

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

A CO-PROCESSOR DESIGN TO SUPPORT MPI PRIMITIVES IN

CONFIGURABLE MULTIPROCESSOR DESIGNS

by
Rohan Bafna

The Message-Passing Interface (MPI) is a widely used standard for inter-processor

communication in parallel computers. This standard is normally implemented in

software, thus resulting in large communication latencies. A hardware implementation

can reduce communication latencies significantly, thereby increasing the bandwidth.

However, this approach cannot be applied in practice to the very large set of functions in

MPI.

Reconfigurable computing has reached levels where entire parallel systems can be

built inside one or more FPGAs (Field-Programmable Gate Arrays). In this scheme,

specialized components must be built for inter-processor communication and the

resulting code is difficult to port to other reconfigurable platforms. In addition, direct

performance comparison with conventional parallel computers is not possible since the

latter often employ MPI. Introducing MPI primitives in reconfigurable computing creates

a framework for efficient code development involving data exchanges, independently of

the underlying hardware implementation.

This thesis presents the design and evaluation of a coprocessor that implements a

set of MPI primitives. These primitives form a universal and orthogonal set that can be

used to implement any other MPI function. A router that can be used to interconnect

many such coprocessors in order to build a multi-processor system is also designed and

implemented. The entire design is implemented in the VHDL hardware description

language, synthesized using Synplicity Synplify Pro and finally mapped onto the

Annapolis Microsystems WILDSTAR-II development board that contains two Xilinx

Virtex-II FPGAs.

A CO-PROCESSOR DESIGN TO SUPPORT MPI PRIMITIVES IN

CONFIGURABLE MULTIPROCESSOR DESIGNS

by
Rohan Bafna

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

January 2005

APPROVAL PAGE

A CO-PROCESSOR DESIGN TO SUPPORT MPI PRIMITIVES IN

CONFIGURABLE MULTIPROCESSOR DESIGNS

Rohan Bafna

Dr. Sotirios Ziavras, Thesis Advisor 	 Date
Professor of Electrical and Computer Engineering, and
Computer Science, NJIT

Dr. Alexandros Gerbessiotis, Committee Member	 Date
Associate Professor of Computer Science, NJIT

Dr. Roberto Rojas-Cessa, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Rohan Bafna

Degree:	 Master of Science

Date:	 January 2005

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2005

• Bachelor of Engineering in Electrical Engineering,
Government College of Engineering, Pune, India, 2001

Major:	 Computer Engineering

To my mother for her unconditional love,
To my father for his guidance,

To my sister and my friends for their encouragement and support,
To MANSHU.

v

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to Dr. Sotirios Ziavras, who not only

served as my research supervisor, providing valuable and countless resources, insight,

and intuition, but also constantly gave me support, encouragement, and reassurance.

Special thanks are given to Dr. Alexandros Gerbessiotis and Dr. Roberto Rojas-Cessa for

actively participating in my committee.

Many of my senior colleagues in the Computer Architecture and Parallel

Processing Research Laboratory are deserving of recognition for their support. I would

like to thank my senior colleagues Xizhen, Zafrul, Dejiang, Xiaofang for their immense

help during practical difficulties. Also, many thanks to Brenda Walker and the entire staff

of Electrical and Computer Engineering Department at NJIT. Last, but not the least, I

would like to thank Rashmi, Saurabh and Savita — all your understanding and support saw

me through difficult times.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Overview of Message Passing Interface (MPI) 	 1

1.2 Overview of Reconfigurable Computing Systems 	 4

1.3 Overview of the WILDSTAR-II Hardware Development Board 	 7

1.3.1 WILDSTAR-II PE Modules 	 8

1.3.2 WILDSTAR-II Clocks 	 9

1.3.3 Overview of Virtex II FPGAs 	 10

1.4 Related Work 	 11

1.5 Motivation 	 12

1.6 Objective 	 12

2 REGISTRATION TABLE DESIGN 	 13

2.1 Registration/Deregistration 	 13

2.1.1 Hardware Design of the Registration Table 	 14

2.1.2 CAM32x9 	 15

2.1.3 CAM32x32 	 23

2.1.4 Registration Table 	 24

3 COPROCESSOR DESIGN 	 27

3.1 Issues for Coprocessor Design and Instruction Encoding 	 27

3.2 Packet Formats for Communication 	 33

3.3 Coprocessor Pipeline Design 	 36

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.3.1 Coprocessor Pipeline 	 36

3.3.2 Main Memory Interface Controller (MMIC) 	 37

3.3.3 Packet Controller 	 38

3.3.4 Flowgraphs 	 40

3.3.5 Barrier Implementation 	 42

4 ROUTER DESIGN 	 45

4.1 Input VOQ Port 	 46

4.2 Crossbar Design 	 49

4.2.1 Input Domain 	 51

4.2.2 Output Domain 	 52

4.2.3 Output Arbitration 	 52

4.3 Barrier 	 53

4.4 FIFO 	 54

5 IMPLEMENTATION AND RESULTS 	 56

5.1 Design Flow and Implementation 	 56

5.2 Coprocessor Test Module 	 58

5.3 One Coprocessor "loop-back" System 	 61

5.4 Two Coprocessor System 	 62

5.5 Four Coprocessor System 	 68

5.6 Eight Coprocessor System 	 69

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

6 CONCLUSION AND FUTURE WORK 	 71

6.1 Conclusion 	 71

6.2 Suggested Future Work 	 71

APPENDIX A IMPLEMENTATION CONFIGURATION 	 74

APPENDIX B PERL COMPILER 	 75

APPENDIX C PRIORITY ENCODER 	 77

REFERENCES 	 78

ix

LIST OF TABLES

Table Page

1.1 MPI Primitives 2

2.1 CAM32x9 Operations — Summary 	 21

2.2 CAM32x32 Operations — Summary 	 22

2.3 Registration Table Operations 	 26

3.1 Coprocessor Operands 	 29

3.2 Packet Type Encoding 	 34

4.1 DATA_TRANSFER_BUS Components and Functions 	 48

5.1 CTM Memory Map 	 59

5.2 TCTS Memory Map 	 63

5.3 Single Instruction Execution Time 	 64

5.4 GET, PUT Execution Time 	 64

5.5 2x2 Total Exchange Time 	 65

5.6 PUT-n MOV Count 	 67

A.1 Coprocessor Configuration 	 74

A.2 Router Configuration 	 74

C.1 Priority Encoder Truth Table 	 77

LIST OF FIGURES

Figure Page

1.1 Wildstar II/PCI block diagram [17] 	 8

1.2 WILDSTAR-II Processing Module [17] 	 9

1.3 Virtex II architecture overview [16] 	 11

2.1 CAM32x9 macro [10] 	 15

2.2 "One-hot" decoded data representation for CAM lookup 	 16

2.3 Read port of a CAM32x9 in a Block SelectRAM+ 	 17

2.4 An example of a read into the CAM32x9 	 18

2.5 Write port of the CAM32x9 in a Block SelectRAM+ [10] 	 19

2.6 CAM32x9 macro: One clock cycle erase and clock cycle write 	 20

2.7 CAM32x9 	 22

2.8 Erase and write waveforms (adapted from [10]) 	 22

2.9 CAM32x32: Four cascaded CAM32x9s (adapted from [10]) 	 23

2.10 Registration table 	 24

3.1 Basic architecture 	 28

3.2 Hardware interface between the coprocessor and the main CPU 	 28

3.3 Ideal encoding of instructions 	 30

3.4 Actual encoding of instructions 	 32

3.5 PUT-1, PUT-n and GET packet formats 	 33

3.6 Formation of PUT packet from the received GET packet 	 35

3.7 Coprocessor pipeline architecture 	 36

xi

LIST OF FIGURES
(continued)

Figure Page

3.8 Barrier implementation 	 43

3.9 System barrier tree structure 	 43

4.1 Input VOQ port architecture 	 46

4.2 DATA TRANSFER BUS 	 48

4.3 3 x 3 Crossbar (a) Unbuffered, (b) buffered [9] 	 49

4.4 Crossbar architecture 	 50

4.5 Crossbar — input domain 	 51

4.6 Crossbar — output domain 	 52

4.7 Routing element architecture 	 53

4.8 FIFO implementation space comparison 	 55

4.9 Maximum frequency of synthesis for RAM implementation 	 55

5.1 FPGA design flow [24] 	 56

5.2 Coprocessor test module 	 58

5.3 One coprocessor "loop-back" configuration 	 61

5.4 Two coprocessor test system (TCTS) 	 62

5.5 (a) Comparison of "g" for the 2x2 system and the cluster (b) "g" for 2x2
system 	 66

5.6 Four coprocessor system 	 68

5.7 (a) Comparison of "g" for the 4x4 system and the cluster (b) "g" for 4x4
system 	

68

xii

LIST OF FIGURES
(continued)

Figure Page

5.8 Comparison of "g" for the 2x2 and 4x4 system 	

5.9 N-coprocessor system 	 69

5.10 Eight processor system built using two-level router approach 	 70

6.1 Two Processor System 	 72

6.2 Four Processor System 	 72

6.3 Eight processor system 	 73

CHAPTER 1

INTRODUCTION

1.1 Overview of Message Passing Interface (MPI)

The Message-Passing Interface (MPI) is a widely used standard for inter-processor

communication in parallel computers. LAM MPI, MPICH and WMPI are examples of a

few libraries based on the MPI standard. These libraries are normally implemented in

software, thus resulting in large communication latencies for inter-processor

communications. A hardware implementation can reduce communication latencies

significantly, thereby increasing the bandwidth. However, this approach cannot be

applied in practice to the very large set of functions in MN.

Gerbessiotis and Lee [1] make a strong case for remote memory access (RMA) as

an effective way to program a parallel computer. The advantage of using RMA is code

cleanliness, reduced programmer confusion and overload and increased code efficiency

because two-sided communication is much more tedious than one-sided communication.

In addition, the programmer does not need to choose the best way for inter processor

communication as there is only one method to do so. Moreover, a communication library

implementer (in software or hardware) can more easily provide an efficient

implementation of such a method, rather than optimize many apparently equivalent ones.

Table 1.1 shows the primitives required for this framework along with their MPI-2

equivalent functions.

