

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

PERFORMANCE EVALUATION OF VARIOUS DATA ALLOCATION
METHODS IN A HETEROGENEOUS DISK ARRAY ARCHITECTURE

by
Bogdan Alexandru Branzoi

Dataset attributes, such as data availability levels and access patterns, make their

mapping to certain RAID levels more desirable than others. On the other hand, it is not

economically viable for an installation to acquire multiple disk arrays to satisfy diverse

data storage requirements. A Heterogeneous Disk Array (HDA) architecture is proposed,

which allows device heterogeneity as well as RAID level heterogeneity. In other words,

various disks of different types can be incorporated in a single HDA and multiple RAID

schemes can coexist in the same array. The goal of this architecture is to utilize the

resources of all its disks to the maximum possible extent by using appropriate RAID

levels to meet the varying availability requirements for different applications. An

improved best-fit allocation algorithm is proposed and various data allocation methods

are tested against it.

In an HDA system, each new object is associated with an appropriate RAID level

and the allocation is carried out in a way to keep disk bandwidth and capacity utilizations

balanced. The data structures of the HDA architecture are described and the flowcharts

for the most frequent operations are depicted. Then a data allocation algorithm is

formulized and a possible solution is given. Finally, the HDA architecture is prototyped

based on the DASim simulation toolkit developed at NJIT and comparison results of

various data allocation algorithms are presented.

PERFORMANCE EVALUATION OF VARIOUS DATA ALLOCATION
METHODS IN A HETEROGENEOUS DISK ARRAY ARCHITECTURE

by
Bogdan Alexandru Branzoi

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Computer Science

Department of Computer Science

January 2006

APPROVAL PAGE

PERFORMANCE EVALUATION OF VARIOUS DATA ALLOCATION
METHODS IN A HETEROGENEOUS DISK ARRAY ARCHITECTURE

Bogdan Alexandru Branzoi

Dr. Alexander Thomasian, Dissertation Advisor 	 Date
Professor of Computer Science, NJIT

Dr. David Nassimi, Committee Member 	 Date
Associate Professor of Computer Science, NJIT

Dr. Alexandros Gerbessiotis,Committee Member 	 Date
Associate Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Bogdan Alexandru Branzoi

Degree:	 Masters of Science

Date:	 January 2006

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2006

• Bachelor of Science in Computer Science,
Rutgers, The State University of New Jersey, New Brunswick, NJ, 1999

Major:	 Computer Science

iv

To my wife

v

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Alexander Thomasian, who not

only served as my research supervisor, providing valuable and countless resources,

insight, and intuition, but also constantly gave me support, encouragement, and

reassurance. Special thanks are given to Dr. David Nassimi and Dr. Alexandros

Gerbessiotis for participating in my committee.

Many of my fellow graduate students in the Integrated Systems Research

Laboratory are deserving of recognition for their support. Special thanks go to Gang Fu

and Chunqi Han for their great previous work and help with the DASim simulation

toolkit.

I also wish to thank my brother for his advice and encouragement throughout the

years.

Finally, I would like to thank my wife, Jennifer, for her advice, consistent love,

and support throughout my graduate work.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 1

1.2 Background Information 	 1

1.2.1 Hard Disk Technology 	 2

1.2.2 Brief Overview of RAID Technology 	 5

1.3 Trends and Issues in Data Storage Technology 	 11

2 HETEROGENEOUS DISK ARRAY ARCHITECTURE 	 14

2.1 HDA Architecture: Features 	 14

2.2 HDA Architecture: Design 	 15

2.3 Data Structures and Procedures of the System Directory 	 20

2.3.1 Addressable Entities in the HDA System 	 20

2.3.2 Address Translations in the HDA System 	 22

2.3.3 The Data Structures of the Meta Information 	 23

2.3.4 The Read and Write Operations	 26

3 DATA ALLOCATION METHODS IN HETEROGENEOUS DISK 	 28
ARRAYS 	

3.1 Problem Formulation 	 28

3.2 Other Data Allocation Methods 	 34

3.3 Constraints on the Allocatoin Process 	 34

3.4 Allocation Algorithms Used in the Simulation 	 35

3.5 Configurations for and HDA Simulation 	 36

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.6 Studies of Data Allocation Methods 	 38

4 CONCLUSION 	 46

APPENDIX RELIABILITY MODELING 	 47

REFERENCES 	 48

viii

LIST OF TABLES

Table Page

3.1 Specifications of the Disks Used in the HDA Simulation Studyl 	 36

3.2 Specifications of the Disks Used in the HDA Simulation Study2 	 37

3.3 Simulation Results for an HDA System with Six Disks 39

3.4 Simulation Results for an HDA System with 12 Disks (Bandwidth) 	 41

3.5 Simulation Results for an HDA System with 12 Disks (Capacity) 	 42

ix

LIST OF FIGURES

Figure Page

1.1 Physical structure of a hard disk 	 2

1.2 Grouping data into sectors, tracks, and cylinders 	 3

1.3 Sequential sector layout 5

1.4 Disk array architecture 	 6

1.5 RAID levels 0 through 5 	 8

2.1 Architecture of the heterogeneous disk array (HDA) system 	 17

2.2 Entities in the HDA system and their relationship 	 21

2.3 Address mapping diagram 	 23

2.4 The tables maintained by the HDA system 	 24

2.5 The row structure in the global RB table 	 25

2.6 VD table record 	 25

2.7 The structure of a VA table field 	 26

2.8 Structure of a record in the RAID scheme table 	 26

2.9 The read operation address translation flow chart 	 27

3.1 Disk modeled as device vector 	 28

3.2 Allocation requests modeled as a two-dimensional vectors 	 29

3.3 Disk allocation process modeled as vector sum 	 29

3.4 Best-fit scheduling algorithm 	 33

3.5 Utilization of bandwidth over time 	 43

x

LIST OF FIGURES
(Continued)

	3.6	 Utilization of capacity over time 	 44

	

3.7	 Individual response time over time 	 45

xi

CHAPTER 1

INTRODUCTION

1.1 Objective

The objectives of this thesis are to propose a Heterogeneous Disk Array Architecture, to

explain the motivation behind it, and to evaluate the performance of various data

allocation methods on this type of architecture, ultimately choosing the best one for

further experiments.

The Heterogeneous Disk Array architecture (HDA) was proposed as an example

of a self-managed storage system with a very valuable characteristic, heterogeneity. This

characteristic differentiates the proposed HDA architecture from Redundant Arrays of

Independent Disks (RAID) 1 architectures. The heterogeneity of the proposed architecture

comes from allowing various disks of different capacity, bandwidth and make, as well as

various different RAID levels, to coexist on a disk array. The main purpose of this type

of architecture is to automatically and efficiently utilize the resources of all the disks to

the maximum extent possible, while choosing the appropriate RAID level that would

meet the requirements of various applications.

1.2 Background Information

This section describes the structure and organization of modern hard drives and it gives a

brief overview of the Redundant Arrays of Independent Disks. Knowledge of the

structures and layouts of these architectures is assumed in the following chapters.

