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ABSTRACT

TOXICITY OF MANUFACTURED PARTICULATE MATERIALS
ON PLANT ROOT GROWTH

by
Ling Yang

The rapid development of particle technology and the growing use of particulate

materials in industries are bringing large amounts of manufactured particles into the

environment. Epidemiological studies suggest that fine particles (particles with

aerodynamic diameter smaller than 2.5 pm, i.e., PM25) have an association with various

adverse health effects in humans. Mass studies have been performed on the toxicity and

toxicological mechanisms of airborne particles such as PM25 and PM10, but there are very

few investigations which contribute to the knowledge base on biological implications of

manufactured particulate materials. Up to now, the published toxicity studies on

manmade particulate materials focus on human health effects. No investigations have

addressed to the ecological effects of the particulate materials. Toxicities of manufactured

particles are evaluated by means of a root elongation test in this study. The particles

studied include 13-nm alumina, 14-nm hydrophilic silica, 21-nm titania, 161.2-nm

spherical hydrophilic silica, 1.0-pm alumina, 667.6-nm spherical hydrophilic silica, and

0.96-p.m titania. Six plant species, Zea mays (corn), Cucumis sativus (cucumber), Avena

sativa (oat), Glycine max (soybean), Brassica oleracea (cabbage), and Daucus carota

(carrot) were used in this study of the phytotoxicity of the commercially available

manufactured particles. Physical and chemical characterization techniques of FTIR,

SEM/EDS, the BET method, and particle size analysis, as well as liquid phase coating

techniques were applied simultaneously to facilitate the study on toxicological



mechanisms of these manufactured particles. The results indicate that phytotoxicity of

particles does not depend solely on the particle mass concentration, particle chemical

composition, particle size, as well as the particle specific surface area. It also depends on

particle surface characteristics.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objectives of this dissertation are to determine the degree of toxicity, to investigate

the underlying mechanisms through which the commercially available manufactured

particulate materials impact on plant seedling root growth, as well as to identify those

properties of nanoparticles that are important to their toxicity, using manufactured

particles with nanometer sizes as models.

A testing system was established for determination of the toxicity and

toxicological mechanisms of manufactured particles. Physical and chemical

characterization techniques, coating techniques, along with toxicity tests were developed

and applied simultaneously. An applicable phytotoxicity test was chosen from numerous

toxicity test methods in the experimental portion of the study. The toxicity of particulate

materials with different chemical compositions, including Al203, Si02, and Ti02, was

determined. The relationship between particle size, particle specific surface area, particle

mass concentration, particle number concentration, or particle associate-chemical species

and particle toxicity was evaluated in order to determine what particle properties are

important to particle toxicity.
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1.2	 Background Information

Particle technology has experienced rapid development during the last 20 years.

Particulate materials are now extensively used in industries (Roco, 1999). More recently,

nanotechnology has brought manufactured nanoparticles into the work place as well as

into the ambient atmosphere (Oberdorster, 2003). Epidemiological studies suggest that

fine particles (particles with aerodynamic diameter smaller than 2.5 p.m, PM2.5) have an

association with various adverse human health effects including premature mortality,

exacerbation of asthma and other respiratory-tract diseases, decreased lung function

(Dockery and Pope, 1994, Schwartz et al., 1996, Pope, 1999, and 2000), and

cardiovascular diseases (Dockery, 2001, Donaldson et al., 2001). These findings, coupled

with the fast development of particle technology, have increased regulatory attention

about the release of such particles into the environment and their potential impact on the

health of individuals in the working area as well as public health. Studies are currently

ongoing to investigate the environmental implications of particles with nanoscale sizes

(Spumy, 1998). The published literature to date, however, focuses on human health

effects of these particles. Few studies have taken into account that the specific properties

of industrial type nanoparticles may play a vital role in the toxic effects of these particles.

A nanoparticle's interaction with a biological system is not just about the size of

the very small particles. Compared to their siblings with sub-micrometer or micrometer

sizes, they have significantly changed physical, chemical, and biological properties.

Manufactured particulate materials at the same time can be transported by environmental

media, such as water and air, and impose potential adverse effects on ecological systems.

It is impossible to establish protection regulations or good manufacturing practices for the
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particulate materials involved in industrial processes based on the very limited

information available about the toxicity and environmental implications of artificial

particles. The conclusion that the current regulations and standards can protect public

health from any potential harmful effects of these particles remains questionable without

enough information about the toxicity and toxicological mechanisms of the particles.

Simultaneous study of manufactured nanoparticles and the complexities in

particle physical and chemical properties of airborne nanoparticles holds promise to

clarify the health and environmental implications of the particulate materials. The

administrator of the U.S. Environmental Protection Agency (EPA) issued new National

Ambient Air Quality Standards (NAAQS) for PM2.5 (airborne particles smaller than

2.5iim in diameter) in 1997, (USEPA, 1997), which is 65 mg/m3 for 24-hr and 15 mg/m3

for annual. The new issued PM2.5 standard is based on extensive epidemiological

evidence, which associates ambient particulate pollution with adverse health effects

(Dockery and Pope III, 1994; Dockery, 1996 and 2001). Nevertheless, uncertainty and

disagreement persist regarding which physical and chemical properties of particles

influence health risks (NRC, 1998). The current standards for particle pollution are based

on particles mass concentrations and particle sizes, and are the only standards of this type

that are not chemical specific (NRC, 1998). Extensive studies have been performed in

order to determine particle properties that induce the adverse health effects of particles

indicated by the results from epidemiological studies, but no consistent results have been

suggested (NRC, 1998). This controversy is largely due to the complexity and extreme

diversity of the airborne particulate materials, which makes thorough and conclusive

study impossible. The situation is even tougher for airborne nanoparticles because
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airborne nanoparticles cannot be sampled with current sampling techniques, although it

has been found that the urban particulate cloud may contain up to 10 5 nanoparticles per

milliliter (Seaton et al., 1995).

Manufactured nanoparticles are well characterized and uniform in composition.

The use of them as models reduces the complexity of the study of airborne nanoparticles,

and makes the identification of the most toxic properties possible under more controlled

conditions. Researches have been done on use of nanoparticles (e.g. Ti0 2 particles of 21

nm (Churg et al., 1998), 29 nm (Renwick et al, 2001) and 50 nm (Stearns, et al., 2001),

and carbon black particles of 14.3 nm (Renwick et al, 2001) as model systems of airborne

particulate materials. The current research is however limited. First, it focuses on

inhalation exposure, which is limiting because exposure to nanoparticles may occur via

dermal contact or ingestion, in addition to inhalation. Second, the possible contribution to

particle toxicity of chemical species that may be adsorbed on the particle surface has not

been investigated. Study of the potential constituent is necessary because of the enormous

surface area of nanoparticles that may result in the substantive surface adsorption of

chemicals. In fact, studies on particles with larger sizes suggest that the surface chemistry

of particles is related to their toxicity (0bot et al., 2002), and the association of particles

and organic chemical species (e.g. polycyclic aromatic hydrocarbons) is more deleterious

than either alone (Garcon et al., 2000, 2001a, and 2001b). Third, the current research

cannot yet elucidate toxicological mechanisms of nanoparticles. It has been proposed in

the literature that with similar mass in both cases, small particles are more toxic than

particles with larger sizes because they have 1) smaller size, 2) larger specific surface

area resulting in larger surface area with similar mass, and 3) larger numbers. Based on
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this assumption alone, it is impossible to explain why ~ 800 nm Si02 particles are as

toxic as ~ 20 nm Ti02 particles (0berdorster et al., 1994a). The toxicological

mechanisms of particle — induced adverse health effects need further investigation.

Fourth, published studies focus on human health effects of particles, with no contribution

to the investigation of ecological implications of nanoparticles.

This dissertation will be on the front edge of studies on toxic effects of

manufactured particles, and it is the first investigation of the effects of manmade

nanoparticles on plant growth. The data on the most toxic particle properties collected in

this study may provide a basis for additional studies, future regulations and pollution

control strategies.



CHAPTER 2

LITERATURE REVIEW

A growing body of evidence has been provided by epidemiological studies that adverse

health effects are closely associated with airborne particulate matter pollution. The

evidence from the epidemiological studies has brought increasing interest to studies on

airborne particles. Most of the important particle properties that may account for particle

toxicities have been determined in recent years by studying fine and coarse airborne

particulate materials. Toxicity studies have been performed to assess human health

effects of the particulate materials. Toxicological mechanisms for particle-induced

injuries have been proposed. The most recent fast development of particle technology and

nanotechnology now requires studies on the health and environmental characteristics of

manufactured nanoparticles. It has been found that particles with nanoscale sizes are

more toxic than larger particles. Small sizes, large numbers of particles per unit mass, as

well as large surface areas per unit mass, are the three major properties that have been

suggested as being connected to the adverse human health effects of the ultrafine or

nanoparticles.

2.1	 Studies on Airborne Particulate Materials

Published studies to date have reported a number of the important particle properties that

may account for particle toxicities. Substantial evidence that associates various adverse

health effects with airborne particulate materials is provided by epidemiological studies.

