

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

DIGITAL LIBRARIES AND MIDDLEWARE ARCHITECTURE

by
Muhammad Umar Qasim

Digital libraries deliver personalized knowledge directly to their users, without being

restricted to the contents of a physical library. In a digital library information from any

online source can be managed and shared, making more knowledge available to users

than before. The information sharing is achieved by integrating many autonomous

heterogeneous systems available. The challenge is to provide users with the ability to

transparently access digital library contents in spite of the heterogeneity among the

information sources.

Research communities have proposed several approaches to accomplish the

system integration in digital libraries. In this thesis, the working of currently employed

approaches was assessed and a new ontology based approach is proposed. This approach

utilizes the semantic web enables web services to implement the middleware for digital

library integration. Ontology based digital library integration will provide a machine

processable mechanism and will overcome the shortcomings of earlier approaches.

DIGITAL LIBRARIES AND MIDDLEWARE ARCHITECTURE

by
Muhammad Umar Qasim

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Information Systems

Department of Information Systems

January 2005

APPROVAL PAGE

DIGITAL LIBRARIES AND MIDDLEWARE ARCHITECTURE

Muhammad Umar Qasim

Dr. Michael Bieber, Thesis Advisor 	 Date
Associate Professor of Information Systems, NJIT

Dr. Stephan Gagnon, Committee Member 	 Date
Assistant Professor of Management, NJIT

Dr. Vincent Oria ,Committee ember	 Date
Assistant Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Muhammad Umar Qasim

Degree:	 Master of Science

Date:	 January 2005

Undergraduate and Graduate Education:

• Master of Science in Information Systems,
New Jersey Institute of Technology, Newark, NJ, 2004

• Master of Business Administration,
Hamdard University, Karachi, Pakistan, 1999

• Bachelor of Computer Science,
Hamdard University, Karachi, Pakistan, 1998

Major:	 Information Systems

This thesis is dedicated to my beloved family

v

ACKNOWLEDGMENT

With a deep sense of appreciation, I would like to express my sincere thanks to Dr.

Michael Bieber for his immense help in planning and executing this work. His support,

encouragement and reassurance are greatly acknowledged. His valuable suggestions

guided me in completing this work.

My sincere thanks to Dr. Vincent Oria and Dr. Stephane Gagnon for reviewing

this work and providing me important suggestions. Special thanks are due to Anirban

Bhaumik for his assistance in this work.

I wish I would never forget the company I had from my friends at my home. I am

thankful to Mumtaz, Qazi, Umar, Akhtar and Nadeem for their countless cooperation,

help and encouragement.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 1

1.2 Background Information 	 1

2 SYSTEM INTEGRATION 	 4

2.1 System Integration Overview 	 4

2.2 Middleware 	 6

3 DIGITAL LIBRARY INTEGRATION APPROACHES. 	 8

3.1 ORB Approach 	 8

3.2 Mediated Approach 	 11

3.3 Agent-Based Approach 	 14

3.4 A Service-Oriented Agent Architecture 	 17

4 DIGITAL LIBRARY SERVICE INTEGRATION AT NJIT 	 20

4.1 DLSI Overview 	 20

4.2 DLSI Architecture 	 21

4.2.1 Wrappers 	 21

4.2.2 Collection and Services 	 22

4.2.3 Integration Manager 	 23

4.3 Implementation Details 	 25

4.4 Advantages of DLSI. 	 26

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.5 Disadvantages of DLSI 	 26

	

5 A NEW APPROACH TO DIGITAL LIBRARY INTEGRATION 28

5.1 Semantic Web Overview.. 	 32

5.1.1 Semantic Web 	 32

5.1.2 Resource Description Framework.. 	 33

5.1.3 Uniform Resource Identifiers.. 	 34

5.1.4 Ontologies 	 34

5.1.5 Ontologies and Services 	 35

5.1.6 Ontologies and Agents 	 37

5.2 Ontologies Based Approach.... 	 38

5.2.1 Markup Language for Ontologies 	 38

5.1.2 Digital Library Web Services and Architecture... 	 40

	

5.2.1 Implementation Details 44

	

6 CONCLUSION 46

REFERENCES 	 48

viii

LIST OF FIGURES

Figure Page

2.1 Digital library integration architecture 6

3.1 CORBA architecture 9

3.2 The InfoBus infrastructure 	 11

3.3 Mediated approach architecture 12

3.4 Architecture of digital library service integration at NJIT 14

3.5 Agent-based approach architecture 	 15

3.6 UMDL architecture 	 16

4.1 DLSI architecture 21

4.2 Message flow in the ME 	 ... 24

5.1 Layered approach to markup language development 	 39

5.2 DAML-enabled agents, tasked by users or other agents 42

5.3 NJIT digital library web services functional requirements 	 43

ix

CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this paper is to explore the various middleware implementation

approaches for the system integration in the context of digital library integration. Often

information sources have been designed independently for autonomous applications, so

they may present several kinds of heterogeneity making the integration complicated. The

approaches discussed in this paper present architecture to overcome the problems in the

digital library integration. A detailed architecture of one approach is presented, which is

being implemented at New Jersey Institute of Technology. A new approach for the digital

library integration has been suggested for the future implementation. This approach is

based on the Semantic web and ontologies.

1.2 Background Information

Information is power, and digital libraries are built to provide a unified infrastructure for

supporting the creation of information sources, facilitating the movement of information

across global networks and allowing effective and efficient interaction among knowledge

producers, librarians, and information seekers (Adam et al. 2000).

Digital libraries are becoming widely accepted as sources for knowledge in all the

areas such as science, engineering, education and business. It is being expected that the

move from printed documents to digital documents will soon be ubiquitous and digital

libraries will become integral and critical infrastructure for the nations around the world.

1

2

A digital library is a collection of objects stored and maintained by multiple

information sources, including databases, file systems, email systems, the web, and other

formats. These information sources are diverse and dynamic in nature. For these reasons

digital libraries have countless technical and engineering issues associated with

connecting together these networks, databases, and other computer-based systems.

A fundamental issue for digital libraries is interoperability, the capability of

digital libraries to exchange and share documents, queries, and services (Birmingham et

al.). Interoperability is the mechanism through which different systems work together and

exchange data. Interoperability between different systems is achieved by using common

standards and specifications. Interoperateablity could also be viewed as an integration of

multiple systems. System Integration is the process by which multiple software modules

are made to cooperate (Barret et al., 1996). System integration in digital libraries is the

ability to generate a virtual view on many different library components without changing

their autonomy. Therefore the challenge is to provide users with the ability to seamlessly

and transparently access digital library objects in spite of the diversity and vitality among

the information sources and the varied nature of the objects. To accomplish this, an

effective system integration methodology must be adopted.

The goal of data integration in digital library network is to provide users with a

uniform interface to access, relate, and combine data stored in multiple, autonomous, and

possibly heterogeneous information sources (Fahmi et al., 2001). Nowadays, a central

topic in database science is the need of an integrated access to large amounts of data

provided by various information sources whose contents are strictly related. Although

there is a continuous and dramatic growth of digital libraries and information sources,

3

however this growth has made the task of finding, extracting and aggregating the relevant

information harder. This is because most of the information systems underlying digital

libraries are physically distributed, heterogeneous in the way how information is stored,

organized and managed, and comprise heterogeneous software and hardware platforms

on which they reside. Additionally, they are autonomous in the sense that the content and

format of data are determined by the organization owning the data, not by the user

(Ibrahim et al., 2001).

We start with the introductory Chapter 2 about the system integration and way of

implementing it through middleware approach. In Chapter 3 we will explain different

middleware approaches that are currently being used to implement the digital library

integration. One of these approaches will be discussed in detail in the Section 4. This is

approach is used at New Jersey Institute of Technology to implement digital library

integration. In Chapter 5 a new ontologies based approach has been proposed for the

digital library integration and its architecture has been discussed. We conclude and

suggest the future work in Chapter 6.

