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ABSTRACT

HYBRID EXPLICIT-IMPLICIT FDTD-FEM TIME-DOMAIN SOLVER FOR
ELECTROMAGNETIC PROBLEMS

by
Kakhkhor Abdijalilov

The Finite-Difference Time-Domain (FDTD) method and Finite-Element (FEM) method

are numerical techniques used for solving Maxwell's electromagnetic equations. FDTD-

FEM hybrid methods opt for combining the advantages of both FDTD and FEM. In this

dissertation, signal processing techniques were used to analyze the FDTD stability

condition. A procedure, which reduces time-sampling error yet preserves the stability of

algorithm is proposed. Both explicit and implicit time-stepping schemes were treated in

the framework of the developed method. An improved version of the implicit-explicit

FEM-FDTD hybrid method was developed. The new method minimizes reflection from

the interface between different types of grids. A class of transfer functions with low

reflection error for stable hybrid time-stepping was derived. The stability of the method is

rigorously proven for a general three-dimensional case.
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CHAPTER 1

INTRODUCTION

1.1 Computational Electrodynamics

In the study of electromagnetic phenomena, numerical modeling, or, in other words,

computer simulations, plays an important role in predicting properties of electronic

devices and lowering development cost. Owing to rapid increase in computing

capabilities in recent years more complex electromagnetic systems can be accurately

modeled even on non-expensive personal computers. In order to effectively utilize

available computer resources various numerical methods have been developed.

The goal of computational electrodynamics is to solve Maxwell's equations for

electromagnetic fields. For linear medium, Maxwell's equations can be solved either in

the time-domain or, the frequency domain. Since, the main subject of this research is

time-domain methods, frequency domain methods are briefly commented and only in

connection with the main objective. The advantage of using methods in the time-domain

is that it can explicitly solve time dependant phenomena such as, broad band pulse

propagation: single simulation is enough to solve for a broad range of frequencies.

As its name suggests, Finite-Difference Time-Domain (FDTD) method is a

numerical method to solve time-dependant Maxwell's equation using finite-difference

approximation of partial derivatives. Since its introduction by Yee [1], FDTD evolved

into very effective and arguably the most popular numerical technique for

electromagnetic problems [2]. The original FDTD formulation is accurate to the second

order both in space and time. Numerical errors are kept small by having a grid spacing

1
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many times smaller than the source wavelength. As shown in Figure 2.1 at the beginning

of the Section 2.2, Yee used a three dimensional grid on which electric field nodes are in

offset both spatially and temporally from magnetic field nodes. In this way he obtained

update equations that express present fields in terms of the past fields throughout the

computational domain. The update equations are used to march electric and magnetic

fields forward in time. Marching is stopped once the propagation evolves to the desired

endpoint. Because of its time-domain nature, FDTD allows to explicitly compute

temporal response of the system in addition to frequency response over broad band of

frequencies by single simulation.

Despite its simplicity Yee's algorithm did not receive much attention after its

publication. One could attribute the lack of interest to the high computational and

memory demand of the algorithm and shortcomings of first original formulation such as,

its inability to model open problems for long period of time. However, as the cost of

computational resources fell and shortcomings of the original FDTD implementation

were alleviated, interest in FDTD soared. According to Shlager and Schneider [3], the

number of yearly publications from 1985 to 1996 has increased by more than sixty times.

Finite Element method (FEM) [4] is an alternative numerical method for FDTD

and is widely used in computational electromagnetic problems. FEM is often used to

solve boundary problems in the frequency domain. FEM equations are obtained by

applying Galerkin's method (see chapter 2 for details): first, the computational domain is

divided into small elements of simple form and the solution is expanded in element basis

functions. Then, the same basis functions are used as test functions to obtain discrete

equations. Since, FEM is formulated in the frequency domain on a nonuniform and
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unstructured grid, it does avoid some of the problems inherent to the FDTD such as,

time-stepping stability and staircase approximation of curved boundaries. However,

accuracy of FEM is dependant on the ability to generate high quality boundary

conforming grid. Grid generation is a difficult task by itself; it can significantly increase

the computational complexity and hamper implementation of the algorithm.

Current explicit FDTD solvers differ primarily in how the space grid is set up.

Most of them use the same second order central difference approximation of the time

derivative valid for small time-steps, namely,

Marching fields incrementally in time is stable if time-step small enough.

Otherwise, exponentially growing discretization error will occur. Stability limit of FDTD

is given by the Courant limit [2]

Here Amin is the smallest cell size in the spatial grid and umax  is the maximum wave phase

velocity. Because of the bound (1.2), the time-step in many practical applications of

FDTD needs to be very small so that errors introduced by approximation (1.1) are

negligible. As a result, recent development in FDTD theory has been primarily concerned

in reducing spatial discretization errors. At the same, the time-step limit (1.2) has a

profound impact on FDTD efficiency: the smaller is the time-step, the more time-steps

are needed to complete the simulation. It is clear that, in order to satisfy bound (1.2) for

structures with small geometrical features, the time-step need to be much smaller then the

accuracy requirement (1.1).
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Several approaches have been proposed to overcome the abovementioned

problem. Zheng, Chan and Zhang (ZCZ) developed an alternate-direction-implicit (ADI)

FDTD algorithm [5] which is free of Courant limit. The time-step used in the algorithm is

chosen based on accuracy considerations only. ZCZ algorithm is unconditionally stable

and does not require matrix inversion. It uses the same Yee space lattice as the

conventional FDTD, and therefore, suffers from the same malady of structured grids:

problem arises when trying to employ staircase approximation (see below) of curved

boundaries.

Another approach to alleviate the restriction imposed by time-step limit (1.2) is to

use implicit-explicit hybrid time integration method proposed by Rylander and Bondeson

[6,7]. Their scheme employs conventional FDTD with large cell size to discretize

homogeneous volumes and FEM with unstructured grid in small volumes around

complex boundaries. Stability limit for the hybrid scheme is determined by the cell size

for the FDTD section of the domain and is not affected by FEM mesh. Limiting

computationally intensive FEM to only small volumes allowed overcoming the Courant

limit (1.2) without significantly increasing the math count. One possible drawback of the

hybrid method is the artificial reflection from the resulting interface between the two

types of grids. The reason for the reflection is the use of different time-stepping methods

on each side of the interface.

1.2 Scientific Objective

The main objective of this dissertation was to use discrete-time signal processing

techniques [8,9] in order to improve the efficiency of FDTD and FDTD-FEM hybrid
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algorithms. Stability of FDTD and the related hybrid algorithm formulation was analyzed

using Z-transform and the nonphysical reflection, inherent to any hybrid formulation, was

reduced.



CHAPTER 2.

DISCRETIZATION OF MAXWELL'S EQUATIONS

2.1 Governing Equations

Using MKS units, the time-dependant Maxwell's equations are given in differential and

integral form by

Faraday's Law:

(2.1)

Ampere's law

In addition to (2.1) and (2.2), electric and magnetic fields must be divergence-less

In the above equations, the following (and their MKS units) are defined:

E : electric filed (volts/meter)

D : electric flux density ( coulombs/meter2)

H : magnetic field (amperes/meter)

B : magnetic flux density (webers/meter2)

A : arbitrary three dimensional surface

6
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dA : differential normal vector that characterizes surface A (meter2)

/ : closed counter that bounds surface A

dl : differential length vector that characterizes contour / (meter)

J : electric current density (amperes/meter2)

M : equivalent magnetic current density (volts/meter2)

For linear, isotropic and nondispersive medium materials, the constitutive relations are

given by

where free space permittivity e0 = 8.854 x 10 -12 farads/meter, free space permeability

,u„ = 4g x10 -7 henrys/meter, and relative permittivity and permeability Sr 	are

dimensionless. For lossy materials, the electric current J and magnetic current, M , are

given by

where a is electrical conductivity (siemens/meter) and a * equivalent magnetic loss

(ohms/meter). Magnetic loss term in (2.5) is included mainly for theoretical purposes.