6
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Toxicity studies have been performed on human health effects of particulate materials.

Toxicological mechanisms of particle-induced injuries have been proposed. All of these

are discussed in the following sections.

2.1.1 Airborne Particle Properties

Table 2.1 lists the major airborne particle properties that have been considered in the

literature so far (Spumy, 1998, Harrison and Yin, 2000, Zhang and Friedlander, 2000,

NRC, 2001).

Table 2.1	 Major Physical and Chemical Features of Airborne Particulate Materials

Physical Property	 Chemical Property

Inorganic fraction	 0rganic fraction

	

Size Metals (Fe, Al, Mn, Pb, 	 Polycyclic Aromatic

	

Surface area	 Ca, Zn, Co, Cu, Si)	 Hydrocarbons (PAHs)

	

Number based concentration	 Ammonium	 Alkanes, Alkenes
(numbers per m3 air)a

	

Nitrate	 Phenols
Mass based concentration

	

(g/m3 air)b 	Sulfate	 Esters

	

Peroxides and free	 Ketones

	

radicals	 Carboxylic acids

a Numbers of particle per milliliter water is used as the unit for number based concentration in this study
b mg/ml is used as the unit for the mass based concentration in this study.
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The most often-characterized particle properties are the physical properties (i.e.,

particle size, particle specific surface area, number based concentration, and mass based

concentration), the inorganic fractions, PAHs, elemental carbon (EC), and organic carbon

(0C). 0rganic components of particles including alkanes, alkenes, phenols, esters,

ketones, and carboxylic acids are rarely determined, and are actually included in the

analysis of the 0C that also includes PAHs. The characterization techniques employed

are similar in principle but instrumentally different. They may be referenced in many

publications (Chow et al., 1996, Hughes et al., 1998, Morawska et al., 1998, Keywood et

al., 1999, Zayed et al., 1999, Kim et al., 2000, Shi et al., 2000, Yatin et al., 2000, and

Zimmermann et al., 2000). The reference to the literature of airborne particle chemical

and physical characteristics facilitates the research on the manufactured particles, in

which particle properties must be utilized to classify the particles into different

categories.

2.1.2 Epidemiological Evidence of Airborne Particle-Induced Injuries

Short-term and long-term epidemiological studies have demonstrated the association

between particulate matter pollution and various adverse health effects. In Europe,

studies involving 21 cities and 5 years in the early-mid 1990s showed that "all-cause"

daily mortality increased by 0.6% for each 10 g/m3 increase in PM1O (particulate matter

with aerodynamic diameter smaller than 10 [an.) (Katsouyanni et al., 2001). And in a

study on hospital admissions, which involved 38 million people living in 8 European

cities and lasting 3-9 years in the early to mid 1990s, it was demonstrated that hospital

admissions for asthma and chronic obstructive pulmonary disease among old people were

increased by 1.0% per 10 Kg/m 3 PM1O (Atkinson et al., 2001). Moreover, admissions for
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cardiovascular disease were increased by about 0.5% per 10 g/m3 total particulate

materials and by about 1.1% per 10 g/m3 PM1O (Tertre et al., 2002). A series of long-

term studies in Switzerland associated symptoms of bronchitis, but not asthma or allergy,

in children in 10 different communities with PM1O at concentrations of 10-33 g/m3

(Braun-Fahrlander et al., 1997), which is well below the concentration level in many

European countries. Studies in the US focusing on the 20 largest metropolitan areas,

which were home to 50 million residents during 1987 to 1994, found that all—cause

mortality increased by 0.5% per 10 Kg/m 3 PM 10, which is similar to the European results

(Samet et al., 2000a, 2000b). Hospital admissions for chronic obstructive pulmonary

disease in 10 cities with about 1.8 million elderly people increased by 1.5% per 10 g/m3

PM 10, and for cardiovascular disease increased by 1.1% per 10 µtg/ m3 PM 10 (Zanobetti

et al., 2000). In long-term studies, significant associations were reported between

exposure to fine particles and bronchitis in children living in 24 US and Canadian

communities (Dockery et al., 1996, Raizenne et al., 1996, Spengler et al., 1996).

2.2 ToDicity Studies on Human Health Effects of Particulate Materials

The toxicological mechanisms of particle-induced injuries are usually investigated and

evaluated by laboratory in vivo and in vitro toxicity tests. According to the published

studies, the toxicity tests are mostly applied to investigate human health effects of

particles. The usual complement of tests include 1) mutagenicity assay, including Ames

test, or human cell in vitro mutagenicity assay, 2) human cell in vitro immunology tests,

including evaluation of immunoglobulin produced (IgE, IgG, IgA) from B-lymphocytes

cell line as well as its gene transcription, cytokine protein releases and gene transcription
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[interleukine (IL)-6, IL-8, and granulocyte-macrophage colony stimulating factor (GM-

CSF), etc.] from cultured human airway epithelial cells in vitro, 3) human cell in vitro

antioxidant activity tests, including tests for enzyme activities [superoxide dismutase

(S0D) and glutathinone reductase (GR)] and glutathione status (reduced glutathione,

GSH, and oxidized glutathione, GSSG) in human lung epithelial cells, and 4) In vivo

inhalation toxicity studies using standard animal models. These are all discussed in more

detail in the following Sections.

2.2.1 Mutagenicity Assay

2.2.1.1 Ames Test. The Ames test was introduced by Ames and Yamasaki in 1975,

and revised in 1983 (Ames et al. 1975, Maron et al., 1983). This mutagenicity test is

based on reversion of histidine-requiring auxotrophs to the wild type upon addition of

mutagenic compounds. The most commonly used strains for the detection of particle

mutagens are TA100 and TA 98 of Salmonella typhimurium. The mammalian

microsome, S9, is used to metabolize indirect mutagens.

The Ames test requires that the chemical species associated with particles be

extracted into organic solvents when applied in determining particle mutagenicity. The

extract is then volume reduced and then solvent changed into, usually, dimethyl sulfoxide

(DMS0), and added to the Salmonella typhimurium cultures. Pagono (1996) used the

Ames test to investigate the mutagenic activity of total and particle-sized fractions. An

association was reported between the particle diameter and the net revertants/mg: net

revertants/mg increases with the decrease of the particle diameter. The chemicals tested

were additionally analyzed by LC/GC-FID in other studies (van Houdt, 1990, Magusson

et al., 2000) or GC/MS (Kado et al., 2000). The adsorbed organic chemical species
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[usually polycyclic aromatic hydrocarbons (PAHs)] are the investigation targets in Ames

tests of particle toxicity. The contributions of physical properties and the inorganic

fraction (e.g. nickel) to the toxicity of the particles are not evaluated.

Another way of applying the Ames test is bioassay-directed chemical analysis.

Bioassay-directed chemical analysis involves separation of a sample into fractions. Each

fraction contains organic chemicals of similar functionality and polarity. The fractions are

then tested in a bioassay to determine their toxicity. The bioassay results are used to

direct attention to detailed chemical analysis of those fractions. By repeating this process

of chemical separation and bioassay testing, the most mutagenic chemical species may be

discriminated (Siak et al., 1985, Lwo, 1989).

2.2.1.2 Human Cell in vitro Mutagenicity Assay. Recently, a human cell mutagenicity

assay procedure has been developed. Durant et al. (1998) tested the PAHs in airborne

particles that could mutate human lymphoblasts. The cells used in the tests were h1A1v2

cells. Pedersen et al. (1999) applied the same cells and techniques in investigation of the

mutagenicity of total organics adsorbed on respirable airborne particles. Further,

Hannigan et al. (1998) used the human h1A1v2 cell mutagenicity assay for bioassay-

directed chemical analysis of Los Angeles Airborne particulate matter, and PAHs were

the investigation target.

2.2.1.3 Summary and Discussion of Mutagenicity Assay. The mutagenicity of particles

is tested in mutagenicity assays. It has been confirmed that less than 80% of the

chemicals that were found mutagenic in such screening assays are actually carcinogenic

(Maron and Ames, 1983). Both the Ames test and the human cell mutation assay require

the extraction of particles. 0rganic species that are adsorbed on the particles are extracted
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into organic solvents. Inorganic species are left on the particles, uninvestigated. There is

much evidence that heavy metals may be also mutagens, for example, Pb, and Ni

(Scorecard, 2004). This classic toxicity test is thus targeted for organic chemical

determination. Usually PAHs are found to account for most of the mutagenicity produced

by extracted organics. The effects of other particle components are neglected. This

problem may be solved if a new bioassay technique can be applied, in which the particles

can be tested directly, with and without extraction of organic components, so that the

effects of particles and inorganic species may be tested at the same time.

2.2.2 Human Cell in vitro Immunology Test

1) Summary of Immune System and Immune Response (Sell, 1987a, 1987 b)

The major constituents of the immune system are lymphocytes and macrophages.

Lymphocytes may be divided into two categories: T-lymphocytes (T cells), and B-

lymphocytes (B cells). A T cell is the precursor of a sensitized cell that is the basis for

cell-mediated immunity, and may be subdivided into T helper cells, T cytotoxic cells, T

suppressor cells, and other components. Inimunoglobulin or antibody is secreted by

plasma cells or activated B cells. A macrophage uptakes antigen nonspecifically and

processes the antigen so that it may be recognized by a T cell or a B cell.