CHAPTER 2

SYSTEM INTEGRATION

2.1 System Integration Overview

System integration is the progressive linking and testing of system components to merge

their functional and technical characteristics into a comprehensive, interoperable system.

System integration allows data existing on different systems to be shared or accessed

across functional or system boundaries. System integration is the process through which a

number of products and services are specified and assembled into a complete system that

will achieve the intended functionality (Sage, 1992). The goal of system integration is to

utilize various autonomous systems in concert so that they support the organizational

goal, by providing an integrated set of data and services.

System integration is one of the main reasons for the innovation in the software

industry nowadays. Isolated applications are being left behind. Currently new systems are

designed to be integrated. But this integration has a lot of challenges and complexities.

We believe that in the future complexity will be reduced, but the demand for engineering

competence in design, development, integration and maintenance of complex systems

will increase.

Nowadays, a central topic in database science is the need of an integrated access

to large amounts of data provided by various information sources whose contents are

strictly related. Often information sources have been designed independently for

autonomous applications, so they may present several kinds of heterogeneity

(Greco et al., 2002). Many practitioners are not able to repetitively carry out systems

4

5

integration across different systems and vendor claims on integration packages are not

always true (Nilsonn et al., 1990).

The candidate systems for integration can be considered to be composed of three

architectural layers: business architecture layer, application architecture layer and

technology architecture layer. The business architecture layer defines organizational

structure and workflows. The application architecture layer defines the implementation

of business logic in enterprise applications. The technology architecture layer defines the

information and communication infrastructure (Hasselbring, 2000). System integration

problem could be seen in three-dimensions with each dimension having its own

objectives (Sikora et al., 1998).

1. Integration of heterogeneous information systems to facilitate the flow of data
and make the overall system more robust.

2. Integration of business processes to improve performance.

3. Integration of subsystems into well-coordinated, networked system.

Traditional systems integration is concerned with integration at the architecture

and technology layer of heterogeneous systems. This represents system integration

solutions commonly referred to as enterprise application integration or middleware

technologies. The literature is not specific about the clear distinction between the two

and many times both terms are used interchangeably.

Software vendors provide various solutions for enterprise application integration,

based either on metadata-, process-, service-, or portal-oriented integration technologies

(Linthicum, 2004). In this report, we focus on the Service Oriented Architecture (SOA)

as the primary middleware solution (Papazoglou & Georgakopoulos, 2003).

6

2.2 Middleware

Middleware services sit in a layer above the operating system and network software but

below the industry specific applications. They provide standard programming interfaces

and protocols that mask the complexity of networks and lower level protocols (Bernstein,

1996). Middleware facilitates the communication and coordination of components that

are distributed across several networked hosts. It aims at providing application engineers

with high-level primitives that simplify distributed system construction (Emmerich,

2000). Figure 2.1 shows how a digital library interacts with the sources of information

through middleware. Middleware is a layer between database resources and the client

applications like digital library applications that want to use the database resources.

Middleware programs provide messaging services so that different applications can

communicate.

Figure 2.1 Digital library integration architecture.

The main purpose of middleware services is to help solve many application

connectivity and interoperability problems. The objective is seamless, large scale

integration of heterogeneous components that will provide digital libraries the capability

to communicate with heterogeneous sources.

7

Middleware can take on the following different forms (Bray).

• Transaction processing monitors provide tools and an environment for
developing and deploying distributed applications.

• Remote Procedure Call enables the logic of an application to be distributed
across the network. Program logic on remote systems can be executed as
simply as calling a local routine.

• Message-Oriented Middleware provides program-to-program data exchange,
enabling the creation of distributed applications. MOM is analogous to email
in the sense it is asynchronous and requires the recipients of messages to
interpret their meaning and to take appropriate action.

• Object Request Brokers enables the objects that comprise an application to be
distributed and shared across heterogeneous networks.

For the implementation of Digital Libraries we will discuss different Middleware

software architectures which are currently being used in the industry and academia. We

will also discuss one of these approaches in detail which is being implemented at New

Jersey Institute of Technology's DLSI (Digital Library Service Integration) project. Also

in the Section 5 of this paper introduces a new approach which can provide effective and

efficient middleware architecture. (Adam et al. 2000) in his paper described three

approaches, Object Request Brokers (e.g. CORBA), Mediated, and Agent-based, used for

purpose of System Integration in the Digital Libraries. These three approaches are not

orthogonal in the sense that a mediator approach may also use ORB architecture and an

agent-based may use mediators.

CHAPTER 3

DIGITAL LIBRARY INTEGRATION APPROACHES

Middleware used for Digital Libraries is currently developed on the approaches described

in this section. These approaches provide the architecture to access the information of

heterogeneous nature.

3.1 ORB Approach

Nowadays software integration projects are addressed by using object-based Web

technologies. Object Request Broker (ORB) approach incorporates a standards-based

framework to support the integration of many software applications. Architectures such

as Common Object Request Broker Architecture (CORBA), Component Object Model

(COM) and Enterprise JavaBeans (EJBs) support this approach. The utilization of such

technologies enables the system to quickly evolve into an assembly of functional

components, managed by an inter-object communications protocol and extending to the

boundaries of the Internet.

In ORB approach the client object must have an object reference to the server.

The ORB approach is enjoying a rapid expansion due to three factors:

• A more rigorous formalization of the approach.

• A greater ease in mastering the development of system integration.

• The rapid emergence of new technologies such as J2EE and .Net, which
integrate fundamentally the idea of components.

8

9

CORBA is one of the architectures being used to implement this approach.

CORBA is an acronym for Common Object Request Broker Architecture. The Object

Management Group (OMG) was formed in 1989 to develop standards for application

development within heterogeneous environments.

CORBA enables the creation of distributed object architectures. CORBA consists

of ORB Core, Interface Definition Language (IDL), Stubs, Skeletons, and others. ORB

Core is responsible for delivering requests to object implementation and responses from

objects to the client requesting the service. CORBA provides the IDL as a mechanism for

specifying the interface to an object. If a developer desires to make use of a service, the

IDL specification is the only information required. The specification is compiled by an

IDL processor that creates a stub which is linked into the client. The IDL compiler also

generates a skeleton file that is used to connect the implementation of a service into

CORBA's distributed object architecture. Figure 3.1 shows the CORBA architecture.

Figure 3.1 CORBA architecture.

For system integration, object implementation can be used to define interfaces for

communicating with the data sources. The Stanford Digital Library Project is aimed at

10

resolving the issues of heterogeneity of information and services have implemented this

approach. Based on CORBA technology, the Information Bus (InfoBus) is the core

system of the project that provides uniform access to heterogeneous information sources

and services. This project, based at Stanford University, developed a modular Testbed

infrastructure known as an information bus (or InfoBus) based on CORBA that enabled

the integration of a variety of different digital library functions (Paepke et al., 1996). The

InfoBus provides plug-in integration for repositories, information processing services,

and user interfaces. It is implemented with CORBA distributed object technology.

Heterogeneous repositories are wrapped with Library Service Proxy (LSP) objects that

shield client programs from as much heterogeneity as technically feasible and appropriate

from an end-user perspective. Library services (LS) built into the InfoBus provide the

necessary support functions, such as query translation, metadata facilities, and rights

management. Documents are modeled as objects. Their instance variables contain

document fields, such as author or title. They are materialized from the underlying

collections, which may or may not be object-oriented(Paepcke et al., 1998).The

architecture of InfoBus is shown in Figure 3.2.

11

Figure 3.2 The InfoBus architecture of the Stanford Digital Library Project.