Vector components of Maxwell's equations in Cartesian coordinates are given by

(2.6)

(2.7)

(2.8)



The system of above six coupled partial differential equations forms the basis of the

FDTD numerical algorithm. The FDTD algorithm need not explicitly enforce Gauss'

Law (2.3). This is because these relations are theoretically a direct consequence of the

curl equations.

The differential equation for E can be obtained by eliminating H from (2.2).

Using constitutive relations (2.4) and assuming M to be zero, one can derive vector wave

equation for electric the field from (2.1) and (2.2)

Similarly, one can eliminate E to derive an equation for H to get

Solutions of the vector wave equations (2.12) and (2.13) also satisfy Gauss' Law. These

equations are the basis of FEM numerical algorithm. The right hand side of (2.13)

contains a curl of the total current J. When the medium is lossy one relates the current

density J to the electric field E through Ohm's Law (2.5). Tangential component of

electric field does vanish on perfectly conducting surfaces, which will allow to decrease

the number of unknown discrete field values and result in lower memory storage and

operational count of the algorithm (see Section 2.3). Because of these reasons, numerical
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approach of equation (2.12) for the electric field is preferable over equation (2.13) for the

magnetic field.

2.2. Yee's Algorithm

Original Yee's FDTD algorithm for lossless isotropic medium [1] uses rectangular grid

with magnetic and electric fields staggered both in time and space as shown in Figure 2.1.

The algorithm solves for both electric and magnetic fields in time and space using the

coupled Maxwell's curl equations. In order to simplify the derivation of discrete

equations let us introduce convenient notation for space points and functions of space and

time. Let us denote a space point in a uniform, rectangular lattice as,

Here, dx, Ay, Az are, respectively, the lattice space increments in the x, y, and z

coordinate directions, and i, j, and k are either integer or semi integer. Further, let us

denote any function evaluated at discrete point in the grid and a discrete point in time as,

where, At is the time increment, n is either integer or, semi-integer.

Let us start with (2.9): the x-component of (2.2) may be written as,



Figure 2.1 Position of the electric (E) and magnetic field (H) vector components about a
unit of Yee's space lattice
Source: Taflove, Hagness [2]

Referring to Figure 2.1, substitution of central difference approximation (1.1) for time

and space derivatives gives us

The assumption is that values of Ex at time step n are not stored in the computer memory.

Therefore one may use second-order accurate interpolation to approximate the electric

field on the right hand side of (2.17) as,

(2.18)



Discretization of the x-component in (2.1) similarly gives us

(2.20)

The equations for the other components of electric and magnetic fields are given by,
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:2.21)

(2.22)

(2.23)



A full set of FDTD equations can be written in symbolic matrix form as,

for the electric field and as,

for the magnetic field.

If the electric field at time-step n-1/2 and the magnetic field at time-step n are

known throughout the grid, electric fields at the next time-step n can be found from

(2.25), which in turn will allow to update the magnetic fields to the next time-step n+1 by

using (2.26). This process which is called leapfrogging, allows to march fields forward to

any desired future time.

FDTD equations (2.19)-(2.24) are derived from the system of coupled equations

(2.1) and (2.2). Another approach is to apply central difference approximation of

derivatives to the vector wave equation instead of applying it to Maxwell's coupled

equations. The resulting finite-difference scheme is equivalent to the Yee's algorithm

[10] and also referred to as FDTD. For source free region spatial discretization of two

dimensional transverse electric mode (TEM) Ez = 0 leads to

13
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Time discretization of these equations is discussed in the next section. It is shown that

FDTD for vector wave equation is equivalent to FEM with rectangular elements with

trapezoidal integration of stiffness and mass matrices.

2.3 Finite Element Method

Finite Element method [4] is an alternative numerical technique to FDTD and is also used

to solve Maxwell's equations. In order to discretize fields in space, the simulation domain

is divided into small segments of simple forms. The resulting mesh can be unstructured

and nonuniform. Unstructured mesh is a mesh whose segments (elements) are not

naturally indexed (i ,k) as a multidimensional array. Triangular elements are often used

for 2D problems, whereas 3D problems are often solved using tetrahedral elements. Other

element types are also possible [4]. Two or three dimensional rectangular elements result

in uniform grid equivalent to FDTD spatial discretization. Example of two dimensional

triangular grid is shown in Figure 2.4 in Section 2.5. Basis functions are associated with

each element. These functions are chosen to accurately represent solutions within each

element. If elements are small enough, only a few basis functions are need. Basis
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functions are assumed to be nonzero only within their element. Vector functions, also

refereed to as edge elements, described by Whitney [11] and discussed by Nedelec [12]

are most suitable as basis functions for 2D and 3D electromagnetic problems [4]. Edge

elements are divergence free and preserve tangential continuity of the fields. Below, a

short review of FEM method is presented.

Figure 2.2 Rectangular edge element

Two dimensional rectangular and triangular edge elements are shown in Figure

2.2 and Figure 2.3 respectively. Let us consider the rectangular element first. Associated

with each edge of the rectangle is a vector basis function. Four basis functions are

defined:

(2.29)
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(2.30)

(2.31)

(2.32)

Figure 2.3 Triangular edge element

An important feature of these basis functions is that N7 has a tangential component only

along the ith edge and not along the other edges. Thus, the continuity of the tangential

field across all element edges is guaranteed. Another unique feature of these functions is

that each satisfies the divergence conditions V • N7 = 0 within the element. Therefore,

they are ideal for representing source-free regions. The major disadvantage of using

rectangular elements is that they are restricted to a limited class of geometries. When one

deals with problems having irregular geometries, triangular elements are more suitable
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for spatial discretization. In the next section advantages and disadvantages of triangular

and rectangular grids are discussed in more details.

Similar to the rectangular case, vector basis functions for triangular elements are

divergence-free and guarantee the tangential continuity of the numerical solution. Three

basis functions are associated with each edge and are defined as [4],

where, /: is the length of ith element and re, is are of the triangle formed by the ith edge

and observation point (x, y) inside the element. For example, area of the shaded triangle

in Figure 2.3 equals to Le, .

Once the basis functions are defined, an approximate solution within the element

can be expressed using local indices as,

where, E: , denotes the tangential field along the ith edge and summation is carried out

over all elements' edges.

Let us consider Maxwell's curl-curl equations for the electric field,

The first step in deriving FEM equations is to assume that a numerical solution can be

expanded in terms of the element basis functions as,
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It should be noted that the basis functions, 	 (r) , in (2.38) are time-independent,

whereas unknowns or degrees of freedom associated with edges, E: (1), do depend on

time only. In order to derive FEM equations, the Galerkin's method is applied to the

governing equation: expansion of E in terms of its basis function (2.38) is substituted into

(2.37), then, the equation is multiplied by every basis function and integrated over the

respective element volume. The resulting system of equations can be written as,

where the stiffness matrix S, mass matrix M and source term, f(t), are assembled from

elements' matrices by using conversion from local to global indices [4]. The unknown

vector of solution, u(t), represents the electric field, ge (t), in terms of the global indices.

The stiffness and mass matrices for each element are given by [4]

The matrix equation (2.39) can be solved either in the frequency domain or, in time-

domain. Since, the objective of this thesis is to investigate hybrid schemes, only time-

domain solutions of (2.39) are discussed below.

2.4 Time-Domain Discretization

There are many ways to time-discretize equation (2.39) [4]. Some of them are

discussed in this section.

A central difference method is second-order accurate:



Substituting (2.41) into (2.39) leads to an update equation

Apart from inverting the mass matrix M (which can be diagonal [4]), equation (2.42)

explicitly expresses the vector of unknowns, un+1 , in terms of previous field values.

Therefore, time-discretization (2.41) is said to be explicit. The resulting time-marching is

stable provided that the time step, At, is sufficiently small. Elemental stiffness and mass

matrices defined by (2.40) can be evaluated numerically. It is straightforward to verify

that trapezoidal integration with rectangular basis functions as defined in (2.29)-(2.32)

makes the mass matrix M in (2.39) diagonal. The resulting time-domain FEM is

equivalent to central difference time-discretization of vector wave finite-difference

equations (2.27) and (2.28) [10].

