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ABSTRACT

FLUIDIZATION OF NANOPARTICLES

by
Caroline Hijung Nam

During the past decade, nanoparticles (1-100 nm) and nanocomposites have become the

focus of many studies due to the unique properties of nanostructured materials that make

them attractive for various applications. Due to their atomic and molecular interactions,

nanoparticles and nanocomposites have unique and often favorable catalytic, mechanical,

optical, electronic and / or other properties. For instance, nanocrystalline copper is up to 5

times harder than conventional micron sized copper particles. Nanocomposites, such as a

homogenous mixture of different nanoparticles, can also exhibit improved properties.

Other examples include coating and reacting nanoparticles with a second nanostructured

phase. These processes are ideally suited to a fluidization process. However, in order to

successfully use these applications, it is necessary to understand how nanoparticles can be

fluidized.

This dissertation demonstrates that the fluidization of nanoparticles is indeed

possible and in fact, significantly improvable with the addition of external forces or

changes in certain conditions. Silica, alumina, and titania nanoparticles, whose sizes range

from 7 to 21 nm in diameter, are fluidized in a conventional gravity-driven bed, a vibrated

bed, a magnetically assisted bed, a rotating bed, and a bed under supercritical conditions.



The key parameters affecting fluidization quality are examined in each fluidized bed

system. An advanced laser and CCD camera system is used to view agglomerates as they

are being fluidized. A novel method for estimating fluidized agglomerate size from

liquid-fluidization theory and fractal analysis is shown to be in very good agreement with

experimental data. Exciting applications in mixing and filtration are also presented.
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CHAPTER 1

INTRODUCTION

Upon Neil Armstrong's return from the Moon, he described his first steps: "Yes, the

surface is fine and powdery. I can kick it up loosely with my toe. It does adhere in

fine layers, like powdered charcoal, to the sole and sides of my boots. I only go in a

small fraction of an inch, maybe an eighth of an inch, but I can see the footprints of my

boots and the treads in the fine, sandy particles (a 1969 conversation transcribed by Jones,

1995)." From these words alone, one can deduce that the Moon's sands are quite

different from the sands on the Jersey shore. The dissimilarity can be attributed to the

lack of gas on the Moon and the smaller gravitational force compared to Earth's. The

key message here that will thematically manifest itself in this dissertation is that powders

behave in different ways under different conditions. This dissertation will present the

effects of various external forces and environmental conditions on the behavior of fine,

nanosized powders during fluidization.

1.1 Nanotechnology: Motivation

Particles are ubiquitous. They are in the ground where crops grow, in rainbows, and

even in the words printed on this paper. Due to their high surface to volume ratio, they

have very useful applications such as in reactions, catalysis, dispersion, and coating.

The technology in developing particle products has only grown in importance since its

surge after World War II, when countries were rebuilding their economies.

1
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The research since the 1950's and 1960's has shown that certain particle

characteristics, such as size, are directly related to their bulk properties. Unique

properties can be expected as the size of particles is reduced to the size of molecules.

Thus, nanotechnology is predicted to be one of the most significant areas of research.

The basis of nanotechnology is that all materials can be made from atoms and

molecules to form nanoparticles, which can be made into nanostructures like coatings,

materials with very high surface areas, functional nanodevices, and other materials that

have unique properties. The challenge lies not only in the controlled and consistent

fabrication of the nanoparticles themselves, but also the subsequent building into

nanostructures as the ones described above. Another challenge arises in the handling of

the particles since the nanoscale results in poorer flow and higher cohesive forces.

When the challenges are overcome, the implications will be tremendous. A 5

nm particle has about half its atoms at the surface. So techniques that loosely bring

together such particles and thus maintain a very high surface area, for example, offer

exciting opportunities such as new methods for chemical and electrical energy storage,

sensors, tailored catalysts, and drug delivery systems (Koch, 1999). Generally,

nanostructures are expected to have new and improved magnetic, optical, mechanical,

and / or other properties.

In order to face these challenges, a deep understanding of nanoparticles must be

sought. The area that will be focused in this dissertation is that of fluidization of

nanoparticles. Fluidization is important in many powder processes in that it allows for

smooth flow of particles with ease of handling. It also allows for rapid and homogenous

mixing of solids, increased mass and heat transfer coefficients, as well as increased
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reaction rates. Understanding the behavior of fluidizing nanoparticles is a big step

forward in the field of nanotechnology.

1.2 Background and Applications of Fluidization

By definition, fluidization is simply the lifting of powders by a fluid. The magic that

occurs from this levitation is the high fluid — solid contact or as the name fluidization

implies, the fluidity of the solids. The intense fluid — solid contact leads to tremendous

advantages such as mixing of solids at practically isothermal conditions and ease of

transport of solids, and increased rates of heat and mass transfer.

Typically, a bed of powders is said to be fluidized when the pressure drop across

the bed, caused by the flow of gas or liquid, balances the weight of the bed. There are

several regimes and behaviors of a bed of powders as velocity, properties of the solid

particles, properties of the fluidizing medium, and even the design of the fluidization

system are varied.

At a low flow rate, the gas or liquid simply percolates through the empty spaces

between the particles which renders the bed "fixed" since the particles are immobile.

As the flow rate increases, the frictional force between a particle and fluid also increases.

At a certain velocity, when the drag force by the moving gas or liquid just about balances

the weight of the bed of particles less their buoyancy, the bed is classically said to be at

minimum fluidization. The corresponding velocity to a bed that is at minimum

fluidization, also known as incipient fluidization, is called the "minimum fluidization

velocity," umf. At velocities above the minimum fluidization velocity, the bed is

typically said to be fluidized.
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Liquid-solid systems are usually characterized by smooth expansion of the bed

and lack of bubbles whereas gas-solid systems are usually characterized by instabilities,

low bed expansion, and bubbling. The velocity at which bubbling begins is called the

"minimum bubbling velocity", umb. Smoothly rising beds without bubbles have been

dubbed "smoothly fluidized beds," "particulately fluidized beds," or "homogeneously

fluidized beds." Unstable, bubbling beds have been called "bubbling fluidized beds,"

"aggregative fluidized beds," or "heterogeneously fluidized beds."

The properties of the solid particles significantly affect the behavior of

fluidization. In 1973, Geldart published a classification of powders with respect to their

gas fluidization behavior, which has been used as a staple reference in most gas

fluidization papers thereafter (Geldart, 1973). His famous categorization is shown in

Figure 1.1. The chart plots density difference and mean particle size. The largest

particles, on the order of 1000 microns, are classified as group D which stands for dense.

As velocity increases, vigorous movement and spouting occur for group D particles.

Group B particles are dense particles like sand particles that are between about 150 and

1000 microns. Group B particles exhibit bubbling behavior when fluidized. Group A

particles, less dense and smaller than group B particles, are stand for aeratable which

means that they expand very smoothly without bubbling. At higher gas velocities, type

A particles will also cause bubbles to form. Group C particles, due to their small size

(usually less than 20 microns) and thus a high surface to volume ratio, are very cohesive.

The cohesive nature of the powders makes stable fluidization difficult since gas would

rather find an easy path instead of fighting though the close friendship between particles

to give them all a lift. The easier path usually shows itself in the form of channels or



Figure 1.1 Geldart's Particle Classification.
(Geldart, 1973, redrawn by Pell, 1990, pg. 4).

"ratholes." Sometimes, the bed of cohesive powders can spout, eventually forming a

stable channel, or even lift as a plug.

Nanoparticles, which will be the focus in this dissertation, are on the extreme end

of group C powders according to the Geldart classification. A bed of such particles do

indeed form plugging, channeling, spouting, and other typical, non-useful behaviors of

Geldart group C powders when exposed to a gas flow. This dissertation will be one of

the first to show that fluidization of nanoparticles is certainly possible, the idea of which

was seeded by the literature survey that will soon follow.

In addition to powder properties and velocity of the fluidizing medium, the

density and viscosity of the fluidizing medium can considerably affect the behavior of the

bed. The ordinate in Geldart's classification chart (Figure 1.1) clearly shows the role of

density of the fluidizing gas. For example, a type A powder near the border of type B

5
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powders can be pushed into the type B region if the fluidizing gas is much more dense.

In addition, density and viscosity reveal their role in some key equations associated with

fluidization, which will be discussed later in Chapter 2.

The design of the fluidization system can also appreciably affect fluidization

behavior. Typically, chambers with a diameter smaller than 1 inch can add a significant

amount of wall effects to the bed of powders. Design of the distributor is also well

known to affect the quality of fluidization. As depicted in Figure 1.2, it is important to

uniformly distribute the flow of gas or liquid through the bed of solids.

As stated previously, the fluidity of the solids during fluidization is what makes

fluidization very appealing for several applications. The knowledge of how various

parameters and properties can affect fluidization quality is all the more helpful in

developing a wide variety of useful applications, the main goal of which is to treat the

solids, whether they be mixed, transported, heated, reacted, or dried, in an efficient and

economical way.

Mixing is one application of fluidized beds since fluidization offers vigorous

circulation of solids, which can intimately mix different kinds of powders together.

Excellent heat exchange and ability to maintain isothermal conditions are advantages of

fluidized beds and have been exploited in many physical and chemical applications such

as a process to heat cool powders or a process for quenching hot reactions. Coating the

solids with another material such as a polymer is also another important application,

especially for pharmaceutical industries in their tablet coating processes. Other

applications include drying, sizing, agglomeration, synthesis and other types of reactions.

Perhaps one of the most famous applications is fluid catalytic cracking (FCC) which was
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Figure 1.2 The influence of type of gas distributor on the quality of fluidization; (1)
single orifice plate, (b) multi-orifice plate, (c) sintered plate.
(extracted from "Fluidization Engineering" by Kunii & Levenspiel, 1969.)

developed for the pressing need for aviation fuel during WWII. The FCC process took

advantage of solids circulation in fluidized beds to help produce about 16,000 m 3 / day

which was unparalleled by any other process at the time (Kunii and Levenspiel, 1969).

Since its development during WWII, the FCC process has spurred a pursuit of a better

understanding of fluidization and its use in the aforementioned applications.

1.3 Literature Survey

Until recently, combining the areas of fluidization and nanoparticles has not been

ventured much mainly due to the well-known difficulty of fluidizing such small particles.

According to Geldart et al. (1973), the type of fluidization that particles exhibit depends

on the size and the density difference between the solid particles and the fluidizing gas.
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Based on empirical observations, Geldart et al. (1973) determined that particles whose

diameter is smaller than 20 microns and density difference is smaller than 1000 kg/m 3 ,

classified as group C powders, are difficult to fluidize since they tend to be very cohesive

in a conventional gravity driven fluidized bed. Generally, these powders, as shown in

Figure 1.3, will often form cracks, channels, or even lift as a solid plug when exposed to

a fluidizing gas with low superficial gas velocity. This behavior is caused by the strong

interparticle forces present as the particle size drops below 20 microns. These

interparticle forces increase as the surface to volume ratio increase and may significantly

exceed the external mechanical forces to which they are subjected.

Through the years, however, groups of researchers (Chaouki et al., 1985,

Morooka et al., 1988, Pacek et al., 1990, Iwadate et al., 1998, Wang et al., 1998, Zhou et

al., 1999, Wang et al., 2001,) have found that once a high enough superficial gas velocity

is reached, the bed of cohesive powders is disrupted and agglomerates or loosely bound

aggregates of the fine particles form. If the primary particles are nanoparticles, the

agglomerates are fractal and nanostructured. It has been observed that these agglomerates

can be fluidized. Some studies have been conducted to study this phenomenon as well

as to estimate agglomerate sizes for cohesive powders during fluidization (Iwadate and

Horio, 1998; Zhou and Li, 1999; Zhou and Li, 2000; Castellanos et al., 2001; Matsuda et

al., 2002; Wang et al., 2002; Werth et al., 2003). In addition to conventionally fluidized

beds, there have been external forces introduced to aid in improving fluidization quality

of group C micron-sized particles such as vibration (Yoshida et al., 1965; Erdesz and

Mujumdar, 1986; Thomas et al., 1989; Thomas and Squires, 1989; Jaraiz et al., 1992;

Marring et al., 1994; Benge and Squires, 1995; Marring et al., 1995; Squires and Benge,
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1995; Tshabalala and Squires, 1996; Zhu and Li, 1996; Noda et al., 1998; Thomas et al.,

1998; Thomas and Squires, 1998; Thomas et al., 2000; Venkatesh at al., 1998; Mori et al.,

1990; Castellanos et al., 2001; Wank et al., 2001; Castellanos et al., 2002; Dutta and

Dullea, 1991; Youzhi et al., 1998; Tasirin et al., 2001; Tasirin and Anuar, 2001; Mawatari

et al., 2002; Yi et al., 2002; Mawatari et al., 2003), magnetic assistance (Rosensweig et al.,

1981; Malhotra and Muhumdar, 1987; Zhu et al., 2003; Thivel et al., 2004), acoustic

waves (Chirone et al., 1992; Xu and Zhu, 2004; Zhu et al., 2004), and rotation (Mutsers

and Rietema, 1977; Levy et al., 1978; Takahashi et al., 1984; Fan et al., 1985; Watano et

al., 1993; Tardos et al., 1998; Watano et al., 1999; Arastoopour et al., 2004; Watano et al.,

2004; Chen, 1987; Kao et al., 1987; Qian et al., 2001; Matsuda et al., 2001; Ding et al.,

2002). There have also been studies investigating the effects of temperature and

pressure on fluidizability (Mogan et al., 1969; Chitester et al., 1984; Tsutsumi et al., 1995;

Yates, 1995; Lettieri et al., 2000; Marzocchella and Salatino, 2000; Schreiber et al., 2002;

Schreiber et al., 2003; Vogt et al., 2004; Paola and Riccardo, 2004).

In the 1980's and early 1990's, several research groups tried to develop a theory

of particle collision based on the kinetic theory approach of Chapman and Cowling

(1970), Sinclair and Jackson (1989), and Ding and Gidaspow (1990). The kinetic theory

approach is based on the oscillation of particles. Without the use of empirical equations,

kinetic theory allows for the determination of, for example, the pressure and viscosity.

It determines the turbulent kinetic energy of the particles and is based on particle

collisions. There have been several modifications to this approach such as in the work

of Louge et al. (1991) who included the effects of both gas turbulence and particle

collision. Mathiesen et al. (1999) modified the theory for the solid phase and two
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different particle sizes. While kinetic theory modeling will not be used here, it is 

important to note that this type of model can be used to describe hydrodynamic properties 

such as flow conditions, fluidi zation velocity, bubbling velocity, and settling velocity. 

The following sections of the di ssertation will focus on and review the previous studies 

conducted with group C powders in the areas of conventional fluidi zed beds, fluidized 

beds with external force assistance, and fluidized beds at varying temperatures and 

pressures. 

(a 

l=05 O.l s 0.25 0 . .33]s 

( b) 

Figure 1.3 Agglomerate formation in initial stage of fluidi zation of cohesive fine 
powder beds. (a) photographs of 2-D bed, (b) snapshots ofDEM simulation. 
(lwadate et aI. , pg. 224) 

1.3.1 Studies on Conventional Fluidization of Group C Particles 

The idea that gas-fluidization of fine particles could be stable was investigated as early as 

the 1960s (Jackson, 1963; Pigford and Baron, 1965; Molerus, 1967). Experimental 

studies started to appear shortly after by groups such as Baerns (1966), Massimilla et a!. 

(1972), and Mutsers and Rietema (1977). The latter group pointed out that the cohesive 

forces between particles resulted in a mechanically strong, powder structure that helped 

lead to agglomerating fluidi zation at high enough velocities . The diameters of the 
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particles used in the aforementioned study were between 19 and 128 microns.

In 1980, Abrahamsen and Geldart used cracking catalyst of 51 microns, ballotini

glass beads of various sizes between 43 and 71 microns, and alumina particles of various

sizes between 21 to 71 microns to correlate minimum bubbling velocity to the properties

of the fluidizing gas and the size of the powders. Furthering quantitative analysis, Liss

et al. (1984) was one group to correlate pressure drop across the bed and minimum

fluidization velocity to the cohesive force between the particles. Liss et al. (1984) were

able to induce a stickiness between the particles with a sintering mechanism and

quantitatively analyze cohesion during fluidization. They concluded that higher

pressure drops can be accounted for by an additive cohesion force in a force balance

equation. This idea will later be refuted by the author in Chapter 3.

Chaouki et al. (1985), one of the first groups to use nanoparticles for fluidization,

found that nanostructured CuO/Al 203 aerogels behaved differently than the commonly

seen bubbling fluidization. The fluidized Cu/Al2O 3 aerogels were made up of a network

of linear chains of particles of the order of a few nanometers. They found that, at

superficial velocities greatly in excess of the expected minimum fluidization velocity,

large agglomerates of the primary particles were formed. These agglomerates fluidized

uniformly and expanded in a homogeneous manner. This experiment provided a means

of dispersing, and thus putting the nanostructured aerogels having a specific surface area

as large as 400 m2/g to practical use. These investigators observed that at very low gas

velocities preferential channeling occurs, but the channels are so weak that with

increasing gas velocity, the particles start forming agglomerates at the top of the bed until

the bed becomes smoothly fluidized without bubbling. This process is illustrated in
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Figure 1.4. The particles form loose stable agglomerates that look like snowflakes and

are fluidized at velocities much higher than the buoyancy condition of the primary

particles.

Figure 1.4 Descriptive hydrodynamic behavior of aerogels.
(Chaouki et al., pg 119)

On the other end of the fluidization spectrum, Morooka et al. (1988) observed

agglomerate fluidization with bubbles. They reported a steep rise in bed height when

fluidizing Ni, Si3N4 , SiC, Al 2O 3 and TiO2 particles, all of submicron size. From their

model, they found that the mean diameter of agglomerates varied from 180 to 700 µm.

The mean primary particle size varied from 20 to 500 nm.

Similarly, Pacek and Nienow (1990) fluidized ultrafine, very dense, hard metal

Geldart group C powders via self-agglomeration. As the gas velocity was increased, the

powder transformed into agglomerates. At higher gas velocities, the bed had two layers:

a bottom layer with large agglomerates (up to 2 mm in diameter), and a top layer of

smaller agglomerates, which fluidized smoothly. At even higher gas velocities, the
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entire bed was fluidized and the large agglomerates were broken up into smaller, more

stable ones. The bed, at this point, probably reached a state of equilibrium, where the

agglomerate growth rate is equal to the rate of size reduction. They also reported that

the bed behaved as if fluidizing Geldart group B powders — bubbling occurred at U mf, and

bed expansion was low.

The effects of particle shape were observed in a brief study conducted by a few

groups such as Judd and Goosen (1989). They found that both pressure fluctuations and

bubble size were generally smaller for more spherical particles than for more angled

particles that were 30 to 60 microns in diameter. The observations of pressure

fluctuations in a fluidized bed of group C powders paved a new direction of research that

focused on drag forces and cohesive forces. For example, Khan and Richardson (1990)

introduced a method to calculate drag force, pressure drop, and friction factor for a liquid

fluidized bed of particles. Despite the fact that this particular research was for liquid

fluidization, their results can be applied to gas fluidization of cohesive powders, as will

be especially shown in Chapter 2 and subsequent chapters.

Several studies were conducted throughout the 1990s on van der Waals forces and

other interparticle forces that could play a role in the stability of gas-fluidized beds.

Rietema et al. (1993), for instance, developed a model to explain the effects of various

properties such as van der Waals forces, coordination number, and porosity on the

stability of a gas fluidized bed of fine particles. Extensive modeling was also conducted

by Valverde and Castellanos' group (1998, 2001) who correlated a relationship between

tensile strength and other bulk stresses of cohesive powders to voidage and interparticle

contact forces. This group also conducted experimental work to study the regimes of



14

fluidization of fine, micron-sized powders: solid-like, fluid-like, and bubbling (Valverde

et al., 2003).

When the bed condition is brought into aggregative fluidization (or bubbling

fluidization), collision, coalescence, splitting, and attrition of the agglomerates take place

(Iwadate and Horio, 1995, 1998). However, when fluidizing certain agglomerates so

that the bed condition is brought into "agglomerate particulate fluidization", a term that

was first termed by Wang et al. (2002), what takes place is not the same. Agglomerate

particulate fluidization occurs for agglomerates having a much smaller bulk density than

those which produce agglomerate bubbling fluidization, another term coined by Wang et

al. (2002). In agglomerate particulate fluidization, interparticle forces including van der

Waals and electrostatic forces increase significantly with decreasing particle size so that

nanoparticles coalesce much more easily than micron sized particles. In addition, they

are much more difficult to separate.

Wang, Kwauk, and Li (1998) reported agglomerate bubbling fluidization behavior,

when they fluidized particles ranging from 10 nm aerogels to 18 mm alumina powder.

They observed larger agglomerates at the bottom of the bed and smaller agglomerates at

the top. This is illustrated in Figure 1.5. They also observed better fluidization and

more stable agglomerates with a decrease in both primary particle size and bulk density.

This implies that different fluidization behavior can be observed for different size and

density of primary particles.

Similar to the results found in the work or Wang et al. (1998) and Zhou et al.

(1999) found that the bed of agglomerates was fluidized with a higher zone of fluidized

bed of small agglomerates and a lower zone of a fixed bed of large agglomerates.



Figure 1.5 Macrostructure of agglomerate fluidized bed.
(Wang et al., pg.384)

Experimentally, they state that their submicron particles formed agglomerates and then

fluidize with bubbles, which makes the fluidization behavior aggregative bubbling

fluidization.