The question of compliance is very important in ORB. Even though ORB

approach provides abstraction of the implementation of services at the object

implementation, the task of data integration from multiple objects is done by the client. In

order to do this object implementation the client application should know the metadata of

the responses. ORBs developed by different vendors may have significantly different

features and capabilities. Thus, developers of the client applications must learn a

specification, the way vendors implement the specification, and their features. Also

changes to the services provided by the data source require changes to the object

application and propagation of the updated stub and skeleton. The mediated approach,

discussed next, attempts to overcome these issues and limitations.

3.2 Mediated Approach

The mediated approach utilizes a component called mediator to perform integration. In

this approach, the client sends the request. The integration system accepts the request,

12

determine which set of information sources is capable to answer the request and generate

the appropriate query plans for each information source. On obtaining the results from the

information sources, the data integration system performs the appropriate translation,

filtering and merging of the information and returns the final answer to the user or

application (Fahmi et al., 2001). This process is referred to as a mediated approach, since

the part that decomposes queries and combines results is often called the mediator.

The general architecture of mediated approach has the information sources, the

wrappers, the mediators, and the user interface as shown in Figure 3.3. A wrapper is

conceptually similar to a mediator, except that it only needs to translate between one

native component and one mediator.

Figure 3.3 Mediated approach architecture.

The function of the wrapper is to interact with its corresponding information

source, converting mediator queries represented in the common language into queries

native to the sources and vice versa. To perform its task, a wrapper must have the

knowledge of the underlying source. A wrapper connects the data sources with the

mediator. The complexity of the wrappers depends on the amount of cooperation from

the source itself. For example, a source can be cooperative by performing many of the

13

processing tasks of answering the wrapper query. At the other extreme, a source may be

non-cooperative, in which case, upon receiving an answer to a query from the source, the

wrapper has to perform additional processing before sending it to the mediator. The

function of the mediator is to accept incoming requests and transform them into the

appropriate format. Each request is subdivided into smaller requests and sent to the

appropriate source through the wrapper. Upon receiving answers to sub-queries, the

mediator combines and integrates these answers to form the complete answer and

presents it to the users. To perform its task, the mediator must have the knowledge of the

sources and their schema to determine which sources provide what information.

The Digital Library Service Integration (DLSI) infrastructure at NJIT provides a

systematic approach for integrating digital library collections and services. Users can see

a totally integrated environment by using the DLSI. They can use their digital library

system just as before. But in addition, they will see additional link anchors, and when

they click on one, they will be presented with a list of relevant links. The architecture of

the system is composed of Integration Manger which acts as the mediator, wrappers or

enginelet, user interface and repositories. Figure 3.4 shows the architecture of DLSI. We

will discuss this architecture in detail in the next section.

14

Figure 3.4 Architecture of digital library service integration at NJIT.

One drawback with the mediated approach is that the mediator component does

not have the capability to search for new sources or discover potential sources that should

be included in the integration. For this reason, agent technology has been introduced to

overcome this limitation.

3.3 Agent-Based Approach

The approach is based on the idea of a software agent. An agent represents an element of

the digital library (collection or service), and has the following special properties

(Birmingham, 1995).

• Autonomy: the agent represents both the capabilities (ability to compute
something) and the preferences over how that capability is used. Thus, agents
have the ability to reason about how they use their resources. In other words,
an agent not has to fulfill every request for service, only those consistent with
its preferences. A traditional computer program does not have this reasoning
ability.

• Negotiation: since the agents are autonomous, they must negotiate with other
agents to gain access to other resources or capabilities. The process of

15

negotiation can be, but is not required to be, stateful and will often consist of a
"conversation sequence", where multiple messages are exchanged according
to some prescribed protocol, which itself can be negotiated.

An agent is a component having decision making capabilities for performing

different tasks. Agents can interact with the end users, with other related agents, and with

the information sources. There are in general there types of agents which are used in the

Agent-based approach. User agents, Provider agents (Back-end) and brokers (mediators).

Architecture of agent-based approach is shown in Figure 3.5.

Figure 3.5 Agent-based approach architecture.

Brokers or mediator agents interact with user agents, provider agents and other

brokers. There are many types of mediator agents in which each type performs specific

intermediate tasks, including accepting user queries, evaluating user profiles if any,

locating the appropriate source agents based on user queries, sending queries to

appropriate source agents, monitoring the query progress, formatting and integrating

responses from source agents, and communicating and working together with other

mediator agents to accomplish a task (Wiederhold, 1992).

16

The brokers get the requests from the user agents and then locate the appropriate

provider agents and pass the request to them. Brokers communicate with other brokers,

monitor the progress, and integrate the responses from the providers to accomplish the

request. To locate the appropriate agents, their description and services information is

maintained in the repository. So when some service is needed, agents look in the

repository. Also agents send their description to each other when ever requested. Upon

receiving a response to the query, the original agent needs to update its knowledge base.

This way, when it submits the same type of query for processing the next time, it can

direct the query to the appropriate agent (Fahmi et al., 2001).

User agents get the requests from the users. They forward this request to the

brokers along with the user profiles so that brokers can locate the user preferences. User

agents also change the requests into proper format which is being used with in the

system. Provider agents work just like wrappers as mentioned in the mediated approach.

Figure 3.6 UMDL Architecture.

The UMDL is populated by three classes of agents (Birmingham, 1995).

17

• UIAs (User Interface Agents) provide a communication wrapper around a user
interface. This wrapper performs two functions. First, it encapsulates user
queries in the proper form for the UMDL protocols. Second, it publishes a
profile of the user to appropriate agents, which is used by mediator agents to
guide the search process.

• Mediator agents, of which there are many types, perform a variety of
functions: essentially, all tasks that are required to refer a query from a UIA to
a collection, monitor the progress of the query, transmit the results of a query,
and perform all manner of translation and bookkeeping. Presently, two types
of mediators populate the UMDL. Registry agents capture the address and
contents of each collection. Query-planning agents receive queries and route
them to collections, possibly consulting other sources of information to
establish the route. Another special class of mediators currently being
developed, called facilitators, mediate negotiation among agents.

• CIAs (Collection Interface Agents) provide a communication wrapper for a
collection of information. While performing translation tasks similar to those
performed by the UIA for a user interface, the CIA also publishes the contents
and capabilities of a collection in the conspectus language.

3.4 A Service-Oriented Agent Architecture

We propose to implement the agent based approach using web services. A Web service is

an abstract notion that must be implemented by a concrete agent. The agent is the

concrete piece of software or hardware that sends and receives messages, while the

service is the resource characterized by the abstract set of functionality that is provided.

To illustrate this distinction, one might implement a particular Web service using one

agent one day, and a different agent the next day with the same functionality. Although

the agent may have changed, the Web service remains the same.

A web service is Web-based application that can dynamically interact with other

Web applications using an XML message protocol such as SOAP, XML-RPC or XMLP.

Examples of emerging standards for describing, promoting and discovering these services

are ebXML, UDDI and WSDL, and Microsoft's .NET and Sun's Sun ONE are major

18

implementations of the concept. The goal is to enable one application to find another on

the Internet that provides a needed service and to seamlessly exchange data with it.

Web services are utilized when you cannot or would not implement the logic

yourself. A web service is defined by its messages, which must be self-sufficient

referencing information necessary to understand the message. When using HTTP, the

service reply is interpreted as responsive to the request sent on the same connection.

XML is used for the self-describing interfaces and messages of web services.

SOAP is used to define message structure and supports the creation of complex

self-contained messages. WSDL allows a service to define its interface that is basically

the messages it will accept. UDDI supports design-time and run-time discovery of web

services. The document-centric approach abstracts away the system architectures,

creating loosely coupled connectedness that withstands changes to the underlying

implementations (Burner, 2003).

A web service is an encapsulated chunk of behavior that is a self-contained and

modular, self-describing using XML standards, programmatically and dynamically

accessible over networks using standardized mechanisms such as SOAP, and capable of

being dynamically composed with other Web services. By making its legacy data

available via XML-based Web services, a business can greatly extends its reach to

customers. The network economy is driving the evolution of e-business from rigid to

flexible application design, from static to dynamic interaction between partners and from

technology integration to business integration (Smith, 2001).