The immune response of the human body to an infection occurs first in the form

of inflammation. Infected tissue cells release inflammatory cytokines and mediators such

as interleukines (IL) and granulocyte macrophage colony stimulating factor (GM-CSF),

which attract macrophages and lymphocytes to the infected site. Activated macrophages

produce IL 1. IL1 along with the antigen activates T cells. T helper cells, which are a

subpopulation of T cells, are also activated and produce IL2. 0ther interleukines such as
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1L3, 1L4, 1L8, 1L10, etc., as well as T helper cells and 1L2, activate B cells. B cells

proliferate and differentiate into immunoglobulin-secreting plasma cells. B cells can also

be activated directly by antigens.

There are five classes of immunoglobulin:

1gM are surface immunoglobulin of B cells, and are present under normal situations.

While 1gA, 1gG, and 1gE are secreted by plasma cells when antigen invades.

2) Human Cell in vitro Immunology Tests

Particles were suspended in culture medium in most published studies on particle toxicity

in human cell in vitro tests. The suspensions were added directly into the cell cultures

without additional sample preparations. This provides an excellent way to evaluate the

toxicity of manufactured or manually coated particles.

The involvement of particles in the particle-mediated immune system response

has been investigated intensively. Two categories of endpoints were evaluated. 0ne is the

level of cytokines and inflammatory mediators, in both protein production and gene

expression. The other is the immunoglobulin protein production and gene expression.

The testing system is based on human cell lines in vitro, including normal human airway

epithelial cells (Rosenthal et al., 1994, Carter et al., 1997, Bayran et al., 1998, Quay et al.,

1998, Boland et al., 1999, Takizawa et al., 2000), virus transformed human bronchial

epithelial cell line (Abe et al., 2000), and human Epstein-Barr virus transformed isotype

switched 1gE producing B cell line (Takenaka et al., 1995, Tsien et al., 1997). All of these

studies reported that particles could enhance the production of cytokines and

immunoglobulin, namely, interlukine8 (IL-8) and immunoglobulin E (IgE). Takenaka et

al. (1995), Boland et al. (1999), and Bayran et al. (1998) studied the involvement of
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PAHs extracted from the particles on cytokine or 1gE production. Tsien et al. (1997) and

Saxon et al. (2000) evaluated the effect of phenanthrene, and suggested that phenanthrene

could significantly enhance the 1gE protein production. Kawasaki et al. (2001) reported

that benzene-extracted particle components showed effects mimicking the effect of

airborne particles on IL-8 protein production and gene expression.

The protein level of cytokines and immunoglobulin was determined by

commercially available ELISA (Enzyme Linked Immuno-sorbent Assay) kits. The

determination of gene expression of cytokines or irnmunoglobulin was performed by the

technique of RT-PCR (reverse transcriptionlpolymerase chain reaction).

The particles evaluated in these studies were mainly diesel exhaust particles

(DEPs) with a few exceptions of manufactured particles, such as Ti02 and Fe203 studied

by Stringer et al. (1996). The size of the manufactured particles however was simplex

(diameter of 1 j.tm). No studies have been reported to date on the application of

immunology tests on evaluation of adverse health effects produced by nanoparticles.

2.2.3 Human Cell in vitro AntioDidant System Response Test

Particles are suspended in culture medium in the antioxidant system response test, and

added to cell cultures without any extraction or preparation steps. This offers a good way

to investigate directly the toxicity and health effects that may be particle induced by the

particle physical and chemical properties.

0xidant stress imposed by particles is suggested to be central to the determination

of the particle's pathogenicity. Ferin et al. (1992) found that acute pulmonary

inflammation was detectable following inhalation of ultrafine (20 nm in diameter) Ti02

but not after inhalation of normal-sized (200 nm in diameter) Ti02. Donaldson et al.
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(1996) used a sensitive DNA assay and investigated the free radical activities at the

surface of the ultrafine (500 nm) and nanometer (20 nm) Ti0 2 , and found that nanometer

Ti02 was much more active than ultrafine Ti0 2 . They further evaluated the DNA damage

by adding a known free hydroxyl radical scavenger, mannitol, to the cell cultures that

were being treated with the particles, and found that after adding mannitol, the DNA

damage was ameliorated, showing that the hydroxyl radicals were involved. They

suggested that the free radical activity might be a factor that influences the redox balance

within the cells by depletion of glutathione (GSH), and the redox balance was an

important factor in the induction of transcription of immunologically-related genes and

genes that must be activated for proliferation to occur in cells.

Kadiiska et al. (1997) demonstrated the free radical production in vivo by

introducing oil fly ash (1.95 ± 0.18 1..t.m) into the lungs of rats. They found that the

generation of free radicals appeared to be associated with soluble metals. Carter et al.

(1997) investigated the involvement of metals in oil fly ash-mediated cytokine

production. 0il fly ash particles contain the metals vanadium, nickel, and iron. Normal

human bronchial epithelial cells produced significant amounts of cytokines including IL-

8 and IL-6 when exposed to oil fly ash particles, but the effects were obviously inhibited

by either deferoxamine (a metal chelator) or dimethyithiourea (a free radical scavenger),

indicating that the metals and the free radicals play an important role in the enhanced

production of IL-8 and IL-6.

Stringer and Kobzik (Stringer and Kobzik, 1998) hypothesized that oxidant

mechanisms might be involved in the cellular response to particles. They added the

antioxidant N-acetylcysteine (NAC) in the testing system and found that NAC could
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decrease the particle-induced IL-8 production. Casillas et al. (1999) stated that diesel

exhaust particles might generate reactive oxygen species that could be abrogated by

antioxidants. Dellinger et al. (2001) examined samples of PM2,5, and found large

quantities of radicals with characteristics similar to semiquinone radicals, which are

known to undergo redox cycling and ultimately produce biologically damaging hydroxyl

radicals. They also tested the damage induced by PM2, 5 samples to DNA in human cells.

The damage could be abolished by an antioxidant including S0D, catalase, and

deferoxamine.

It can be concluded from these studies that oxidant stress may play a pivotal part

in particle-mediated human organism injury. Morin et al. (1999) tested the antioxidant

system response in rats' lung slice cultures. They determined glutathione (GSH) level and

superoxide dismutase (S0D) activity with or without particle exposure. GSH level was

markedly decreased after 1-h exposure of diesel exhaust particles. And SOD activity was

also decreased. The authors suggested that the oxidant stress, for example, the production

of oxygen radicals such as •02 and •0H, could explain the decrease of GSH level and

S0D activity.

Garcon and his co-workers (Garcon et al., 2000, 2001a, 2001b) applied the

techniques of antioxidant system determination to evaluate the toxicity of 1 — p.m Fe 20 3

particles (pure and coated) in human lung cells A549. They evaluated the activities of

S0D, glutathione peroxidase (GPx), glutathione reductase (GR), and the status of

glutathione: reduced form (GSH) and oxidized form (GSSG). The increases in

GSSGlGSH, in S0D activities, as well as in the GR activities were associated with the

induction by the particles.
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Considering the fact that various particles (Ti02, oil fly ash, diesel exhaust

particle, PM 10, and Fe 203 among others) can impose oxidant stress on the cells, and that

the antioxidant system in normal human cell cultures reacts to the oxidant stress, and that

the evaluations of S0D and GR activities as well as of the GSSGlGSH are convenient to

perform, the antioxidant system response test becomes one candidate toxicity test for a

particle toxicity testing system.

2.2.4 In vivo Inhalation ToDicity Test

An in vivo inhalation test is widely used to investigate the toxicity and health effect of

particles. Donaldson et al. (1996) used rats to study the inflammogenic effects of

micrometer-sized and nanometer-sized particles. They found that material that is

relatively inert in the form of micrometer-sized particles could be highly inflammogenic

for particles in the nanometer size range. The effect of inhalation, deposition in the

respiratory system, phagocytosis by macrophages, and clearance of particles was

investigated by studies using dogs (Clarke et al., 1966, Kalmykova et al., 1980, Wolff et

al., 1985), donkeys (Berger et al., 1978), rats (Bellmann et al., 1983, Reichrtova et al.,

1986, 0ghiso et al., 1986, Tanaka et al., 1986, Brightwell et al., 1986), rabbits (Brain et

al., 1984), guinea pigs (Conner et al., 1988) and hamsters (Geiser et al., 1994), etc. In

vivo evidence of free radical formation after exposure to air pollution particles was

demonstrated using rats (Maria et al., 1997). Recently, the effect of inhaled ultrafine

particles on the allergic airway response was studied using dogs (Barret et al., 2003).