1

2

Table 1.1 MPI Primitives

LI Function Short Description MPI-2
Equivalent

LIBEGIN
(nprocs)

Initiate an SPMD program on nprocs
processors MPI—

LIEND () Terminate all nprocs programs MPI_ Finalize

LIABORT() Abort MPI Abort

LINPROCS() How many processors? MPI Comm Size_ 	 _

LIPID() Processor id of issuing processor MPI Comm rank_ 	 _

LIPUT(dpid,
srcadd, desadd,
off, len)

Processor pid sends the contents of its
memory starting at address srcaddr of
size len bytes to processor's dpid 's
memory starting at address desaddr

MPI_PUT(srcaddr,
len, MPI_CHAR,
dpid, off, len,
MPI_CHAR, win);

LIGET(dpid,
srcadd, desadd,
off, len)

Processor pid gets the contents of dpid 's
memory starting at address srcaddr of
size len bytes to its own memory starting
at address desaddr

Similar to PUT

LIREGISTER
(desadd) Register desaddr as a global variable MPI Win create

(—) 	
—

LIDEREGIST
ER (desadd) Opposite of Register ---

LIBARRIER () Blocks the calling process until all group
members have called the routine MPI_Barrier(MPI_COMM_WORLD)

The prefix LI indicates "library independent". LIBEGIN(nprocs), LIENDO and

LIABORT() are the functions used to start, end and abort a SPMD program.

LINPROCS() returns the number of processors in the present SPMD run. Each processor

in the system has an identification number and LIPID() returns that number.

LIPUT() and LIGET() are the two RMA functions used for data transfer.

LIPUT(dpid, srcaddr, desaddr, off, len) is used by a given processor spid to send len

words of data to the processor dpid. The data is stored in location srcaddr in spid, while it

3

is to be written to the location at off offset starting from address desaddr. Symmetric to

the LIPUT () is an LIGET() operation. LIREGISTER () and LIDEREGISTER () are used

for registration/ deregistration and have been dealt with in detail in chapter 2.

LIBARRIER () is used for synchronization operation and it stalls the issuing processor

until all processors in the system have also executed their LIBARRIER () instruction.

Hence forth the prefix LI will be dropped and all functions will be referred without this

prefix (Eg: LIPUT will be referred simply as PUT).

4

1.2 Overview of Reconfigurable Computing Systems

Field-Programmable Gate-Arrays (FPGAs) have been used in systems spanning a broad

range of applications ever since their introduction in 1985 [14]. Most of the systems use

FPGAs as a glue logic providing the advantages of high integration levels without the

expense and risk of custom ASIC devices. However, as FPGAs have increased in capacity,

their use as in-system configurable computing elements has received considerable attention.

The use of FPGAs as reconfigurable computing elements is poised to expand rapidly in the

commercial market, where FPGA—based parallel processors will compete with parallel

computers and even some supercomputers in computationally intensive applications. Many

research projects were done over the past few years in developing these FPGA-based high-

performance machines. Reconfigurable FPGA technology holds the potential of reshaping

the future of computing by providing the capability to dynamically alter hardware resources

to optimally serve immediate computational needs [13].

The FPGA-based reconfigurable systems can be used as specialized co-processors,

processor-attached functional units, attached message routers in parallel machines, and

specialized systems for parallel processing. This was made possible with the advent of multi-

million gate FPGAs. In the past decade, FPGA-based configurable computing machines have

acquired significant attention for improving the performance of algorithms in several fields,

such as DSP, data communications, genetics, image processing, pattern recognition, etc.

FPGA-based co-processors are implemented as attached co-processors dedicated to off-

loading computationally intensive tasks from host processors in PCs and workstations.

Reconfigurable co-processors are viable platforms for a wide-range of computationally-

intensive applications. The FPGA-based configurable computing systems have garnered

support from the scientific and academic communities. Many research projects have

demonstrated the viability of configurable computing systems that can deliver the

performance of supercomputers for specific applications. Most of the FPGA—based parallel

machines currently reside in multi-FPGA systems interconnected via a specific network [15].

Some of the configurable computing systems are:

1. The Ganglion Project at the IBM Almaden Research Centre used XC3090 and
XC3042 FPGA devices to implement a feed-forward, fully interconnected neural
network on a single VME board.

2. DEC's Paris Research Lab has designed and implemented four generations of
FPGA-based configurable co-processors called Programmable Active Memories
(PAMs).

3. SPLASH-1 includes a 32-stage linear-logic array with a VME-interface to a SUN
workstation. Each stage consists of an XC3090 FPGA and a 128Kbyte static
memory buffer. SPLASH-1 outperformed Cray-2 by a factor of 325 in specific
applications and a custom built NMOS device by a factor of 45. SPLASH-2 uses 17
XC4010 FPGA devices arranged in a linear array and also interconnected via a
16x16 crossbar.

4. PRISM-1 from Brown University coupled XC3090 with the Motorola M68010
microprocessor and PRISM-11 coupled XC4010 FPGA devices as co-processors to
an AMD29050 RISC processor.

Advances in VLSI technology not only brought about multi-million gate FPGAs, but

also facilitated the integration of numerous functions onto a single FPGA chip. Peripherals

formerly attached to the FPGA at the board level now can be embedded into the same chip

with the configurable logic. According to Xilinx predictions, the count of FPGA system gates

will exceed 50 million and FPGA chips will operate at more than 500 MHz [16].Thus, the

availability of multi-million system gates in FPGAs introduced a new design paradigm,

System-On-a-Chip (SOC), with which entire systems can be implemented on a single FPGA

chip without the need for expensive non-recurring engineering charges or costly software

tools.

The FPGAs have provided an alternative method to computing by supporting the

fine-tuning of hardware to match software requirements. The fact that the number of system

6

gates in FPGAs has been increasing rapidly in recent years encourages the development of

large—scale application-specific custom computing machines on FPGAs for better hardware

performance. While these FPGA-based Custom Computing Machines (CCMs) may not

challenge the performance of microprocessors for all applications, for specific applications an

FPGA-based system can offer extremely high performance.

7

1.3 Overview of the WILDSTAR-II Hardware Development Board

The Annapolis Micro Systems high performance WILDSTAR-II board combines the

high density of Xilinx Virtex-II FPGAs with very high memory and I/O bandwidth

capacities. The WILDSTAR-II board supports both VHDL design flow tools and the

CoreFire Design Suite.

• The VHDL flow consists of four steps: 1) creation of VHDL design using supplied
VHDL model; 2) simulation using the ModelTech application; 3) synthesis using
Synplicity, and 4) place-and-routing using Xilinx tools.

• The CoreFire design flow involves two steps: creating a design using the CoreFire
Application Builder, and then place-and-routing using Xilinx FPGA design tools.

A host computer can communicate with the WILDSTAR-II /PCI board via the PCI

bus interface, which in turn communicates with the board's PCI controller. The board

contains two Xilinx XC2V6000 FPGAs with 128 MB of SDRAM (distributed in 2 banks,

giving 1.6 GBytes/sec per board) and 12 MB of DDR II SRAM (distributed in 12 banks,

giving approximately 11 GBytes/sec per board) as shown in Figure 1.1. Each FPGA is a

complete computing system and is called a processing element (PE). The WILDSTAR-II

/PCI controller has access to the PEs using the Local Address Data (LAD) bus. Thus, the

host also has direct register access and communication with PEs over the LAD bus. PEO

and PE1 are pin- and bit file-compatible with each other. The PEs are connected by dual

166-pin differential data buses, providing double the data throughput as a single bus.

8

Figure 1.1 Wildstar II/PCI block diagram [17].

1.3.1 WILDSTAR-II PE Modules

Each processing element in the WILDSTAR-II architecture, shown in Figure 1.2, consists

of the following:

• One Xilinx Virtex-II XC2V6000 FF1517 — 5C FPGA chip.

• Six independent DDR2 SRAM ports, 960 MBytes/sec bandwidth per port.

• One Bulk DDR DRAM port, 800 MBytes/sec bandwidth.

• Three I/O data buses with dedicated Transmit (Tx) and Receive (Rx) clocks.

• 32-bit LAD bus.

• Flash storage of multiple FPGA images.

• Three global and three local clocks, three user LEDs.

9

Figure 1.2 WILDSTAR-II Processing Module [17].

1.3.2 WILDSTAR-II Clocks

The WILDSTARTM-II board has two types of clocks: the global board clocks MCLK,

PCLK, and ICLK; and local clocks for each PE, consisting of ACLK, BCLK, and CCLK.

MCLK and PCLK are differential, while ICLK is fixed and single-ended. PE local clocks

are also single-ended and individually configurable. Both, MCLK and PCLK are

differential, asynchronous to each other and configurable through the WILDSTARTm-II

host software. ICLK is the Local Address Data Bus (LAD Bus) clock. It is fixed at 132

MHz and single-ended. The PE uses this clock to interface to the PCI Controller for host

access via the LAD bus.

10

1.3.3 Overview of Virtex II FPGAs

The Virtex-II devices are user-programmable gate arrays with various configurable

elements [16]. As shown in Figure 1.3, the programmable device is comprised of

input/output blocks (IOBs) and internal configurable logic blocks (CLBs). The internal

configurable logic includes four major elements organized in a regular array.

• Configurable Logic Blocks (CLBs) provide functional elements for combinatorial and
synchronous logic, including basic storage elements. BUFTs (3-state buffers)
associated with each CLB element drive dedicated segmentable horizontal routing
resources.

• Block SelectRAM memory modules provide large 18 Kbit storage elements of true
dual-port RAM. Each port is totally synchronous, independent, programmable from
16K x 1 bit to 512 x 36 bits (in various depth and width configurations), offering
three "read-during-write" modes.

• Multiplier blocks are 18-bit x 18-bit dedicated multipliers.

• DCM (Digital Clock Manager) blocks provide self-calibrating, fully digital solutions
for clock distribution delay compensation, clock multiplication and division, coarse-
and fine-grained clock phase shifting. The DCM also provides 90-, 180-, and 270-
degree phase-shifted versions of its output clocks.

A new generation of programmable routing resources called Active Interconnect

Technology interconnects all of these elements. The general routing matrix (GRM) is an

array of routing switches. Each programmable element is tied to a switch matrix,

allowing multiple connections to the general routing matrix. The overall programmable

interconnection is hierarchical and designed to support high-speed designs. All

programmable elements, including the routing resources, are controlled by values stored

in static memory cells. These values are loaded in the memory cells during configuration

and can be reloaded to change the functions of the programmable elements.