1

2

1.2.1 Hard Disk Technology

In Figure 1.1, the structure of a typical hard drive is depicted. 2 A disk drive consists of a

stack of platters mounted on a common spindle. Each platter has 2 sides, both coated

with a magnetic material. The platters rotate at a constant velocity, and the rotational

speed or velocity is typically measured in revolutions per minute or RPMs. Each platter

has a corresponding read/write head for each of its surfaces mounted at the end of a disk

arm. Disk arms are mounted to a common shaft called an actuator. Applying a

directional current to a positioning motor causes the actuator to rotate small distances in

either direction. Rotating the actuator causes the disk heads to move together in a radial

motion along the platters, thus allowing access to a radius spanning most of the coated

surface of each platter. However, only one head is active at any given time. The reason

for this is that it is nearly impossible to position two heads at the exact same time on

corresponding tracks, due mostly to thermal variations of the disk arms and platters.

Figure 1.1	 Physical structure of a hard disk.

3

The data stored on the hard disk is organized into the following components:

sectors, tracks, and cylinders. A sector is a block of sequential user data (almost always

512 bytes) and is considered to be the smallest unit that can be read from or written to the

disk. A header area in front of each sector contains sector identification and clock

synchronization information, and a trailer area contains an error correcting code

computed over the header and data. A track is made up of a set of sectors on a single

platter surface at a constant radial distance from the spindle. A set of tracks with the

same radius constitutes a cylinder. All the sectors in a hard disk are numbered

sequentially starting from 0 as block addresses and constitute a linear address space to the

user. These concepts are illustrated in Figure 1.2.2

Figure 1.2 Grouping data into sectors, tracks, and cylinders.

When trying to access a block of data, the control mechanics of a hard disk move

the actuator such that the disk heads are correctly placed over the right cylinder. After

waiting for the desired data to rotate under the read/write heads, the sought after sectors

are read or written. The time that it takes to move the actuator is called seeking time and

it is usually around 1 to 15 ms depending on the seek distance. For each user request, the

actuator must first seek to the indicated cylinder and then the disk must rotate to the start

of the requested data. The combination of these two operations is referred to as

4

positioning the disk heads. Sometimes the rotational latency can be completely

eliminated. This special case occurs when a user request needs to access an entire track

of data and, instead of waiting until the first sector rotates under the heads to begin the

operation, it starts by reading or writing the data in the order the sectors pass under the

heads. This special case is called zero-latency operation and can be extended to include

the case where the access spans only part of a track.

It should be noted that the tracks near the outside of each surface have greater

circumference than those closer to the spindle. Therefore, a technique called zoned bit

recording (ZBR) takes advantage of such a placement and stores more sectors per track in

the outer cylinders. This technique groups sets of 50 to 200 adjacent cylinders into zones

with the number of sectors per track being constant within each zone but successively

larger in the outer zones than the inner.

Figure 1.3 illustrates the assignment of sequential data to sectors, tracks, and

cylinders. 2 As shown in the figure, sequential data starts at sector zero and proceeds

around to the end of the track. It then moves to the next track and continues in this

manner until it reaches the end of the cylinder, at which point it moves to the next

cylinder and starts again. As shown in Figure 1.3, a rotational distance equal to one sector

is skipped when crossing a track boundary (in this example, moving from sector 7 to 8).

Also it should be noted that two sectors are skipped when crossing a cylinder boundary

(moving from sector 23 to 24 in this example). The skipped distances are called the track

skew and cylinder skew. This method of laying out the data is necessary in order to allow

the hard disk control electronics to have time to reposition the actuator when a user

access spans a track or cylinder boundary. The track skew is shorter than the cylinder

5

skew because only fine adjustments are necessary when switching to a new track within

one cylinder, whereas switching to a new cylinder requires the actuator to be moved one

full cylinder width and then fine-adjusted over the new track. Typical values for track

and cylinder skew in current technology are about 0.5 and 1.5 ms, respectively.

Figure 1.3	 Sequential sector layout.

1.2.2 Brief Overview of RAID Architecture

There has been a steady and steep increase in the performance of computer processors in

the past ten to twenty years. And with such a performance increase, comes the need for

higher I/O bandwidth availability. However, the performance of disk drives has not been

able to keep up with the fast pace at which processors have improved. According to

Amdahl's law3 , the overall performance of the computer systems is limited by the

performance of the I/O subsystem. Hence, the need to use parallelism in the storage

subsystem to meet the increasing demands for I/O bandwidth.

6

Figure 1.4 	 Disk-array architecture.

The disk-array architecture used in today's systems connects the disks via low-

bandwidth links to an array controller, 4 which in turn is connected via high-bandwidth

parallel buses to the host computer. 5 The array controller is responsible for the majority

of all system-related activity, including maintaining address mapping and redundant

information, controlling individual disks, and recovering from disk failures and executing

transfers. It also provides a very convenient linear address space to the host computer.

The mapping of the linear addresses to the individual disk addresses is performed by the

array controller and is referred to as the data layout.

The core concept of disk arrays is striping or breaking up consecutive units of

user data across the disks that make up the array. 1 '6'7 The array controller exports a linear

7

address space to the host computer and striping is responsible for breaking up this linear

space into striping units of a constant size. Consecutive units are then assigned to

consecutive disks. There are some great benefits with striping, such as automatic load

balancing in concurrent workloads and high bandwidth for large sequential transfers by a

single process.

Disk arrays are usually classified into five types, RAID levels 1 through 5, based

on the organization of redundant information and the layout of user data on the disks. 1

This terminology has gained wide acceptance in the storage community and will be used

throughout this work. Although not part of the original RAID levels classification, RAID

level 0 is often used to indicate a non-redundant disk array. RAID level 1, also termed

mirroring or shadowing, is achieved by grouping the disks into mirror pairs and storing

one copy of each data block or striping unit on each of the disks in the pair. In RAID

level 2, the array disks are divided into data disks and check disks. Bit or byte striping is

used across the data disks while the Hamming error correcting code8 is used in the check

disks. RAID level 3 uses bit or byte interleaved parity, where the data is stripped across

the data disks while a single parity disk stores the cumulative exclusive-or over the

corresponding bits on the data disks. RAID level 4 is very similar to RAID level 3 except

that it uses block interleaved parity instead of bit or byte interleaved parity. The size of

the block could be 32 KB or larger. RAIDS uses a rotated block interleaved parity, with

the parity blocks distributed over all disks. Figure 1.5 illustrates RAID level concepts.

8

Figure 1.5	 RAID levels 0 through 5. Parity blocks have been highlighted while the
data blocks make up the rest. "D" represents a block of user data, "d" a bit or byte of user
data, "hx_y" a Hamming code computed over user data bits/bytes x through y, "p x_y" a
parity (exclusive-or) bit/byte computed over data blocks x through y, and "P x_y" a parity
block over user data blocks x through y.

9

Figure 1.5 RAID levels 0 through 5. Parity blocks have been highlighted while the
data blocks make up the rest. "D" represents a block of user data, "d" a bit or byte of user
data, "hx_y" a Hamming code computed over user data bits/bytes x through y, "p x_y" a
parity (exclusive-or) bit/byte computed over data blocks x through y, and "P x_y" a parity
block over user data blocks x through y. (Continued)

10

The RAID level 5 design shown in Figure 1.5 uses a left-symmetric organization,9

which is formed by first placing the parity units along the diagonal and then placing

consecutive data stripe units on consecutive disks at the lowest available offset on each

disk. The parity is computed over a group of disks that is called a parity group. In the

examples illustrated in Figure 1.5, there is only one parity group for each RAID level. It

is possible that more than one parity group exist in a RAID level. This technique is called

declustering and the RAID scheme is called clustered RAID. 1° ' 11 It is also known as

RAID level 6 and is an extension of RAID level 5. It uses Reed-Solomon coding with P

and Q as group parities to protect against two disk failures.