Sometimes, human volunteers help to study the effect of particles on the human

respiratory system by inhaling particles (Curry et al., 1975).
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Chamber exposure to an aerosol containing particles is usually involved in the in

vivo test. The in vivo test is helpful in the investigation of particle transportation and

clearance in the respiratory system, but it is not applicable for the initial study of the

toxicological mechanism of inhaled particles, because the particles can affect various

targets in the respiratory system (e.g. mucous cilia, macrophages, and alveolar epithelium

cells, among others) and cause many adverse effects (e.g. alveolar macrophage

phagocytic and enzymic activities, slow clearance, and inflammation, among others). It is

difficult to distinguish either the particle that is affecting targets or what kind of adverse

effect the particle is inducing, because the whole respiratory system of the test animal is

involved. The in vivo test is good as the final investigatory step of the health effects of

particles though.

2.2.5 Summary and Discussion of Studies on Human Health Effects of Particles

Human health effects of particles were determined by mutagenicity tests, in vivo tests,

and in vitro tests including immunology tests and antioxidant system response tests in the

literature. Mutagenicity tests are limited in clarification of effects and toxicological

mechanisms of particulate materials because only the organic components of the particles

(usually PAHs) are investigated in mutagenicity tests. Studies using the latter three tests

have yielded consistent results, i.e., increase of IL-8 and 1gE production, and increase of

S0D and GR activities as well as of GSSGlGSH ratios. Studies of human health effect of

particles that have been published so far focus on the reactions of the microorganisms ,

human cells in vitro, or animals in vivo, which is necessary but not enough to elucidate

the toxicological mechanisms of particles. Particle properties should be considered to get

thoroughly understanding of the toxicological mechanisms of particles.
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2.3 PhytotoDicity Studies using Plant Systems

Toxicity of particles on plant systems is rarely investigated up to date. Lifecycle human

health protection however means protection of the global environment as a whole. This

means studies on ecological implications of pollutants are as important as studies directly

using human body systems. A testing method must be decided in order to study the effect

of particles on plant systems.

Plant system tests such as the micronucleus test in Vicia faba root tips and the

Tradescantia micronucleus bioassay have been used for environmental mutagen

screening (Ma, 1981, 1982, Degrassi and Rizzoni, 1982, Marco, 1990, Cotelle, 1999).

Recently it has been found that air pollution particles are available to and cause genotoxic

damage to plants. (Poma et al., 2002). The published phytotoxicity studies observed a

common phenomenon that the root elongation of the plant was inhibited significantly if

the studying subjects are mutagenic or toxic.

Seed germination and root elongation toxicity tests are recommended by the U.S.

EPA as ecological effects tests of pesticides and toxic substances (EPA, 1996). This

approach was validated as an indicator to assess the phytotoxicity of halogen-substituted

phenols and anilines (Wang et al., 2001). More recently, the relation between aluminum

toxicity and oxidative stress was studied for Zea mays by determining the root elongation

impacts as well as the peroxidase, catalase, and superoxide dismutase activities in root

tips (Boscolo et al., 2003).
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2.4 Coating Techniques

Studies of the model particulate system by coating test chemicals onto airborne particles

date back to the 1980s. Bond et al. (1984) investigated the dog pulmonary macrophage

metabolism of free and particle-associated benzo[a]pyrene (BaP). The free form was a

BaP solution, and the particle-associated form was BaP vapor coated onto diesel exhaust

particles. Bjorseth et al. (1985) compared the elution rates of BaP-coated coal fly ash

particles that had been prepared by either vapor coating or liquid coating. Mumford et al.

(1986) evaluated the bioavailability of 1-nitropyrene vapor coated coal fly ash particles

and studied their uptake by alveolar macrophages. Ball et al. (1986) studied the

metabolism, disposition and molecular binding of 1-nitropyrene vapor-coated diesel

particles. Lee et al. (1989) established a generator for aerosols that had diesel particulate

cores (freshly generated diesel particles) and coatings of polycyclic aromatic compounds

to study the dinitropyrene formation in diesel particles.

Studies on an airborne particle model system prepared by coating chemicals onto

pure particles were not reported until recently. The investigations of health effects

produced by this type of model system were reported even later. Cheu et al. (1997)

studied the uptake, metabolism and DNA binding of BaP vapor coated Fe203 and Al203

particles. No health effect tests, as far as what is known, had been performed until that

time. Starting in the year of 2000, Garcons et al. (2000, 2001a, 2001b) performed a series

of investigations on antioxidant system disruption by polycyclic aromatic hydrocarbons

coated hematite particles in human lung cells in vitro or human lung epithelial cells in

vitro or lung tissue cultures in vivo. They coated benzo[a]pyrene and/or pyrene onto

Fe203 particles of 1 pm in diameter by liquid phase coating, in which benzo[a]pyrene
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andlor pyrene was dissolved into chloroform and added to the particles. The results from

their study demonstrated that the enzyme activities, including the activities of superoxide

dismutase and glutathione reductase, increased when the cells were exposed to the

particles, whereas the glutathion status, i.e. the ratio of reduced glutathion to oxidized

glutathion, decreased, indicating the presence of oxidative stress in the cells.

Another coating technique that was applied to the study of biological effects of

particles was reported by Jong et al. (1999). In their study, a high-pressure aerosol

generator and outdoor Teflon film chambers were used to investigate the adsorption of

semi volatile organic compounds (S0Cs) on fine inorganic road dusts. This study

established and evaluated a predictive mathematical model for gas-particle partitioning of

S0Cs on fine atmospheric inorganic dust particles.

2.5 Studies on Manufactured Nanoparticles

Conner et al. (1988) investigated lung injury in guinea pigs in vivo caused by inhalation

of 50 nm zinc oxide (Zn0), and found that exposure to Zn0 at 5.9 or 12.1 mg/m3 resulted

in the pulmonary damage in the animals. More recently, preliminary toxicity studies on

nanoparticles, presented at the 2003 American Chemical Society (ACS) New 0rleans

meeting, suggest that inhaled 20-nm diameter but not 130-nm particles made from

polytetrafluoroethylene (PTFE, Teflon) had adverse effects on the respiratory system in

rats (0berdorster, 2003). This result is consistent with previous studies, in which 16 nm

PTFE, but not particles larger than 100 nm, was found to cause severe acute lung injury

to rats when inhaled for only 15 min at 50 glm3 (Johnston et al., 2000). Similarly, it has

been demonstrated that Ti02, Al203, and carbon black particles with diameters smaller
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than 100 nm have exceptional toxicity and are more likely to induce the development of

particle-mediated lung diseases than the same mass of larger particles (Donaldson et al.,

1998, and 1999). Compared to larger particles, nanoparticles have high deposition

efficiency in the lower respiratory tract and slow clearance rates (Spumy, 1998,

0berdorster et al., 1994b). Churg (Churg et al., 1998) investigated the uptake of 120 nm

and 21 nm Ti0 2 particles in a tracheal explant system. Compared to 120 nm particles, 21

nm particles appeared to enter the epithelium faster (3 days vs. 7 days), and a greater

proportion of them was translocated to the subepithelial space due to the larger number of

particles applied with the same mass (epithelial to subepithelial volume —2:1 for 21 nm

particles vs. —1:1 for 120 nm particles). More recently, Renwick et al. (2001)

demonstrated that nanometer sized Ti02 and carbon black particles impair macrophage

phagocytosis at a lower dose than submicron sized particles (0.39 vs. 0.78 [tag per m 2 of

alveoli). 0ther studies have reported that when inhaled as single particles, particles

smaller than 50 nm can be fatal toxic (0berdorster, 1996).

It is suggested in the literature that the ultrafine or nanometer scaled particles are

more toxic than larger particles because they have a larger surface area per unit mass,

which means they can adsorb more toxic chemicals on their surface than can the same

mass concentrations of the coarser particles. Penn et al. (1999) studied the particle size

dependence of organic adsorption, and found that the maximum adsorption per unit

surface area was higher for smaller particles. The large surface area per unit mass of

ultrafine- or nano-particles would allow increased interaction between particles and

epithelium cells (Donaldson et al., 1998), and could result in greater toxicity of the

particles (0berdorster et al., 1992 and 2000).
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It is also suggested in the literature that the ultrafine or manometer scaled particles

may be more toxic than larger particles because they have smaller sizes and therefore

they can penetrate deeper into the respiratory system (Pui, 1997, Churg et al., 1998) and

may remain in the bronchioles and alveoli for months (Holt, 1987).

They may overload the particle clearance system, especially the macrophages that

are essential to the clearance of fine and ultrafine or nanometer scaled particles. The

overload state results from the large numbers per unit mass of ultrafine- or nano-particles.

If the particles are intrinsically toxic, they may injure or kill the macrophages in addition

to overloading the system. Either overload or injury leads to failure in clearance of the

particles due to the inactivity of the macrophages. The inhaled particles can remain in the

bronchioles and interact with epithelial cells, resulting in allergic inflammation, injury to

the antioxidant system, andlor cancer (Spumy, 1998).

Sizes, numbers per unit mass, surface area per unit mass, and perhaps intrinsic

toxicities are the particles' properties that have been suggested to be responsible for the

toxic effects of fine and coarse particles. Considering that properties such as the surface

characteristics of ultrafine- or nano-particles are much different than those for the fine

and coarse particles (Roco, 1999), the toxicological mechanism of nanoparticles needs

further investigation.