On the other, a backward difference approximation

is only first-order accurate yet results in an unconditionally stable scheme, i.e. time-

marching is stable regardless of the choice of At [4]. The resulting time-stepping is

implicit and given by,

19

The system of matrices (2.44) is not diagonal and needs to be inverted in order to march

fields forward in time.
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Many other schemes are described by Ghrist et al [13]. Application of discrete-

time signal processing techniques to construct new time-stepping schemes is investigated

by Abdijalililov and Grebel [36]. A detailed discussion of the approach is presented

below in Chapter 5.

2.5 FDTD and FEM Comparison

In this section, FDTD and time-domain FEM are compared and the advantages and

disadvantages of both methods are discussed.

As mentioned above, the main advantage of FDTD is its simplicity and ease of

implementation. FDTD update equations are explicit, suitable for parallel processing out

of the box. Indeed, as it can be seen from equations (2.19)-(2.24), all nodes are updated

independently of each other and, for homogeneous volumes, the update equations are

identical. Rectangular grid of FDTD is straightforward to generate and well-suited for

solving structures with large homogeneous volumes. At the same time, rectangular grids

do not conform well to curved boundaries. A staircase approximation of curved

boundaries, shown in Figure 2.5, results in high discretization error. A small cell size is

required in order to reduce the error: this, in turn, increases both the operational count

and memory storage requirements for the algorithm. Explicit time-stepping is subject to

the stability bound (1.2). Small cell size also forces the time-step to be small. Decreasing

the time-step size increases the number of time-steps needed to evolve propagating

electromagnetic fields to the desired endpoint. Therefore, the operational count of the

algorithm increases because of an increased number of cells and an increased number of

time-steps. These considerations make FDTD in its original form an inefficient approach
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for modeling structures with geometrical features much smaller than the wavelength of

the source.

Figure 2.4 Example of two dimensional	 Figure 2.5 FDTD staircase approximation
unstructured triangular grid

FEM with an unstructured grid is well suited for modeling structures with curved

boundaries. It can be seen from Figure 2.4 that triangular mesh conforms to the circular

boundary very well, despite the fact that the average triangle size is larger than the cell

size of rectangular cell shown in Figure 2.5. Therefore, spatial discretization error of

FEM approximation can be made small without significantly increasing the number of

elements . In general, the mass matrix, M, in the update equation (2.42) is not diagonal.

Hence, matrix inversion may be required to solve the FEM equations even if explicit

time-discretization scheme is used. Also, the stability bound on the time-step for

triangular elements is lower. And last, but not least, the accuracy of FEM solution



22

depends on the grid quality. Grid generation is a difficult task by itself. Spatial

discretization error may be high if some of the triangles have small angles or, the triangle

edges do not fit well to the curved boundaries [14].

As a conclusion, it can be said that FDTD and FEM are complementary

techniques to deal with different types of problems. This may suggest that a hybrid FEM-

FDTD approach would take advantages of both methods. Various hybrids methods have

been developed. Chapter 6 discusses hybridization of time-stepping strategy in more

details.

2.6 Generalized FDTD Algorithm

As was discussed in the previous section, an orthogonal grid of Yee's FDTD approach

does not permit accurate modeling of curved boundaries. Additional error results in the

event that vertexes of rectangular elements do not conform to the shape of a physical

boundary, . Due to this error, FDTD solution may not converge to the correct answer in

the presence of perfect conductor (PC) boundaries, no matter how fine the mesh is made

[15]. As a result, FDTD algorithms using boundary-fitted grids have been developed

[16,17,18].

Modified FDTD is constructed by applying Ampere's law and Faraday's law in

integral form to the generalized Yee's lattice. Example of generalized unstructured lattice

with hexahedral cell is shown in Figure 2.7. The resulting update equations are fully

explicit and similarly to conventional formulation, can be written in matrix form, (2.25)

and (2.26). Detailed derivation of time-marching equations is considered by Gedney and

Lansing [18]. The stability of the algorithm is discussed in Chapter 5.
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Secondary Cell

Figure 2.b A generalized unstructured Yee lattice using hexahedral cells.
Source: Taflove, Hagness [2]



CHAPTER 3

FDTD NUMERICAL DISPERSION AND STABILITY

3.1 Derivation of Numerical Dispersion Relation

The FDTD algorithm for Maxwell's equations reviewed in Chapter 2 results in

nonphysical dispersion of simulated waves even in the case of a free-space

computational lattice. That is, phase velocity of the numerical wave modes depends on

wavelength and direction of propagation. Numerical dispersion results in an accumulated

phase error for the propagating waves that can lead to nonphysical results such as,

broadening and ringing of a pulsed waveform, imprecise cancellation of multiple

scattered waves, anisotropy, and pseudorefraction. Numerical dispersion is a factor in

FDTD modeling that must be accounted for in order to understand its accuracy limits,

especially for electrically large problems.

FDTD numerical dispersion is the relation between frequency and numerical

wave vector in free space. Dispersion relation is derived by substituting the vector-field

traveling-wave expression,

into FDTD time-stepping equations (2.19)-(2.24) and with, e = e, p=,u0 , cr=o- * = 0 .

Manipulation of the equations can be significantly simplified if compact vector notations

introduced by Taflove and Brodwin are used [19]. Numerical dispersion of Yee's

algorithm in three dimensions is given by [2],

24
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Two-dimensional and one-dimensional dispersion relations are obtained from (3.2) by

letting the corresponding wave vector components to be zero, ky = 0, kz = 0 . It is seen

from (3.2) that the FDTD dispersion relation is nonlinear and anisotropic, which leads to

important consequences discussed below.

3.2 Comparison with Ideal Dispersion Relation

In contrast to the numerical dispersion relation (3.2), the analytical dispersion relation for

physical plane wave propagating in three dimensional free space is simply,

In general, numerical dispersion relation and physical dispersion relation result in

different wave vectors for the propagating plane wave, namely k # k . However, as the

grid cell size, Ax, Aty, Az , and time step, At , approach zero, the two dispersion relations

become identical. Two-dimensional, dispersion error for different cell-size—to-

wavelength ratio, NA, and propagation angles, 0 0 90° , is shown in Figure 3.1. The

Courant stability factor, S = cAt/ A, is defined with A = Ax = Ay . It can be seen that the

numerical phase velocity, v p , is smaller than the speed of light, c, and is a function of

both propagation angle and cell size-to-wavelength ratio. It is also clear that errors due to

inaccurate numerical velocities are cumulative, i.e. they increase linearly with the wave-
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propagation distance. These errors represent a fundamental limitation of all grid based

solvers, and play an important role when modeling electrically large structures.

Figure 3.1 Variation of two dimensional numerical phase velocity with wave-propagation
angle. S = cAt/A = 0.5 for all three cases
Source: Taflove, Hagness [2]

3.3 Numerical Stability

Time-marching of FDTD need to be stable, i.e. the linear system of (2.25) and (2.26)

should not have solutions which exponentially grow as function of time-step,

a", lal> 1. Otherwise, the numerical error, though initially small, will grow and

eventually overcome the solution [201 Stable regime of FDTD operation can be

established from the dispersion relation (3.2) by employing complex-frequency analysis

[2]. Exponentially growing solutions would have complex-valued, normalized angular
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frequency, w = °At . If the imaginary part of co is negative, numerical plane wave

growths factor, a , can be estimated as

e- " hn(w ) = a", 	 a = e -11"(') > 1	 (3.4)

Therefore, FDTD is stable if the angular frequency in (3.2) is real valued for all possible

real-valued numerical wave vector components. For convenience, let us rewrite

dispersion relation as,

Since, the angular frequency is allowed to be real-valued only, the right hand side of (3.5)

must be bounded by 1 for any wave vector. Estimating the maximum value for the right

hand side of (3.5) provides us with the stability limit of FDTD time-marching as,

Stability limit (3.6) is derived for 3D case. Two dimensional and one dimensional

equivalents of it are obtained simply by omitting Az or, Ay to get,

For the grid with equilateral cell, Ax = Ay = Az, (3.6) and (3.7) can be simplified as,

where, Nis the dimensionality of the domain.
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As was mentioned above, stability-limit on the time-step size is an important

limiting factor for FDTD efficiency. Due to the bound (3.6), many practical applications

require smaller time-step than it would be needed in order to resolve the fastest spectral

component of the electromagnetic wave. With a smaller time-step, more iterations and

therefore, more computational time, are needed. Several approaches to overcome the

time-step limit of conventional FDTD have been proposed and are detailed in Chapter 6.