11

Figure 1.3 Virtex II architecture overview [16].

1.4 Related Work

An efficient MPI-2 port on a the Clint networking prototype architecture which provides

two physically separated channels for large packets at high bandwidth and for small

packets with low forwarding latency is described in [23]. Other than this, our approach of

direct implementation of MPI primitives in hardware is a new approach.

12

1.5 Motivation

An implementation of inter processor communication in direct hardware can reduce the

communication latencies significantly, thereby increasing the bandwidth. However, this

approach cannot be applied in practice to the very large set of functions in MPI.

Reconfigurable computing has reached levels where entire parallel systems can be

built inside one or more FPGAs (Field-Programmable Gate Arrays). In this scheme,

specialized components must be built for inter-processor communication and the

resulting code is difficult to port to other reconfigurable platforms. In addition, direct

performance comparison with conventional parallel computers is not possible since the

latter often employ MPI. Introducing MPI primitives in reconfigurable computing creates

a framework for efficient code development involving data exchanges, independently of

the underlying hardware implementation.

1.6 Objective

The main objective of this thesis is to design and implement a coprocessor for inter

processor communication that implements a set of MPI primitives. This thesis also aims

to implement a router which will be used to interconnect many such processor-

coprocessor systems to build a multi processor system. The target system is the

Annapolis Micro Systems WILDSTAR-II hardware development board with two Xilinx

XC2V6000 Virtex-II FPGAs.

CHAPTER 2

REGISTRATION TABLE DESIGN

2.1 Registration / Deregistration

In a multi processor system, a shared global variable may be stored in different memory

locations in different processors. But in order to make programming easy and efficient,

this abstraction should always be hidden from the user. Registration is a process by which

this relationship is established. From the user's perspective, registration means

designating a variable as global. Since this local/global scenario arises only when

communication is to be done with other processors, it suffices to handle this in the

coprocessor. Hence, each coprocessor is entrusted the task of global-local conversion and

vice versa. Deregistration is a process opposite to registration.

The global address for this design is 8 bits wide and hence this design can have 2 =

256 global addresses. The local address is 32 bits wide, allowing each main CPU to

index, 232 = 4 Gbytes of main memory. The data structure designed for this functionality

is called a Registration Table (RT). The registration operation stores a 32-bit local

address in the next vacant position in the table. The index of this 32-bit address into the

table is a global address. The deregistration operation removes the 32-bit local address

from the table.

Let's look at an example:

At the start the RT is blank.

Assume the operations Register(2000), Register(5000) and Register(10000) in this order.

13

14

Now the table contains:

So the global address of 2000 is 0, of 5000 is 1 and
of 10000 is 2.

Now if we execute Deregister (5000), then

Now if we execute Register (2345), then

2.1.1 Hardware Design of the Registration Table

The following functionality is required in the hardware implementation of RT:

1.Normal RAM lookup:
Give an 8-bit global address and get a 32-bit local address.
(This is required when a packet is received by the coprocessor.)

2. Content Addressable Memory (CAM) look up:
Give a 32-bit local address & get 8-bit global address.
(This is required when the coprocessor executes a PUT or GET and is forming a packet.)

3. Register:
Register a 32-bit address as the next available 8-bit global address.

4. Deregister
De-register the given 32-bit address.

Hence, the hardware required is a CAM/RAM structure with very efficient

write/delete operations. The basic building block for the registration table is the

CAM32x9 macro shown in Figure 2.1. The unique Virtex-II block RAM approach is

15

used to build the CAM32x9 macro [10]. This methodology is based upon the true dual-

port feature of the block SelectRAM+ memories. Ports A and B can be configured

independently, anywhere from 16K-word x 1-bit to 512-word x 32-bit. Each port has

separate clock inputs and control signals. The internal address mapping of the block

SelectRAM+ memory is the primary feature in designing a CAM in a true dual-port block

RAM. Each port accesses the same set of 16K memory locations using an addressing

scheme dependent on the port width.

2.1.2 CAM32x9

The CAM32x9 macro is shown in Figure 2.1.

Figure 2.1 CAM32x9 macro [10].

The CAM32x9 macro has the following features:

• 32-word x 9-bit organization

• Independent match (read) and write data input buses

• Decoded address output (or 32-bit "one-hot" decoded address)

• Fully synchronous match port (or read port)

• Fully synchronous write port

• Single clock cycle match (single or multi-matches)

• Single clock cycle write (and single clock cycle erase)

16

2.1.2.1 CAM32x9 Basics. The CAM32x9 macro stores the 9-bit input word as "one-

hot" decoded 512-bit word. A 9-bit word has 29 (= 512) possible values. A classic RAM

stores the 9-bit word into a 9-bit location. However, the 9-bit word can also be

represented as a 512-bit word, with all zeros and a single "one" at the nth location, where

n corresponds to the position given by the decoded 9-bit data. For example, if the data is

"000000111" (a decimal seven), the decoded 512-bit word is "0000....000010000000",

where the "one" is at the seventh location counting from zero. Thirty-two 512-bit words

store thirty-two decoded 9-bit words. As shown in Figure 2.2, an array of 32 x 512

represents 32 addresses from 0 to 31. Column 1' represents address `i' . Storing a data

value 5 in address 2 means storing "00..10000" in the column 2 as shown by the shaded

column in Figure 2.2. Searching for 5 is equivalent to reading out row 5 which is

"0000 	 100", corresponding to a match at address 2 as shown by the shaded row in

Figure 2.2 	

Figure 2.2 "One-hot" decoded data representation for CAM lookup.

17

2.1.2.2 Implementing the CAM32x9 Macro using Block SelectRAM+.

Read (or match port):

The 16K-bit RAMB16 S1 S36 with a 32-bit wide data port (port B), and a 4-bit wide

port for parity, generates 32 values simultaneously. If the 9-bit data (DATA_MATCH) to

be searched is connected to the 9-bit address (ADDRB) of port B as shown in Figure 2.3,

the 32-bit port B generates the matches concurrently. Using the fact that a particular

location corresponds to the decoded 9-bit data, the matching operation is equivalent to

searching 32 locations for specific 9-bit data at the same time. Figure 2.3 shows the

RAMB16 _ S1 _S36 port B configured as a CAM read port.

Figure 2.3 Read port of a CAM32x9 in a Block SelectRAM+.

If the word "0000 00101" was previously written at the address "00010" of the

CAM32x9, a match operation is equivalent to a read operation of a block RAM with the

9-bit word "0000 0101" placed on the address input of port B (ADDRB[8:0]). The 32-bit

port B output is "0000 0000 0000 0000 0000 0000 0000 0100" corresponding to a match

found at location 2, as shown in Figure 2.4. Port B output is the decoded CAM address

bus. If no match is found, the output is "0000 0000 0000 0000 0000 0000 0000 0000." If

one or several matches are found, each corresponding location equals "one". In this last

18

case, the same 9-bit word has been stored at different addresses, and the CAM32x9

output is multi-matches.

Figure 2.4 An example of a read into the CAM32x9.

Write Port:

The CAM write port inputs are a 9-bit data bus, an address bus (five bits to address the 32

locations), control signals, and the clock. The 5-bit address bus selects a memory location.

Writing new data into this location is equivalent to decoding the 9-bit data into a 512-bit

"one-hot" word and storing the 512-bit word. However, if the CAM32x9 macro is

initialized to zero, only one bit of the 512-bit word has to toggle. The location of the

"one" is determined by the "one-hot" decoded 9-bit value.

Taking into account that the address port of the block SelectRAM+ primitive

decodes the address bus, both operations previously described are combined into a simple

write in the block RAM. Port A configured as 16384 x 1 has a 1-bit data input and a 14-

19

bit address input. The data input is asserted to "one", and the 9-bit data plus the 5-bit

address are merged in a single 14-bit address input.

With the 9-bit data as MSB and 5-bit address as LSB, the resulting 14-bit address

input decodes the 9-bit data and selects one of the 32 memory locations simultaneously.

The clock edge stores a "one" at the corresponding location. Figure 2.5 shows the write

port of the 32 x 9 CAM in a block SelectRAM+ primitive.

Figure 2.5 Write port of the CAM32x9 in a Block SelectRAM+ [10].

Erase operation:

To erase previously stored data, the selected location must be initialized to "zero" (512-

bit word). The basic option is to write "zero" during 512 clock cycles by incrementing the

9-bit MSB of the address input from 0 to 511. The 5-bit LSB of the address input is fixed

and is used to select the CAM location.

Single cycle erase operation:

The erase operation is equivalent to the write operation with the exception that a "zero" is

stored instead of a "one". The port A address input is again a combination of the 9-bit

20

data to be erased and the 5-bit address bus. To perform the correct selection, the 9-bit

data must be stored into a separate RAM block. Figure 2.6 shows the single cycle erase

logical implementation of CAM32x9 using nine RAM32x 1 s blocks (32 x 1 RAM in nine

LUTs) to memorize the 32 words.

Figure 2.6 CAM32x9 macro: One clock cycle erase and clock cycle write.

During the erase cycle, the old datum is read from RAM_ERASE and is used to

erase the previous value in the block RAM. Also simultaneously, the new 9-bit input

word is stored in RAM_ERASE. In the next clock cycle, a normal write is performed

using this new 9-bit value into the block RAM.

The two multiplexers are controlled by the WRITE/ERASE.

• WRITE/ERASE = 0 connects the output of RAM_ERASE to the block RAM, while
WRITE/ERASE = 1 connects the input 9-bit word to the input of the block RAM.

• WRITE/ERASE = 0 connects "0" to the write input of the block RAM, while
WRITE/ERASE = 1 connects "1" to the write input of the block RAM.