CHAPTER 3

RESEARCH SUMMARY AND METHODOLOGY

Current research on toxic effects and the mechanisms of artificial particulate materials as

well as airborne particulate materials was reviewed in Chapter 2. Human health effects

and the mechanisms associated with these health effects have been widely studied.

Ecological implications of the particles are typically not of concern in the published

studies. The effects of particles on plant growth were studied in this dissertation using the

EPA recommended root elongation test method with slight modification. Classic particle

physical and chemical characterization techniques including Fourier Transform Infrared

(FTIR) spectroscopy, Scanning Electron Microscopy / Energy Dispersive Spectrometry

(SEMlEDS), and Brunauer—Emmett—Teller (BET) algorithm, among others, were

applied. Statistical analysis was performed using the procedures of one-way Analysis of

Variance, or one-way ANOVA, as well as the Student's t-test.

3.1. Research Summary

This study focus on the following two areas:

1) Toxicity evaluation of manufactured nanoparticles.

2) Investigation of particle properties that contribute to particle toxicity.

Commercially available manufactured particulate materials with different chemical

compositions including aluminum oxide, silicon dioxide, and titanium dioxide were

purchased for the study. Particle aggregate sizes and specific surface areas were

24
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characterized. The effects of these particles on plant seedling root growth were

investigated. The toxicity threshold values, 1C10 or 1C10 (concentration that produces an

10% inhibitory or enhancement effect), were determined.

Particles with two to three size scales and with two to three specific surface areas

were obtained in order to investigate the particle properties that contribute to particle

toxicity. The effects of these particles on plant seedling root growth were compared

according to the particle sizes as well as the particle specific surface areas. Phenanthrene

(Phen), an important member in the family of polycyclic aromatic hydrocarbons (PAHs),

was loaded on the particles. The effects of Phen-loaded particles on seedling root growth

were investigated to evaluate the influence of Phen on particle toxicity.

Mechanisms of how the particles influence seedling root growth were investigated

by the techniques of FT1R and S1MlEDS.

3.2	 Research Methodology

3.2.1 Physical and Chemical Characterization

3.2.1.1 Analysis for the Sizes of the Aggregates of the Particles. Particles exist

in water suspensions as aggregation forms, not individual particles. The sizes of the

aggregates of the manufactured particles were determined by particle size analysis

instrumentation, using a Coulter LS-230 for coarse and fine particles (particles smaller

than 10 [tam and larger than 1µm), and a Coulter N4+ for ultrafine particles (i.e., particles

smaller than 11.1m).

Particles were suspended in Milli-Q water and sonicated for three hours when

using the Coulter N4+ for the size determination. This three-hour sonication duration was
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determined in a preliminary study by measuring the size of the 14-nm alumina particles

after a series of sonication periods: one hour, two hours, three hours, and four hours. A 3

ml sample of the suspension of the 14-nm particles at the concentration of 2 mglml (20

mg particles to 10 ml Milli-Q water in this study) was pipetted to a cuvet after each

sonication duration, and analyzed by the Coulter N4+ three times (i.e., three continuous

runs using the same sample). The particle sizes determined from the three runs were

averaged to get a "run average" value, as well as a standard deviation. The four "run

average" values were compared. It was found that after three hours of sonication, the

particle size did not change dramatically. The three hours of sonication was thus

determined to be sufficient to obtain non-reducing particle sizes, and was applied for

either particle size determinations or phytotoxicity studies.

The particles that were size-analyzed by the Coulter N4+ include the 13-nm

(individual particle size according to the manufacturer) alumina particles, the 14-nm

(individual particle size according to the manufacturer) silica particles, the 21-nm

(individual particle size according to the manufacturer) titanic particles, the nano-sized

silica particles (determined by this procedure to be 161.2 nm), the submicron silica

particles (determined by this procedure to be 667.6 nm), and the submicron titania

particles (determined by this procedure to be 0.96-pm) (the sizes of the aggregates of

these particles as determined by the Coulter N4+ is given in Table 3.2).

The concentration of 2 mglml (20 mg to 10 ml in this study) was used for the size

determination for the nanoparticle aggregates including the 13-nm alumina particles, the

14-nm silica particles, the 21-nm titania particles, and the 161.2-nm silica particles. The

concentration of 20 mglml (200 mg to 10 ml in this study) was used for the size
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determination of the submicron silica particles and the submicron titanic particles. The

volume of 3 m1 of each particle suspension was transferred to a cuvet for analysis.

The size analysis performed by the Coulter LS-230 followed a different

procedure. The Coulter LS-230 was used to determine the aggregate size of particles with

micron sizes, i.e., the micron alumina particles in this study, which was determined as

1.00 Am.. The micron alumina particles were soaked in Milli-Q water at 20 mg/m1 (200

mg particles to 10 m1 Milli-Q water in this study). The particle suspension was pipetted

into the sample inlet of the instrument, which was filled with one liter of Milli-Q water

before adding the particle suspension. The particle suspension was pipetted in until the

obscuration approached to 8%, which is a requirement of the normal operation of the

instrument. Normally, only 5 to 10 drops of the 20-mg/m1 particle suspension were added

to obtain the obscuration of 8%. The concentration of the particle suspensions that was

being analyzed was about 0.007 mglml. A high pump speed (50%) was used. Internal

sonication was functioning continuously during the measurement. The high pump speed

and the internal sonication were used to prevent aggregation of the micron alumina

particles. Particle size was reported as the mean value and standard deviation of the

particle diameter (see Table 3.2).

In the following text of this dissertation, the particle sizes that are used to address

the 1.00-tim alumina, 0.96-1.tm titania, 667.6-nm silica, and 161.2-nm silica are sizes of

the particle aggregates. The sizes of the individual particles that are reported by the

manufacturers are used for addressing the other particles including 13-nm alumina, 14-

nm silica, and 21-nm titanic.
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3.2.1.2 Particle Surface Area Analysis. 	 The specific surface area of the manmade

particles that were studied in this dissertation was determined by an instrument using a

mathematical operation based on Brunauer—Emmett—Teller (BET) theory, which is the

calculation of the particle surface area based on the correlation between the total particle

surface area and the amount of adsorbed nitrogen. The specific surface area of the 14-nm

silica particles was obtained from the material datasheet supplied by the manufacturer.

The determination of specific surface area of the particles followed the standard

procedure that is given in the manual of the instrument, which is a Nova ® e-3200 device

from Quantachrome Instruments. Dry and calibrated glass tubes with a calibrated glass

rod inserted in each tube were weighed before adding the particles used in this study. The

particles were added into the glass tubes, which were then connected to the vacuum ports

of the instrument with the glass rods inserted, and degassed at 250°C for three to four

hours. The glass tubes, along with the particles that were contained and the glass rods that

were inserted, were left under vacuum at the end of the degassing until the temperature of

250°C lowered to the room temperature (which takes about 3 hrs). The glass tubes that

contained particles as well as the glass rods were then weighed again. The weight of the

particles was obtained by difference. The weights of the particles as determined by this

way were given in Table 3.1.

Table 3.1	 The Amount of the Particles (grams) used in the Determination of the
Particle Specific Surface Areas (m2lg)
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The glass tubes, which contained the particles as well as the glass rods, were

connected to the analysis ports of the instrument, and then inserted into liquid nitrogen.

The particle specific surface areas were analyzed under nitrogen gas streams and

calculated by the instrument according to Brunauer-Emmett-Teller (BET) theory. The

B1T points in the analyses were five.

3.2.1.3 Determination for Particle Surface-Associated Chemical Species. The in-

vestigation of particle surface associated chemical species as well as particle surface

characteristics was done by FAIR. 10 mg of particles or chemical compounds

(phenanthrene in this study) were mixed in 200 mg of ground KBr (IR grade, 99+ %,

Fisher Scientific). The powder was then pressed into a pellet (0 = 10 mm). Each pellet

contains 3 ~ 5 mg of particle. 2500 scans were performed on each pellet. The background

spectrum was also 2500 scans that were performed on a blank KBr pellet. A Mattson

Research Series FT-IR was used for the purpose of this study. The FAIR spectra were

used 1) to determine whether or not phenanthrene had been loaded on the particles, and

2) to investigate the possible interaction between the particle-surface-adsorbed

phenanthrene and the particle surface.

3.2.1.4 Electron Microscopy Analysis. Scanning Electron Microscopy (S1M) was

used to investigate the distribution status of the particles in plant root systems. Particle

element composition was analyzed by an energy dispersive spectrometry (EDS) under 5

keV. 1DS spectra were collected for 20 minutes. The details of the procedures for

preparing specimens and S1M/EDS analysis are given in Section 3.2.4.
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3.2.2 Coating Technique

The coating technique candidates include vapor coating, liquid phase coating, and

supercritical carbon dioxide coating. The liquid phase coating technique was chosen in

this study, because liquid phase coating:

1) is convenient and easy to perform,

2) provides easy management of the load amount of the chemicals, which is the most

important result wanted in this study, and

3) provides reproducible even coating of the particles.

