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ABSTRACT

DATA FEED MANAGEMENT AUTOMATION :
AN EMPIRICAL APPROACH

by
Dibyendu Majumder

This thesis proposes a framework for automation of data feed management and control.

The framework can be classified into two broad areas i) building an ontology for a feed

system and ii) developing a test suite, that is, a set of statistical models to analyze and

diagnose feeds and formalize the results to feedback into the ontology. This thesis

concentrates more on the latter and will only outline the course of action required for the

former. Detailed descriptions of the statistical models that are part of the test suite are

given and their strengths and weaknesses discussed. Practical results of implementing the

test suite on a data feed system are analyzed. Various open and unexplored areas, issues

and concerns are also discussed.
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CHAPTER 1

INTRODUCTION

There is very little formal work on data feed management. Database research has

primarily focused on building warehouses and optimizing queries to extract data from

these warehouses. Feed management is a difficult problem, due to the complexity and

size of feeds, their interpretation, their inter-dependence and the ad hoc nature. A brief

introduction to data feeds can be found in [3]. Market demand for feed is very high and

increasing. Some typical area where the relevance of feed is very high are trading data for

financial systems, billing data for telecom companies, etc. The data feed system being

tested receives millions of files every day. File sizes vary from a few kilobytes to

hundreds of megabytes. Constant pressure on disk space makes tracking down and

removing 'dead files' an important part of the process. There is little knowledge about the

nature of feeds, specially feed traffic. Feed traffic varies drastically from no transmission

during weekends to very high traffic density during the day hours. Each feed type has its

own pattern, some may show no pattern and then there are third party feeds that keep

changing and there is very little available knowledge to anticipate these changes. A

growing interest now is to build an ontology for data feeds. As first phase of

development, feeds are being classified according to the results obtained by the statistical

algorithms.

Feeds are very ad hoc in nature. Volume of feed traffic may vary drastically with

time. For example, telephone calls may be very high during an emergency or during the
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holidays. Comparatively fewer calls are generated during night hours. Such drastic

variations may crash a 'billing data' feed system. On the other hand being too cautious

may lead to lack of efficiency. Similar examples can be shown for trading data. The

volume of trade varies day to day. An efficient data feed handler should be able to

anticipate such changes and adapt itself accordingly. When the feed traffic is lower or

stable it can allocate more resources to analysis. With time a feed may be termed 'dead'

which requires its removal or archival. Bigger feed sizes may lead to a constraint on

space. Missing or corrupt feeds may be hard to detect because of their dynamic nature.

Feed users vary widely and a good synchronization should exist between the requests and

service. For example, the feed handler being tested receives ad hoc analysis requests such

as transferring a data set (bundles of files) from one cluster to another where each cluster

is devoted to a specific application. There should be a method of defining a data set as

well as method for transferring, verifying integrity and validations of these data sets. A

good synchronization should lead to efficient handling of such requests.

A typical data feed system consists of three components receiving feeds from

various sources, feed management and servicing feed users. While data are being

received the feed handler should be able to detect or anticipate traffic volume and pattern

and adapt itself accordingly so that all data is received properly. The handler should have

the ability to detect missing or corrupt data and to take necessary action. The feed handler

should be able to organize, classify and distribute feeds efficiently within soft time

constraints, flush out(deleting or archiving) old data, provide feed users with intelligent

information about feeds, trace feed movement and feed status and monitor feed life cycle.

Feed consumers are applications that require data feeds for execution. Some problems
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encountered here include ensuring required files exists, composing a list of files to be

transmitted, validating the lists, trace down files that have finished usage, etc. The design

patterns talked about in [1] may be relevant here. Meta analysis can be of help here. Meta

data is information collected by the statistical algorithms and meta analysis is analysis

done on such information. Meta analysis gives us a broader picture of the defect patterns,

the severity of a defect and can help co-relate different feed types. Classification based on

meta analysis enriches feed knowledge base giving feed users a multi dimensional view

of the feeds.

The feed nature and problems explained above indicates the requirement of a

common language or methodology that every feed user understands. Effort is on to build

an ontology as part of the automation framework. The ontology will help formalize and

organize much of the concepts in the feed domain. A suite of statistical models has been

developed to analyze feeds and extract patterns and hidden information. At present,

capacities of the models are limited but efficient auto regressive models are foreseen in

future as experience working with these models increase. Application of the results to

real life test scenarios is also discussed.

First section of this thesis will outline the broad framework proposed. Various

components of the framework and the most relevant components will be stated.