Figure 2.7 shows the final implementation of the CAM32x9 macro and Figure 2.8

shows the corresponding erase and write waveforms for the CAM32x9. The multiplexer

between the DATAIN to be written and the DATA_WRITE to be erased is implicit in

21

this implementation. (See Figure 2.6). Because the first clock cycle is the erase mode, the

old word is read from the ERASE_RAM output DATA_WRITE. It becomes the 9-bit

MSB address of ADDRA input. The new data (DATA _IN) is written into the

ERASE_RAM and is reflected on the output DATA_WRITE. Writing into the

ERASE_RAM is controlled by the WRITE_RAM input. The second clock cycle is the

write cycle with the new data automatically used as the nine MSB address, as shown in

Figure 2.7. The ADDR[4:0] input is unchanged during the two clock cycles and is used

as the five LSB address. The DATA_WRITE output of ERASE_RAM is also the

DATA_OUT output of the CAM32x32 to add the normal RAM functionality, making

CAM32x9 a CAM/RAM structure.

The WRITE_ENABLE input, which directly drives the WEA 1 and ENA 1 ports of

the RAMB16 S1 S36, is used to enable writing into the CAM32x9. The

MATCH_ENABLE input, which drives the ENB 1 port of RAMB16_S1_S36, is used to

enable the read (or match) operation. The inverted MATCH_RST input, which is

connected to the RSTB 1 port of the RAMB16_S1_S36, is used to reset the MATCH

output to all O's. Table 2.1 summarizes all the operations of CAM32x9.

Table 2.1 CAM32x9 Operations - Summary

Operation Input Port Output Port Clock Cycles

RAM_lookup ADDR[4:0] DATA_OUT[8:0] 1

CAM_lookup DATA_MATCH[8:0] MATCH[31:0] 1

WRITE9 ADDR[4:0], DATA _IN[8:0] -- 2

'For functional details of this RAMB16_S1_S36 input port, see Vistex II data sheets [16].

Figure 2.7 CAM32x9

22

Figure 2.8 Erase and write waveforms (adapted from [10]).

23

2.1.3 CAM32x32

Four CAM32x9's are cascaded as shown in Figure 2.9 to obtain the 32-bit wide

CAM32x32. One input of each CAM32x9 is permanently connected to '0'. Each

CAM32x9 stores a part of the 32-bit input word. A match in this case will correspond to a

match in all four CAM32x9's and hence the MATCH output is the logical AND of the

MATCH outputs of the four CAM32x9s. A 32-to-5 encoder produces the 5-bit

MATCH_ADDR output, which corresponds to the address of the input word in the CAM.

Table 2.2 summarizes the operations of CAM32x32.

Figure 2.9 CAM32x32: Four cascaded CAM32x9s (adapted from [10]).

Table 2.2 CAM32x32 Operations - Summary

Operation Input Port Output Port Clock Cycles

RAM lookup ADDR[4:0] DATAOUT[31:0] 1

CAM_lookup DATA_MATCH[31:0] MATCH_ADDR[4:0] 1

WRITE32 ADDR[4:0], DATA_IN[31:0] -- 2

24

2.1.4 Registration Table

A 32 word deep Registration Table (RT), designed using the CAM32x32 block, is shown

in Figure 2.10.

Figure 2.10 Registration table

25

The 32-bit MEMORY STATUS _ REGISTER keeps record of whether a position is filled

or empty in the CAM/RAM. A "1" in position `i' in the MEMORY_STATUS

_REGISTER indicates the corresponding location is filled in the RT. A priority encode,

generates a next address for registration opearation (write) by encoding the status

register. The output of the priority encoder is the index of next vacant position in the RT.

The RT controller block is responsible for generating the control signals for the two

multiplexers and also the BUSY output of the CAM. The BUSY signal is asserted for one

cycle during the 2-cycle registration operation and for two cycles during the

deregistration operation. The four operations required by the RT are handled as follows:

Normal RAM lookup:

The 5-bit RT ADDR input is passed to the ADDR input of the CAM32x32 block and a

"RAM_lookup" operation is performed on CAM32x32, reading out a 32-bit word from

DATA OUT output.

CAM lookup:

The 32-bit RT DATA IN input is sent to the DATA MATCH input of the CAM32x32

block and a "CAM lookup" operation is performed, giving a 5-bit match value from the

MATCH ADDR output.

Registration:

The 32-bit RT DATA IN and the 5-bit ENCO ADDR are given as inputs to the

DATA IN and ADDR ports of the CAM32x32 block and "WRITE32" operation is

performed. Also, a "1' is written into MEMORY_STATUS_REGISTER

[ENCO_ADDR].

Refer the Appendix A for the truth table of the priority encoder

26

Deregistration:

In the first clock cycle, the 32-bit RT_DATA_IN is passed to the DATA_MATCH input

of the CAM32x32 block and a "CAM lookup" operation is performed. In the next clock

cycle, the MATCH_ADDR output of CAM32x32 is fed back to the ADDR input and a

"WRITE32" operation is performed using "00000000" as input to the DATA _IN. Also, a

"0" is written into MEMORY_STATUS_REGISTER[FEEBBACKADDR].

The various modes of operation of the RT are outlined in the Table 2.3.

Table 2.3 Registration Table Operations

Mode Operation Input Port Output Port Clock
Cycles

00 NOP -- 1

01
RAM_lookup l RT_ADDR[4:0] RT_DATA_OUT[31:0]

1
CAMlookup l RT_DATAIN[31:0] RT_MATCH_ADDR[4:0]

10 Registration RT_DATA_IN[31 : 0] -- 2

11 Deregistration RT_DATA_IN[31 :0] -- 3

RAM lookup and CAM_lookup operations can be performed simultaneously in Mode = 01

CHAPTER 3

COPROCESSOR DESIGN

The task at hand was to design a coprocessor for inter-processor communications in a

multi processor system that employs MPI. The main objective was to enable the main

CPU to off load all the communication tasks to the coprocessor and not waste valuable

CPU cycles for communication activities. A similar scheme has been used in IBM Blue

Gene/L, where the second processor in each node can be used as communications

coprocessor.

3.1 Issues for Coprocessor Design and Instruction Encoding

The coprocessor design has the following objectives:

• Portable.

• Should require no change to the main CPU design.

• Easy to Interface to any main CPU.

• The CPU should be able to transfer the communication tasks to the coprocessor in
minimum clock cycles and with minimum overhead.

Hence, the choice was made to attach the coprocessor to the CPU system bus as

shown in Figure 3.1. This way the coprocessor will also have access to the system's main

memory which will enable it to do RMA transfers for which it is intended. The main

CPU to coprocessor communication was made memory mapped as shown in Figure 3.2.

Thus, MOV instructions can be used to transfer the commands to the coprocessor. Using

MOV has the following advantages:

1. No changes are required in the main CPU design

27

28

2. No major changes are required in the compiler to compile programs utilizing the
coprocessor. The compiler only has the trivial task of mapping each instruction to
one or more MOV instructions.

3. Also operands can be effectively transferred at run time from the register file of
the main CPU to the coprocessor.

Figure 3.1 Basic architecture.

Figure 3.2 Hardware interface between the coprocessor and the main CPU.

29

Using the Chip Select (CS) and the Address bus (Al, AO) inputs, the system

designer can map the coprocessor to any desired address in the system memory map.

Once the correct chip select has been generated by decoding the address from the main

system address bus, then the coprocessor can use simple MOV commands to transfer data

to the three FIFO buffers — Inst. FIFO, Data FIFO and Data8 FIFO. These are First-In-

First-Out structures which serve as the instruction and data memory of the coprocessor.

Three such buffers have been used to ensure that all the instructions can be smoothly

pipelined in the coprocessor and this will become clear when the working of the

coprocessor pipeline is discussed. Table 3.1 lists the operands required to be sent to the

coprocessor from the main CPU for each instruction.

Table 3.1 Coprocessor Operands

Instruction Operands needed to be sent to the coprocessor
Put-n Destination address (32-bit)

Source address (32-bit)
Destination ND (8-bit)
Length of data (8-bit)
Offset (8-bit)

Put-1 Destination address (32-bit)
Data (32-bit)
Destination PID (8-bit)
Length of data (8-bit)
Offset (8-bit)

Get Destination Address (32-bit)
Source Address (32-bit)
Destination HD (8-bit)
Length of data (8-bit)
Offset (8-bit)

Register / Deregister Address (32-bit)
Set ND / NPROCS Value (8-bit)
Begin, End , Abort None

30

The Put and Get instructions require the maximum amount of data to be

transferred from the CPU to the coprocessor. One way would be to make the data bus 40

bits wide so that one can transfer 32 bits of data plus 8 bits of opcode for the coprocessor.

But any change in the main CPU is not desirable. The problem was to be able to transfer

32-bit data and an opcode simultaneously to the one of the FIFO structures in the

coprocessor. This was accomplished by using part of the address bus to carry the opcode.

Figure 3.3 Ideal encoding of instructions.

31

Figure 3.3 shows the ideal encoding of instructions for the coprocessor. The main CPU

needs to execute only two MOV instructions to transfer data for PUT and GET. One

disadvantage of such encoding is the reduction in the address space of the main CPU

since a lot of the addresses become unusable. The major disadvantage of this approach is

that all the operands should be determined at compile time, so that the compiler can put

the data in the above form for the CPU to use at run time. But this will not be the case

always as most of the time the operands for the PUTs and GETs will be decided upon at

run time and will be stored in the register file in the CPU. In this scenario, forming such

a compressed word from that data in the registers will itself cause the CPU to do too

much unnecessary work. Instead it will be much more efficient for the CPU to execute

five MOVs in case of PUT or GET to transfer the five operands, one at a time. This is the

approach that has been implemented as shown in Figure 3.4 in the actual encoding of

instructions.

32

Figure 3.4 Actual encoding of instructions.

1 The opcode enables Inst. and Data FIFO addressing, so that the opcode and corresponding 32-bit data are
written to the Inst. and Data FIFO respectively.
2The opcode 1 enables Data8 FIFO addressing, so that the 8-bit data is written to the Data8 Interface
register. After every three writes to this register, a write is performed to the Data8 FIFO writing all the
three 8-bit operands (dpid, Len and Offset) to the Data8 FIFO.

33

3.2 Packet Formats for Communication

The main task of the coprocessor is communication, so it sends and receives data for the

PUT-1, PUT-n and GET instructions. The PUT-1 and PUT-n packets contain data, while

the GET packet only contains information to enable the destination coprocessor to

execute a PUT to the sending coprocessor's main memory. The corresponding packet

formats are shown in Figure 3.5.

Figure 3.5 PUT-1, PUT-n and GET packet formats.