CHAPTER 4

Z-TRANSFORM THEORY

4.1 Discrete-Time Systems

A discrete-time system is defined as a transformation of input sequence, x[n], into an

output sequence, y[n] such that,

Among all possible discrete-time transformations, the linear time-invariant (LTI) systems

deserve special attention. The class of linear systems is defined by the principle of

superposition,

A time-invariant system is a system for which a time-shift or, delay of input sequence,

x[n], results in a corresponding shift in the output sequence, y[n] = T {x [n] ,

From linearity and time-invariance principles it follows that any LTI system can be

completely characterized by its impulse response sequence [8,9]. Specifically, let h[n] to

be the response of the system to b[n], an impulse accruing at n = 0, thus with,

the impulse response is give by,

(4.4)

(4.5)

29
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Using linearity and time-invariance of the system, one may write,

A system is said to be causal if the output of the system at any time n depends only on

present and past inputs (i.e., x[n], x[n - 1], x[n-2], . . .), but does not depend on future inputs

(i.e., x[n+1], x[n+2],...). Otherwise the system is called noncausal. It is apparent that in

real-time signal processing applications, future values of the signal cannot be observed

and hence, noncausal system is physically unrealizable. Causality of a LTI system can be

expressed in terms of its impulse response as,

Equation (4.6) is commonly called the convolution sum or simply the convolution.

Convolution of two sequences is defined as,

With the definition (4.8), equation (4.6) can be represented by the notation

Using definition (4.8) it is easy to verify the following properties of convolution:

commutative law

associative law
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distributive law

From commutative property it follows that the output of two LTI systems in cascade does

not depend on the order in which transformations are applied, therefore,

Distributive property implies that the cascade of two LTI systems with impulse response,

[n], h2 [n], is also equivalent to a LTI system with an impulse response, h[n] , given

by,

4.2 Z-transform Definition

The Z-transform X (z) of a discrete-time sequence x[n] is a function of complex

variable, z, and defined as the power series, such that,

Z-transform defined by (4.15) can be considered as an operator that transforms a discrete

sequence into a function of complex variable z. The correspondence between a sequence

and its Z-transform is indicated by the notation

Region of convergence (ROC) of power series (4.15) is given by 0 	 < Izl < r2 00 [21].

Since, the impulse response of a causal system (4.7) is one-sided, it follows that ROC of

its Z-transform is the exterior of some circle r <Id . Definition of Z-Transform can be
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considered also as Laurent series expansion of X(z) [21]. This interpretation can be

helpful when inverting Z-transform, i.e. reconstructing discrete sequence from its Z-

Transform.

Z-transform of LTI system's impulse response, h[n], is called system transfer

function and plays an important role in the analysis of LTI systems:

With z = el' the Z-transform (4.15) becomes

which is the Fourier transform of the sequence x[n] (see Section 4.6).

Z-transform has many useful properties when studding discrete-time signals and

systems [8,9]. The most important properties are linearity, time shifting and convolution.

If given are two sequences with their Z-transforms x , [/7]4z X jz] and

x,[11]4.--z---> X ,[z] then, the above mentioned properties can be formulated as,

linearity

for any constants a l and a2 ;

time-shifting law

convolution law
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Convolution property allows to establish a relation between Z-transforms of the input

x[n] and output y[n] sequences of the LTI system: applying relation (4.21) to equation

(4.9) and recalling the definition of system transfer function (4.17), it can be shown that

Z-transform of output sequence Y(z) is given by,

Other important properties

linearity,

and time-shifting,

can be easily derived using the definition of Z -transform.

4.3 Rational Transfer Function Systems

Consider a LTI system described by the difference equation with constant coefficients,

Z-transforming both sides of (4.25) and using linearity (4.24) and time-shift (4.24)

properties, one arrives at

(4.26)

Comparing (4.22) and (4.26) it can be concluded that the system defined by the

difference equation (4.25) has a rational transfer function,
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(4.27)

An important property of rational transfer function systems is that they can be

implemented using only finite number of shift register.

4.4 One-sided Z-transform

Transformation defined by (4.15) is also referred to as two-sided or, bilateral Z-

transform. It requires the discrete-time signal to be specified for the entire time range,

—00 < n <oo . This requirement prevents its use for solving initial value problems, when

the input signal is known only at a finite time point. One-sided Z-transform is best suited

for this class of problems. It is defined as,

One-sided Z-transform differs from two-sided transform in the lower limit of the

summation; in one-sided transform it is always zero, whether or not the signal is zero for

n<0. Almost all properties of two-sided Z-transform may be carried over to a one-sided

transformation with exception of time-shifting property [8]. Using definition (4.28) it can

be shown for a delayed sequence, k>0, that,

Similarly, one-sided Z-transform of time-advanced sequence is given as,
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Let us evaluate the response of a system which is defined by recursive finite difference

(4.25) to a signal x[n] applied at n = 0. The effect of all previous input is reflected in the

initial conditions y(- 1), y(-2), . . . , y(-N). Using the time-shift property (4.29), one-sided Z-

transform of (4.25) becomes,

(4.31)

Since it is assumed that the signal x[n] = 0 for n<0, one-sided and two-sided Z-transforms

are identical, X+ (z) = X (z) . From (4.31) it follows that one-sided Z-transform of the

output sequence will be given by,

where A(z) is the denominator of H(z) as defined by (4.27) and,

The first term of the right hand side of (4.32) is due to the input signal only and referred

to as, zero-state response. The second term is due to the initial conditions and referred to

as, zero-input response [22]

4.5 Stability of LTI systems

Stability is an important property that must be considered in any practical implementation

of discrete-time systems. A discrete-time system is stable in bounded-input, bounded-

output sense (BIBO) if and only if, every bounded sequence produces a bounded output

sequence. For a LTI systems, BIBO stability is equivalent to absolute summability of its

impulse response [8,9],
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(4.34)

Equation (4.34) for LTI systems implies that the system's transfer function, H(z) must

contain the unit circle within its ROC: if Izl =1, then, from (4.34) it follows that,

(4.35)

For a causal system the condition of stability can be narrowed to some extent. Indeed, a

causal system is characterized by a system transfer function H(z) having as a ROC the

exterior of some unit circle of radius r. For a stable system, ROC must include the unit

circle. Therefore, it follows that a causal linear time-invariant system is BIRO stable, if

and only if, all poles of its system transfer function are inside the unit circle.

4.6 The Fourier Transform of Discrete-Time Signals

Fourier transform of a discrete time-sequence is defined as

As it was pointed out above, according to (4.18) Fourier transform can be interpreted as

the Z-Transform, x	 (z) , evaluated on the unit circle, z = e'' , which may also

explains the choice of argument for Fourier transform as, e.'w ,in (4.36).

For a very wide class of sequences, Fourier transform can be inverted to

reconstruct discrete sequence,

(4.37)
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Fourier transform of h(n), H 	 , also referred to as frequency response of LTI, plays

an important role in the analysis of discrete-time systems and signals. From the equation

(4.22) and the fact that the Fourier transform is Z-transform evaluated on the unit circle,

it follows immediately that,

which relates the Fourier transform of input sequence to the Fourier transform of the

output sequence.