Aside from bed dimensions, the effects of the bed shape have also been

investigated. For example, Tong et al. (2004) investigated the fluidization behavior of

fine particles in a conical bed. This cleverly allows for higher superficial velocities

toward the bottom of the bed and lower superficial velocities toward the top of the bed.

From the literature, it appears that a bed of cohesive powders will typically form larger

agglomerates at the bottom of the bed, which would require higher velocities to fluidize.

However, larger velocities also lead to greater elutriation from the surface of the bed.

15
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Tong et al. (2004) were able to eliminate plug formations and achieve more uniform sizes

of agglomerates throughout the fluidized bed.

Wang et al. (2002) were one of the first to use fumed silica, similar to those that

were used for this dissertation. When fluidizing a variety of fumed SiO2 powders with

void fraction as high as 98-99% and very low bulk densities, Wang et al. (2002) found

similar results as Chaouki et al. (1985). Because their expanded beds appeared similar

to those seen in solid-liquid fluidization systems, they have coined the phenomenon

agglomerate particulate fluidization. In both studies, the agglomerates were so light and

porous that they moved easily with the gas, resulting in a high degree of mixing. Their

large size allowed for a high terminal velocity so the powders remained in the bed, which

expanded uniformly up to ten times the initial fixed bed height.

In light of the idea that the properties of the agglomerates are the significant

factors affecting fluidization behavior, it seems slightly contradictory that Wang et al.

(2002) also state that "the hydrodynamic dimension of the fluidized agglomerates can be

derived from the particulate behavior." This statement implies that the fluidization

behavior can be derived from the particulate behavior as well as the agglomerate behavior.

A comprehensive study needs to be conducted about the relationships between the

primary particles and agglomerates and between the agglomerates and fluidization

behavior. Their assertion that "the distance between [the SiO 2 powders is] enlarged by

the abundant porous 3D netlike structures and the strong cohesive forces usual between

tiny particles are effectively diminished and the packed bed does not harden" implies that

the agglomerating particulate fluidization behavior will only work for certain particles.

Subsequent studies should include finding powders that form the 3D netlike structure and
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any correlation between the properties of the primary particles. It is clear that the

surface modification of the primary particles affected some important results like bed

expansion and superficial gas velocity. For example, the hydrophobic surface-coated

silica powders exhibited higher bed expansion ratios than the hydrophilic powders.

Jung and Gidaspow (2002) also worked with fumed silica in their fluidization

experiments. They achieved fluidization of 10 nm fumed silica without large bubbles.

From their data, they were able to set up a kinetic theory to simulate the sedimentation

process and thus determine a solids stress modulus and an agglomerate size. Yu et al.

(2004) were able to fluidize carbon nanotubes and observe a pressure drop hysteresis,

which gave light to the hydrodynamics of the powder. Like Jung and Gidaspow (2002),

Yu et al. (2004) see the importance of modeling and understanding the rheology and

hydrodynamics of such ultrafine particles. It is clear from the literature thus far that a

relationship between the characteristics of the primary particles, agglomerate properties,

and macroscopic flow behavior is needed to understand fluidization behavior of ultrafine

particles. It appears that the physical properties of the agglomerates strongly affect the

behavior of fluidization.

1.3.2 Studies on the Effect of External Forces on Fluidization

Fluidizing nanoparticles using external forces is a novel idea. However, the use of

external forces for the fluidization of micron sized particles dates back to as early as 1965.

The work of Yoshida et al. (1965) is an early example that involves applying vibrations to

a distributor of a fluidized bed for particles on the order of 500 microns. While 500

micron particles are many orders of magnitude larger than the nanoparticles described in
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this dissertation, the idea of using an additional force to assist in fluidization is shared.

Figure 1.6 illustrates a set of results from the work of Yoshida et al. (1965). The most

significant result they found was that the minimum fluidization velocity was significantly

reduced with the vibratory assistance.

Figure 1.6 Effect of mechanical vibrations on the plot of superficial velocity vs.
pressure drop for sand particles (546 microns).
(Yoshida et al., 1965, pg. 876)

Erdesz and Mujumdar (1986), whose powders ranged from 150 microns to almost

3 mm in diameter, also found that vibration helped to decrease the minimum fluidization

velocity. Strangely, they also found that the pressure drop plateau decreases with the

mechanical agitation despite the constant bed weight. Malhotra and Mujumdar (1987)

continued the study by correlating flow characteristics and heat-transfer rates in an

aerated, vibrated fluidized bed. The particles used ranged from 325 microns to over 2

mm, which are much larger than Geldart group C particles. Slightly smaller particles,

40 microns to almost 1 mm in size, were used by Squires' group in several shallow bed

studies for various applications (Thomas et al., 1989; Thomas and Squires, 1989, Squires
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and Benge, 1995; Benge and Squires, 1995; Tshabalala and Squires, 1996; Thomas and

Squires, 1998; Thomas et al., 1998; Thomas et al., 2000). They identified different

states of the vibrated bed and showed that under certain conditions, there is significant

gas-to-solid contact, which is an important aspect for reactions and catalytic fluid beds.

However, the purpose of including these non-group-C studies is to show that generally,

vibration has been a very good modification to conventional fluidized beds. Vibrational

assistance has helped overcome some drawbacks that might arise such as gas bypassing

and elutriation. Vibration also appears to considerably lower the minimum fluidization

velocity.

Vibration of cohesive, fine powders did not start progressing until the early 1990s.

Mori et al. (1990) were one of the first to propose the vibro-fluidized bed to fluidize

group C particles. They observed that lower gas velocities are needed to fluidize group

C particles with vibration than without. Mori et al. (1990) introduce some applications

of this process such as drying and humidity control of powders that were commonly

thought to be very difficult to control. Dutta and Dullea (1991) also investigated the

effects of vibration on the fluidization of particles that were between 4 and 12 microns in

size. They found that not only is pressure drop slightly lower with vibration, but also

that the bed expansion is much higher and elutriation of powders is much lower than

without vibration. Some of their major results are shown in Figure 1.7.

Jaraiz et al. (1992) also made a significant contribution to the relatively new field

of vibrated beds of fine particles with their study estimating interparticle forces from

expansion and pressure drop experiments. They found that vibration helped to collapse

any plug formation and channels as well as to help expand the bed and fluidize it more
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smoothly. Their experimental results for various powders of 1.4 to 27 microns are

summarized in Figure 1.8.

Figure 1.7 Effect of external vibration on bed expansion (left) and a summary of results
from experiments with and without vibration (right).
(Dutta and Dullea, 1991, pg. 45)

Figure 1.8 Pressure drop in vibrated beds followed by vibration turned off (left) and
bed expansion of a vibrated fluidized bed followed by vibration turned off (right).
(Jaraiz et al., 1992, p. 27)
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Marring et al. (1994) fluidized 35 to 80 micron glass beads and 7 to 100 micron

potato starch in a bed with a vibrating distributor, an apparatus similar to the one used by

Yoshida et al. (1965). They were able to control the degree of cohesivity by varying

moisture content of the powders and found that the vibrational intensity needed to

successfully fluidize the powders was proportional to the degree of cohesivity. Marring

et al. (1994) found that not only did vibration help decrease the minimum fluidization

velocity, but also to reduce bed voidage and to achieve smoother fluidization. Marring

et al. (1995) soon published another study investigating the use of aeration and vibration

for discharge of potato starch from silos. This study showed an application in that with

a little aid, even cohesive powders can discharge smoothly and easily. Another

application was demonstrated in the work by Youzhi et al. (1998), who were able to

separate a binary mixture of relatively large particles in a vibrating fluidized bed. This

particular application will echo itself in the mixing section of Chapter 8 of this

dissertation.

Simulations and computer modeling work entered the scene in the late 1990s to

try to describe the phenomena that occurs during vibrated fluidization experiments.

Venkatesh at al. (1998), for example, developed computer simulations that suggested

alternating cycles of agglomeration and breakage of fluidizing agglomerates. While the

particles used in the simulation were very large, approximately 3 mm, the concept of

agglomeration and deagglomeration, illustrated in Figure 1.9, will repeat for the

fluidization of nanoparticles discussed in this dissertation.

Noda et al. (1998) conducted experiments to observe any phenomenological

changes with change in pressure for vibrated fluidized beds. Particles used were fine
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Figure 1.9 Agglomeration and deagglomeration mechanisms as proposed by Venkatesh
et al. (1998). U = particle velocity vector; Subscripts are particles or agglomerate
labels.
(Venkatesh et al., 1998, pg. 213)

Figure 1.10 Effect of vibrational intensity (F) on minimum fluidization velocity (left)
and void fraction at u mf (right) at 1 kPa and 101.3 kPa.
(Noda et al., 1998)

glass beads that were about 6 microns in diameter. As depicted in Figure 1.10, Noda et

al. (1998) found that at reduced pressures, the minimum fluidization velocity and void

fractions were less variable and more variable, respectively with increasing vibrational

intensities. They attribute this behavior to the flow patterns of the bed, which were
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observed to be more vigorous in their apparatus under reduced pressure than at

atmospheric pressure. Wank et al. (2001) also fluidized fine powders under low

pressure. They used 5-11 micron sized boron nitride particles that were found to be

lightly bonded agglomerates during fluidization. They found that as the vibrational

intensity is increased, agglomerate sizes tended to decrease as well. As a model, they

used a force balance that included additive cohesion and vibration terms to calculate

minimum fluidization velocity.

Tasirin et al. (2001) vibrofluidized 15, 25, and 35 micron sized cohesive particles;

further work was published by Tasirin and Anuar (2001). Like others, Tasirin et al.

(2001) and Tasirin and Anuar (2001) found that vibration helped to smooth fluidization as

shown in the left portion of Figure 1.11 where there is a clear difference between

experiments with vibration and those without. They also measured elutriation rates and

were able to determine that in a vibrated fluidized bed, smaller particles elutriated out of

the bed less, as shown in the right side of Figure 1.11.

Castellanos et al. (2001) also investigated the effect of vibration on the stability of

gas-fluidized beds. They concluded that the response of the fluidized bed is strongly

dependent on the average solid volume fraction. Above a certain value of a critical solid

volume fraction, the bed is in a solid-like regime where particles are static and sustained

by permanent contacts. Below the critical solid volume fraction, the bed is in a

fluid-like regime where the powders will agglomerate and are suspended in the fluidizing

medium with diffusive dynamics. In the fluid-like regime, vibration helps to expand the

bed further as well as to add either surface or bubbling instabilities at some frequencies.
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Figure 1.11 Effect of vibration on pressure drop across the bed (left) and Effect of
velocity on entrainment flux for 35 micron glutinous flour, 25 micron rice flour, and 15
micron tapioca flour.
(Tasirin et al., 2001)

The effect of particle diameter on vibrofluidization was studied by Mawatari et al.

(2002). They used glass beads with diameters ranging from 6 to 100 microns, which are

within the Geldart group C and A classifications. For group C powders, they observed a

decrease in minimum fluidization velocity with increasing vibrational intensity. For

group A powders, they observed no change in minimum fluidization velocity as a

function of vibrational intensity. Some of their key results, specifically for the 6 micron

powders, are shown in Figure 1.12. Mawatari et al. (2003) published another study that

used their experimental data to predict the minimum fluidization velocity. The Ergun

equation, a well-known correlation, agreed well with their experimental data, but only for

the group A powder experiments. A noticeable difference in experiment and theory was

noted for group C powders. The disagreement in data was attributed to the formation of

large agglomerates. They concluded that it is necessary to determine the diameter of the

agglomerate in order to predict minimum fluidization velocity for the group C powders

used in their experiments.
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Yi et al. (2002) are another group who examined vibrated fluidized beds. They

observed resonance characteristics for a vibrated bed of 40 micron particles. Changes in

bed expansion from varying frequency and velocity were recorded and Yi et al. (2002)

concluded that when gas velocity and frequency reach certain values, that the bed

expansion ratio reaches its maximum. Above these values, while the bed remains at a

constant height, the fluidization still remains smooth and stable.

The minimum fluidization velocity and its prediction were investigated by Xu and

Zhu (2004). They observed the effects of vibration as well as acoustics, which have

been described by Chirone et al. (1992) for example, on a bed of cohesive particles.

Figure 1.12 Effect of vibrational intensity on pressure drop (top) and void fraction
(bottom).
(Mawatari et al., 2002).
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Different from the approach made by Mawatari et al. (2003), Xu and Zhu (2004)

examined all available methods and theories to calculate minimum fluidization velocity

and concluded that none of the available methods were particularly useful for cohesive

particles. Such methods include the semi-empirical correlations proposed by Narsimhan

(1965), the Ergun-based correlation by Wen and Yu (1966), and the empirical correlation

by Leva (1959). These methods assume that the particles fluidize individually, not as

agglomerates, and do not consider interparticle forces. As a result, Xu and Zhu tried to

derive a universal correlation to predict minimum fluidization velocity, taking into

account size, effects of vibration, and interparticle forces that they claimed better agreed

with the available data. However, like Wank et al. (2001), Xu and Zhu (2004) used a

force balance with additive terms for vibration and interparticle forces, which seems

flawed since such terms cannot be simply added (or subtracted) to the weight of the bed.

Xu et al. (2004) further analyze these results with more experimental data.

Chirone et al. (1992) fluidized cohesive group C powders in an acoustic field of

various sound pressure levels. The fluidization behavior was observed to be bubbleless

(APF). According to their model predictions, the sound waves break up channels and

improve fluidization quality. They also found that sound waves significantly increase

bed expansion ratios. This study inspired the author of this dissertation to design a

sound assisted fluidization chamber for nanoparticles upon her return from the Ecole des

Mines d'Albi in France where the first vibration studies for nanoparticle fluidization were

conducted. The results from these initial vibration studies were very promising for other

modes of assistance to successfully fluidize nanoparticles as well. Sound assistance,

just as reasoned, enhanced nanoparticle fluidization, the results of which are published by
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Zhu et al. (2004). Although the author of this dissertation is a co-author for this article,

the results will not be discussed since the results were obtained by another student.

There are many other studies in the area of acoustics but since this type of fluidization

will not be discussed in this dissertation, these studies will not be reviewed here.

Another type of fluidization aid is magnetic assistance. There have been

different ways of incorporating magnets into a fluidized bed system. One way was

introduced by Rosensweig et al. (1981) who applied a magnetic field to a bed of

ferromagnetic particles. This process led to a very fluid-like, bubbleless, magnetically

stabilized bed. The effect of this type of magnetic assistance is depicted in Figure 1.13.

Zhu and Li (1996) added to the Rosensweig et al. (1981) studies by using group C

powders. The system was very similar to that of Rosensweig et al. (1981) with a line of

magnetic field generators along the length of the bed. Zhu and Li (1996) used 7 to 14

micron magnetic particles and measured bubble size as a function of magnetic field

Figure 1.13 Comparison of fluidized solids with flow input alone (left) and with
magnetic stabilization (right).
(Rosensweig et al., 1979).
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intensity. With increasing magnetic intensity, bubble size decreases. Fluidization

quality was said to improve due to the rearrangement of magnetic particles in chain-like

structures, which help to break bubbles, and to the improved control of agglomerate size.

Rhodes et al. (2001) conducted a similar study but the particles used were 330 to 1600

microns in diameter which are too large for the scope of this dissertation. However, an

important concept resulted from their experiments since they found that the use of

magnetic fields led to a Geldart group B to A transition. This means that a group C to A

transition should also occur, and in fact, is seen in the literature. Thivel et al. (2004) are

another group to study magnetically stabilized fluidization. They used a mixture of

magnetic particles and non-magnetic particles, from which they were able to obtain

similar effects of a system with only magnetic particles.

The literature pertaining to the type of magnetically fluidized bed that this

dissertation will describe is limited. Chapter 4 will describe the use of micron sized

magnetic particles in a bed of nanoparticles to aid in breaking large agglomerates that

form at the bottom of the bed during fluidization. It will be seen that the magnetic

particles give a similar type of excitation that vibration provides to break up interparticle

forces to allow the bed to expand and fluidize.

Instead of using the conventional gravity-driven bed or beds with the

aforementioned types of external force assistance, there have been several experimental

and theoretical studies using a rotating fluidized bed (Mutsers and Rietema, 1977; Levy

et al., 1978; Takahashi et al., 1984; Chang et al., 1985; Kao et al., 1987; Chen, 1987;

Watano et al., 1993; Tardos et al., 1998; Watano et al., 1999; Qian et al., 2001; Matsuda et

al., 2001; Qian et al., 2001; Zhu et al., 2003; Matsuda et al., 2001; Ding et al., 2002;
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Watano et aI., 2004; Arastoopour et aI., 2004). Only some key studies will be described 

here. Qian et al. (200 I) was one group that used a rotating (or centrifugal field) 

fluidized bed. The quality of fluidization was considerably different. This group 

found that under a centrifugal force, group C particles can shift to group A, and group A 

particles can shift to group B. Based on relatively simple models, Qian et al. (200 I) 

obtained the transition curves between Geldart group A and C particles and between 

Geldart group A and B particles with increasing "g" as shown in Figure 1.14. They 

experimentally confirmed that certain group C particles such as 7 micron alumina and 8 

micron glass, which cannot be fluidi zed in a conventional fluidi zed bed under low 

superficial gas velocities, can easily be fluidized smoothly and without channeling in 

rotating fluidized beds. [t can be seen in Figure 1.14, that 7 11m alumina particles and 

811m glass beads belonging to group C at I "g" shift to group A at 7 and 19 (or higher) 

values of Ug". Using a simple macroscopic model, which equates the forces on an 
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acceleration, "g." 
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individual cohesive particle in a fluidized bed, Qian et al. (2001) developed an equation,

which predicts the transition between Geldart group C, and A behavior:

where A is Hamaker's constant —10 19 J, 1 is the

diameter of the nanoparticle or length of the asperities for micron size particles, 6 = 0.4

nm, c is the void fraction of the bed, and g is the acceleration of gravity in a conventional

fluidized bed or the centrifugal acceleration in a rotating fluidized bed.

The above results using micron-sized particles in rotating fluidized beds imply

that rotating fluidized beds operating at variable "g" may be the ideal way to fluidize

nanoparticles and produce nanocomposites. In fact, with anywhere between 9 and 18.5

"g," Matsuda et al. (2001) fluidized 7 nm TiO 2 in a rotating fluidized bed. At low "g,"

large agglomerates (0.5-2 mm) were observed near the distributor of the bed, but in the

upper region of the bed smaller agglomerates were observed and these were fluidized.

This description is similar to the description of agglomerate fluidization in a conventional

gravity-driven bed for certain powders (Zhou et al., 1999).

However, at higher values of "g," Matsuda et al. (2001) noted that the

agglomerates, especially those near the distributor, became smaller, which was probably

due to the larger shearing forces. Interestingly, some bubbles were observed at low "g"

but were not observed at higher "g" indicating that the mode of fluidization shifted from

bubbling fluidization to particulate fluidization with increasing "g".

In another study, Rietema (1984) pointed out that Geldart's powder classification

is correct only when operating at normal temperatures and pressures and in the earth's

gravitational field. There are other factors that much be taken into account such as

cohesive forces, gas viscosity, the adsorption of gas on the particles, and as this section
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suggests, gravitational acceleration. Similar to Qian et al. (2001), Rietema (1984) said

that group A powders might behave like group B powders if an increased gravitational

force is used or a low-viscosity gas is used. And when a high-viscosity gas is used,

group C powders might behave like group A powders. This suggests that the

interactions between the gas molecules and particles are very important.

As seen in the above studies, the rotating fluidized bed is capable of creating an

environment where the body force exerted on the particles is many times greater than the

gravitational force. This is particularly important for fluidization of nanoparticles, in

which significant elutriation of particles can be prevented. Overall, fluidizing

nanoparticles in a bed with assistance is a novel idea. There have been several studies

using external forces for relatively large micron sized particles but none have been

recorded in literature for nanoparticles.

1.3.3 Studies on Estimating Agglomerate Size

A number of macroscopic models have been proposed to estimate the size of

agglomerates formed in bubbling fluidization and particulate fluidization of cohesive

powders (Iwadate and Horio, 1998; Zhou and Li, 1999; Zhou and Li, 2000; Castellanos et

al., 2001; Matsuda et al., 2002; Wang et al., 2002; Werth et al., 2003). The interparticle

forces present in cohesive powders and their effect on fluidization behavior have also

been discussed at length (Fortez et al., 1998; Castellanos et al., 1999; Quintanilla et al.,

2001; Valverde et al., 2003). It is believed that in the case of nanoparticles, the

agglomerates formed are highly porous and fractal-like in structure, in which the

interparticle forces discussed in the aforementioned studies plays an essential role.
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There are some studies discussing highly porous media or fractal structures such as the

work of Cook (1989), Park and Stephanopoulos (1993), Kantorovich and Bar-ziv (1997),

Wu and Lee (1998), Chen and Cai (1999), Rosner and Khalil (1999), Filippov et al.

(2000), Larraz (2002), Tang and Raper (2002), Zurita and Rosner (2002), Pirard et al.

(2002).

Zhou and Li (1999) estimated agglomerate size via a balance of forces: cohesive

force, collision force, kinetic or drag force, gravitational force and buoyancy in the

fluidized bed. The agglomerate is said to be in one of two forms: steady or disrupted.

