# **Copyright Warning & Restrictions**

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen



The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

#### ABSTRACT

### TRANSMISSION OF LIGHT AND AUDIBLE SOUND IN A SYNTHETIC FOG MEDIUM

#### by Bhavin Babaria

The primary goal of the thesis was to study the propagation of visible light and auditory sound through a synthetic fog medium compared to an ambient air environment. It is known that the fog substantially decreases the visibility however; this has not been studied quantitatively. Further information regarding other energies such as sound is also needed to understand how the energy reacts in the fog medium. The extent of visual and auditory degradation in humans needs to be investigated. Researchers have studied light transmitted through water, air; however, no one has studied how light or sound is transmitted through a synthetic fog medium. The first aspect of this thesis was to build the appropriate environment for the experiment, which used light sensors to detect the intensity of the light, and a sensitive microphone to detect the frequency of sound in an unknown environment. Lab-VIEW, a graphical programming language, was used to gather data for the sound experiment. Data were then analyzed by graphing the relationship of intensity of sound vs. distance vs. different production level of fog and frequency vs. distance vs. different production level of fog in the varying density of the synthetic fog medium. The data, which were collected from the light meter, in the fog medium, were then compared with the data collected in the room filled with ambient air. Similarly, the sound energy was detected using a microphone, in the synthetic fog medium, which was compared with the sound signal transmitted in an ambient air environment.

## TRANSMISSION OF LIGHT AND AUDIBLE SOUND IN A SYNTHETIC FOG MEDIUM

.

by Bhavin Babaria

A Thesis Submitted to the Faculty of New Jersey Institute of Technology In Partial Fulfillment of the Requirements for the Degree of Master of Science in Biomedical Engineering

**Department of Biomedical Engineering** 

January 2004

## **APPROVAL PAGE**

## TRANSMISSION OF LIGHT AND AUDIBLE SOUND IN A SYNTHETIC FOG MEDIUM

#### **Bhavin Babaria**

Dr. Tara Alvarez, Thesis Advisor Assistant Professor of Biomedical Engineering New Jersey Institute of Technology

Mr. Michael T. Bergen M.S, Committee Member Date VA New Jersey Health Care System/ Adjunct Professor of Biomedical Engineering New Jersey Institute of Technology

Dr. Stanley Reisman, Committee Member Professor of Biomedical Engineering New Jersey Institute of Technology

Dr./Richard Servatiue, Committee Member Associate Professor of Neuroscience New Jersey Medical School Director, Neurobehavioral Research Laboratory at VA NJ Health Care System

Date

Date

Date

## **BIOGRAPHICAL SKETCH**

Author: Bhavin Babaria

Degree: Master of Science

Date: January 2004

## Undergraduate and Graduate Education:

- Master of Science in Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 2004
- Bachelor of Science in Computer Science New Jersey Institute of Technology, Newark, NJ, 2002
- Major: Biomedical Engineering



This thesis is dedicated to my parents. Thanks to my sister, Nilam, and my wife, Bhavika, for their enormous support throughout this thesis.

#### ACKNOWLEDGMENT

I extend my sincere gratitude and appreciation to all the people who made this Masters thesis possible.

I would like to thank Professor Michael Bergen for his enthusiasm and essential view on research and his aim of providing high-quality work has made an immense impression on me. Without his professional guidance, this thesis would not be possible. He has so many other projects and work to do, but he has never avoided me and was there for me whenever I needed his help. I owe him lots of appreciation for having me shown this way of research. He probably does not have any clue about how much I have learned from him.

I like to express my deepest gratitude to Dr. Tara Alvarez for providing all the necessary guidelines to write this thesis and always was available when I needed her guidance. She took lot of effort in reading my initial drafts of the thesis and provided me with valuable assistance.

Thanks to Dr. Stanley Reisman for providing suggestions and valid feedback. He was interested in my project and provided his valuable time to go over my thesis.

Thanks to Dr. Rick Servatius that he gave me the opportunity to work on the project and for letting me use the facility at VA health care. Dr. Servatius has provided all type of necessary funding for this thesis. I really appreciate his supervision over my project and his support.

Finally, thanks to Scott Soldan and Rupal Patel, Biomedical engineer at East Orange VA hospital. They have offered me their valuable time and expertise in biomedical instrumentation. Thanks to all other members of the research crew at East Orange VA hospital for their support.

vi

| TABLE ( | <b>OF CONTENTS</b> |
|---------|--------------------|
|---------|--------------------|

| C | hapter                                            | Page |
|---|---------------------------------------------------|------|
| 1 | INTRODUCTION                                      | 1    |
|   | 1.1 Objective                                     | 1    |
|   | 1.2 Background Information of Light and Human Eye | 3    |
|   | 1.2.1 Light                                       | 3    |
|   | 1.2.2 Physiology of Eye                           | 4    |
|   | 1.3 Background Information on Sound               | 6    |
|   | 1.3.1 Sound Waves                                 | 6    |
|   | 1.3.2 Physiology of Ear                           | 8    |
| 2 | METHODOLOGY                                       | 10   |
|   | 2.1 Experimental Room Setup                       | 10   |
|   | 2.2 Hardware                                      | 11   |
|   | 2.2.1 Fog Machine                                 | 12   |
|   | 2.2.2 Exhaust System                              | 13   |
|   | 2.2.3 Audible System                              | 14   |
|   | 2.2.4 Visual System                               | 16   |
|   | 2.3 Software                                      | 18   |
|   | 2.3.1 Introduction to Lab VIEW Programming        | 18   |
|   | 2.3.2 Introduction to Cool Edit                   | 19   |
|   | 2.3.3 Easy Stand Alone                            | 20   |
|   | 2.4 Data Acquisition                              | 21   |

# TABLE OF CONTENTS (Continued)

| 2.4.1 Auditory System                                | 22 |
|------------------------------------------------------|----|
| 2.4.2 Visual System                                  | 24 |
| 2.5 Data Analysis                                    | 24 |
| 2.5.1 Light                                          | 25 |
| 2.5.2 Sound                                          | 27 |
| 3 RESULTS                                            | 30 |
| 3.1 Light Experiment Results                         | 30 |
| 3.1.1 Light Actual Results                           | 31 |
| 3.1.2 Normalized Data                                | 41 |
| 3.2 Sound Results                                    | 58 |
| 3.2.1 Tables of Sound Experiment                     | 58 |
| 3.2.2 Graphs of Sound Experiment                     | 64 |
| 4 DISCUSSION                                         | 69 |
| 4.1 Light Experimentation                            | 69 |
| 4.1.1 Data by Color                                  | 69 |
| 4.1.2 Data by Production                             | 70 |
| 4.1.3 Data by Distance                               | 72 |
| 4.2 Sound Experiment                                 | 73 |
| 5 CONCLUSIONS                                        | 74 |
| APPENDIX A FRONT PANEL VIEW OF SOUND EXPERIMENT      | 76 |
| APPENDIX B BLOCK DIAGRAM OF AUDIBLE SOUND EXPERIMENT | 77 |

# TABLE OF CONTENTS (Continued)

| REFERENCES | 78 |
|------------|----|
|------------|----|

# LIST OF TABLES

| Tabl | le F                                                                                                                                                                                                           | age |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.1  | Original Wavelengths of the Colors                                                                                                                                                                             | 27  |
| 3.1  | Actual Intensity of Red Light Collected at Different Distance and Production                                                                                                                                   | 31  |
| 3.2  | Intensity of Orange Light Collected at Varying Production and Distance                                                                                                                                         | 31  |
| 3.3  | Intensity of Yellow Light at Different Distance and Production of Fog                                                                                                                                          | 32  |
| 3.4  | Intensity of Green Light in Lux as a Function of Distance and Production of                                                                                                                                    | 32  |
|      | Fog                                                                                                                                                                                                            |     |
| 3.5  | Intensity of Purple Light in Lux at varying distance and Production                                                                                                                                            | 32  |
| 3.6  | Intensity of Blue Light in Lux at Varying Distance and Production                                                                                                                                              | 33  |
| 3.7  | Intensity of White Light in Lux at Varying Distance and Production                                                                                                                                             | 33  |
| 3.8  | Intensity of Red Light Against Different Production and Distance                                                                                                                                               | 41  |
| 3.9  | Intensity of Orange Light Respect to Distance and Production Level of Fog                                                                                                                                      | 41  |
| 3.10 | Intensity of Yellow Light Respect to Distance and Production Level of Fog                                                                                                                                      | 42  |
| 3.11 | Intensity of Green Light Respect to Distance and Production Level of Fog                                                                                                                                       | 42  |
| 3.12 | Intensity of Purple Light Respect to Distance and Production Level of Fog                                                                                                                                      | 42  |
| 3.13 | Sound Recorded During Control (no Fog) as a Function of Distance Between<br>the Transmitter and Receiver for Frequencies Between 50 to 20, 000 Hz and<br>Intensity of Sound are Denoted in Decibel             | 59  |
| 3.14 | Sound Recorded During 10 Seconds of Fog Production as a Function of<br>Distance Between the Transmitter and Receiver for Frequencies Between 50 to<br>20,000 Hz and Intensity of Sound are Denoted in Decibel  | 60  |
| 3.15 | Sound Recorded During 20 Seconds of Fog Production as a Function of<br>Distance Between the Transmitter and Receiver for Frequencies Between 50 to<br>20,000 Hz and Intensity of Sound are Denoted in Decibel  | 61  |
| 3.16 | Sound Recorded During 30 Seconds of Fog Production as a Function of<br>Distance Between the Transmitter and Receiver for Frequencies Between 50 to<br>20, 000 Hz and Intensity of Sound are Denoted in Decibel | 62  |

## LIST OF TABLES (Continued)

## Table

## Page

3.17 Sound Recorded During 40 Seconds of Fog Production as a Function of 63 Distance Between the Transmitter and Receiver for Frequencies Between 50 to 20, 000 Hz and Intensity of Sound are Denoted in Decibel.....

# LIST OF FIGURES

| Figu | re                                                                | Page |
|------|-------------------------------------------------------------------|------|
| 1.1  | Electromagnetic spectrum                                          | 3    |
| 1.2  | The physical anatomy of eye                                       | 4    |
| 1.3  | Physiology of the ear                                             | 8    |
| 2.1  | Experimental room setup                                           | 11   |
| 2.2  | Synthetic fog machine(SFM)                                        | 12   |
| 2.3  | Fan to evacuate the fog                                           | 13   |
| 2.4  | Fan to blow fresh air                                             | 13   |
| 2.5  | Exhaust system                                                    | 14   |
| 2.6  | Microphone                                                        | 15   |
| 2.7  | Micrometer                                                        | 15   |
| 2.8  | A/D conversion                                                    | 15   |
| 2.9  | Speaker for sound transmission                                    | 15   |
| 2.10 | Chromo meter                                                      | 16   |
| 2.11 | Receptor head of chromo meter                                     | 16   |
| 2.12 | Mini Martin Mac                                                   | 17   |
| 2.13 | L shape stand connecting experimental room to the next room       | 17   |
| 2.14 | Intelligent USB box for the storage of the scenes                 | 20   |
| 2.15 | Block diagram of the software development of the sound experiment | 22   |
| 2.16 | Block diagram of the visual system                                | 24   |
| 2.17 | Relative spectral analysis                                        | 26   |

# LIST OF FIGURES (Continued)

| Figu | res P                                                                                                                                                                                                                                                                                                                                | age |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.18 | Helmholtz coordinates                                                                                                                                                                                                                                                                                                                | 26  |
| 2.19 | Microphone frequency response chart                                                                                                                                                                                                                                                                                                  | 28  |
| 3.1  | Data by red color is acquired by using three parameters distance the microphone<br>is placed from the transmitted (feet), fog density quantified by the number of<br>seconds the fog machine dissipated systitute fog, and intensity of the light<br>measured in Lux. Intensity of each color is shown respectively as a function of | 34  |
| 3.2  | Two dimensional graph of red light was analyzed from no fog(0 sec) to 10 seconds of fog production with distance difference between the source of light(MMM) and the receiver head of the chromometer                                                                                                                                | 34  |
| 3.3  | Orange light quantified in an environment with no fog and with fog density<br>starting from 2 second to 10 seconds of fog production. This graph shows the<br>intensity of orange light with respect to the distance difference between the<br>source and the receiver of the light and fog density                                  | 35  |
| 3.4  | The intensity of orange light as a function of fog density. Each line represents                                                                                                                                                                                                                                                     | 35  |
| 3.5  | Intensity of light at each density level of fog and distance for the yellow color                                                                                                                                                                                                                                                    | 36  |
| 3.6  | Two dimensional graphical analysis of yellow light                                                                                                                                                                                                                                                                                   | 36  |
| 3.7  | Intensity of green light in fog and varying density of fog at different distances                                                                                                                                                                                                                                                    | 37  |
| 3.8  | Intensity of green light is inversely proportional to density of fog                                                                                                                                                                                                                                                                 | 37  |
| 3.9  | Purple light intensity at varying distance and densities of fog                                                                                                                                                                                                                                                                      | 38  |
| 3.10 | Purple light intensity versus density at varying distance                                                                                                                                                                                                                                                                            | 38  |
| 3.11 | Intensity of blue light versus distance in feet and density of fog in seconds of                                                                                                                                                                                                                                                     | 39  |
| 3.12 | Blue light intensity at varying density of fog and distance                                                                                                                                                                                                                                                                          | 39  |
| 3.13 | Intensity of white light measured versus distance and density                                                                                                                                                                                                                                                                        | 40  |
| 3.14 | Intensity of white light is inversely proportional to density of fog and distance difference between the source and the receiver of the light                                                                                                                                                                                        | 40  |
| 3.15 | Normalized intensity of red color as a function of distance in feet and density of Fog                                                                                                                                                                                                                                               | 43  |

## LIST OF FIGURES (Continued)

Figures

Page

| 3.16 | Normalized intensity of orange color as a function of distance in feet and           | 43 |
|------|--------------------------------------------------------------------------------------|----|
|      | density of fog in time of production (sec)                                           |    |
| 3.17 | Normalized intensity of yellow color as a function of distance in feet and           | 44 |
|      | density of fog in time of production (sec)                                           |    |
| 3.18 | Normalized intensity of green color as a function of distance in feet and density    | 44 |
|      | of fog in time of production (sec)                                                   |    |
| 3.19 | Normalized intensity of purple color as a function of distance in feet and density   | 45 |
|      | of fog in time of production (sec)                                                   |    |
| 3.20 | Normalized intensity of blue color as a function of distance in feet and density     | 45 |
|      | of fog in time of production (sec)                                                   |    |
| 3.21 | Normalized intensity of white color as a function of distance in feet and density    | 46 |
|      | of fog in time of production (sec)                                                   |    |
| 3.22 | Intensity of different color lights in the ambient air (no fog) as a function of the | 47 |
|      | distance between the transmitter and receiver                                        |    |
| 3.23 | Intensity of different color lights at 2 seconds of fog production as a function of  | 48 |
|      | the distance between the transmitter and receiver                                    |    |
| 3.24 | Intensity of different colors lights with 4 seconds of fog production as a           | 48 |
|      | function of the distance between the transmitter and receiver                        |    |
| 3.25 | Intensity of different colors lights with 6 seconds of fog production as a           | 49 |
|      | function of the distance between the transmitter and receiver                        |    |
| 3.26 | Intensity of different colors lights with 8 seconds of fog production as a           | 49 |
| 0.20 | function of the distance between the transmitter and receiver                        |    |
| 3 27 | Intensity of different colors lights with 10 seconds of fog production as a          | 50 |
| 5.21 | function of the distance between the transmitter and receiver.                       |    |
| 3 28 | Percentage difference or percentage lost in intensity of six different colors of     | 51 |
| 5.20 | light from control to 2 seconds of fog production as a function of distance          |    |
|      | between the transmitter and receiver                                                 |    |
| 3 20 | Percentage difference or percentage lost in intensity of six different colors of     | 52 |
| 5.27 | light from control to 4 seconds of fog production as a function of distance          | 02 |
|      | hetween the transmitter and receiver                                                 |    |
| 2 20 | Demonstrate difference or percentage lost in intensity of six different colors of    | 52 |
| 5.50 | light from control to 6 seconds of fog production as a function of distance          | 54 |
|      | hetween the transmitter and receiver                                                 |    |
| 2 21 | Derecentage difference or percentage lest in intensity of six different colors of    | 53 |
| 5.51 | light from control to 8 seconds of fog production of a function of distance          | 55 |
|      | light, from control to 8 seconds of log production as a function of distance         |    |
| 2 22 | Detween the transmitter and receiver                                                 | 57 |
| 3.32 | recentage difference or percentage lost in intensity, of six different colors of     | 55 |
|      | light, from control to 10 seconds of log production as a function of distance        |    |
|      | between the transmitter and receiver                                                 |    |

3.33 Light intensity percent difference when the difference between the transmitter 54 and receiver was 2 feet for varying fog production times denoted in seconds.....