4.7 Discrete-Time Differentiator

Let us be given samples of continuous-time signal x[n]. f (nit) and its derivative,

y[n] = ft (nit) . They can be thought as the input and output of LTI system,

If continuous-time function is bandlimited and conditions of Nyquist sampling theorem

[8,9] are met, then, the discrete-time differentiator (4.39) is uniquely defined. To

determine its frequency response, H 	 , let us assume that the continuous-time

sequence is harmonic	 = 	 . Its samples are, x[n]. 	 ; samples of derivative

are given by, y[n] = 	 . Comparing these expressions with frequency response

property (4.38) immediately leads to,

Similarly, it can be shown that the frequency response of a second order time-

differentiator, y[n] = f" (nAt) is given by,
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(4.41)

From the inversion formula (4.37) is follows that discrete-time systems, defined by their

frequency response (4.40) and (4.41), have their impulse response sequence provided in

—co to co . This means that the input signal must be known for all times, in order to

compute the output. Therefore, these systems are not physically realizable in real-time

applications. Sub-optimal approximation of ideal differentiators, as defined by (4.40) and

(4.41), are considered in the following chapter.
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CHAPTER 5

Z-TRANSFORM ANALYSIS OF FDTD TIME-STEPPING

5.1 Differentiator Approximation

Z-Transform theory has been employed by Sullivan [23] to implement frequency

dependant materials into FDTD modeling. By sampling and then Z-Transforming time-

domain relaxation function of frequency dependant medium, convolution integral has

been interpreted as a discrete-time rational transfer function system, which could be

readily implemented as a recursive finite-difference scheme with constant coefficients.

This approach allowed straightforward implementation of many dispersive materials into

FDTD modeling. Following the work by Weedon and Rappaport [24] further extended

capabilities of the technique. In contrast to Sullivan's approach, method [24] did not use

analytical relaxation function of the medium, which may not be known in may practical

situations; instead, Weedon and Rappaport proposed to approximate directly

experimental data in the frequency band of interest.

In Section 2.4 simple examples of time-domain discretization were described. In

this section, a more general approximation of the time-derivative operator is considered.

Central difference approximation of time-derivative of Yee's algorithm (1.1) is replaced

here by a discrete-time LTI system. This approach is similar to the above mentioned

techniques in order to incorporate frequency dispersive materials into FDTD modeling.

While the media are assumed to be nondispersive; the time-derivatives itself are the

source of frequency dispersion.
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Frequency response of first-and second-order differentiators are given by (4.40)

and (4.41). Any discrete-time system, which is meant to perform as a differentiator,

should conform to the frequency response of (4.40) or, (4.41), in the frequency band of

interest, cornet co co. . The first order differentiator (4.40) is used to discretize coupled

Maxwell's equations (2.1), (2.2) for the electric and magnetic fields, whereas, the second

order (2.2) differentiator is used to discretize uncoupled vector wave equation for electric

(2.13) and magnetic (2.12) fields.

Spatial discretization of Maxwell's equations for lossless isotropic medium (2.1)

and (2.2) can be written in matrix form as,

(5.1)

where, SI , S2 , account for external sources, DE and pH implement curl transform in a

discrete form and operate on electric and magnetic fields, respectively. For a lossless

medium, the permittivity, e, and the permeability, p, matrices are diagonal and

positively defined. Time-domain discretization of (5.1) is performed as follows,

(5.2)

(5.3)

where, 8t, is the time-step, ak and bk are constants. Equation (5.3) can be thought as a

generalization of simple central difference approximation,



41

As discussed in Section 4.3, the discrete-time system defined by (5.3) has a rational

function Z-Transform,

(5.5)

With time-discretization according to (5.2), fully discretized Maxwell's equation are

given as,

(5.6)

where, TH  , 1E , operate on the magnetic and electric fields, respectively.

5.2 Stability Condition

Taking one-sided Z -Transform of (5.6) as it is discussed in Section 4.4 leads to,

where the terms, N, (z), N2 (Z) , are the result of the initial conditions for the causal filters,

TH , TE , in accordance to (4.33). They are finite order polynomials and do not have poles

outside of the unit circle and therefore, do not affect the stability of the algorithm. In

practical applications, external sources do not grow exponentially with the number of

time-steps therefore, their Z-Transforms, S, (z) and S2 (Z) , do not have poles outside the

unit circle, Izi > 1. Since the right hand side of (5.7) does not contain poles for Izi > 1 it

can be concluded that an FDTD algorithm, which is defined by the finite-difference

equations (5.6), is stable if and only if the determinant of the set of linear equations (5.7)
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does not have zeros outside the unit circle. Denoting the square matrix on the left-hand

side of (5.7) by G, the stability condition can be expressed as,

(5.8)

If the determinant of G(z) is zero for a particular value of z = zo then, there exists a

nontrivial solution of homogeneous set of equations,

Eliminating Ho, from (5.9) results in

For (5.10) to have a non-trivial solution, the determinant of system of equations must be

zero,

(5.11)

where, c =(60P0) -2- is the speed of light and, e = eoer , p=popr . Since, det(e) # 0

equation (5.11) can be rewritten as,

where, 27 is an eigenvalue of e,-,-1 DH ,u;'DE and multiplication in (5.12) is carried out over

all eigenvalues. The range of eigenvalues .17 must be determined and the transfer
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functions in (5.12) be chosen accordingly, in order to ensure stability of the algorithm.

Let us apply criteria (5.12) to the central difference approximation (5.4). The electric and

magnetic fields are staggered in time, therefore,

Using (5.4) and (5.13) FDTD equations are given by,

which is equivalent to (5.6) with no external sources. Corresponding transfer functions

are given by,

For the time-stepping (5.14) to be stable it is required that none of the product terms in

(5.12) can be zero outside the unit circle,

Substitution of z = ea' into (5.17) leads to,

Recalling that co must be real, it can be concluded from (5.18) that the time-stepping

(5.14) is stable for all eigenvalues 2, of 6 1 .D„,u; 34. , if, the following inequality holds:

(5.19)



44

For the general case of irregular unstructured grid, it may not be possible to establish the

range of eigenvalues 27 in (5.19) and hence the stability limit, dim.. However, through

numerical experimentation, a simple relationship has been established that provides an

excellent estimate of the time-step bound for tetrahedral, pentahedral and hexahedral

elements [16],

(5.20)

where, 41=1,3) are three edges in each cell sharing a common vertex. This expression

provides a bound on the time step, which is within 10% of actual stability limit. From

(5.19) and (5.20) it follows that

(5.21)

Inequality (5.21) should be interpreted as an empirical bound on the eigenvalues of

er 'DH pr 'DE . With (5.21) the stability bound (5.12) can be restated as,

for any Id >1 and any possible values of the parameter C such that,

It is shown below, that for a given choice of transfer functions, there is an upper bound

C„,„„ on the parameter C, for which (5.22) holds true for any IzI >1. Hence, from (5.23)

the time-step bound is given by,
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(5.24)

In the following, a transfer function that which minimizes the approximation error is

presented.

Let us consider special choice of transfer functions,

where, P(z) is the rational function i.e. ratio of two polynomials of 1 /, which can be

written as,

Choice (5.25) guaranties that F(z) is positive on the unit circle, z = eft', 0 w 5. 2ir ,

which is desirable since, the parameter C in (5.22) is also positive. Other possible choices

are considered in Chapter 6. The constant Q in (5.25) and zeros and poles of P(z) in

(5.26) should be chosen so that in the frequency range of interest, F (ell matches the

normalized frequency response of ideal differentiator (4.41), namely,

The number of roots of the following equation,

is equal to the order of rational function F(z). All roots of (5.28) are located on the unit

circle if the order of numerator of F(z) is not less than the order of its denominator, i.e.

K2L in (5.26), and all zeros of P(z) are located on the unit circle. The validity of the
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preposition is easier to understand considering examples discussed in the next section.

Also, Appendix A discusses another way to identify transfer functions suitable for stable

time-marching.

5.3 Transfer function Examples

Explicit scheme. Let us consider a transfer function, which is defined by,

and results in,

From (5.30) it is easy to see that the approximation of time-derivative according to (5.3)

results in a magnetic field, which is one step ahead of the electric field. Therefore, the

time-stepping defined by (5.29) is fully explicit with the magnetic field being one step

ahead of the electric field.