The behavior depends on the balance of forces stated above. Their concept is illustrated

in Figure 1.15 where the collision of two agglomerates can result in one of three

pathways: separation (a), agglomeration (b), and disruption (c). where F y + Fc = Fg +

Fva or (kinetic or drag force) + (collision force) = (gravitational force — buoyancy force) +

(cohesive force, assumed to be the van der Waals force of attraction). By substituting

suitable expressions for each force, their modeling resulted in the following quadratic

equation to predict the diameter of the agglomerates:

This equation

was solved using estimated values of the parameters. Their experimental data was

obtained from fluidizing SiC, TiO 2 and SiO2 particles of diameter from 0.6 to 5 µm. In

order to obtain the relative velocity, V, of the agglomerates, Zhou and Li (1999) used the

model of Iwadate and Horio (1998), which relates V to the maximum bubble diameter

inthe fluidized bed. The size of the agglomerates was solved by trial and error. They

obtained values of 330 µm for SiO 2, 520 pm for TiO2and 635 µm for SiC, which



Figure 1.15 Schematic of agglomerate collision model of Zhou et al.
(Zhou and Li, 1999)

compared well with the experimentally measured average agglomerate sizes of 300, 482,

597 µm for these particles, respectively. This model, however, was based on one

average agglomerate size when often, the sizes are not uniform throughout the fluidizing

bed. The distribution of sizes must be taken into account in future models. Zhou and

Li (1999) were not the only ones to incorporate a force balance model in the estimation of

agglomerate size. Wank et al. (2001) and Xu and Zhu (2004) were two separate groups

who also followed a similar approach to predict agglomerate size, as stated previously.

Iwadate and Horio (1998), another group who used force balances, assumed that

the collision force equaled the cohesive force between agglomerates; (cohesive force) =

With this model, this

research group compared their data with the data of other research groups that might not

have had the same fluidization behavior as they did. In their model, Iwadate and Horio

(1998) took into account bubble hydrodynamics which is very important for

agglomerating bubbling fluidization but not for agglomerate particulate fluidization

where bubbles are not present. Yet this did not prevent them from comparing their data

with those of other research groups that had a different fluidization behavior. Chaouki

et al. (1985), another group that used force balances, and who reported bubbleless

33



Figure 1.16 Agglomerate size determination from intersection of F exp and Fcoh,rup .
(Iwadate and Horio, 1998, pg. 226)

fluidization, estimated agglomerate size by assuming that the difference between the

gravitational force and buoyancy force acting on the agglomerate equaled the van der

Waals force between the primary particles.

Morooka et al. (1988) predicted agglomerate size via an energy balance, which

resulted in a cubic equation for the agglomerate diameter. They assumed that an

agglomerate breaks if the collision energy exceeds the energy required to break the

agglomerates. Their energy balance simply was (energy generated by laminar shear) +

(kinetic energy of an agglomerate) = (energy required to disrupt the agglomerate) or

As for the few comparative studies

34

conducted thus far, Zhou and Li (1999) compared their model with those developed by

Morooka et al. (1988) and Iwadate and Horio (1998). From their analysis, Zhou and Li
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(1999) concluded that their model calculated closer values to the available experimental

data. However, their model does not account for the distribution of agglomerate sizes.

Iwadate and Horio (1998), as stated before, have also conducted a comparative study of

the previous research with their own. They incorporated bubble hydrodynamics in their

model and compared results to experimental measurements that included no bubbles.

This researcher feels that comparing models from two distinct fluidization behaviors is

improper. The study conducted by Iwadate and Horio (1998) is summarized in Figure

1.17.

The structure of nanoparticle agglomerates turns out to be important from not

only an applications standpoint but also from a nanoparticle fluidization fundamentals

standpoint. The main reason that nanoparticles can fluidize is due to the formation of

relatively stable agglomerates that are highly porous. SEM images, discussed in

subsequent chapters, have indicated a very loose, fractal structure of nanoparticle

Figure 1.17 Models of Agglomerate Size Prediction.
(Iwadate and Horio, 1998, pg. 229)
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agglomerates. There have been a number of theories and correlations to describe the

highly porous particles, such as those shown in Figure 1.18 and Figure 1.19, in terms of

voidage, drag force, intraparticle flow, etc. These concepts will later help develop a

theory that will be described in detail in the theoretical sections of subsequent chapters

(Valverde et al., 2001; Castellanos et al., 2001).

From these studies, it is suspected that the cohesive forces between the primary

particles are very important in addition to the forces between agglomerates. It is

hypothesized that the agglomerates formed are strongly dependent on the fluidization

behavior or vice versa. Part of the goal of this study is to determine what exactly is

occurring in the fluidization of nanoparticles. Despite the extensive studies on

agglomerate size predictions from gas-solid fluidization, the author used liquid-solid

fluidization theory to solve for the agglomerate size. The mixture of gas and

nanoagglomerates has hydrodynamic characteristics completely different from those of

traditional particles. It is due to the very liquid like behavior of fluidized nanoparticles

that led this author to derive theories based on correlations like the Richardson - Zaki

Figure 1.18	 Close-up schematic of
multiple generation agglomerates forming a
fractal, porous material.
(Cook, 1989, pg. 2811).

Figure 1.19 A simulated aggregate of
724 particles with a fractal structure.
(Filippov et al., 2000, pg. 5)
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(1954) equation, which is normally used for liquid-solid fluidization and sedimentation.

This theory will be described in the subsequent chapters of this dissertation.

1.3.4 Studies on Supercritical Fluidization

The idea of fluidizing nanoparticles under supercritical conditions is quite novel and

studies pertaining to it, if any prior to this dissertation, are not found in the literature.

Thus, studies pertaining to the fluidization of at least micron sized particles under very

high pressures will be discussed in this section.

One of the first pertinent studies belongs to Mogan et al. (1969) whose fluidized

bed of cracking catalyst was operated under high pressures (300 to 800 psig). Their

objective was to measure elutriation as a way to predict the porosity of the system.

They concluded that a combination of the various theories available, such as that of

Richardson and Zaki, yielded satisfactory results. As for fluidization behavior, they

visually observed particulate fluidization when using nitrogen and argon and bubbling

fluidization when using hydrogen as the fluidizing mediums, for which no explanation

was offered.

Another high pressure, nonsupercritical, fluidization set of experiments was

conducted by Chitester et al. (1984). The goal was to investigate the fundamentals of

fluidization, such as minimum fluidization velocity, bed voidage, bed expansion, and any

bubbling behavior, at pressures as high as 6485 kPa with nitrogen as the fluidizing

medium. Despite the fact that they used particles that were several hundreds of microns

large, a possibly pertinent result found was that a turbulent regime was reached at lower

gas velocities as the pressure increased. But at the highest pressure they used, the bed
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appears to be particulately fluidized but entrainment is very high. They state,

"'smoother' fluidization and excellent mixing at high pressure are confirmed." A

similar experimental and modeling study was conducted by Yang et al. (1985).

One key application of high-pressure systems is particle coating since some

polymers can be more easily dissolved under high pressures. This application was

incorporated into the experimental study conducted by Tsutsumi et al. (1995) who coated

fine (approximately 56 microns) catalyst particles with a paraffin wax by a rapid

expansion of supercritical fluid solutions (RESS) in a circulating fluidized bed. The

goal of their study was to examine the effects of hydrodynamics and solute concentration

on coating rate and efficiency. Some of their key results are shown in Figure 1.20.

They concluded that because the coating material is deposited directly onto the surface of

the catalyst particles without liquid droplets or other binders, there was no significant

agglomeration.

Yates (1995) wrote an in-depth review article discussing the effects of

temperature and pressure on gas-solid fluidization but only for groups A, B, and D

particles. However, just five years later, he and his colleagues wrote a paper (Lettieri et

Figure 1.20 Parrafin concentration vs. pressure (left) and coating efficiency vs. paraffin
concentration (right).
(Tsutsumi et al., 1995)
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al., 2000) discussing the influence of interparticle forces on the fluidization behavior of

particles under high temperature, which is a step closer to the supercritical fluidization of

nanoparticles discussed in this dissertation. The high temperatures caused their catalyst

particles to become more sticky which turned out to be a method for controlling

interparticle forces and thus, in a way, mimicking group C powders. The major

conclusion was that interparticle forces do not dominate the fluidization behavior but

rather, the hydrodynamics do.

Marzocchella and Salatino (2000) fluidized group A and B powders with CO2 at

pressures from ambient to supercritical. They found that the region of homogenous

fluidization is broader as the fluid density increases, or in other words, as pressure

increases. In comparison to the subcritical experiments, the supercritical conditions

resulted in unique data as seen in Figure 1.21. Supercritical conditions allowed for the

bed to be fluidized at a lower fluidization velocity and thus had a higher bed voidage

observations, Marzocchella and Salatino (2000) also mapped the different fluidization

regimes in superficial fluid velocity vs. fluid density phase planes. The fluid density at

the supercritical conditions used, 80 bars and 35°C, is 480 kg/m3 which correspond to the

last set of data points in the mapped plot, Figure 1.22.

The lower minimum fluidization velocities and overall smoother fluidization were

taken advantage of in the supercritical coating experiments conducted by Schreiber et al.

(2002). This group coated 100 - 200 micron glass beads with paraffin, an example

ofwhich is shown in Figure 1.23 (Vogt et al., 2004). The results showed that coating is

possible in a supercritical fluidized bed and that further investigations such as
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hydrodynamic studies are needed for optimization of this process. The group also

coated different particles such as lactose for drug release experiments (Schreiber et al.,

2003). Figure 1.24 shows a lactose particle fully coated with paraffin and its release

profile, which demonstrated an almost linear dissolution. This showed that the coating

process under supercritical conditions is promising since the coating was mostly uniform

which enabled a prolongation of the release. Given their experimental data, Schreiber

and his colleagues (Vogt et al., 2004) followed their own recommendations from 2002

and investigated the hydrodynamic conditions at which successful coating can occur.

Both bubbling and smoothly fluidized (particulate) beds were studied. They concluded

that generally, increased flow and increased bubbling yielded a higher quality of coating.

Paola and Riccardo (2004) recently conducted a study that combined the ideas of

sound assistance and varying temperature together into a set of fluidization experiments

Figure 1.21 Pressure drop vs. superficial fluid velocity (left) and average bed voidage
vs. superficial fluid velocity (right) for a bed of 88 micron glass beads.
(Marzocchella and Salatino et al., 2000, pg. 904)
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Figure 1.22 Superficial fluid velocities at regime transitions vs. fluid density for 88 
micron glass beads. 
(Marzocchella and Salatino, 2000, pg. 907) 

Figure 1.23 Comparison of SEM images of original , uncoated glass beads (left) and 
coated glass beads (right). 
(Vogt et ai. , 2004, pg. 3) 
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Figure 1.24 SEM image of coated lactose agglomerates (left) and release profile of 
lactose agglomerates coated with paraffin (right). 
(Schreiber et aI., 2003 , pg. 36, 37) 

with various powders including ashes of no more than 80 microns in diameter, which fall 

under the Geldart group C classification. Their results for the ashes are summarized in 

Figure 1.25, where it can be seen that temperature had the most notable effect on 

minimum fluidization velocity (Umf), bed voidage at minimum fluidization conditions 

(Emf), size at minimum fluidization conditions (dumf), and the Richardson-Zaki exponent 

(n). The effect of sound pressure levels made a clear appearance in terminal velocity (Ut) 

as well as the average particle size at terminal velocity (dut). Sound assistance was 

needed to fluidize the ashes since without sound, it would be difficult to achieve any kind 

of ordinary fluidized state in this particular system and apparatus. As a general 

conclusion, Paola and Riccardo (2004) remarked that the influence of temperature can be 

explained on a hydrodynamic basis due to the changes in gas viscosity and density. 
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Figure 1.25 Minimum fluidization velocity, bed voidage, average size of particles at
minimum fluidization velocity, terminal velocity, Richardson-Zaki exponent, and average
size of particles at terminal velocity as a function of temperature at two different sound
pressure levels, 140 dB & 100 Hz and 140 dB & 120 Hz, for group C material, ashes.
(Paola and Riccardo, 2004, pg. 6).



CHAPTER 2

CONVENTIONAL FLUIDIZED BED

2.1 Introduction and Theory

Conventional fluidization is needed for a basis of comparison when determining any

improvement in quality of assisted fluidization or of fluidization under non-ambient

conditions. This chapter will focus on conventionally fluidized beds, i.e., no external

aids such as vibration, magnetic assistance, and rotation. The theory for "regular"

fluidization is well documented and will be summarized below.

At the onset of fluidization, the theory states that the drag force by the flowing gas

starts to equal the weight (less buoyancy) of the powder bed. This can be expressed by

(pressure drop across the bed)(cross sectional area of the vessel) = (volume of the

bed)(solids fraction)(weight of the solids corrected for buoyancy) or by:

where AP is the pressure drop across the powder bed, A v is the cross sectional area of the

vessel, W is the weight of the bed, Hmf is the height of the bed at minimum fluidization,

Єmf is the voidage in the bed at minimum fluidization, p s is the density of the particles, p g

is the density of the fluidizing gas, g is the acceleration of gravity, and g c is a conversion

factor. Simplifying and rearranging Equation 2.1 gives:

44
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A lower measured pressure drop than the weight of the bed given by Equation 2.2

could be attributable either to a loss of powder sticking to the wall, powder elutriation, or

possibly to some nonuniformities in the gas flow resulting from the relatively porous

distributor that was used in the experiments. On the other hand, wall friction (Loezos et

al., 2002; Srivastava and Sundaresan, 2002) and cohesion between the bed of particles with

a layer of particles adhering tightly to the distributor (Castellanos et al., 1999; Sundaresan,

2003) would result in a higher measured pressure drop than the weight of the bed.

Mutsers and Rietema (1977) were the first to suggest that additional terms may need to be

included on the right-hand side of Equation 2.2 to account for the higher pressure drop of

cohesive powders. They developed a theory, which includes interparticle forces as well as

wall friction. Liss et al. (1984) accounted for their high measured pressure drop in a

fluidized bed, where the particles were cohesive because of liquid bridge formation,

through a term (6S/dp)(1 - Єmf), which was added to Equation 2.2 on the right-hand side.

Here S is the cohesive stress, which is a function of temperature, composition, and particle

size distribution.

Ergun (1953) correlated the pressure drop through a fixed bed of uniformly sized

particles by the following equation:

where µ is the viscosity of the fluidizing medium, 4:1 s is the sphericity of the particle, and

dp is the diameter of the particle. On the right hand side of Equation 2.3, the first part

represents the viscous energy losses and the second part represents the kinetic energy

losses that a bed will experience under flow. In other words, at low Reynolds numbers
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(<20), the kinetic energy loss will be negligible in Equation 2.3 and at high Reynolds

numbers (>1000), the viscous energy loss will be negligible in Equation 2.3. At

Reynolds numbers between 20 and 1000, neither the viscous nor the kinetic term can be

ignored in calculations.

In order to calculate the minimum fluidization velocity, Equation 2.2 and

Equation 2.3 are combined to give a quadratic equation for u mf:

Based on an agglomerate size of about 50 microns, the Reynolds number is less than 1.

The traditional expression for calculating the minimum fluidization velocity based on the

Ergun equation for Re < 20 (Kunii and Levenspiel, 1969) is

The voidage is complicated to describe since it has been found from this study that there

are different voidages within a bed of fluidizing nanoparticles. Because agglomerates

are being fluidized, it is important to carefully label the various ways in which one can

define voidage. Overall voidage (s) is defined as the fraction of the total bed volume

occupied by the fluid.

Here, p s and pb denote the density of the primary nanoparticles (solids) and the apparent

density of the bed, respectively. The volume fraction of primary particles in the bed (43) is

then equal to 1 - E. As for agglomerate size, a method to estimate the size of highly porous
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nanoaggomerates is not readily available in the literature. The modeling work used here

will be detailed in Section 2.3.4.

2.2 Experimental Setup, Materials, and Procedure

A schematic of the conventional fluidized bed is shown in Figure 2.1. All beds used

were simple, vertical conventional beds with a cylindrical, transparent chamber with a

distributor whose purpose is to distribute the fluidizing medium through the chamber.

Equipped along the length of the chamber was a series of ports for sampling and pressure

measurements. Pressure measurements were made with a pressure transducer (Omega),

as depicted in Figure 2.1. Water manometers (Dwyer Mark II) were also used for

verifying pressure drop measurements. Sizes, chamber material, and distributors were

varied to observe any changes in fluidization behavior. The different bed parameters are

summarized in Table 2.1.

The powder bed was placed above the distributor, through which the compressed,

bone-dry air flowed. Bone-dry air was used to minimize any humidity effects since

liquid bridges between agglomerates can significantly alter the behavior of fluidization.

Large agglomerates that may have formed from packaging, storage, and transportation

were removed by sieving the as-received powders before each experiment through a 500

micron sieve. Flow rate was measured by rotameters (Gilmont).

The largest of the beds (9.60 cm) was designed somewhat differently than the

other very simple, cylindrical beds. The 9.60 cm bed, made of glass and having an

expanded cross section at the top, was designed to be somewhat larger than most

experimental setups so that wall effects will play less a role. A detailed schematic is
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illustrated in Figure 2.2. 

The visualization apparatus consisted of (a) a digital camera (SONY) to capture 

macroscopic behavior of the fluidized bed and its dynamics when expanding, collapsing, 

and bubbling if any, represented by part 10 in Figure 2.1, and (b) a combination of an 

argon laser generator (Reliant I DOOM, LaserPhysics) with 3-W power and a high-speed 

CCD camera (La Vision Flowmaster) with an extremely short exposure time, represented 

by part 9 in Figure 2.1, to capture microscopic attributes of the fluidized bed or more 

specifically, in situ agglomerate size. 

The properties of the powders (Degussa) used for conventional fluidization 

experiments are listed in Table 2.2. All powders are hydrophilic except for R974 and 

R972, which were surface treated with dimethyldichlorosilane (DDS) to induce 

hydrophobicity. 

.! I 

Figure 2.1 Schematic of the conventional fluidized bed. I: Compressed air; 2: 
rotameter; 3: distributor; 4:fluidized bed; 5: pressure transducer; 6: computer; 7: laser 
generator; 8: mirror; 9: CCD camera; 10: digital camera. 
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Figure 2.2 Photo and detailed schematic of the largest of the conventional fluidized 
beds. 

To start a typical fluidization experiment, an amount of powder from a sieved 

batch was carefully measured and slowly placed inside the chamber. The initial height 

was recorded after waiting approximately 15 minutes for the bed to settle completely. 

The flow rate was increased incrementally and the corresponding pressure drop was 

recorded along with observations of fluidization behavior and expanded height. Once a 

definite plateau was reached, the flow rate was decreased incrementally and the 

corresponding pressure drop, expanded height, and behavior were recorded. At each 



Table 2.1 Summary of Bed Properties

50

Table 2.2 Summary of Powder Properties (values provided by Degussa)

incremental superficial velocity, sufficient time was given for the bed to reach its true

state since it would take a few minutes for the bed to stop expanding from an increase in

flow rate.

At each velocity, the macroscopic and microscopic properties were recorded with

a digital camera and CCD camera, respectively. The digital camera shots also helped to

accurately record bed expansion height. The CCD camera and laser light were used to

record agglomerate size and overall shape during fluidization. The laser beam was
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located at the surface of the fluidized bed and the camera was focused at the beam. The

camera was positioned near the opening of the tube where a mirror was angled at 45°.

In this way, no sources of possible distortion, such as the bed wall, would affect the

image. Approximately 500 in situ images of each experiment were taken. Each

experiment was repeated at least three times and average values were used to represent

the experiment.

One method of sampling for SEM (Scanning Electron Microscopy) analysis

involved aspirating out particles into a small vial through the ports of the bed. These

samples were then gently placed on SEM sample disks for analysis. Another option was

to gently dip an SEM sample disc adhered with a double-sided carbon tape into the

fluidized bed. The sample disk was then directly used for SEM analysis to determine

morphology and size. EDX (Energy Dispersive X-ray) was used in conjunction with the

SEM to analyze composition. Other characterization equipment included TEM

(Transmission Scanning Microscopy), EELS (Electron Energy Loss Spectroscopy), AFM

(Atomic Force Microscopy), and a Beckman- Coulter counter.

2.3 Results and Discussion

2.3.1 Fluidization Behavior

According to Geldart et al. (1973), the type of fluidization behavior exhibited by particles

depends on their size and the density difference between the particles and the fluidizing

gas. Based on empirical observations, Geldart et al. (1973) determined that particles

whose diameter is smaller than 30 microns and density difference is smaller than 1000

kg/m3 , classified as group C powders, are difficult to fluidize in a conventional
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gravity-driven fluidized bed. Generally, these powders would form cracks, channels, or

lift as a solid plug when exposed to a fluidizing gas at low superficial gas velocity. This

behavior is mainly caused by the strong interparticle (van der Waals) forces. The

importance of these interparticle forces relative to the weight of the particle increases as

the surface-to-volume ratio increases and may significantly exceed the external

mechanical forces (such as that attributed to gravity) to which the particles are subjected.

As stated in Chapter 1, a number of research groups (Chaouki et al., 1985; Iwadate and

Horio, 1998; Li et al., 1990; Morooka et al., 1988; Pacek and Nienow, 1990; Wang, Y., et

al., 2002; Wang, Z., et al., 1998; Zhou and Li, 1999) found that once a high enough

superficial gas velocity was reached, the interparticle networks were disrupted and

agglomerates or loosely bound structures of the ultrafine particles formed.