# **LIST OF FIGURES** (Continued)

# Figures

| 3.34 | Light intensity percent difference when the difference between the transmitter<br>and receiver was 3 feet for varying fog production times denoted in seconds                                                 | 54 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.35 | Light intensity percent difference when the difference between the transmitter<br>and receiver was 4 feet for varying fog production times denoted in seconds                                                 | 55 |
| 3.36 | Light intensity percent difference when the difference between the transmitter<br>and receiver was 5 feet for varying fog production times denoted in seconds                                                 | 55 |
| 3.37 | Light intensity percent difference when the difference between the transmitter<br>and receiver was 6 feet for varying fog production times denoted in seconds                                                 | 56 |
| 3.38 | Light intensity percent difference when the difference between the transmitter<br>and receiver was 7 feet for varying fog production times denoted in seconds                                                 | 56 |
| 3.39 | Light intensity percent difference when the difference between the transmitter<br>and receiver was 8 feet for varying fog production times denoted in seconds                                                 | 57 |
| 3.40 | Sound intensity level, in decibel (db), versus sound frequencies for control (no fog) condition with varying distances (feet)                                                                                 | 64 |
| 3.41 | Sound intensity level, in decibel (db), versus sound frequencies for 10 seconds condition with varying distances (feet).                                                                                      | 65 |
| 3.42 | Sound intensity level, in decibel (db), versus sound frequencies for 20 seconds condition with varying distances (feet).                                                                                      | 65 |
| 3.43 | Sound intensity level, in decibel (db), versus sound frequencies for 30 seconds condition with varying distances (feet).                                                                                      | 66 |
| 3.44 | Sound intensity level, in decibel (db), versus sound frequencies for 40 seconds condition with varying distances (feet).                                                                                      | 66 |
| 3.45 | Validation through comparison of sound meter purchased through Radio Shack<br>and the system developed from this research when the transmitter and receiver<br>were 1 foot apart. Results are within +/- 2 dB | 67 |
| 3.46 | Comparison of 10 KHz frequency in no fog and 40 seconds of fog medium                                                                                                                                         | 68 |
| A.1  | Front panel view of the sound experiment                                                                                                                                                                      | 76 |
| B.1  | Block diagram of the sound experiment                                                                                                                                                                         | 77 |

•

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Objective

The goal of this project was to analyze the transmission of audible and visual energy in an air environment, and compare it to results obtained from an environment filled with a synthetic fog medium. This research determined the amount of light and audible sound waves emitted through different density levels of the fog compared to the control, which is ambient air. This study also answered the following question: does the data collected through the light sensors and microphones in a fog medium correlate to data collected using the same protocol but from the environment without fog?

Researchers have studied sound in water and in air. Sound travels faster in the water compared to air [2]. "The speed of sound in water is 4.4 times faster in water than in air where the exact speed of sound in water is 1438 m/s, when the temperature of the water is 8 degrees Celsius."[2]. To date, no study has been conducted to quantify how sound travels in a fog medium. The key question this research addressed is, does sound and light travel faster or slower in a fog medium compared to an air medium. "The NTSB noted that in 1990 and 1991, four multiple-vehicle accidents were caused by fog on limited-access highways in the United States, involving more than 240 vehicles, had resulted in 21 fatalities and more than 90 injuries. In addition, the NTSB noted that between 1981 and 1989, accidents where fog was present on all classes of highways in the United States had resulted in more than 6,000 deaths. Although this is a small percentage of the total accidents, they are catastrophic and generally attract national media attention"[3] (NTSB-National Cooperative Highway Research Program). Many

deaths would have been prevented if appropriate traffic control techniques were available for the drivers in adverse conditions such as an environment filled with a fog medium. To create such safety devices, a visibility study is required. A key aspect of this research quantified the amount of light transmitted through a synthetic fog medium.

A synthetic fog machine was used as a source to generate the fog medium to be studied in this project. Fog is comprised of distilled water (22% by weight), glycerin (9%) and triethylene glycol (69%). Several studies have been conducted on the health risks imposed from synthetic fog on humans. The use of synthetic fog in theatrical activities has increased over the years. The National Institute of Occupational Safety and Health (NIOSH) conducted a study in 1990 through 1991 where they concluded that actors who were exposed to theatrical effects (smoke with glycerol and glycol) showed increased rates of asthma compared to actors who worked in musical productions that were not exposed to glycerol and glycol. Moline and colleagues studied 439 Broadway actors, who were exposed to the smoke (fog) such as the pyrotechnic theatrical effects which also uses glycerol, and concluded that there were health risks associated with exposure of actors to high levels of glycol smoke and mineral oil [4]. If the high level of glycol is avoided then actors should not be harmed. Finally, the glycol concentration should not exceed 40  $mg/m^3$  to avoid hazardous effects to the human body. "Pyrotechnics as currently used on Broadway, do not have a substantial effect on Actors' health." [4]. Synthetic Fog particles are equal to or less than 1 micron. The liquid used to create the synthetic fog is non-hazardous according to The Occupational Safety and Health Administration (OSHA) Hazard communication standard 1910.1200, subpart "Z" for "Toxic and Hazardous" substances [5].

#### **1.2 Background Information of Light and the Human Eye**

Light is one of the energies that will be transmitted into the two environments studied, the laboratory filled with ambient air (the control) and the laboratory filled with a synthetic fog. In order to understand the resultant data thoroughly, basic characteristics of light need to be studied. Section 1.2.1 provides background information on the basic properties of the light. Furthermore, it is important to understand how humans detect light. The human eye is a sensor that detects light and provides electric signals to the brain where the brain makes decisions based on the sensory input information. The physiology of the eye will be described in section 1.2.2.

#### 1.2.1 Light

.

Isaac Newton analyzed and experimented with the colors of light through a prism in 1672 [6]. Newton emitted white light through the prism and seven different colors were produced as a result. The seven colors (red, orange, yellow, green, blue, indigo, violet) were further studied to determine the wavelength. Red has the longest and violet has the shortest wavelength.



**Electromagnetic Spectrum Figure 1.1** Electromagnetic spectrum [6].

Light is quantified by its wavelengths (figure 1.1), which is the distance between the two peaks of a light wave where the symbol for wavelength is lambda ( $\lambda$ ). For example; red, yellow-green and violet have wavelengths of 680nm, 550nm, and 410nm, respectively. Humans can see colors between 400 and 700 nanometers (nm) of wavelength [6]. The intensity of the light is defined by flux or luminance. Two spectrums, which the human eye does not detect, are infrared light (above 1000nm) and ultraviolet light (below 400 nm).

#### **1.2.2 Physiology of Eye**

The eye is a sensitive and complex sensory organ. Vision is possible when light enters the eye through the pupil. The pupil is a round shape located in the iris. In a dark environment, the pupil expands in order to allow as much light as possible to enter. In the presence of a brighter environment, the bright pupil decreases in size to allow adequate light through from the source. The iris is a muscle that controls the aperture of the pupil. Once light passes through the pupil it progresses to the lens and then is projected to the fundus of the eye or the retina. The retina converts the image into an electrical signal, which propagates through the ganglion cells that comprise the optic nerve. The signal progresses to lateral geniculate nucleus and proceed to the visual cortex in the brain. [7]



Figure 1.2 The physical anatomy of eye [8].

Each eye has three layers (tough outer layer, middle layer, and inner layer) through which light passes before going to the brain via the optic nerve (figure 1.2). The outer layer is composed of the sclera and cornea. The sclera is a white outer cover of the eye, which is mostly composed of the protein collagen. The cornea is the outer layer in front of the eye. It is transparent and colorless. The cornea is composed of five layers where the outermost layer is called the epithelium, which is for the transparent material of the cornea. It does not contain any blood vessels, but it gets its nutrients from surrounding fluid and the vessels. The middle layer of the cornea consists of the choroids, the ciliary body and the iris. The ciliary body is the organ, which allows the lens to change its concavity and is used to focus an object. As the ciliary body contracts, it allows the lens to attain sharper focus. The lens is soft for younger people, typically younger than 35 years old; however, as a person ages the lens looses its elasticity. The iris is also part of the middle layer of the cornea. The iris is a muscle and controls the amount of light entering into the eye. It protects other organs within the eye from the light overexposure. The last layer is the inner layer, which is the retina.

Within the retina is the fovea. The fovea is very delicate part of the retina, mostly used for sensitive vision and contains acute cones (approximately 7 million in each eye) and rods (approximately 125 million in each eye)[9]. There are five types of cells in the retina; photoreceptors (rods and cones), bipolar, amacrine, horizontal, and ganglion cells. The optic nerve is mostly composed of ganglion cells, which passes electrical signals to the lateral geniculate nucleus (LGN). From the LGN, the signal traverses to the occipital lobe within the back of the brain. The cells of the primary visual cortex (V1), located in the occipital lobe, are the first ones to receive the signals from the lateral geniculate.

Signals conveying color information then go on to several nearby visual areas for further processing located in V4 [9].

#### **1.3 Background information on Sound**

Sound energy was also quantified in two environments, one in a laboratory of ambient air and one in a laboratory filled with synthetic fog. Sound frequency was recorded and the sound intensity level measured in decibels (dB) was calculated. This research used a microphone to detect sound waves that are audible to the human auditory system. In this project, sound has been detected from a highly sophisticated microphone; Humans detect sound waves through the ear which contain hair cells, that transduce frequency into electrical signals. The ear may appear simple from outside, however there are many complicated stages through which sound waves must pass through before they traverse to the brain. In this project, the microphone measures the sound waves as a voltage value which was converted to a decibel (dB) level by using the dB formula specific for that microphone. The human ear has a similar process; Section 1.3.2 will discuss the human physiology of the ear and how it is similar to the microphone based intensity calculation discussed in Section 1.3.1.

#### 1.3.1 Sound Waves

Sound travels through solid, liquid and gas mediums as mechanical waves, except sound waves cannot travel within a vacuum. The speed of sound varies as it goes through a different medium (solid, liquid, gas). For example, the speed of sound at a temperature of  $20^{0}$  C in air, water, glass, hard wood, and helium is 343 m/s, 1560 m/s, 4500 m/s, 4000 m/s, and 1005 m/s respectively [10]. Humans can only hear sound waves, which have

frequencies between 20Hz and 20kHz, known as the audible range. Sound frequencies, below 20Hz (termed infrasonic sound) and above 20kHz (termed ultrasonic sound) cannot be heard by humans. However, many animals have the capability to hear ultrasonic waves; dogs can hear up to 50kHz, whereas bats hear sound frequencies up to 100kHz.[10]

Ultrasonic waves are widely used in medical applications and diagnostic equipment. Earthquakes, volcanoes, thunder and vibrating heavy machinery are all examples of events that produce infrasonic sound. The intensity of sound is consistent if measured by a microphone; however, people have different perceptions of sound intensity. The human ear can detect sounds over a vast range of intensities, it can hear as low as  $10^{-12}$  W/m<sup>2</sup> ("threshold of hearing") and as high as 1 W/m<sup>2</sup> (threshold of pain). Because of this wide range of intensity, the ear perceives signal "loudness" approximately logarithmically with intensity, a unit called the decibel (dB), which is related to the logarithm of the intensity of sound typically denoted in W/m<sup>2</sup>. Sound intensity is measured in watts per square meter (W/m<sup>2</sup>) and can be translated to the sound intensity as shown in equation (1). This is the standard formula used to calculate the sound intensity level. The formula used in this project varies slightly compared to this standard formula.

Sound intensity level  $\beta(dB) = 10\log_{10} (I/I_0)$  (1.1)

I = sound intensity in  $W/m^2$ 

 $I_0$  = reference intensity 10<sup>-12</sup>W/m<sup>2</sup> (threshold of hearing)[10]

7



Figure 1.3 Physiology of the ear [12].

The human ear is divided into three parts; outer ear, middle ear and inner ear (figure 1.3). The outer ear consists of the auricle and external auditory meatus. As sound enters the ear, the first structure it encounters is the auricle, which is also known as the pinna of the ear. The auricle is composed mostly of elastic cartilage, which is covered by skin and supported by muscles and ligaments [13]. The external auditory meatus is the connection between the auricle and eardrum. The meatus protects the eardrum from water and any other external dust particles through solid hair and wax secreting glands [13]. The middle ear is composed of a drum membrane and auditory ossicles. The sound exiting the meatus enters the drum membrane causing it to vibrate. The drum membrane is a half curve plate, which vibrates based on the sound frequency. The vibration of the drum plate is then transferred to the ossicles. The ossicles are little bones behind the drum plate, which transfers the vibration from the eardrum to the vestibular apparatus or oval

window. The inner ear is composed of the vestibule and the cochlea which converts the mechanical frequency waves into an electrical neural signal. The vestibular system is composed of semicircular canals and vestibule (also known as sacs), which are filled with fluid called endolymph [14]. The cochlea is composed of three parts filled with fluids; two canals and one organ of corti. The canals transmit pressure into the corti, which converts the pressure energy into an electrical neural signal that is transmitted to the brain through the auditory nerve [14]. The auditory nerve then transfers the neural signal to the thalamus where it progresses to the auditory cortex in the temporal lobe of the brain where sound is identified.

#### **CHAPTER 2**

#### **METHODOLOGY**

This research includes both hardware integration and software development to create a laboratory to study the transmission of light and acoustic energy through a fog medium. Data were compared to the control state, which is the transmission of light and acoustic energy in the same laboratory environment without a fog medium present. The experimental methodology will discuss the mechanical development of the laboratory, the hardware to be used during the experiments, the software developed to integrate instrumentation, the protocol to collect data, and the techniques used for data analysis.

#### 2.1 Experimental Room Setup

An 11 x 11 x 8 feet room was utilized for the audible and visual experiments. The windows were covered with cardboard to prevent external light entering the room. Reflection of light and acoustic energy cause artifacts in experimental data. Black curtains were used to avoid reflection, which can cause artifacts in the visual experimentation data. Acoustic forms, which absorb sound energy, were installed on the walls so that when the sound was deployed through the speaker, sound energy was not reflected throughout the room. Furthermore, the laboratory's doors were sealed with weather strips and the ventilation fans were covered with cardboard to prevent fog leakage in the laboratory. The overall diagram of the laboratory setup is shown in Figure 2.1.