Good results in many practical applications can be obtained with a grid size which

is of 1/20 of the minimum significant wavelength of spectral component. The time-step

bound of conventional FDTD is gtmax = a(cV/TT) . Therefore, the normalized frequency

of minimum wavelength spectral component is Lax =1/(20-13-) = 0.0289 for 3D

problems and f x =11(20,5) = 0.0354 for 2D problems. It was found empirically [36]

that by choosing (also see appendix),
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P=0.999ei0.2197r

Q=o.9949e0.09464
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(5.32)

in (5.30) and (5.31), time-sampling error was significantly reduced in the frequency

interval 0 f 5 fmax . Figure 5.1 shows the normalized error (co2 —F(e'w))1w2 of the

Figure 5.1 Time sampling error for the transfer function defined by (5.32) (solid line)
and error for Yee's time-discretization.

proposed and the conventional FDTD. It can be seen that in the frequency range of

practical interest, the error is significantly reduced compared to the conventional FDTD

and is bellow 0.05%. Note that unlike the conventional FDTD, the sampling error does

not vanish at co ----> 0 . This is because parameters in (5.32) were chosen to reduce the

sampling error at the higher frequencies. Namely, the accuracy of the algorithm at lower

frequencies is deliberately sacrificed, though slightly, for the purpose of better

performance at higher frequencies. Stability bound of the time-stepping can be deduced

from Figure 5.2. With F(z) defined by (5.25) and (5.29), equation (5.28) becomes a fourth



48

order polynomial equation and therefore, has no more than four distinct roots for any

value of C. From Figure 5.2 it can be seen that any horizontal line

0 < y = C < Cmax = 3.96 will cross the plot of F(ejw) exactly four times. Therefore, all

roots of (5.28) are located on the unit circle id =1 and stability condition (5.22) is

satisfied for all Id >1. From (5.15) and (5.16), it can be derived that for the conventional

FDTD, the analogues parameter, Cm = 4, and from (5.24), it follows that the stability

bound of the new algorithm differs from that of a conventional FDTD by less than 1%.

Figure 5.2 Plot of F(el defined by (5.32)

Implicit scheme Time step of implicit FDTD is not limited by the stability

requirement, rather, it should be chosen to ensure algorithm accuracy. Since the

computational burden required to update fields into the next time-step is much larger here

in comparison with an explicit algorithm, it is desired to operate an implicit FDTD at

large time-steps. By manipulating the coefficients of (5.26) it was found [36] that the

following choice leads to a transfer function with desired properties:
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(5.33)

Figure 5.3 Time-sampling error for implicit scheme defined by (5.33)

Figure 5.4 Plot of F (el defined by (5.33)
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From Figure 5.3 it can be seen that the time-sampling error is below 1% for

0.37 f 0.5, which close to the limit allowed by Nyquist sampling theorem [8,9].

Highest possible . Figure 5.4 shows a plot of the transfer function on the unit circle. Since

P(z) has a pole on the unit circle, Cm. = 00 , and the algorithm is unconditionally stable.

5.4 Implementation

Memory efficient implementation of time-stepping (5.6) can be achieved by using direct

form II structure for recursive finite-difference equation (5.3) [8,9]. The system with the

transfer function (5.5) (a0 =1) can be viewed as two cascaded transforms, namely, an all-

pole system with a transfer function,
1

and an all-zero system with the transfer function B(z),

As an example, let us derive the update-equations for the explicit case

The update-equation are obtained by substituting a direct form II implementation of the

time-differentiators (5.34), (5.35) into (5.6) to get,

• /
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If all variables up to a time-step no are known, then, Pv,70+' can be found from (5.37).

Once Wh is known, then, all other variables are updated to a time-step no +1 by using

(5.38), (5.39), and (5.40). In order to leapfrog the fields according to (5.37)-(5.40) , the

field values at the latest, L = max{M, N}, time-steps must be known. All fields at L initial

time-steps must be self-consistent. In order to set initial condition for a multilevel scheme

conventional FDTD can be used [20].

5.5 Discussion

The use of Z-transform theory in the analysis of stability and accuracy of various time-

stepping schemes was considered. The generalization of time-stepping concept as a

rational transfer function discrete-time transform has been developed. It has been found

that by optimizing the transfer function coefficients, it was possible to greatly reduce the

time sampling error. At the same time, stability of the original formulation has been

preserved. Finally, memory efficient implementation of the time-stepping scheme was

presented.

These advances are the first step in improving FDTD algorithms. The next step

would be to employ more efficient spatial discretization [25], which may be the subject

of future research.



CHAPTER 6

HYBRID TIME-STEPPING

6.1 Review of Hybrid Time-Domain Solvers

In Chapter 2, two major techniques for electromagnetics, FDTD and FEM, have been

considered. It was shown that both methods have their own advantages and

disadvantages. Therefore, it appears plausible to combine both methods into a hybrid

solver which would have advantages of both FDTD and FEM and at the same time avoid

problems inherent to each method. Such FEM-FDTD hybrids have been constructed

[26,27,28,29], but all suffer from weak instabilities [30,31,32], referred to as late time

growth. Accuracy and stability of the hybrids also depends on the choice of element basis

functions [33]. This instability limits usefulness of the hybrid schemes, especially for

modeling resonant systems.

Hybrid Time-Domain solver proposed by Rylander and Bondeson [6] was shown

to be free of late time instability. It employs FDTD in large homogeneous volumes and

FEM on unstructured grid around complex boundaries. The hybrid algorithm uses vector

finite elements also called as edge elements as element basis functions [4]. Structured grid

field time-marched explicitly using central difference approximation of time-derivative

(2.41), whereas unstructured grid field updated implicitly using time-stepping scheme

discussed by Lee et al [34]. Structured part of the grid has only hexahedral (rectangular)

elements. Unstructured part of the grid contains tetrahedrons and pyramids serving as an

interface between different types of the grid. Simple example of hybrid grid is shown in

Figure 6.1. Basis functions for tetrahedral and rectangular elements are described in [4]

52
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and those for pyramids in [35]. Only linear elements have been used. It is easy to verify

that FDTD for vector wave equation [10] is equivalent to FEM with rectangular edge

functions if trapezoidal integration is used to evaluate stiffness and mass matrices in

(2.40).

Interface between explicitly and implicitly updated parts of the hybrid grid is

shown in Figure 6.2. Edges marked by crosses are updated explicitly, whereas edges

marked by circled updated implicitly. In another publication Rylander and Bondeson [7]

proposed improved version of their hybrid solver. Also prove of stability in general case

have been provided. Below, construction of the hybrid time-stepping [7] is described in

more details.

Each element of the grid is classified as either explicit or implicit. Explicit

elements are hexahedras of structured grid, while implicit elements consist of

unstructured tetrahedras and interface pyramids.

Figure 6.2 Interface between different grid types.
Source: Rylander, Bondeson [6]

Figure 6.1 Example of simple hybrid grid
Source: Rylander, Bondeson [6]
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Unknowns, or, degrees of freedom associated with each element depend on element

classification and then, assembled into a global equation,

(6.1)

where parameter, 0, is chosen 0.25 or larger on the implicit elements and zero on the

structured grid elements. Time-stepping (6.1) is stable up to the stability limit set by of

FDTD section of the grid and given by (3.6) with, Ax, Ay, Az, referring to the rectangular

grid. Edges of rectangular elements marked by crosses in Figure 6.1 are updated

explicitly using conventional FDTD time-stepping, edges marked by circles are treated as

neither regular FDTD nor regular FEM. They are updated simultaneously with interior

edges of the unstructured grid. It should be noted that the above discussed hybridization

and prove of stability presented in [7] is not limited to the grid type depicted in Figure

6.1. Hybrid time-stepping (6.1) can be constructed for any unstructured nonuniform grid

as soon as edge basis functions are available for constituting elements.

6.2 Novel Hybrid Solver with Tunable Reflection Error.

It was mentioned before that one of the drawbacks of the hybrid solver is the artificial

reflection at the grid interface. The reason for the reflection is the use of different time-

stepping with different types of grids. In this section, a novel technique to reduce

reflection without reducing time-step is presented. The approach is based on application

of Z-transform theory to analyze FDTD stability [36]. Class of transfer functions for

stable hybrid time-stepping with low sampling error and low reflection error is derived.

Also, rigorous proof of stability is presented for general 3D case.