Knowledge base representations and implementation methods will be discussed. Later

sections will give a detailed description of the test suite that is being developed. The

various algorithms that constitute the test suite will be discussed and their strengths and

weaknesses stated.
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In later sections the results of application of the algorithms to a data feed system —

NINGAUI, will be discussed. The last sections will discuss the conclusions drawn, some

of the open areas in this domain and a plan of the future course of action will be outlined.



CHAPTER 2

SURVEY OF EXISTING LITERATURE

Semantic correctness of data feeds is discussed in [Orna2]. Feed handler architectures are

discussed in [Roodyn3]. An interesting section in [Orna4] is the description of the

technique tool kit. Output of the toolkit is used as part of a specification based system to

detect anomalies. It describes various statistical algorithms some of which may be

relevant for us. Similarly various statistical algorithms are also discussed in [Agarwal5].

The test suite being developed is very similar to the 'technique tool kit' stated in

[Orna4]. But the author doesn't discuss in detail about the standard deviations and its not

clear how they are calculated. In contrast, the tool looks at historical data to derive the

values. Output of the tool kit in [Orna4] is used as part of a specification based system to

detect anomalies whereas ours use the results of test suite not for detecting anomalies

only but to garner data for meta analysis. It's the first step of a two step process.

This thesis does not focus on the semantic correctness of data feeds as in [Orna2].

It also differs from [Roodyn3] as it does not talk about building a framework for feed

integration but only recognizing that integration may be a part of the total automation

process. Therefore the customizable components and Component Object Models

discussed in [Roodyn3] there as architecture styles are of particular interest to us.

Though considerable literature exists for data streams most of them are not

applicable to feed systems, and that justifies a fresh investigation. In [Agarwal5] some

new techniques are discussed to determine trends in evolution of fast data streams.

Although one objective is to discuss data evolution using visual and diagnostic tools this

5
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thesis specifically targets high speed data streams. A lot of work being done on

continuous queries of data streams as in [Widom6] but they fall out of context with

reference to feeds. Models and issues discussed in [Motwani et al 7] are applicable for

streaming feeds but not feeds in general.



CHAPTER 3

THE FEED MANAGEMENT FRAMEWORK

Figure 3.1 shows the proposed feed framework being developed. The circular entities test

suite, meta data and meta analysis components are the ones this document will describe

in detail. The framework consists of three logical components feed receiving component,

feed management component and the feed user interface component. The feed receiving

component actually receives the feeds and after initial validation stores the feeds. As

shown, the test suite is a part of the feed receiving component. The objective is to detect

problems as early in the process as possible. The feed management component is

primarily where all feed management logic resides as stated before like tracing and

validation of feeds, tracing feed life cycle, archiving old data, etc. Feed user interface is

the logical interface to applications that uses the feeds. Every application may need its

own interface that customizes the feeds according to individual requirements. This is one

place where its hoped building an ontology is going to be most useful.

A good framework is one that allows smooth integration of new users. Feed

repository may be any relational data base. Meta data can be stored as simply as a text

file. The knowledge base represents knowledge about the data feeds, system resources,

applications using the feeds etc. The aim is to capture knowledge about the whole

environment related to feeds. The knowledge base may be accessed by any component of

the framework. Implementation and subsections of the knowledge base and its underlying

ontology will be discussed in the next section. The meta analysis component is plugged

7
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into the framework and primarily used for enriching the knowledge base as results are

fed back.

The feed management framework can be classified into two broad categories. The

first category consists of the knowledge base, the ontology that represents the knowledge,

method of implementation and architecture, reasoning mechanism, etc. The second

component consists of the test suite, meta data and the meta analysis component. There is

no contribution to the actual framework as noticed. The author is more interested in

demonstrating the usefulness of building an ontology for data feeds and it does not matter

how the results are used by a framework. The following two sections will describe the

categories mentioned above in further detail.



Figure 3.1 The automation framework.
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CHAPTER 4

FEED ONTOLOGY AND KNOWLEDGE BASE

There exists several motivations for building an ontology for data feeds. Formalizing the

whole feed literature helps in better understanding and a multi dimensional view of feeds.

Classification of feeds by analyzing their nature and behavior leads to better

understanding of feeds and easier anticipation of changes. An ontology captures the

dynamic nature of feeds spontaneously.

Figure 4.1 shows the various components of the knowledge base in detail. There

exists ontological elements for various components. An ontology for system resources

represents the system and hardware environment such as cpu status, memory status, disk

usage, queued resources, processing load, etc. An ontology for applications running

represents the requirements for various applications like amount of cpu time requested,

memory requirements, etc. The data feed ontology represents all knowledge about data

feeds like feed types, feed nature, feed status, etc. A section of the data feed knowledge

will be updated by the meta analysis component. A formal representation method will

standardize the process of interfacing applications with the feed system. A typical

problem faced by feed users is there understanding of the feed nature and behavior is

minimum, specifications keep changing and its difficult to maintain specifications

simultaneously with changing data feeds.