In this study, the bed of nanoparticles, when exposed to a low flow rate of air

below the expected minimum fluidization velocity, exhibited the aforementioned

behavior of plug flow, channeling, and / or spouting. At high flow rates, most group C

powders can be fluidized, albeit with high elutriation, due to the formation of

agglomerates. However, it was also observed that the quality of fluidization strongly

depends on distributor material, powder material, and chamber diameter. Aside for the

slightly stronger electrostatic effects in the plastic bed than in the glass bed, the chamber

material did not have a significant effect on fluidization quality.

Figure 2.3 shows the difference between the fluidization of Silica A300 powders

in a bed with a sintered metal distributor and the fluidization of the same powders (10

grams of Silica A300) in the same bed (lexan chamber, 6.25 cm in diameter) except with

layers of wire mesh with 40 microns in pore size as the distributor at low velocities. As
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(a) (b) 
Figure 2.3 Fluidization of 10 grams of Si lica A300 powders in a lexan bed (6.25 cm in 
diameter) with (a) six layers of wire mesh and (b) sintered metal. 

seen in the figure, channels and spouting occur in the bed with the wire meshes and 

smooth fluidization occurs in the bed with the sintered metal distributor. However, at 

very high velocities, all nanopowders can be fluidized due to the formation of relatively 

large agglomerates. The difference in behavior from the different distributors results 

from differences in the uniformity of air distribution in the bed. Overall , the most 

uniform distribution of air wi ll result in higher fluidi zation quality. However, with a 

high degree of uniformity comes a high pressure drop, which in the case of nanoparticies 

is orders of magnitude higher than the pressure drop across the powder bed. This makes 

measurement of pressure drop across the bed somewhat difficult since either (a) pressure 

drop would have to be measured across the distributor and the bed, from which only the 

small pressure drop across the bed would be needed causing a significant error bar, or (b) 

pressure drop would have to be measured from slightly above the distributor which often 

leads to clogging of pressure taps and a slight error in measurement since the bed in its 

entirety is not accounted for. The bed with the layers of wire mesh, even the one with 

1-2 microns in pore size, also gave rise to some instability and relatively large bubbles 

while the bed with either the sintered metal or glass as the distributor gave rise to, albeit 
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temporarily, a smoothly fluidi zed bed wi th high bed expansIon. In other words, 

although the distribution of air was very uniform, the properties of the cohesive 

nanopowder can take control of the fluidization behavior as seen in Figure 2.4 where 

Alumina C started to fluidize smoothly in the glass chamber (9.6 cm in diameter) from 

the excellent distribution of high-flow air (Figure 2.4b) through a sintered metal 

distributor in a glass chamber, 9.60 cm in diameter, but eventually collapsed and formed 

very stable channels (Figure 2.4c). The tortuosity of the pores in the sintered metal and 

glass distributors significantly helped increase uniformity of flow. 

Powder material also had an influence on fluidization quality. Silica A90, 

Alumina C, and Titania P25 al l were more susceptible to characteristic group C behavior 

(a) (b) (c) 
Figure 2.4 Behavior of a conventionally fluidi zed Alumina C bed in a glass chamber 
(9.6 cm in diameter) with a sintered metal distributor at (a) 0 s, (b) I minutes, and (c) 2 
minutes and thereafter. 

such as channeling, plugging, and spouting which can be overcome by relatively high 

superficial velocities . Silicas R972, R974, and A300 were easily fluidi zable at high 

velocities with substantial bed expansion. Alumina C and Titania P25 both have bulk 

densities much higher than the other nanoparticles, which could explain why fluidization 
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was more difficult than with the lighter, fluffier particles. However, Silica A90, has a

similar bulk density to the other silicas and yet, was difficult to fluidize in the

conventional bed. The reason could be attributed to the agglomerate structure. The

silicas R974, R972, and A300 have smaller diameters and higher surface areas compared

to that of A90. This means that there are very strong interparticle forces that can

possibly hold an agglomerate structure together that is needed for the fluidization of

nanoparticles. In other words, it is possible that the agglomerate structure is so strong

that the agglomerates are so strong that the agglomerates are too large to be readily

fluidized. Perhaps the interparticle forces between the Silica A90 particles are not

strong enough to maintain the agglomerate structure needed for fluidization to occur.

Overall, the Silica R974, Silica R972, and Silica A300 exhibited smoother and more

stable fluidization than Silica A90, Alumina C, and Titania P25 in the conventional

fluidized bed. In the terms coined by Wang et al. (2002), Silica R974, Silica R972, and

Silica A300 can be categorized as powders that exhibit APF behavior (agglomerate

particulate fluidization) whereas Silica A90, Alumina C, and Titania P25 can be

categorized as powders that exhibit ABF behavior (agglomerate bubbling fluidization).

Chamber diameter also affected fluidization behavior. Generally, fluidized beds

should be at least 2.54 cm (1 inch) in diameter because any lower would give rise to

appreciable wall effects. However, for nanoparticles, 1 inch for a conventionally

fluidized bed is too small since plugs would form on a consistent basis. The chamber

that was 6 cm (2.4 inches) in diameter was just right for a lab-scale apparatus for the

fluidization of the silicas R974, R972, and A300. Silica A90, Alumina C, and Titania

P25 exhibited slightly better fluidization in the 2.4 inch bed but still showed typical group
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C fluidization characteristics. The 9 cm (3.5 inch) bed also proved to be an acceptable

size to achieve vigorous fluidization for silicas R974, R972, and A300. Again, Silica

A90, Alumina C, and Titania P25 showed slightly better fluidization quality in the 3.5

inch bed.

2.3.2 Pressure Drop

The pressure drops across the sintered metal distributor and the glass distributor were

very large relative to the pressure drop across the nanoagglomerates. The layers of wire

meshes had a much smaller pressure drop associated with it but a somewhat poorer

distribution of air. Adding 3 mm glass beads below the distributor of wire meshes

helped to distribute the air more uniformly. In this way, the pressure drop across the

entire bed may be measured which is important for accuracy in all calculations using

experimental data. In the case of using the sintered metal distributor or the glass

distributor, pressure would be measured from a location above but near the distributor

which often would lead to clogged pressure taps and a small inaccuracy in pressure drop

since not all of the powder bed would be accounted for. Therefore, in order to measure

the pressure drop across the entire powder bed, six layers of wire mesh were used as the

distributor for the following experiments. The lexan chamber with a diameter of 6.25

cm was used for all experiments as well. This also means that the initial height of each

powder should be at least 6.25 cm. In order to comply to this guideline, 10.0 grams of

Silica R974, 10.0 grams of Silica R972, 11.0 grams of Silica A300, 15.0 grams of Silica

A90, 14.0 grams of Alumina C, and 40.0 grams of Titania P25 were used for the

experiments. Using more powder would only affect the absolute pressure drop and bed
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expansion measurements. Non-dimensionalized values would remain practically the

same.

In all of the experiments performed, the measured pressure drop across the bed at

high gas velocities, above the minimum fluidization velocity, approximately equaled the

weight of the bed per unit cross-sectional area, as given by the force balance equation

(Equation 2.1 and Equation 2.2). Figure 2.5 shows a typical set of results obtained in a

conventional fluidized bed of Silica R974, where both the pressure drop across the bed

and the bed expansion at increasing gas velocities and decreasing gas velocities are

presented. The pressure drop has been scaled with the actual measured weight of the

bed per unit cross sectional area of the bed, whereas the bed height has been scaled with

the height of the settled bed. It is clear from Figure 2.5 that the pressure drop increased

Figure 2.5 Pressure drop and bed expansion ratio as functions of air superficial velocity
for Silica R974 in a conventional fluidized bed.
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initially with gas velocity and then leveled off at high gas velocities. The velocity range

between 0.4 and 0.7 cm/s represents the formation of a plug, the breakage of a plug and

formation of channeling, and the final breakage of the channeling due to high velocity.

In the plateau region, the scaled pressure drop is very close to the expected value of unity.

With decreasing velocity, the bed is sufficiently loosened to fluidize more smoothly even

at the lower gas velocities, as seen in Figure 2.5. In other words, decreasing velocity

showed a small hysteresis in that smoother fluidization occurs once the bed is fluidized.

Once the interparticle forces are disrupted, fluidization is easier to achieve than with a

bed that has not been fluidized or is in the settled state. Appendix D shows results from

all powders.

2.3.3 Minimum Fluidization Velocity

The minimum fluidization velocity is defined as the point at which the pressure drop

begins to equal the weight of the bed per unit area. Typically, along with this definition

comes the description of the bed expansion, which is generally accepted and understood

to begin at the onset of fluidization or at the minimum fluidization velocity. However,

for the fluidization of nanoparticles, the velocity at which the pressure drop begins to

plateau is not always in sync with the bed expansion data. Often, a bed of nanoparticles,

as seen in Figure 2.5 and Appendix D, will start to expand at a velocity lower than the

minimum fluidization velocity. The velocity at which the bed begins to expand will be

called the "minimum expansion velocity," u m,. The summary of results (minimum

expansion and minimum fluidization velocities of each powder) is listed in Table 2.3.

The velocities listed in Table 2.3 cannot be obtained from Equation 2.5 if the size of the
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Table 2.3 Summary of Minimum Fluidization Velocity and Minimum Expansion
Velocity for Each Powder from Conventional Fluidization Experiments

primary particle is used, demonstrating unequivocally that agglomerates were being

fluidized and that agglomerate properties must be used in Equations 2.5 in order to obtain

meaningful results.

2.3.4 Agglomerate Size

A Beckman Coulter counter (dry module) was used to determine the agglomerate size

distribution of the as-received silica powder. Representative Coulter counter results for

pre-experiment powder indicated a mean agglomerate size anywhere between 20-40

microns. This is highly suspect because large agglomerates of size on the order of

millimeters (perhaps formed during storage) could be observed visually. These

contradictory results, which are shown in Figure 2.6, suggest that the agglomerates are in

general so fragile that any measurement method involving direct contact with the sample

is not effective and reliable. It is conjectured that the agglomerates were broken up

during the course of the Coulter counter size distribution measurements, leading to

agglomerate sizes anywhere between 20-40 microns. Very similar results are found

when analyzing the agglomerates in an Aerosizer as well. The Aerosizer, in its vacuum

and sampling mode, is probably breaking the porous agglomerates just as the Coulter
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Figure 2.6 Photograph of sieved-out agglomerates (left) and the incongruous Beckman 
Coulter Counter results of the same sieved-oul agglomerates (right) . 

Counter did during its measurement process. Agglomerate samples were aspirated out 

of the bed at different heights of the expanded fluidi zed bed and examined under SEM. 

As shown in Figure 2.6, the agglomerate s izes averaged about 20 microns. Similar sizes 

were obtained when samples were taken by dipping an SEM anal ysi s di sc directl y into 

the fluidizing bed. The agglomerates appeared very porous and fragi le and are believed 

to have broken (into sub-agglomerates) during thei r removal from the bed and/or during 

sample preparation for the SEM. A sketch of the agglomerate as the author envisions it 

is drawn in Figure 2.7. As di scussed later, the agglomerate size estimated from pressure 

drop and bed height data in fluidi zation experiments was considerably larger, on the order 

of a hundred microns. 

Given the fragile nature of the agglomerates , it is reasonab le to expect that an 

equi li brium between agglomerate breakage and agglomerate formation is reached during 

the process of fluidization. Therefore, the true agglomerate s ize can be found on ly from 

measuring the agglomerates dynamically as fluidi zation is occurring. The use of a 

high-speed digital camera with an extremely short exposure time and a laser beam was 

used to observe and investigate the dynamic agglomerate si ze in situ. At least 500 

images were taken for each powder. Nine images of typical results of the camera and 

laser for Si lica R974 are shown in Figure 2.8. Bright spots indicate agg lomerates 

• 
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directly in line with the laser beam and therefore are focused. Grayer spots indicate

agglomerates that are not quite in focus. The dark spots in the agglomerate images

indicate a certain degree of porosity that the laser light was able to support the method of

size estimation discussed in the following sections. The results from the other powders

are summarized in Table 2.4 and images of the other powders are shown in Appendix B.

It is important to note that the results listed in Table 2.4 for Titania P25 were sampled

from a smaller sampling, which may lead to an error in accuracy. To measure the

agglomerate size, all captured images were imported into Adobe Photoshop where the

exact number of pixels was measured for each agglomerate individually. Since the

focus, magnification, and other parameters of the camera were known, the number of

pixels obtained could then be converted into a length.

Figure 2.7 A sketch of the agglomerate (inspired by Cook,1989).
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Figure 2.8 Nine laser and camera results capturing agglomerates In a conventional 
fluidized bed. Each shot is 1.1 mm in height and width. 

Table 2.4 Summary of Size Analysis ofIn-Situ Agglomerate [mages from Conventional 
Fluidization Experiments 

Powder Mean diameter 
Imicronsl 

Silica R974 234.3 
Silica R972 238.7 
Si li ca A300 236.9 
Si lica A90 334.7 
Alumina C 421.9 
Titania P25 147.2 

Because the behavior of nanoagglomerate fluidi zation was so liqu id-like with 

practically no bubbling, the Richardson- Zaki (R-Z) approach, usuall y valid for 

homogeneous liquid- solid sedimentation and fluidi zation , is used in the ana lysis described 

below. To estimate the agglomerate density and porosity in terms of its size, we use the 
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fractal model suggested by Valverde et al. (200 I b) and fliliher explored by Castell anos et 

al. (200 I). Agg lomerates composed of fin e particles typica ll y have fractal structures 

(Va lverde et aI. , 200 I b). The number of primary particles, , in an agglomerate of radius, 

ra, can be expressed as (Friedl ander, 2000) 

(2.7) 

where k is a prefactor (colllmonl y set to unity), Dr is the fracta l dimension , and rp is the 

radius of the primary particle. The images seen in Figure 2.8 are very remini scent of a 

simulated model ofa fracta l agglomerate made of several thousands of primary particles by 

Schaefer et a l. ( 1988) , as depicted in Figure 2.9. 

Figure 2.9 Simulated (Dr = 2.5) cluster-monomer ballistica ll y grown three-dimensional 
aggregate containing 104 primary particles. 
(Shaefer el aI., 1988) 



Assuming that the agglomerates are spherical, the mass of an agglomerate is
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The Stokes settling velocities of a primary particle (V0) and that of an agglomerate (v a) are

respectively, where C is the Cunningham correction

factor, which applies for particles less than 1 micron in diameter (Seinfeld, 1986). These

velocities can be combined with Equation 2.7 to obtain

where n is the R-Z exponent, can be written as

For each value of u, (I) was determined from the measured bed height. Equation 2.13

The radius of the agglomerate can then be calculated from
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The estimated value of 2.60 for the fractal dimension of Silica R974 agglomerates

in a conventional fluidized bed is close to that for diffusion-limited aggregation (that is, 2.5)

(Friedlander, 2000). This Df value led to a calculated diameter size of 341 microns, which

will be discussed in the following section. The fractal dimensions for all powders are

listed in Table 2.5. With the exception of Titania P25 that had a small sample space, in

comparison to the experimental measured values listed in Table 2.4, the calculated values

listed in Table 2.5 are very reasonable Given that such an aggregation mechanism is

reasonable for the extremely fine primary particles used in this study, the fractal dimension

Table 2.5 Summary of Calculated Fractal Dimensions and Agglomerate Sizes for Each
Powder from Conventional Fluidization Experiments

estimated from the bed height data and the above analysis is very encouraging. However,

the estimated agglomerate diameter is much larger than the SEM experimentally measured

value, which SEM photographs (see Figure 2.10), showed to be about the order of 10

microns, but in good agreement with the bright agglomerates seen in Figure 2.8, obtained

by photographing the surface of the bed using a high-speed digital camera with an

extremely short exposure time. It is suspected that considerable breakage of the fragile

porous agglomerates took place (into sub-agglomerates) when the particles were aspirated

out of the bed and/or prepared for the samples for SEM analysis. This is a possible
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explanation of why the experimental SEM agglomerate sizes were much smaller than those 

estimated from the fractal ana lysis. AFM ana lysis was used to attempt to measure the 

force required to break an agg lomerate. Unfortunately, due to the very fragile nature of 

the agglomerate and the small size, it was difficult to know exactly where the tip of the 

AFM is. 

(a) 

(b) 

Figure 2.10 SEM images of (a) out-of-the-bag agglomerates and (b) samples taken from 
a conventional fluidized bed. 

A fractal analysis (coup led with the R-Z equation) was performed for the 

bed-expansion data from the conventional fluidization work of Wang et al. (2002). This 

research group used Aerosil R972, which is very simi lar to Aerosil R974, used in our 

experiments. For R-Z exponents of 3.5,4.0, 4.5 , and 5.0, the Dr va lues were found to be 
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2.53,2.54,2.55, and 2.55 and the radii of the agglomerates ca lculated were 140, 135, 130, 

and 126 microns, respectively. 

2.3.5 Voidage 

Using Equation 2.6 and inputting 0.03 and 2.2 g/cm) for the bulk density of a settled bed 

and primary nanoparticie density, respectively, one finds that E - 0.9864. Thus, the bed of 

nanoparticles was a lready high ly nuffy even before nuidiza tion . As the bed expands, E 

increases to >0.99. The sub-agglomerates themselves, di scussed in the previous section, 

were very porous, as seen from the high-resolution SEM and TEM image in Figure 2.1 I. 

Figure 2.1 1 High-resolution SEM (left) and TEM (right) image of sili ca agg lomerates. 

The apparent density of the agglomerates and the fraction of bed vo lume occupied by the 

agglomerates are denoted by pa and <Pc, respectively. It then follows that <PPr = <PePa. The 

void space between the agglomerates, represented as a fraction of the bed vo lume, is 

expressed as Ec = I - <Pc. The porosity inside the agglomerates (Eagg) is simply equal to I -

Pa/Pr. The challenge li es in the estimation of Pa and Ec from the experimental data. 

Chaouki et al. ( 1985) and Wang et al. (2002) assumed that 
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Equation 2.15 is problematic because it assigns a value of zero to Є e for a settled bed (that is,

when H o = Hexp). With the approach described in the previous section to estimate p a and se,

originally presented by Valverde et al. (2001b) and Castellanos et al. (2001), and using an

agglomerate diameter of 147 microns, found from the fractal analysis described in the

previous section for Titania P25, and the experimental pressure drop data, Є e was estimated

at various gas velocities through the Blake—Kozeny equation (Ergun equation at low

Reynolds numbers), as follows:

Table 2.6 compares the values of Є e determined through the three methods mentioned

above: (1) the modified Richardson—Zaki analysis, which used only the bed-expansion

data; (2) the pressure drop data, which assumed an agglomerate size estimated from the

Richardson—Zaki analysis; and (3) the simple approach used by Chaouki et al. (1985) and

Wang et al. (2002) (that is, Equation 2.15). Table 2.6 corresponds to the data presented

earlier in Figure 2.5. It is clear from Table 2.6 that the values of Є e determined by the first

two methods are close to each other (except at the lower end of voidage), which lends

further support to the fractal approach.

It could have been demanded that both the pressure drop and bed-expansion data

be satisfied accurately by the model and allowed the agglomerate size to vary (slightly)

with gas velocity. Such an exercise revealed that the agglomerate size decreases slightly

as the gas velocity is increased, which is physically reasonable. The third method, using
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Equation 2.15, did not give as reasonable values of Є e because the values of H/H 0 < 2, and

gave very small (and unphysical) values of s e .

Table 2.6 Summary of Interagglomerate Voidages Calculated from the Modified
Richardson-Zaki Method, Blake-Kozeny Equation, and Equation 2.15 for Silica R974

For comparison, the values of Є o estimated from the data by Wang et al. (2002),

assuming a value of 5 for the R-Z exponent, are summarized in Table 2.7. Also listed are

the values of Є o obtained by Wang et al. (2002) by using Equation 2.15. Wang et al. (2002)

also performed experiments with other nanoparticles. Aerosil 300, for example, whose

apparent density and primary particle size are listed as 37 kg/m 3 and 7 nm, respectively, did

not exhibit high (>2) bed-expansion ratios. They applied Equation 2.15 and obtained Є e

values summarized in Table 2.8. The minimum fluidization velocities found by Wang et

al. (2002) were higher than those found in this dissertation mostly likely due to the fact that

they did not sieve their particles. Thus, they were fluidizing much larger agglomerates, on

the order of millimeters. When a fractal analysis of the same data was performed,

assuming that n = 5, more reasonable estimates for Є e were obtained (see Table 2.8). This

example shows that Equation 2.15 cannot be used to estimate Є e when the bed expansion is

low but is a fair approximation for bed expansions > 2.
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Table 2.7 Interagglomerate Voidages Obtained from Modified Richardson—Zaki
Method and Equation 2.15 for Aerosil R972* 

Table 2.8 Interagglomerate Voidages Obtained from Modified Richardson—Zaki
Method and Equation 2.15 for Aerosil 300*

2.4 Conclusions

The main purpose of these conventional fluidization experiments was to provide a basis

for comparison when fluidizing the same nanoparticles under different conditions and

with assistance. It was shown that nanosized silica could be fluidized in the form of

stable, very porous agglomerates at relatively high superficial velocities. A modified

Richardson—Zaki approach combined with an assumption of fractal agglomerates was

successfully applied to analyze the bed-expansion data reported here, from which we

estimated the agglomerate size, other agglomerate properties, and the interagglomerate

voidage. Voidages were independently checked with those calculated from the
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Blake-Kozeny equation and were found to be in good agreement. The pressure drop

data were found to be consistent with agglomerate size determined in this manner.