Let us start by rewriting (6.1) in a more general form;
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(6.2)

where, Al {...) , is the all-pole part of some rational transfer function system; i.e. it is

represented by the denominator of (4.27) and defined by the equation,

Similarly, B {. .} is the all-zero part and defined by the numerator of (4.27) according to,

Taking one-sided Z-transform of (6.2) leads to,

In (6.5) the term R(z) is the polynomial of z and accounts for initial conditions. If

external sources do not grow exponentially with number of time-steps, term f(z) does

not have poles outside the unit circle. Time-stepping (6.2) is stable if the formal solution

of (6.5) u(z) does not have poles outside the unit circle. Therefore, coefficients of Al (z)

and B(z) in (6.5) need to be chosen so that the determinant of the system (6.5) does not

have zeros outside the unit circle, or,

If (6.6) does not hold for some Iz o l >1 , then, there exists a nontrivial solution of

homogeneous system,

Multiplying (6.7) by complex transpose of 11 0 , gives us,
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(6.8)

In order for time-stepping (6.2) to be stable, finite difference coefficients in (6.3) and

(6.4) need to be chosen so that (6.8) cannot hold true for u 0 # 0 . At the same time, time-

stepping accuracy is achieved if the discrete time-system defined by its transfer function

T(z) = B(z)/A(z) is a good approximation of second order time differentiator within

the numerical frequency band of interest, wm in < Q1 < wmax ,

In the next section class of transfer functions for stable and low error operation is derived.

5.3 Proof of Stability and Transfer function Optimization

In this section procedure to design transfer function according to requirements (6.6) and

(6.9) is presented. Let us start with pole-zero representation of the transfer function,

For reasons explained below, it desirable that zeros ri = e-M and poles pi = eiv'' to be

located on the unit circle. Setting z = e30' in (6.10) gives us the following relation,
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Because of (6.9), the frequency dependant phase factor in (6.11) should vanish; this leads

to,

Also, the phase factor contributed by zeros and poles should be canceled by phase of Q,

therefore,

If (6.9) is required to hold for small frequencies, then, the transfer function (6.10) must

have second order zero at z =1, say ri = r2 =1 and the other zeros and all poles must be

located outside of the frequency band of interest. With the assumption 0	 yt, 271- it

follows from (6.9), (6.11) and (6.12) that,

Next, it is required that each non-hybrid part of the hybrid scheme to be stable within its

own domain. From (6.8) it follows,

The first term of (6.15) is nonnegative and bounded by the greatest eigenvalue As max of

matrix equation,

Therefore, the transfer function T(z) is suitable for stable time-stepping if for any

0	 the equation,max ,

does not hold true for any Izi > 1. According to (6.12), B(z) is of higher order than A(z)

and all its roots are located on the unit circle. Therefore, as it was done in the previous
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chapter, by examining the plot of —T(e'w) allows us to determine, 2m = Cmax (see

Figure 6.3 and example below) for which all M roots of (6.17) are located on the unit

circle. As an example let us consider,

for explicit time-stepping and,

for implicit time-stepping of the hybrid scheme. The actual order of the implicit transfer

function is two and it is equivalent to one used for implicit time-stepping in (6.1) with

=1/4 . Extra terms are added to make numerators of (6.18) and (6.19) identical. Next,

let us assume that,

(6.20)

Figure 6.3 Plots of transfer functions(multiplied by -1) for explicit
(solid line) and implicit (dashed line) time-stepping.
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As it was pointed out in [6] trapezoidal integration with rectangular edge elements makes

the mass matrix diagonal and FEM discretization is equivalent to the central difference

approximation of spatial derivatives [10]. Therefore, the transfer function (6.18) together

with trapezoidal integration will result in fully explicit time-stepping scheme for edges of

rectangular elements except for those shared by the unstructured grid.

Figure 6.4 Transfer function mismatch.

Since, the roots of polynomials in (6.20) come in complex conjugate pairs, coefficients

ak, bk in (6.3) and (6.4) are real valued, which is desirable, because complex variables

would require more memory storage and also increase math count of the algorithm.

Following are parameter values in (6.20) optimized with the help of Matlab function
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fmincon [37] to reduce the mismatch between implicit and explicit transfer functions,

It can be seen from the Figure 6.4 that in the numerical frequency range

0.015 < f < 0.06, f = col 2n- mismatch is virtually eliminated. This frequency range

corresponds to three dimensional FDTD stability limit with cell size-to-wavelength ratio,

Na = 20 . Substituting (6.21) into (6.20) gives us transfer function coefficients used for

time-stepping (6.8),

Owing to the special choice (6.20), coefficients of polynomials (6.22) are symmetric with

respect to the middle one, which means that terms with identical multipliers in (6.3) and

(6.4) can be combined to reduce math count of the algorithm. With the use of (6.14) and

(6.20), equation (6.8) becomes,

where, a = <Mu ° , fi =e0 S ell° and y = uoH S,u0 are contributions from explicit and

implicit elements respectively. Before analyzing (6.23) it should be to pointed out that

parameters in (6.21) satisfy,

Below it is proven that for time-steps slightly less than the stability limit of conventional
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FDTD, equation (6.23) has all its three roots located on the unit circle Izi =	 =1.

Both additive terms in the denominator of F(w) are positive for 0 < w < w- , 0

and negative for v, 0 < w < lz- . Therefore, the denominator has a zero between y/ and 0,

and it does not have any other zeros for 0 < w < 71- . Also there is a complex conjugate

zero in the range, 27r < co < 27r — yr . It means that the plot of F(w) should look like

the solid line on Figure 6.3. Let us estimate the local maximum of F(w) in the vicinity,

f =w/2R- ,

Stability limit for conventional FDTD is give by At c.2EL = 2/j,:„ [7] and therefore, we

have,

From (6.25) and (6.25) it follows that,

According to (6.20), polynomials, 13 (z), Ae (z) , A1 (z) involved in (6.8) are of forth

order, therefore, equation (6.23) can have only four solutions. From (6.25), (6.27) and by

observing Figure 6.3, it follows that all four solutions of (6.23) are located on the unit

circle 0 5_ w 27r if time-step in (6.2) is 16% below the stability limit of conventional

FDTD. This in turn means that, hybrid time-marching according to (6.2) does not have

solutions exponentially growing with number of time-steps, i.e. it is stable.
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6.4 Numerical Example

Modulated Gaussian source sin (Di) 
e_(t't0)2

 was injected from the left side.

Propagating pulse was reflected from the grid interface and is show in Figure 6.5 for

hybrid of [7] and in Figure 6.6 for the proposed hybrid scheme. If grid spacing in (3.8) is

chosen 1120th of the wavelength, then the stability limit of three-dimensional FDTD is

5/ = 2/(20,5c) which about 1135 th of the wave period. Therefore, period of the

Gaussian pulse was set equal to 30 time-steps, which means that, at the corresponding

numerical frequency f = 1/30 = 0.033 the transfer function mismatch is virtually

nonexistent, as it can bee seen from Figure 6.4. Pulse duration to was equal to two

periods or sixty time-steps. Cells up to cell number 3000 were time-stepped explicitly,

from cell number 3000 implicit finite-element time-domain method with trapezoidal

integration was used to update field values. Trapezoidal integration of stiffness and mass

matrices makes FEM and FDTD spatial discretization equivalent, so that the reflection

from the interface between different types of the grid was only due to the transfer

function mismatch. From Figures 6.5 and 6.6 it can be seen that as a result of minimum

mismatch around the central frequency of the pulse, f = 0.033 , the reflected wave

amplitude was reduced by about two orders of magnitude.

Figure 6.5 Reflection from grid	 Figure 6.6 Reflection from grid
interface for hybrid of Rylander	 interface for the proposed hybrid
and Bondeson [7] 	 algorithm.
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6.5 Discussion

Implementation of hybrid time-marching (6.2) according to the choice (6.22) requires

storage of four previous field values, whereas hybrid of [7] requires storage of two

previous field values. Operational count of the proposed algorithm is increased by at most

four multiplications and four additions per time-step for every edge, which should be

negligible in three dimensional simulations, especially when higher order elemental

functions are used [4].