Figure 2.1 Experimental Room Setup.

#### 2.2 Hardware

The key hardware elements used during these experiments were a synthetic fog machine to generate fog, two fans to eliminate fog from the laboratory, A light source to provide output and a chronometer to quantify the amount of light present, speakers to generate sound, and microphones to detect the intensity of sound. A computer controlled the system with custom programs for acquisition of data and control of output

#### 2.2.1 Fog Machine

The synthetic fog machine (SFM) (Model FSS60C, Fog Security System Inc. Winnipeg, Manitoba, Canada) (figure 2.2) can fill a 11 x 11 x 8 foot room with fog in seconds and a person's viewing range declines to one half an inch in a couple of seconds [1]. The SFM distributes fog at a speed of 2250 CFM (cubic feet/minute). Initially, fluid is pumped by a motor in to the heating element of the SFM. The heating element transforms the fluid to its gaseous state. The gas exits the machine through a nozzle. The vapor comes in contact with the air at room temperature and produces an obscurant fog [15].



Figure 1.2 Synthetic fog machine (SFM).

The fluid dissipated from the SFM consists of propylene glycol, glycerol and distilled water. Glycol ( $C_2H_6O_2$ ) is a clear, odorless, tasteless, slightly viscous liquid. Human exposure to high concentrations of glycol can result in nausea, slurred speech, convulsions, disorientation, as well as heart and kidney problems [16]. Glycol may cause transitory stinging of the skin and tearing in the eyes. "Propylene Glycol causes a substantial number of reactions and was a primary irritant to the skin in low levels of concentrations."[16]. Glycerol (C3H5 (OH)<sub>3</sub>) also called trihydric alcohol is an

odorless, colorless, sweet tasting syrupy liquid. Glycerol causes nausea, headache, diarrhea, eye and skin irritation, and kidney injury to humans if exposed to high concentrations [16]. The concentration level of glycerol and glycol, in the liquid used for this research, is non-hazardous and it has been investigated by OSHA (Occupational Safety and Health Administration).

#### 2.2.2 Exhaust System

Two fans (model number. VAF - 3000 Americ Corp, CA) were installed in the room, one to pull air from the room and another to blow fresh air into the experiment room. The fans were used to evacuate the fog as quickly as possible to protect potential human subjects.



Figure 2.3 Fan to evacuate the fog.

Figure 2.4 Fan to blow fresh air.

The fan can evacuate fog in 8 - 10 seconds since it has 2091 CFM (cubic feet / minute) and the cubic feet of the room is 968 (11x11x8) [23]. The fans have a diameter of 1 foot and a length of 2 feet. Once the fans were installed, the next step was to have a sophisticated ventilation system to evacuate the fog out to the ceiling.



Figure 2.5 Exhaust System.

For this ventilation system (Figure 2.5), aluminum pipes of 12 feet diameter, a rain cap, wall strips, and sealer wax were used to prevent water from entering the room.

#### 2.2.3 Audible System

The Audible system is composed of two parts; the speaker (Model MA–10D, Edirol manufacturing company, Bellingham, WA) used to transmit the audible sound frequencies (Figure 2.9) and the microphone (model number is 1947247, Bruel and Kjaer, Norcross, Georgia) (Figure 2.6) was used to transduce the audible sound. A micrometer (type 5935 - Figure 2.7) was used to connect the microphone to an Analog to Digital (A/D) card (BNC 2090- Figure 2.8).



Figure 2.6 Microphones.

Figure 2.7 Micrometer.

As shown in Figure 2.7, the micrometer receives the input signal from the microphone and transmits that signal to the A/D card when it is digitized via the DAQ card(PCI-MIO-6E4, National Instruments).



Figure 2.8 Analog / Digital conversion.

Figure 2.9 Speaker for sound transmission.

The formula (2.1) used in this project has been provided by Bruel & Kjaer, the company which manufactures the microphone [11]. Every microphone is different based on their capacity of detecting various intensity levels of the sound. The microphone used in this project is a cutting edge device manufactured by Bruel & Kjaer. The formula used in this project for the detection of the sound intensity is;

 $d\mathbf{B} = [\log[(Vrms/So)/(20\mu) *20] - Gain Setting of amplifier(constant) (2.1)$ 

**Vrms** = Signal transmitted in the microphone

**So** = Open-circuit Sensitivity (Amplification Constant)

**Gain Setting** = Microphone setting from 10db – 60db (External amplification source) [11].

#### 2.2.4 Visual System

The visual system is made up of a Chromo meter (light receptor) and Mini Martin Mac(light source). A Chromo meter (model number is G920934 – type CL-200 Ramsey, New Jersey) was used for measuring the light signals (figure 2.10) CL-200 has a detachable head receptor (figure 2.11), which helps the operator to collect data from other locations.



The light receptor head was placed in the experiment room and data recording was performed in the room next to it. The Martin Mini Mac (MMM) was used for transmitting different colors of light it is an automated single-armed moving head spotlight (Figure 2.12).



Figure 2.12 Mini Martin Mac [17].

The light source has 12 diachronic gobos (gobos are round glass slides of different colors housed inside the machine), high-speed shutter,  $540^{\circ}$  of pan by  $270^{\circ}$  of tilt,  $17^{\circ}$  beam angle with manually adjustable focus, and 3-digit LED control panel, and switch-selectable powers supply settings. The microphone and CL-200 receptor head were mounted on the top of an L-shape stand (9'x5') inside the experimental room, where the operator has control over the distance that the microphone and CL-200 receptor head is located from the light and sound emitters from the adjacent room (Figure 2.13).



Figure 2.13 L shape stand connecting experimental room to the next room.

One end of the stand was outside the experimental room and another was inside the room to uphold the receivers of light and sound. The purpose of the stand is to adjust the distance of the light and sound meters during experimentation. For example, if the data are collected at distance of 1 foot then the operator does not have to enter the experiment room to move the light and sound meters to another distance. He or she can change the distance of the meter in the experimentation room from the operation and data acquisition room. Another advantage of the stand is it facilitates the collection of accurate data because each time the experimentation room is opened, the fog is dissipated which can create artifacts in the data between the receiver and the source.

#### 2.3 Software

There were three main software programs used in the project. Lab-VIEW 7.0 (manufactured by National Instruments), Cool Edit 2000, and Easy Stand Alone (manufactured by Elation professional 2000). Lab VIEW 7.0 and Cool Edit 2000 were used for sound experimentation and Easy Stand alone was used for the light experimentation.

#### 2.3.1 Introduction to Lab View Programming

Part of the thesis required a program to be developed which could play audible sinusoidal frequencies (ranging from 50 Hz to 20000 Hz) while simultaneously recording the sound waves through a microphone, converting the measured signal to its corresponding decibel level and storing the data to a file.

Laboratory Virtual Instrumentation Engineering Workbench LabVIEW (Version 7, National Instruments, Austin, TX) was chosen for sound recording and processing applications. LabVIEW is a graphical programming environment based on the concept of data flow programming. This programming paradigm has been widely used for data acquisition and instrument control software. LabVIEW programs were used by astronauts in the 1993 Columbia space shuttle mission to study motion sickness [18]. It was also used by researchers at the University of Maryland for an application, which helps physicians to perform cardio thoracic research [19]. This software package contains two parts, a front panel and block diagram. The front panel is the user interface where the program outputs its signals and the operator can monitor multiple input and output signals. On the front panel, the operator can view the program's performance. The block diagram contains the programming code written by the user, which connects different sub routines to perform various functions such as emitting sound, digitizing data, the configuration of the system, the initialization and execution of data acquisition, storing data to a file and many other functions. LabVIEW provides the capability of different graphs and charts, which facilitates analysis of the data [19 - 20].

#### **2.3.2 Introduction to Cool Edit**

Cool Edit (Version 2000, Syntrillium) was used in this project to create sound frequencies starting from 50 Hz to 20,000 Hz. There were a total of thirty-seven sinusoidal waveforms created using Cool Edit software each of a five second duration. Cool Edit is an audio editing software tool, which allows the operator to create and record different sound waves and store them in different formats. With this software, an operator can create ultrasound, infrasound or audible sounds. The user can also define the type of
wave function such as; sine, triangle, square, sawtooth etc. as well as the duration of the signal and the sampling rate of the sound wave. [21] The format for this project is the Microsoft "wav" standard. How the sound is played will be discussed in the data acquisition Section 3.3.

## 2.3.3 Easy Stand Alone

Easy Stand Alone (ESA) software (Elation, Los Angeles, CA) has been designed for users mainly seeking complete ease of use and elaborated so as to offer full control over the paradigm. ESA is widely used in theaters, musical events, programs, and stage shows. ESA software was used to provide different color light stimuli (red, blue, green, orange, red, purple etc.) through the light source which is further described in section 2.1.2 [21].

The ESA has four main steps; first is to setup the appropriate channels for the light in which computer sets the port number to which device is connected. The second step is to create scenes (macros) in which the operator can choose the colors of the light, set the angle of the light emitter, and many other options, which facilitate in creating the best light shows. The third step is to use the software in "live mode" which allows the operator to control the lights and make changes, in the setting of the light, at anytime. Finally, the stand alone mode in which the operator can store many scenes, which are already created, and change the color of the lights through the USB box ( external storage device – Figure 2.14).



Figure 2.14 Intelligent USB box.

In creating scenes, the operator can program a number of steps. Each of the steps has a fade time and waiting time, which can be set. By creating several steps in sequence, the user was able to control different color scenes in a loop. Each scene can include up to 1,000 steps. However, the scene for this application was made up of 6 steps; shutter (open-close), color, gobo (constant), rotate gobo, pan (move light horizontally), tilt (move light source vertically). During the next step using the software in live mode with a computer, the lights can be controlled through the computer. Here the operator has full control over the functions provided such as; "previous" and "next" scene, play cycle (plays scene in cycle similar to a loop), auto function in which the channel works automatically on the current scene and the manual cursor is also deactivated. Finally in the stand-alone mode, light can be controlled without computer. All the scenes were stored in to the external storage box (USB – Figure 2.14 ), which has "previous", and "next" buttons on the USB box. This mode is very useful and it facilitates data acquisition from the CL-200(chromo meter-light meter) [21].

#### 2.4 Data Acquisition

Data were automatically acquired, using Lab VIEW software, in the auditory experiments. Sound waves were played, recorded, and saved in to a file, automatically. The data recorded by the CL-200 were manually entered into Excel files by the author for the light experiments. Both visual and auditory experiments used excel spreadsheets for the storage of the data. Excel was also used for generating graphs for analysis of the data.

#### 2.4.1 Auditory system



**Figure 2.15** Block Diagram of the Software Development of the sound experiment The Figure 2.15 shows the block diagram of the software development needed for the sound propagation in to an ambient air and synthetic fog medium. The program first configures the system with elements such as channel number; device number and buffer

While Loop

channel number specifies which of the analog input channels will be used; in this research the channel used was 0. The device number is the device number assigned to the DAQ device during configuration, which in this research is1. The buffer size is the total number of scans you want the buffer to hold, in this research the buffer size was 220100 because each scan was for 44000 then the five scans were 220000. In other words, 220000 is the total number of scans used in the experiment and the buffer size was set to 220100 which is more than enough to hold the data acquired from the experiment. The start VI begins the recording with the scan rate of 44000 scans / sec and the number of scans to acquire is 220000 during a 5 second duration. The scan rate is the number of scans to acquire which is equivalent to the sampling rate per channel. A scan rate of 44000 scans /sec was chosen because the maximum frequency of sound was 20000 Hz and according to the sampling theorem, the sampling rate should be at least two times or greater than the maximum frequency to eliminate aliasing. When aliasing occurs, the original signal can not be recovered [18]. The "number of scans" to acquire is the total number of scans LabVIEW acquires before the acquisition completes. If the sampling rate is 44000 for one second then to acquire five seconds of data, the number of scans to acquire was set to 220000 which is 5 times 44000. As soon as the "Play Sound" VI is initiated the "Start VI" will begin to record and digitize the signals (Appendix B). The "Play Sound" VI receives its input from the case structure of 38 different frequencies starting from 50 Hz to 20,000 Hz. The Play VI, Start VI, and Read VI are within the while loop and the case structure sends sound files according to the while loop count. Then the "Read VI" reads data from a buffered data acquisition. Acquired data is stored in a text file and also viewed on the front panel through graphs. The "Basic DC/ RMS

VI" receives an array of waveforms, applies a window to the signal, and averages the DC and RMS values calculated from the windowed signal (Appendix B). The averaged RMS value is used in the conversion equation to measure the signal in decibel. The formula used for the decibel level calculation is

 $dB = [log[(Vrms/So)/(20\mu) *20] - Gain Setting of amplifier(constant) (2.2)$ 

**Vrms** = Signal coming in from the microphone

**So** = Open-circuit Sensitivity(Amplification Constant)

Gain Setting = Microphone set from 10db – 60db(External amplification source) Calculated dB values are stored in a text file and also are displayed on the front panel of the lab VIEW program as a numeric array.





Figure 2.16 Block diagram of the Light Experimentation

The light experimentation did not need as much data manipulation compared to the auditory experiments. There were eight scenes created by the author in the Easy Stand Alone, one for each color to be analyzed. These scenes were stored in the external box called the USB box (the storage device for the scenes). The USB box transfers different color scenes to the Martin Mini Mac. The Martin Mini Mac transmitted the color defined

in the particular scene of interest. Light was than detected by the receptor head of the CL-200 (light meter). The light intensity was displayed on the CL-200 meter in numeric form as luminescence (Lux). The intensity measured in lux was stored in an excel file by the author for further analysis of the data.

#### 2.5 Data Analysis

The recorded data for the light and sound experiments were synchronized and analyzed by preparing various graphs plotting different parameters. Analysis of the data yields insights as to the implication of a fog medium on light and sound transmission.

## 2.5.1 Light

The luminescence, light intensity in fog and air environment was saved in an Excel file. The collected data have three different parameters; distance (in inches), density of fog (the amount of time the fog machine dissipated fog), and colors (in wavelengths). To acquire a better understanding, data were divided into three different sheets in the Excel workbook; data organized by color, density, and distance. There were eight different colors of light used in this research project. Among the three parameters studied, distance and density of fog were known; however, the wavelength of the light color was unknown. Mini Martin Mac, the company that makes the light source used in the project, provided the wavelength of the colors emitted. Using three known parameters the graphs were developed. Data were collected by the Chromo meter (light meter) which had a high sensitivity curve. The sophisticated Chromo meter used in the project has a very high relative sensitivity curve versus wavelength ( $\lambda$ ) (figure 2.17), which means the

intensity of the light measure is not the actual intensity. The Chromo meter has a sensitivity curve because it must respond to the light as the CIE (Commission Internationale de l'Eclairage or International Commission on Illumination) standard observer. In other words, the spectral response of the photometer, chromo meter, must follow the CIE Standard Luminosity Function  $V_{\lambda}$  curve. The sensor of the photometer is critical to the accurate performance of the photometer. Data were divided by its sensitivity to obtain accurate measurements of the original color of the light.



Figure 2.17 Relative spectral analysis.



Fiure 2.18 Helmholtz coordinates.