The reliability of single disk tolerant disk arrays can be measured in the form of

mean time to data loss (MTTDL). A simple expression for the MTTDL for a redundant

disk array that can tolerate one disk failure is given by 1

In the above equation, N is the total number of disks in the array, G is the number of

disks in a RAID group (i.e. a set of disks over which a parity is computed), MTTFdhsk is

the mean time to failure (mean failure time) of a component disk, typically one million

hours, and MTTRdisk is the mean time to repair (mean repair time) of a component disk,

typically a few hours.

11

1.3	 Trends and Issues in Data Storage Technology

This section provides an overview of the issues and trends in data storage technology that

led to designing a Heterogeneous Disk Array architecture.

In the past ten years, dramatic improvements have been made in magnetic disk

technology. Disk density has been improving by more than 100 % per year, quadrupling

in three years. Prior to 1990, density increased by 30 % per year, doubling in three years.

Looking into the future, it appears that disk technology will continue the fast density

growth rate for some time to come. Access time has also been improving by one-third in

ten years.

Such drastic improvements in disk capacity have numerous benefits, but that is

beyond the scope of this thesis. However, some implications must be mentioned, as they

motivate the introduction of the proposed Heterogeneous Disk Array (HAD) architecture.

Consider a computer system for which storage needs are fulfilled by a couple of

disks. After operating for several years, one of the disks fails. The computer system

administrator is faced with the option of replacing the failed disk with a newer model,

given that the old model might not be available or cost effective anymore. Since the new

disk model most likely has a higher capacity, a lower access time and a higher transfer

rate, the extra resources will be wasted. The explanation behind such wastefulness is not

being able to use up more than the capacity or bandwidth of the old disk model. The

computer system administrator will be faced with a similar problem when a disk array is

filled to capacity after years of use, due to constant increases of data being stored and/or

installation of new computer applications onto the system. There is the possibility that an

identical disk model might not be available at the time, or worse, not even manufactured.

12

The choices facing the system administrator are simple: either add new disks to the disk

array if the architecture allows it, or replace the entire array with a new one. Selection of

the first option results in a large waste of resources (capacity and bandwidth) of the

newly added disks. However, the second approach might cause the whole operation to

become too costly.

An optimal solution to this problem will be one that allows new disks of different

models to be added to a disk array when there is a need for extra storage or bandwidth

while simultaneously utilizing the added resources to the full extent. This way the

benefits of adding a faster and better storage technology combined with a better

performance/cost ratio are fully utilized. The possibility of this optimal solution demands

that the storage system be comprised of heterogeneous disks.

Another aspect worth mentioning is that disk arrays are usually shared by multiple

computer applications, where each application tries to access a multitude of datasets.

Each dataset tends to have a number of different requirements, such as capacity,

throughput, and reliability. The RAID architecture can meet a lot of requirements, but

there is not one RAID level that can meet all of them. Each RAID level performs well

for a certain range of workloads with specific characteristics. RAID level 0 is used when

there is a need to store a high volume of temporary data, since this level has the lowest

storage overhead and does not incur the small write penalty associated with writing to the

parity disk. RAID level 1 is a highly reliable system that can tolerate up to N/2 disk

failures without losing data; hence it should be used when the cost per megabyte of

storage is not as important as the reliability of the storage system. It is also desirable to

use RAID level 6 over RAID level 5 for critical data since RAID level 6 provides

13

increased protection. RAID level 4 is rarely used. RAID level 5 is best used by on-line

transaction processing (OLTP), in which a large number of independent processes

concurrently request relatively small units of data from the array. RAID level 3 is best

suited for applications such as scientific calculations, where a single process requests a

large amount of sequential data from the disk array.

An optimal solution to solving the RAID level dilemma will be to design a

storage system on which various RAID levels are allowed to coexist at the same time,

thus being able to satisfy the requirements of various applications optimally and

concomitantly. In other words, for a viable solution, the storage system will have to be

heterogeneous regarding the RAID levels.

One of the very important factors that originally prompted the discussion about

designing Heterogeneous Disk Array architectures is the cost of maintaining storage

systems. Multiple studies have been done over the years that indicate that the cost of

maintaining large storage systems over time tends to be relatively high and driven mainly

by the high cost of storage management. 12 ' 13

To solve the high cost problem, the Heterogeneous Disk Array architecture that

will be described later in this work will be able to self-manage itself. It will be able to

balance the data load automatically by constantly monitoring the system's performance.

In summary, the Heterogeneous Disk Array architecture will allow for different

disks of various models, as well as multiple RAID levels, to coexist simultaneously in a

single disk array. It will all also utilize the resources (disk capacity and disk bandwidth)

of its disks to the maximum possible extent. Lastly, it will automatically balance the data

loads by constantly monitoring the performance of the storage system.

CHAPTER 2

HETEROGENEOUS DISK ARRAY ARCHITECTURE:

STRUCTURE AND DESIGN

After reviewing the trends in data storage technology and the motivation related to the

issue of heterogeneity in disk arrays, it is only natural to introduce the Heterogeneous

Disk Array (HDA) architecture, an ongoing concept proposed and researched by the

Integrated Systems Lab at NJIT. 14 In the following sections the Heterogeneous Disk

Array features, design and function of the essential components of the architecture,

metadata structures, and flow charts depicting the processing of requests are described.

2.1	 HDA Architecture: Features

The proposed HDA architecture is so unique because the disk array may be comprised of

various disk models of different bandwidth and capacity; multiple RAID levels are

allowed to coexist in a disk array; disk resources, such as capacity and bandwidth, are

utilized to the maximum possible extent; load balancing occurs automatically through

constant monitoring of the system performance and improvement in the data allocation

decisions. The first two features are concomitantly satisfied, thus ensuring that the

heterogeneity aspect is met.

14

15

2.2 HDA Architecture: Design and Functionality

HDA architecture consists of an array controller and multiple disks of various models.

The array controller is the primary component and is responsible for maintaining the

functionality of the system. The components that make up the array controller are the

scheme selector, the splitter, the distributor, the system directory, the performance

monitor, and system tuner. The design and architecture of an HDA system is depicted in

Figure 2.1. Before discussing the array controller components, it is necessary to present

the request types.

The HDA system is capable of handling three types of user data requests:

allocation requests, update requests, and read requests. An allocation request creates a

new object by allocating available space from the disk array to a new file. An allocation

request is sometimes followed by an update of the file. An update request updates the

object that has been previously allocated. A read request performs reading of data from

the disk.

The parameters of the reads and updates are the logical address and the size of the

request. The logical address is translated into a physical address by the system directory.

Once the physical address is obtained, the controller performs the required operation. If

the operation is an update request, the system directory also updates the parity blocks if it

is necessary.