Stability limit of the proposed hybrid time-stepping, defined by (6.22), was

reduced by 16% compared to conventional FDTD. Tuning reflection error and stability

limit for a specific frequency band can be done easily with the help of Matlab

optimization toolbox [37] or, any other software package capable of nonlinear

optimization.

Nonphysical reflection can play important role in modeling structures with very

week physical reflection. Typical example could be low-pass microwave filter

simulation; low-pass filters are designed to have very small reflection coefficient.

Although, nonphysical reflection may be small compared to the incident pulse, it can

alter physical reflected pulse and introduce high error to the reflection coefficient

estimation. Another example is the design of optical resonators in which any local

artificial reflection may be amplified and resulted in severe errors.



CHAPTER 7

CONCLUSION

7.1 Discussion of Results

In this investigation, stability and time-discretization error of FDTD was analyzed

using Z-Transform technique. Central-difference approximation of time derivative was

generalized as a discrete-time linear time-invariant system with rational transfer function.

Empirical procedure to optimize transfer function is presented. It was shown that by

manipulating coefficients of transfer function it is possible to significantly reduce time-

sampling error in the desired frequency range. Examples of optimized transfer functions

were presented. The resulting time-stepping was fully explicit and had lower time-

sampling compared to the central difference approximation of original FDTD. Stability

limit of the original formulation was preserved.

Possibility of implicit scheme is also considered. Implicit time-stepping is

unconditionally stable and requires matrix inversion at every time-step. Matrix inversion

is computationally very intensive. Therefore, it desirable to keep time-step size of explicit

algorithm as large as possible. Within the framework of the developed theory a novel

implicit time-stepping scheme is presented. New implicit scheme has low sampling error

for values of numerical frequency close to theoretical limit dictated by Nyquist's

sampling theorem.

Improved Explicit-Implicit Hybrid FDTD-FEM solver for Maxwell's time-

dependant equations was developed. Hybrid algorithm employs computationally efficient

FDTD to solve large homogeneous volumes, and FEM with boundary conforming

64
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unstructured grid around curved boundaries. If computationally extensive FEM is limited

to small volumes around curved boundaries, then the computational efficiency of original

FDTD is preserved.

The main issue of any hybrid solver, nonphysical reflection from the interface

between FDTD and FEM sections of the grid, was addressed. Proposed hybrid algorithm

replaces conventional central-difference approximation of second order time-derivative

with a rational transfer function discrete-time linear time-invariant system. Stability of

the formulation was rigorously proven for the general three dimensional case.

Coefficients of time-discretization can be optimized for the best performance in the

desired band of frequencies. Procedure to optimize transfer function and at the same time

to preserve stability of algorithm is derived. Example of transfer functions with low

reflection error is discussed. Numerical examples demonstrated the stability the proposed

algorithm. Nonphysical reflected wave amplitude was reduced by two orders of

magnitude compared to the original hybrid formulation.

7.2 Final Words

FDTD and FEM are major numerical techniques to solve Maxwell's equations for

electromagnetics. FDTD employs explicit time-stepping on structured grid with

rectangular cells. Therefore it is easy to implement and suitable for parallel processing.

Time-marching of FDTD conditionally stable: time-step size is subject to Courant

stability limit. In many cases FDTD numerical solution yields good results if grid with

cell is chosen about 1120th of the source wavelength. FDTD structure grid results in
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staircase approximation of curved boundaries. This together with time-step bound is on

the most limiting factors of FDTD.

FEM is often used for numerical solution electromagnetic problems in frequency

domain. FEM is formulated on unstructured nonuniform grid. Unstructured grid is well

suited for approximation of curved boundaries. Accuracy of FEM depends on grid

quality. High quality grid generation is difficult task and can greatly increase

computational complexity of the technique.

FDTD and FEM are complementary techniques. FDTD is efficient if staircase

approximation can be avoided. FEM is best to use when boundary conforming grid is

needed. It is possible to combine FDTD and FEM into hybrid solver. A hybrid solver

uses FDTD in larger homogeneous volumes, and FEM near complex boundaries.

Limiting computationally intensive FEM to small volumes around curved boundaries

allows to maintain computational efficiency of the original FDTD. This way, a hybrid

solver can take advantages of FDTD and FEM, and at the same time avoid disadvantages

inherent to both of them.

The main disadvantage of a hybrid-solver is the nonphysical reflection from the

interface between different types of the grid. Reflection error can be controlled by

optimizing time-stepping coefficients.



APPENDIX A

COMMENT ON THE DESIGN OF TRANSFER FUNCTIONS

Stability condition (5.22) MAY be interpreted as a polynomial roots localization

problem: time-stepping scheme is stable if all roots of the following polynomial equation,

are located within the unit circle Izi 1 for all possible values of parameters C. Procedure

described in Chapter 5 allows to localize all roots of equation (A.1) on the unit circle.

This is done by posing restrictions on the roots of numerator and denominator of the

transfer function. Another approach would be to start without any restriction and check if

all roots of (A.1) are located within the unit circle for all 0 5.. C . To do so, equation

(A.1) need not be solved explicitly. Any stability test, such as Shür-Cohn criteria [8]

allows to test allows to check if all roots of a given polynomial are located within the unit

circle without actually solving for them. Steps to design such transfer function are as

follows [24]:

1. Start with an initial guess for transfer function coefficients with low sampling

error.

2. Use a test such as Shür-Cohn criteria, to determine the range 0 C 5_ C. for

which all roots of equation (A.1) are located within the unit circle.

3. Stability limit for the transfer function is given by,

(A.2)
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Advantage of the above procedure is that, it does not pose any restrictions on

polynomials roots. Therefore, it may result in a more optimal solution compared to the

one described in Chapter 5. However, such tests, e.g. Shür-Cohn criteria, are aposteriori

test, once the transfer function has been identified (see reference [36] and Chapter 5 of

this dissertation).



APPENDIX B

HYBRID TRANSFER FUNCTION OPTIMIZATION

B.1 Mathematical Procedure

The objective of the optimization process is to reduce mismatch between explicit and

implicit transfer functions on both sizes on the interface. These transfer functions are

defined in (6.18) and (6.19), respectively, in the frequency range, 0.015 < f < 0.06. The

implicit transfer function is not affected by the optimization process. Its values on the

unit circle are given by,

Substituting (6.20) into (6.18) and recalling that r =	 , p =	 , results in,

The normalized mismatch parameter is defined as,

Equation (B.3) defines a mismatch for single frequency. Mismatch for a range of

frequencies is defined simply by an integration:

The mismatch (B.4) depends on three real valued parameters Q, 0, yr and can be

minimized with fmincon function from Matlab optimization toolbox [37]. The choice
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is equivalent to the time stepping procedure in a conventional FDTD and therefore, can

be used as a starting point. During the optimization process, parameter Q should be kept

positive. Zeros and poles of transfer of function should be kept outside of the frequency

range of interest and satisfy the relation,

where, gw, is small and positive. The integral in (B.4) can be evaluated using trapezoidal

integration rule.

B.2 The Optimization Process

1. Create a function AT, which accepts Q, 0, ;It as arguments and computes

mismatch (B.4) using trapezoidal integration rule. Number of nodes for

trapezoidal integration can be small, namely in the range of 20 to 100

2. Use Q =1, 0= 0, v = 0 as the starting guess.

3. During the optimization process, variables must be subject to the bound

4. Stability bound, C., can be controlled by forcing 10 — wi < 4- . Smaller 4- , results

in a higher stability limit; larger 4- results in a lower mismatch



APPENDIX C

HYBRID TIME-STEPPING IMPLEMENTATION

Once a spatial grid is generated, stiffness and mass matrices can be assembled from the

elemental matrices (2.40) by using conversion from local to global indices [4]. Time-

stepping of the electric field is performed according to the following procedure:

1. Edges of a structured grid, not shared by unstructured grid, are updated explicitly

using the central difference approximation of spatial derivatives,

2. Edges of unstructured grid are updated implicitly. Contribution to the right hand

side from explicitly updated edges are computed using global indices of shared

edges; edges belonging to interface elements of the structured grid are computed

according to
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