CHAPTER 3

VIBRATING FLUIDIZED BED

3.1 Introduction and Theory

Vibration intensity is defined as the ratio of vibrational acceleration to gravitational

acceleration,

where A is the amplitude of vibration and w = 2πf.

Erdesz and Mujumdar (1986) claimed that for micron sized particles, the

minimum fluidization velocity, pressure drop, and bed porosity all are non-linear

functions of the vibration intensity (Equation 3.1). As described in Chapter 1, Yoshida

et al. (1965), Mori et al. (1990), Dutta and Dullea (1991), Jaraiz et al. (1992), Marring et

al. (1994), and Noda et al. (1998) found similar results. These groups introduced

various expressions for pressure drop and minimum fluidization velocity that differed

from Equation 2.2 and Equation 2.5, both detailed in Chapter 2. However, it must be

noted that these theories are for cohesive particles that are a few microns and above in

diameter, which are different from the nanoparticle agglomerates. The parameter that

must be considered for nanoparticle agglomerates is not only the porosity of the bed from

the relatively high bed expansions, but also the porosity of the agglomerates themselves.

The actual size of the fluidized nanopowder agglomerates is in the regime of group A and

B particles, which makes the application of the expression for plateau pressure drop

(Equation 2.2), for example, quite applicable.

72
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3.2 Experimental Setup, Materials, and Procedure

A schematic of the vibrofluidized bed is shown in Figure 3.1. The bed was mounted on

top of a Ling Dynamic System vibrator, which can produce AC vertical sinusoidal waves

with accelerations up to 5.5g (where g is the acceleration attributed to gravity) measured

by a piezoelectric accelerometer. The frequency, f, of vibration could be varied from 30

to 200 Hz. Preliminary results were obtained from a vertical, cylindrical, glass bed of

6.25 cm in diameter with a glass distributor of 10 microns in pore size. All other results

were obtained using a vertical, cylindrical, acrylic bed of 6 cm in diameter with 6 layers

of wire meshes of 40 microns in pore size as the distributor. The layers of wire mesh

with pore sizes of 40 microns were used to reduce the pressure drop across the distributor

relative to the bed and to promote any channeling, spouting, and plugging that might

occur. In this way, the effect of vibration was much clearer and the measurement of

pressure drop across the bed was more accurate. Equipped along the length of the

chamber was a series of ports for sampling and pressure measurements. Pressure

measurements were made with a pressure transducer (Omega), as depicted in Figure 3.1.

Water manometers (Dwyer Mark II) were also used for verifying pressure drop

measurements.

The powder bed was placed above the wire mesh distributor, through which the

compressed, bone-dry air flowed. Bone-dry air was used to minimize any humidity

effects since liquid bridges between agglomerates can significantly alter the behavior of

fluidization. The amount of each powder used for the following results are as follows:

10.0 grams of Silica R974, 10.0 grams of Silica R972, 11.0 grams of Silica A300, 15.0

grams of Silica A90, 14.0 grams of Alumina C, and 40.0 grams of Titania P25. The
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Figure 3.1 Schematic of the vibrofluidized bed. I: Compressed air; 2: rotameter; 3: 
distributor; 4: fluidized bed; 5: pressure transducer; 6: computer; 7: laser generator; 8: 
mirror; 9: CCD camera; 10: digital camera; II : vibrator; 12: accelerometer; 13: inverter. 

column used was the lexan tube with a diameter of 6.25 cm. Electrostatic effects from 

using dry air can be decreased with static-eliminator aids such as the DC-nozzle provided 

by Tantec, Inc. A DC-nozzle ionizes the flowing air and achieves static-neutralization. 

Large agglomerates that may have formed from packaging, storage, and transportation 

were removed by sieving the as-received powders before each experiment through a 500 

micron sieve. Flow rate was measured by rotameters (Gilmont) . Visualization 

apparatus is the same as described in Section 2.2. Properties of the powders used for the 

vibrofluidization experiments were the same as those used for the conventional 

fluidization experiments, listed in Table 2.2. All powders are hydrophilic except for 

R974 and R972, which were surface treated with dimethyldichlorosilane (DDS) to induce 

hydrophobicity. 
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To start a typical vibrofluidization experiment, an amount (10.0 grams of Silica

R974, 10.0 grams of Silica R972, 11.0 grams of Silica A300, 15.0 grams of Silica A90,

14.0 grams of Alumina C, or 40.0 grams of Titania P25) of powder from a sieved batch

was carefully measured and placed inside the chamber. The initial height was recorded

after waiting approximately 15 minutes for the bed to settle completely. The desired

vibration parameters were set and turned on. The flow rate was increased incrementally

and the corresponding pressure drop was recorded along with observations of fluidization

behavior and expanded height. Once a definite plateau was reached, the flow rate was

decreased incrementally and the corresponding pressure drop, expanded height, and

behavior were recorded. At each incremental superficial velocity, sufficient time was

given for the bed to reach its true state since it would take a certain amount of time for

the bed to stop expanding from an increase in flow rate. Flow rate, pressure drop,

vibrational acceleration, frequency and bed height measurements, as well as visual

observation of the fluidization behavior for each experiment were all recorded. For each

experiment, the vibrational intensity, which, as seen in Equation 3.1, is a function of

frequency and amplitude, were varied. Similarly to the conventional fluidization

experiments, at each velocity, the macroscopic and microscopic properties were recorded

with a digital camera and CCD camera, respectively. Sampling methods from

conventional fluidization experiments remained the same.
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3.3 Results and Discussion

3.3.1 Fluidization Behavior

It was observed experimentally that mechanical vibration helped break up the channeling

and spouting in a bed of nano-sized powders. Figure 3.2 illustrates typical experiments

for each powder. Based on empirical observations, Geldart et al. (1973) determined that

particles whose diameter is smaller than 30 µm and density difference is smaller than

1000 kg/m3 , classified as group C powders, are difficult to fluidize in a conventional

gravity-driven fluidized bed. Generally, these powders would form cracks, channels, or

lift as a solid plug when exposed to a fluidizing gas at low superficial gas velocity. This

behavior is mainly caused by the strong interparticle (van der Waals) forces. The

importance of these interparticle forces relative to the weight of the particle increases as

the surface to volume ratio increases and may significantly exceed the external

mechanical forces (such as that due to gravity) to which the particles are subjected. The

mechanical agitation of vibration is able to provide enough energy to disrupt these

interparticle forces that commonly give rise to the characteristic group C behavior, as

illustrated in Figure 3.2. However, Figure. 3.2 is only typical of Silica R974. The

behavioral results of all powders for 3 "g" are summarized in Table 3.1, where C =

channeling, P = plugging, J = jetting/spouting, B = bubbling fluidization, and S = smooth

fluidization, L = low velocity, ~ 0.15 cm/s, M = medium velocity, — 0.71 cm/s, and H =

high velocity, ~ 1.38 cm/s. Beds of Silica R972, Silica A90, and Alumina C were more

prone to the formation of bubbles around 75 and 100 Hz. The photographic results for

1.5 and 4.5 "g" and other powders are in Appendix A.
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Silica R974 

Silica R972 

Silica A300 

Silica A90 

AluminaC 

Titania P25 

(a) (b) (c) (d) (e) (f) 
Figure 3.2 Typical photographs of vibrated experiments in a lexan tube of 6.25 cm with 
a wire mesh distributor at [=3, f=50 Hz with flow rates of (a) 0 em/s, (b) 0.15 em/s, (e) 
0.41 em/s, (d) 0.71 em/s, (e) 1.06 em/s, (f) 1.38 em/s. 



Table 3.1 Summary of Behavioral Results for All Powders at F = 3
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Another interesting result in terms of fluidization behavior was that, although

beds were not initially (before application of vibration) fluidizable with low-flow-rate

aeration alone, the bed of the hydrophobic powders (Silica R974 and Silica R972)

appeared to have a short-term memory after vibration was applied. This memory effect

was apparent in an experiment where the bed was first fully fluidized with vibration and

aeration, and then was allowed to settle down by turning off the vibration and aeration.

This settled bed of these hydrophobic powders could then be fluidized by aeration alone

as long as it was done within a few minutes, which is not what one would expect given

the Geldart group C character of the primary particles. Thus, once the bed was fluidized,

the interparticle networks in the original sample were disrupted and the resulting

agglomerates did not form strong cohesive networks for several minutes, even after the

bed was allowed to settle. However, if the bed was left longer than a few minutes in its

rest state, it became difficult to fluidize the bed at the same low flow rates.
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Additionally, once the bed was fluidized with the aid of vibration and aeration,

the vibration could be turned off and the bed would remain expanded and fluidized for a

considerable amount of time (-30 h). Figure 3.3 shows a comparison between the

settling of a fully expanded bed of Silica R974 after (1) aeration was left on and vibration

was turned off and (2) both aeration and vibration were turned off Without both

vibration and aeration, the bed collapsed to its initial height within 2 min. Based on the

above experimental observations, it is conjectured that once the interparticle forces are

disrupted for hydrophobic powders, it takes a finite time to approach the original

undisturbed conditions. Although identical experiments were conducted, the

hydrophilic powders (Silica A90, Silica A300, Alumina C, and Titania P25) did not

exhibit the same memory effects. This is possibly due to the fact that the hydrophilic

powders are more sensitive to any moisture in the air and lab. Without the vibrational

agitation, the beds of the hydrophilic powders become unstable due to the higher

sensitivity of moisture. The mechanical agitation is needed to skirmish the factors that

make the bed instable.

Generally, when airflow was coupled with sufficient vibration (F = (Aω 2)/g > 1),

the channels would close, the spouting would stop, and/or the solid plug would break up.

Increasing vibrational intensity, F, weakly affected bed height. At high vibration

frequencies (f >100 Hz) and airflow rate, relatively large bubbles could be seen (Figure

3.4) especially in beds of Silica R972, Silica A90, and Alumina C. At low frequencies

(< 50 Hz), many of the bubbles appeared to break and dissipate throughout the bed

forming microbubbles (estimated to be on the order of about 200µm). Bubbles were not

seen to coalesce, grow or break the upper surface of the bed.
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Figure 3.3 (+) The bed was initially subjected to vibration (1=2, f = 50 Hz) and 
aeration at an air superficial velocity of 0,91 crnJs in the glass tube with a diameter of 6 
cm and with a wire mesh distributor; at t = 0, the vibration was discontinued. ( .... ) The 
bed was initially subjected to vibration (1=2, f = 50 Hz) and aeration at an air velocity of 
0.45 crnJs; at t = 0, both vibration and aeration were stopped, 

Figure 3.4 Bubbling fluidization of Silica A90 with vibration (1 = 3, f = 75 Hz) in a 
6.25 cm lexan tube with a wire mesh distributor. 
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At modest fluidization gas velocities, the surface of the bed was very smooth,

there was no apparent disturbance from bubbles and practically no elutriation of particles

was observed. At higher gas velocities, which depend on the different powders, the

surface became unstable and elutriation of particles out of the tube could be observed.

Appendix A shows photos of each of the powders at the different vibrational conditions

at different velocities.

Figure 3.5 shows bed expansion rate at different F at a constant frequency of 50

Hz and constant superficial air velocity of 0.28 cm/s for Silica R974. In each of these

experiments, the vibrational parameters were first set at the desired conditions, and then

the aeration was turned on (at time t = 0) at the desired superficial velocity. The steady

state bed expansion increased with increasing F, but appeared to become independent of

F at sufficiently large values of F. In this series of experiments, the vibrational intensity

was varied by changing the amplitude (A), while holding the frequency of vibration

constant. This bed expansion behavior may be rationalized as follows: as the vibrational

intensity was increased, the size of the agglomerate decreased at first and then became

roughly independent of F. The scaled acceleration F was not the only vibrational

parameter affecting steady state bed expansion. Figure 3.5 illustrates that the steady

state bed expansion, at a constant superficial air velocity of 0.28 cm/s, depended on the

frequency of vibration, even when F was maintained constant; however, no systematic

trend was manifest. It was found that at higher values of F, the effect of vibration

frequency on the steady state bed expansion decreased.

It is clear from Figure 3.5 that the rate at which the bed expanded depended on the

vibrational parameters. Generally, for all the powders, the higher the frequency or the



82 

lower the r , the slower the bed expanded. The rate of bed expansion was roughly the 

same for r = 4 - 6, but appreciably smaller at r = 3 (see Figure 3.5). As seen in Figure 

3.5, the rates of bed expansion at frequencies of 50, 70 and 100 Hz were comparable, 

while those at 30 and 150 Hz suggest an inverse dependence on the frequency. 
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Figure 3.5 Plots of bed expansion ratio vs . time (a) for different r values at fixed 
frequency, f=50 Hz; (b) for different frequencies with r = 3. 
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3.3.2 Pressure Drop

In all of the experiments performed for all powders, the measured pressure drop across

the bed at high gas velocities approximately equaled the weight of the bed per unit cross

sectional area. Figure 3.6 shows a typical set of results obtained in a vibrated fluidized

bed of Silica R974. The results for the other powders (see Appendix A) are very similar

in that pressure drop approaches the weight of the bed and that there is considerable bed

expansion. Each of the six nanopowders ((a) Silica R974, (b) Silica R972m (c) Silica

A300, (d) Silica A90, (e) Alumina C, and (f) Titania P25), where both the pressure drop

across the bed and the bed expansion at increasing gas velocities are presented. The

pressure drop has been scaled with the actual measured weight of the bed per unit cross

sectional area of the bed, while the bed height has been scaled with the height of the

settled bed. It is clear from Figure 3.6 that the pressure drop increased initially with gas

Figure 3.6 Pressure drop and bed expansion ratio as functions of air superficial velocity
at F = 3, f = 50 Hz for Silica R974.
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velocity and then leveled off at high gas velocities. In the plateau region, the scaled

pressure drop is very close to the expected value of unity, as given by the familiar force

balance (Wilhelm et al., 1948) equation

As stated in Chapter 2, a lower measured pressure drop than the weight of the bed given

by Equation 3.2 could be due either to a loss of powder sticking to the wall, powder

elutriation, or possibly to some non-uniformities in the gas flow due to the relatively

porous distributor that was used in the experiments and a higher measured pressure drop

could be due to wall friction and cohesion between the bed of particles with a layer of

particles adhering to the distributor. Mutsers et al. (1977) were the first to suggest that

additional terms may need to be included on the right hand side of Equation 3.2 to

account for the higher pressure drop of cohesive powders. They developed a theory,

which includes interparticle forces as well as wall friction. Liss et al. (1984) accounted

for their high measured pressure drop in a fluidized bed, where the particles were

Equation 1 on the right hand side. Here S is the cohesive stress, which is a function of

temperature, composition, and particle size distribution.

Tasirin et al. (2001) found in their study of vibrofluidization of 15 to 34 1.1M

particles that the pressure drop increased as the vibration intensity, F, increased. This is

rather remarkable, as it implies that the consequence of vibration was a net force pointing

downwards, which is not what one would expect intuitively. Erdesz et al. (1986), on the

other hand, reported that the pressure drop decreased with increasing F. Mawatari et al.
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(2002) found no appreciable change in pressure drop as a function of vibration intensity,

F. While not shown, our study revealed only a weak effect of vibrational parameters on

the constant (plateau) pressure drop obtained at high gas velocities. Thus, there is no

clear consensus on the effect of vibration on pressure drop across the bed.

Wank et al. (2001) studied vibrofluidization of cohesive micron sized particles

and proposed the following expression, which accounted for both interparticle forces and

the effect of vibration:

where Fco represents the interparticle forces between particles. However, in our

opinion, it is hardly realistic to hope to capture the effect of cohesion and vibration

through such simple models. Cohesion between particles themselves cannot increase

the required pressure drop, unless the particles adhere to boundaries and a resistance to

bed expansion results through this adhesion. Consequently, justification for the

cohesive force term must be made through an analysis of the interaction at the boundaries.

The same is true for vibration.

Figure 3.6 also shows that the bed expansion behavior in some of these

nanoparticle systems was different than that observed with Geldart group A particles

where bed expansion begins only after the minimum fluidization velocity is exceeded.

As soon as a vibrofluidized bed (with F > 1) was aerated, it began to expand even though

the actual gas phase pressure drop was only a fraction of the bed weight per unit cross

sectional area. As gas flow rate was increased, the bed continued to expand and this

was accompanied by a systematic increase in the gas phase pressure drop. The bed

expansion continued into the constant pressure drop regime. The overall bed expansion



86

could be in excess of five times the original height, and even at such dramatic bed

expansion levels the quality of fluidization appeared to be smooth.

3.3.3 Minimum Fluidization Velocity

Based on an agglomerate size of about 50 microns, the Reynolds number is less than 1.

The traditional expression for calculating the minimum fluidization velocity based on the

Ergun equation for Re < 20 (Kunii et al., 1969) is

where (I), is the particle sphericity and e mf is the inter-particle voidage at minimum

fluidization. A number of studies (Mawatari et al., 2002; Noda et al., 1998; Tasirin et al.,

2001; Erdesz et al., 1986) found that as the vibration intensity, F, increased, the minimum

fluidization velocity decreased. Here, minimum fluidization velocity refers to the

lowest gas velocity for which the pressure drop across the bed becomes constant.

However, in our experiments (with F > 1), frequency and other vibrational parameters

had only a small effect on the minimum fluidization velocity, and this effect became

unobservable as F was increased.

The minimum fluidization velocity in this study (based on the definition above)

was determined to be around 0.3-0.4 cm/s for Silica R974, 0.3-0.4 cm/s for Silica R972,

0.3-0.4 cm/s for Silica A90, 0.3-0.4 cm/s for Silica A300, 0.3-0.5 cm/s for Alumina C,

and 0.15-0.3 cm/s for Titania P25. In comparison to the minimum fluidization

velocities obtained from the conventional fluidized bed experiments, these velocities are

much lower. However, it is noted that the bed exhibited fluid-like properties as soon as
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it started to expand at velocities that are not necessarily the mInImum fluidization 

velocity. It is believed that one of the major differences between fluidi zation of 

nanoparticles in the form ofnanoagglomerates and the fluidi zation of other group A or 

1--' 1 

(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 3.7 Progression of mixing of Silica R974 particles dyed with methylene blue 
during aerated vibrofluidization ([=4, f = 50 Hz) of 12 grams of Silica R974 in a glass 
tube of6 cm in diameter with time (s): (a) 0, (b) 10, (c) 15, (d) 22, (e) 28, (f) 35, (g) 60, 
(h) 120. Aeration of a vibrated fluidi zed bed was started at t=O, and the figure panels 
show simultaneous bed expansion and mixing. 

group B particles is that a fluid-like behavior occurs when the bed of nanoparticles begins 

to expand. This is evidenced by the mixing study, as shown in Figure 3.7, which 

consisted of a small layer of Silica R974 dyed with methylene blue atop a bed of Silica 

R974. The bed at a velocity lower than the velocity at which the pressure drop is 

entirely a plateau is completely mixed within 2 minutes. This suggests that when the 

bed expands, there is good circulation in the bed. The minimum expansion velocities, 

the minimum fluidi zation velocities obtained from conventional fluidi zed beds and from 

vibrofluidized beds are summarized in Table 3.2. For example, the bed of Silica R974 

started to expand at a velocity as low as 0.1 cm/s. Such a minimum fluidization velocity 

cannot be obtained from Equation 3.4 if we use the primary particle size, demonstrating 

unequivocally that agglomerates were being fluidized and that agglomerate properties 

must be used in Equation 3.4 to obtain meaningful results. 
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Table 3.2 Summary of Minimum Fluidization Velocity and Minimum Expansion
Velocity for Each Powder from Vibrofluidization Experiments

3.3.4 Agglomerate Size

Since the behavior of nanoagglomerate fluidization was so liquid-like with practically no

bubbling, the Richardson-Zaki (R-Z) approach, usually valid for homogeneous

liquid-solid sedimentation and fluidization is employed in the analysis already detailed

and described in Section 2.3.4. From this section, it was described that for each value of

velocity, 40 could be determined from the measured heights of the expanded bed. From

for n = 5 (the Richardson-Zaki exponent is a function

of Reynolds number, but is about 4.8 in the viscous flow regime) based on the

experimental data given in Figure 3.6 is shown in Figure 3.8. The plot appears to be

reasonably linear, lending support to the analysis described in Section 2.3.4.

Surprisingly, the fractal dimension, number of primary particles, and diameter of

the agglomerates were found to be insensitive to the value of the Richardson — Zaki

exponent in the range of n = 4 to 6 (see Table 3.3). The estimated values of the fractal

dimensions and agglomerate size of each powder are summarized in Table 3.4. It

appeared that powders with the higher bulk and / or particle densities had a slightly

higher fractal dimension.
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Figure 3.8 Plot of Equation 2.14 for n = 5.0 to obtain agglomerate size, density, and
interparticle voidage for Silica R974 during vibrofluidization. R 2 is the square of the
correlation from a simple linear regression model that measures the amount of variability
in the observed data.