Allocation requests, on the other hand, are more complex and require more

parameters such as desired availability rating, expected access rate, expected read/write

ratio, and size of the request. The desired availability parameter is used in deciding the

RAID level, and the expected access rate and read/write ratio are used in the allocation

16

process. The availability parameter is specified either quantitatively by using Mean Time

To Data Loss, MTTDL, or qualitatively (e.g. very high availability). A simpler approach

is to tag the allocation request with the desired RAID level.

Figure 2.1	 Architecture of the Heterogeneous Disk Array (HDA) system. 19

17

18

Knowledge of the request types, encompassing allocation requests, update requests, and

read requests, permits description of the array controller components: scheme selector,

splitter, distributor, system directory, performance monitor, and system tuner.

• Scheme Selector

The scheme selector is the first module of the array controller that deals with the
incoming allocation requests. If the availability parameter of the request is specified
in terms of MTTDL, the scheme selector selects a suitable RAID level through the
help of a reliability model. If the request is tagged with a RAID level the Scheme
Selector just passes the request onto the next module. The reliability model is
described in the Appendix.

• The Splitter

The role of this module is to split big allocation requests into smaller size pieces
called sub-allocation requests. Each sub-allocation request can be handled in a batch
or separately and additional constraints may apply to it. For example, if the data is
stored using the RAID level 5 scheme, the sub-allocation requests should be sent to
different disks.

• The Distributor

The distributor, or allocator, is the key component of the array controller. Its function
is to take a batch of equal-size blocks from the splitter and assign them to disks in a
way such that the bandwidth and capacity utilizations of all disks are roughly equal,
and that any required constraints are met. The allocator also handles all of the
allocation requests, manages the free available space, and decides which device the
space is allocated from for the allocation request. If the current virtual array does not
have enough free space for a new allocation, a new virtual array of the desired RAID
scheme is created. In this case, the allocator must determine the subset of devices
from which the new virtual array is created.

• System Directory

After deciding the placement of each sub-allocation request, the distributor outputs its
decision to the system directory. This model is composed of a set of data structures
and procedures that store and retrieve the logical-to-physical address mapping
information in terms of space and time, store and retrieve the data parity relations
between blocks, keep track of the hotness of blocks for performance tuning purposes,
and manage the free space. It provides a layer between the logical addresses that is
visible to the Operating System and the physical addresses that is visible to devices.
This layer is implemented using fully associative mapping which makes the data
migration transparent to the user. To make this mapping possible and overcome size

19

concerns, relocation blocks, RBs, are used as the smallest unit of data migration.
Each RB has an entry in the system directory and a corresponding logical address
termed RB number.

Another important task of the system directory is keeping track of the actual
access rate to data objects. The actual access rate is the input to the system
performance tuner component. Due to the large volume of requests, only the
aggregated access rate to a RB is recorded.

The information stored in the system directory is crucial to the HDA system.
It is comprised of all the information about the format and data organization of the
array and some statistical data. The aggregation of this information is called
metadata, and the corresponding data structure is called metadata structure. The
entities of the metadata are described in section 2.3.

• System Performance Tuner

The potential exists for the system to run at a low utilization. Allocations are based
on predicted access rates that require the extension of operation system functionality
to record the mean access rate and pattern (i.e. read/write ratio) for data generated by
a certain application. In a multiprogramming environment, accurate predictions are
very difficult even with the aid of the operating system. Moreover, the situation is
compounded by several constraints that must be satisfied when making allocations
that cause load balancing to be more difficult, such as data and parity blocks that are
in the same stripe must be placed on different disks. When the system is running at a
low utilization, it would be beneficial to have a background process that tunes the
system.

The system performance tuner, the system tuner component in Figure 2.1,
obtains disk utilization statistics, including throughput and space utilization, and the
access frequency for data as input and balances the utilization of all disk drives by
swapping data blocks between disk drives. If there is an improvement involving "n"
disks, there exists at least one improvement involving just two disks. 15 Thus, load
balancing only requires the swap operation, allowing the system to reduce the
neighborhood-searching amount.

Load balancing is performed according to a greedy algorithm called disk
cooling. 16' 17 Disk cooling tracks the heat associated with data blocks, computes the
temperature of each disk, and relocates the hottest block from the hot disks so that the
number of blocks to be moved is minimized. The cooling process is triggered only
when the temperature of hottest drive is higher than 1 + 8 the average temperature,
for which 8 is a system parameter. The dynamic tracking of the block temperature is
implemented based on a moving average of the inter-arrival time of requests on the
same block. However, shortcomings of the disk cooling algorithm include an
assumption of homogeneous disk drives, and the algorithm does not consider the

20

constraints introduced by redundancy schemes, for example, data and parity cannot
reside on the same disk.

The system performance tuner runs in the background and only when the
system is idle or has a light workload since data migrations are usually expensive
operations.

• Performance Monitor

The performance monitor module is constantly keeping track of the device utilization
while the system directory records the access rate for data blocks in order to collect
current data access rate and device utilization information. This information is passed
along to the system performance tuner so that load balancing on disks may occur.

2.3	 Data Structures and Procedures of the System Directory

In this section, the entities of the metadata are described and the frequent operations are

analyzed, the address translation diagram optimized according to the frequent operations

is depicted, a list of the data structures used by the HDA system is presented, and the

read/write operation flowcharts, based on these data structures, are discussed.

2.3.1 Addressable Entities in the HDA System

The addressable entities in the HDA system include device, relocation block, virtual disk,

virtual array, and data/parity block. Their relationships are depicted in Figure 2.2 and

each is described below.

• Device

A device is an array-controller-visible physical device but can also be a disk array.
Each device is identified by a unique Logical Unit Number (LUN) and has its own
capacity and maximum throughput (bandwidth). All blocks in the device are
addressable by using a device offset

• Relocation Block, RB

A relocation block, RB, is an entity comprised of a set of contiguous sectors, and its
size is a predetermined number.

21

• Virtual Disk, VD

A virtual disk, VD, is an entity comprised of a set of a predetermined number of
contiguous RBs on a device.

• Virtual Array, VA

A virtual array, VA, is an entity comprised of one or more VDs from different
devices. A virtual array is formatted to use a certain RAID level.

• Data/Parity Block

Data blocks are accessible by user applications, while parity blocks store redundant
information, and are usually transparent to the users. Both data and parity blocks are
addressable.

Figure 2.2	 Entities in the HDA system and their relationship. 19

22

The device, RB, VD, and VA entities each have an address associated with them.

The addresses are consecutive integers starting from zero, and for different entities they

belong in different dimensional address spaces (e.g. both RB and device number can be

0). The addresses belonging to an address spaces are not necessarily consecutive, which

means that holes can exist in the address space. Consecutive addresses in the device, RB,

VD and VA address space simplify and greatly speedup the table lookup procedure.

The fifth entity, data/parity blocks, uses a combination of two addresses to

identify each block: a physical address that is understood only by devices and an HDA

address that is visible to the users.

The physical address is comprised of a logical unit number and a device_offset

pair: (LUN, device_offset). The LUN is the device number of a disk, and every physical

address uniquely identifies a block in the storage space. It is possible for the identified

block to store user data or redundancy information, in which case it will not be

addressable in user storage space.