The data length is implicit in the PUT-1 and PUT-n packets and is equal to Packet

Length — 1. Thus the header for both the PUT instructions will be 1 word while that for

the GET instruction will be 2 words.

34

dpid: This is the ID of the destination processor. An 8-bit ID allows addressing of 2 8 =

256 distinct processors in the system.

Packet type:

Although a 2-bit field is sufficient to encode the Packet type, a 3-bit field allows addition

of more packet types.

Table 3.2 Packet Type Encoding

Packet Packet type bits
PUT-1 001
PUT-n 010
GET 011

Packet length:

This is the length of the packet in 32-bit word units. This 5-bit field allows a maximum

packet size of 31. Thus each packet can carry a data payload of 30 words (leaving aside

one word for header). This field is fixed to "2" for both the PUT-1 and GET packets.

Offset:

An 8-bit offset allows for indexing of arrays of size 256. This offset value is added to the

destination address (source address) in the PUT (GET) instructions at the receiving

processor.

Source, Destination Address:

This is a 8-bit global address. See the section on registration/deregistration for more

details about these 8-bit global addresses.

35

Handling of GET made easy:

When a coprocessor receives a GET packet, it executes a PUT into the calling

processor's memory. The packet format of GET is such that the Header of the PUT

packet can be easily derived from it as shown in Figure 3.6.

Received GET packet:

To be sent PUT packet

Figure 3.6 Formation of PUT packet from the received GET packet.

36

3.3 Coprocessor Pipeline Design

3.3.1 Coprocessor Pipeline

Figure 3.7 Coprocessor pipeline architecture.

The coprocessor is 5-stage pipeline as shown in the Figure 3.7. The five stages

are: Fetch (F), Decode (D), Data Fetch (DF), Executel (EX1) and Execute2 (EX2).

Fetch (F): The instruction to be executed is read from the Inst. FIFO. Since execution is

strictly sequential, no program counter is required.

Decode (D): A ROM decodes the instruction and generates the controls signals required

for the further three stages

37

Data Fetch (DF): Data FIFO and/or Data8 FIFO are read to get the various operands for

the 2 execute stages.

EX-1: This stage consists of the Registration Table and the Main Memory (MM)

Interface controller.

EX-2:This stage consists of the Head FIFO.

3.3.2 Main Memory Interface Controller (MMIC)

The coprocessor needs to do two types of transfers with the main memory (MM).

• For a PUT instruction or a GET packet, it needs to transfer data from the MM to the
coprocessor.

• For a PUT packet, it needs to transfer data from the coprocessor to MM.

During these transfers, the main CPU cannot access MM. Hence, it was desired that

the coprocessor use the least MM time possible. Thus, this mechanism of MMIC, Out

FIFO and In FIFO was designed. All the data that is written to the MM from coprocessor

is present in the In FIFO while all the data that is read from MM is written to Out FIFO.

Since both In FIFO and Out FIFO can be read and written to asynchronously, this

basically isolates this MM interface from the rest of the coprocessor pipeline.

All the tasks for the MMIC are stored in a FIFO in the form of a triplet

{direction of transfer, length of data, 32-bit address)

direction of transfer = 0 	 From CPU to Out FIFO
direction of transfer = 0 	 From In FIFO to CPU

The MMIC gets access to the MM via a request-grant mechanism with the main

CPU. Once it gets an access, it executes each task stored as a triplet. It continues

executing tasks until there are no tasks left or the Main CPU asks for relinquishing the

control of the MM. Even if it is in the middle of a transfer when the Main CPU asks for

38

MM control, MMIC suspends that transfer and re-starts from where it left off when it gets

access to the MM next time. This way two objectives are achieved:

1. The coprocessor does the main memory transfers in burst style and does not try to
get access to the MM on per packet or per instruction basis.

2. Also once granted access, it makes full utilization of the MM, if it has tasks
pending or else it can just relinquish control back to main CPU.

3.3.3 Packet Controller

The Packet controller handles the packets that are sent to the coprocessor from other

coprocessor's in the system. It basically needs to handle 3 types of packets: PUT-1, PUT-

n and GET.

Tasks to be done on receiving a Put packet:

1. Read the Header.
dpid Opcode Len of packet offset dest.

8 3 5 8 8

2. Send the 8 bit global address to Registration Table (RT) to get 32-bit local
address. Also calculate the Length of data transfer = Length of packet — 1

3. Add the offset to the 32-bit address got from RT.

4. Load this effective address, Length of data transfer and direction of transfer into
the MM Interface controller (MMIC).

5. Wait until MMIC signals completion of transfer. When transfer complete then
handle next packet.

Tasks to be done on receiving a Get packet:

1. Read the Header.
dpid Opcode Len of packet offset source

8 3 5 8 8

2. Send the 8 bit global source address to Registration Table (RT) to get 32-bit local
source address.

3. Add the offset to the 32-bit address got from RT.

39

4. Read the next word of Header
myid Len of data all O's dest.

8 8 8 8

5. Send the 8 bit global dest. address to Registration Table (RT) to get 32-bit local
dest. address.

6. Load the main pipeline with source addr, dest, addr, Len of data and dpid = myid
and ask it to execute a Put.

7. Wait until pipeline signals successful start of execution of Put.

8. Handle next packet.

Further improvement in the throughput can be had if the header of the incoming packets

can be stored in a separately from the data.

40

3.3.4 Flowgraphs

3.3.4.1 Flow graph for Put-1

Clock
Cycle F D DF EX1 EX2

1
Fetch
Put1 —
Part1

- - - -

2
Fetch
Put1 —
Part2

Decode
Put1 —
Part1

- - -

3 -
Decode
Put1 —
Part2

1. Read Data FIFO to get
destination address.
2. Read Data8 FIFO to
get Len, dpid & offset.

- -

4 - - Read Data FIFO to get
32-bit data

Registrations
Table Lookup

1

-

5
- - - Pass 32 bit data

to next stage
Write Put1 header to
Head FIFO

6 - - - - Write 32-bit data to
Head FIFO*

`32-bit destination address is looked up in Registration Table Lookup to get 8-bit global address
* Execution of Put-1 is complete. The packet will be transmitted when all other packets ahead of
it in the Head FIFO have been transmitted.

3.3.4.2 Flow graph for Put-n

Clock
Cycle

F D DF EX1 EX2

1
Fetch
Putn —
Part1

- - - -

2
Fetch
Putn —
Part2

Decode
Putn —
Part1

- - -

3 -
Decode
Putn —
Part2

1. Read Data FIFO to
get source address.
2. Read Data8 FIFO to
get Len, dpid & offset.

- -

4 - - Read Data FIFO to get
source address

Registrations Table
Lookup'

-

5 - - - Load MM Interface
controller2

Write Putn header
to Head FIFO*

`32-bit destination address is looked up in Registration Table Lookup to get 8-bit global address
2MM Interface controller is loaded with the 32-bit source address, Length of data and the
direction of data transfer
* Execution of Put-n is complete. When the MM Interface controller fetches the data block from
memory, then the packet will be transmitted starting with the header from the Head FIFO and
then the data part from the Out FIFO

41

3.3.4.3 Flow graph for Get

Clock
Cycle F D DF EX1 EX2

1
Fetch
Get 	 —
Partl

- - - -

2
Fetch
Get 	 —
Part2

Decode
Get —Part1 - - -

3 -

Decode
Get —
Part2

1. Read Data FIFO to
get destination address.
2. Read Data8 FIFO to
get Len, dpid & offset.

- -

4 - -

1. Read Data FIFO to
get source address
2. Read PID register to
get myid

Registrations Table
Lookup' -

5 _ - _ Registrations Table
Lookup2

Write Get header —
1 to Head FIFO

6 - - - - Write Get header —
2 to Head FIFO*

`32-bit source address is looked up in Registration Table Lookup to get 8-bit global address
232-bit destination address is looked up in Registration Table Lookup to get 8-bit global address
* Execution of Get is complete. The packet will be transmitted when all other packets ahead of it
in the Head FIFO have been transmitted.

3.3.4.4 Flow graph for Register/ Deregister

Clock
Cycle F D DF EX1

1 Fetch - - -
2 - Decode - -
3 - - Read Data FIFO to get

Address.
-

4 - - - Registrations Table
Write/Delete*

* Register/Deregister complete

42

3.3.5 Barrier Implementation

Whenever the main CPU executes a barrier, the coprocessor must complete the present

communication tasks and suspend operation till all the other processors have done the

same. In our design execution of barrier in the pipeline enables the barrier mechanism.

Implicitly it also means that all the instructions before barrier have been completed

through the pipeline. But this does not mean that those instructions have been executed

completely because of one of the following two reasons - the instructions may be waiting

in the MM interface FIFO waiting for the data to be fetched from the main memory or

they may be queued in the OUT FIFO waiting to be transmitted. Even if both these cases

are false, still there maybe packets from other coprocessor enqueued in the IN FIFO

waiting to be handled. Thus for successful barrier all these FIFOs must be empty and the

packet controller must be idle. An assumption is made here that the main CPU does not

load any execution into the coprocessor after the barrier instruction until the coprocessor

has signal successful completion of barrier. Due to this assumption, the complete

implementation of barrier is just the condition that all the FIFOs - INST. FIFO, DATA

FIFO, DATA8 FIFO, MM INTERFACE FIFO, HEAD FIFO, OUT FIFO and IN FIFO,

are empty and the packet controller is empty. The corresponding barrier implementation

is shown in Figure 3.8.

Figure 3.8 Barrier implementation.

Once the coprocessor executes barrier successfully, it asserts the

EXECUTED_ BARRIER signal and waits for the HAVE _ OTHERS DONE signal to be

asserted. This indicates that all the other coprocessors have reached their barrier and a

system wide barrier is complete. Each coprocessor now informs this to the main CPU by

making the BARRIER_DONE signal true, which is acknowledged by the CPU by the

BARRIER_DONE_ACK signal.

System Barrier

On the system level, a barrier can be implemented as a tree as shown in Figure 3.9.

44

Figure 3.9 System barrier tree structure.

In this barrier not only the coprocessors, but also the routers have to be

considered. This is because of the simple reason that packet might still be in the router,

while all the coprocessors reach their barrier's temporarily. So the barrier at the system

level must take the router also into consideration.