Table 3.3 Fractal Dimension (D f), Number of Particles in an Agglomerate (N), and
Agglomerate Diameter for Various Values of the Richardson — Zaki Exponent for Silica
R 974



Table 3.4 Df and Agglomerate Size Values Evaluated at n=5 for Each Powder
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Table 3.5 	 Summary of Size Analysis of In-Situ Agglomerate Images from
Vibrofluidization Experiments

The estimated value of 2.57 for the fractal dimension of the Silica R974 agglomerates, for

example, is close to that for diffusion-limited aggregation (namely, 2.5) (Friedlander,

2000). As such an aggregation mechanism is reasonable for the extremely fine primary

particles used in our study, the fractal dimension estimated from the bed height data and

the above analysis is very encouraging. However, the estimated agglomerate diameter

from this analysis is much larger than the experimentally measured value (see Table 3.5),

which SEM photographs, showed to be approximately 30 microns, but in good agreement

with the bright agglomerates seen in Figure 3.9 obtained by photographing the surface of

the bed using a high-speed digital camera with an extremely
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Figure 3.9 Six laser and camera results capturing Silica R974 agglomerates in an 
aerated vibrofluidized bed. Each shot is 1.1 mm in height and width. Images of other 
powders are in Appendix B. 

short exposure time. We suspect that considerable breakage of the fragile porous 

agglomerates took place when we aspirated the particles out of the bed and/or prepared 

the samples for SEM analysis. This might explain why the experimental SEM 

agglomerate sizes were much smaller than those estimated from the fractal analysis . 

3.3.5 Voidage 

Since agglomerates were being fluidized, it is important to carefully label the various 

ways in which one can define voidage. The overall voidage, c, is defined as the fraction 

of the total bed volume occupied by the fluid . 
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Here, pp and pb denote the density of the primary nano-particles and the apparent density

of the bed, respectively. The volume fraction of primary particles in the bed, 40, is then

equal to 1 - Є. Using 0.03 g/cm 3 and 2.2 g/cm 3 for the bulk density of a settled bed and

primary nanoparticle density, respectively, one finds that Є ~ 0.9864 for Silica R974,

Silica R972, and Silica A300. Voidages for Silica A90, Alumina C, and Titania P25 are

0.9823, 0.9881, and 0.9711, respectively. Thus, the bed of nanoparticles was already

highly fluffy even before fluidization. As the bed expands, the voidages for Silica R974,

Silica R972, and Silica A300, for example, increase to above 0.99.

The agglomerate themselves were very porous (see the high resolution SEM

image shown in Figure 2.9). The apparent density of the agglomerates and the fraction

of bed volume occupied by the agglomerates are denoted by p a and (1),, respectively. It

The void space between the agglomerates, represented as

The porosity inside the agglomerates, Єagg , i s

The challenge is to estimate p a and se from the experimental data. As stated in

the previous chapter, Chaouki et al. (1985) and Wang et al. (2002) assumed that

Equation 3.6 is problematic as it assigns a value of zero to s e for a settled bed (i.e., when

However, for expanded bed values higher than twice the initial height,

Equation 3.6 is a sufficient approximation.
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Using the agglomerate diameters obtained from the modified Richardson-Zaki

analysis (on the order of 100 microns) and the experimental pressure drop data, se was

estimated at various gas velocities through the Blake-Kozeny equation (Ergun equation at

low Reynolds numbers)

Table 3.6 compares the values of s e determined through the three methods mentioned

above, namely (a) the modified Richardson — Zaki analysis which only used the bed

expansion data, (b) the pressure drop data which assumed an agglomerate size estimated

from the Richardson — Zaki analysis and (c) the simple approach employed by Chaouki et

al. (1985) and Wang et al. (2002) (i.e., Equation 3.6). Table 3.6 corresponds to the data

presented earlier in Figure 3.6 for Silica R974. Results from other powders are listed in

Appendix C. It is clear from Table 3.6 that the values of s e determined by the first two

methods are close to each other (except at the lower end of voidage), which lends further

support to the fractal approach. It could have been demanded that both the pressure

drop and bed expansion data be satisfied accurately by the model and allowed the

agglomerate size to vary (slightly) with gas velocity. This revealed that the agglomerate

size decreases slightly as the gas velocity is increased, which is physically reasonable.

The third method, using Equation 3.6 gave quite reasonable values of s e for values

of H/Ho >2 (Table 3.6), but gave very small (and unphysical) values of se at lower gas

velocities.



Table 3.6 Summary of Interagglomerate Voidages Calculated from the Modified
Richardson—Zaki Method, Blake—Kozeny Equation, and Equation 2.15 for Silica R974
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3.4 Conclusions

It was demonstrated that nanosized powders (Silica R974, Silica R972, Silica A300,

Silica A90, Alumina C, and Titania P25) could be easily and smoothly fluidized in the

form of stable, very porous agglomerates with negligible elutriation with the aid of

vibration and aeration. Vibration helped to break up typical group C behavior and

allowed the bed to be fluidized at much lower gas velocities and with much improved bed

expansion and fluidization quality. 	 Because the bed remained fluidized for a

considerable amount of time with only air flow after vibration was turned off for the

hydrophobic powders, vibration appeared to be necessary only initially to disrupt

interparticle networks, after which aeration was sufficient to sustain the hydrophobic bed

in a fluidized and expanded state for an extended period of time at relatively low gas

velocities. For hydrophilic powders, vibration was needed to sustain fluidization.

Without vibration, the hydrophilic powders appeared to return to typical group C

behavior. A modified Richardson—Zaki approach combined with an assumption of
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fractal agglomerates was successfully applied to analyze the bed-expansion data reported

here, from which the agglomerate size, other agglomerate properties, and the

interagglomerate voidage were estimated. The pressure drop data were found to be

consistent with agglomerate size determined in this manner.



CHAPTER 4

MAGNETICALLY ASSISTED FLUIDIZED BED

4.1 Introduction and Theory

The fluidization of nanoparticles using magnetic assistance is a novel idea. As stated in

Chapter 1, some groups, such as Rosensweig et al. (1981), Zhu and Li (1996), and Thivel

et al. (2004), have fluidized magnetic particles themselves in a magnetic field but not

used magnetic particles to help aid the fluidization of other types of particles. However,

this work has established the concepts that in the presence of magnetic intensity, bubble

size and overall gas bypassing decrease. Thus, fluidization quality should improve. It

will be seen that the magnetic particles give a similar type of excitation that vibration

provides to break up interparticle forces for certain nanopowders to allow the bed to

expand and fluidize. The fluidization theory should remain the same as described in

Chapter 2.

4.2 Experimental Setup, Materials, and Procedure

A schematic of the magnetically assisted fluidized bed is shown in Figure 4.1. The

magnetically assisted fluidized bed is very similar to the conventional fluidized bed

except for the added electromagnetic coils. All beds used were simple, vertical

conventional beds with a cylindrical, acrylic, transparent chamber with a distributor

whose purpose is to distribute the fluidizing medium through the chamber. The

distributor was composed of layers of wire mesh with 40 micron pores. Equipped along

96
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the length of the chamber was a series of ports for sampling and pressure measurements.

As done in the conventional and vibrational fluidization experiments, pressure

measurements were made with a pressure transducer (Omega), as depicted in Figure 4.1.

Water manometers (Dwyer Mark II) were also used for verifying pressure drop

measurements. The powder bed was placed above the distributor, through which the

compressed, bone-dry air flowed. Bone-dry air was used to minimize any humidity

effects since liquid bridges between agglomerates can significantly alter the behavior of

fluidization. As with all previous fluidization experiments, large agglomerates that may

have formed from packaging, storage, and transportation were removed by sieving the

as-received powders before each experiment through a 500 micron sieve. However, this

is the only mode of fluidization assistance that can fluidize nanoparticles smoothly

without having to sieve the powders first since the magnetic particles can break large

agglomerates that may have formed during handling and storage. This is one of the

major advantages of using magnetic assistance. The powders used are the same as those

used in Chapter 2 and Chapter 3, summarized in Table 2.2. Flow rate was measured by

rotameters (Gilmont). The visualization apparatus was the same as described in Chapter

2 and Chapter 3.

The electromagnetic coils were placed near the bottom of the bed, above the

distributor. Magnetic particles, made of barium ferrite and 1.4 mm in average diameter,

were placed inside the chamber along with the powder bed. When the magnetic field is

turned on, the magnetic particles vigorously move around in the direction of the magnetic

field and spin but do not fluidize together with the powder. The magnetic field intensity,

measured by a Gaussmeter, was about 100 to 150 Gauss at the center of the chamber.
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To start a typical fluidization experiment with magnetic assistance, a similar 

procedure is followed as the procedure for conventionally fluidized experiments, as 

detailed in Chapter 2. The few differences are that the magnetic particles, the weight of 

which is equal to the weight of the powder bed used (but a much smaller volume), are 

placed inside the chamber with the powder bed and that the field generator coils are 

turned on when beginning the experiment. The lexan chamber with a diameter of 6.25 

cm was used for all experiments. Distributor material was the wire mesh as described in 

Chapter 2. The amount of powder used for the experiments were as follows: 10.0 grams 

of Silica R974, 10.0 grams of Silica R972, 11.0 grams of Silica A300, 15 .0 grams of 

Silica A90, 14.0 grams of Alumina C, and 40.0 grams of Titania P25. 

I 

i p. --n •• ;-

Figure 4.1 Schematic of the magnetically assisted fluidized bed. I: Compressed air; 2: 
rotameter; 3: distributor; 4:fluidized bed with magnetic particles; 5: pressure transducer; 
6: computer; 7: laser generator; 8: mirror; 9: CCD camera; 10: digital camera; II: 
magnetic coils; 12: fan to cool down magnetic coils. 
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4.3 Results and Discussion

4.3.1 Fluidization Behavior

It was observed experimentally that with the aid of magnetic excitation, a bed of

nanoparticles, depending on the powder properties, can be smoothly fluidized without

bubbles. Some powders did not successfully fluidize with magnetic assistance and

instead clumped into a hard cake, which with time immobilized the movement of the

magnetic particles. An example can be seen in Figure 4.2 where Silica A300 was able

to fluidize smoothly with high bed expansion and in Figure 4.3 where Titania P25 was

not able to fluidize well with magnetic assistance.

Silica R974, Silica R972, and Silica A300 had high bed expansion, at least 3 times

the settled bed height. Silica A90, Alumina C, and Titania P25 all had poor bed

expansion and eventually solidified into hard agglomerates or into a cake. Silica A90,

Alumina C, and Titania P25 all have higher bulk or particle densities than the other three

particles used. These particles are not as fluffy or light and as a result, might be more

susceptible to being compacted by the collisions of the magnetic particles. In a way, the

magnetic particles also serve as another layer of a distributor and since the magnetic

particles are so large, they could cause a relatively poor distribution of air; they are also

heavy and therefore greatly increase the inertia of the system. This explains why none

of these particles, even Silica R974, Silica R972, and Silica A300, could be fluidized

without the coils turned on.
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Figure 4.2 Effect of magnetic assistance on an aerated bed of Silica A300. (left): 
without the coils powered on, (right): with the coils powered on. 

Figure 4.3 Effect of magnetic assistance on an aerated bed of Titania P25 . (left): with 
coils powered on, (right): photo taken from above the bed looking down onto the surface 
of the bed which has compacted into a hard cake by the magnetic particles. 

• 
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4.3.2 Pressure Drop

The pressure drop results were interesting in that unity was not always obtained (see

Figure 4.4). For Silica R974 and Silica A300, the measured pressure drop was 95% and

85% of the weight of the bed per unit cross sectional area. Also seen from Figure 4.4,

the pressure drop results from Silica R972 showed good agreement to unity (Equation 2.1

and Equation 2.2). Silica A90, Alumina C, and Titania P25 did not fluidize due to

compaction from the collisions of the magnetic particles and thus, pressure drop results

are not applicable. The pressure drop across the magnetic particles was found to be

negligible as was the pressure drop through the distributor. Upon closer visual

inspection, the bed appeared to have interesting flow characteristics. The bottom of the

bed would be very vigorous since it was the location of the movement of the magnetic

particles. Above this area, the behavior of the bed was very smooth and less vigorous

than at the bottom. In regards to the pressure drop for Silica R974 and Silica A300, a

reason that the pressure drop did not equal one could be attributed to the agglomerates

near the bottom of the bed not completely participating in the fluidization. Also, the

complete collection of powders after a magnetically assisted fluidization experiment was

difficult due to some compaction near the distributor and thus, could lead to an

inaccuracy in pressure drop measurements. Some might be compacted against the wall,

for example. Figure 4.4 shows some typical pressure drop and bed expansion data for

Silica R974, Silica R972, and Silica A300. Plots for other powders are shown in

Appendix D.
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Figure 4.4 Pressure drop and bed expansion ratio as functions of air superficial velocity
for a fluidization experiment of Silica R974 (top), Silica R972 (center), Silica A300
(bottom) with magnetic assistance in a lexan tube with a diameter of 6.25 cm and a wire
mesh distributor (weight of magnetic particles equaled the weight of the particle bed).
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4.3.3 Minimum Fluidization Velocity

As stated previously, the minimum fluidization velocity is defined as the point at which

the pressure drop begins to equal the weight of the bed per unit area. For Silica R972,

since the pressure drop plateau did equal the weight of the bed, this definition of

minimum fluidization can be directly followed. For Silica R974 and Silica A300, a

pseudo minimum fluidization velocity was defined at the point where the pressure drop

begins to plateau regardless of its relation to the bed weight. These minimum

fluidization velocities and the minimum expansion velocities for Silica R974, Silica R972,

and Silica A300 are summarized in Table 4.1.

Table 4.1 Summary of Minimum Fluidization Velocities and Minimum Expansion
Velocities from Fluidization Experiments with Magnetic Assistance

4.3.4 Agglomerate Size

The bed expansions for Silica R974, Silica R972, and Silica A300 were high and their

fluidization very smooth, which made the data very good for the fractal analysis and

modified Richardson-Zaki method employed in previous chapters and detailed in Section

2.3.4. From the analysis, a plot of (u/v o )1/n vs. 4 for n = 5 (the Richardson-Zaki exponent

is a function of Reynolds number, but is about 4.8 in the viscous flow regime) based on

the experimental data given in Figure 4.4 is shown in Figure 4.5. The plot for each

powder appears to be reasonably linear, lending further support to the analysis described
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Figure 4.5 Plot of Equation 2.14 for n = 5.0 to obtain agglomerate size, density, and
interparticle voidage for Silica R974, Silica R972, and Silica A300 during fluidization
with magnetic assistance. R2 is the square of the correlation from a simple linear
regression model that measures the amount of variability in the observed data.

in Section 2.3.4. The estimated values of the fractal dimensions and agglomerate size of

Silica R974, Silica R972, and Silica A300 are summarized in Table 4.2. The Df values

of 2.58, 2.57, and 2.61 obtained for the three powders are close to 2.5, which is

associated with diffusion-limited aggregation. The results summarized in Table 4.2 are

intuitively consistent; since the magnetic particles are breaking up the large agglomerates

at the bottom of the bed, it is logical to conclude that the overall agglomerate sizes would

be smaller than without external forces as aids. For comparison, summarized in Table

4.3 and Table 4.4 are the data from Table 4.2 and the results obtained from Chapter 2

(conventional) and Chapter 3 (vibration). Also of note is that the fractal dimension
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remains relatively constant. The agglomerate size results match well with in-situ

images taken, which resulted in sizes ranging from 80 to 200 microns. It should be

noted that when applying the modified Richardson-Zaki method and fractal analysis, the

slope and y-intercept from such plots as Figure 4.5 were very sensitive to the number of

points chosen from the raw data. Generally, the points from the onset of bed expansion

and thereafter are used for the modified Richardson-Zaki method and fractal analysis.

Table 4.2 Df and Agglomerate Size Values Evaluated at n=5 for Silica R974, Silica
R972, and Silica A300 from Fluidization Experiments with Magnetic Assistance

Table 4.3 Summary of Df (at n=5) for Silica R974, Silica R972, and Silica A300 from
Fluidization Experiments with No Assistance (conventional), with Vibration, and with
Magnetic Assistance 

Table 4.4 Summary of da [microns] results for Silica R974, Silica R972, and Silica
A300 from Fluidization Experiments with No Assistance (conventional), with Vibration,
and with Magnetic Assistance
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4.3.5 Voidage

It is clear from the compaction in the beds of Silica A90, Alumina C, and Titania P25,

that the characteristic of the bed changes drastically and that as a result, the voidage in

the bed is also very different compared to pre-experiment conditions. Table 4.5

compares the values of Єe determined through the three methods used previously, namely

(a) the modified Richardson — Zaki analysis which only used the bed expansion data, (b)

the pressure drop data which assumed an agglomerate size estimated from the Richardson

— Zaki analysis and (c) the simple approach employed by Chaouki et al. (1985) and Wang

et al. (2002) (i.e., Equation 3.8). Table 4.5 corresponds to the data presented earlier in

Figure 4.4 for Silica A300. Results from other powders are listed in Appendix E.

Table 4.5 Summary of Interagglomerate Voidages Calculated from the Modified
Richardson—Zaki Method, Blake—Kozeny Equation, and Equation 2.15 for Silica R974
during fluidization with magnetic assistance

4.4 Conclusions

This chapter showed that another force (magnetic excitation), other than vibration or

mechanical agitation, could help fluidize nanoparticles. This leads to the idea that

nanoparticles simply need to have their interparticle forces disrupted whether it be

through vibration, acoustics, or magnetic assistance. It was also shown that for the
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experimental setup and conditions used in this chapter, the magnetic assistance did not

work on every powder. It should be noted that wire meshes were used as the distributor

for the experiments described in this chapter and that flow characteristics may play a

large role in determining whether magnetic assistance can improve fluidization quality.

Using a sintered metal distributor, for example, has shown that the compaction of Silica

A90 is significantly lessened (Yu, 2004). In the setup used for this chapter, the magnetic

particles appeared to crush some of the heavier particles (Silica A90, Alumina C, Titania

P25) into hard agglomerates or a cake. The forces leading to agglomeration were

obviously much stronger than those leading to deagglomeration. Thus, one of the goals

is to find a balance between agglomeration and deagglomeration rates to smoothly

fluidize porous nano-agglomerates and the role of distributor can be one of the factors

affecting this balance. In conclusion, the magnetic assistance is a very unique method to

improve fluidization. While vibration, acoustics, rotation, and others have been used to

improve fluidization quality for micron sized powders, magnetic assistance has never

been used in the fashion presented in this chapter. One of the biggest advantages of

using magnetic assistance is the elimination of the need to sieve particles. Any large

agglomerates can be easily broken by the magnets spinning and colliding around in the

magnetic field.



CHAPTER 5

ROTATING FLUIDIZED BED

5.1 Introduction and Theory

A rotating fluidized bed (RFB) is somewhat different than the fluidized beds used in

Chapter 2 (conventional fluidization), Chapter 3 (aerated vibrofluidization), and Chapter

4 (magnetically assisted fluidization). For example, the setup of the bed is very

different in that the rotating fluidized bed is simply a cylindrical distributor, which rotates

about its axis whereas the bed for conventional, vibrational, or magnetic fluidization

setups are vertical tubes with a distributor near the bottom. The centrifugal forces can

be varied because the bed can be rotated at different speeds. When the rotating fluidized

bed is spun, the powders line the wall of the distributor. The fluidizing air then enters

the distributor radially to start fluidizing the powders layer by layer. As stated in

Chapter 1, several groups (Mutsers and Rietema, 1977; Levy et al., 1978; Takahashi et al.,

1984; Chang et al., 1985; Kao et al., 1987; Chen, 1987; Watano et al., 1993; Tardos et al.,

1998; Watano et al., 1999; Qian et al., 2001; Qian et al., 2001; Zhu et al., 2003; Matsuda

et al., 2001; Ding et al., 2002; Watano et al., 2004; Arastoopour et al., 2004) studied

rotating fluidized beds, also known as centrifugal fluidized beds. Each of these studies

was about powders whose diameters were no smaller than a few microns. Matsuda et al.

(2001, 2002) fluidized micron sized glass beads and nanosized titania in a rotating

fluidized bed as described in Chapter 1. Their results will be detailed in the discussion

section. The work of Matsuda et al. (2001, 2002) and this chapter are among the first

studies to describe the fluidization of nanoparticles in a rotating fluidized bed. However,
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the general theory for rotating fluidized beds has been established and will be described

below.

For Geldart group A or B powders, Kao et al. (1987) found that the average

minimum fluidization velocity can be calculated by equating the pressure drop across the

fixed bed to that of the fluidized bed, which is expressed in Equation 5.1.

The radii are explained as follows: r i is the inner surface radius and ro is the distributor

radius. Since the powders experience a centrifugal force, the velocity required to

fluidize the powders will be higher than in a conventional gravity-driven bed. This

means that the pressure drop equation (Equation 2.1, Equation 2.2) needs to incorporate

the centrifugal force. The more rigorous equations from the work of Chen et al. (1986)

were simplified by Kao et al. (1987) to produce expressions for the pressure drop. The

pressure drop in the fixed bed region can be expressed by

And the pressure drop in the fluidized bed region can be expressed by
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For typical group A and B powders, fluidization often appears to occur layer by

layer in rotating fluidized beds (Kao et al., 1999). As the superficial air velocity

increases, the inner layer (closest to the center of the rotating, cylindrical chamber) of

powder, which feels less centrifugal force than the outer layer (closest to the distributor),

is fluidized first. A particle closer to the axial center of the chamber will have a velocity

higher than a particle near the distributor. Also associated with proximity to the center

is higher drag forces and less centrifugal forces. Figure 5.1 shows an example of a plot

of pressure drop and velocity that evidences such layer by layer fluidization. The curve

in between the linear packed bed region and the fluidized region where the pressure drop

is plateau represents the partial fluidization that occurs in the bed of glass particles.