A certain amount of phenanthrene (Phen) was dissolved in 4 m1 of acetone in

liquid phase coating. The amount of Phen was determined according to the mass (g) of

particles, the specific surface area (m2lg), the molecular cross section area (A2), and the

molecular weight (glmol) of Phen. The equation used for the calculation and the details

of the amount of Phen and particles are given in the respective sections (see Chapter 5).

Particles were weighed. Nanoparticles (i.e., 13-nm alumina, 14-nm silica, and 21-

nm titania) were dispersed in the 4-m1 phenanthrene-acetone solution (see Table 5.1 on

page 85 for the amount of phenanthrene in each solution) by continuous stirring by a

glass rod by hand during the dispersion process. Particles including the 161.2-nm silica,

667.6-nm silica, 0.96-pm titania, and 1.00-pm alumina were dispersed into the 4-nm

phenanthrene-acetone solution by continuous stirring using a glass rod by hand, and the

suspensions were sonicated for 1 hr at room temperature. All of the particles studied in

this dissertation were also dispersed in 4 m1 of acetone to make non-phenanthrene-loaded

(nonloaded) particles (blank samples) following the same dispersion procedures. The

slurries were then left at 38 ± 1°C under vacuum overnight and kept in vacuum for
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another 24 hrs to ensure the removal of the residue acetone (Garcon et al., 2000 and

2001). The Phen-loaded particles, as well as the nonloaded blank acetone treated particles

were transferred to small vials, sealed, and stored in the dark at room temperature.

3.2.3 PhytotoDicity Test

Six plant species, Z. mays (corn), C. sativus (cucumber), A. sativa (oat), G. max

(soybean), B. oleracea (cabbage), and D. carota (carrot) were used in the phytotoxicity

tests. The exact plant species that were used for testing of each kind of particles, as well

as of phenanthrene, are given in the according sections of Chapter 4 and Chapter 5.

Seeds of these six plant species were cultured into seedlings before exposure to

the particles. 200 ~ 400 seeds for each test batch were soaked in 200-m1 10 % sodium

hypochlorite solution for 10 minutes (EPA, 1996) to assure sterility. They were rinsed

three times, and then soaked overnight in 200-m1 Milli-Q water in an incubator at 25 +

1°C except for C. sativus seeds. C. sativus seeds were soaked in 200-m1 Milli-Q water in

an incubator at 25 ± 1 °C for 1 hr after being treated with sodium hypochiorite and rinsed

three times, and then geminated.

The seeds of the other five plant species were transferred in the next morning,

uniformly to filter papers placed in 100 x 15 mm sterile disposable Petri dishes. Each

dish contained 5 m1 of Milli-Q water. Seeds were separated from each other by about 1

cm in every dish, and allowed to germinate at 25 + 1 °C in the dark for 24 hrs to 72 hrs

(depending on the species) prior to particle exposure, until the primary root of most

seedlings elongated to about 20 ~ 30 mm. The time for culturing seeds into seedlings that

with 20 ~ 30 mm of primary root length was 72 hrs for Z. mays, A. sativa, and G. max. 48

hrs were required for the seeds of D. carota and B. oleracea to germinate to seedlings



32

with 20 ~ 30 mm of primary root length. Seeds of C. sativus took 24 hrs to germinate into

seedlings with 20 ~ 30 mm of primary root length.

Milli-Q water was renewed every 24 hrs during the germination process.

Seedling exposure to the particles seedlings was done in a particle—Milli-Q water

suspension. Particles were weighed and suspended in Milli-Q water by sonicating for

three hours to make a series of concentrations: for 20 mg/m1 particle suspensions, 400 ±

0.15 mg of particles were added into 20 m1 Milli-Q water; for 2 mg/ml particle

suspensions, 40 mg ± 0.15 mg of particles were added into 20 ml Milli-Q water; for 200

g/ml, 40 ± 0.15 mg of particles were added into 200 ml Milli-Q water; and for 20 µtg/ml,

4 ± 0.05 mg of particles was added into 200 ml Milli-Q water. The balance used for

weighing the particles has the accuracy of 0.01 mg. The particles tested in this study

include original particles (which are the particles without any treatment), nonloaded

particles (which are the particles treated with 4 ml of acetone but without phenanthrene

loading), and phenanthrene-loaded particles. The pH of the particle suspensions was

measured before being dispensed into Petri dishes. The particle suspensions were then

dispersed into Petri dishes, with 5 m1 for one dish, and altogether 15 ml for one

concentration. The Petri dishes contained one filter paper in each dish before the

dispersion of the particle suspensions. The seedlings were exposed to a concentration

series and to a water only control (negative control). The negative control, i.e. the blank,

was 5 ml of Milli-Q water. Three replicates were tested for each concentration and

control. The three replicates contained 10 seedlings per dish and altogether 30 seedlings

for each concentration.
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Seedlings were transferred to the filter paper in the dish, which contained 5 ml of

Milli-Q water or particle suspension and had been marked at the outside bottom of the

dish for the purpose of identification and numbering of each seedling. The seedlings in

each dish were separated from each other by about 1 cm. The exposure process was done

at 25 ± 1°C in the dark for 24 to 72 hrs. The pH of the particle suspensions in the Petri

dishes was determined by pH test strips. The length of the primary root or shoot of each

normal seedling was measured before and after exposure. Seedlings with broken roots

were excluded in the results.

Root elongation (RE) during the exposure period was calculated using the

equation (1). A unified method of data analysis must be used for comparative purposes,

because the root elongations of seedlings are not constant among different test batches

and different plant species. A Relative Root Growth (RRG) was calculated for this

purpose, based on what was proposed by Schildknecht (Schildknecht and Vidal, 2002),

using the equation (2).

where Lafter and before refer to the measured root lengths after and before exposure,

respectively.

The phytotoxicity of phenanthrene (Phen) (98%+, assay, Fisher Scientific) was

tested. 0.8400 grams of Phen was dissolved in 10 m1 acetone (HPLC, Fisher Scientific)

resulting the concentration of 84.00 mg/mi. A small volume of this solution (100 Ill) was
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added to 30 m1 Milli-Q water to make a concentration of 0.28 mg/mi, which was the

highest amount of Phen that has been loaded onto the particles. The mixture was left

overnight under the hood at room temperature. The mixture was then dispensed into three

Petri dishes, with 5 ml to each dish, and then tested.

Another phytotoxicity evaluation of phenanthrene was done at concentration of

0.02 mg/mi. 0.0603 grams of Phen was dissolved into 10 m1 acetone to make the

concentration of 6.03 mg/mi. 100 of the solution was added to 30 ml of Milli-Q water

to get the concentration of 0.02 mg/ml. The mixture was left overnight under the hood at

room temperature, and then dispensed into three Petri dishes with 5 m1 to each dish to get

tested.

The blank for the phytotoxicity evaluation of phenanthrene was 30 ml Milli-Q

water plus the equivalent volume (100 Ill) of acetone, which was also left overnight in a

vacuum together with the particles that were being loaded with Phen.

3.2.4 SEM Study of Particle—Affected Root Samples

The lengths of the primary roots of the seedlings were measured after exposure. They

were then cut into 5 mm (by length) sections. Fixation was done by soaking the root

pieces in 3 ml Kamovsky's fixative (Paraformaldehyde-Glutaraldehyde solution

containing 4.00% formaldehyde and 6.25% glutaraldehyde, from Electron Microscopy

Sciences) at 2-4°C for 3 hrs. The samples were rinsed three times with 0.1 M phosphate—

buffered saline (PBS) after fixation at room temperature, with 20 min and 3 m1 of 0.1 M

PBS for each rinse. The root tissues were post-fixed with 3 ml 2% osmium tetroxide

overnight at room temperature, and dehydrated with 3 m1 graded ethanol at room

temperature: 30% ethanol for 15 min, 50% ethanol for 15 min, 70% ethanol for 15 min,
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90% ethanol for 15 min, 95% ethanol for 15 min, and three changes of 100% ethanol for

15 min each. The samples were then dried with series of hexamethyldisilazane (HMDS)

solutions as follows: 100% ethyl alcohol/HDMS (2:1) for 15 min at room temperature,

100% ethyl alcohol/HDMS (1:2) for 15 min at room temperature, and two changes of

100% HDMS for 15 min each at room temperature. The HMDS solutions used were also

3 m1 for each concentration. The specimens were left to air—dry overnight, mounted, and

sputter coated with gold for S1M observation. The S1M used is a L10 1530 VP

F1S1M/EDS system (Leo Electron Microscopy). An accelerating voltage of 5 keV was

used. The magnification is 5kX. The 1DS spectra were collected for 20 minutes for each

specimen.

3.2.5 Statistical Analysis

The results were expressed as mean ± standard deviation (SD), along with 95%

confidence interval The statistical analysis was performed using the Student's t-test, as

well as the one-way ANOVA procedure.

3.2.5.1 Student's t-Test. The Student's t-test is available as a program through an

Internet site (physics.csbsju.edu , 2004). Statistically significant difference is reported

when the probability of the result assuming the null hypothesis (p) is less than 0.05. At

this point, the calculated t value is larger than the upper critical t value in the Student's t

distribution table with the same degree of freedom and significance level of a = 0.05. The

results from the triplicate samples were compared first. If one group of data is

significantly different from the other two groups, this group of data was discarded.