CHAPTER 4

ROUTER DESIGN

The router (or routing element) is required to interconnect the coprocessors together to

build a complete multi processor system. It basically consists of a packet switch using a

crossbar. Crossbars are widely used in packet switching applications because of their

non-blocking capability, simplicity and their market availability.

There are three different kinds of queuing in high performance packet switches:
• Input Queuing.
• Cross point Queuing.
• Output Queuing.
For comparison of the above three queuing disciplines, see [10, 14].

Head of Line [HOL] blocking is a common problem in Input buffered switches

[5]. HOL refers to the situation where the packet at the head of the queue is blocked since

its output is busy and this does not allow other packets to be sent to other unused outputs.

It has been shown that HOL restricts the throughput to 58.6% [6].

A simple and elegant solution to overcome this problem is to use Virtual Output

Queuing (VOQs) where a separate queue is maintained in each input for each output. A

comprehensive Design and Evaluation of the Combined Input and Crossbar Queued

(CICQ) Switch can be found in [14]. [3] proposed a Combined Input-crosspoint buffered

(CIXB-1) switch model, where the crosspoint buffer has one-cell size, with VOQs at the

inputs and simple round-robin for input and output arbitration. It showed that the

combination of input buffers and single-cell crosspoint buffers and a round-robin

arbitration scheme provides 100% throughput under uniform traffic. The implementation

45

46

here is "Combined Input-Cross point-Output Buffered" architecture as described in [2].

This architecture provides 100% throughput under under uniform and unbalanced traffic.

[22] describes a similar network router, which has a bufferless crossbar.

4.1 Input VOQ port

The basic organization of the input VOQ port is shown in Figure 4.1.

Figure 4.1 Input VOQ port architecture.

Input Memory

This is a FIFO structure which is used to buffer the incoming packets.

Header FIFO

The Header FIFO is used to store the destination address and length field of the header of

each packet. This separate storage on header enables the VOQ controller to do the routing

lookup independent of the congestion in the Input memory to VOQ path. Using the

47

header of the next packet from this FIFO, the VOQ controller can go ahead with the

lookup even if the present packet is still being transmitted to the respective VOQ FIFO.

The length field stored for each packet is used to correctly transfer those many number of

words form the Input memory to the VOQ FIFO.

VOQ controller

There two functions of the VOQ controller are —

1. To communicate with the Routing Table and get the destination address of the current
packet and

2. To control the packet transfer from the INPUT FIFO to the respective VOQ FIFO
once the routing lookup has been done.

VOQs:

There are N VOQs in each input port. Each VOQ holds the packets destined for a

particular output. VOQ (x, y) holds the packet in Input card 'x' destined for output 'y'.

Each VOQ is also a FIFO 1 structure.

Routing:

A simple RAM based routing lookup has been used although all care has been taken in

the input card design, so that any fancy routing strategy can be incorporated.

The controller and the RT access controller have an asynchronous request-grant interface.

The RT access controller and Routing Table are common for the entire line card in one

routing element.

Arbitration:

Round robin arbitration is used to select a non-empty VOQ to send a packet to the cross

point. An eligible VOQ is one which is non-empty and for which the corresponding cross

48

point buffer is not full. The status of the cross point buffers is determined by the feedback

mechanism from the crossbar. Other arbitrations schemes are described in [7], [8].

Aids for resource Management:

The user can configure the following parameters:
1. Size of input memory.
2. Size of each VOQ buffer.
3. Size of Output memory.

A 35-bit bus called DATA TRANSFER BUS used for all the data transfers is_	 _

shown in figure 4.2 and the components of this 35-bit bus and their functions are

described in Table 4.1. This is the transfer medium to and from the coprocessor and also

to and from the router. This bus always drives a FIFO at the receiving side. The

Data_valid indicates that the data on the bus is valid and is stored on the next rising

Clock edge. The Full signal completes the feed back loop indicating to the sender that the

receiver has run out of FIFO memory ands hence the sender should stop sending.

Figure 4.2 DATA_TRANSFER_BUS

Table 4.1 DATA_TRANSFER_BUS Components and Functions

Signal Width Direction Purpose
Data 32 Input Carries the 32-bit data.
Clock 1 Input The data is transferred at the positive clock edge.
Data_valid 1 Input Indicates if the data on the bus is valid.
Full 1 Output Fu11=0 indicates that the receiver is ready to receive data and

indicates to the sender to start sending.
Full=1 means that the receiver is not ready to receive data
and indicates to the sender to stop sending.

49

4.2 Crossbar Design

The crossbar is the most frequently used switching element topology. It offers simplicity

and non-blocking operation. However, when bufferless, it also requires a centralized

scheduler, which must simultaneously satisfy --in each cell time-- all input and all output

link constraints [9]. The cost and complexity of this scheduler increases considerably for

short cell times and for large switch sizes. Furthermore, bufferless crossbars can only be

efficiently used with fixed-size cells arriving from mutually-synchronized line cards;

when we need to switch variable-size packets, we must first segment them into fixed-size

cells. To compensate for the inefficiencies of scheduling and of packet segmentation,

internal (crossbar) speedup is used; commercial crossbars often use a speedup factor of 2

to 3. The net effect is to limit the maximum external line rate to roughly one half to one

third the peak achievable crossbar line rate.

In a bufferless crossbar, the scheduling decisions at the
input and output ports all depend on each other: each
output can only be paired to a single input and conversely
for the inputs

Small buffer memories at the crosspoints allow
distributed scheduling decisions; operation with
variable-size packets now becomes feasible

(a)	 (b)
Figure 4.3 3 x 3 Crossbar (a) Unbuffered, (b) buffered [9].

Buffered crossbars go back to a 1982 patent [12]. Buffered crossbars have the following
advantages over non-buffered ones -

50

• Avoids Segmentation and Reassembly (SAR).

• Crossbar can run at input line rate.

• Much simpler and very efficient crossbar scheduling.

• Independent Input and Output clock domains.

The only disadvantage of the buffered crossbars is that they are memory intensive - N x

N switch requires N2 cross point memories. For more information on buffered crossbar

design see [2], [4]. A Xilinx application note [13] also describes a buffered crossbar.

Figure 4.4 Crossbar architecture.

The crossbar consists of N2 cross points arranged in N rows by N columns as

shown above. Each cross point is a fully asynchronous FIFO 1 . Due to this the input and

output domains in the cross bar can run independently.

4.2.1 Input Domain

51

Figure 4.5 Crossbar — input domain.

Packet going from input i to output j is transmitted from Line card i to cross point (i, j).

Line Card i is connected to all the cross points in row i. The scheduler in the line card

selects the cross point to which the next packet is to be delivered depending on the

destination port of the packet andthe availability of space the corresponding cross point.

Before transmitting the packet, the line transmits the address of the destination cross

point. This address goes to the decoder of that row, where it enables only one cross point

and disables all others. The input VOQ port transmits the packet which gets stored in the

desired cross point. Also the status of the cross point is sent back to the input VOQ port

so that the scheduler in the input VOQ port can do correct scheduling.

4.2.2 Output Domain

52

Figure 4.6 Crossbar — output domain.

All the cross points in a column j are connected to output j. Any packet stored in a cross

point in column j is destined for output j.

4.2.3 Output Arbitration

An output scheduler selects one cross point from all the cross point belonging to the same

column which are non-empty. Round robin arbitration is used to select a non-empty cross

point to send a packet to the output.

1 See the section on FIFO for more details about the FIFO implementation

Figure 4.7 shows complete Router architecture.

Finally, [15] gives a list of literature on this topic of Input queued packet switch design.

53

Figure 4.7 Routing element architecture.

4.3 Barrier

In order to implement system wide barriers as outlined in section 3.3.5, a mechanism

must be built to indicate the presence of packets in the router. The packets in the router

can either be in one of the VOQ ports or the crossbar. If the packet is in the VOQ port it

must be in the INPUT MEMORY or one of N VOQ FIFOs. A flag ALL_FIFOs_EMPTY

indicates the condition when all these FIFOs empty. A similar flag

ALL FIFOs EMPTY, which is output by the crossbar indicates that no packet is

enqueued in the crossbar. Finally a simple AND of all these signals generate the

ROUTER BARRIER signal which is used for system level implementation of barrier.

54

4.4 FIFO

FIFO stands for First-In-First-Out structure. It is analogous to the "queue" data type in

higher level languages. An asynchronous FIFO refers to a FIFO design where data values

are written to a FIFO buffer from one clock domain and the data values are read from the

same FIFO buffer from another clock domain, where the two clock domains are

asynchronous to each other [11]. All the FIFOs used in this design are asynchronous and

the term FIFO refers to asynchronous FIFO throughout.

Also each FIFO is fully user configurable in terms of the following parameters:
1. FIFO Size.
2. Data Width.
3. Choice of Implementation (distributed or Block Select RAM).

Implementation:

The various FIFOs used in this entire design have been implemented (synthesized) in 2

ways depending on the size. FIFOs can be implemented in two styles in Virtex II

hardware blocks - using the distributed dual port RAM feature or using true dual port

block SelectRAM+ feature. Figure 3.5 shows the comparison of the space required for

both the styles for FIFO of width 32 bits. In the case of BRAMs, each of FIFO also

requires one block RAM. Figure 3.6 shows the maximum frequency of write (wclk) and

read (rclk) clocks for each synthesis. FIFOs > 128 words deep use more than 1000 LUTs

which is very high, and also their read clock frequency drops sharply below 150 MHz.

Using BRAM for FIFOs < 128 wastes resources since the same BRAM having a capacity

of 512 is partially used and the only variation is the small increasein LUTs used to

implement the read and write counters. Therefore, FIFOs less than 128 words deep are

implemented using the distributed dual port RAM feature and while those equal to or

55

greater than 128 wrods deep are implemented using true dual port block SelectRAM+

feature.

Figure 4.8 FIFO implementation space comparison.

Figure 4.9 Maximum frequency of synthesis for RAM implementation.

CHAPTER 5

IMPLEMENTATION AND RESULTS

5.1 Design Flow and Implementation

The coprocessor is designed using the VHDL hardware description language. Also, the

design of the router and the glue logic to interface the LAD bus is done in VHDL. During

this design, different tools at various levels of integration are used. We have followed the

standard Xilinx design flow in generating the complete system. Figure 5.1 shows the

basic steps in the Xilinx standard design flow.