Layer by layer, starting from the top layer of the powder down to the layer near the

distributor, becomes fluidized with increasing superficial velocity. When the bed is

fully fluidized, the differential pressure plateaus.

Figure 5.1 Pressure drop of 200 micron glass beads with various rotational speed.
(Matsuda et al., 2001)
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5.2 Experimental Setup, Materials, and Procedure

A schematic of the rotating fluidized bed apparatus is illustrated in Figure 5.2. Figure

5.3 is a photograph of the unit. For the rotating fluidized bed apparatus, clean, dry,

compressed air at 120 psig passes through a Pitot tube to accurately measure the flow rate.

Flow rate was also measured with flowmeters (Gilmont, Omega). Depending on the

rotational speed, the appropriate flowmeter was used. The air passes through a

tangential inlet into the rotating fluidized bed so that the flow can be as uniform as

possible in the radial direction when entering through the distributor to fluidize the

nanoparticles. The outer chamber, inlet, and outlet chamber are constructed of

polycarbonate to enhance visibility. The outer chamber, houses and supports the

distributor, as well as acts as the plenum for the fluidizing medium to flow. The woven

stainless steel distributor, whose pore size is 100 microns, diameter is 3.625 inches, and

length is 3.750 inches, rotates at a desired speed anywhere between 0 and 2000 RPM by a

motor. Four settings were used: 300, 600, 900, and 1200 RPM, which is equivalent to a

centrifugal acceleration of 6, 25, 56, and 100 "g," respectively. A piece of wire mesh of

10 microns in pore size was placed at the fluid exit inside the unit so that any elutriated

powders could be retained.

The pressure drop was measured with a pressure transducer and when possible,

verified with a water tube manometer. The powder used was Silica R974 (Degussa)

whose properties are listed in Table 2.2. A digital camera is used to record the

fluidization behavior. Unfortunately, the high-speed laser and CCD camera were unable

to take successful photos to measure in situ agglomerate size due to the design

requirements of the RFB. Measurements of superficial gas velocity and pressure drop



Digital 
Camera 

Vent 

Transducer r--+----, 

Air Rotameters 

Compressor 

Sintered Metal 
Distributor 

Nanoparticles 
(Silica R974) 

Motor 

Figure 5.2 Schematic of the rotating (centrifugal field) fluidized bed system. 
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Figure 5.3 Photographs of the rotating (centrifugal field) fluidized bed unit without the 
exit vent attached (left) and with the exit vent attached (right). 

• 
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data across the bed are collected and recorded in a PC. Only Silica R974 powder was

used in these experiments, the properties of which are summarized in Table 2.2.

To start a typical experiment, an amount of Silica R974 was sieved through a 500

micron mesh and carefully measured. The powder is then placed into the chamber and

the unit is properly sealed to prevent powder leakage. The motor is started and set to the

desired speed and a few minutes are allowed for the powders to line the walls evenly.

The flow rate is incrementally increased and pressure drop and bed behavior are recorded.

The digital video footage is used to measure bed expansion through Adobe Photoshop.

When the images and video data are imported into Adobe Photoshop, the bed heights are

measured in pixels with the Adobe Photoshop measurement tool and then converted into

a length. Each experiment was repeated thrice and the data were averaged.

5.3 Results and Discussion

5.3.1 Fluidization Behavior

Upon increasing velocity, the bed expands from its packed state (see Figure 5.4 and

Figure 5.5). Small surface instabilities occurred sometimes and could be attributed to

small bubbles. Due to the centrifugal force, the bed compacts before fluidizing air

enters the bed. As a result, it is slightly easier to see a smoother fluidization with

decreasing velocity after increasing velocity. The experiment serves to break up the

compaction and once fluidized, the bed is less likely to be susceptible to cracks and

channels at the lower velocities. At higher velocities however, the surface becomes less

clear and some powders start to elutriate out to the vent. Since the bed is relatively

small, only 2.5 grams of powder were used for all experiments since any more powder
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would restrict the range of velocities that can be used without elutriation occurrmg. 

However, a 10-gram experiment was conducted for clarity of observation (see Figure 5.5). 

The higher the centrifugal force, the higher the velocity is needed to obtain similar bed 

expansions that were observed from experiments at lower centrifugal forces. 

(a) (b) (c) 
Figure 5.4 Photographs of 2.5 grams of silica nanopowder (a) in a pre-experiment state, 
(b) in an RFB spun at 1200 RPM without aeration, and (c) in an RFB spun at 1200 RPM 
with aeration. 

W 00 W 
Figure 5.5 Photographs of 10 grams of silica nanopowders (a) in a pre-experiment state, 
(b) in an RFB spun at 1200 RPM without aeration, and (c) in an RFB spun at 1200 RPM 
with aeration. 

• 
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5.3.2 Pressure Drop

As with all fluidization experiments with pressure taps located below the distributor, the

pressure drop across the distributor must be subtracted out of the full pressure drop.

Since one of the pressure taps is located near the inlet of the air flow, before the

distributor, the pressure drop across an empty bed at different rotational speeds must be

measured and used to correct for the pressure drop across the powder bed. Despite this

correction and the correction for centrifugal force in Equation 5.3, the measured pressure

drop was much higher than expected. It has been conjectured that the theory presented

by Kao et al. (1987), which assumed flow only in the radial direction might not be

completely valid for the experiments, performed and might have to be corrected for

tangential flow effects such as Coriolis forces and other effects (Quevedo, 2003).

However, the pressure drop did plateau which indicates that the bed was fluidized.

Absolute pressure drops for each RPM used for both the empty bed and a powder bed are

shown in Figure 5.6. While it can be seen from this figure that the pressure drop across

the distributor is much higher than the pressure drop across the powder bed, the

instrumentation to measure differential pressure was sensitive enough to measure the

pressure drop associated with the powder bed. The total pressure drop measured had to

have the pressure drop of the distributor subtracted in order to obtain the pressure drop

across the powder bed. Non-dimensionalized with the weight of the bed per unit cross

sectional area is shown in Figure 5.7. According to Quevedo (2003), the higher the

rotational speed, the effects of Coriolis forces decrease and the non-dimensionalized

pressure drop when fluidized (i.e., the plateau region) should approach unity. The

results presented here concur with the theory presented by Quevedo (2003). It should
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be noted in that in Figure 5.7, the slopes of the pressure drops at the different rotational

speeds before the minimum fluidization velocity (i.e., in the packed bed region) are

different which is contrary to typical results from group A or group B powders.

Matsuda et al. (2001) obtained very similar results, shown in Figure 5.8, which also

showed higher pressure drops than expected. The smaller slopes with increasing

rotational speed are counter-intuitive since a smaller slope means a lower voidage (see

Ergun equation). One would assume that under higher centrifugal forces, the bed of

porous nanoagglomerates would become more compact, which means that the voidage in

the bed would decrease, not increase. A possible error could arise from the large

discrepancy between the pressure drop associated with the distributor and that of the

powder bed. However, as seen from Figure 5.8, Matsuda et al. (2001) obtained similar

results in that slope decreased with increasing rotational speed. This is contrary to the

findings from Watano et al., (1999) and from Quevedo (2003) who both obtained the

opposite trend. Clearly, a more in depth study is needed to investigate the reasons for

these findings. The design of the RFB unit may play a large role. The RFB unit used

for this chapter and the unit used by Matsuda et al. (2001) were considerably smaller than

the unit used by Watano et al. (1999) for example. Perhaps, the flow characteristics in

smaller beds are much more complicated than those in larger beds.
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Figure 5.6 Pressure drop and bed expansion ratio as functions of air superficial velocity
at 300, 600, 900, and 1200 RPM for an empty bed (top) and for a powder bed with the
distributor pressure subtracted (bottom).
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Figure 5.7 Non-dimensionalized pressure drop (with Equation 5.3) and bed expansion
ratio as functions of air superficial velocity at 300, 600, 900, and 1200 RPM.

Figure 5.8 Pressure drop of 7 nm titania particles at various G (left) and comparison
between calculated and experimental values of pressure drop (right).
(Matsuda et al., 2001)
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5.3.3 Minimum Fluidization Velocity

The minimum fluidization velocity is plotted as a function of G in Figure 5.9. The

limited data appeared to be somewhat linear with G. The minimum fluidization velocity

here is the velocity at which the pressure drop begins to plateau.

Figure 5.9 Minimum fluidization velocity plotted with G.

5.3.4 Agglomerate Size

Since the bed expansion data, which are plotted in Figure 5.10, was known, the modified

Richardson-Zaki and fractal analysis, detailed in Chapter 2, can be applied. For a

Richardson-Zaki exponent of 5, the plots of Φ vs. (u/V 0) 1/n were plotted (see Figure 5.11),

from which the fractal dimension (Df) and agglomerate size (d a) were calculated and are

summarized in Table 5.1. The theory suggested that agglomerate size tended to

decrease with G. This supports the idea that as G increases and the size of the

agglomerates decreases, the fluidization quality should be improved. In addition, the
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Figure 5.10 Bed expansion ratio plotted with superficial air velocity plotted at 300, 600,
900, and 1200 RPM.

Figure 5.11 Plots of vs. (u/Vo)l/n for each rotational speed.
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Table 5.1 Df and Agglomerate Size Values Evaluated at n=5 for Each G

higher centrifugal and shear forces could be breaking the large agglomerates into smaller

ones. Unfortunately, due to the design requirements of the RFB, a laser and CCD

camera could not be situated such that clear images of in situ agglomerates could be

taken for comparison. The results of Matsuda et al. (2001), however, concur that

agglomerate sizes decrease with increasing G.

5.3.5 Voidage

According to Figure 5.6, the slopes of each experiment before the plateau pressure drops

are different which implies that voidages in the bed are different for the different cases of

G. The theory presented by Kao et al. (1987) applies only to Group A and B powders;

thus the voidage will remain constant in the packed bed regime (before the bed becomes

fluidized). Since the bed expansions (especially at high rotating speeds) were not very

high, the method to calculate voidage presented by Wang et al. (2002) did not produce

reasonable voidages. However, the voidages calculated by the modified Richardson -

Zaki method as described in Chapter 2, did give reasonable results. Figure 5.12 shows a

plot of these voidages vs. superficial air velocity at each G. It can be seen from the

figure that the higher the G, the less voidage there is which rings true since higher G tends

to cause compaction.
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Figure 5.12 Voidage calculated by the modified Richardson-Zaki method plotted with
superficial velocity.

5.4 Conclusions

It was clearly demonstrated that the silica nanoparticles can be fluidized in a rotating

fluidized bed with considerable bed expansion (at the lower rotating speeds), which is not

observed for the fluidization of micron sized powders. The modified Richardson-Zaki

method and fractal analysis were applied and suggested very reasonable results for

agglomerate size, voidage, and fractal dimension. The advantages of using a rotating

fluidized bed include higher air flow rates, high shear, and elimination of wall effects.

Smaller agglomerate sizes were calculated for higher G values, where shear forces are

high. Future work should include a method for measuring agglomerate sizes in situ so

that calculated results can be compared.



CHAPTER 6

SUPERCRITICAL FLUIDIZED BED

6.1 Introduction and Theory

The idea of fluidizing nanoparticles under supercritical conditions is quite novel and

studies pertaining to it, if any prior to this dissertation, are not found in the literature. It

has been observed that dense fluid systems such as gases at very high pressure and

liquids fluidize solid particles as if they were Geldart group A particles. As the gas

pressure is increased, borderline Geldart group B systems behave more like Geldart

group A systems. It is also known that increasing density or viscosity usually decreases

minimum fluidization velocity as well as terminal velocity (Knowlton, 1977; Werther,

1983) However, Rowe (1984) conducted a study that showed that small particles (<100

microns) and systems where Re < 2, the minimum fluidization velocity is independent of

pressure. An increase in temperature means a decrease in density, but for gases, an

increase in viscosity. And it is thought that the minimum fluidization velocity would

decrease with an increase in temperature. Like Knowlton (1977) and Werther (1983),

Abrahamsen and Geldart (1980) also found that by increasing the density and viscosity of

the gas, the fluidization system becomes more aeratable as if it were a liquid-solid

fluidization and thus the behavior of fluidization becomes more smooth and bubbleless.

Equipped with this knowledge, the fluidization of nanoparticles at high pressure seemed

very promising and a behavioral study was conducted.

123
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6.2 Experimental Setup, Materials, and Procedure

Figure 6.1 shows different angles of the fluidized bed chamber that was used in the

experiments. The chamber, made of 0.4 cm thick plastic, 3.2 cm x 3.2 cm (square cross

section), and 19.65 cm in height, was securely placed above a sintered metal distributor

with pores that are less than 3 microns in size. The distributor and bed chamber were

secured to another plastic piece to fit a high-pressure stainless steel vessel. The stainless

steel vessel, pictured in Figure 6.2, was 8.25 cm in inner diameter, 25 cm in inner height,

with three small quartz windows that were 1.5 cm in diameter and located 15 cm from the

top of the vessel.

A pressure transducer was used to measure the pressure drops across the bed and

distributor. A thermocouple and a pressure gauge were used to measure temperature and

pressure of the vessel, respectively. There were several valves installed such that the

inlet and outlet tubes can be used simultaneously or not in sync. This was necessary so

when pressurizing the system, the bed can be pressurized from both ends (underneath the

bed and above the bed). A mass flow pump, whose maximum was 25 kg/hr, and flow

meter were used to measure the flow rate of CO2 and various pressure gauges and

thermocouples were located at several other places in the system such as the refrigerating

system to cool the CO 2 . With each flow setting, the pump processed CO 2 in a pulsating

manner which made for non-continuous flows. The critical temperature and pressure

for CO2 are 31 C and 73.9 bars, respectively. A digital camera was used to record what

was seen through the windows. The powders used for these experiments were Silica

R974, Silica A300, and Silica A90 whose properties are listed in Table 2.2. All particles

used were sieved through a 500 micron sieve and 2.5 grams of each powder were used
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for each run. This amount of powder (2.5 grams) corresponded to a height of

approximately 4 cm in the pressurized fluidization chamber. The surface of the powder

bed was located right below the viewing window. In this way, the initial stages of

fluidization can be clearly viewed and recorded through the window.

To start an experiment, the CO2 tank is opened and is led to a refrigerant system

where the CO2 is cooled so that it is in the liquid state and easily pumpable in the mass

flow pump. The CO2 is then heated to a desired temperature, in this case 40 degrees

Celsius. Appropriate valves are turned to start pressurizing the fluidization system.

The stainless steel vessel is pressurized extremely slowly from both below and above the

distributor to prevent any disturbance to the bed. Pressurizing from below the

distributor would prematurely fluidize or disturb the bed before the desired conditions are

met. Pressuring from above the distributor would compact the bed which is an

undesirable start for a fluidization experiment. Once the bed is pressurized to the

desired pressure (105, 160, or 230 bars) and the vessel temperature is stable, the CO2 is

set to flow at a low velocity. The vessel pressure is maintained with a manual back

pressure regulator (BPR). At each flow rate, the BPR must be used to regulate the

pressure of the vessel. The pressure drop and the behavior of the bed (if seen through

the window) are recorded at each flow rate.
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Figure 6.1 Photographs of different views of the fluidization chamber bed, which IS 

placed in a stainless steel vessel (see Figure 6.2). 

openings for absolute pressure 
and temperature measurement, 
differential pressure measurement, 
C02 inlet and outlet, and vent exit • 

C02 outlet (inlet), vent 

ports for ab,;ohJte',
pressure and 
temperature 

25 em 

8.25 em C02 inlet (outlet) 

pressure taps for 
differential pressure 
transducer 

Figure 6.2 Sketch of stainless steel vessel (left) and of the vessel with the square 
fluidized bed chamber, see Figure 6.1, situated inside (right). 

• 
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6.3 Results and Discussion

As stated in Chapter 1, there were a few groups who fluidized micron sized particles

under supercritical conditions. Marzocchella and Salatino (2000) fluidized group A and

B powders with CO2 at pressures from ambient to supercritical. They found that the

region of homogenous fluidization is broader as the fluid density increases, or in other

words, as pressure increases. According to this group, supercritical conditions allowed

for the bed to be fluidized at a lower fluidization velocity and thus had a higher bed

voidage according to the Richardson and Zaki (1954) equation u=u0Єn . The lower

minimum fluidization velocities and overall smoother fluidization were taken advantage

of in the supercritical coating experiments conducted by Schreiber et al. (2002).

The pressure drop data obtained here was rather incongruous to the fluidization

theory available. The beds appeared very fluidlike and smoothly fluidized yet the

pressure drop data did not plateau. This might perhaps be due to the limitation of the

flowmeter. The pressure drop across the distributor was of course subtracted out of the

total pressure drop measured. The expected plateau pressure drop was calculated to be

0.239 mbar for a 2.5 gram bed of powders in a 3.2 cm X 3.2 cm square bed. Figure 6.3

shows the pressure drop data obtained. While visual observations indicated smooth

fluidization and vigorous movement of the nanoagglomerates starting at low velocities,

the measured pressure drop did not appear to plateau, as stated previously. It is not

certain that the pressure drop for a supercritical experiment should follow conventional

fluidization theory. Nonetheless, for comparison, pressure drops per bed height (AP/H)

for the "packed bed region" were calculated by the Blake-Kozeny equation for voidages
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Figure 6.3 Pressure drop vs. mass flow rate of the empty bed (top) and of Silica A90
(bottom).

of 0.5, 0.6, and 0.7 and are plotted in Figure 6.4. Given that the weight of the bed

accounts for 0.239 mbar and that the initial height is 4 cm, the expected value for AP/H at

fluidization conditions is roughly 0.598 mbar/cm, which is the cut-off point for the plots

shown in Figure 6.4. With bed expansion data, this value can be more accurately

calculated and thus, it is strongly recommended that for future experiments, another bed
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Figure 6.4 AP/H vs. superficial CO2 velocity as predicted by the Blake-Kozeny
equation for Є = 0.5, 0.6, and 0.7 at 105 bar (top), 160 bar (center), and 230 bar (bottom).
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be designed with a full length window so bed expansion may be measured. As a

summary, the predicted minimum fluidization velocities are given in Table 6.1. In

comparison to visual observations, the beds appeared fluidized at roughly 0.2 cm/s and

thus, the values calculated for a voidage of 0.6 appear to be more accurate than a voidage

of 0.5 or 0.7.

Table 6.1 Summary of Predicted Minimum Fluidization Velocities at Є = 0.5, 0.6, and
0.7 at 105, 160, and 230 bars

The pulsing flow did not appear to hinder fluidization and in fact, inspires the idea

that pulsing flow could help improve fluidization in general. The pulsing flow was

reminiscent of a low-intensity vibration, which has been shown to clearly improve quality

of fluidization (see Chapter 3). Figure 6.5 shows photos of what an experiment looked

like when it was prepared for a mixing study. The mixing study, with carbon black,

showed promising results in that every experiment resulted in a well-mixed sample after

processing. The subsequent figures (Figures 6.6 through 6.13) are the collection of

images obtained for Silica 90, Silica R974, and Silica A300 at 105, 160, and 230 bars, all

at 40°C. At these pressures, the densities of CO2 are approximately 0.620, 0.805, and

0.871 g/mL, respectively and the viscosities are 5.92 X 10 -6 , 7.60 X 10 -6 , 9.00 X 10 -6 Pa s,

respectively. Overall, smooth fluidization with good mixing was observed and less

nanoagglomerates in the freeboard region was noted at higher pressures.
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Figure 6.13 Photographs of Silica R974. From left to right: pre-experiment / loading at 
1.01325 bar, and at 160 bars: 1.0, 1.2, 2.0, 2.1 , 2.2, 2.3, 2.4, 2.5 kg/hr (0 .034, 0.040, 
0.067,0.071,0.074,0.078,0.081,0.084 cm/s, respectively) . 

6.4 Conclusions 

It was experimentally observed that nanoparticles can be smoothly fluidized under 

supercritical conditions. The visual observations showed that a substantial bed 

expansion occurs and that the number of agglomerates in the freeboard region is 

significantly decreased at higher pressures. The results from the mixing studies 

supported that the powder was being fluidized. A better design, especially with a long 

window so all of the bed can be seen, is necessary. Once all the parameters and values 

can be accounted for, applications such as mixing and coating of nanoparticles under 

supercritical conditions can be examined more thoroughly. 

• 



CHAPTER 7 

APPLICATIONS OF NANOPARTICLES AND FLUIDIZED BEDS 

7.1 Mixing 

Sanderson and Rhodes (2001) used a common technique of utilizing tracer particles to 

observe the flow of particles within fluidized beds. They used various bed diameters to 

observe the scaling behavior of active particle motion and solids downflow velocity. 

They determined that tracer particle size and bed material must be matched in order to 

obtain the predicted particle circulation rate. Formisani et al. (2004) studied the 

fluidization behavior of mixtures of two dissimilar solids in the 100 to 800 micron range. 

They showed that minimum fluidization velocity is no longer relevant in these systems, 

and that such systems must be characterized by a velocity range, bounded by initial and 

final fluidization velocities. They also demonstrated that particle size ratio and mixture 

composition determine the segregating behavior of the mixture, more so than the density 

difference of the materials. 