3.2.5.2 One-way ANOVA. The ANOVA procedure is one of the most powerful

statistical techniques, which can be used to test the hypothesis that the means among two
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or more groups are equal. Since in this study, only one factor, concentration, is

concerned. The one-way ANOVA procedure was used. The null hypothesis of one-way

ANOVA is that there is no difference in the population means of the different levels of

factor A (the only factor). The goal of this procedure is to split the total variation in the

data into a portion due to random error and portions due to changes in the values of the

independent variable(s). The variance of total measurements in the data can be given as:

where y is the mean of the total measurements, n is the number of measurements, and

y, is the value of each measurement. The numerator in Equation 3.3 is called the sum of

squares of deviations from the mean (Total SS), and in one-way ANOVA is split into two

components, sum of squares of treatments, SST, and sum of squares of error, SSE:

where k is the number of groups, n i is the number of values in the group, y is the mean

value of the group, y is the mean value of the total measurements, and yid, is the value of
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the th measurement in the itch group. A treatment is defined as a specific combination of

factor levels whose effect is to be compared with other treatments.

The SST and SSE calculated above are used to form two mean squares, mean

square for treatments, MST, and mean square for error, MSE. by dividing the sum of

squares by the associated degrees of freedom, the degrees of freedom for treatment, DFT,

and the degrees of freedom for error, DFE:

is the number of groups of treatments, and DEE = N — k , where N

is the total number of measurements in all groups.

The test statistic, used in testing the equality of treatment means is:

The critical value is the tabular value of the F distribution, based on the chosen a

level and the degrees of freedom, DFT and DFE. The probability of the result assuming

the null hypothesis (p) is calculated from the E, DET, and DEED, which is available at an

Internet site (Graphpad.com , 2004).
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3.2.6 Data Processing

The effects of pure particles and loaded particles on plant seedling root growth were

determined. By comparing the results, conclusions regarding those particle properties that

are possibly important for its toxicity were made.

Figure 3.1 presents the comparison strategy design.

The influence of particle chemical composition was evaluated by comparing the

effects of particles that are made up of different materials but within same size range.

Three metal oxide particle categories are evaluated: Al203, Ti02, and Si02.

To determine if the particle size is important for particle-mediated injury, the

effects of particles made up of the same material were tested in two to three particle size

scales: nanometer scale, sub-micrometer scale, and micrometer scale.

The involvement of particle surface area in the particle-induced biological effect

was investigated by tests on particles within the same size range but with different

specific surface area (m2/g), and on particles with different size ranges but with the same

scale of specific surface area.

3.3 Materials

3.3.1 Particles

Aeroxide® Si02 P25 was purchased from Degussa. Aeroxide ® Alu C was from Degussa

also. Cab-0-Sil® M5 was purchased Cabot. The 161.2 nm hydrophilic spherical silica

was locally—made in a conjunction experimental program. The 667.6-nm hydrophilic

silica particles were generously given by another research group. The particles were
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purchased from a manufacturing company, but the name of the company was not

available, according to the research group. The O.96-pm titania and the 1.OO-1.tm alumina

particles were purchased from Atlantic Equipment Engineers (A1E), Inc.

Figure 3.1	 Data processing strategy for determination of the most important particle
properties that contributes to particle toxicity.
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Table 3.2 presents the sizes and specific surface areas of the particles studied in this

dissertation.

According to the results from the particle size analysis, the nanoparticles including

the 13-nm alumina, 14-nm silica, and 21-nm Titania, appeared in the water mostly as

aggregate forms.

aAeroxide® Alu C from Degussa. The 13 nm is the average diameter of individual particles according to the
material datasheet given by the manufacturer.
bLocally made in another lab. The particles were made to be mono-dispersed in water. The size of 161.2 nm is
thus suggested to be the mean size of the individual particles.
cCab-O-Sil® M5 from Cabot, hydrophilic silica. The 14 nm is the average diameter of individual particles
according to the material datasheet given by the manufacturer. The specific surface area data of the 14-nm
silica particles was taken from the material datasheet;.
peroxide ® Ti02 P25 from Degussa. The 21-nm is the average diameter of individual particles according to
the material datasheet given by the manufacturer.

3.3.2 Seeds

Seeds of six plant species: the Zea mays (corn), the Cucumis sativus (cucumber), the

Glycine max (soybean), the Brassica oleracea (cabbage), the Avena sativa (oat), and the

Daucus carota (carrot) were purchased from Territorial Seed Company (0regon, USA)
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(Figure 3.2). These six species are among the ten plant species recommended by the US

1PA (EPA, 1996) to determine ecological effects of pesticides and toxic substances. Seeds

were stored in a dry place in the dark at room temperature. Seed germination rates were

determined (Table 3.3).

2OO seeds/species were cultured with 1O seeds / dish in 5 ml Milli-Q water on filter

papers that were placed in 1OO x 15 mm Petri dishes, and allowed to germinate in an

incubator in the dark at 25 ± 1 °C for 48-72 hrs till the primary roots elongated to about

203O mm. Seedlings with primary root less than 6.5 mm were regarded as non-germinated

(EPA, 1996). The whole process was repeated three times. The germination rate was

calculated and reported as the mean value ± standard deviation.



Figure 3.2 	 Seedlings cultured from the seeds.
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CHAPTER 4

EFFECTS OF MANUFACTURED PARTICULATE MATERIALS
ON PLANT SEEDLING ROOT GROWTH

The materials and experimental methods used in this study were presented in Chapter 3.

The techniques of the root elongation test were applied for the purpose of determination

of the effects of the manufactured particles. Six plant species including Z. mays, C.

sativus, B. oleracea, D. carota, G. max, and A. sativa were involved in this study.

Nanoparticies studied include 13-nm alumina particles, 14-nm hydrophilic silica

particles, 21-nm Titania particles, and 161.2-nm hydrophilic silica particles. Submicron

and micron particles studied include 667.6-nm hydrophilic silica particles, O.96-1.tm

titania particles, and 1.OO-1.im alumina particles.

4.1	 13-nm Alumina Particles

4.1.1 24-hr EDposure to the 13-nm Alumina Particles

Root elongation tests were performed on the alumina nanoparticies (Alu-C, Degussa)

with individual size of 13 nm and aggregate size of 2O1.O ± 74.69 nm. The effect of the

alumina particles on plant root growth was investigated at the concentrations of 2O

mg/mi, 2 mg/mi, 2OO g/m1, and 2O1.1.g/ml.

The concentrations were determined by a preliminary study, in which, the

concentrations of 2O mg/mi, 2 mg/mi, 2OO 1.1g/ml, 2O g/m1, and 2 1.1g/ml were tested.

Neither fatal effect nor 1OO% inhibitory (RRG = O.OO in the root elongation test) of the

alumina nanoparticies on the seedlings was observed in the concentration range from 2O

43
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mg/ml to 2 mg/ml. Typically in toxicology, the highest test concentration is the one that

induces 1OO% effect (for example, 1OO% of death, or 1OO% of inhibitory), and the lowest

test concentration is the one that does not induce any effect. The highest concentration in

this study was then decided as 2O mg/ml, which is the highest concentration tested in the

preliminary study. Higher concentration, i.e., 2OO mg/mi is unrealistic because this

concentration is too high to be a particle suspension. It is a sort of slurry for most of the

particles studied in this dissertation. The lowest concentration was decided as the one

below a concentration that induced no effect compared to the blank. 2OO mg/mi of the 13-

nm alumina nanoparticles was not found toxic under the experimental conditions in the

preliminary study. The concentration of 2O mg/ml was thus decided as the lowest test

concentration for the 13-nm alumina particles.

The plant species used include Z. mays (corn), C. sativus (cucumber), B. oleracea

(cabbage), and D. carota (carrot). Root elongation (RE) during exposure to the particles

was obtained by subtracting the root lengths before the exposure from the root lengths

after the exposure (Table 4.1). Relative root growth (RRG) was obtained in order to

compare the results among different test batches and different plant species, which was

calculated as the ratio of R1 of seedlings exposed to particle suspensions to R1 of

seedlings in the Milli-Q water control (Table 4.1 and Figure 4.1). The relative root

growth (RRG) was calculated following the procedure that has been used widely in the

literature (Moon et al., 1997; Jorge et al., 2OO1; Tang et al., 2OO2; Boscolo et al., 2OO3;

Hoekenga et al., 2OO3) The results from exposure to the particles and to the controls were

statistically analyzed by the Student's t-test and one-way ANOVA procedure (Table 4.2

and Table 4.3).
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The growth of seeds and seedlings at an early stage depends on three factors,

besides the seeds themselves (e.g. plant species, seed weights, and seed sizes): water,

temperature, and air. These three factors were controlled in this study as accurately as

possible. It is however impossible to control other factors such as the seed weights and

seed sizes. Different plant species in addition have different growth curves. The root

elongations of seedlings change dramatically among different plant species and also are

different among test batches, as may be seen from Table 4.1. A uniform expression of



Table 4.2 	 Statistical Analysis Results of the Root Elongation (RE) of Plant Seedlings Exposed to Alumina Nanoparticles for 24
hrs in the Dark at 25 + 1°C. Part I - Particles vs. Blanks

Results from the Student's 1-test are reported as the value of t and the value of probability of the result assuming the null hypothesis (p). Results from the one-way
ANOVA procedure are reported as the value off, p, and the coefficient of determination (R2). Statistical difference is reported as p smaller than 0.05.