The HDA address is comprised of a relocation block number and a relocation

block offset (RB#, RB offset), where the RB offset is the offset considered from the

beginning of the RB. The HDA address is visible to the file system and is the counterpart

of the physical address in user storage space.

2.3.2 Address Translations in the HDA System

The handling operations of the read, update, and allocation requests require the following

procedures to be performed by the array controller: translation from an HDA address to a

physical address, scheme lookup, buddy lookup, physical address to VA information

23

translation, creation of a new VA from the available free storage space, count the number

of VAs of a given RAID level, and relocate the RBs through the load balancing process.

Figure 2.3 illustrates the address-mapping diagram. The addresses of the HDA system

entities can be translated following the arrows in the diagram. The ratios on the links

depict the mapping relationships: one-to-one, one-to-many or many-to-many.

Figure 2.3 Address mapping diagram.

2.3.3 The Data Structures of the Meta Information

The HDA system has to maintain a set of tables in order for the array controller to be able

to perform the address translation procedures. A simplified depiction of the tables

maintained by the HDA system is shown in Figure 2.4.

Figure 2.4 	 The tables maintained by the HDA system.19

VD# = (Device#, Index in device)	 VA # RB i RB2 RBRB_PER_VD• • •

25

There are four tables illustrated in Figure 2.4 above. The data structures and relationships

found in these tables are described below:

• Global RB Table

This global table stores the mapping of RB numbers to physical addresses and the
heat index. The data structure that represents a row in the table is depicted in Figure
2.5. The RB# is used to index the global table, the Device# and Device_offset make
up a physical address pair, and the Heat index records the access rate for the blocks of
this RB. The RB# can be omitted, if it grows sequentially without interruption.

RB#	 I	 Device#	 I	 Device offset 	 I	 Heat Index

Figure 2.5 	 The row structure in the global RB table.

• VD Table

The virtual disk, VD, table consists of records that have their structure depicted in
Figure 2.6. Each physical device has a VD table. VDs contain a fixed number of
RBs (RB _ PER_ VD), have a fixed size, and can be described as consecutive disk
spaces on physical devices. The RB numbers that are in a VD at one time may not be
consecutive, as a result of background workload balancing. Each VD can be marked
as unformatted space before it is assigned to a virtual array, VA. The virtual disk
number, VD#, consists of a Device# and an index of the VD in that device, and it can
be directly mapped to a physical address by multiplying the VD size with the index.
The virtual array number, VA#, indicates the VA to which the VD belongs. RB
RB2, RBRB_PER_VD represent the RBs in this VD. The VD# is implied and may be
omitted if the sequence of numbers is uninterrupted.

Figure 2.6 	 VD table record.

• VA Table

The virtual array (VA) table is also a global table. A field in the VA table is depicted
in Figure 2.7. The VA table stores information regarding the organization of the
virtual arrays, such as the RAID scheme, the components VDs, the parity location etc.
VD ' through VDk represent the virtual disks that constitute the respective virtual
array, with the parity VDs listed first.

•••VD2VD1RAID Scheme Num VDs (=k)

26

VDkVA#

•••RAID Scheme Num VAs VA2 VA3VA1

Figure 2.7 	 The structure of a VA table field.

• RAID Scheme Table

The RAID scheme table is a global table that stores all the VAs for a certain RAID
level in the HDA. Figure 2.8 illustrates the structure of a RAID scheme table record.
The records are of variable length.

Figure 2.8 	 Structure of a record in the RAID scheme table.

2.3.4 The Read and Write Operations

The read and write operations require certain steps to be taken while performing address

translation. Figures 2.8 and 2.9 depict the flowcharts that illustrate the address translation

process in both cases. Operations in normal mode only are discussed here, and the write

operation assumes a RAID level 5 array organization. Operations in degraded mode and

using different RAID level schemes are similar.

The read operation, as depicted in Figure 2.3, consists of two parameters, the

target HDA address and the request size, and translates the HDA address to the physical

address by simply identifying an integer in a table and performing one addition step. The

HDA address is comprised of the RB number, identified by the pair (device number,

device_offset) that gives the physical address in the RB table, and the offset within the

RB. The device_offset is the starting point of the RB. Summation of the device_offset

and the offset within the RB provides the physical address of the target block. Then, the

request is passed down to the device without any change. Note that identifying the RB

number in the RB table is equivalent to obtaining an element from a large array that

27

requires only one multiplication to get the element address and one memory access

because the RB number is a sequential integer starting from zero.

Figure 2.9	 The read operation address translation flowchart. 19

CHAPTER 3

DATA ALLOCATION METHODS IN HETEROGENEOUS DISK ARRAYS

One of the main challenges in heterogeneous disk arrays is finding a way to utilize both

capacity and bandwidth to the maximum possible extent. This chapter formalizes this

problem and describes a solution to it in the form of a data allocation algorithm. To

verify its effectiveness, an HDA simulation environment was designed and implemented

at the Integrated Systems Lab at NJIT 19, and several data allocation algorithms were

tested against the proposed solution.

3.1	 Problem Formulation

The hard disks that make up the storage space of a heterogeneous disk array can be

modeled as two-dimensional vectors, as illustrated in Figure 3.1. The two dimensions are

maximum throughput, measured in accesses per second, on the X-axis, and storage

capacity on the Y-axis.

Max Throughput

Figure 3.1	 Disk modeled as device vector.

28

29

Allocation requests that come to the disks can also be modeled as two-dimensional

request vectors. The two dimensions are access rate on the X-axis and allocation size on

the Y-axis. Figure 3.2 illustrates this concept.

Access Rate

Figure 3.2 	 Allocation requests modeled as a two-dimensional vectors.

The disk allocation process can be modeled by adding the request vectors, and

ensuring that their sum, on either coordinate, is less than the dimensions of the disk

vector. Figure 3.3 illustrates this concept.

Figure 3.3 	 Disk allocation process modeled as vector sum.

30

Based on the above concepts, the problem of balancing the utilization of disks in

terms of both throughput and capacity is formulized as follows:

• Problem Definition

Considering a set D of n disks, the ith disk is represented by a vector d, = (XbCd,
where Xi denotes the maximum throughput and C1 denotes the capacity of the ith disk.
Given a set J of allocation requests, each allocation request is represented by a two-
dimensional vector pi = (xj,c), where xi is its anticipated access rate and ci is the size
of data.

• Problem Solution

A partition of the set J into n subsets .11,..., .In such that the sum of both dimensions
of subsets does not exceed the corresponding limit set by the dimensions X, and C,, as
in Equations (3.1) and (3.2):

Offline and online algorithms are used to implement data allocation methods. In an

offline algorithm, complete knowledge of all the items in the system is required before

the starting of the algorithm. An online algorithm, on the other hand, assigns an item

using only the item's own information and the system's statistical data.