Although web services could be used in the agent-based approach to serve the

purpose of integration, but the developer of the client applications has to use it manually,

19

first searching the service and then finding the communication protocols. Developers of

these services design registries like UDDI to be searched by the developers of the client

systems. In order to overcome this manual process, a new approach has been proposed in

this thesis to accomplish the task of integration in digital libraries.

CHAPTER 4

DIGITAL LIBRARY SERVICE INTEGRATION AT NJIT

Digital Library Service Integration (DLSI) project at New Jersey Institute of Technology

is aimed at forming the core of vibrant virtual educational communities by supporting a

broad range of community support services, beyond what most digital library researchers

currently are developing. The DLSI infrastructure will provide the first step towards this

vision. The middleware of DLSI is based on the mediated approach as described in this

section.

4.1 DLSI Overview

The purpose of the Digital Library Service Integration project (DLSI) is to automatically

generate links for digital library collections to related collections and services.

Collections are libraries of computerized documents, which can include photographs,

teaching modules, in addition to traditional types of documents. Services include

searching, providing annotations and peer review. DLSI supplements collections by

linking them automatically to relevant services and related collections. DLSI

supplements services by automatically giving relevant objects in collections (and other

services) direct access to these services. Users see a totally integrated environment, using

their digital library system just as before. 	 However, they will see additional link

anchors, and when clicking on one, DLSI will present a list of supplemental links. DLSI

will filter and rank order this set of generated links to user preferences and tasks". The

DLSI infrastructure provides a systematic approach for integrating digital library

20

21

collections and services. Digital libraries will be able to share relevant services within a

seamless, integrated interface. Services and collections generally require minimal or no

changes to plug into the DLSI infrastructure.

4.2 DLSI Architecture

DLSI architecture is based on the mediated approach. The DLSI infrastructure consists of

four levels: an independent user interface, the Integration Manager, collection and service

wrappers, and independent collections and services. The DLSI architecture is shown in

the Figure 4.1.

Figure 4.1 DLSI architecture showing wrappers, collections and integration manager.

4.2.1 Wrappers

A wrapper or enginelet must be developed for a collection or service to plug into the

DLSI infrastructure. The wrapper's main task is to parse the display screens that appear

on the user's Web browser to identify the "elements of interest" that DLSI will make into

link anchors. First, wrappers will parse the display based on an understanding of the

22

structure of its content. Second, DLSI will parse the display content using lexical analysis

to identify additional elements of interest. If a service can operate on an element, DLSI

will generate a link anchor over the element. Among the links generated for that anchor

will be a link leading directly to that service's feature. Relationship rules specify which

links DLSI will generate when the user clicks on a link anchor.

The NSSDC enginelet is the wrapper for National Space Science Data Center

online system. This wrapper communicate with the integration engine which serves as

the mediator as discussed in the mediated approach. The NSSDC enginelet is responsible

for:

1. Intercepting the users search request to ensure that the results pass through the
Metainformation Engine(ME).

2. Parsing the result screen and marking up elements of interest.

3. Dynamically generating links and commands associated with those links for
all elements of interest.

The wrapper developer must focus on providing the parsing routines and mapping

rules. These will not change as long as the application does not change. The routines and

rules will apply to all instances of the user's screen (Bhaumik, 2003).

4.2.2 Collection and Services

Services and collections generally will require minimal or no changes to plug into the

DLSI infrastructure. To integrate a collection or service with DLSI, an analyst must write

a wrapper, initiate communications between the collection or service and the wrapper,

and define relationship rules. The DLSI Integration Manager module manages

relationship rules. Note that collections and services will continue to function as before.

DLSI will supplement them for users who access them through DLSI's framework. All

23

other users will use the services directly as before, and not see any of DLSI's

supplemental features.

4.2.3 Integration Manager

In the DLSI architecture the Integration manager and wrappers together constitutes the

Metainformation Engine (ME). The Metainformation Engine (ME) is a loosely coupled

system, where various engine components communicate with each other via messages

that conform to a well-defined standardized internal protocol. This approach allows new

engine components to be developed and added without affecting existing engine

components and functionality. The ME's goal is to supplement the output of most

computer applications with link anchors and lists of links for each anchor, all with

minimal or no changes to them (Bhaumik, 2003).

The ME v 1.0 has three primary components:

• The Engine Desktop translates the ME's internal messages, from the standard
internal XML format to a format that can be displayed to a user via a web
browser and vice versa.

• The ME Broker facilitates the communication between the Engine modules
and works as the router for all the internal messages.

• The Mapping Rules Engine maps the data and relationships to hyperlinks at
run-time. It maps the element instances in the application's output to the
global element types (classes), and finds the links for them. Once the links are
produced they are sent through to the engine desktop to be displayed in an
appropriate interface to the user.

Message flow through the Metainformation engine illustrated below in

Figure 4.2.

24

Figure 4.2 Message flow in the ME

The following events occur in generating an interface to display to the user

(Bhaumik, 2003).

• When a user follows a link to execute an engine command, the user's browser
issues an HTTP request.

• The Engine Desktop generates a Virtual Document modeling the user's
request. Virtual Document is the communication protocol among the various
engine components

• The MEB(Metainformation Engine Broker) reads the source of the document
(i.e., Engine Desktop) and the destination (the enginelet that will execute the
command) and looks up the traversal path for that message through the
Traversal Path Manger (TPM). MEB manages the communication between
different components. The document is then routed through all intermediate
enginelets in the order that they are listed in the traversal path. TPM

25

determines the intermediate enginelets that must process the document before
reaching to final enginelet.

• The intermediate enginelets create/edit new Frames (and/or FrameGroups) or
process the Virtual Document in some manner.

• After all enginelets in the traversal path have processed the message the
message is sent to the destination enginelet - the MAW(Metainformation
Application Wrappers). MAW is the component which communicates with
the underlying application to identify the elements of interest. The MAW
executes the command by communicating with the application via its native
API. It then marks up the elements of interest in the application's output and
adds the output document to a Frame and FrameGroup.

• This Virtual Document is then sent back to the MEB. The MEB again looks
up the traversal path for this document, using the MAW as the source and the
Desktop as the destination. The Virtual Document is again processed by all
intermediate enginelets.

• After all enginelets in the traversal path have processed the message, the MEB
passes the message on to the Mapping Rules Engine. The document contains
the marked up "elements of interest" that the MAW located.

• The MEMRE(ME Mapping Rules Engine) looks up the mapping rules for
"each element of interest" and generates the list of links. These list of links are
added as Relationship objects in the Metainformation nodes of the Frames
being manipulated.

• The Virtual Document is returned to the MEB, which then returns it back to
its source desktop.

• The desktop uses the specified lens to translate each Frame and display
embedded inside a FrameGroup for the user.

4.3 Implementation Details

XML (eXtensible Markup Language) and XSL (eXtensible Style Sheet Language)is a

powerful technology that is currently being used to develop the system. XML/XSL is the

functional backbone of the system's internal structure. The objects passed, as well as

those that are regenerated, are delivered in the XML format.

26

JAVA is used in developing Integration Manager. It is used to process the XML

objects that are passed between system modules. Using the JAVA platform, the XML

documents are parsed for critical information. The current JAVA DLSI classes are used

to gather the set of relational mapping rules that will be required to generate the newly

implemented information links. JAVA is then again used to regenerate or create the

resulting XML documents, which are then passed onto an XSLT document for

transformation.