26

Normalization of the data was necessary to view the actual data without any sensitivity. In other words, the receptor head of the light meter is sensitive differently to the different frequencies of the light. The sensitivity curve is not flat, so the calibration of the light sensor was necessary to compensate the sensor's sensitivity. Each color's wavelength was determined by x and y coordinates, given by the chromo meter, and the actual wavelengths were obtained using the Helmholtz coordinate (provided by Minolta corp. (figure 2.18). Helmholtz coordinate system is two-dimensional graphical\_representation of the light intensity in wavelength. Therefore, each color was divided by its sensitivity of the meter and each color's sensitivity in percentage of the wavelength in nanometers (nm) is listed below.

| 30% | RED    | 630nm |
|-----|--------|-------|
|     |        |       |
| 65% | ORANGE | 590nm |
|     |        |       |
| 99% | YELLOW | 575nm |
|     |        |       |
| 32% | GREEN  | 500nm |
|     |        |       |
| 12% | PURPLE | 485nm |
|     |        |       |
| 6%  | BLUE   | 470nm |

**Table 2.1** Original Wavelengths of the Light

For the data that was organized based on color, data were grouped by the colors; red, orange, yellow, green, purple, blue, and white. Then 2D and 3D graphs were created using the wavelength, distance, and density of fog in seconds. For the data that were

organized based on distance, between the transmitter and the receiver, were quantified as; 2, 3, 4, 5, 6, 7, and 8 feet. For the data that were organized by the density of fog, the amount of fog created was quantified for 0 sec (no fog), 2, 4, 6, 8, and 10 seconds of fog production.

## 2.5.2 Sound

In the sound experiments, data were collected automatically by the LabVIEW program developed as part of this research and stored in a excel file. There were three parameters stored to the data file; distance the microphone was placed from the transmitter (feet), density of fog measured as the amount of fog produced (seconds), and the frequency of the sounds measured in hertz (Hz). Thirty-eight sound files, each five seconds in length, were created as part of this research using the Cool Edit software. Each of the thirty eight files were for a different frequency where the following frequencies were quantified: 50, 100,150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20,000 Hertz. Graphs were created by plotting distance as a function of frequency and fog density where the distance is denoted as the space between the microphone and the speaker for the following distances: 1, 2, 3, 4, 5, 6, 7, 8 feet. The density of fog quantified was defined as the amount of time (in seconds) that the fog machine dissipated fog where the densities investigated were 0 sec(no fog), 10 sec, 20 sec, 30 sec, and 40 sec. Unlike the light experiments, the sound experiments did not amplify the signal, thus no manipulation of the data were necessary. Figure 2.19 shows the frequency response of the preamplifier at low and high frequencies of the microphone.



Figure 2.19 Microphone frequency response chart.

As per Figure 2.19, the microphone has a flat frequency response between 20Hz and 20kHz. Therefore there is no amplification or attenuation factor to be considered when analyzing the data. As a validation of the system, the collected data were also compared with the data collected from the sound meter (manufactured by Radio Shack model number 33-2050) to determine if the system, developed through this research, was accurate. The data from the two systems, signals recorded using the Radio Shack sound meter and signals measured from the system developed by this research, will be described in Chapter 3.

#### **CHAPTER 3**

## RESULTS

The two dimension and three dimension graphs were obtained from the light and sound experiments. Given the amount of data collected, data reduction was necessary to interpret results, which was facilitated with graphs. Section 3.1 shows the results of the light experiments and section 3.2 discusses the results of the sound experiments.

### 3.1 Light Experiment Results

Data from the light experiment were collected and then normalized with respect to the sensitivity of the chromo meter. Section 3.1.1 shows the graphs of actual data without calibration and sub Section 3.1.2 shows the normalized data grouped by colors. The light data were further analyzed in section 3.1.2.1, and 3.1.2.2 by dividing the results into two subcategories; data by density of the fog, and data by distance the light meter was placed from the transmitter. In both subcategories, data by density and data by distance, normalized data were used for graphical analysis. The calibration of the data was done using the sensitivity chart provided by Minolta Corp., the company which manufactures the chromo meter (light meter). The sensitivity chart is displayed in Section 3.2. Sound data did not have calibration to consider, since the microphone used in the experiment has flat frequency response curve in the audible frequencies that were investigated in this research. The frequency response curve for the microphone is provided in Section 3.2.

## 3.1.1 Light Actual Results

There were seven colors tested in the light experiment; red, orange, yellow, green, purple, blue, and white. The graphs of these colors have two things in common; 1) for each wavelength the intensity of light is inversely proportionally to the production of fog, and 2) the distance the chromo meter receptor head was placed from the transmitter was inversely proportional to the production levels of fog.

| Red Light       |      |      |      |     |     |     |     |
|-----------------|------|------|------|-----|-----|-----|-----|
| Data            | 2ft  | 3ft  | 4ft  | 5ft | 6ft | 7ft | 8ft |
| 0 SEC NO<br>FOG | 4940 | 2117 | 1022 | 581 | 360 | 266 | 220 |
| 2 SEC           | 2207 | 1002 | 617  | 401 | 290 | 218 | 187 |
| 4 SEC           | 543  | 396  | 193  | 127 | 96  | 86  | 74  |
| 6 SEC           | 365  | 164  | 102  | 86  | 65  | 59  | 51  |
| 8 SEC           | 108  | 49   | 25   | 16  | 14  | 13  | 12  |
| 10 SEC          | 56   | 27   | 13   | 8   | 5   | 4   | 3   |

 Table 3.1 Actual Intensity of Red Light Collected at Different Distance and Fog

 Production Level

 Table 3.2 Intensity of Orange Light at Different Distance and Fog Production Level

| Orange<br>Light Data | 2ft   | 3ft   | 4ft  | 5ft  | 6ft  | 7ft  | 8ft  |
|----------------------|-------|-------|------|------|------|------|------|
| 0 SEC NO             | 40170 | 17950 | 0770 | 5126 | 2610 | 2410 | 1060 |
| FUG                  | 42170 | 17050 | 0//0 | 5130 | 3010 | 2410 | 1909 |
| 2 SEC                | 21280 | 10560 | 5434 | 3520 | 2636 | 1811 | 1577 |
| 4 SEC                | 8440  | 3949  | 1999 | 1437 | 1006 | 849  | 765  |
| 6 SEC                | 3312  | 2062  | 1322 | 866  | 686  | 583  | 525  |
| 8 SEC                | 834   | 406   | 286  | 173  | 152  | 129  | 109  |
| 10 SEC               | 545   | 250   | 130  | 74   | 57   | 38   | 31   |

| ] | Table 3.3 Intensity of Yellow Light at Different Distance and Production Level of Fog |       |      |         |       |      |      |      |  |  |  |
|---|---------------------------------------------------------------------------------------|-------|------|---------|-------|------|------|------|--|--|--|
|   | Yellow                                                                                |       |      |         |       |      |      |      |  |  |  |
|   | Light Data                                                                            | 2ft   | 3ft  | 4ft     | 5ft   | 6ft  | 7ft  | 8ft  |  |  |  |
|   | 0 SEC NO                                                                              |       |      |         | 4     |      |      |      |  |  |  |
|   | FOG                                                                                   | 89220 | 3758 | 0 18550 | 10570 | 6628 | 4909 | 4017 |  |  |  |
|   | 2 SEC                                                                                 | 31950 | 1816 | 0 10670 | 6906  | 5071 | 3841 | 3161 |  |  |  |
|   | 4 SEC                                                                                 | 9320  | 6004 | 3431    | 2327  | 1884 | 1593 | 1413 |  |  |  |
|   | 6 SEC                                                                                 | 5565  | 3082 | 2 2142  | 1530  | 1203 | 1029 | 1008 |  |  |  |
|   | 8 SEC                                                                                 | 1491  | 801  | 473     | 313   | 292  | 249  | 205  |  |  |  |
|   | 10 SEC                                                                                | 1189  | 517  | 246     | 140   | 94   | 72   | 58   |  |  |  |
|   |                                                                                       |       |      |         |       |      |      |      |  |  |  |
| ] | Table 3.4 Intensity of Green Light at Different Distance and Production Level of Fog  |       |      |         |       |      |      |      |  |  |  |
|   | Green                                                                                 | Oft   | 2#   | Лft     | 5ft   | 6ft  | 7ft  | 8ft  |  |  |  |

| Ligin    | 211   | ้อน  | 411  | JUL  | UIL | 711 | OIL |
|----------|-------|------|------|------|-----|-----|-----|
| 0 SEC NO |       |      |      |      |     |     |     |
| FOG      | 12440 | 5166 | 2461 | 1432 | 928 | 687 | 556 |
| 2 SEC    | 4804  | 2197 | 1319 | 883  | 666 | 506 | 437 |
| 4 SEC    | 1173  | 883  | 460  | 303  | 254 | 222 | 192 |
| 6 SEC    | 824   | 412  | 265  | 219  | 170 | 138 | 132 |
| 8 SEC    | 265   | 106  | 65   | 44   | 40  | 34  | 28  |
| 10 SEC   | 157   | 69   | 34   | 21   | 15  | 11  | 9   |

Table 3.5 Intensity of Purple Light in Lux at Varying Distance and Production of Fog

| Purple   |       |      |      |      |     |     |     |
|----------|-------|------|------|------|-----|-----|-----|
| Light    | 2ft   | 3ft  | 4ft  | 5ft  | 6ft | 7ft | 8ft |
| 0 SEC NO |       |      |      |      |     |     |     |
| FOG      | 10080 | 4230 | 2065 | 1174 | 842 | 560 | 456 |
| 2 SEC    | 5060  | 2367 | 1306 | 823  | 607 | 425 | 360 |
| 4 SEC    | 1769  | 946  | 445  | 329  | 257 | 210 | 174 |
| 6 SEC    | 673   | 554  | 319  | 206  | 170 | 134 | 124 |
| 8 SEC    | 251   | 106  | 72   | 43   | 40  | 32  | 27  |
| 10 SEC   | 140   | 64   | 33   | 19   | 15  | 10  | 8   |
|          |       |      |      |      |     |     |     |
|          |       |      |      |      |     |     |     |

| <b>Table 3.6</b> Intensity of Blue Light in Lux at Varying Distance and Production of Fog |              |               |             |             |            |                      |                 |  |  |  |
|-------------------------------------------------------------------------------------------|--------------|---------------|-------------|-------------|------------|----------------------|-----------------|--|--|--|
| Blue Light                                                                                | 2ft          | 3ft           | 4ft         | 5ft         | 6ft        | 7ft                  | 8ft             |  |  |  |
| 0 SEC NO FOG                                                                              | 5840         | 1970          | 950         | 545         | 352        | 258                  | 210             |  |  |  |
| 2 SEC                                                                                     | 2640         | 1140          | 610         | 372         | 275        | 210                  | 171             |  |  |  |
| 4 SEC                                                                                     | 730          | 369           | 183         | 140         | 105        | 85                   | 74              |  |  |  |
| 6.SEC                                                                                     | 290          | 197           | 131         | 85          | 70         | 53                   | 51              |  |  |  |
| 8 SEC                                                                                     | 114          | 41            | 28          | 18          | 16         | 14                   | 12              |  |  |  |
| 10 SEC                                                                                    | 71           | 26            | 14          | 8           | 6          | 4                    | 3               |  |  |  |
| Table 3.6 Inte                                                                            | ensity of Wh | aite Light in | n Lux at Va | arying Dist | ance and P | roduction <b>7ft</b> | n of Fog<br>8ft |  |  |  |
| 0 SEC NO<br>FOG                                                                           | 94540        | 39780         | 19430       | 11340       | 7127       | 5233                 | 4291            |  |  |  |
| 2 SEC                                                                                     | 36140        | 18750         | 11130       | 8626        | 6081       | 3963                 | 2886            |  |  |  |
| 4 SEC                                                                                     | 13100        | 6342          | 4978        | 2641        | 1970       | 1679                 | 1541            |  |  |  |
| 6 SEC                                                                                     | 8642         | 3178          | 2520        | 1916        | 1324       | 1096                 | 1068            |  |  |  |
| 8 SEC                                                                                     | 3478         | 932           | 587         | 397         | 366        | 287                  | 176             |  |  |  |
| 10 SEC                                                                                    | 2039         | 653           | 237         | 175         | 96         | 71                   | 53              |  |  |  |

Each table contains the data used in the graphs (Figure 3.1 to 3.15) below. Plotting the table data in graphs facilitated interpretation of the data.



Figure 3.1 Data by red color is acquired by using three parameters distance the microphone is placed from the transmitted (feet), fog production quantified by the number of seconds the fog machine dissipated synthetic fog, and intensity of the light measured in Lux. Intensity of each color is shown respectively as a function of distance and fog production in seconds.



**Figure 3.2** Two dimensional graph of red light was analyzed from no fog(0 sec) to 10 seconds of fog production with distance difference between the source of light(MMM) and the receiver head of the chromo meter.



**Figure 3.3** Orange light quantified in an environment with no fog and with fog production starting from 2 second to 10 seconds of fog production. This graph shows the intensity of orange light with respect to the distance difference between the source and the receiver of the light, and fog production.



Figure 3.4 The intensity of orange light as a function of fog production. Each line represents the distance from the source of light to the receiver sensor of light.



Figure 3.5 Intensity of light at each production level of fog and distance for the yellow color.



Figure 3.6 Two dimensional graphical analysis of yellow light.



Figure 3.7 Intensity of green light in fog and varying production of fog at different distances.



Figure 3.8 Intensity of green light is inversely proportional to production of fog.



Figure 3.9 Purple light intensity at varying distance and densities of fog.



Figure 3.10 Purple light intensity versus production at varying distance.



Figure 3.11 Intensity of blue light versus distance in feet and production of fog in seconds of fog production.



Figure 3.12 Blue light intensity at varying production of fog and distance.



Figure 3.13 Intensity of white light measured versus distance and production.



Figure 3.14 Intensity of white light is inversely proportional to production of fog and distance difference between the source and the receiver of the light.

### 3.1.2 Normalized Data

In the process of normalizing the light data, each color was divided by its sensitivity of the chromo meter receptor head. The percentage of each color's sensitivity are; red = 30%, orange = 65%, yellow = 99%, green = 32%, purple = 12%, blue = 6%. Therefore, the actual data of each color were divided by its sensitivity. In the data the distances are measured in feet between the transmitter and receiver, the production of fog is denoted in seconds of production of fog and intensity of different color lights are denoted in Lux.

**Table 3.8** Intensity of Red Light Against Different Production and Distance

| Red Light    | 2ft   | 3ft  | 4ft  | 5ft  | 6ft  | 7ft | 8ft |
|--------------|-------|------|------|------|------|-----|-----|
| 0 SEC NO FOG | 16467 | 7057 | 3407 | 1937 | 1201 | 887 | 735 |
| 2 SEC        | 7357  | 3340 | 2057 | 1337 | 966  | 728 | 623 |
| 4 SEC        | 1810  | 1320 | 643  | 425  | 320  | 286 | 245 |
| 6 SEC        | 1217  | 547  | 340  | 288  | 217  | 196 | 171 |
| 8 SEC        | 360   | 164  | 83   | 55   | 47   | 42  | 39  |
| 10 SEC       | 188   | 89   | 43   | 25   | 17   | 13  | 11  |

| Table 3.9 | Intensity of | Orange Ligh | t Respect to | Distance a | and Production | Level of Fog |
|-----------|--------------|-------------|--------------|------------|----------------|--------------|
|-----------|--------------|-------------|--------------|------------|----------------|--------------|

| Orange Light | -     |       |       |      |      |      |      |
|--------------|-------|-------|-------|------|------|------|------|
|              | 2ft   | 3ft   | 4ft   | 5ft  | 6ft  | 7ft  | 8ft  |
| 0 SEC NO FOG | 64877 | 27462 | 13492 | 7902 | 5554 | 3708 | 3029 |
| 2 SEC        | 32738 | 16246 | 8360  | 5415 | 4055 | 2786 | 2426 |
| 4 SEC        | 12985 | 6075  | 3075  | 2211 | 1548 | 1306 | 1177 |
| 6 SEC        | 5095  | 3172  | 2034  | 1332 | 1055 | 896  | 808  |
| 8 SEC        | 1283  | 625   | 440   | 266  | 234  | 198  | 168  |
| 10 SEC       | 838   | 385   | 199   | 114  | 87   | 58   | 47   |

| Yellow Light | 2ft   | 3ft   | 4ft   | 5ft   | 6ft  | 7ft  | 8ft  |
|--------------|-------|-------|-------|-------|------|------|------|
| 0 SEC NO FOG | 90121 | 37960 | 18737 | 10677 | 6695 | 4959 | 4058 |
| 2 SEC        | 32273 | 18343 | 10778 | 6976  | 5122 | 3880 | 3193 |
| 4 SEC        | 9414  | 6065  | 3466  | 2351  | 1903 | 1609 | 1427 |
| 6 SEC        | 5621  | 3113  | 2164  | 1545  | 1215 | 1039 | 1018 |
| 8 SEC        | 1506  | 809   | 477   | 316   | 295  | 252  | 207  |
| 10 SEC       | 1201  | 522   | 248   | 141   | 95   | 73   | 59   |

Table 3.10 Intensity of Yellow Light Respect to Distance and Production Level of Fog

 Table 3.11 Intensity of Green Light Respect to Distance and Production Level of Fog

| Green Light  | 2ft   | 3ft   | 4ft  | 5ft  | 6ft  | 7ft  | 8ft  |
|--------------|-------|-------|------|------|------|------|------|
| 0 SEC NO FOG | 38875 | 16144 | 7691 | 4475 | 2899 | 2147 | 1738 |
| 2 SEC        | 15013 | 6866  | 4122 | 2759 | 2082 | 1583 | 1365 |
| 4 SEC        | 3666  | 2760  | 1436 | 946  | 792  | 694  | 600  |
| 6 SEC        | 2575  | 1287  | 828  | 683  | 530  | 432  | 414  |
| 8 SEC        | 828   | 331   | 202  | 138  | 125  | 106  | 88   |
| 10 SEC       | 490   | 215   | 106  | 66   | 46   | 34   | 29   |

| <b>Table 3.12</b> | Intensity | of Purple | Light Res | pect to Distance | e and Production | Level of For |
|-------------------|-----------|-----------|-----------|------------------|------------------|--------------|
|-------------------|-----------|-----------|-----------|------------------|------------------|--------------|

| Purple Light | 2ft   | 3ft   | 4ft   | 5ft  | 6ft  | 7ft  | 8ft  |
|--------------|-------|-------|-------|------|------|------|------|
| 0 SEC NO FOG | 84000 | 35250 | 17208 | 9783 | 7017 | 4667 | 3800 |
| 2 SEC        | 42167 | 19725 | 10883 | 6858 | 5058 | 3542 | 2998 |
| 4 SEC        | 14742 | 7883  | 3708  | 2742 | 2144 | 1753 | 1451 |
| A SEC        | 5609  | 4617  | 2659  | 1712 | 1/1/ | 1116 | 1031 |
| 0.050        | 0000  | 4017  | 2000  | 000  | 000  | 007  | 000  |
| 8 SEC        | 2088  | 887   | 600   | 362  | 333  | 207  | 223  |
| 10 SEC       | 1163  | 532   | 278   | 161  | 124  | 83   | 68   |



Figure 3.15 Normalized intensity of red color as a function of distance in feet and production of fog.



Figure 3.16 Normalized intensity of orange color as a function of distance in feet and production of fog in time of production (sec).



Figure 3.17 Normalized intensity of yellow color as a function of distance in feet and production of fog in time of production (sec).



**Figure 3.18** Normalized intensity of green color as a function of distance in feet and production of fog in time of production (sec).



**Figure 3.19** Normalized intensity of purple color as a function of distance in feet and production of fog in time of production (sec).



**Figure 3.20** Normalized intensity of blue color as a function of distance in feet and production of fog in time of production (sec).



**Figure 3.21** Normalized intensity of white color as a function of distance in feet and production of fog in time of production (sec).

# 3.1.2.1 Data Analysis as a function of Fog Production

Data were plotted based on production of the fog production from no fog (0 second) to 10 seconds of production in Figure 3.23 to 3.28.



**Figure 3.22** Intensity of different color lights in the ambient air (no fog) as a function of the distance between the transmitter and receiver.







**Figure 3.24** Intensity of different colors lights with 4 seconds of fog production as a function of the distance between the transmitter and receiver.



**Figure 3.25** Intensity of different colors lights with 6 seconds of fog production as a function of the distance between the transmitter and receiver.



**Figure 3.26** Intensity of different colors lights with 8 seconds of fog production as a function of the distance between the transmitter and receiver.



**Figure 3.27** Intensity of different colors lights with 10 seconds of fog production as a function of the distance between the transmitter and receiver.

Each graph was also plotted by calculating the percentage difference between the data with no fog and data with fog. Each production level of fog data was compared with the data obtained in the ambient air experiment (no fog) and the percentage difference was calculated using the formula as shown below.

$$\% =$$
Data measured from no fog – Data measured with fog x 100 (3.1)  
Data measured from no fog

Each of the graphs shown below plots percentage lost from 0second(no fog) to 2, 4, 6, 8, and 10 seconds of fog production. Each color has been represented in the graphs by its actual wavelength; red(630), orange(590), yellow(575), green(500), purple(485), blue(470). All the graphs are grouped by each production of the fog production; 0 (no fog), 2, 4, 6, 8, and 10 seconds. The percentage lost from the control of no fog to each of the various fog conditions facilitates interpretation of the data. Using the formula (3.1) percentage difference between no fog to 2seconds, 4 seconds, 6 seconds, 8 seconds, and

10 seconds were calculated. This analysis exploited differences found in the data by comparing the control (no fog) to each of the different tests (fog production of 2 through 10 seconds).



**Figure 3.28** Percentage difference or percentage lost in intensity, of six different colors of light, from control to 2 seconds of fog production as a function of distance between the transmitter and receiver.



**Figure 3.29** Percentage difference or percentage lost in intensity, of six different colors of light, from control to 4 seconds of fog production as a function of distance between the transmitter and receiver.



**Figure 3.30** Percentage difference or percentage lost in intensity, of six different colors of light, from control to 6 seconds of fog production as a function of distance between the transmitter and receiver.



**Figure 3.31** Percentage difference or percentage lost in intensity, of six different colors of light, from control to 8 seconds of fog production as a function of distance between the transmitter and receiver.



**Figure 3.32** Percentage difference or percentage lost in intensity, of six different colors of light, from control to 10 seconds of fog production as a function of distance between the transmitter and receiver.

#### 3.1.2.2 Data by Distance

Light normalized data were then grouped by distance and graphed as a function of fog production in seconds and percentage difference from no fog to different production of fog starting from 2, 4, 6, 8, and 10 seconds.



**Figure 3.33** Light intensity percent difference when the difference between the transmitter and receiver was 2 feet for varying fog production times denoted in seconds.



**Figure 3.34** Light intensity percent difference when the difference between the transmitter and receiver was 3 feet for varying fog production times denoted in seconds.



**Figure 3.35** Light intensity percent difference when the difference between the transmitter and receiver was 4 feet for varying fog production times denoted in seconds.



**Figure 3.36** Light intensity percent difference when the difference between the transmitter and receiver was 5 feet for varying fog production times denoted in seconds.






**Figure 3.38** Light intensity percent difference when the difference between the transmitter and receiver was 7 feet for varying fog production times denoted in seconds.

56



Figure 3.39 Light intensity percent difference when the difference between the transmitter and receiver was 8 feet for varying fog production times denoted in seconds.

#### 3.2 Sound Results

The results of the sound experiment quantified thirty-eight sound frequencies, starting from 50 Hz to 20,000 Hz, for different distance measurements between the speaker and microphone starting from 1 foot to 8 feet, in one-foot increments. The results also have varying fog production times of; 10, 20, 30, 40 seconds of fog as well as the control which was a no fog environment or 0 seconds of fog production. In chapter 3.2.1, tables are shown which are grouped by fog production time and in chapter 3.2.2 graphs are shown for the tables in section 3.2.1. How each frequency of the sound reacts under varying distance (in feet) and the production of the fog (in seconds) is easier to visualize through graphs.

## **3.2.1** Tables of Sound Experiment

Data were saved into the excel spreadsheets automatically by the custom Lab-VIEW program developed for this research. The recorded frequency of sound was converted to decibels by using the formula (2.1) shown in section 1.3.1. The three parameter used in the data collection of the sound experiments are; frequency in hertz, distance in feet and the fog production in seconds.

First of all, sound was recorded under no fog condition (table 3.13). There were thirty eight different sound files starting from 50Hz to 20 KHz used in this experiment. Data were collected using 8 different distances; one foot to eight feet of distances.

**Table 3.13**Sound Recorded During Control (no Fog) as a Function of Distance Betweenthe Transmitter and Receiver for Frequencies Between 50 to 20, 000 Hz and Intensity ofSound are Denoted in Decibel

| 0 SEC NO | 157       | <b>2</b> 5T | 357       | AET       | 557       | 6FT       | 767       | 8FT       |
|----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 50Hz     | 72 775 dB | 71 869 dB   | 71 107 dB | 71 334 dB | 71 126 dB | 71 548 dB | 71 515 dB | 71 062 dB |
| 100 Hz   | 85 844 dB | 79.839 dB   | 76.426 dB | 75.847 dB | 75.374 dB | 73 926 dB | 74.326 dB | 76 253 dB |
| 150 Hz   | 92 853 dB | 87,148 dB   | 81 482 dB | 75,213 dB | 72.69 dB  | 73.71 dB  | 75.866 dB | 80.329 dB |
| 200 Hz   | 87.389 dB | 77.272 dB   | 82.7 dB   | 84.499 dB | 82.653 dB | 78.004 dB | 74.643 dB | 75.345 dB |
| 250 Hz   | 82.733 dB | 75.108 dB   | 78.837 dB | 81.231 dB | 78.596 dB | 70.15 dB  | 76.583 dB | 74.39 dB  |
| 300 Hz   | 86.377 dB | 84.873 dB   | 80.654 dB | 78.619 dB | 78.961 dB | 76.501 dB | 71.626 dB | 73.946 dB |
| 350 Hz   | 84.515 dB | 77.73 dB    | 79.021 dB | 77.632 dB | 72.186 dB | 77.197 dB | 76.03 dB  | 75.385 dB |
| 400 Hz   | 85.562 dB | 82.914 dB   | 78.748 dB | 73.497 dB | 81.78 dB  | 76.553 dB | 79.564 dB | 76.618 dB |
| 450 Hz   | 86.52 dB  | 83.938 dB   | 72.588 dB | 75.487 dB | 83.153 dB | 73.366 dB | 77.758 dB | 74.736 dB |
| 500 Hz   | 84.532 dB | 83.627 dB   | 85.2 dB   | 72.133 dB | 75.711 dB | 74.83 dB  | 76.439 dB | 78.277 dB |
| 550 Hz   | 83.852 dB | 75.809 dB   | 76.199 dB | 77.866 dB | 75.152 dB | 74.54 dB  | 73.288 dB | 74.033 dB |
| 600 Hz   | 79.678 dB | 76.912 dB   | 73.256 dB | 77.169 dB | 72.375 dB | 75.641 dB | 75.06 dB  | 75.914 dB |
| 650 Hz   | 81.203 dB | 73.677 dB   | 71.833 dB | 74.589 dB | 71.47 dB  | 72.818 dB | 71.142 dB | 75.495 dB |
| 700 Hz   | 81.47 dB  | 82.282 dB   | 78.628 dB | 71.89 dB  | 78.536 dB | 76.863 dB | 72.931 dB | 76.02 dB  |
| 750 Hz   | 84.174 dB | 81.91 dB    | 76.209 dB | 74.082 dB | 78.021 dB | 74.911 dB | 76.983 dB | 77.922 dB |
| 800 Hz   | 82.544 dB | 75.922 dB   | 75.577 dB | 72.658 dB | 74.66 dB  | 74.998 dB | 77.934 dB | 73.307 dB |
| 850 Hz   | 84.743 dB | 83.066 dB   | 73.749 dB | 75.64 dB  | 71.855 dB | 76.805 dB | 80.06 dB  | 78.166 dB |
| 900 Hz   | 84.586 dB | 77.61 dB    | 77.952 dB | 73.731 dB | 74.905 dB | 72.592 dB | 76.366 dB | 78.995 dB |
| 1000 Hz  | 82.699 dB | 77.88 dB    | 75.459 dB | 76.821 dB | 73.621 dB | 76.356 dB | 74.495 dB | 77.894 dB |
| 2000 Hz  | 82.683 dB | 79.1 dB     | 77.437 dB | 78.377 dB | 76.276 dB | 75.502 dB | 75.085 dB | 75.058 dB |
| 3000 Hz  | 86.782 dB | 81.421 dB   | 72.904 dB | 79.024 dB | 75.499 dB | 79.307 dB | 71.616 dB | 72.302 dB |
| 4000 Hz  | 80.221 dB | 75.421 dB   | 73.826 dB | 72.563 dB | 74.588 dB | 72.627 dB | 70.871 dB | 74.847 dB |
| 5000 Hz  | 86.435 dB | 84.523 dB   | 80.949 dB | 77.287 dB | 77.159 dB | 74.342 dB | 74.422 dB | 75.664 dB |
| 6000 Hz  | 87.664 dB | 86.165 dB   | 83.454 dB | 80.982 dB | 79.102 dB | 79.993 dB | 74.404 dB | 74.812 dB |
| 7000 Hz  | 85.456 dB | 83.856 dB   | 80.979 dB | 78.324 dB | 76.781 dB | 78.574 dB | 78.654 dB | 76.556 dB |
| 8000 Hz  | 91.146 dB | 88.134 dB   | 86.337 dB | 84.806 dB | 82.646 dB | 80.903 dB | 78.867 dB | 75.611 dB |
| 9000 Hz  | 91.212 dB | 87.052 dB   | 82.375 dB | 79.344 dB | 78.783 dB | 78.449 dB | 73.303 dB | 73.326 dB |
| 10000 Hz | 87.671 dB | 85.26 dB    | 83.689 dB | 80.573 dB | 79.813 dB | 77.511 dB | 77.098 dB | 76.17 dB  |
| 11000 Hz | 73.721 dB | 79.555 dB   | 77.617 dB | 77.284 dB | 74.913 dB | 74.358 dB | 73.006 dB | 74.088 dB |
| 12000 Hz | 74.121 dB | 76.659 dB   | 74.582 dB | 73.809 dB | 72.834 dB | 71.627 dB | 71.036 dB | 71.326 dB |
| 13000 Hz | 77.949 dB | 79.748 dB   | 75.75 dB  | 73.761 dB | 72.151 dB | 72.279 dB | 71.062 dB | 71.146 dB |
| 14000 Hz | 82.591 dB | 81.75 dB    | 78.613 dB | 75.475 dB | 74.263 dB | 73.102 dB | 72.505 dB | 72.267 dB |
| 15000 Hz | 82.164 dB | 82.259 dB   | 79.206 dB | 76.453 dB | 74.594 dB | 74.66 dB  | 73.768 dB | 73.399 dB |
| 16000 Hz | 84.177 dB | 84.097 dB   | 80.576 dB | 77.762 dB | 76.513 dB | 74.597 dB | 72.912 dB | 73.658 dB |
| 17000 Hz | 88.455 dB | 83.12 dB    | 81.6 dB   | 79.64 dB  | 76.357 dB | 75.72 dB  | 74.044 dB | 75.531 dB |
| 18000 Hz | 86.53 dB  | 83.236 dB   | 80.22 dB  | 77.612 dB | 76.213 dB | 74.386 dB | 74.06 dB  | 73.371 dB |
| 19000 Hz | 87.559 dB | 83.979 dB   | 82.463 dB | 79.895 dB | 76.381 dB | 75.552 dB | 73.925 dB | 73.145 dB |
| 20000 Hz | 85.479 dB | 83.138 dB   | 80.863 dB | 78.909 dB | 75.788 dB | 75.223 dB | 74.598 dB | 73.189 dB |

Then data were collected under 10 seconds of fog with the same parameters used under

no fog experiment. Table 3.14 shows the data collected under 10 seconds of fog

production.

Table 3.14Sound Recorded During 10 Seconds of Fog Production as a Function ofDistance Between the Transmitter and Receiver for Frequencies Between 50 to 20, 000Hz and Intensity of Sound are Denoted in Decibel

| 10 SEC OF |          |          |          |          |          |          |          |          |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|
| FOG       | 1ft      | 2ft      | 3ft      | 4ft      | 5ft      | 6ft      | 7ft      | 8ft      |
| 50Hz      | 72.515dB | 72.299dB | 72.603dB | 71.881dB | 71.884dB | 72.268dB | 72.169dB | 72.142dB |
| 100Hz     | 83.781dB | 79.389dB | 78.48dB  | 78.19dB  | 77.894dB | 76.795dB | 74.839dB | 74.687dB |
| 150Hz     | 91.317dB | 88.138dB | 83.305dB | 77.63dB  | 72.972dB | 72.939dB | 73.497dB | 73.013dB |
| 200Hz     | 87.373dB | 74.623dB | 80.715dB | 84.372dB | 83.4dB   | 79.267dB | 75.426dB | 75.169dB |
| 250Hz     | 83.35dB  | 75.189dB | 78.153dB | 80.043dB | 78.592dB | 72.279dB | 77.003dB | 76.651dB |
| 300Hz     | 81.667dB | 81.305dB | 77.868dB | 75.035dB | 79.082dB | 77.603dB | 74.909dB | 73.345dB |
| 350Hz     | 84.166dB | 76.202dB | 78.051dB | 80.263dB | 77.02dB  | 75.916dB | 72.7dB   | 72.352dB |
| 400Hz     | 85.716dB | 81.797dB | 77.071dB | 75.971dB | 79.094dB | 77.633dB | 75.88dB  | 73.496dB |
| 450Hz     | 82.945dB | 81.954dB | 74.109dB | 77.321dB | 76.882dB | 72.667dB | 72.363dB | 71.398dB |
| 500Hz     | 82.736dB | 79.71dB  | 82.265dB | 76.07dB  | 74.948dB | 80.507dB | 74.126dB | 72.644dB |
| 550Hz     | 82.471dB | 80.976dB | 76.206dB | 75.288dB | 73.477dB | 72.413dB | 74.164dB | 75.159dB |
| 600Hz     | 78.719dB | 78.875dB | 73.089dB | 74.383dB | 76.453dB | 72.581dB | 76.976dB | 72.337dB |
| 650Hz     | 81.867dB | 74.903dB | 75.599dB | 72.475dB | 77.521dB | 76.099dB | 74.655dB | 73.233dB |
| 700Hz     | 78.804dB | 78.681dB | 74.703dB | 73.041dB | 75.362dB | 74.837dB | 76.002dB | 78.122dB |
| 750Hz     | 81.196dB | 75.812dB | 74.672dB | 74.218dB | 73.334dB | 74.233dB | 75.551dB | 76.899dB |
| 800Hz     | 79.577dB | 74.469dB | 72.816dB | 74.872dB | 74.498dB | 74.293dB | 73.76dB  | 76.219dB |
| 850Hz     | 82.074dB | 81.717dB | 77.919dB | 74.54dB  | 74.076dB | 73.326dB | 73.697dB | 75.143dB |
| 900Hz     | 81.702dB | 77.557dB | 75.071dB | 80.601dB | 73.438dB | 72.935dB | 75.891dB | 77.755dB |
| 1000Hz    | 81.71dB  | 77.347dB | 82.143dB | 75.407dB | 74.521dB | 75.342dB | 76.369dB | 72.315dB |
| 2000Hz    | 82.678dB | 76.418dB | 74.662dB | 80.381dB | 79.85dB  | 73.035dB | 75.264dB | 73.46dB  |
| 3000Hz    | 87.478dB | 83.915dB | 79.708dB | 73.351dB | 75.155dB | 72.745dB | 75.813dB | 74.569dB |
| 4000Hz    | 81.39dB  | 76.355dB | 78.754dB | 74.55dB  | 73.671dB | 73.712dB | 74.483dB | 76.407dB |
| 5000Hz    | 84.631dB | 79.479dB | 78.242dB | 77.622dB | 76.696dB | 74.659dB | 75.785dB | 73.88dB  |
| 6000Hz    | 86.794dB | 82.512dB | 81.966dB | 80.406dB | 78.368dB | 76.621dB | 73.576dB | 75.866dB |
| 7000Hz    | 89.407dB | 85.791dB | 83.833dB | 81.953dB | 79.141dB | 75.976dB | 74.412dB | 75.548dB |
| 8000Hz    | 91.336dB | 88.326dB | 87.027dB | 84.212dB | 81.807dB | 82.23dB  | 81.476dB | 76.56dB  |
| 9000Hz    | 90.806dB | 84.74dB  | 82.231dB | 79.446dB | 76.357dB | 76.888dB | 72.252dB | 72.711dB |
| 10000Hz   | 86.333dB | 83.162dB | 81.09dB  | 79.691dB | 76.527dB | 75.181dB | 76.879dB | 74.42dB  |
| 11000Hz   | 79.765dB | 78.333dB | 79.447dB | 76.722dB | 76.308dB | 75.304dB | 75.848dB | 73.136dB |
| 12000Hz   | 78.51dB  | 78.875dB | 77.388dB | 75.214dB | 74.504dB | 73.306dB | 72.92dB  | 72.478dB |
| 13000Hz   | 77.064dB | 77.717dB | 74.559dB | 73.451dB | 72.717dB | 72.686dB | 72.516dB | 72.489dB |
| 14000Hz   | 83.179dB | 79.373dB | 77.488dB | 74.544dB | 74.284dB | 73.609dB | 74.12dB  | 73.262dB |
| 15000Hz   | 81.607dB | 81.098dB | 78.002dB | 76.898dB | 74.469dB | 74.169dB | 72.605dB | 73.398dB |
| 16000Hz   | 85.377dB | 83.19dB  | 80.168dB | 77.958dB | 75.792dB | 74.104dB | 72.67dB  | 74.054dB |
| 17000Hz   | 84.427dB | 83.305dB | 81.986dB | 78.992dB | 77.974dB | 76.891dB | 73.489dB | 75.711dB |
| 18000Hz   | 84.272dB | 81.779dB | 79.368dB | 77.421dB | 76.37dB  | 74.906dB | 72.913dB | 74.511dB |
| 19000Hz   | 82.705dB | 82.685dB | 81.449dB | 78.178dB | 76.364dB | 74.758dB | 73.531dB | 74.822dB |
| 20000Hz   | 83.615dB | 82.376dB | 79.673dB | 77.55dB  | 75.523dB | 74.368dB | 73.587dB | 74.243dB |

Data were collected under 20 seconds of fog with the same parameters used under 10

seconds of fog experiment. Table 3.15shows the data collected under 20 seconds of fog

production.

**Table 3.15**Sound Recorded During 20 Seconds of Fog Production as a Function ofDistance Between the Transmitter and Receiver for Frequencies Between 50 to 20, 000Hz and Intensity of Sound are Denoted in Decibel

| 20 SEC   |          |          |          |          |          |          |          |          |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| OF FOG   | 1ft      | 2ft      | 3ft      | 4ft      | 5ft      | 6ft      | 7ft      | 8ft      |
| 50Hz     | 72.867dB | 72.814dB | 73dB     | 72.275dB | 72.095dB | 72.914dB | 72.396dB | 72.879dB |
| 100 Hz   | 84.415dB | 79.244dB | 77.966dB | 78.054dB | 77.29dB  | 76.603dB | 75.542dB | 75.133dB |
| 150 Hz   | 91.899dB | 86.842dB | 83.309dB | 77.788dB | 72.827dB | 72.291dB | 73.601dB | 73.441dB |
| 200 Hz   | 88.048dB | 75.536dB | 80.481dB | 84.27dB  | 83.467dB | 79.963dB | 75.516dB | 76.568dB |
| 250 Hz   | 84.371dB | 76.021dB | 78.338dB | 80.22dB  | 78.432dB | 73.193dB | 76.84dB  | 76.251dB |
| 300 Hz   | 81.985dB | 81.061dB | 78.126dB | 74.987dB | 78.333dB | 76.714dB | 73.845dB | 72.6dB   |
| 350 Hz   | 84.885dB | 75.048dB | 77.911dB | 79.762dB | 76.695dB | 75.539dB | 74.208dB | 75.612dB |
| 400 Hz   | 86.395dB | 80.118dB | 77.738dB | 75.834dB | 78.812dB | 78.496dB | 75.576dB | 72.077dB |
| 450 Hz   | 83.095dB | 81.475dB | 73.835dB | 77.902dB | 77.001dB | 72.478dB | 72.371dB | 75.111dB |
| 500 Hz   | 84.756dB | 77.721dB | 82.015dB | 75.943dB | 74.416dB | 79.374dB | 74.46dB  | 73.394dB |
| 550 Hz   | 84.489dB | 77.219dB | 76.562dB | 75.323dB | 73.116dB | 73.374dB | 73.903dB | 72.339dB |
| 600 Hz   | 80.556dB | 79.264dB | 73.675dB | 74.002dB | 75.487dB | 73.314dB | 75.721dB | 74.179dB |
| 650 Hz   | 83.486dB | 75.302dB | 75.398dB | 72.797dB | 77.722dB | 77.427dB | 74.678dB | 72.802dB |
| 700 Hz   | 80.957dB | 79.968dB | 74.826dB | 73.601dB | 75.667dB | 74.605dB | 75.579dB | 76.022dB |
| 750 Hz   | 81.806dB | 77.08dB  | 75.206dB | 74.828dB | 74.713dB | 72.004dB | 77.526dB | 76.264dB |
| 800 Hz   | 80.834dB | 75.28dB  | 72.865dB | 74.592dB | 71.386dB | 72.316dB | 73.237dB | 74.6dB   |
| 850 Hz   | 82.848dB | 79.276dB | 76.964dB | 76.444dB | 72.911dB | 73.784dB | 72.646dB | 72.747dB |
| 900 Hz   | 83.331dB | 78.016dB | 75.364dB | 78.678dB | 71.551dB | 72.69dB  | 73.847dB | 72.556dB |
| 1000 Hz  | 83.627dB | 78.409dB | 81.336dB | 73.826dB | 73.121dB | 73.944dB | 74.582dB | 72.826dB |
| 2000 Hz  | 83.762dB | 77.687dB | 76.648dB | 79.373dB | 78.189dB | 73.311dB | 73.574dB | 72.993dB |
| 3000 Hz  | 85.189dB | 82.67dB  | 79.591dB | 77.401dB | 74.296dB | 73.186dB | 73.284dB | 73.063dB |
| 4000 Hz  | 81.709dB | 79.675dB | 78.788dB | 77.624dB | 73.772dB | 74.952dB | 76.548dB | 73.549dB |
| 5000 Hz  | 85.335dB | 80.755dB | 79.039dB | 76.153dB | 74.605dB | 75.298dB | 74.029dB | 74.118dB |
| 6000 Hz  | 86.775dB | 85.052dB | 82.858dB | 78.775dB | 78.223dB | 76.38dB  | 77.134dB | 77.181dB |
| 7000 Hz  | 88.96dB  | 86.527dB | 83.632dB | 81.593dB | 79.949dB | 74.32dB  | 76.148dB | 73.62dB  |
| 8000 Hz  | 87.01dB  | 86.081dB | 86.749dB | 82.807dB | 81.104dB | 80.295dB | 79.658dB | 79.154dB |
| 9000 Hz  | 86.85dB  | 82.923dB | 81.881dB | 78.018dB | 75.613dB | 74.671dB | 72.471dB | 72.299dB |
| 10000 Hz | 86.558dB | 82.694dB | 81.244dB | 79.999dB | 75.987dB | 74.028dB | 76.657dB | 72.373dB |
| 11000 Hz | 77.287dB | 81.289dB | 79.382dB | 76.356dB | 75.092dB | 75.388dB | 73.899dB | 72.658dB |
| 12000 Hz | 76.149dB | 75.1dB   | 76.67dB  | 74.051dB | 73.428dB | 72.399dB | 72.964dB | 72.255dB |
| 13000 Hz | 75.826dB | 76.87dB  | 75.102dB | 73.632dB | 73.201dB | 72.348dB | 72.026dB | 72.401dB |
| 14000 Hz | 81.56dB  | 81.07dB  | 77.652dB | 74.363dB | 74.11dB  | 73.573dB | 73.242dB | 73.147dB |
| 15000 Hz | 80.212dB | 81.553dB | 78.398dB | 76.796dB | 74.54dB  | 73.973dB | 73.574dB | 73.362dB |
| 16000 Hz | 85.13dB  | 83.298dB | 80.792dB | 78.016dB | 75.738dB | 74.101dB | 73.179dB | 73.414dB |
| 17000 Hz | 82.673dB | 83.366dB | 81.503dB | 78.249dB | 76.616dB | 76.37dB  | 74.051dB | 74.939dB |
| 18000 Hz | 82.758dB | 82.555dB | 79.57dB  | 77.425dB | 75.278dB | 74.129dB | 74.199dB | 73.221dB |
| 19000 Hz | 83.324dB | 83.738dB | 81.711dB | 78.348dB | 76.047dB | 74.699dB | 74.209dB | 74.051dB |
| 20000 Hz | 82.039dB | 82.999dB | 79.507dB | 77.106dB | 74.002dB | 74.11dB  | 73.122dB | 73.614dB |

Data were collected under 30 seconds of fog with the same parameters used under no fog

experiment. Table 3.15 shows the data collected under 30 seconds of fog production.

**Table 3.16**Sound Recorded During 30 Seconds of Fog Production as a Function ofDistance Between the Transmitter and Receiver for Frequencies Between 50 to 20, 000Hz and Intensity of Sound are Denoted in Decibel

|           | 1         | 1         |           | I         |           | r*****    |           | r         |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SU SEC OF | 1ft       | 2ft       | 3ft       | 4ft       | 5ft       | 6ft       | 7ft       | 8ft       |
| 50 Hz     | 72.5 dB   | 72.858 dB | 72.644 dB | 72.103 dB | 72.276 dB | 72.918 dB | 72.752 dB | 71.928 dB |
| 100 Hz    | 83.786 dB | 79.939 dB | 77.999 dB | 77.862 dB | 77.644 dB | 76.305 dB | 75.479 dB | 74.405 dB |
| 150 Hz    | 91.216 dB | 87.263 dB | 82.518 dB | 76.841 dB | 72.707 dB | 72.875 dB | 71.967 dB | 72.406 dB |
| 200 Hz    | 83.272 dB | 75.754 dB | 81.097 dB | 84.159 dB | 83.095 dB | 78.88 dB  | 75.417 dB | 74.994 dB |
| 250 Hz    | 83.442 dB | 76.09 dB  | 78.512 dB | 79.821 dB | 78.174 dB | 72.613 dB | 73.265 dB | 73.484 dB |
| 300 Hz    | 81.699 dB | 81.849 dB | 77.233 dB | 75.678 dB | 77.684 dB | 75.669 dB | 74.349 dB | 74.688 dB |
| 350 Hz    | 82.998 dB | 76.938 dB | 78.344 dB | 79.619 dB | 76.715 dB | 75.806 dB | 72.887 dB | 71.734 dB |
| 400 Hz    | 83.746 dB | 81.877 dB | 76.273 dB | 75.935 dB | 74.177 dB | 77.729 dB | 74.992 dB | 73.852 dB |
| 450 Hz    | 82.734 dB | 82.155 dB | 74.752 dB | 74.594 dB | 73.423 dB | 72.941 dB | 72.936 dB | 72.554 dB |
| 500 Hz    | 81.73 dB  | 79.55 dB  | 77.995 dB | 75.162 dB | 75.908 dB | 74.537 dB | 73.88 dB  | 72.597 dB |
| 550 Hz    | 82.615 dB | 79.38 dB  | 76.188 dB | 76.544 dB | 73.612 dB | 73.139 dB | 74.466 dB | 71.374 dB |
| 600 Hz    | 79.874 dB | 78.667 dB | 74.347 dB | 72.516 dB | 75.506 dB | 72.883 dB | 75.715 dB | 71.462 dB |
| 650 Hz    | 81.714 dB | 74.783 dB | 74.255 dB | 74.277 dB | 76.931 dB | 73.526 dB | 74.087 dB | 73.913 dB |
| 700 Hz    | 80.16 dB  | 79.924 dB | 75.366 dB | 72.829 dB | 75.493 dB | 74.665 dB | 74.423 dB | 74.593 dB |
| 750 Hz    | 81.666 dB | 77.028 dB | 74.724 dB | 73.181 dB | 74.265 dB | 73.123 dB | 72.085 dB | 74.323 dB |
| 800 Hz    | 80.325 dB | 75.615 dB | 72.837 dB | 75.176 dB | 73.3 dB   | 74.81 dB  | 73.702 dB | 73.337 dB |
| 850 Hz    | 82.316 dB | 79.388 dB | 76.233 dB | 75.919 dB | 75.069 dB | 74.437 dB | 73.209 dB | 72.778 dB |
| 900 Hz    | 82.409 dB | 78.531 dB | 75.806 dB | 78.703 dB | 72.731 dB | 72.549 dB | 75.502 dB | 76.693 dB |
| 1000 Hz   | 83.148 dB | 78.043 dB | 77.21 dB  | 75.315 dB | 74.335 dB | 75.334 dB | 76.338 dB | 73.177 dB |
| 2000 Hz   | 82.353 dB | 77.016 dB | 76.622 dB | 81.179 dB | 76.928 dB | 74.948 dB | 76.454 dB | 73.077 dB |
| 3000 Hz   | 86.626 dB | 82.594 dB | 80.535 dB | 78.816 dB | 74.352 dB | 73.58 dB  | 75.28 dB  | 73.35 dB  |
| 4000Hz    | 82.026 dB | 77.787 dB | 75.756 dB | 76.693 dB | 75.262 dB | 74.715 dB | 73.818 dB | 74.914 dB |
| 5000Hz    | 84.537 dB | 80.891 dB | 80.662 dB | 77.896 dB | 75.336 dB | 73.406 dB | 73.305 dB | 74.493 dB |
| 6000Hz    | 86.553 dB | 83.51 dB  | 81.777 dB | 80.098 dB | 78.772 dB | 77.511 dB | 76.576 dB | 74.964 dB |
| 7000Hz    | 89.405 dB | 84.257 dB | 83.719 dB | 80.636 dB | 78.672 dB | 75.788 dB | 76.164 dB | 74.811 dB |
| 8000Hz    | 91.356 dB | 87.884 dB | 86.913 dB | 83.443 dB | 81.239 dB | 80.629 dB | 80.468 dB | 78.303 dB |
| 9000Hz    | 90.017 dB | 83.504 dB | 80.786 dB | 76.609 dB | 76.221 dB | 72.831 dB | 76.701 dB | 74.668 dB |
| 10000Hz   | 86.666 dB | 82.249 dB | 82.862 dB | 79.957 dB | 76.769 dB | 77.621 dB | 73.086 dB | 75.111 dB |
| 11000Hz   | 77.951 dB | 79.439 dB | 77.653 dB | 76.892 dB | 75.161 dB | 74.622 dB | 74.099 dB | 74.088 dB |
| 12000Hz   | 79.874 dB | 78.519 dB | 75.78 dB  | 74.696 dB | 73.207 dB | 72.815 dB | 73.003 dB | 72.814 dB |
| 13000Hz   | 78.236 dB | 77.242 dB | 74.531 dB | 73.365 dB | 72.429 dB | 73.275 dB | 72.496 dB | 73.111 dB |
| 14000Hz   | 82.836 dB | 80.798 dB | 77.762 dB | 75.237 dB | 74.143 dB | 74.789 dB | 72.647 dB | 73.504 dB |
| 15000Hz   | 81.897 dB | 81.906 dB | 78.356 dB | 76.427 dB | 75.064 dB | 73.054 dB | 74.119 dB | 73.655 dB |
| 16000Hz   | 84.932 dB | 83.612 dB | 79.209 dB | 76.575 dB | 75.31 dB  | 75.507 dB | 74.523 dB | 73.802 dB |
| 17000Hz   | 83.858 dB | 83.226 dB | 81.325 dB | 78.424 dB | 76.164 dB | 75.145 dB | 74.933 dB | 75.05 dB  |
| 18000Hz   | 84.751 dB | 82.201 dB | 79.189 dB | 77.348 dB | 75.072 dB | 74.523 dB | 73.269 dB | 74.034 dB |
| 19000Hz   | 82.791 dB | 83.538 dB | 81.198 dB | 78.401 dB | 76.259 dB | 74.897 dB | 74.088 dB | 74.042 dB |
| 20000Hz   | 83.625 dB | 82.427 dB | 79.377 dB | 76.835 dB | 74.9 dB   | 74.591 dB | 73.96 dB  | 73.764 dB |

Finally, data were collected under 40 seconds of fog with the same parameters used under

no fog experiment. Table 3.17 shows the data collected under 40 seconds of fog

production.

**Table 3.17**Sound Recorded During 40 Seconds of Fog Production as a Function ofDistance Between the Transmitter and Receiver for Frequencies Between 50 to 20, 000Hz and Intensity of Sound are Denoted in Decibel

| 40 SEC   |           |           |           |           |           |           |          |          |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|
| OF FOG   | 1ft       | 2ft       | 3ft       | 4ft       | 5ft       | 6ft       | 7ft      | 8ft      |
| 50 Hz    | 72.704 dB | 72.872 dB | 72.159 dB | 72.469 dB | 72.998 dB | 72.847 dB | 72.995dB | 71.181dB |
| 100 Hz   | 83.381 dB | 78.71 dB  | 78.288 dB | 78.64 dB  | 75.016 dB | 75.894 dB | 74.282dB | 75.067dB |
| 150 Hz   | 91.603 dB | 84.53 dB  | 82.305 dB | 77.688 dB | 76.176 dB | 75.61 dB  | 75.514dB | 74.306dB |
| 200 Hz   | 87.458 dB | 75.369 dB | 82.445 dB | 84.976 dB | 83.836 dB | 79.49 dB  | 76.611dB | 75.784dB |
| 250 Hz   | 84.127 dB | 78.784 dB | 82.606 dB | 83.679 dB | 76.669 dB | 73.662 dB | 77.754dB | 77.006dB |
| 300 Hz   | 78.04 dB  | 80.275 dB | 73.701 dB | 78.129 dB | 78.029dB  | 74.848 dB | 74.66dB  | 75.337dB |
| 350 Hz   | 84.621 dB | 76.895 dB | 73.991 dB | 75.554 dB | 74.561 dB | 79.174 dB | 74.538dB | 73.491dB |
| 400 Hz   | 83.119 dB | 81.424 dB | 73.769 dB | 75.563 dB | 75.697 dB | 75.626 dB | 73.243dB | 72.843dB |
| 450 Hz   | 82.338 dB | 79.749 dB | 77.13 dB  | 76.143 dB | 74.338 dB | 73.349dB  | 74.47dB  | 75.751dB |
| 500 Hz   | 81.765 dB | 80.438 dB | 79.099 dB | 73.517 dB | 76.969 dB | 75.241 dB | 73.518dB | 73.373dB |
| 550 Hz   | 84.075 dB | 77.899 dB | 76.922 dB | 80.311 dB | 75.414 dB | 74.76 dB  | 73.376dB | 73.984dB |
| 600 Hz   | 84.709 dB | 78.304 dB | 76.536 dB | 73.638 dB | 74.673 dB | 73.39 dB  | 73.489dB | 74.771dB |
| 650 Hz   | 80.733 dB | 79.176 dB | 78.549 dB | 76.403 dB | 76.478 dB | 73.33 dB  | 74.814dB | 73.636dB |
| 700 Hz   | 81.81 dB  | 78.47 dB  | 74.936 dB | 73.26 dB  | 75.841dB  | 73.882 dB | 75.223dB | 73.777dB |
| 750 Hz   | 79.775 dB | 79.954 dB | 75.279 dB | 73.387 dB | 74.072 dB | 75.964 dB | 74.871dB | 74.319dB |
| 800 Hz   | 80.022 dB | 78.683 dB | 75.554 dB | 75.099 dB | 73.395 dB | 74.957 dB | 75.39dB  | 75.557dB |
| 850 Hz   | 84.629 dB | 74.833 dB | 79.959 dB | 74.464 dB | 73.899 dB | 75.725 dB | 74.394dB | 73.391dB |
| 900 Hz   | 83.601 dB | 81.285 dB | 74.33 dB  | 78.247 dB | 74.764 dB | 77.47dB   | 73.406dB | 73.053dB |
| 1000 Hz  | 84.15 dB  | 84.194 dB | 79.821 dB | 76.898 dB | 78.235 dB | 74.114 dB | 72.635dB | 72.066dB |
| 2000 Hz  | 81.069 dB | 79.04 dB  | 74.965 dB | 77.593 dB | 76.559dB  | 73.564 dB | 74.118dB | 72.481dB |
| 3000 Hz  | 86.35 dB  | 81.335 dB | 81.214 dB | 77.319 dB | 76.36 dB  | 74.926 dB | 75.618dB | 73.083dB |
| 4000 Hz  | 82.59 dB  | 77.106 dB | 76.704 dB | 76.84 dB  | 73.855 dB | 73.379 dB | 73.855dB | 73.49dB  |
| 5000 Hz  | 83.811 dB | 79.408 dB | 79.201 dB | 76.945 dB | 75.836 dB | 74.939 dB | 74.726dB | 73.467dB |
| 6000 Hz  | 86.877 dB | 84.076 dB | 81.31 dB  | 76.58 dB  | 77.423 dB | 77.316 dB | 74.948dB | 75.135dB |
| 7000 Hz  | 87.628 dB | 84.395 dB | 81.892 dB | 79.336 dB | 78.881 dB | 77.169 dB | 73.725dB | 72.851dB |
| 8000 Hz  | 89.561 dB | 88.483 dB | 84.893 dB | 82.716 dB | 80.805dB  | 79.187 dB | 76.531dB | 74.273dB |
| 9000 Hz  | 88.967 dB | 85.365 dB | 81.393 dB | 78.254 dB | 75.676 dB | 74.284dB  | 73.769dB | 73.648dB |
| 10000 Hz | 87.615 dB | 83.763 dB | 80.107 dB | 78.363 dB | 76.249 dB | 74.203 dB | 74.962dB | 72.701dB |
| 11000 Hz | 79.552 dB | 79.596 dB | 77.126 dB | 76.194 dB | 75.897 dB | 74.134 dB | 74.252dB | 73.119dB |
| 12000 Hz | 78.47 dB  | 78.133 dB | 76.112 dB | 74.651 dB | 73.629 dB | 72.196 dB | 73.033dB | 73.181dB |
| 13000 Hz | 77.582 dB | 77.263 dB | 74.424 dB | 74.408 dB | 73.827 dB | 72.576 dB | 73.405dB | 73.174dB |
| 14000 Hz | 83.042 dB | 79.372 dB | 76.56 dB  | 74.938 dB | 74.553 dB | 73.068 dB | 73.298dB | 73.561dB |
| 15000 Hz | 81.514 dB | 80.307 dB | 78.177 dB | 75.38 dB  | 74.668 dB | 72.803dB  | 73.649dB | 73.26dB  |
| 16000 Hz | 83.419 dB | 82.214 dB | 77.697 dB | 76.093 dB | 74.815 dB | 73.092 dB | 73.643dB | 72.887dB |
| 17000 Hz | 82.945 dB | 82.346 dB | 79.628 dB | 78.039 dB | 76.594 dB | 73.485 dB | 73.956dB | 73.689dB |
| 18000 Hz | 82.727 dB | 80.341 dB | 77.923 dB | 76.117 dB | 74.875 dB | 73.164 dB | 73.172dB | 73.273dB |
| 19000 Hz | 82.139 dB | 82.509 dB | 79.738 dB | 76.746 dB | 75.533 dB | 73.018 dB | 73.05dB  | 73.477dB |
| 20000 Hz | 82.813 dB | 80.829 dB | 79.078 dB | 75.671 dB | 74.754 dB | 73.573 dB | 73.892dB | 73.277dB |

## 3.2.2 Graphs of Sound Experiment

Tables 3.13 to 3.17 shows the data collect from no fog to different production level of the fog in seconds. Graphs 3.41 to 3.45 shows the graphical representation of the data collected in tables 3.13 to 3.17. Graph 3.46 shows the comparison of the data collected from the sound meter and the system developed in this project.



**Figure 3.40** Sound intensity level, in decibel (db), versus sound frequencies for control (no fog) condition with varying distances (feet).



**Figure 3.41** Sound intensity level, in decibel (db), versus sound frequencies for 10 seconds condition with varying distances (feet).



**Figure 3.42** Sound intensity level, in decibel (db), versus sound frequencies for 20 seconds condition with varying distances (feet).



**Figure 3.43** Sound intensity level, in decibel (db), versus sound frequencies for 30 seconds condition with varying distances (feet).



**Figure 3.44** Sound intensity level, in decibel (db), versus sound frequencies for 40 seconds condition with varying distances (feet).



**Figure 3.45** Validation through comparison of sound meter purchased through Radio Shack and the system developed from this research when the transmitter and receiver were 1 foot apart. Results are within +/- 2 dB.

There was no substantial decrement or increment noticed in the results of the sound experiments under fog at different production level (in seconds) compared to the control (no fog). For the validation of the system a sound meter, manufactured by Radio Shack, was used. Looking at figure 3.46, which shows the comparison of the developed system in this research and the Radioshack measurements, there is not substantial difference recognized between two systems. According to the author, the experimental room was not large enough to see major difference in the measurements of the sound experiment. Graph 3.46 shows the results obtained by comparing no fog to 40 seconds of fog production. There is substantial lost in intensity of sound frequency under fog condition than in the air medium.



Sound intensity is less attenuated in the fog medium compared to air medium. 10 KHz frequency was chosen for the analysis because it is in the middle of the audible range (20 Hz to 20 KHz).

#### **CHAPTER 4**

### DISCUSSION

This section discussed the data shown in the graphs and tables from chapter 3. Section 4.1 discussed the light experimentation whereas section 4.2 discusses the sound experiment data. Discussion of sound and light experiment is needed for a better understanding of the data provided in the Result section.

#### 4.1 Light Experimentation

After the data of the light experiment were normalized according to the sensitivity of the chromo meter, data were divided in to three main sections: data grouped by color, time of fog production, and distance between the transmitter and receiver.

#### 4.1.1 Data by Color

Data collected from the light experiment were grouped by seven different colors of light: red, orange, yellow, green, purple, blue, and white. The intensity of each color was inversely proportional to the fog production time (figure 3.16 - 3.22). Furthermore, the light intensity measured by the chromo meter was inversely proportional for each fog production times (measured in seconds) (figure 3.23 - 3.28). Figure 3.16 shows that as red light travel further distances, the intensity of light decreases. For example, when the transmitter and receiver were 2 feet apart, the intensity of red light measured during the control was 16,467 Lux. When the distance between the transmitter and receiver was 8 feet the intensity of red light was 735 Lux, which is 96% less in intensity. Using the same parameter, these data show the orange light was reduced by 95% (Figure 3.17), yellow light by 95% (Figure 3.18), green light by 96% (Figure 3.19), purple light by 95% (Figure 3.20), blue light by 96% (Figure 3.20), and white light reduced by 95% (Figure 3.21). Another trend found in the data was that the time of fog production was inversely related to the intensity of light. For example, yellow light intensity (Figure 3.18) measured at a distance of 2 feet between transmitter and receiver during the control was measured as 90,121 Lux and for 10 seconds of fog production for the same distance the intensity was 1201 Lux which is 99% of loss in the intensity. Even 8 seconds of fog reduced the yellow light intensity by 98% with virtually zero visibility. Similarly, all the colors show 99% of reduction in the intensity for 10 seconds of fog production for a distance between the transmitter and receiver of 8 feet which means the fog affects all the colors in a similar manner resulting in zero visibility conditions.

#### 4.1.1 Data by Density

The data collected from the light experiment were analyzed using different methods. Data was grouped by the amount of fog production, for the control (no fog production), 2, 4, 6, 8, and 10 seconds of fog production. The graphs shown in section 3.1.2.1 gives the excellent details pertaining each color of lights. The graphs (Figure 3.23 - 3.28) effectively show the relationship between light transmission for the control and different densities of fog environments. Figure 3.23 to 3.28 are the graphs for all the colors under no fog and varying fog production in seconds. These graphs show as density of fog increases the intensity of light decreases where the visibility declines. Figure 3.29 to 3.33 shows the percentage lost in the transmission of light from the control to various fog

production time at different distances between the transmitter and receiver. For example, in Figure 3.29, which is the percentage difference in intensity from no fog to 2 seconds of fog production, the red light intensity level decreased by 55% when the transmitter and receiver were 2 feet apart; however, for the same condition of fog production the light intensity decrease by 15% when the transmitter and receiver were 8 feet apart. This analysis investigated two parameters 1) for a given wavelength and the same distance between transmitter and receiver how did the amount of fog production influence results and 2) for a given wavelength and fog production how did the distance between the transmitter and receiver influence the results. In figure 3.29 the amount of fog production was kept constant and the variable of interest was the distance between the transmitter and receiver. For example, for the orange color there was a 50% reduction in signal intensity at 2 feet and 21 % decrease at 8 feet, yellow decreased 64% at 2 feet and 21% decrease at 8 feet, green decreased 61% at 2 feet and 21% decrease at 8 feet, purple showed a 50% decrease at 2 foot and 21.12% decrease at 8 feet, and blue decrease by 55% at 2 foot and 19% at 8 foot distance. Similarly, Figure 3.29 to 3.32 shows the percentage lost from no fog to fog conditions. Figure 3.31 shows 98% lost at 2 foot distance and 94 to 95 percentage lost at 8 foot distance for red light. However, figure 3.33 shows a 99% reduction, for all colors, when the transmitter and receiver were 2 feet apart and at 98% reduction when the transmitter and receiver were 8 feet distance. Which means there was 99% reduction in the transmission of light at 2 feet distance (compare to 2 feet distance with no fog) and 98% reduction at 8 feet (compare to 8 feet distance with no fog) when 10 seconds of fog was deployed. Data show there is virtually no visibility for eight seconds of fog production in a 11x11x8 feet room when the

distance between the transmitter and receiver was 8 feet. Based on these data, the fog machine was not run for more than 10 seconds during the visibility studies because after 10 seconds the visibility declined by 99%, so increasing the fog production time would give constant results.

#### 4.1.2 Data by Distance

Sub Section 3.1.2.2 shows the graphs which are grouped by distance between the transmitter and receive in feet starting from 2 feet distance, incremented by 1 foot, up to 8 feet. Figure 3.33 to 3.39 shows the percentage lost from no fog to different fog production times for a given distance in feet. For example, Figure 3.33 shows the percentage lost for a 2 feet distance from the control to various fog production times. There was a 99% reduction in signal intensity when the fog machine operated for 10 seconds of fog for all the distances. Looking carefully at the graphs, the green light has the most loss in percentage among other six different colors of lights for all the distances at varying production of fog. For example, at 2 feet distance (Figure 3.33), the largest percentage lost is 64% which is green light. Similarly, for 3 feet distance (Figure 3.34) most percentage decrease is 57% for green, at 4 feet distance most decreased is 46% (Figure 3.35) which is green, at 5 feet distance is 38%(Figure 3.36), at 6 feet distance is 28% (Figure 3.37), at 7 feet distance is 26% (Figure 3.38), and at 8 feet distance is 21% decrease in green light. These graphs show that, as density of fog increases, the percentage lost increases as well for a given distance. These graphs also show that between 6 seconds to 10 seconds of fog production there is not much difference in the percentage of intensity decrease, (the intensity is lost from 95% to 99%).

#### 4.2 Sound Experiment

Sound data were recorded by a microphone and this research created a custom Lab VIEW program to automatically digitize and save data in to Excel files. Section 3.2.1 shows the table of the data collected in the sound experiment. Section 3.2.2 shows the graphs of the data shown in the tables of section 3.2.1. Figure 3.40 to 3.43 show a similar trend which is, as distance increases the sound intensity level (db) decreases for the control environment as well as the various densities of fog environments. For example, in figure 3.41 when the transmitter and receiver were one foot apart, the intensity in decibels calculated were higher than the intensity measured when the transmitter and receiver were 8 feet apart. The percentage difference between no fog and various density of fog is very small, about 5%. Figure 3.40 to 3.43 shows the 38 different sound files (50Hz to 20,000Hz) at distances from 1 foot to 8 feet (increment by 1 foot) under no fog, 10 seconds of fog, 20 seconds of fog, 30 seconds of, and 40 seconds of fog. Since the change in intensity level from no fog to different density of fog was very minimal, this research did not obtain more data after 40 seconds of fog production. The small change in intensity level shows that it required many seconds of fog production to observe substantial differences in the sound frequencies.

Sound frequency attenuated less in a fog medium than in the air medium. For example, Figure 3.46 shows the comparison of no fog to 40 seconds of fog production of 10 KHz frequency. At 8 feet of distance under no fog condition, the intensity of 10 KHz frequency is 76 dB. However, at 8 feet of distance under 40 seconds of fog production, the intensity of 10 KHz frequency is 73 which shows that sound intensity decreases as fog production increases.

## CHAPTER 5

## CONCLUSIONS

The main goal of this research was to study the transmission of sound and light energies under fog condition and compare it with no fog condition (the control). There were thirty eight different sound frequencies studied, ranging from 50 Hz to 20,000 Hz, utilized in the sound experiments. There were seven different colors; red, orange, yellow, green, purple, blue, and white investigated during the light experiment. Sound results measured by taking certain factors in mind such as: ensuring that there is no delay between the production of sound and the recording of sound, the data collected from the microphone are the data for the frequencies played by the speaker, creation of a LabVIEW program that records different sound files simultaneously. Furthermore, controlling the light and sound energies from a location, other than the experiment room, was a crucial aspect of this research as well. Due to fog in the experiment room, the mobility of the sensors from one distance to another would be difficult so all the sensors were controlled by an operator outside the experiment room. Fans needed to be placed in a way that the fog evacuates faster. Fog does not travel like smoke so it needs to be pushed from one side and pulled from the other side to be evacuated. Therefore one fan was placed in the bottom, to push the fog by external air, and one fan was placed at the top corner of the room to pull the fog out of the room.

After analyzing the results carefully, the light is more affected by the fog transmission compared to sound. Light transmission decreases as distance increases. Light intensity also decreases in the medium when fog was present compared to an air medium. Light transmission is almost zero at 8 seconds of fog production.

74

Sound recorded data were verified with the sound meter from the Radio Shack with + or -2% error compared to the experimental system generated during this research. Sound transmission decreases as distance increases, although fog did not have a substantial effect on the transmission of sound in a 11x11x8 foot room. Sound decreases by 5% in the environment when there was 40 seconds of fog production compared to the control condition when the microphone was 1 foot to 8 feet apart (Figure 3.46). Sound intensity decreases as fog production increases.

In the thesis, there was no human interaction with the fog. The sound and light was studied through the sensors and this should be verified with human data by running human subjects. Data collected from the light and sound sensors during this investigation should be compared to human data. It is very interesting to find out whether ECG (Electrocardiogram), EMG, and the respiratory system of humans also are affected by different fog mediums compared to controls. Also in the sound experiment, data can be analyzed under hours of fog production for distances of 1 to 8 feet between the transmitter and receiver. Synthetic fog can be further studied to determine if it has any other effects on the human body than the ones which are already known, such as skin irritation and asthma [4].

# **APPENDIX A**





Figure A.1 Front panel view of the sound experiment.

# **APPENDIX B**



#### BLOCK DIAGRAM OF THE AUDIBLE SOUND EXPERIMENT

Figure B.1 Block diagram of the sound experiment.

# REFERENCES

| [1]     | Fog Security Systmes Inc.(1983), <i>The concept behind fog security systems</i> .<br>http://www.fogsecurity.com/concept/ (20 May 2003). |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|
| [2]     | Robert Derencin (2002, June 24), Counter sonar measures-a                                                                               |
| [-]     | hathythermograph Article on uboat net.                                                                                                  |
|         | http://uboat.net/articles/?article=45 (9 June 2003)                                                                                     |
| [3]     | National Cooperative Highway Research Program(NCHRP) Synthesis                                                                          |
| [9]     | 228: "Reduced visibility due to fog on the highway". A synthesis of                                                                     |
|         | highway practice, chapter one introduction, page 3 Jan, 1998                                                                            |
| [4]     | J. Moline, A Golden, J. Highland, K. Wilmarth, and A. Kao, " <i>Health</i>                                                              |
| Γ.]     | effects evaluation of theatrical smoke, haze, and phyrotechnics"                                                                        |
|         | Article on actorsequity.org (6 June, 2000)                                                                                              |
|         | http://www.actorsequity.org/library/Misc/exec_summary.pdf                                                                               |
| [5]     | Fog Security Systems Inc. Material safety datasheet. (Provided with the                                                                 |
| [-]     | purchase of the fog machine on 22 April, 2003 to East Orange VA                                                                         |
|         | hospital- Neurobehavioral research lab)                                                                                                 |
| [6]     | State University of Arizona(1999). Patterns in nature. Color and light(1).                                                              |
| r.1     | http://acept.la.asu.edu/PiN/rdg/color/color.shtml (17 June, 2003)                                                                       |
| [7]     | Altruis Biomedical Network(2000), Anatomy of the eye. E-ophthalmology                                                                   |
| r. 1    | associations. http://www.e-ophthalmology.net/retina (23 June,                                                                           |
|         | 2003)                                                                                                                                   |
| [8]     | Federal Aviation Administration. The retina and fovea.                                                                                  |
|         | http://www.hf.faa.gov/Webtraining/VisualDisplays/HumanVisSys1.                                                                          |
|         | htm (24 June, 2003)                                                                                                                     |
| [9]     | T. Alvarez Ph.D, Neural Engineering Notes, Fall 2003. New Jersey                                                                        |
|         | Institute of Technology, Biomedical Engineering.                                                                                        |
| [10]    | R. Miller Ph.D, "Physics 101 Lecture 8 Sounds", La Trobe University.                                                                    |
| [11]    | Bruel & Kjaer "Product Data Sheet".                                                                                                     |
|         | http://www.bksv.com/pdf/Bp1380.pdf (29 June, 2003)                                                                                      |
| [12]    | P. Randolph Ph.D, "Anatomy and Physiology of Auditory System",                                                                          |
|         | Howard University.                                                                                                                      |
| [13]    | R. Saunders, "Anatomy of the Ear", Simon Fraser University.                                                                             |
| [14]    | Vestibular Disorder Association, Peripheral Vestibular System (Jan.                                                                     |
|         | 1996) http://www.vestibular.org/vestsystem.html (29 June, 2003)                                                                         |
| [15]    | Laurence Gainsborough, Fog Security president.                                                                                          |
| [16]    | Agency for Toxic Substances and Disease Registry (ATSDR). 1997.                                                                         |
|         | Managing Hazardous Materials Incidents. Volume III – Medical                                                                            |
|         | Management Guidelines for Acute Chemical Exposures: "Ethylene                                                                           |
|         | Glycol and Propylene Glycol". Atlanta, GA: U.S. Department of                                                                           |
| F 1 = 1 | Health and Human Services, Public Health Service.                                                                                       |
| [17]    | Martin Mini Mac, "Product Specifications".                                                                                              |
|         | http://www.axemusic.com/products/lighting/motorized_effects/dm                                                                          |
|         | x_over_2k/martin_minimac_profile.htm (1 July, 2003)                                                                                     |

[18] R. Patel, "A real time frequency analysis of the electroencephalogram

using Lab VIEW" *Master's Thesis*, New Jersey Institute of Technology, Jan. 2002.

- [19] M. Chugani, A. Samant, and M.Cerna, *Lab VIEW Signal Processing*, Prentice Hall, Inc., NJ, 1998.
- [20] M. Bergen, "Computer automated experimentation for the control and assessment of the classically conditioned eye blink response," *Master's Thesis*, New Jersey Institute of Technology, Aug. 1999.
- [21] Elation Professional User Manual, page 68 "Easy Stand Alone Software".
- [22] K. Tsipis, Cruise Missiles, Scientific American, Feb 1977.
- [23] Uteck Systems http://www.uteck.com/blowers.htm (July 22, 2003)