Both offline and online algorithms are used in an HDA system. The system tuner

uses the offline algorithm, while the distributor uses the online algorithm in the initial

data allocation phase. The online algorithm used by the distributor processes allocation

requests in the order of their arrival (FCFS policy), until no more requests need to be

allocated. Given that Equation (3.3) denotes the utilization (of throughput) of device i,

and Equation (3.4) denotes the utilization capacity of device i,

the two possible objective functions to minimize are F1 and F2, as in Equations (3.5) and

(3.6), respectively:

31

In Equation (3.6), Var[xJ is the variance over a set of numbers Ix i 11	 i __ n 1 and

is defined in Equation (3.7):

To put more emphasis on the throughput rather than capacity, in Equation (3.6), a is

chosen between 0 and 1. Balanced throughputs are more important than balanced disk

capacities, as more often the system bottleneck tends to be the throughput. Another

reason is that mean disk response time is proportional to (1- p)4 since the disk

throughput is directly proportional to the disk utilization which is a product of the

arrival rate of requests and the mean service time per request. 18 It is assumed that the

mean access times of the various disks of the HDA system do not vary significantly, in

spite of their different sizes and models. A computational expensive optimization

algorithm to improve response time is unnecessary and impractical in the allocation

phase, since access rates and read/write ratios are only approximately known. In a

typical storage system, each allocation block takes a very small fraction of the throughput

and capacity of a disk. A bin packing with small items type of problems may be used to

illustrate the allocation of blocks to disks. A good asymptotic ratio is possible when

using a greedy algorithm for finding an approximate solution to the two-dimensional

vector-scheduling problem. The best-fit heuristic algorithm is adapted to the two-

dimensional vector-scheduling problem by assigning an incoming request to the k th

device to minimize the target function. The algorithm is illustrated in Figure 3.4.

for the device i, 1 i n ; The expected throughput (x) and capacity (c)

consumption of the new allocation request, represented as a vector p =

(x, c).

Output:	 The kth device, 1	 to which the new allocation

request should be assigned.

Steps:

1. Consider the target functions F(i), 1	 where the new

allocation request is assigned to disk i.

2. Compute F(i) for all 1 i n , using a throughput. If a device does

not have enough space or bandwidth for the new item, it is excluded

from consideration.

3. Select k such that F(k)	 F(i); 1 i n. If there are multiple choices,

select one randomly.

4. Return k.

33

Figure 3.4	 Best-Fit scheduling algorithm. 19

34

3.2 	 Other Data Allocation Methods

To verify the effectiveness of the best-fit allocation algorithm, other data allocation

methods were considered in this study 19 :

• Round-robin:

It places the allocation requests in a round robin manner on the disks.

• Random:

It places the allocation requests randomly on the disks.

• Proportional to throughput:

It places the allocation requests on the disks with a probability proportional to their
throughput (bandwidth). In mathematical terms, the probability of placing a request
on disk i is:

• Proportional to capacity:

It places the allocation requests on the disks with a probability proportional to their
capacity. In mathematical terms, the probability of placing a request on disk i is:

3.3 	 Constraints on the Allocation Process

There are several constrains that must be considered during the allocation process, such

as:

• The data and corresponding parity stripe units in a RAIDx parity group must not be
placed on the same device. This constraint is essential to the correctness of the
scheme.

• Blocks from the same allocation request should be placed on a single device up to the
size of a stripe unit. This constraint is beneficial from the viewpoint of sequential
access.

• The stripe units of a stripe should be placed on disks with similar characteristics.

35

The first constraint is required for data recovery after a device failure, while the other two

constraints aim at better performance.

3.4 	 Allocation Algorithms Used in the Simulation

The simulation works by assigning consecutive numbers to allocation requests. Their

attributes are recorded in a table, which is used by the simulator to determine the

characteristics of requests. For example, after i requests are allocated, the total arrival

rate of read/write requests is A /	 . Once an arrival occurs, the probability

that allocation i will be accessed is proportional to 2.1A 1 . The logical or the HDA

address of the allocated requests is also recorded to the table. As time elapses, more

allocation requests are processed, more space is allocated, and the access rates to disks

increase. Allocation requests are infrequent compared to read/write requests and require

the same disk access time as the latter requests, so the processing required by them is

negligible.

The HDA system allocates at two levels, at the VA level and at the file level.

New VAs are allocated on demand, when there is not enough space left on the current

VA for a new allocation. The VDs for the new VA are selected from the disks with the

most available free space, percentage-wise. The virtual bandwidth associated with each

VD is based on the remaining access bandwidth divided by the number of free VDs on

the device. Thus VDs in a particular VA may have different target bandwidths. The

expected bandwidth per VD is simply the disk bandwidth divided by the number of VDs

that can fit on that disk. As requests are allocated to VDs of a RAID 1 or RAIDS array,

the residual bandwidth that remains to be allocated may be lower or higher than expected.

36

The allocation of bandwidth is accelerated or decelerated based on the residual bandwidth

on the disk.

3.5	 Configurations for an HDA Simulation

Two configurations are considered in this study. First, a heterogeneous disk array with 6

disks is considered. Secondly, the storage capacity is doubled. The disk capacities range

from 2GB to 9GB, and the disks are of various models. The specifications for the disks

considered in this simulation study are given in Table 3.1 and Table 3.2.

Table 3.1	 Specifications of the Disks Used in the HDA Simulation Study 1

Disk
Model Capacity Bandwidth

(access/sec)

Bandwidth —
Capacity

Ratio
RPM Sectors/Track

0 IBM18ES 8.6G 88.01 9.779 7200 247-390

1 IBM18ES 8.6G 88.01 9.779 7200 247-390

2 AtlaslOk 8.5G 116.89 13.13 10000 229-334

3 Barracuda 2.0G 74.53 35.49 7200 119-186

4 Barracuda 2.0G 74.53 35.49 7200 119-186

5 Cheetah4LP 4.2G 91.63 20.36 10000 131-195

37

Table 3.2	 Specifications of the Disks Used in the HDA Simulation Study 2

Disk
Model Capacity Bandwidth

(access/sec)

Bandwidth -
Capacity

Ratio
RPM Sectors/Track

0 IBM18ES 8.6G 88.01 9.779 7200 247-390

1 IBM18ES 8.6G 88.01 9.779 7200 247-390

2 AtlaslOk 8.5G 116.89 13.13 10000 229-334

3 Barracuda 2.0G 74.53 35.49 7200 119-186

4 Barracuda 2.0G 74.53 35.49 7200 119-186

5 Cheetah4LP 4.2G 91.63 20.36 10000 131-195

6 IBM18ES 8.6G 88.01 9.779 7200 247-390

7 IBM18ES 8.6G 88.01 9.779 7200 247-390

8 AtlaslOk 8.5G 116.89 13.13 10000 229-334

9 Barracuda 2.0G 74.53 35.49 7200 119-186

10 Barracuda 2.0G 74.53 35.49 7200 119-186

11 Cheetah4LP 4.2G 91.63 20.36 10000 131-195

The arrival process is Poisson for both allocation and access (i.e. read/update)

requests, and the request size follows the exponential distribution. The mean request size

is 100 sectors or 50 KB, with a cutoff threshold of 4096 sectors and a minimum of one

sector. The access rate is also exponentially distributed, with mean access rate of 8 x 10 -7

accesses per second. The maximum access rate is 10 accesses per second. Two RAID

levels, RAID! and RAIDS, coexist in the HDA. Each allocation request is tagged as

either RAID 1 or RAIDS, with 30% of them tagged as RAID 1. Multiples runs of

simulations are executed with various read/write ratios for data blocks, but only the

results for the ratio read/write = 3/1 are reported here. The arrival rate for the allocation

requests remains constant throughout the simulation. The arrival rate for accessing the

38

data blocks depends on how many data objects have been allocated on the disk. The

simulator keeps track of all the data objects that have been allocated and generates

read/write requests according to the actual access rate of each data object after it is

allocated. As time elapses, more allocation requests are processed and more space is

allocated. Therefore, as the arrival rate for the data objects increases with time, so do the

utilizations and response times for disk accesses. The size of a relocation block is 10

megabytes, and each virtual disk has 2 RBs. A RAID 1 virtual array consists of two

virtual disks. A RAIDS virtual array consists of five virtual disks, one of which stores the

parity.