4.4 Advantages of DLSI

Collections and services will gain several benefits from integrating with DLSI:

• Users will have direct access to related collections and services, which in
effect, enlarges the feature set of a given collection or service;

• Collections and services will gain much wider use, because DLSI linking will
lead other users to them;

• Users will become aware of a service or collection from seeing its links
included in DLSI's list of links when using other collections and services;

• DLSI will give the user direct, context-sensitive access to the features that a
particular service or collection provides.

4.5 Disadvantages of DLSI

Disadvantage of the DLSI is that the component does not have the capability to search for

new sources or discover potential sources that should be included in the integration. In

order to integrate, developer must write a wrapper and the code to initiate the

communication between the service and the wrapper. Also this wrapper or enginelet has

to be registered with ME Broker.

27

To avoid all this manual processing we are proposing a new approach for the

middleware to achieve seamless integration. This approach proposes the architecture to

integrate the information on the web automatically (machine processable). Detailed

architecture is explained in the next chapter.

CHAPTER 5

A NEW APPROACH TO DIGITAL LIBRARY INTEGRATION

This paper proposes a new approach to implement the current digital library service

integration project to integrate NSSDC (National Space Science Data Center), AskNSDL

and other repositories. It also introduces a new service to be used for the integration of a

library database, ProQuest with any client application over the web. This approach will

enable DLSI on the Semantic Web and will allow the use of metadata by the client

applications and agents through the Semantic Web. The Semantic Web is a foresight for

the future where information is given explicit meaning, which will help machines to

automatically process and integrate information available on the Web.

There are various reasons that we propose semantic web services to be used as

middleware to implement the integration in our new approach. By using the web services,

DLSI will be available to client applications through a web service interface. Web

services are lightweight components and by their use application developers can avoid

the object models and programming language requirements. Moreover, ongoing Web

services standardization efforts free them from the proprietary stigma of enterprise

application integration systems (Vinoski, 2003). Web services are the evolutionary step

in object-oriented programming for business-to-business and e-commerce applications.

Tasks like real time auctions to get prices and performing multiple tasks like making

traveling plan are not easily possible in Common Object Request Broker Architecture and

Distributed Component Object Model and electronic data interchange (EDI) was too

expensive and specialized to perform such kind of tasks.

28

29

Another reason for using this approach is that integration is the heart of web

services (Fontana, 2001). Semantic web enabled web services provide most promising

way to provide application to application integration. Ontologies are used to develop

semantic web and are significant for applications that need to search and merge

information from different resources. Ontologies provide automated reasoning ability

which in turn is helpful in advanced services to intelligent applications such as semantic

search and retrieval, software agents and intelligent databases. Ontologies are developed

in a logic based language which helps to provide detailed, precise, steady, sound, and

meaningful differences among the classes, properties, and relations. Ontologies will

provide many benefits for the digital library integration project.

This new approach will allow more intelligent syndication. For example on the

ProQuest website a simple list of subject areas may not provide the users sufficient ability

to search for the contents they want. Ontologies are used to describe content and axioms

that define terms. By using these definitions other facts which are necessarily true could

be inferred. These inferences can allow users to obtain search results, which are

impossible to obtain through conventional retrieval systems. But this approach depends

on digital resource providers annotating their pages with the ontologies.

Ontologies could also be used to provide semantic definitions of multimedia

collections. Multimedia ontologies can be media specific or content specific. Media

specific ontologies provide taxonomies of the media types and to explain properties for

example scene breaks and length of clips. Content specific ontologies describe the

subject of media like participants. In the retrieval process this information will be used to

30

get the semantics from the multimedia collection which is not possible in current

integration project.

Another benefit of this approach is that the semantic web can provide agents with

the capability to understand and integrate diverse information resources (Mikhalenko,

2003). Intelligent agents take instructions from users for example "make a complete

traveling plan in January" and search the internet to produce optimum results. When

completing the task the information may come from various sources such as service

specific sites, reservation sites etc.

By using the web services, client applications will seamlessly interoperate with

them without concerning about their location. Semantic web enable web services will

make the integration process much easier and automated as these services will be

machine searchable and processable. In this way this new approach will be able to

overcome the short comings of other approaches. In ORB approach question of

compliance is a big issue the client must know how the vendor has implemented the

architecture. Also in mediated approach, the mediator component does not have the

capability to search for the new sources. In the DLSI architecture every new wrapper

must be developed and registered when client applications want to integrate through

DLSI. Also the generated list of links is very limited and non inferable. In order to add

links for more digital resources, wrappers must be modified.

With this new approach all the integration will be machine processable and no

extra coding will be required for new applications to be integrated. Once the digital

resource pages will be semantic web enabled and web services will be developed, any

application can integrate itself automatically. The most difficult and important part in this

31

approach is to annotate the contents of digital resources into web ontology language.

Once the content is converted any client application can access it using the proposed

semantic web enabled web services. These web services will provide the mechanism to

be used automatically by other machines. In regular web services the client application

developers must know how to communicate with the services through their interface but

with the semantic web enabled web services applications can directly communicate with

them without the involvement of any human. In this way once the setup is complete, any

application over the internet can use this mechanism to integrate itself with the digital

resources. The only limitation in this approach is that the conversion of digital resources

into web ontology language is very time consuming and slow process. But once the large

amount of information will be converted into ontologies, this approach will provide the

most effective and efficient way of digital integration.

Basic architecture of the new approach is similar to that of Agent-Based

approach implemented through web services. Although web services serve the purpose of

integration, but this is a manual process as registries like UDDI are designed to be

searched by the developers of the client systems. In contrast, this new approach uses

semantic relations to find services described using Semantic Web languages. This

approach is conceptually based on the Semantic Web and Ontologies. Semantic web

concept is still in its early stages but soon it will dominate the current technology.

This thesis proposes the architecture for two integration projects. DLSI will be

implemented as semantic web services using ontology languages. Ontologies are

significant for applications that need to search or merge information from different

resources. In case of DLSI web service, the repositories like NSSDC and AskNSDL will

32

communicate with the digital resources through this service. Once these repositories will

pass the pages to DLSI web service, links will be created which connects to the available

digital resources. In first phase the NJIT library contents will be written in the web

ontology language like DAML-S. So for example whenever a user will be looking for

extra information from NSSDC page, ontologies will be employed to infer and get the

related information. The ProQuest web service will enable the programmatical access to

the full text document discovery from the collection. All the contents will be converted to

web ontology language. So in result any web application can use this web service to

integrate the information on their pages with the information in the ProQuest digital

resources. Detailed proposed architecture has been discussed latter in this chapter.

5.1 Semantic Web Overview

5.1.1 Semantic Web

The Semantic Web is a network of information linked up in such a way as that it could be

easily accessible globally. This information is machine useable and associated with more

meaning. The Semantic Web is an extension of the current web in which information is

given well-defined meaning, better enabling computers and people to work in

cooperation (Berners-Lee et al., 2001). The Semantic Web provides a common

framework that allows data to be shared and reused across application, enterprise, and

community boundaries. Semantic web could be seen as a huge engineering solution.

Semantic Web vision of a machine-readable web has possibilities for application in most

web technology.

33

Today's web was designed for human use. The current Web supports documents,

pages of text and figures designed for humans. But there is an increased automation in

terms of direct operation between machines, mostly in B2B, B2C and information

services applications. Currently this is done by APIs which needs hand coded information

retrieval code on the client side. Fundamental to having computer programs or agents

implement reliable, large-scale interoperation of Web services is the need to make such

services computer interpretable, to create a Semantic Web of services whose properties,

capabilities, interfaces, and effects are encoded in an unambiguous, machine-

understandable form (McIlraith et al., 2001).

The Semantic web adds support for databases, vast collections of information

organized to be processed by machines. Machines can parse HTML but cannot reliably

infer any semantic information from this attempt. The Semantic Web aims at bringing

meaningful content out of Web pages. Machine usable content means that the machine

knows what to do with information on the Web.

5.1.2 Resource Description Framework

W3C has hailed RDF (Resource Description Framework) as a Semantic Web language to

implement the concept of Semantic web. The information representation on the semantic

web is done by Extensible Markup Language (XML) and the Resource Description

Framework (RDF). XML allows users to add structures to their documents, but the

developer should know these structures, in order for programs to use these. XML does

not capture information about what the structures mean. On the other hand RDF enables

users to use Metadata to describe data on the Web. RDF gives you a way to make

statements that are machine-processable. Machines can infer relationships between

34

resources on the basis of metadata. The Semantic Web will develop on XML's ability to

define customized schemes and RDF's flexible approach to represent data.

5.1.3 Uniform Resource Identifier

Identifiers are used to identify items on the web. As we use uniform system of identifiers,

and because each item identified is considered a "resource," we call these identifiers

"Uniform Resource Identifiers" or URIs. RDF statements are composed of URIs. All the

information on the web and in the databases will have a URI and can be accessed through

RDF.

5.1.4 Ontologies

The Semantic Web requires a language which can formally describe the semantics of

classes/sub-classes and properties used in web documents. To perform useful reasoning

tasks on these documents, the language must go beyond the basic semantics of RDF

Schema. Web Ontology language is used for this purpose.

In order for the semantic web to succeed, programs must be able to compare or

combine information across different systems. A well-known problem with the web of

today is finding the many web services currently available on line. Ontologies are used

for this purpose. Ontologies are collection of information which describes common

meanings and relationships between resources on the Web. Ontologies include machine

usable definitions of basic concepts and the relationships among them. One of the most

powerful uses of the web Ontologies is in the area of web services. The Semantic Web

needs ontologies with a structure to provide description about things in the different

domains, relationships among them and attributes of those things. Ontologies are very

35

important for digital library applications that want to search across or merge information

from diverse communities.

The standard W3C ontology language is OWL, which stands for Web Ontology

Language. The RdfSchema is one such language which provides a means for formalizing

ontologies. RdfSchema extends the Resource Description Framework model by enabling

a collection of resources to be described according to a simple class hierarchy. However,

RdfSchema is a simple ontology language and in order to achieve interoperation between

autonomously developed and managed schemas, richer semantic language is required. A

DAML Ontology (DAML-0) is a document that describes a vocabulary of terms for

communication between human and automated agents.

Ontologies can be used in an integration task to describe the semantics of the

information sources and to make the content explicit. With respect to the integration of

data sources, they can be used for the identification and association of semantically

corresponding information concepts (Wache et al., 2001).

5.1.5 Ontologies and Services

Web ontologies most useful application is in the area of web services. Semantic Web

Services are used to implement the concept of semantic web. In many B2B and E-

Commerce applications the web services utilize APIs to locate and extract content from

the pages. But if the page changes then the web service must be rewritten. In addition,

all programs that wish to utilize it must understand the interface description of web

services. Also problem with the web of today is the difficulty in finding the many web

services currently available. What is needed is semantic web service whose properties,

36

capabilities, interfaces, and effects are encoded in an unambiguous machine-readable

form (McHraith et al, 2001).

The Semantic Web is an extension of the current Web in which information is

given well-defined meaning, better enabling computers and people to work in

cooperation. It is the idea of having data on the Web defined and linked in a way that it

can be used for more effective discovery, automation, integration, and reuse across

various applications. The Web can reach its full potential if it becomes a place where data

can be shared and processed by automated tools as well as by people (Miller, 2004).

Any world wide web application could be converted to web service by providing

an Application Programming Interface (API) to that service, an access protocol such as

SOAP and a layer describing the service such as WSDL. The transition from a Web-

Service to a Semantic Web Service requires expressing the processes that comprise that

Web-Service using the Ontology Web Language for Services and any supporting

ontology encoded using the Ontology Web Language (Bechhofer et al.,2004).

To implement Semantic Web services, a markup language must be descriptive

enough that a computer can automatically determine its meaning. That language must

perform the following tasks.

• Discovery: A software must first be able to automatically discover, an
appropriate Web service for the task in hand. A Semantic Web service
describes its properties and capabilities so that software can automatically
determine its purpose.

• Invocation: Software must be able automatically to determine how to invoke
or execute the service. A Semantic Web service provides a descriptive list of
what a requester needs to do to be able to execute and fulfill the service. This
includes defining the inputs and outputs of the service.

37

• Composition: Software must be able to select and combine a number of Web
services to complete the task in hand. The services have to interoperate with
each other seamlessly so that the integrated results provide the solution.

Ontologies should be used to create the services in any ontological language.

Client applications can use the hierarchy to find matches via the class/subclass properties

or other semantic links. For example, someone looking for any specific information about

the planet Mars might find NSSDC (collects information about planets) even if there

were no exact match for that specific information about Mars. This is possible due to the

expressiveness of web ontology languages like DAML to develop semantic web enabled

web services. DAML is used to describe the structure in terms of classes and properties

and this structure is then used for inference and reasoning. Also by using description

logic and other inferential ways user can find information that was not explicit. We can

also include machine readable description of a service and some explicit description of

the consequences of using the service. In this way we can integrate ontologies and agents.

5.1.6 Ontologies and Agents

The real power of the Semantic , Web will be realized when independent computer

programs called agents are created that collect and reason over Web content from varied

sources, exchanging data and working cooperatively with other agents.

The exchange of proofs is an important aspect of agents functioning, and agents

will be able to convert their internal reasoning into a common representation language

(such as RdfSchema) so that other agents can check their reasoning. Ontologies allow

explicit organization of knowledge in agent-based applications, and unambiguous

description of characteristics and properties of agents (Zini et al., 1999).

38

5.2 Ontologies Based Approach

Standard Web Service technology provides limited support in automated service

recognition and combination, service comparison, and automated negotiation. In digital

libraries there is a need for automatic cooperation between available services. Any

system interaction with another application needs automatic discovery and selection of

the optimal Web Services.

This thesis proposes a new architecture for the middleware implementation. This

new architecture, named Ontologies Based Approach, is primarily based on Web

Services and Semantic Web. By using web services the service interface will be

published on the web using XML and will be invoked by the client applications using

HTTP and SOAP. Through semantic web will provide the web published and accessable

semantic description through dynamically linked and shared ontologies.

Interoperability is a key application of Ontologies and many ontology based

approaches has been developed for information integration in order to achieve

interoperability (Uschold et al., 1996). In order to design a self-regulating Web Service

Ontology, it is necessary to understand how it will automatically work. Designing a

Semantic Web Service requires detailed analysis that exposes and eliminates semantic

logic conflicts and indeterminacies.

5.2.1 Markup Language for Ontologies

Management of resources in Semantic Web is impossible without use of ontologies,

which can be considered as high-level metadata about semantics of Web resources

(Fensel et al., 2002). DAML-S is an upper ontology markup language for describing

properties and capabilities of Web Services. DAML-S provides an unambiguous,

39

computer interpretable markup language, which enables automation of service use by

agents and reasoning about service properties and capabilities (Ankolenkar et al., 2001).

The basic requirements to service description language in (Trastour et al., 2001),

formulated as:

• High degree of flexibility and expressiveness;

• Ability to express semi-structured data

• Support for types and categorization;

• Ability to express constraints.

Considering these requirements and comparing proposed by Semantic Web

ontological descriptions (e.g. DAML-S) with other layers as shown in Figure 5.1.

Figure 5.1 Layered approach to markup language development.

In DAML-S: RDF layer provides the flexibility, expressiveness and semi-

structure data, RdfSchema layer provides the support for the types, whereas DAML layer

meets the constraint requirement.

40

5.2.2 Digital Library Web Services and Architecture

We will use DAML-S to develop the web services. Ontologies will be used to facilitate

information retrieval services to the clients. When users will follow a hyperlink generated

by our web service or search for some information, these ontologies will be used to direct

the users to related information providers domains over the interne. When the client

applications look for some information through agent brokers, they will use the inference

and reasoning capabilities of ontologies and direct to related digital documents. Agent

brokers are used to carry out requests in an open market way from the distributed

collection of digital documents.

