.com/macosx/. 2003.

GNU Hurd 0.2 Kernel;Source Tour, http://tamacom.com/tour/hurd/. 2003.
Mac OS X Development, http://developer.apple.com/macosx/. 2003.
Hewlett-Packard Technical Documentation, http://docs.hp.com/. 2003.
Jim Boyce. Microsoft Windows 98 user manual. Indianapolis, IN, 1998.

Rob Tidrow. Windows 98 installation and configuration handbook. Indianapolis,
Ind, 1998.

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]
[119]

[120]

122

Tim O'Reilly, Troy Mott, Mott T. Windows 95 in a nutshell: a desktop quick
reference. Cambridge, O'Reilly, 1998.

Duane Hellums, Hellums Duane. Red Hat Linux: installation and configuration
handbook. Indianapolis, Ind. Que Macmillan USA, 2000.

Nazeeh Amin El-Dirghami, Youssef A.Abu Kwaik. SuSE Linux installation and
configuration handbook. Indianapolis, Ind.: Que, 2000.

Bob DuCharme. The operating systems handbook: UNIX, OpenVMS, 0S/400,
VM, and MVS. New York: McGraw-Hill, 1994.

Greg Lehey. Porting UNIX software: from download to debug. Sebastopol, CA:
O'Reilly & Associates, 1995.

Dale Dougherty, Richard Koman. The Mosaic handbook for the Macintosh.
Sebastopol, CA: O'Reilly & Associates, Inc., 1994,

Kelley J.P.Lindberg, Jeffrey L.Harris. Novell's NetWare 6 administrator's
handbook. Jeffrey L. Harris, 2002.

Susan Powers. IBM Server iSeries handbook, version 5 release 1. 22nd ed. IBM,
International Technical Support Organization, 2001.

David Wai-lok Cheung. Open Source Software and its impact to Technology
Development. E-Commerce Strategies for Development, 2003.

The Portable Application Standards Committee, http://www.pasc.org/. 2004.

TZ J1. OS/2: features, functions, and applications: standard edition 1.0. New York:
Wiley, 1988.

Netware Standards Sub-Committee. Netware Administration Standards. John
Hopkins Institutional Computing Standards, 2003.

IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer
Glossaries. New York, NY: 1990.

Citeseer Scientific Literature Digital Library, http://citeseer.nj.nec.comy/. 2004.
Gartner Inc. WFS Financial Support Study. 2002.

Cybersource® Pty. Ltd. Linux vs. Windows: Total Cost of Ownership
Comparison. 2002.

[121]

[122]

[123]

[124]
[125]
[126]

[127]

[128]
[129]
[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

123

Al Gillen, Dan Kusnetzky, Scott McLarnon, Scott McLarnon, Randy Perry.
Linux and Intel-Based Servers: A Powerful Combination to Reduce the Cost of
Enterprise Computing. 2002.

Meta Group. The Impact of OS/Platform: Selection on the Cost of ERP,
Implementation, Use and Management. 2002.

Lorraine L.Cosgrove, Christian A.Christiansen. Server Selection: Reversing the
Trend of Rising IT Costs. International Data Corporation, 2002.

CIOview Corp. A Business Case for Windows Server Optimization. 2002.
Netcraft Services; http://www.netcraft.com. 2001.
http://www.netsys.com/. 2004.

Computing and Information Technology Interactive Digital Educational Library
(CITIDEL), http://www.citidel.org/. 2004.

http://www.allconferences.com/. 2004.
Appie Corporation: http://www.apple.com. 2004.
Hewlett Packard Corporation, http://www.hp.com. 2004.

Rebecca Buckman. Face-Off over People's PCs. The Wall Street Journal Online
2003.

James Gray. The State of Linux. Linux Journal 2003.

Paul L.Stephenson, Neal T.Rogness, Justine M.Ritchie, Patricia A.B.Stephenson.
SPSS Manual for Moore and McCabe's Introduction to the Practice of Statistics.
3rd ed. W H Freeman & Co, 1998.

David G.Kleinbaum, Lawrence L.Kupper, Keith E.Muller, Azhar Nizam. Applied
Regression Analysis and Multivariable Methods. 3rd edition ed. Duxbury Press,
1997.

Richard A.Johnson. Applied multivariate statistical analysis. Prentice Hall, 2002.

StatSoft I. Multiple Regression,
http://www .statsoftinc.com/textbook/stmulreg.html. StatSoft, Inc., 2004.

G.A Moore. Crossing the Chasm. New York: Harper Business, 1999.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Dedication
	Copyright
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Software Engineering Trends
	Chapter 2: Focus on a Family of Trends: Operating Systems
	Chapter 3: Selecting Relevant Factors
	Chapter 4: Quantifying the Factors
	Chapter 5: Watching Operating Sytems
	Chapter 6: Data Collection
	Chapter 7: Data Analysis and Model Construction
	Chapter 8: Towards a Predictive Model
	Chapter 9: Extended Feature Analysis
	Chapter 10: Model Validation and Improvements
	Chapter 11: Conclusion and Future Work
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures

