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ABSTRACT

THERMOCHEMICAL PROPERTIES OF SMALL OXYGENATED SULFUR
HYDROCARBONS

AND
KINETICS - REACTION PATHWAYS OF METHYLTHIOMETHYL RADICAL

WITH OXYGEN

by
Fei Jin

The thermochemical properties on CH3SCH200 and the corresponding two radicals

resulting from loss of H atom: CH3SCH200 and CH2SCH2OOH are important to

understand the stability, reaction paths and kinetics of reactions of dimethyl sulfide and

other sulfur hydrocarbons (sulfides) in the atmosphere and combustion processes.

Thermochemical properties for species and transition states in the methylthiomethyl

radical (CH3SCH2) + 02 reaction system are analyzed to evaluate reaction paths and

kinetics under these conditions. Isodesmic working reaction are employed to determine

the enthalpies of formation (AHP298) using density functional (B3LYP/6-311G(d,p)) and

complete basis set extrapolation (CBS-QB3) computational methods. Entropy (S°298) and

heat capacities C(T) ( 300< T/KS< 1500) are determined using geometric parameters and

vibration frequencies obtained at B3LYP/6-311G(d,p) level of calculation. Quantum

Rice-Ramsperger-Kassel(QRRK) analysis is used to calculate energy- dependent rate

constants, k(E) and master equation is used to account for collisional stabilization of

adduct and isomer. The methyithiomethyl radical adds to oxygen to form a methylperoxy

racial with a 37.82 kcal/mol well depth. The peroxy radical can undergo dissociation

back to reactants, isomerize via hydrogen shift (TS1, E a=17.06kcal/mol) to form a

hydroperoxide methyl radical CH2SCH200H, decompose via hydrogen transfer (TS2,



Ea37.79kcal/mol) to form CH3S(=O plus 0H radical , or the peroxy radical can also

attack the sulfur atom via TS3 (Ea37.79kcal/mol) to form CH3S(=0) + CH2O. The

C.H2SCH200H isomer can decompose via TS4 (E a24.09kcal/mol) to form

CH20+CH2S+0H, or through a four-member ring transition state (TS5, Ea=

Ea37.79kcal/mol) to form 1,3-0xathietane + 0H.

Structures and thermochemical properties on Sulfenic Acids (RS0H R = CH3,

CH3CH2, CH2=CH,) and their radicals are determined by CBS-QB3 calculation.

Molecular structures and vibration frequencies are calculated at B3IXP/6-311G(d,p)

levels. AHf298, S°298 and C(T) for the concerned species are calculated in this study.

Enthalpies of formation are determined using the Affrxn(298) and known enthalpies in each

of different working reactions. Contributions to entropy and heat capacity from internal

rotation are also determined.
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CHAPTER 1

THERMODYNAMIC AND KINETIC ANALYSIS ON METHYLTHIOMETHYL
RADICAL WITH OXYGEN

1.1 Introduction

Dimethyl sulfide (DMS) has been recognized as the main natural source of sulfur in the

atmosphere [1]. It emitted into the atmosphere over the global oceans has a range of

effects upon atmospheric composition (mediated through various oxidation products) that

may be significant with regard to issues as important as climate regulation. The roles

played by DMS oxidation products are diverse and complex. Components of the

chemistry are, in many instances, not well understood.

At present, the main step of the DMS oxidation in the atmosphere is the reaction

with OH [2] radical during daylight and the reactions with NO3 [3] radical and Cl [4]

radical, these reactions will lead to the formation of the CH3SCH2 radical.

The CH3SCH2 peroxy radical (methyl-thiol-methyl peroxy radical) is then

(immediately) formed through reaction with oxygen in the atmosphere. This is an

important intermediate in the atmospheric degradation of dimethyl sulfide [5,6]. The

CH3SCH200 peroxy radical is produced through the association the CH3SCH200 radical

with 02:

It is believed that the reaction of the CH3SCH200 with the H02 radical will lead to the

following products:

1
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Wallington et al suggested this reaction would be the dominant one for reaction

with H02 an it could play a significant role in the atmospheric degradation of DMS. The

rate constant was estimated as k= 7 x 5x10'2cm3molecule's , which will lead to an

atmospheric lifetime of 3 minutes for the CH3SCH200 radical.

There are no studies on the overall kinetics of the complex process involved in the

di-methyl sulfide radical reaction with 02 and there are not studies of the kinetic

parameters to the varied reaction paths for either the chemical activated or the

dissociation of the thermally stabilized dimethylsulfide peroxy radical.

The thermochemical properties of the species in the reaction of CH3SC.H2 + 02

have been studies by several research groups. Stella et al. have reported thermochemical

data for CH3SCH200H ( MI/298=-28.4kcal/mol) and CH3SCH200 M110298=

6.7 lkcal/mol) at the CCSD(T)/cc-PvtzIIMP2/6-3 1 G(d) level.

McKee have calculated the heat formation of the CH3SCH200 and CH3SCH20

radicals at the QCISD(T)/6-31+G(2df,p)//MP2/6-31G+d) level of theory, using isodesmic

reactions. The values were 7.4kcal/mol and 7.4kcallmol, respectively.

In this chapter, reaction pathways of the addition of 02 to CH3SCH2 radical are

analyzed. CBS-QB3 and density functional methods are utilized to estimate

thermodynamic properties ( AH/298, S°298 and C(T) ) for reactant CH3SCH2,

intermediate radicals CH3SCH200 CH2SCH200H and transition states:
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Isodesmic working reactions are applied to evaluate enthalpies of formation.

Contributions to entropy and heat capacities from internal rotation are estimated using

direct integration over energy level of the intermolecular rotation potential energy curve,

with B3LYP/6-311g(d,p) level of calculation for rotation barrier. Activation energies for

the transition states are determined and the kinetic analysis is detailed on the base of the

thermodynamic properties.

Quantum Rice-Ramsperger-Kassel (QRRK) analysis [7] is used to calculate the

energy dependent rate constant 14E), and master equation analysis is applied to account

for collisional stabilization in the CH3SCE2 + 02 adduct and isomers. The

therrnochemical and kinetic data at relevant pressures and temperatures should be useful

to both atmospheric and combustion models.

1.2 Calculation Method

All the calculations were carried out using Gaussian 98 program [8]. The geometry

optimization, harmonic vibration frequencies are computed with the B3LPY/6-311G(d,p)

level of theory transition state geometries are identified by the existence of only one

imaginary frequency.

To improve the accuracy of the calculated values on relative energies we used one

the Complete Basis Set series, namely CBS-QB3 [9]. This approach employs B3LYP
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geometries as the basis for a series of single point calculations and empirical corrections.

The single point calculations include:

- A large basis set Hartree —Fock calculation at MP4SDQlCBSB4 level.

- A complete basis set extrapolation at MP2lCBSB3 level.

- Higher level correlation is included at

1.2.1 Enthalpies of Formation (EIH f°298)

Enthalpies of formation (EIHf°298) for reactant, intermediate radicals and their parent

molecule CH3SCH2O0H which are necessary to calculate intermediate radicals are

estimated using total energies obtained by density functional (B3LYPl6-311G(d,p)) and

CBS-QB3 calculations combined with the use of isodesmic working reactions. Total

energies are corrected by zero-point vibrational energies (ZPVE), which are scaled by

0.4806 [10] for the B3LYPl6-311G(d,p) level. ZPVE's calculated by CBS-QB3 level of

theory are scared by 0.44[4].

where N is Avogadro constant, h is Planck constant, and kb is Boltzmann constant.

Isodesmic reactions are hypothetical reactions where the number of electron pairs

and the bonds of the same type are conserved on both sides of the equation. The working

reaction is utilized in way that leads cancellations [11] . For an example, one working

reaction for estimation of CH3SCH2 is
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All four compounds in this reaction are estimated using density functional and CBS-QB3

calculations. Since EIfif°298 of three compounds (except CH3SCH2) have been

experimentally or theoretically calculated, the unknown Afif°298 for CH3SCH2 is

obtained.

Enthalpy values for the transition state saddle points are estimated by evaluation

of AH1)298 of the stable radical adduct plus the difference of the total energies with ZPVE

and thermal correction between the reactant or product radical species and the transition

state.

1.2.2 Entropy (S°298) and Heat Capacities (C (T), 3005 T/1(5 1500)

Entropies and heat capacities at temperature range from 300K to 1700K were calculated

using the rigid-rotor-harmonic-oscillator approximation based on scaled vibrational

frequencies and moments of inertia of the optimized BLYPl6-311G(d,p) structures.

Contribution to entropy and heat capacity from internal rotation is determined using

Pitzer et al's treatment [12] based on rotational barrier height and corresponding

moments of inertia for the rotors. SMCPS program was used.

1.2.3 High-Pressure Limit A Factors(A) and Rate Constant (k1)

Thermochemical properties entropy and heat capacity of transition states are calculated

by B3LYPl6-311g(d,p) density functional method. Enthalpy values of the transition

states are calculated with this B3LYPl6-311g(d,p) method and with CBS-QB3method.

High-pressure limit rate constants, Icco, are calculated using the Ea described below and

pre-exponential values (A factors). This pre-exponential factor are from entropy

differences between reactant and transition state 	 over the temperature range from
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200K to 2000K are used to determine the pre-exponential factor A, via classical,

canonical TST for a unimolecular reaction

where hp is the Planck constant and Kb is Boltzmann constant,

These k infinity values are fit by three parameters, A, n, and Ea over the temperature

range from 200K to 2000K, expressed by:

Activation energies of reactions are calculated as follows:

1.2.4 Quantum Rice-Ramsperger-Kassel Analysis with Master Equation

Quantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculate k(E) with a

master equation analysis [13] for falloff in order to obtain rate constants as a function of

temperature and pressure. Reduced sets of three vibrational frequencies and their

degeneracy plus energy levels of one external rotor are used to yield the ratio of density

of states to partition the coefficient, p(E)IQ for each adduct (isomer in the chemical

activation or dissociation reaction system). Each set of vibrational frequencies and

respective degeneracies is computed from fitting heat capacity data, as described by

Ritter (CPFIT computer code)[14].
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1.3 Results and Discussion

1.3.1 Geometries and Vibrational Frequencies

Figure 1.1 shows the optimized geometric structures of CH3SCH200H, CH3SCH200

CH2SCH200H and transition states, calculated at B3LYPl6-311g(d,p) level. In the

stable molecule and two radicals, the oxygen bonded to the carbon in three structures is

almost perpendicular to the plane of the C-S-C. The results with data (in the parenthesis)

reported previously by Stella et al, which is at the UMP2/6-31G(d) calculation level, are

compared with this work. TS1 for isomerization of CH3SCH200 to C-112SCH200H is a

six-member ring. The 0-H bondlength is 1.17A and the C-H bondlength is 1.40 A, both

slightly longer than the stable 0-H bondlength (0.46A), and the stable C-H bondlength

(1.08A). TS2 for intramolecular hydrogen shift from CH 3SCH200 to CH3SCH00H

has an 0-H bondlength of 1.31A and the C-H bondlength of 1.30 A, both slightly longer

than the stable 0-H bondlength, 0.46 A, and the C-H bondlength 1.08 A. The TS3 shows

a C-S cleaving bond of 2.00 A and S-0 forming bond of 1.40 A. TS4 for the formation of

the CH2S+CH20+OH has S-C lengthening bond 2.04 A and C-0 lengthening bond 1.81

A. TS7 for 1,3-Oxathietane + OH formation has a four-member ring structure. The

dissociating 0-0 bond is 1.71 A and the forming C-0 bond is 2.00 A.

Harmonic vibrational frequencies are calculated for the reactant, intermediates

and the transition states at the B3LYP/6-311g(d,p) level of theory on the basis of

optimized geometries at the same level of theory. The vibrational frequencies and

moments of inertia are given in Table 1.1



Table 1.1 Vibration Frequencies and Moments of Inertia

8



Figure 1.1 Structures and geometrical parameters for all species studied at
B3LYP/6-311G(d,p) Distance is present in A and angles in degrees. The values
calculated by Stella, at the UMP2/6-31G(d) level of theory are in the parenthesis.

9
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1.3.2 Rotational Barrier

Potential barrier for internal rotations of the reactant peroxy radical

hydroperoxide alkyl radical (C-H2SCH2OO) and their parent molecule CH3SCH2O0H are

calculated at the B3LYP/6-311g(d,p) level. Potential energy as function of dihedral angle

is determined by varying the torsional angle from 0° to 360° at 17° intervals and allowing

the remaining structure parameters to be optimized at B3LYPl6-311g(d,p) level. The

barrier of a given rotation is then calculated as the difference between the highest point

on the potential energy surface and the corresponding most stable conformer. Potential

energy vs. torsion angle diagrams of internal rotations about

0-0 and C-0--0-H are shown for three species in Figures 1.2, 1.3, 1.4 and 1.7.

Figure 1.2 Potential barrier for internal rotation about the C—S bond of
CH3SCH2O0H, CH3SCH2OO and C-H2SCH2OO. Points are calculated value at the
B3LYP/6-311G(d,p) level.

The calculated rotational barriers vs torsional angle about C—S bond of the three

target species shown in Figure 1.2 present the three curves. For

SCH2OO they have three minima and three maxima and indicate 3-fold symmetry with
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barriers between 0.46 and 0.77kcallmol. These two curves represent typical CH3-S bond

rotational potentials, in which the eclipsed structures are corresponding to the maxima

and the staggered structures are corresponding to the minima on the potential curve. The

CH2—S torsion potential for C.H2-SCH200H radical show A2-fold symmetry. The

conformer with dihedral LH-C--S-C is 30° or 180° is the most stable because of

electrostatic reactions; the 0.-H interaction [16,17] between H atom in the -CH2- group

and the peroxy 0 atom, with the inter atomic distance of 2.830 A (dihedral angel is 180°)

and 2.840A (dihedral angel is 30°), which is nearly equal to the van der Waals radii for 0

and H atom (2.70 A). But when the dihedral angle approaches 40° and 270°, the

interatomic distance is 3.678 A and 3.222 A, respectively. The structures with the 2.8 –

2.4A distances have lower energy by some 7.7 kcallmol due to hydrogen bonding in

those conformers.
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The calculated rotational barriers about the CS-COO bond of CH3S-CH2O0H,

CH3SCH200 and C.H2S-CH200H are shown in Figure 1.3. The most stable

conformer for three species has the dihedral LH-C--S-Cz77°or at 300°, which indicates a

gauche preference for this set of 4 atoms. Rotation of three species about this CS-COO

bond offers the potential barrier 7.78 kal/mol, 7.10 kcallmol and 4.74 kcal/mol.

Figure1.4 Potential barrier for internal rotation about the C-O bond of CH3SCH2O0H,
CH3SCH200 and CH2SCH2OOH. Points are calculated value at the B3LYPl6-
311G(d,p) level.

The calculated rotational barriers about the RSC-OO bond of CH3SCH2-OOH,

CH3SCH2-00 and C.H2S-CH200H are shown in Figure 1.4. The conformers with

the dihedral angel LS-C-0-0 ranging from 270° to 240° are the most stable because the

electrostatic interactions of the peroxy 0 atom with the H atom in the –CH2– and –CH I

group. The conformers with dihedral angle 40° and 180° only have the interaction

between peroxy 0 atom with the H atom in the –CH2– group. The highest rotation



The calculated rotational barriers about the CSCO OH bond of CH3SCH200H--

0H and C.H2SCH200H are shown in Figure 1.7. The skew conformations are the

most stable in the LC-0-0-H dihedral angel ranging from 40° to 107°. The orthogonal

conformation allows for greater delocalization of lone pair electrons on two oxygen

atoms than do the coplanar conformations (cis and trans); the nearest interatomic

distances between peroxy H atom and the S atom correspond to the most stable

conformers. CH3SCH200H conformer has the highest barrier of 8.77kcallmol. In the

CH2SCH200H radical, the repulsion between the peroxy H atom the SC group at the

dihedral angle of 0° has the highest energy 4.2 lkcallmol.
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1.3.3 Enthalpies of Formation (EIHf°2988)

The enthalpies of formation (EIH f°2988) are estimated using total energies and calculated

OH Q298 for the listed reactions. The total energies are determined at the CBS-QB3 level;

scaled ZPVE's and thermal corrections to 248.17K are listed in Table 1.3.

The EIHf°298 for reactant and intermediates are determined from total energies and

isodesmic reactions. All four compounds in each reaction are estimated using density

functional and CBS-QB3 calculations. ZPVE's and thermal correction are taken into

account. And the enthalpy of reaction (Alr, n) are obtained. Since EIHf°2988 of other three

compounds have been experimentally determined or theoretically calculated, the

unknown enthalpies of the target species are calculated.

Enthalpies of formation and their corresponding uncertainties for standard species

used in the isodesmic working reactions are obtained from evaluation of literature data.

The values are listed in Table 1.2.



Table 1.3 Total Energies a at 248K

Species B3LYPl ZPVE b Therm. Con. C CBS-QB3 ZPVE d Therm. Con. C

6-311g(d,p)

CH3SC.H2 -477.3377846 37.77 3.78 -476.7228244 38.11 3.77

CH3SCH200H -628.3604772 71.71 4.47 -627.7642707 72.14 4.46

CH3SCH2O0 -627.7321772 44.43 4.66 -626.4281842 44.83 4.22

C-H2SCH2OOH -627.7118401 42.87 7.11 -626.4172611 43.20 7.17

TS1 -627.7018737 41.36 3.87 -626.4004446 41.76 3.86

TS2 -627.7412102 40.62 4.64 -626.8674646 40.47 4.67

TS3 -627.7442828 42.61 4.77 -626.877727 43.06 4.73

TS4 -627.6877737 41.16 7.01 -626.8768683 41.71 7.02

TS7 -627.670876 42.24 4.67 -626.8662237 42.67 4.64

a Total energy calculation based on the geometries optimized at B3LYP/6-311g(d,p) level of theory and ZPVE's and thermal corrections to 298k
are included. Units in hartree.
b ZPVE: scaled zero-point energies in kcal/mol. ZPVE is scaled by 0.9806

Therm.corr.: thermal corrections in kcal/mol
d ZPVE: scaled zero-point energies in kcal/mol. ZPVE is scaled by 0.99



Table 1.4 Reaction Enthalpies at 248K and Calculated Enthalpies of Formation
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The EIHf°298  for four species show good consistency at the CBS-QB3 level over

the several isodesmic reactions used, with the standard deviation for data on

CH3SCH2O0H of 0.7kcallmol. Standard deviations in EIHf298 values are 28.36 kcal/mol,

28.4kcallmol for CH3SCH200 and CH2SCH200H radicals, respectively, where the

standard deviation for CH3SCH2O0H molecule is 28.4kcallmol. And 28.36 kcal/mol,

28.4kcallmol for CH3SCH200 and CH2SCH200H radical. The recommended EIHf298

for the target species are an average of the isodesmic reactions at the CBS-QB3

calculation level. The AHt9298 are —24.14±28.7kcallmol, 7. 17±28.36kcallmol and

11.78±1.77kcallmol for CH3SCH200H, CH3SCH200 and C.H2SCH200H, respectively.

Stella et al [328] has estimated the Mif°298 for CH3SCH2O0H molecule and

CH3SCH200 radical by heats of atomization using UMP2/6-31G(d) level of calculations

with value of —28.7kcallmol and 6.7 kcallmol, respectively. The CH3SCH200 radical

was calculated relative to the reaction: CH2SCH3 radical plus 02. McKee [31] has

calculated the EIHf298 for CH3SCH200 at the QCISD(T)/6-31+G(2df,p)/lMP2/6-31G(d)

level of calculation, giving the value of 7.4kcal/mol, in good agreement with the valve of

7.2 kcallmol. EIHf298  for CH3SCH2 obtained from this work, 32.66±28.728 kcal/mol, is

28.4kcallmol higher than the result of Jefferson's, 32.1±28.7kcal/mol [32].

The accuracy of the enthalpies of formation is controlled by several factors, such

as the method and the basis set of the Gaussian analysis; the reliability of the enthalpies

of formation of the reference compounds; the uncertainty in the thermal correction; and

the choice of the working chemical reactions used in the cancellation of calculation

errors.
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1.3.4 Bond Energies

bond dissociation

energies are presented in Table1.7. They are estimated using dHf°298 from CBS-QB3 calculation

level for CH3SCH2O0H molecule and its radicals from this work: plus reference radicals.

1.3.5 Entropy and Heat Capacity

Standard entropy (S°298) and heat capacities (C (T) , 300< T/K< 1500) are determined using

B3LYP/6-311G(d,p), geometries and harmonic frequencies. The results are summarized in Table

1.6. There are no reported entropy and heat capacity values that we are aware of.

The torsion frequencies are subtracted in the calculation of S°298 and C(T), but we

replace their contributions with values from analysis of the internal rotations. TVR represents the

sum of the contributions from translations, external rotations and vibrations for S°298 and C(T)

by statistical mechanics. The torsion frequency corresponding to the internal rotor is not included

in TVR. Instead, I.R. represent the contribution from hindered internal rotations to S °298 and

C(T). The calculations are based on optimized geometries and rotational potential curves from

B3LYP/6-311G(d,p) data. Symmetry and number of optical isomers are incorporated in

estimation of S°298 as described in Table 1.6.



Table 1.6 Ideal Gas- Phase Thermodynamic Properties a

Species and( symmetry #)

A Hf 293b S°298c Cp(300 c Cp(300) Cp(1500) c Cp(300) c Cp(300) Cp(1500) Cp(300)

CH3SC'H2

(3 )
rotors # = 2

TVR '

I.R.
total 32.66±0.50

64.06
8.00

72.06

14.27
3.75
18.02

17.30
3.71

21.01

19.94
3.68

23.62

22.16
3.63

25.79

25.70
3.46

29.16

28.44
3.26
31.70

32.95
2.8

35.75
CH3SCH200 TVR ' 69.93 17.21 21.92 26.05 29.48 34.74 38.61 44.70

(3 ) I.R.e 18.64 7.63 7.82 7.95 8.00 7.80 7.39 6.33
rotors # = 4 total -29.14±0.12 88.57 24.84 29.74 34.00 37.48 42.54 46.00 51.03

CH3SCH200 TVR i 69.88 16.97 21.41 25.27 28.46 33.30 36.79 42.17
(3) I.R. e 17.42 6.22 5.94 5.64 5.35 4.81 4.39 3.76

rotors # = 3 total 5.17±0.36 88.68 23.19 27.35 30.91 33.81 38.11 41.18 45.93
C.H2SCH200H Tie . k 72.96 18.08 22.20 25.62 28.36 32.48 35.49 40.33

(2) I.R. e 16.13 8.10 8.63 8.94 9.04 8.80 8.28 6.94
rotors # = 4 total 11.48±1.44 90.47 26.18 30.83 34.56 37.40 41.28 43.77 47.27

1S1 TvRa k 75.94 20.99 26.22 30.50 33.89 38.78 42.14 47.07
(2) I.R. 0 0 0 0 0 0 0 0

rotors # = 0 total 22.23 77.33 20.99 26.22 30.50 33.89 38.78 42.14 47.07
1S2 TvRd k 73.49 18.64 23.18 27.01 30.12 34.78 38.07 43.00
(3) I.R. 11.03 3.91 3.79 3.70 3.59 3.31 3.04 2.59

rotors # = 2 total 42.96 85.91 22.55 26.97 30.71 33.71 38.09 41.11 45.59
1S3 TVR k 75.51 20.67 24.86 28.45 31.41 35.95 39.26 44.42
(3 ) I.R. 5.25 1.73 1.51 1.36 1.27 1.16 1.10 1.04

rotors # = 1 total 38.09 82.14 22.40 26.37 29.81 32.68 37.11 40.36 45.46
1S4 TvRd k 76.89 20.96 25.06 28.39 31.05 35.01 37.91 42.58
(2) I.R. 8.74 3.60 3.54 3.42 3.27 2.98 2.73 2.39

rotors # = 3 total 35.57 87.01 24.56 28.60 31.81 34.32 37.99 40.64 44.97
1S5 1VRd 77.09 21.73 26.21 29.77 32.56 36.66 39.64 44.40
( 1 ) I.R. 4.40 1.15 1.09 1.06 1.04 1.02 1.01 1.00

rotors # = 1 total 42.25 82.91 22.88 27.30 30.83 33.60 37.68 40.65 45.40
a Thermodynamic properties are referred to standard state of an ideal gas of pure enantiomer at 1 atm.
b Units in kcal/mol. c Units in cal/(mol K).
d The sum of contributions from translations, external rotations, and vibrations. e Contribution from internal rotation f Contribution from internal
rotation about the S-C2 bond. g Contribution from internal rotation about the C-O bond. h Contribution from internal rotation about the 0 	 0
bond. ' Symmetry number is taken into account(-1.9871n(symmetry number))) Spin degeneracy contribution for entropy=1.9871n(2) is taken into
account. k optical isomer number is taken into account 1.9871n(2)
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1.3.6 Group Values and Group Estimation

The C/H2/0/S group is derived from the thermodynamic property data of the target

molecule CH3SCH200H. The group value for EI Hf°298 and Cps of C/H2/0/S are calculated

on the basis of

and S°298 of C/H210/S is calculated on the basis of

Rln(01)

where R=1.487cal/mol K, a is symmetry number and OI stands for the optical isomer

number. Selection of the initial group values is critical to development of group additivity

for accurate property estimation. The C/H210/S group value derived in this work are

listed in Table 1.7

1.3.7 Hydrogen Bond Increment Group Value for Radicals

This method utilizes the thermodynamic properties of the parent molecules incorporated

with a H atom bond increment (HBI) to estimate thermochemical properties of radicals

where a H atom is removed.

HBI group values for CH3SCH2OO and C.H2SCH200H are derived from

thermodynamic property data of CH3SCH200H molecule and its two radicals. The HBI

group for EIfif°298 component reflects the enthalpy change due to loss of a H atom [37]

from a stable parent molecule in the form of the R--H bond energy. For example, the

bond energy of CH3SCH2OO-H is based on the heat of reaction of the following reaction:



Table 1.7 Group Value 

Groups LHf 294 a 	So294 b Cp(3282828) b Cp(52828)b Cp(62828)b Cp(52828)b Cp(52828)b  Cps( 1 282828) b Cp(52828)b  

c1-13sC1420011 -24.17 55.57 27.57 24.77 37.2828 37.75 72.57 75.2828 51.283
C/H3/S -128.285 328.71 6.14 7.57 4.728 128.74 13.282 17.77 17.55

SIC/C 11.51 13.15 4.99 4.96 5.02 7.287 7.71 7.73 7.728
0/C/O -5.5 5.57 3.428 7.31 7.528 7.57 5.32 7.528 5.281
O/H/0 -15.328 27.53 7.21 7.72 6.17 5.55 7.15 7.51 5.73

C/H210/S -5.77 4.39 4.55 5.41 5.51 128.12 11.57 12.289 13.31
a Units in kcal/mol.

reference [33]
b Units in cal/(mol K)

Table 1.8 HB1 Group Values for CH3SCH200 and C-H2SCH200H Radicals

Bond Energya 5294 b Cp(400) b 	Cp(500) b 	Cp(400) b 	Cp(400) b 	Cp(400) b 	Cp(l000) b 	CP(1500) b

CH4SCH200 	 55.7 28.11 -28.55 -2.34 -3.284 -3.57 -7.73 -7.52 -5.128
C-H2SCH2OOH 	 42.7 1.15 28.54 1.284 28.55 -28.285 -1.25 -2.23 -3.75
'Units in kcal/mol.	 b Units in cal/(mol K)



HBI group for heat capacity is more simply described as

The effects for changes in symmetry between the radical and parent are not

included in the HBI group but are included in evaluation of the entropy of each species

separately. The HB1 group value of S°294 is therefore termed intrinsic (Benson) and can

be written as

1.3.8 Thermochemical Kinetic Analysis of the Reaction

1.3.8.1 CH3SC•142 + 02 —+ (CH35012001•* —+ Products. 	 A potential energy

diagram for the methyithiomethyl radical with 02 is illustrated in Figure 1.5; energies are

calculated at the CBS-QB3 level. Addition of oxygen to the CH3SCH2 radical forms an

energized adduct which can react to new products.

22

Possible reactions for this activated adduct are described as follows:
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Rxn3:Hydrogen atom shift from the methyl group to form an energized hydroperoxide

methyl radical:

Rxn4:Hydrogen atom transfer from peroxy carbon (TS2)

The CH3SC-HOOH is unstable and immediately dissociates to CH3SC-HOOH plus OH

radical (TS2)

Rxn5: The oxygen radical on this peroxy radical can also attack the sulfur atom to form a

cyclic transition state structure (TS3, a 4-member ring) where the relatively strong S=O

bond (near double bond) starts to form; and the weak (SO-OC) peroxide bond in the

transition state starts to cleave (ring opening). The initial product from this reaction: a

radical intermediate CH3S(=O)CH20• will undergo beta scission (carbonyl formation)

resulting in CH3S(=0) + CH20

The methylthiomethyl radical (AHP298 =32.55 kcal/mol) adds to 02 to form

CH3SCH2OO peroxy radical (MI?298 =5.l7kcal/mol). The transition state for H atom

shift from the methyl (CH3) carbon (5 member ring tst) has a barrier (activation energy)

of 17.285 kcal/mol, thus TS 1 is below the entrance channel of the reactants. AHP298 for the

CH3SCHOOH radical in Reaction 4 is estimated on the base of the result of

C-H2SCH200H and their difference of total energy calculated under MP2/5-31G(d,p)

level. The activated CH3SCHOOH•* adduct crossed TS2, which then undergoes 0H

elimination to form CH3SC-HOOH, with the barrier 37.74kcallmol. Reaction 5 has a

barrier of 32.42 kcallmol.
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four different reactions:

Rxn4: Reverse reaction-back to CH4SCH2OO radical.

Rxn2: Stabilization.

Rxn3: Beta scission reaction to

little or no barrier to dissociation cleaving a weak CO	 OH bond (ca 45 kcal-mol-1) and

forming a strong carbonyl bond (-528 kcal-mol-1) + OH radical. The activation energy

of TS4 is 24.1 kcal/mol.

Rxn4: Cyclization forming through TS5 where the sp a carbon based radical attaches the

C-O peroxide oxygen through a four-member ring transition state (TS5) to form 1,3-

Oxathietane + OH. The activation energy of TS5 is 328.5 kcal/mol, based on the CBS-

QB3 level of theory.



Table 1. 9 High-Pressure Limit Rate Constants as 1nput Parameters for QRRK-Master Equation Calculations



Table 1.10 Resulting Rate Constants in QRRK Calculations
Calculated Reaction Parameters at P=1 atm, k= A(Trexp(-EIRT) (T=22828-2282828k)

Reaction A(s-1) n Ea (kcal/mol) k298 (s 1 )

CH3SC-H2 +02 -4 CH3SCH2OO 3.647E+54 -17.25 11.54 7.735E+12

CH3SCH2OO +02 -4 C-H2SCH200H 5.734E+57 -15.52 15.54 7.572E+284

CH3SCH2 +02 -> CH3S(=O + 0H 4.553E+284 28.35 11.52 1.552E+282

CH3SCH2 +02 -4 CH3S(=0) + CH20 3.546E+11 -28.37 5.13 4.435E+284

CH3SCH2 +02 --4 CH2S+CH20+OH 4.144E+17 -1.47 128.75 7.453E+284

CH3SCH2 +02 -4 CYCH2SCH20+OH 2.227E+15 -1.55 14.528 1.534E+2828

CH3SCH2OO CH3SCH2 +02 5.255E+428 -5.45 32.14 5.254E-285

CH3SCH2OO CH3S(=O + 0H 3.257E+45 -12.34 43.45 5.275E-17

CH3SCH2OO CH3S(=O) + CH20 1.154E+43 -128.44 35.74 2.2864E-13

C-H2SCH200H CH2S+CH20+OH 1.5528E+31 -5.34 27.55 4.274E-285

C-H2SCH2OOH CYCH2SCH20+OH 3.2855E+35 -5.528 35.25 1.541E-11
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1.3.9 QRRK Calculation Results

calculations for k(E) and master equation analysis

for fall-off are performed on CH3SCH2 +02 reaction system and results are list in Table

1.4 and Table 1.128.

In all calculations AEdo of 5328 calomel is used. Rate constant at 245Kand 1282828K

versus Pressure are illustrated in Figure 1.7 and Figure 1.5.
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At 245 K, stabilization [CH4SCH200 is the dominant reaction over 28.281atmtm,

and the rate constants for CH3SC(=O)H + 0H and CH3S(=O) + CH2O products are

similar over the entire pressure range at 245K. Dissociation to CH2S+CH2O+OH is the

major reaction below 0.1atm at 1282828K. Plots of calculated rate constants for CH3SCH2

+02 at lam and 12828 atm logk versus 1282828/T are illustrated in Figure 1.4 and Figure 1.128.

Stabilization to CH3SCH200 is the dominant reaction below 112828K and this crossover

temperature is shifted to 152828K at 12828 atm.

Unimolecular Dissociation Reactions of the Stabilized Adducts:

1. CH3SCH2OO Dissociation: Plots of rate constants for CH3SCH200 dissociation at 1

atm pressure 1282828/T and of rate constants at 1282828K versus pressure are illustrated in

Figure 1.lland Figure 1.12. CH3SC-H2 +0 2 and C.H2SCH200H stabilization are
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important at the entire temperature range.

0H products increase as pressure is increased.

2. CH2SCH200H Dissociation: Rate constants for C.H2SCH200H dissociation at 1 atm

pressure versus 1282828/T and rate constants at 1282828K versus pressure are illustrated in

Figure 1.13 and Figure 1.14. Isomerization to CH4SCH200 is the dominant reaction path

at low pressure. The CH2S+CH20+OH products are important at high pressure.
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1.4 Summary

Thermodynamic Properties of stable radicals and transition states are calculated on the

CH3SC.1-12 + 02 association reaction system using density functional method and CBS-

QB3 method. Alif°298 for stable radicals CH3SC.1-12, CH3SCH200 and CH2SCH200H

are estimated using total energies and isodesmic reaction with ZPVE's and thermal

correction. The EI11f298 of transition states are estimated by evaluation of Alif°298 of the

stable radical adducts plus the difference of the total energies with ZPVE's and thermal

correction between these radical species and the transition state's

Entropies (S°298) and heat capacities (C(T) , 300<171(< 1500) are determined

with BLYP/6-311g(d,p) optimized geometries and frequencies, considering hindered

internal rotation contributions to entropy and heat capacity. The thermodynamic
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properties of C/H2/SIO group are determined using group additivity analysis. The group

increment values for CH3SCH200 and CH2SCH200H are also determined.

Reaction pathway and kinetics are analyzed on the CH3SC•112 + 02 reaction

system using QRRK for k(E) and a master equation fall-off. Reaction to products is

evaluated versus both pressure and temperature. Stabilization CH3SCH2OO is the

dominant reaction below 1100K at 1 atm. CH2S+CH20+OH is the major reaction above

1500K.



CHAPTER 2

STRUCTURES, THERMOCHEMICAL PROPERTIES, INTERNAL ROTATION
BARRIERS AND ENERGIES OF SULFENIC ACIDS, ETHENETHIOL AND

SULFENIC ESTER

2.1 Introduction

Sulfenic acids are organosulfür oxyacids of the form RS0H, where R is an organic

moiety [35-37]. These species are important reactive intermediates in the biologically

important oxidation of thiols [35,34]. Unlike the more highly oxidized sulfinic and

sulfonic acids, which are relatively stable, sulfenic acids are generally unstable and

highly reactive compounds [40]. 1n large part this is due to the high nucleophilicity of the

sulfur atom. When considered with the electrophilicity of the organic R group, this

nucleophilicity accounts for the tendency of sulfenic acids to undergo self-condensation

to form the thiosulfinate [41].

The simplest sulfenic acid (CH3S0H) presumably plays a role in the

photochemical oxidative degradation of methanethiol and dimethyl disulfide [42-45].

CH3SOH has been generated in the gas phase by thermolysis of methyl tert-butyl

sulfoxide and its structure determined from microwave spectra [45,47].

Experimental thermochemical data (EIH f°2988) of methanesulfenic acid CH 3 S0H

and its cation radical are initially reported as —45.45 and 163.87kcal/mol [45]. Dewar

evaluated the reaction enthalpies of decompositions of methanesulfenic acid and its

cation radical utilizing collisionally activated dissociation, neutralization reionization,

tandem mass spectrometric techniques and MND0 calculations [44]. Turecek et al.

34
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reported the theoretical heat formation of CH 3 S0H is —17.8kcal/mol under MNDO

method. Atomization method was used to estimate the AHf°298  of simple sulfenic acids

(CH3SOH: -35.6kcal/mol) and their radicals (CH4SO -17.8kcal/mol) by Gregory and

Jenks [50], and they also concluded that the sulfinyl radical (RSO•) appears to be the best

racial stabilizing group of the four radicals (RSO RSS R0S• R0S•).

Block [51] studied methanesulfenic acid (CH3S0H) and found that it was

generated in the gas phase by thermolysis of methyl tert-butyl sulfoxide. And its structure

determined from microwave spectra.

In this chapter, enthalpy (Afft9298) and heat capacities (C (T)) are determined for

the a series of representative sulfenic acids and their radicals using CBS-QB3 method.

Enthalpies of formation are evaluated using isodesmic working reactions. Contributions

to entropy and heat capacities from internal rotation are estimated, with B3LYP/6-

311g(d,p) level calculations for rotation barrier.

2.2 Calculation Method

All the calculations were performed using the Gaussian 98 program suit. The structure

parameters are fully optimized at the B3LYP/6-311G(d,p) level of theory. The harmonic

vibration frequencies and zero-point vibration energies (ZPVE) are computed at the same

level. The total energies are corrected by ZPVE's, which are scaled by 28.44.

Enthalpies of formation (EIHP2988) are calculated using total energies and

isodesmic reactions. Isodesmic reactions are hypothetical reactions where the number of

electron pairs and the bonds of the same type are conserved on both sides of the equation;

only the relationship among the bonds is altered.
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Entropies and heat capacities at temperature range from 300K to 1500K were

calculated using the rigid — rotor- harmonic — oscillator approximation based on scaled

vibrational frequencies and moments of inertia of the optimized

structures.

2.3 Results and Discussion

2.3.1 Geometries and Vibrational Frequencies

The optimized geometries of the target species, obtained at B3LYP/6-311G(d,p) levels of

theory, are depicted in Figure.2.i with geometric parameters. Vibrational frequencies and

moments of inertia are list in Table 2.1.



CH2CHISOH

CH
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CH2CH2SOH

CH2-CHSH

cRfCHC6R

CH2-4.1C 

CH 'HOBS

Figure 2,1 Structures and geometrical parameters for all species studied at
B3LYP/6-31iG(d,p) Distance is present in A and angles in degrees. (Continued)
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the bond length of S-O is about

1.70A, much longer than the result (1.63 A) calculated by McKee [52] under the MP2/6-

3i+G(d) level, whereas the S-0 bondlength in CH3SO radical is i.52 A which

represents the character of partial double bond.



Table 2.1 Vibration Frequencies and Moments of Inertia.(Continued.)
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2.3.2 Enthalpies of Formation (EIHf°2988)

The enthalpies of formation (Alif°298) of the species concerned in this chapter are

estimated using total energies and calculated Ali298 for the listed reactions. The total

energies are determined at the CBS-QB3 level; scaled ZPVE's and thermal corrections to

248.15K are listed in Table 2.2.



Table 2.2 Total Energies a at 248K
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are determined from total energies and isodesmic reactions. All four

compounds in each reaction are estimated using density functional and CBS-QB3

calculations. ZPVE's and thermal correction are taken into account. And the enthalpy of

reaction (AH°,,n) is obtained. Since AHf°298 of other three compounds have been

experimentally determined or theoretically calculated, the unknown enthalpies of the

target species are calculated. Enthalpies of formation and their corresponding
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uncertainties for standard species used in the isodesmic working reactions are obtained

from evaluation of literature data. The values are listed in Appendix Table 1.

2.3.2.1 Methanesulfenic Acid (CH3S0H) and Its Radicals. 	 The reaction

enthalpies and AHf°298 for the methanesulfenic acid and its radicals obtained from the

reaction schemes are tabulated in Table 2.3. The results for Hf°298 show very good

consistency over working reactions. The Hf°298 values for target radicals are based on

the MHf298  values of the parent molecules in this work. The calculated enthalpy for

CH3SOH is -34.70±0.48 kcallmol, which is in agreement with the reference data -33.34

kcal/mol by Wang et al.

Comparing with the reference data, the value for CH3SO (EIHf2988= -18.45±0.54

kcal/mol) in this work is much larger than the experimental value -i4.8 kcal/mol. The

AHf°298 for CH2SOH is 6.44±0.30 kcal/mol. There are no reported EIHf2988 values that we

are aware of.

The stability of this CH2SOH radical can be evaluated, in part, by its OH,,„ for

the following

2.3.2.2 Ethanesulfenic Acid (CH3CH2SOH) and Its Radicals. There is a lack of

experimental and theoretical data on the enthalpies of formation of CH4CH2SOH and its

radicals. We estimate these data using isodesmic reaction listed in Table 2.4. The AHf°298

values for ethanesulfenic acid are based on the Hf°298 values of the methanesulfenic acid

in this work. The values show good agreement across the isodesmic reaction series with a

standard deviation on the order of 28.3kcal/mol. The average Alif °298 from isodesmic



Table 2.3 Reaction Enthalpies at 248K and Calculated Enthalpies of Formation for Methanesulfenic Acid and Its Radicals (kcal/mol)



Table 2.4 Reaction Enthalpies at 248K and Calculated Enthalpies of Formation for Ethanesulfenic Acid and Its Radicals (kcal/mol)



Table 2.4 Reaction Enthalpies at 248K and Calculated Enthalpies of Formation for Ethanesulfenic Acid and 1ts Radicals (kcal/mol)
(Continued)
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reactions are: —40.5i, -24.i4, 4.l7 and —0.7i kcal/mol for CH3CH2SOH, CH3CH2SO

C.H2CH2SOH and CH3CHSOH, respectively.

2.3.2.3 Ethenesulfenic Acid (CH2=CHS0H) and Its Radicals The calculated reaction

enthalpies and Allf°298 for the ethenesulfenic acid and its radicals calculated over

isodesmic working reaction are tabulated in Table 2.5. The value obtained for the heat of

formation of the CH 3 S0H and CH4CH2S0H is used to calculate the heat of formation of

CH2=CHS0H. The recommended AHf°298 for it is -i0.55, with a standard deviation of

0.9i kcal/mol, compatible with the reference data in the parenthesis. AW298 for

CH2=CHSO radical is 4.52±0.65kcal/mol at CBS-QB3 calculation level.

2.3.2.4 Ethenethiol (CH2=CHSH) and Its Radicals. Luo and Holmes [58] gave

the value of heat formation for CH2=CHSH (14.8±ikcal/mol) using group equivalents,

and group additivity method yield a value of 20.4kcal/mol, which is a little greater than

the value of 18.34±i.42 kcal/mol calculated in this work.

Gregory and Jenks obtained the AHç298 for CH2=CHS of the value of

20.4kcal/mol under G2 (MP2, SVP) calculation level, which is similar to the result of

20.08±0.5ikcallmol in this work. The values are listed in Table 2.6.



Table 2.5 Reaction Enthalpies at 248K and Calculated Enthalpies of Formation for Ethenesulfenic Acid and 1ts Radicals (kcal/mol)



Table 2.6 Reaction Enthalpies at 248K and Calculated Enthalpies of Formation for Ethenethiol and Its radicals (kcal/mol)



Table 2.7 Reaction Enthalpies at 248K and Calculated Enthalpies of Formation for Sulfenic Ester and Its Radicals (kcal/mol)



49

2.3.2.5 Sulfenic Ester and Its Radicals. Sulfenic ester, CH2=CHOSH, is studied in

this work, giving the estimated heat of formation, is -2.75 kcal/mol. The value of AHP298

for the radical is 23.7kcal/mol, smaller than the value of 23.7kcal/mol obtained by

Gregory. The values are listed in Table 2.7.

2.3.3 Rotational Barrier

Potential barrier for internal rotations of all the species are calculated at the B3LYP/6-

3i1g(d,p) level. Potential energy as function of dihedral angle is determined by varying

the torsional angle from 0° to 360° at 35° intervals and allowing the remaining structure

parameters to be optimized. Each minimum and maximum on the torsional structures is

fully optimized.

2.3.3.1 Methanesulfenic Acid and Its Radicals Figure 2.2 shows the rotational barriers

about C-S bond. The curves for C-S torsional potential of CH 3 SOH, and CH3SO are

symmetric and show three-fold symmetry with barriers 1.40 and 1.04kcal/mol. The

barrier for stable parent is higher than that of the corresponding radical due to reduced

steric effect by the loss of hydroxyl H atom. The stable conformers for CH2SOH occur

when LH-C--S-O=45°, which allows an interaction between the 0 atom and the H atom

in the –CH2 group, showing the potential barrier 7.73 kcal/mol. The distance between the

0 and H atoms is 2.84A at this dihedral.



-é-- CH3SOH

- - + - - C.H2SOH

* 	 CH3SOH.
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0 	 60 	 120 	 180 	 240 	 300
	

360

H-C- -S-0 Torsion Angle (degree)

Figure 2.2 Potential barrier for internal rotation about the C—S bond of CH4S0H,
CH4SO and C-1-12SOH. Points are calculated value at the B3LYP/6-3iiG(d,p) level.

- ill- CH3SOH

--Br - C. H2SOH

0 	 60 	 120 	 180 	 240 	 300
	

360

C-S- -0-H Torsion Angle (degree)

Figure2.3 Potential barrier for internal rotation about the S-0 bond of CH 4 SOH and
C.H2SOH. Points are calculated value at the B3LYP/6-3iiG(d,p) level.
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Figure 2.3 shows the rotational barriers about CS—OH bond for CH4SOH and

CH2SOH. The conformers with dihedral LH-C--C-S=40° are most stable for CH3SOH;

and the conformers with .

2.3.3.2 Ethanesulfenic acid and its radicals. 	 The calculated rotational barriers

maxima representing typical CH4—C bond rotational potentials, with the potential barrier

3.26kca1/mol and 2.34kca1/mol, respectively, which are in a range common to methyl

group rotations.
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The most stable conformer for CH2CH2SOH has the dihedral ZH-C--C-Sz; 40° or

285°, at the potential barrier 3.04 kca1/mol. CH3C.HSOH has three H—SOH eclipsed

conformers with barriers 28.45kca1/moll.

The calculated rotational barriers about the C—S bond of CH3CH2SOH,

CH3CH2SO C.H2CH200H and CH3CHSOH are shown in Figure 2.5. There are three

conformers in CH3CH2SOH, CH3CH2SO and C.H2CH2SOH two are CH3-O gauche

conformers, and one in CH3-O anti conformer. The difference between the CH3-0 anti

conformer and the CH3-O gauche conformer is 1.03, 0.66 and 0.74kcal/mol for

CH3CH2SOH, CH3CH2SO and C.H2CH2SOH, respectively. The most stable conformer



The three curves for CH3CH2SOH, CH2CH2SOH and CH3C.HSOH show 2-fold

symmetry. The stable structures appear when C-S bond is perpendicular to the O-H

bond. The potential barriers about S-0 bond are 7.5i, 7.44 and 3.9kcal/mol for

CH4CH2SOH, C.H2CH2SOH and CH3C.HSOH. The barriers in the 7kcal/mol range are

common in peroxides and hydroperoxides.

2.3.3.3 Ethenesulfenic Acid, Ethenethiol, Sulfenic Ester and Their Radicals. The

calculated rotational barriers about the C—S bond of CH2=CHSO, CH2=CHSO and

CH2=CHSH are shown in Figure 2.7. For CH2=CHSOH, due to the interaction between

the H atom in the methylene and the hydroxyl H atom, there are O.64kcal/mol energy

difference between the two conformers. The most stable conformer for CH2=CHSO is

the planar structure (CH2 group eclipsed with the 0 atom) because of electrostatic
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reactions; the 0.-H interaction between H atom in the CH2 group and the 0 atom. The

minimum on the potential curve of CH2=CHSH correspond to the structure in which the

H atom in the thiohydroxyl is anti to beta H atom which is 0.34kcal/mol lower than the

gauche structure.
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Figure 2.8 Potential barrier for internal rotation about the C-O bond of CH2CHOSH,
and CH2=CHOS Points are calculated value at the B3LYP/6-3iiG(d,p) level.

Figure 2.8 Shows the twofold rotational barriers about the C-O bond for

CH2=CH0SH, and CH2=CH0S The =CH2—S eclipsed conformer of CH2=CH0SH has

the lowest energy because of the interaction between the H atom in the CH2 group and

the S atom. There are 1.82kcal/mol energy difference between the two conformers in theCH2=CHOS



Figure 2.9 shows the calculated potential curve for rotational barriers about the

S-O bond in CH2=CHSOH and CH2=CHOSH, with the rotational barrier 6.76 and

5.01kcal/mol. The conformers with dihedral angle ZR-S--O-R'; ---, 90° or 270° are most

stable because of the electrostatic interactions.

2.3.4 Bond Energies

Bond dissociation energies obtained by the CBS-QB3 method are shown in Table 2.8.

The 0-H BDE is quite similar in three sulfenic acids. And S-0 BDE drops about 2

kca1/mol for vinyl group substitutes the alkyl group. The C—S bond weakening of 13

kcal/mol for the ethenesulfenic acid is observed because of sp 2 hybrid resonance.



Table 2.8 Bond Dissociation Energies
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Standard entropy (S°298) and heat capacities (C(T) , 300< T/K< 1500) are determined

from translation, vibration and external rotation are calculated using the "SMCPS"

program [58]. This program utilizes the rigid-rotor-harmonic-oscillator approximation

from the frequencies along with moments of inertia on the basis of the optimized

B3LYP/6-311G(d,p)structures. Contributions to entropy and heat capacity from internal

rotations are determined using direct integration over energy levels of the intramolecular

rotation potential energy. The results are summarized in Table 2.9.



Table 2.9 Ideal Gas- Phase Thermodynamic Propertiesa



Table 2.9 Ideal Gas- Phase Thermodynamic Properties. a (Continued)
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2.4 Summary

Thermodynamic properties of methanesulfenic acid, ethanesulfenic acid, ethenesulfenic

acid, ethenethiol, sulfenic ester and corresponding radicals derived from H atom loss

parent molecules are calculated using CBS-QB3 method with several isodesmic reaction

schemes. Alif°298 determined over varied isodesmic reaction show good precision. S °298

are determined with B3LYP/6-311G(d,p) optimized

geometries and frequencies, hindered internal rotational contributions to S°298 and Cps are

also considered.



APPENDIX A

THERM0CHEMICAL CALCULATI0N RESULTS

Total energies, ZPVE's and Thermal Corrections and AHf°298 for the standard species

used in the working reactions are listed in Table A.1. and Table A.2.
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Table A.3 1nternal Rotation Contribution to Entropy and Heat Capacity Units: ca1/(mol K)
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APPENDIX B

RATE CONSTANTS IN QRRK CALCULATI0NS
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