The DAML-S ontology is conceptually divided into three subcategories. Profile

ontology describes what a service does and provides the way for its discovery. Process

specifies the working of the service including the internal process and dataflow.

Grounding provides the information about the implementation of the service.

Accordingly, each DAML-S description has three major parts.

The two specific Semantic based web services that are being proposed are as

follows.

1. DLSI web service: This web service will provide all the services that are
currently available in the DLSI architecture. Web service will produce
hyperlinks in the web pages for related information. Requesting application
will provide the document to the web service. DLSI web service will process
the document and will generate the augmented links and send it back to the
requesting application. DLSI web service will be implemented using DAML-
S. In the profile part of the ontology, information about the service provider,
inputs(documents types), outputs(augmented documents) and other
preconditions will be explained. The process part of the ontology will explain
the process model and internal process and dataflows. The documents
processing implementation(parsing and augmentation) will be in this part of
the ontology. Finally the grounding will explain the operation level details. It
will provide the details about the message exchange formats and network
protocol and hence will enable the automatic invocation of the service by

41

other machinces. In this way this web service will be machine processable. In
the first phase NJIT library digital resources will be converted to semantic
web enabled and hyperlinks will look for the related information in these
resources. Latter on more digital resources will be added for this service.
Ontologies will allow reasoning for the search of related information.

2. ProQuest web service: This paper also proposes a web service to allow the
integration of ProQuest services in the semantic web. This web service will
allow other web based applications to programmitacally access the ProQuest
services in a same way as human user can access through ProQuest web
interface. ProQuest web resources will be annotated as web ontology language
which will make it semantic web enabled. This can be taken advantage by the
brokers on the semantic web. ProQuest webservice provides the facility to
lookup the articles from the ProQuest data library and show it in an integrated
way. The requesting applications will envoke the service by sending a string
of text and in return will get the related articles. The string could be sent by
following the hyperlinks or by quering the specific text from the client
applications. ProQuest webservice will get the string and in return will
provide the construct. ProQuest webservice will be developed using DAML-
S. The layered description will be used including profile, process and
grounding. Requesting applications will inspect the profile to see if the service
has the desired capability and how to interact. Process Model will provide
detailed information about how the service works. If the requesting
application sees that the service conforms to the requirements, the grounding
will specify the implementation details needed for executing the service. The
service will be automatically invoked by applications or agents.

Similar to agent based approach, in ontologies based approach different tasks will

be accomplished by Semantic Web agents (service providers, requesters, and middle

agents). Our architecture will assume the following capabilities of agents

• Semantic web agents should be able to interpret published ontologies and can
send and understand messages with content represented as published
ontologies.

• Requester agents, could be web services or clients, must be able to send
requests to servers in terms of their published and semantic interfaces.

• Service provider agents must publish their semantic descriptions about the
interaction procedure and capabilities. Through this information requester
agents will interact with these services. Ontologies will be used for these
descriptions.

42

Figure 5.2 DAML-enabled agents, tasked by users or other agents.

DLSI web service and ProQuest web service as discussed earlier will serve as

service provider agents and will be used for three purposes.

• To describe collection content and inference rules to support powerful user
queries. In case of DLSI web service these queries means to find the related
contents in the digital resources and applying inference rules. In ProQuest
web service the articles will be searched using inference rules from the
ProQuest database.

• To enable agent brokers to use the service.

• For the Copy right material, licensing mechanism will be implemented.

The two web services must allow the three basic tasks of automatic discovery,

automatic composition and automatic invocation to make the services semantic web

enabled. The functional requirements of these tasks will be met using ontologies. The

architecture is shown in the Figure 5.3.

43

Figure 5.3 NJIT digital library web service functional requirements.

1. Automatic Discovery: Web services present the service profile. Service
profile contains the service provider information, and also specifies the inputs,
outputs and preconditions of the service. This information is used by the client
applications and agents to use the service automatically, without manually
finding the service. Automatic discovery is the process by which a client,
interacting with other clients or middle agents, identifies candidate services to
achieve the client's objectives. Any web service must provide this mechanism
in order to become semantic web enabled. The DLSI web service and
ProQuest web service profiles will provide all the necessary information and
could be discovered automatically by the client applications who wants to
integrate their applications using these services.

2. Automatic Composition: Service model is described by the services and is
used for the automatic composition or execution of the web service. It
describes how the subsystems in the service work. The task is accomplished
by the automatic selection, composition, and interoperation of Web services to
perform some complex task provided a high level description of an objective.
Automatic composition comes into picture when multiple services are utilized
to achieve an objective. Suppose someone wants to make all the travel
arrangements to a conference. Conference registration, airline ticket, hotel
reservation and other related activities will be carried automatically rather
than going to the individual websites.

3. Automatic Invocation: Service grounding will also be supported by the
services. It is used for automatic invocation or interoperation. Automatic
invocation is used by the computer program or agents, given only a
declarative description of that service. This is used in the semantic web
enabled web services as opposed to the regular web services where agents are
pre-programmed to be able to call that particular service. The agent will be
able to understand what input is necessary to invoke the service and what will
be the output from the service. For example, a user can request the purchase of
an article from a specific journal using ProQuest web service, from any other
website located by searching and then selected by that user.

44

5.3 Implementation Details

Web Services Description Language (WSDL) provides an encoding and protocol

independent mechanism to describe the means of interacting with offered services.

WSDL is an XML-formatted language used to describe a Web service's capabilities as

collections of communication endpoints capable of exchanging messages. WSDL is an

integral part of UDDI, an XML-based worldwide business registry. WSDL is the

language that UDDI uses. WSDL separates the abstract definition of service and

messages from their concrete binding to a network port and message format. The current

WSDL specification describes concrete bindings for SOAP, HTTP, and MIME.

In DAML-S Service Profile is used for the description of a Web service which

tells the service locators about what the service does. A Service Model tells about how

the service works, and Grounding tells the requestors how to access the service. The

Service Profile and Service Model are abstract specifications as they do not specify the

details about message formats, protocols, and network addresses by which a Web service

is instantiated. On the other hand the Service Grounding provides these more concrete

details. The Web Services Description Language (WSDL) provides a well defined means

of specify these kinds of details. Therefore, in the proposed ontology based approach,

WSDL will be used to ground DAML-S services.

DAML-S is an XML-based language, and its process declarations and

input/output types fit with WSDL. Therefore it is much easier to extend WSDL bindings

to use with DAML-S, like the SOAP binding. For this new approach DAML-S specified

arbitrary atomic process can be given a grounding using WSDL and SOAP, and HTTP

could be used as transport mechanism. In order for Grounding DAML-S with WSDL and

45

SOAP the construction of a WSDL service description will be used with all the parts

(message, operation, port type, constructs, and binding).

This new approach as discussed in this section will serve a middleware. World

Wide Web users will access the web applications, these applications will communicate

with the semantic web agents to accomplish the tasks. Semantic web enabled web

services will serve as a middleware to do the seamless integration between the

applications.

CHAPTER 6

CONCLUSION

The goal of this thesis is to assess the working of currently employed middleware used

for digital library integration, and propose a new architecture which overcomes the

limitations of earlier approaches. This new ontologies-based approach utilizes the

semantic web-enabled web services to implement the middleware for digital library

integration. Paper provides the details to convert the mediated based DLSI architecture at

NJIT into ontologies based DLSI. It also envisions a new service to do the seamless

integration of applications with ProQuest data repositories.

This new approach will make it easier for machines to automatically process and

integrate information available on the web. In this way the new approach provides a more

natural and flexible way of integrating the applications. The Semantic web is an

opportunity for web services to reflect their organization and show their value-added. We

believe that the approach proposed here for migrating the DLSI into semantic service

could be used as a model for other integration projects.