3.6 Studies of Data Allocation Methods

Based on the HDA disk configurations described in Section 3.4, two studies were

conducted to test the effectiveness of the proposed best-fit allocation algorithm described

in Section 3.1. Six data allocation methods were compared against each other on the two

configurations.

In the first study, the simulation uses an HDA system with 6 disks. Their

specifications are given in Table 3.1. The simulation stops when either bandwidth or

capacity utilization of any disk exceeds 95%. In other words, the stopping criterion of

the simulation, in this first study, is chosen as the point when one of the resources of a

disk is close to maximum usage. This is done as a first step in observing the behavior of

the system. The results of the simulation are given in Table 3.3.

39

Table 3.3 	 Simulation Results for an HDA System with Six Disks

Placement
Strategy

Alloc
Req

Ux(0)
Uc(0)

Ux(1)
Uc(1)

Ux(2)
Uc(2)

Ux(3)
Uc(3)

Ux(4)
Uc(4)

Ux(5)
Uc(5) ax

Best Fit with
objective Fl

295044 0.9308
0.7926

0.9500
0.7903

0.8198
0.7922

0.8695
0.8014

0.8271
0.8014

0.8436
0.7966

0.0549

Best Fit with
objective F2

307441
0.9210
0.8198

0.9501
0.8198

0.8901
0.8219

0.8873
0.8300

0.8851
0.8300

0.9180
0.8241

0.0257

Round-Robin 245483
0.9505
0.6472

0.9267
0.6472

0.6936
0.6461

0.3806
0.6487

0.4200
0.6583

0.5840
0.6501

0.2442

Random 244829
0.9271
0.6472

0.9501
0.6472

0.6849
0.6461

0.4023
0.6487

0.4217
0.6583

0.6203
0.6501

0.2369

Proportional
to Max xput

245472 0.9500
0.6472

0.9170
0.6472

0.7063
0.6461

0.4329
0.6487

0.4004
0.6583

0.6082
0.6501

0.2339

Proportional
to Capacity

240319
0.9130
0.6359

0.9502
0.6359

0.6934
0.6369

0.3932
0.6392

0.3827
0.6487

0.5864
0.6409

0.2460

It is apparent that the best-fit with objective F2 allocation method can hold more

allocation requests than all the other allocation methods. Therefore it is considered more

cost-effective than the other strategies. In terms of utilization of both bandwidth and

capacity, the best-fit allocation algorithm outperforms the other strategies considerably.

The utilizations of capacity for the 6 disks used in the simulation are higher, on the

average and individually, when the best-fit with objective F2 strategy is used. The

utilizations of bandwidth are also higher, and the standard deviation of bandwidth (crx) is

smaller than the others. This shows that the resources of the system are used at a higher

extent when using this method, while also better balancing the workloads over the

system's disks.

40

A second, more involved study was conducted, with an HDA configuration of 12

disks. The disks specifications are given in Table 3.2. In this case, the simulation runs

until the system exhausts all of the resources necessary to meet the allocation

requirements. The results are illustrated in Table 3.4 and 3.5.

Again the best-fit with objective F2 allocation algorithm can hold more allocation

requests and is therefore more cost-effective than the other strategies. It can be observed

that when the program stops, all 12 disks have almost evenly utilized around 74% of their

storage capacity. The value of the standard deviation of capacity (ac) is very small,

suggesting that the utilization of capacity is very evenly distributed amongst the array

disks. The utilization of bandwidth is also well distributed within the disks limits, and its

values over the disks are higher than those given by the other allocation methods. The

fact that the value of the standard deviation of bandwidth (a.) is smaller than that

obtained using the other allocation methods, also suggests a better load balancing among

the disks. It is apparent that the best-fit with objective F2 allocation algorithm

outperforms all the other methods not only in terms of allocations serviced, but also in

terms of utilization of the disks resources to the maximum extent possible and in terms of

workload balancing. Table 3.4 and 3.5 show that, when the data allocation algorithm

with objective function F2 is used, the best use of the array's resources in terms of

bandwidth and capacity is achieved.

41

Table 3.4	 Simulation Results for an HDA System with 12 Disks (Bandwidth)

Placement
Strategy

Best Fit
with

objective
Fl

Best Fit
.with

objective
F2

Round-
Robin Random

Proportional
to Max xput

Proportional
to Capacity

TotalReq 40640200 41940600 31152400 30985300 31775700 31720300

Ux(0) 0.999474 0.999961 0.982288 0.989938 0.982310 0.905335

Ux(1) 0.979776 0.962989 1.000000 0.991781 0.979263 0.907640

Ux(2) 0.974622 0.970862 0.730528 0.728313 0.739521 0.689079

Ux(3) 0.419901 0.413409 0.293921 0.318238 0.317340 0.332361

Ux(4) 0.397409 0.388828 0.306830 0.325501 0.307210 0.346503

Ux(5) 0.655125 0.748192 0.453887 0.466733 0.489540 0.491078

Ux(6) 0.998912 0.953782 0.999810 0.964082 1.000000 0.950157

Ux(7) 0.985658 0.979509 0.977041 0.994290 0.993320 0.990452

Ux(8) 0.969331 0.961500 0.724710 0.736524 0.743054 0.747033

Ux(9) 0.421264 0.424882 0.311146 0.292116 0.331036 0.342688

Ux(10) 0.358549 0.464085 0.317204 0.304111 0.322835 0.349855

Ux(11) 0.626537 0.716240 0.465612 0.465040 0.467171 0.462554

a, 0.277345 0.257235 0.303347 0.299985 0.297054 0.266230

Ux(i) = Throughput Utilization for Disk i

42

Table 3.5 	 Simulation Results for an HDA System with 12 Disks (Capacity)

Placement
Strategy

Best Fit
with

objective
Fl

Best Fit
with

objective
F2

Round-
Robin

Random
Proportional
to Max xput

Proportional
to Capacity

TotalReq 40640200 41940600 31152400 30985300 31775700 31720300

Uc(0) 0.724460 0.738087 0.635890 0.633619 0.640432 0.645927

Uc(1) 0.724460 0.735816 0.633619 0.633619 0.640432 0.648198

Uc(2) 0.725985 0.737400 0.634666 0.632383 0.639232 0.636724

Uc(3) 0.725066 0.744146 0.639202 0.639202 0.648743 0.641501

Uc(4) 0.725066 0.744146 0.639202 0.639202 0.639202 0.631501

Uc(5) 0.727912 0.737068 0.636351 0.631773 0.640929 0.645992

Uc(6) 0.724460 0.735816 0.635890 0.631348 0.640432 0.648198

Uc(7) 0.724460 0.735816 0.635890 0.631348 0.640432 0.648198

Uc(8) 0.725985 0.737400 0.634666 0.632383 0.639232 0.636724

Uc(9) 0.725066 0.744146 0.639202 0.639202 0.648743 0.641501

Uc(10) 0.725066 0.744146 0.639202 0.639202 0.648743 0.641501

Uc(11) 0.727912 0.737068 0.636351 0.631773 0.640929 0.645992

ac 0.001250 0.003680 0.002023 0.003485 0.003939 0.005426

Uc(i) = Capacity Utilization for Disk i

43

To closely observe the behavior of the best-fit with objective F2 allocation

algorithm, the utilizations of both bandwidth and capacity for all the disks are plotted

over the entire simulation time frame in Figure 3.5 and Figure 3.6.