Figure 5.1 FPGA design flow [24].

56

57

The following are the steps followed in the FPGA design flow:

1. The design of all modules required by the coprocessor and the router design is
done using a synthesizable subset of the VHDL language. The coding and
compilation are done using the Mentor Graphics Modelsim simulator.

2. The functional simulation is performed using the Modelsim simulator. Many test
benches are developed to test the coprocessor design using simulation. All the
instructions for the coprocessor are tested using test benches. The correct and
complete routing of packets by the router is tested by test benches under various
load conditions.

3. These VHDL files are given as input to the Synplify Pro synthesis tool. During
synthesis the behavioral description in the HDL file is translated into a structural
netlist and the design is optimized for the Xilinx device XC2V6000. This
generates a netlist in the EDIF (Electronic Design Interchange Format) and
VHDL formats.

4. The output VHDL file from the synthesis tool is used to verify the functionality
by doing post synthesis simulation using the Modelsim simulator.

5. The netlist EDIF file is given to the implementation tools of the Xilinx ISE (6.3i).
This step consists of translation, mapping, placing and routing, and bit stream
generation. The design implementation begins with the mapping or fitting of the
logical design file to a specific device, and is complete when the physical design
is completely routed and a bitstream is generated. Timing and static simulations
are done to verify the functionality. This tool generates an X86 file which is used
to program the FPGA.

6. Then a program in the C language is used. In this program different standard API
functions available by Annapolis Microsystems are used for communication
between the host system and the board. During execution of this program the host
CPU programs the FPGA using available X86 format file, writes the program data
to the coprocessor(s) in the system, resets the whole board and after finite given
delay, reads the results back. These results are compared with the required for
correct functionality of the whole system.

All these steps are followed in a general design methodology to program the FPGA.

A small change in VHDL for correct execution leads to again start the design cycle from

scratch. This is done till we get the correct results.

58

5.2 Coprocessor Test Module

The coprocessor test module was designed to interface the coprocessor to the LAD bus

on the WILDSTAR-II board and also to facilitate interconnection between many such

modules to test a multi-coprocessor configuration. A coprocessor test module connected

to the LAD bus is shown in Figure 5.2.

Figure 5.2 Coprocessor test module.

A dual port Block Select+ RAM is used as the main memory with one port

connected to the coprocessor via the coprocessor address and data (CAD) bus and the

other port connected to the host via the LAD bus. The main memory size is 512 and is

mapped to CAD bus addresses 0 to 511. The interface logic consists of two FIFOs —

address bus FIFO and data bus FIFO, each 512 words in size. These two FIFOs are used

to emulate the execution of a MOV command to transfer opcodes to the coprocessor. The

host program writes the 32-bit MOV destination address into the address bus FIFO and

59

the corresponding MOV data into the data bus FIFO. The control logic (not shown in

Figure 5.1) reads both these FIFOs simultaneously to the CAD bus and generates the

necessary write signal, thus emulating the execution of MOV. The control logic also

serves as an arbiter for the CAD bus because the CAD bus is used for two purposes —

execution of "virtual" MOVs from the interface FIFOs to the coprocessor and data

transfer between main memory and the coprocessor. A global system enable controls the

interface logic. This global system enables ensures that all the coprocessors in a system

start their program execution simultaneously, emulating an actual processor-coprocessor

node as closely as possible. The control register is used to triggers the global system

enable. A 10-bit system counter (not shown in Figure 5.1) is used for debugging and

timing analysis purposes. The address bus FIFO, the data bus FIFO, the main memory

and the system counter are memory mapped into the LAD bus memory map and the

Table 5.1 shows the corresponding memory map. Each CTM has a base address which is

generic and all the others have their addresses relative to the base address. Using this base

address relative addressing scheme, a number of such CTM modules can be connected to

the LAD bus to build a multi coprocessor system.

Table 5.1 CTM Memory Map

Module Address (hex)

Control register 0050

System counter Base_address1 + 100

Main memory Base_ address' + 200

Address bus FIFO Base address 1 + 400_

Data bus FIFO Base address 1 + 600_

1Base_address is always a multiple of 1000

60

The steps for user program execution from the host machine are:

1. Write the program* using simple Perl subroutines and compile it to the output text file.

2. Read the text file in a C program and copy the address words in an address array while
the data words into a data array.

3. Write the address array to the address bus FIFO using the WSII C-API call
Write Reg32().

4. Write the data array to the data bus FIFO using the WSII C-API call Write_Reg32().

5. Start execution

6. Wait for execution to complete.

7. Read back the results from the BRAM using WSII C-API call Read_Reg32().

Steps 1- 4 are repeated for each coprocessor in case more than one exist in the system.

61

5.3 One Coprocessor "Loop-back" System

An experimental one processor "loopback" system is shown in Figure 5.3. The "loop

back" here refers to the fact that the output of the coprocessor is connected to input of the

same coprocessor. This way any packet sent by the coprocessor is received by the same

coprocessor and executed as if it was sent by some other coprocessor. This configuration

was primarily used for debugging and to collect timing information about execution of

various instructions on the whole. In this configuration, a coprocessor test module is

configured to base address = 0000 and the output port is connected to the input port. Also,

another block RAM is connected to this port, to enable watching of the packets sent and

received by the coprocessor. The other port of BRAM is connected to the LAD bus and is

mapped to address 0x800. The system counter was configured to stop counting as soon as

the coprocessor executes a barrier.

Figure 5.3 One coprocessor "loop-back" configuration.

62

Using this configuration one can completely debug the complete coprocessor with

all its various interfaces like the coprocessor — main memory interface, the input interface

and the output interface. The frequency of operation is 50 MHz.

5.4 Two coprocessor system

Figure 5.4 Two coprocessor test system (TCTS).

Using the coprocessor test module (CTM) a two coprocessor test system (TCTS)

is built as shown in Figure 5.4. The base address of coprocessor 1 and 2 are Ox0000 and

Ox1000 respectively. Table 5.2 shows the resulting memory map of this system.

The packets being sent and received can be monitored using the Debug Memory 1 and 2.

The system frequency is 50 MHz. This system can be converted to a complete 2

processor system by replacing the interface logic by a soft CPU like Microblaze and this

will be part of the future work.

63

Table 5.2 TCTS Memory Map

Module
Address (hex)

Coprocessor 1 Coprocessor 2

Control register 0050

System counter 0100 1100

Main memory 0200 1200

Address bus FIFO 0400 1400

Data bus FIFO 0600 1600

The host C program loads the program into the Address bus FIFO and Data bus

FIFO of each CTM one by one. Then it triggers the system enable, starting the execution

of the program on both the processors simultaneously. The system counter also starts

counting at the same time and it stops when the barrier is reached, thus giving the total

time required for that run.

In this configuration many single instructions were executed to get the time

required for the completion of individual instruction. In each case, the single instruction

was executed on coprocessor-1 followed by a barrier, while only a barrier was executed

on coprocessor-2. Table 5.3 shows the time for execution in number of clock cycles to

barrier. Note that these are the number of clock cycles from the time the first word of an

instruction is written into the coprocessor.

64

Table 5.3 Single Instruction Execution Time

Instruction
Number of clock
cycles to barrier

Time to barrier
at 50 MHz

Barrier 8 0.16 ps
Get-8' 52 1.04 ps
Registration 10 0.2 ps
Deregistration 11 0.22 ps

Put-8 38 0.76 ps

IGet-8 and Put-8 refers to transfer of 8 words of data.

Table 5.4 GET, PUT Execution Time

PUT-n GET-n

n
Number of clock
cycles to barrier

Number of clock
cycles to barrier

n=1 31 44
n=2 32 46
n=4 34 48
n=8 38 52
n=16 46 60
n=302 59 73

2The maximum data that can be sent in one packet is 30 words.

The time of execution of GET and PUT requires a little more thought. Since these

instructions work between two processors, this is the total time required for the execution

on both the processors. Table 5.4 shows that GETs are much more expensive than PUTs.

Time for PUT = Time for PUT packet formation in coprocessor 1 + communication time
+ time for Put packet handling by processor 2.

Time for GET = Time for GET packet formation by processor 1 + communication time
+ time for GET packet handling and the execution of PUT by coprocessor 2 +
communication time + Time for PUT packet handling by processor 1.

Thus, even if we make the communication time = 0, the overhead for GET is

much more than that for PUT. This is inherent in the nature of the 2-way GET operation

as compared to a 1-way PUT operation.

65

Total exchange

In this test pattern, each coprocessor sends "h" words of data to each other coprocessor

including it. The total time required for this pattern to realize is measured. From this an

estimate of the effective communication bandwidth is made. The total exchange is

realized by a series of PUT-n instructions followed by a barrier at the end.

The total time required is denoted by 't'. The size of the data 'H' is chosen as a multiple

of 2 and total exchanges upto 1024 words of data are performed. The parameter `g' is

then calculated as: g = t/(2*H). This gives the time required to transfer one 32 bit word.

The reciprocal of g then gives the effective bandwidth of the system for such

communication. Table 5.5 shows the result of this experiment.

Table 5.5 2x2 Total Exchange Time

H
Time for total exchange g

(ps/32-bits)in clock cycles in tis

1 53 1.06 0.53

2 54 1.08 0.27

4 55 1.1 0.1375

8 60 1.2 0.075

16 76 1.52 0.0475

32 121 2.42 0.037813

64 198 3.96 0.030938

128 372 7.44 0.029063

256 701 14.02 0.027383

512 1396 27.92 0.027266

1024 2771 55.42 0.027061

66

The same total exchange is also run on a PC Cluster with configuration — 9 dual

processor nodes (each node is 2 AMD Athlon processors) , 1.2 GHz, 64K Ll cache &

256K L2 cache Athlon, 1 GB per node, 1 Gb/s Ethernet switch). The total exchanges

were run on 2 nodes, utilizing only one CPU in each node. The code for the total

exchange was that provided by Gerbessiotis and Lee [1] on their website. The code is run

under LAMMPI. Figure 5.5 shows the comparison of the parameter 'g' for the cluster

with that our 2-coprocessor system (2x2).