Given some of these previous studies and the data shown in this dissertation, the 

idea to mix different nanoparticles together in a fluidized bed is very promising. To test 

the idea, a small amount of silica was dyed blue with methylene blue for mixing/tracer 

experiments. The dyed powder was placed in the oven for at least 24 hours to remove as 

much moisture as possible and then was used as tracer particles to observe during the 

fluidization of nanoparticles. Carbon black and molybdenum oxide were among other 

particles used for tracer and mixing studies. 

Figure 3.6 shows the progression of mixing of a small layer of dyed-blue particles 
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placed at the top of the vibrated fluidized bed of Silica R974. With in a few minutes, the 

entire bed turned blue and appeared well mixed. Figure 7.1 shows another simi lar 

experiment but with carbon black instead of methylene blue dyed particles shown in Figure 

3.6, showing that particles ofa different composition and density can also be mixed well. 

From the tracer studies, it was seen that the particle movement follows down along the 

wall s and up aga in through the center of the bed. This cycle is illustrated in Figure 7.2. 

(a) (b) (c) (d) (e) (f) (g) 
Figure 7.1 Progression of mixing of carbon black particles during aerated 
vibrofluidization (r=3, f= 50 Hz) of Silica R974 with time (s): (a) 0, (b) 7, (c) 13 , (d) 18, 
(e) 25, (f) 36, (g) 63. Aeration of a vibrated fluidized bed was started at t=0, and the 
figure panels show simultaneous bed expansion and mixing. 

Figure 7.2 Direction of circulation of powders in the fluidized bed. 

• 



138 

Silica R974 was also mixed with Titania P25 in the vibrated assisted fluidized bed. 

The two powders were layered in one set of experiments as shown in Figure 7.3. The 

layering did not make a significant difference in quality of mixing as opposed to having 

one powder above the other in the bed. It is believed that the agglomerates are dynamic, 

i.e. , they do not retain their integrity during fluidi zation and that they break and form again 

Titania P25 layer 

Aerosil R974layer 

Titania P25 layer 
-3 

Aerosil R974layer 

Figure 7.3 Photograph of layers of Titania P25 and Aerosil Silica R974, prepared for a 
mixing experiment. 

rapidly, thus resulting in intimate mixing. The degree of mixing was very high, which is 

supported by several SfM/EOX and TEM/EELS analyses shown in Figure 7.4 and Figure 

7.5. Titania P25, due to is crystalline structure, is generally brighter and whiter than Silica 

R974 in the SEM images, which has been verified by EOX analyses. The images in 

Figure 7.4 and Figure 7.5 show that the agglomerates were well mixed and EDX, SEM, 

TEM images show evidence of mixing on the nanoscale, indicating that vibrofluidization 

could be used to mix agglomerates of di fferent species of nanoparticles . 

• 
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Set I: 

Set 2: 

Figure 7.4 Two sets ofSEM and EDX analyses ofthe mixture between Si lica R974 and 
Titania P25 . In each set: (Top): original SEM image, (Bottom right) : image used for 
EDX analysis, (Bottom center): particles of Titania P25, (Bottom right): particles of 
Silica R974. 

• 
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Figure 7.5 TEM analyses of the mixture between Silica R974 and Titania P25 from 
vibrofluidization experiments (r = 3, f = 50 Hz). 

Figure 7.6 TEM analyses of the mixture between Silica R974 and Titania P25 from 
magnetically assisted fluidi zation experiments. 

Figure 7.6 shows TEM images from mixing experiments of Silica R974 and Titania 

P25 in a magnetically assisted bed. The images are similar to those from Figure 7.5 and 

make it difficult to quantifY exactly which method of fluidi zation is the better mixer over 

the other. Hand shaken mixtures and conventional fluidi zation showed poor intimate 

mlXtng on the nanoagglomerate level, which indicates that the presented methods of 
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ass isted fluidization of nanoparticles do indeed offer an advantage. Although there is 

evidence ofnano-scale mixing (see Figure 7.5 and Figure 7.6), further research is needed to 

systematically detemline on which length scale intimate mixing of different species of 

nanoparti cles can be achieved. 

Figure 7.7 SEM analysis of Molybdenum Oxide (top left), Silica R974 agglomerate 
(top right), and an agglomerate showing the mixture between Silica R974 and 
Molybdenum Oxide from vibrofluidization experiments. 

• 
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7.2 Filtration

Since the nanoagglomerates are very porous, there is a significant amount of surface area

for its size. In this way, it is believed that the pores could possibly retain aerosols such

as dust or mist. There are no studies available in the literature that examine porous

nanoagglomerates as a filter media. However, there are several studies that research

filter media for filtration of aerosols.

Smith (1993), for example, studied the progress and acceptance rates of

rigidized filter media, which can preserve their surface area despite continuous pulse

cleaning. Smith found that rigidized filters accounted for a small portion of the market

at the time, but predicted that their use would grow rapidly, and highlighted the

conditions under which the rigidized media outperformed traditional media.

Kanaoka and Kishima (1997) studied the accumulation and release of 1.9 micron

mean diameter dust particles in a ceramic filter by measuring the pressure drop across the

filter under various conditions. They identified three stages of accumulation in which

the dust first forms a dense layer, followed by a loose layer, followed by a final layer of

average density. The efficiency of dust expulsion during the cleaning process was found

to depend on the density of the dust layers and pressure of the cleaning air.

Maus and Umhauer (1997) examined the efficiency of fibrous filter media on

biological and non-biological particles in the range of 0.5 to 30 microns, both

theoretically and experimentally. Their apparatus used a high-pressure xenon lamp and

optical particle counters to measure the number of particles before and after the filter.

They found that non-biological and biological particles of the same size behaved

similarly under the test conditions, and that the measured efficiencies matched well with
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their theoretical models . 

Yu and Liu (2004) applied a fractal analysis to model the permeability of porous 

media. Their model shows that the relative permeability depends on saturation of the 

media, a pore fractal dimension, and a tortuosity fractal dimension. These fractal 

dimensions allowed the model to represent the complex structures of pores in some 

porous media by two metrics. 

Marre, et al. (2004) created a simple and effective model of sintered granular 

membrane filters to estimate filtration efficiency. By approximating the filter shape as a 

rectangular lattice and tuning the model with parameters representing the structural 

tortuosity and effective kinetic coefficient of particle adsorption, the model provides 

accurate estimates without the computational complexity of more sophisticated models. 

For this dissertation, a simple experiment was setup to test the principle of using 

the porous nanoagglomerates as the filter media themselves. A flat, packed bed (114" x 

6" x 6") of Alumina C nanoagglomerates was used to flow aerosol through, as depicted in 

Figure 7.8. Dried silicon carbide (-0.5 microns in diameter) was used as the aerosol, 

packed filter bed of Alumina C 
nanoagglomerates sandwiched 
between layers of wire meshes 

Figure 7.8 Photograph and schematic of filtration experiment. 

• 
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which was sent through a Sympatec ROOOS particle disperser and then into the bed. 

Silicon carbide is brown in color and Alumina C is white in color, which made 

differentiating between the two easy. Particle size distributions before and after the 

filter were measured with an Aerosizer and the simple test proved somewhat successful in 

that over 90% of aerosols were retained in the nanoagglomerates. Evidence of 

successful filtration can be seen in Figure 7.9 where the region before the filter is covered 

with aerosol particles and the region after the filter is relatively clear of SiC particles. 

The post-experiment filter material was analyzed with an SEM and EOX. Figure 7.10 

shows these results, where the bright spots and grayer spots have been verified by the 

EOX to be SiC and Alumina particles, respectively. Since this is not a fluidization 

(a) (b) 

(c) (d) 

Figure 7.9 Photographs of (a) the area before the filter, (b) a close-up view of the area 
before the filter, (c) the area after the filter, and (d) a close-up view of the area after the 
filter. 

• 



145 

Figure 7.10 SEM images of post-experiment filter material containing SiC particles 
(brighter, whiter spots) . Grayer agglomerates are Alumina C agglomerates. 
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experiment, it is out of the scope of the dissertation. However, the idea of using a

fluidized bed as the filter should not be dismissed and should be investigated. Other

powders should be investigated as well such as Silica R974 whose agglomerates are

extremely porous and might be better suited for filtration applications.

It should be noted that nanoagglomerates pose very promising applications. The

nanoagglomerates used in this dissertation are very unique in their low bulk density, high

specific surface area, and high porosity (-99%). Thus, when used as a filtering media

for liquid droplets (mist) the nanoagglomerates will tend to take in the fine droplets into

the pores due to capillary action rather than retain them on their outer surface, greatly

increasing the filtering capacity as compared to solid granular media. The high surface

area poses another advantageous feature for several applications such as in catalysis.

7.3 Coating

The supercritical fluidization of nanoparticles is very promising for coating applications

due to the higher pressure and temperature that make it ideal for polymer coatings.

Although the in situ images could not show an agglomerate in the process of actually

breaking or forming, it is believed that the equilibrium between the agglomerates

breaking and forming does occur and is too fast for the CCD camera to capture. A study

by Wank et al. (2004) strongly supports the theory that there is a mechanism occurring that

involves the constant formation and breakage of agglomerates. Their telling results were

from their particle size distribution analysis from their ALD (atomic layer deposition)

experiments in a vibrofluidized bed under high pressure. Wank et al. (2004) coated 7-11

micron boron nitride particles through the ALD process in a vibrofluidized bed. In situ
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agglomerate photos showed that the fluidized agglomerate sizes can be as large as over 300

microns. Yet, when the particles were analyzed under the SEM and TEM, they saw

individual particles coated. They also saw that the size distribution was hardly different

than the pre-processed particles. This strongly implies that during fluidization, the

agglomerates continually break and re-form such that the ALD process can reach every

particle on an individual basis. This makes the fluidization of nanoparticles quite a strong

possibility for a method to coat nanoparticles. The various methods for enhancing the

fluidization of nanoparticles presented in this dissertation which result in less bubbling,

less gas bypassing and less elutriation would then be very good options to choose from

when designing coating systems.



CHAPTER 8

CONCLUSIONS

8.1 Closing Remarks

The fluidization of ultrafine (<201.1m) particles, which are also known as Geldart group C

particles, is possible due to the formation of nanostructures or agglomerates. The

formation of agglomerates affects the bulk properties of the powder and is essential for

many powder processes since agglomerates flow more easily, produce less dusting, and

are easily dispersed into individual particles. From recent studies, the properties of the

primary particles determine the properties of the agglomerates as well as the behavior of

fluidization. Two different fluidization behaviors of nanoparticles have been observed

thus far: agglomerate bubbling fluidization (ABF) and agglomerate particulate

fluidization (APF). At low superficial gas velocities, a bed of cohesive powders is in

the channeling or plug formation mode. When the superficial gas velocity is raised,

however, the bed is disrupted to form agglomerates of different sizes. If bubbles are

seen and vigorous fluidization of the agglomerates takes place, the type of fluidization is

ABF. If bubbles are not seen and smooth, liquid-like fluidization of the agglomerates

takes place with very high bed expansion ratios, the type of fluidization is APF. These

different modes of nanoagglomerate fluidization were coined by Wang et al. (2002).

It was shown in this dissertation that nanoparticles fluidize in the form of

agglomerates and that the quality of fluidization can be significantly enhanced with

external forces. The external forces should not be limited to vibration, magnetic

assistance, and rotation and the variation in conditions should not be limited to increasing

148
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pressure and temperature. There are other forces such as acoustic waves or gas pulsing

that can be just as suitable for certain systems of powders. The key find is that it was

clearly observed that fluidization assistance such as vibration helped to disrupt the

interparticle forces that are prevalent in group C powders such as the nanoparticles used

in this study. The nanoparticles with higher bulk or particle properties tended to exhibit

Geldart group B (bubbling, ABF) fluidization behavior and the nanoparticles with lower

bulk and particle properties tended to exhibit Geldart group A fluidization behavior

(aeratable, APF). Using a modified Richardson-Zaki equation and fractal analysis, a

model was derived to estimate agglomerate size during fluidization. The results were in

close agreement with experiments for all the possible methods of fluidizing nanoparticles

except the rotating bed results where experimental verification of the theory could not be

done.

The knowledge of the different fluidization phenomena in conventional, vibrating,

magnetically assisted, rotating fluidized beds as well as under supercritical conditions

will be extremely useful in several applications and processes. Such processes, as

mentioned in Chapter 1, include the production of homogenous nanomixtures,

nanostructured materials, and coating of nanoparticles to obtain materials with tailored

properties. The ultimate goal of this nanoparticle fluidization research is to apply the

results from novel techniques and methods to the processing of nanoparticles. Efforts

from the experimental and modeling standpoints must be combined to have a

fundamental understanding of nanoparticle fluidization and consequently, to make major

advancements in this emerging field of nanotechnology.
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8.2 Recommendations

More particles of more variety in particle and bulk properties should be tested.

However, with the current knowledge of nanoparticle fluidization, the applications areas

should also be pursued. Scale-up issues should be considered and thus, experimental

setups on a pilot scale or larger, would help deepen and clarify the experimental results

and theories presented here. The supercritical experiments should be redesigned so that

the entire bed could be seen as visual observation is one of the most valuable pieces of

information when trying to describe fluidization. Also the pressure drop across the bed

at supercritical pressures must be measured more accurately. Filtration experiments

should also be tried in a fluidized bed instead of a packed bed and many different

nanoagglomerates should be tested.



APPENDIX A 

TYPICAL PHOTOGRAPHS OF VIBRATED EXPERIMENTS 

The following images are of vibrated experiments with flow rates of (left to right) 0, 0.15, 
0.41 , 0.71 , 1.06, and 1.38 em/s. Chamber material was lexan and distributor material 
was wire mesh. 
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Silica r = 1.5 11.0 
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Silica R972, F = 4.5, 10.0 grams
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APPENDIXB 

LASER AND CCD CAMERA IMAGES 

The following are images from the laser and CCD camera system. The results capture 
nanoagglomerates in a conventionally fluidized bed and in an aerated vibrofluidized bed 
(r = 3, f = 50 Hz). Each shot is 1.1 mm in height and width. 

Aerosil R974 agglomerates in a conventionally fluidized bed , 

Aerosil R974 agglomerates in a vibrofluidized bed 
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Aerosil R972 agglomerates in a conventionally fluidized bed 

Aerosil R972 agglomerates in a vibrofluidized bed 
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Aerosil 300 agglomerates in a conventionally fluidized bed 

Aerosil 300 agglomerates in a vibrofluidized bed 
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Aerosil 90 agglomerates in a conventionally fluidized bed 

Aerosil 90 agglomerates in a vibrofluidized bed 
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Alumina C agglomerates in a conventionally fluidized bed 

Alumina C agglomerates in a vibrofluidized bed 
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Titania P25 agglomerates in a conventionally fluidized bed 

Titania P25 agglomerates in a vibrofluidized bed 



APPENDIX C

SUMMARY OF INTERAGGLOMERATE VOIDAGES
IN VIBRATED EXPERIMENTS

The following is a summary of the interagglomerate voidages calculated from the
modified Richardson-Zaki method, Blake-Kozeny Equation, and Equation 2.15 during
vibrofluidization (F = 3, f = 50 Hz).

Silica R974

u (cm/s)

ε e

(Modified
Richardson-Zaki)

εe

(Blake-Kozeny
Equation)

εe = 1 - H0/Hem,

0.15 0.529 0.526 0.400
0.21 0.584 0.566 0.469
0.27 0.634 0.602 0.534
0.33 0.666 0.632 0.574
0.40 0.689 0.657 0.603
0.47 0.704 0.677 0.623
0.54 0.718 0.700 0.641
0.62 0.729 0.709 0.655
0.70 0.742 0.724 0.671
0.79 0.755 0.738 0.688
0.87 0.763 0.741 0.697

Silica R972

U (cm/s)

εe

(Modified
Richardson-Zaki)

εe

(Blake-Kozeny
Equation)

εe = 1 - H0/Hesp

0.27 0.483 0.480 0.400
0.41 0.567 0.538 0.497
0.55 0.606 0.580 0.543
0.71 0.634 0.614 0.575
0.89 0.648 0.639 0.591
1.06 0.660 0.659 0.605
1.22 0.664 0.673 0.610
1.38 0.677 0.688 0.625
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Silica A300

U (cm/s)
εe

(Modified
Richardson-Zaki)

εe
(Blake-Kozeny

Equation)
εe =1 - H0/Hexp

0.04 0.314 0.369 0.000
0.15 0.376 0.480 0.091
0.27 0.428 0.540 0.167
0.41 0.608 0.615 0.429
0.55 0.688 0.667 0.545
0.71 0.718 0.701 0.588
0.89 0.746 0.729 0.630
1.06 0.762 0.749 0.653
1.22 0.771 0.764 0.666
1.38 0.779 0.778 0.677

Silica A90

U (cm/s)

εe

(Modified
Richardson-Zaki)

εe

(Blake-Kozeny
Equation)

εe = 1 - H0/Hexp

0.27 0.580 0.462 0.101
0.41 0.619 0.521 0.184
0.55 0.619 0.542 0.184
0.71 0.619 0.573 0.184
0.89 0.623 0.598 0.192
1.06 0.660 0.627 0.273
1.22 0.686 0.649 0.328
1.38 0.683 0.659 0.322
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Alumina C

U (cm/s)
ε e

(Modified
Richardson-Zaki)

εe
(Blake-Kozeny

Equation)
εe = 1 - H0/Hexp

0.15 0.556 0.528 0.008
0.21 0.566 0.564 0.031
0.27 0.573 0.573 0.046
0.34 0.592 0.610 0.088
0.41 0.603 0.620 0.114
0.48 0.603 0.633 0.114
0.55 0.603 0.645 0.114
0.63 0.603 0.653 0.114
0.71 0.708 0.693 0.347
0.80 0.776 0.727 0.500
0.89 0.778 0.729 0.504
0.97 0.778 0.745 0.504
1.06 0.785 0.750 0.519
1.14 0.786 0.761 0.523
1.22 0.788 0.767 0.527
1.31 0.786 0.772 0.523
1.38 0.792 0.782 0.536

Titania P25

U (cm/s)

ε e

(Modified
Richardson-Zaki)

εe

(Blake-Kozeny
Equation)

εe = 1 - H0/Hexp

0.55 0.411 0.537 0.174
0.71 0.429 0.541 0.182
0.89 0.444 0.541 0.182
1.06 0.462 0.545 0.189
1.22 0.483 0.576 0.244
1.38 0.496 0.579 0.250



APPENDIX D

PRESSURE DROP AND BED EXPANSION DATA

The following are plots of non-dimensionalized pressure drop and bed expansion ration
vs. superficial air velocity for the different modes of fluidization.
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Silica R974 - Magnetically Assisted Fluidized Bed
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Silica R972 - Conventional Fluidized Bed

Silica R972 - Vibrofluidized Bed Or = 3, f = 50 Hz)



Silica R972 - Magnetically Assisted Fluidized Bed
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Silica A300 - Conventional Fluidized Bed

Silica A300 - Vibrofluidized Bed (F = 3, f = 50 Hz)



Silica A300 - Magnetically Assisted Fluidized Bed
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Silica A90 - Conventional Fluidized Bed

Silica A90 - Vibrofluidized Bed Or = 3, f = 50 Hz)



Alumina C - Conventional Fluidized Bed
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Alumina C - Vibrofluidized Bed (F = 3, f = 50 Hz)

Titania P25 - Conventional Fluidized Bed



Titania P25 - Vibrofluidized Bed (F = 3, f = 50 Hz)
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APPENDIX E

SUMMARY OF INTERAGGLOMERATE VOIDAGES
IN MAGNETICALLY ASSISTED EXPERIMENTS

The following is a summary of the interagglomerate voidages calculated from the
modified Richardson-Zaki method, Blake-Kozeny Equation, and Equation 2.15 during
fluidization with magnetic assistance.

Silica R974 during fluidization with magnetic assistance, weight of magnets = 10.0 grams

U (cm/s)

εe

(Modified
Richardson-Zaki)

εe

(Blake-Kozeny
Equation)

εe =1 - H0/Hexp

0.55 0.766 0.715 0.550

0.71 0.773 0.772 0.640

0.89 0.794 0.810 0.700

1.06 0.816 0.832 0.735

1.22 0.831 0.846 0.757

1.38 0.845 0.857 0.775

Silica R972 during fluidization with magnetic assistance, weight of magnets = 10.0 grams

U (cm/s)

εe

(Modified
Richardson-Zaki)

εe

(Blake-Kozeny
Equation)

εe= 1 - H0/Hexp

0.55 0.682 0.7200 0.548
0.71 0.725 0.7326 0.609
0.89 0.757 0.7528 0.654
1.06 0.788 0.7764 0.698
1.22 0.802 0.7930 0.719
1.38 0.819 0.8097 0.743

Silica A300 during fluidization with magnetic assistance, weight of magnets = 11.0 grams

U (cm/s)

εe

(Modified
Richardson-Zaki)

εe

(Blake-Kozeny
Equation)

εe = 1 - H0/Hexp

0.15 0.549 0.541 0.010
0.27 0.628 0.576 0.183
0.41 0.657 0.585 0.246
0.55 0.737 0.613 0.424
0.71 0.765 0.645 0.484
0.89 0.792 0.677 0.544
1.06 0.816 0.705 0.595
1.23 0.835 0.727 0.637
1.38 0.846 0.744 0.662
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