Figure 3.5 Utilization of bandwidth over time.

It is apparent from Figure 3.5 that the bandwidth utilizations of all the disks are

relatively close to each other, with some exceptions, more prevalent over time. However,

there are no fluctuations or exceptions in Figure 3.6, when the capacity utilizations are

graphed over the simulation's time. The values are always very close and indicate a great

44

workload-balancing act. The system's resources seem to be fully exploited and both

capacity and bandwidth utilized in a balanced way.

Figure 3.6 	 Utilization of capacity over time.

45

Figure 3.7 Individual response time over time.

Figure 3.7 depicts the behavior of the read response time for the individual disks

that make up the storage system. The curves follow the same trend and response time

remains steady in a wide range of time. This implies the system works in a stable manner.

CHAPTER 4

CONCLUSION

Performance studies of various data allocation methods were conducted on a

Heterogeneous Disk Array (HDA) system. An improved best-fit allocation algorithm

was proposed and tested against the data allocation methods.

The trends, motivations and previous work were reviewed before describing the

HDA architecture. Features of the new architecture include: (i) allowing multiple disks

of various make and characteristics to coexist, (ii) using capacity and bandwidth to the

maximum extent possible, (iii) allowing multiple RAID schemes to coexist on the same

device, and (iv) balancing the disk loads in terms of both bandwidth and capacity

utilization.

The data structures of the HDA architecture were described and a problem that

deals with balancing the utilization in terms of both bandwidth and capacity was

formulized. A possible solution to this problem was described in the form of an

improved best-fit scheduling algorithm, and a data allocation method was modeled based

on this solution. An implementation of the HDA architecture was used to investigate its

performance under various data allocation methods. Simulation results showed that it is

possible to balance the utilization of bandwidth and capacity at the same time, and

therefore provides efficient usage of the available resources in a heterogeneous disk

environment. The proposed best-fit data allocation algorithm outperformed the others

and is more cost-efficient.

46

APPENDIX

RELIABILITY MODELING

Given a set of n disk drives with their Mean Time To Failure (MTTF): {m i , m2, • mn},

and a target Mean Time To Data Loss (MTTDL), determine the level x, where x E {0, 1,

5, 6}, for RAID, and determine the number of disks 1 such that a RAIDx array

consisting of any subset of g disks has MTTDL target MTTDL.

The MTTDL of a disk array that can tolerate one failure is expressed as i

where N is the total number of disks in the array, G is the number of disks in a RAID

group (i.e. a set of disks over which a parity is computed), MTTFdisk is the mean time to

failure of a component disk, MTTRdisk is the mean time to repair of a component disk,

which is in fact the rebuild time of a disk array. This model assumes that disk failure rates

are identical, independent, and exponentially distributed random variables. In arrays that

maintain one or more on-line spare disks, the repair time can be very short, usually less

than an hour, and so that the MTTDL can be very long and exceeds the normal projected

disk deployment intervals (five years).

47

REFERENCES

1. Patterson, D., Gibson, G., & Katz, R.A. (1988). A case for redundant arrays of
inexpensive disks (RAID), Chicago: Proceedings of the 1988 ACM Conference on
Management of Data (SIGMOD), 109-116.

2. Holland, M. (1994). On-line Data Reconstruction in Redundant Disk Arrays.
Carnegie Mellon University: Technical report cmu-cs-94-164.

3. Hennessy, J.L., Patterson, D.A., & Goldberg, D. (2003). Computer Architecture: A
Quantitative Approach (3 rd ed.). Morgan-Kauffman Publishers.

4. American National Standard for Information Systems—Small Computer System
Interface (SCSI), (1986). ANSI X3.132-1986, New York.

5. American National Standard for Information Systems—High Performance Parallel
Interface—Mechanical, Electrical, and Signalling Protocol Specification. (1991).
ANSI X3.1983-1991, New York.

6. Gibson, G.A. (1992). Redundant Disk Arrays: Reliable, Parallel Secondary Storage.
MIT Press. Boston.

7. Merchant, A. Yu, P. (1993) Performance Analysis of a Dual Striping_ Strategy for
Replicated Disk Arrays. San Diego: Proceedings of the Second International
Conference on Parallel and Distributed Information Systems, 148-157.

8. Peterson, W. Weldon, E. (1972) Error-Correcting Codes. MIT Press. Boston.

9. Lee, E. Katz, R. (1991). Performance consequences of parity placement in disk array.
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, 190-199.

10. Muntz, R.R. Lui, J.C.S. (1990). Performance analysis of disk arrays under failure.
Brisbane, Australia: Proceedings of the 16th VLDB Conference, 162-173.

11. Holland, M. Gibson, G.A. & Siewiorek, D.P. (1994). Architectures and algorithms
for on-line failure recovery in redundant disk arrays. Journal of Distributed and
Parallel Databases, 2(3), 295-335.

12. Allen, N. (2001). Don't waste your storage dollars: What you need to know.
Research note COM-13-1217, Gartner Group.

13. Paquet, R. Nicolett, M. (2001). The cost of storage management: A sanity check.
Research note DF-14-6838, Gartner Group.

48

14. Han, C. (2004). Studies of Disk Arrays Tolerating Two Disk Failures and a
Proposal for a Heterogeneous Disk Array. New Jersey Institute of Technology
Ph.D. Dissertation.

15. Wolf, J. (1989). The placement optimization program: a practical solution to the
disk file assignment problem. Berekely, CA: Proceedings of the 1989 ACM
SIGMETRICS International Conference, 1-10.

16. Scheuermann, P. Weikum, G. & Zabback, P. (1994). Disk cooling in parallel disk
systems. IEEE Data Engineering Bulletin, 17(3), 29-40.

17. Scheuermann, P. Weikum, G. & Zabback, P. (1998). Data partitioning and load
balancing in parallel disk systems. VLDB Journal, 7(1), 48-66.

18. Lavenberg, S.S. (editor). (1983). Computer Performance Modeling Handbook.
Academic Press.

49

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction

	Chapter 2: Heterogeneous Disk Array Architecture: Structure And Design

	Chapter 3: Data Allocation Methods In Heterogeneous Disk Arrays
	Chapter 4: Conclusion

	Appendix: Reliability Modeling

	References

	List of Tables

	List of Figures (1 of 2)
	List of Figures (2 of 2)