The main challenge in using this approach is converting the pages to semantic

web enabled. There are over one million pages over the web and are potential resources

for any digital library. In order for successful and effective digital libraries more and

more contents should be written in the web ontology languages so that the full benefit of

semantic web could be achieved.

We encourage the further research to use these guidelines to develop and

implement this system. This will enhance the capabilities and functionalities of currently

46

47

used DLSI project and will be helpful in overcoming the shortcomings of the current

middleware approach.

REFERENCES

Adam, N. R., Atluri, V., and Adiwijaya, I. (2000). SI in Digital Libraries.
Communications of the ACM, 43(6), 64-72.

Ankolenkar, A., Burstein, M., Cao Son, T., Hobbs, J., Lassila, 0., Martin, D., D.,
McDermott, Mcllraith, S., Narayanan, S., Paolucci, M., Payne, T., Sycara, K., and
Zeng , H.(n.d.): DAML-S: Semantic Markup For Web Services. Retrieved
November 22, 2004, from DARPA agent markup language page.
Web site : http://www.daml.org/services/daml-s/2001/10/daml-s.html.

Barrett, D.J., et al. (1996). A Framework for Event-Based Software Integration, ACM
Transactions on Software Engineering and Methodology, 5(4), 378-421.

Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.,
Schneider, P. and Stein, L. (2004) OWL Web Ontology Language Reference,
Retrieved January 01, 2005.
Web site: http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

Berners-Lee, T., Hendler, J., Lassila 0. (2001). The Semantic Web. Scientific
American, 284(5), 34-43.

Bernstein, P.A.(1996), Middleware: A model for distributed systems services,
Communications of the ACM, 39(2) , 86-98.

Bhaumik, A., Bieber, M.(2003). Metainformation Engine v1.2. Technical Report.
Retrieved November 10, 2004, New Jersey Institute of Technology, IS
Department. Web site: http://www.is.njit.edu/dlsi/docs/ME%20Architecture-V4-
Final.pdf.

Birmingham, B., et al.(n.d.). EU-NSF Digital Library Working Group on Interoperability
between Digital Libraries. Retrieved November 20, 2004, from National Research
Council, Italy. Web site : http://www.iei.pi.cnr.it/DELOS/NSF/interop.htm.

Birmingham, P. W.(1995). An agent-based architecture for digital libraries. D-Lib,
Retrieved November 20, 2004 from D-Lib Magazine. Web site:
http://www.dlib.org/dlib/July95/07birmingham.html.

Bray, M. (n.d.), Lockheed-Martin Ground Systems. Retrieved November 10, 2004, from
Carnegie Mellon University: Software Engineering Institute.
Web site: http://www.sei.cmu.edu/str/descriptions/middleware body.html.

48

49

Burner, M.(2003), The Deliberate Revolution. Creating Connectedness with XML Web
Services. ACM Queue, 1(1), 29-37.

Emmerich, W.(2000), Software Engineering and Middleware: A Roadmap. Proceedings
of the conference on the future of software engineering. 117-129.

Fahmi, I., and Ibrahim, I. K. (2001). Using The OAI Metadata Harvesting Protocol as a
Simple and Effective Data Integration Framework for the Digital Library Network
at the Third World. Retrieved October 29, 2004 from The Indonesian Digital
Library Network. Web site: http://idln.itb.acid/Open.html?target=papers/maroko-
ismail-oai.htm.

Fensel, D., Hendler, J., Lieberman, H., and Wahlster, W. (2002), Semantic Web
Technology, MIT Press, Boston.

Fontana, J., (2001). Web Services: Where middleware and XML converge. Retrieved
December 31, 2004 from Networkbuzz world.
Website: http://www.nwfusion.com/buzz2001/webserv/.

Greco, S., Pontjeri, L., and Zumpano, E. (2002). Lecture Notes In Informatics (Lni)
Proceedings of the 2001 international conference on Information systems
technology and its applications, 2, 75 — 84.

Hasselbring, W.(2000). Information System Integration. Communications of the ACM,
43(6)32-38.

Ibrahim, I. K.(2001). Semantic Query Transformation for the Intelligent Integration of
Information Sources. Ph.D. thesis. Gadgah Mada University, Indonesia.

Linthicum, D. S. 2004. Next generation application integration : from simple information
to Web services, Addison-Wesley.

Mcllraith, S. A., Son, T. C., and Zenf, H. (2001). Semantic Web Services. IEEE
Intelligent Systems. 16(2), 46-53.

Mikhalenko, P., (2003). The benefits of the Web ontology language in Web applications.
Retrieved Januray 01, 2005. Web site: http://builder.com.com/5100-6387-
5060266.html.

Miller, E., (2004). Semantic web activity statement. Retrieved January 01, 2005.
Web site: http://www.w3.org/2001/sw/Activity.

50

Nilsson, E.G., Nordhagen, E.K.; Oftedal, G.(1990). Aspects of Systems Integration,
Proceedings of the First International Conference on Systems Integration, 434 -
443.

Paepcke, A., Cousins, S.B., Garca-Molina, H., Hassan, S.W., Ketchpel, S.P., Rscheisen,
M., Winograd, T.(1996). Using distributed objects for digital library
interoperability. IEEE Computer, 29 (5), 61-68.

Paepcke, Andreas, Baldonado, Michelle; Chang, Chen-Chuan K.; Cousins, Steve; Garcia-
Molina, Hector.(1998) Building the InfoBus: A review of technical choices in the
Stanford Digital Library Project , Retrieved January 02, 2005.
http://dmn.netlab.uky.edu/-seales/cs585/case-study-papers/stanford-infobus.pdf.

Papazoglou, M. P., & Georgakopoulos, D. 2003. Service-oriented computing,
Communications of the ACM, 46, 24-28.

Parent, C. and Spaccapietra, S. (1998). Database Integration: an Overview of Issues and
Approaches. Communications of the ACM, 41(5), 166-178.

Sage, A.P.(1992). Systems Engineering., John Wiley & Sons, Inc., New York.

Sikora, R., Shaw, M.(1998). A Multi-Agent Framework for the Coordination and
Integration of Information Systems, Management Science, 44(11), 65-78.

Smith, R.(2001), Trends in e-business technologies, IBM Systems Journal, 40(1), 4-7.

Trastour, D., Bartolini, C., Gonzalez, J.(2001), A Semantic Web Approach to Service
Description for Matchmaking of Services, In: Proc. International Semantic Web
Working Symposium (SWWS), Stanford, CA, USA, Track 3.

Uschold, M., Gruninger, M.(1996). Ontologies: Principles, methods and applications.
Knowledge Engineering Review, 11(2),93-155.

Vinoski, S., (2003). Integration with Web Services. Retreived December 31, 2004.
Website:http://www.iona.com/h As lan/vinoski/pdfs/IEEEInte i ation With Web
Services.pdf.

Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., and
Hübner, S.(2001). Ontology-based Integration of Information - A Survey of

Existing Approaches. In Proceedings of IJCAI-01 Workshop: Ontologies and
Information Sharing, Seattle, WA, 108-117.

51

Wiederhold , G.(1992), Mediators in the architecture of future information systems. IEEE
Computer, 25(3), 38 — 49.

Zini, F. and Sterling , L.(1999). Designing Ontologies for Agents. In M. C. Meo and M.
Vilares-Ferro, editors, Proc. of Appia-Gulp-Prode'99: Joint Conference on
Declarative Programming, L'Aquila, Italy, 29-42.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: System Integration
	Chapter 3: Digital Library Integration Approaches
	Chapter 4: Digital Library Service Integration At NJIT
	Chapter 5: A New Approach To Digital Library Integration
	Chapter 6: Conclusion
	References

	List of Figures