10
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Figure 4.1 A Interaction of meta analysis component with knowledge base.

Though a small survey has been done to choose the methodology [8] for building

an ontology, the general idea is to start building from scratch without actually getting tied

down to any particular representational structure or implementation methods. At some

point of time as a structure em erges a decision should be taken to map it to a particular

representation or implementation. Not much progress is made in this direction yet and

this document will not discuss any more about this section of the framework. Rest of the

document will focus on the test-suite, meta data and meta analysis components.



CHAPTER 5

TEST SUITE AND META ANALYSIS

Several algorithms have been developed to analyze the feeds. The two parameters that are

focused on initially are traffic volume and file sizes. The test suite is being optimized by

adding more efficient algorithms.

5.1 Introduction to the Test Suite

The algorithms look at past data to understand and evaluate current data. Historical data

of the last three months is analyzed and mean and other boundaries evaluated. This then

is applied to the current data. All violations to the cut off limits are then marked as

`anomalies' and logged for further analysis later. Its assumed that data traffic varies

greatly for weekends and weekdays, so they are analyzed separately. Equal priority given

to all the algorithms, i.e., severity of a defect is the same irrespective of the algorithm that

has detected it.

A brief description of what is meant by an anomaly or defect is given here. If any

measurement at any given point of time violates the anticipated ranges for that time, it is

flagged as an 'anomaly'. Every anomaly has a time stamp attached to it. Anomalies are

calculated for a given day. This thesis investigates various ways of defining an anomaly

other than associating it with a time stamp.

12
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At present the test suite contains the following algorithms

• Hample Identifier analysis

• 5 percentile cut off analysis

• 10 percentile cut off analysis

• 6 sigma analysis

• Quartiles (5th & 95th)

A detailed description of the algorithms are given below in another section.

5.2 Introduction to Meta Analysis

The statistical models analyze the data feeds and the results are logged as defects or

anomalies, shown in Figure 3.1 as meta-data. These defects are then analyzed again to

detect hidden patterns, classification possibilities, etc. This phase is called as meta

analysis. Meta analysis is an important part of knowledge extraction, the first level

analysis is only an auxiliary to collect data for an exhaustive meta analysis. At this point

very simple meta analysis is being done which is termed as 'voting mechanism'. The

number of votes for a given defect is being plotted against time, i.e. the number of

algorithms that had voted for a defect. The assumption is that severity of an anomaly is

dictated by the number of votes. Again, equal priority is being given to all the algorithms

but in real life algorithms may be prioritized based on context or scenario. Finally, the

test results are evaluated by a human expert and weighed accordingly. In the future, call

back functions may be implemented as part of the meta analysis component. Human

experts can encode their own validations using first order predicate logic which will be

invoked during meta analysis. Experts are notified by automated e-mail messages when
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their attention is required. Results of the meta analysis will be published as test results.

As understanding of the system increases, the meta analysis module will be enriched by

adding several other analysis methods.

As shown earlier in Figure 4.1 results from meta-analysis will be fed back into the

ontology enriching the data feed component. At present the focus is on how data feeds

can be classified based on meta analysis results. In a complete automation framework, the

feed system should be able to adjust itself according to the results of meta analysis.

Though the present state is far away from such a goal, this is what is being propose to

achieve and hence, meta analysis is one of the most important part of the framework.

5.3 Detailed Description of the Algorithms

Hample Identifier analysis

Applicable for normalized data. Unlike other algorithms deviation is calculated twice.

Hence, its more stringent than others in terms of outliers. The maximum, minimum and

medians are -3, 3 and 0, respectively.

For a given array, the array is first sorted and the median calculated. Then the

absolute deviation of every point from the median is computed. So at this point there are

a set of deviations. Then, it calculates the median of the deviations. A correction factor K

= 1.4 is then applied. How the correction factor is chosen will not be described in

detail. Let's say a point x i is an outlier if abs (x_i-M) /K > 3. It will illustrated with

an example:

given a sorted array(24 elements)

32, 37, 37, 38, 39, 39, 39, 40, 41, 42, 52, 53, 63, 71, 79, 80, 81, 81, 82, 85, 87, 89, 97
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compute the median, M

58

compute the absolute deviation of every point from the median

5, 5, 6, 13, 16, 17, 18, 19, 19, 19, 20, 21, 21, 21, 21, 22, 23

23, 24, 26, 27, 29, 31, 39

compute S, the median of the deviations : 21

Apply the correction i.e. K = 1.4826 * S : K = 1.5 * 21 = 31.5

Subtraction factor : K * M = 31.5 * 58 = 1827

A point xi is an outlier if abs(xi-K*M) > 3

The six sigma algorithm

The objective of Six Sigma Quality is to reduce process output variation so that on a long

term basis, which is the customer's aggregate experience with the current process over

time, this will result in no more than 3.4 defect Parts Per Million (PPM) opportunities (or

3.4 Defects Per Million Opportunities — DPMO). A variation of the process is measured

in Standard Deviation(Sigma) from the Mean. The normal variation, defined as process

width, is +/-3 Sigma about the mean. This thesis uses the latter which is the standard

method of calculation.

Notation

0 Minimum value (Same as MIN())
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1 1st quartile - 25th percentile

2 2nd quartile - 50th percentile (Same as MEDIAN())

3 3rd quartile - 75th percentile

4 4th quartile - 100th percentile (Same as MAX())

The following is the algorithm used to calculate QUARTILE():

Find the kth smallest member in the array of values, where:

K = ((quart/4)*(n-1)) + 1

Where

quart = value between 0 and 4 (quartile)

n = number of values in the array

Note

If k is not an integer, truncate it but store the fractional portion (f) for use in step 3.

Find the smallest data point in the array of values that is greater than the kth smallest i.e.

the (k+l) th smallest member.

Now, interpolate between the k th smallest and the (k+1) th smallest values:

Output = a[k]+(f*(a[k+1]-a[k]))

Where

f	 = fraction obtained from K noted above
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a[k]	 = the kth smallest

a[k+ 1 ] = the k+ 1 th smallest

5% trim analysis

This algorithm is very similar to the six sigma algorithm. In this algorithm the sigma is

re-calculated after trimming the upper 5% and the lower 5% of the values. This is

equivalent to removing the outliers and analyzing the scenario.

10% trim analysis

It is very similar to 5% trimmed analysis mentioned above except that the trimming

occurs at 10%. The advantage of both these algorithms is it gives us an idea about the

degree of severity of an outlier. If an outlier persists even after trimming twice then it is

marked as of high severity to indicate that it needs to be analyzed. An outlier that persists

even after 5% trimming is marked as medium severity. Outliers that are removed by

trimming are considered as less severe.

Quartiles (5th & 95th)

This algorithm is used to give a clear picture of the distribution of data rather than

detecting outliers. Outliers detected by this algorithm is considered not as defects, rather

data that is sensitive, prone to errors and possibly flagged as errors by other algorithms

like Hample. The quartiles give us a clear picture of the raw data, as it is.
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The formula for calculating the quartiles is a modification of the six-sigma

formula. The original formula is mostly untouched except for calculating K.

Find the kth smallest member in the array of values, where:

K = ((quart/100)*(n-1)) + 1

Where

quart = 5(5 th percentile) or 95(95 th percentile)

n = number of values in the array

Note

If k is not an integer, truncate it but store the fractional portion (f) for use in step 3.

Find the smallest data point in the array of values that is greater than the kth smallest i.e.

the (k+l)th smallest member.

Now, interpolate between the kth smallest and the (k+1) th smallest values:

Output = a[k]+(f*(a[k+1]-a[k]))

where

f	 = fraction obtained from K noted above

a[k]	 = the kth smallest

a[k+1]	 = the k+l th smallest



CHAPTER 6

TEST RESULTS

This section discusses the result of implementing the tool on a real life data feed system.

NINGAUI is a data feed handler built and owned by AT&T for analyzing billing data.

NINGAUI receives 30 GBs of compressed data from approximately 100 individual data

feeds every day. Because of the nature of applications served by the system, and

considering the fact that its analyzing financial data the quality of data feed received by

NINGAUI requires very strict monitoring standards. For example, NINGAUI has a

requirement that no data is ever lost or corrupted. The aim is to understand these data

feeds, how they behave with time and the patterns generated.

A single data feeds is first chosen for analysis. Sum of file sizes of files received

every hour is plotted against time. The medians are calculated using three months data-

April, May, June. This is termed as the historical sliding window. Plots are generated for

the first and second weeks of June, July and August. Here only the charts corresponding

to Hample Identifier analysis and 6-sigma analysis are shown as these two are more

interesting and show a definite pattern.

Some observations with reference to the charts are as follows :

• Each chart shows seven day data

• The x-axis shows the file size averages plotted against time on y axis

• Outliers are values that crosses limits or bounds

• The seven days are either weekdays or weekend

19
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• Most of the curves are normalized. This is based on the underlying assumption

that record volume increase as day progresses and decreases at the end of the day

For the first week of June, Hample Identifier (Figure 6A) detects a couple of outliers in

the mid-region. This indicates that outlier have occurred at the peak period when the

record volume is high. The 6-sigma analysis for the corresponding period (Figure 6B)

does not show any outliers. However the points corresponding to the outliers in the

earlier diagram does approach very near to the medians. In all data for the first week of

July looks sound and well within control.

Charts for the first week of July leads to some interesting observations. The data

is nowhere within the boundaries. The actual data has gone drastically below the lower

limit for both the charts. Again the deviation is maximum during the peak hours. It means

the traffic is much less than expected during this period. This continues for four days. An

outlier of this degree requires further verification by experts. Having talked to the experts

our first hand observation is that its not a known case and the experts suspect some

problem with file logging or tracking down data movement.

Things improve in August. The Hample identifier detects (Figure 6E) only one

outlier though its not supported by 6-sigma (Figure 6F). Otherwise the data is very well

contained in limits. Plotting for the month of August indicates that the system has

recovered from its aberration in the month of July. Further investigation is required at this

state from human experts.



6.1 Charts for 1 st week of June 2004
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Figure 6.1 Hample Identifier analysis chart for 1 St week of June 2004.

Figure 6.2 Six sigma analysis chart for 1 St week of June 2004.



6.2 Charts for 1 st week of July 2004
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Figure 6.3 Hample Identifier analysis chart for 1 st week of July 2004.

Figure 6.4 Six sigma analysis chart for 1 st week of July 2004.



6.3 Charts for 1 st week of August 2004
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Figure 2.5 Hample Identifier analysis chart for 1 st week of August 2004.

Figure 6.6 Six sigma analysis chart for 1 st week of August 2004.



CHAPTER 7

CONCLUSION

An outline of the proposed feed management framework is first given. A very brief

introduction to the knowledge base and related components is given. The thesis then

focused on the test suite and meta analysis. It then discussed outlier detection and how it

helps with meta analysis. A detailed description of the statistical algorithms are given.

The tests shown are simple but effective. Defects detected early in the process gives

ample time to control before they are passed on to the feed consumers. Human experts

are automatically notified in case problems arise which leads to further investigation of

the feed thus detecting problems before they enter into downstream user applications.

Moreover, outlier detection is a step towards meta analysis which is supposed to be the

primary strength of the automation framework. The results of implementing the test suite

on a real life feed handler is shown. Test results showed how problems are detected in

feed traffic during one month.
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CHAPTER 8

FUTURE WORK

This section discusses various areas that remain to be explored. Only a very small section

of the framework has been worked upon. Specifically the focus was on the first part of

the framework but for second part, developing the ontology, most of the questions are yet

to be answered.

Current work in meta analysis is just a proof of concept. In particular the effort is

on searching for criteria that can help classify data feeds across various dimensions. Such

knowledge will help the feed user visualize the feed data from different contexts. This in

turn require a lot of communication with the ontology that deals with systems resources,

etc. It is yet to be explored.

It is being investigated how to classify or prioritize historical data to generate

even more accurate results. In other words, studying the learning mechanisms of the

models and how to improve them. These models are supposed to be intelligent with

feedback and auto regressive features and they are supposed to replace human experts

with time. Every such model should have a set of information associated with them like

features, characteristics, past results, degree of accuracy, how well suited to a particular

environment etc. Such knowledge will only be accumulated over time. It's a part of the

learning process. One aim of this work is also to explore the possibility of formalizing

such acquired knowledge and make it a part of the ontology. Another aspect is the
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implementation architecture for this learning process. The possibility of interfacing the

statistical models with an agent architecture is being explored.

A couple of new algorithms may be added to the suite. But more important is the

understanding of the algorithms. First it is needed to know the behavior of these

algorithms under particular scenarios and test their consistency. Second, to be able to

correlate the results of various algorithms against each other.

Looking at the past data to calculate the limits, its termed the sliding historical

window. The behavior of the medians against various sliding windows is calculated to

come up with the most efficient one. Further work required to define how to chose the

best sliding window. It is believed prioritizing the historical data will lead to better

results. Every day/week will be associated with a weight. The older the day/week, lesser

will be its weightage. Thus older the day, the lesser role it plays in dictating the value of

the medians. It is not yet implemented that.

This document discusses about the statistical algorithms included in the test suite.

However the test suite itself is only a part of the framework whose main objective is to

enrich the ontology by analyzing the feeds. Primary focus is not on detecting defects,

rather enriching the knowledge base. Very little work has been done in that direction and

in future It is hoped to come up with a specific knowledge base representation

architecture.
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