Figure 5.5 (a) Comparison of "g" for the 2x2 system and the cluster (b) "g" for 2x2
system. '

I Plotted separately to give details of magnitude of "g" in 2x2 case which is not clear in (a).

67

Other Observations:

For each Put-n instruction, the main CPU executes 5 MOV instructions. In other words,

the main CPU has to do 5 MOV operations to transfer 30 words of data. Table 5.6 shows

the number of packets and the corresponding number of MOVs required for different data

sizes. In order to transfer 1 kB of data, the main CPU executes 175 MOV instructions

which are redundant. Hence, this suggests the addition of an instruction like PUT-1000,

(and a symmetric GET-1000) which tells the coprocessor to transfer data in multiples of 1

kB. The coprocessor may segment this request into smaller number of packets.

Table 5.6 PUT-n MOV Count

Size of Data Number of packets
or Put-n instructions

Number
of MOVs

8, 16 1 5
32 2 10
64 3 15
128 5 25
256 9 45
512 18 90
1024 35 175

68

5.5 Four Coprocessor System

Four coprocessor test modules (CTM) are interconnected using a 4x4 router to build a 4-

coprocessor system as shown in Figure 5.6. Refer Appendix A for the configuration of

the CTM and the router. The same total exchange is run in this case on this system and

the comparison of a similar run on the cluster is shown in Figure 5.7.

Figure 5.6 Four coprocessor system.

69

Figure 5.7 (a) Comparison of "g" for the 4x4 system and the cluster (b) "g" for 4x4
system.
I Plotted separately to give details of magnitude of "g" in 4x4 case which is not clear in (a).

Figure 5.8 Comparison of "g" for the 2x2 and 4x4 system.

Figure 5.8 shows the comparison of the total exchange time for the 2x2 and 4x4

system. The time for 4x4 is greater than that for 2x2 due to the added communication

latency due to the router.

5.6 Eight Coprocessor System

70

Figure 5.9 N-coprocessor system.

A generic N-coprocessor system is shown in Figure 5.9. Theoretically, such a

system can be built for any N using the coprocessor and router. Any such implementation

will always be constrained by the logic availability in an FPGA. 4-, 5- and 6-coprocessor

systems can easily built into one Virtex 6000 FPGA. In order to build larger systems, a

different approach may be used and Figure 5.10 shows an 8-coprocessor system using

this 2-level approach.

Figure 5.10 Eight processor system built using two-level router approach.

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This thesis successfully implements an MPI based coprocessor for inter-processor

communications in a multi-processor system. It also implements a router needed to build

such a complete system. The communication latencies for MPI based one-sided

communications were reduced as compared to that in a typical cluster environment. The

next direct step would be to build and test a complete multi-processor system that

employs this coprocessor for MPI communications.

6.2 Suggested Future Work

Figures 6.1, 6.2 and 6.3 illustrate how 2-, 4- and 8-processor MIMD machines could be

built using the coprocessor and the router. A soft core processor like Microblaze could be

used as the main CPU. The on-chip memory of Virtex-II and the on-board memories

(SDRAM, SRAM) of the WILDSATR-II could be used as system main memories.

Various parallel applications like matrix multiplication, LUT factorization could be

implemented.

71

72

Figure 6.1 Two Processor System.

Figure 6.2 Four Processor System.

73

Figure 6.3 Eight processor system.

APPENDIX A

IMPLEMENTATION CONFIGURATION

The system implementer has full flexibility to choose the configuration of the

coprocessor and the router depending on the implementation at hand and also on the

amount of FPGA resources available. Tables A.1 and A.2 list the configuration of the

coprocessor and router used for the implementation results of this thesis.

Table A.1 Coprocessor Configuration

Module Size in 32-bit words Implementation Type
Inst. FIFO 64 Select RAM
Data FIFO 64 Select RAM
Data8 FIFO 64 Select RAM
Header FIFO 16 Select RAM
MM Interface FIFO 16 Select RAM
Input Memory 512 Block RAM
Output Memory 512 Block RAM

Table A.2 Router Configuration

Module Number in
N x N router

Size in
32-bit words

Implementation
Type

Input VOQ N2 32 Select RAM
Cross point Buffer N2 32 Select RAM
Input Memory N 512 Block RAM
Output Memory N 32 Select RAM

74

APPENDIX B

PERL COMPILER

A simple PERL compiler compiles the simple MPI based instructions to generate the

MOV instruction necessary to program the coprocessor. Each instruction is executed by a

simple PERL subroutine, which writes the address and the data for the MOV in a output

file. This output file is then used by the host C program to program the coprocessor. The

listing here gives only the subroutines and not the entire PERL program to get the output

compile file.

sub NOP
{

print FILE "01000000000000000000000000000111 0 \n";
}

sub register
{

($value) = @_;
print FILE "01000000000000000000000000000101 $value \n";

}

sub deregister
{

($value) = @_;
print FILE "01000000000000000000000000000110 $value \n";

}

75

76

APPENDIX C

PRIORITY ENCODER

Table C.1 shows the truth table of the priority encoder used by the top level CAM design.

Table C.1 Priority Encoder Truth Table

77

REFERENCES

[1] A. V. Gerbessiotis and S. Y. Lee, "Remote memory access: A case for portable,
efficient and library independent parallel programming," Technical Report CS-03-
12, CS Department, New Jersey Institute of Technology.

[2] R. Rojas-Cessa, E. Oki, and H. J. Chao, "CIXOB-k: Combined Input-Crosspoint-
Output Buffered Packet Switch," Proceedings of IEEE GLOBECOM, pp. 2654-
2660, November 2001.

[3] R. Rojas-Cessa, E. Old, Z. Jing, and H. J. Chao, "CIXB-1: Combined Input-One-Cell-
Crosspoint Buffered Switch," IEEE HPSR2001 Proc.,May 2001.

[4] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, N. Chrysos: "Variable Packet
Size Buffered Crossbar (CICQ) Switches," Proc. IEEE International Conference
on Communications (ICC 2004), Paris, France, 20-24 June 2004, vol. 2, pp. 1090-
1096. URL: http://archvlsi.ics.forth.gr/bufxbar/.

[5] M. Karol, M. Hluchyj, "Queuing in High-performance Packet switching," IEEE J.
Select. Area Commun., vol. 6, pp. 1587-1597,December 1988.

[6] M. Karol, M. Hluchyj, and S. Morgan: "Input versus Output Queueing on a Space
Division Packet Switch," IEEE Trans. Commun., vol. 35, no. 12, Dec. 1987, pp.
1347-56.

[7] N. McKeown, "Scheduling Algorithms for Input-Queued Cell Switches," Ph.D.
dissertation, Dept. Elect. Eng. Comput. Sci., Univ. California at Berkeley,
Berkeley, CA, 1995.

[8] L. Mhamdi, M. Hamdi, "Practical Scheduling Algorithms For High-Performance
Packet Switches," IEEE ICC 2003, pp. 1659-1663, vol. 3, May 2003.

[9] M. Katevenis, N. Chrysos, G. Passas, and D. Simos, "Buffered Crossbar (CICQ)
Switch Architecture," Retrieved November 2, 2004 from the World Wide Web:
http://archvlsi.ics.forth.gr/bufxbar/.

[10] J. L. Brelet and L. Gopalakrishnan, "Using Virtex-II Block RAM for High
Performance Read/Write CAMS," Xilinx Application Note XAPP260 (v1.1),
February 27, 2002.URL: http://xilinx.com/bvdocs/appnotes/xapp260.pdf.

[11] C. E. Cummings, "Simulation and Synthesis Techniques for Asynchronous FIFO
Design," SNUG 2002 (Synopsys Users Group Conference, San Jose, CA, 2002)
User Papers, March 2002, Section TB2, 2nd paper.

[12] R. Bakka and M. Dieudonne, "Switching Circuit for Digital Packet Switching
Network," United States Patent 4,314,367, February 1982.

78

79

[13] V. Singhal and R. Le, "High-Speed Buffered Crossbar Switch Design Using Virtex-
EM Devices," Xilinx Application Note XAPP240 (v1.0), March 14, 2000. URL:
http://xilinx.com/bvdocs/appnotes/xapp240.pdf.

[14] K. Yoshigoe, "Design and Evaluation of the Combined Input and Crossbar Queued
(CICQ) Switch," Ph.D. dissertation, Dept. of Comp. Sci. and Engg., University of
South Florida, August 2004.

[15] K. Christensen, "The Gigabit Ethernet Project - Literature review page #1,"
http://www.csee.usf. edu/-christen/career/litl .html. Retrieved on November 12,
2004.

[16] "Virtex-II Platform FPGAs: Complete Data Sheet," version 3.3, Xilinx, June 2004.

[17] Wildstar II hardware reference manual, revision 5.0, Annapolis Micro Systems.

[18] B. Radanovich, "An Overview of Advances in Reconfigurable Computing Systems,"
Proceedings, Conference on System Sciences, 1999.

[19] R. Hartenstein, "A Decade of Reconfigurable Computing: A Visionary Retrospective,"
IEEE Proc. Int. Conf. Exhib. Design Automation, Testing Europe, Munich, Germany,
2001, pp. 135-143.

[20] S. Hauck, G. Borriello, C. Ebeling, "Mesh Routing Topologies for Multi-FPGA
Systems," International Conference on Computer Design, pp. 170-177, 1994.

[21] X. Wang and S. Ziavras, "Parallel LU Factorization of Sparse Matrices on FPGA-Based
Configurable Computing Engines," Concurrency and Computation , 2003.

[22] T. Golota and S.G. Ziavras, "A Universal, Dynamically Adaptable and
Programmable Network Router for Parallel Computers," VLSI Design , Vol. 12,
No. 1, 2001, pp. 25-52.

[23] N. Fugier, M. Herbert, E. Lemoine, B. Tourancheau, "MPI for the Clint Gb/s
Interconnect," PVM/MPI, 2003, pp. 395-403.

[24] "ISE 6 Software Manuals", Xilinx.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction

	Chapter 2: Registration Table Design

	Chapter 3: Coprocessor Design

	Chapter 4: Router Design

	Chapter 5: Implementation And Results

	Chapter 6: Conclusion And Future Work
	Appendix A: Implementation Configuration

	Appendix B: Perl Compiler

	Appendix C: Priority Encoder

	References

	List of Tables

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