Concentration
	

Z. mays	 C. sativus
	

B. oleracea	 D. carota

	2O 20mg/mi	 t = -7.39,p = O.OOO
f= 54.585O,p = O.OOO1

R2 = O.5152

	

2 mg/ml 	 t = 3.59,p = O.OO1
f= 12.9158,p = O.OOO7

R2 = O.8179

	

2OO pg/ml 	 t = 1.28,p = O.2O6
f= 1.6373,p = O.2O58

R2 = O.9725

	

2O mg/ml 	 t = -O.5O1,p = O.618
f= O.2514, p = O.618

R2 = O.9957

t = 9.13,p = O.OOO
f= 83.3367,p = O.OOO1

R2 = O.41O4
t = 3.46,p = O.OO1

f= 11.9859,p = O.OOO9
R2 =0.8538

t = 2.43,p = O.O18
f= 5.9O96,p = O.O18

R2 = O.9189
t = 1.15,p = O.255

f= 1.3155,p = O.2554
R2 = O.9816

t = 5.88,p = O.OOO
f= 34.581O, p = O.OOO1

R2 = O.6224
t = 5.92,p = O.OOO

f= 35.O281,p = O.OOO1
R2 = O.7O57

t = 1.64,p = O.1O6
f= 2.7O3O,p = O.1O58

R2 = O.954O
t = -O.492, p = O.625

f= O.2418,p = O.6248
R2 = O.996O

t = 8.8O,p = O.OOO
f= 77.486,p = O.OOO1

R2 = O.4281
t = 2.73,p = O.O09

f= 7.447, p = O.OO87
R2 = O.8747

t = O.8O2,p = O.426
f= O.6438,p = O.4258

R2=O.9884
t = -1.83,p = O.O72

f= 3.3552,p = O.O721
R2 = O.9453
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data must be used in order to make the data comparable among different test batches and

plant species. The relative root growths (RRG) were obtained for this purpose as the

ratios between the mean values of the RE results for the seedlings exposed to particle

suspensions to those for the seedlings grown in the Milli-Q water. RRG was used for

comparison between two plant species or two test batches instead of RE, whereas R1 was

used for comparison between two concentrations of particle suspensions tested within the

same test batch. That is the fact that for Z. mays, and D. carota, the R1 values were used

for comparing the results between 2 mg/mi, 2OO g/ml, and 2O mtg/ml, and the RRG

values were used for comparing 2O mg/ml with the other three concentrations. The

statistical analysis performed for the C. sativus and the B. oleracea used the R1 values

the comparison between 2O mtg/ml, 2OO µmg/ml, and 2O g/ml, and the RRG results for

evaluation of the differences between the effects on root growth of 2 mg/ml and the other

three concentrations. Table 4.3 gives the results.

The relative root growth remained constant, although root elongations during the

exposure period changed with the plant species and the test batches. The examples are,

when exposed to the 2-mg/ml 13-nm alumina particle suspensions, the primary root of

seedlings elongated from 8.1 mm for D. carota to 22.6 mm for C. sativus, whereas at the

same concentration, RRG is from O.78 for B.oleracea to O.83 for D. carota. R1 of C.

sativus seedlings, when tested at a different time, was 26.5 mm exposed to 2O mg/mi of

particle suspensions, which was even larger than the 22.6 mm of R1 of seedlings exposed

to 2 mg/ml of particle suspensions at an earlier time, even though It is frequently

observed that the R1 values decrease with an increase of particle suspension



Table 4.3	 Statistical Analysis Results of the Root Elongation (RE) and the Relative Root Growth (RRG) of Plant Seedlings
Exposed to Alumina Nanoparticles for 24 hrs in the Dark at 25 + 1°C. Part I1 - Comparison between Different Concentrations of
Particle Suspensions, and between Different Plant Species

Results from the Student's 1-test are reported as the value of t and p. Results from the one-way ANOVA procedure are reported as the value of f, p, and R2 .
Statistical difference is reported as p smaller than 0.05.

Comparison 	 Z. mays	 C. sativus
	

B. oleracea	 D. carota

	2O mg/mi vs. 2 mg/mi	 pia = 0.000	 pi= 0.000	 pi = 0.000	 pi= 0.000
	p 2  = 0.0001 	 p2 = 0.0003	 p2 = 0.0001	 p2 = 0.0001
	R 2 = 0.3658	 R2 = 0.7834	 R2 = 0.7376	 R2 = 0.7102

	

2O mg/mi vs. 2OO pg/mi 	 pi= 0.000	 A = 0.000	 1,1= 0.000	 pi= 0.000
	13 2 = 0.0001	 P2 = 0.0001 	 132= 0.0001	 132= 0.0001
	R 2 = 0.3723	 R2 = 0.7203	 R2 = 0.7632	 R2 = 0.7319

	

2O mg/mi vs. 2O mg/mi 	 pi= 0.000	 A = 0.000	 pi= 0.000	 pi= 0.000
	19 2 = 0.0001	 p2= 0.0001	 1,2= 0.0001	 132= 0.0001
	R 2 = 0.3802	 R2 =0.4730	 R2 = 0.6730	 R2=0.4246

	

2 2mg/mi vs. 2OO mg/mi 	 pi= 0.001	 pi= 0.110	 pi= 0.123	 PI = 0.243
	p 2 = 0.0006	 P2 = 0.1104	 p2= 0.1226	 p2= 0.2433
	R 2 = 0.8164	 R2 = 0.9600	 R2 = 0.9658	 R2 = 0.9723
	2 2mg/mi vs. 2O uug/ml 	 pi = 0.000	 pi= 0.000	 pi= 0.000	 PI = 0.000
	p 2 = 0.0001	 p2 = 0.0003	 P2 = 0.0004	 p2 = 0.0001
	R 2 = 0.6240	 R2 = 0.8161	 R2 = 0.8328	 R2 = 0.7490

	

2OO upg/ml vs. 2O uug/ml 	 A = 0.020	 pi= 0.179	 pi= 0.064	 pi= 0.036
	13 2 = 0.0203	 p2= 0.2554	 p2= 0.0636	 192= 0.0355
	R 2 = 0.9106	 R2 = 0.9816	 R2 = 0.9409	 R2= 0.9221

Four plant species At 2 mg/mi, 200 g/ml, and 20 [Tim', no significant difference of seedling RRG was found among the four plant
species. At 20 mg/mi, significant difference exists between the RRG results of C. sativus seedling and seedlings of
other two species: Z.mays and D. carota.

a Calculated from the Student's 1-test; b Calculated from the one-way ANOVA procedure
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concentrations within the range of concentrations studied. The data always decrease with

the increase of the concentrations in the case of RRG.

It is obvious from the coefficient of determination (R2) presented in Table 4.2 that

the root growth of the seedlings exposed to the particle suspensions approaches that of

seedlings cultured in the control as the concentration decreases: in the case of Z. mays,

the R2 was O.5152 at 2O mg/mi, O.8179 at 2 mg/mi, O.9725 at 2OO upg/ml, and O.9957 at 2O

pg/ml; in the case of C. sativus, the R2 was O.41O4 at 2O mg/mi, O.8538 at 2 mg/mi,

O.9189 at 2OO g/ml, and O.9816 at 2O g/m1; in the case of B. oleracea, the R2 was

O.6224 at 2O mg/mi, O.7O57 at 2 mg/mi, O.954O at 2OO upg/ml, and O.996O at 2O mig/ml;

and for D. carota, the R2 was O.4281 at 2O mig/ml, O.8747 at 2 mig/ml, O.9884 at 2OO

1.1,g/ml, and O.9453 at 2O mig/ml. There is a statistical difference between the effects of

blank and concentrations of 2O mg/m1 and 2 mig/ml. A statistical difference existed

between the effects of 2O mig/ml and either 2 mig/ml, 2OO mig/ml or 2O g/ml, with
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p<<O.O5 in all circumstances. 2 mg/mi and 2OO mg/ml at the same time have no

statistically different effects on the root growth, although 2OO mmg/mi was not found toxic

when compared to the blank. Significant difference however was found between the

effects of 2 mmg/mi and 2O g/ml. The results suggest that 2O mmg/mi and 2 mmg/mi of the

13-nm alumina is toxic to the root growth of the seedlings, and the observed phytoxicity

of the alumina nanoparticles decreases with a decrease of the concentration of the particle

suspension.

Mean values of the RRGs were calculated from the RRG results for the four plant

species to evaluate the toxicity of 13 nm alumina particles. The RRG results obtained

from the tests using the four plant species were first statistically analyzed using the one-

way ANOVA, which determines whether there is a difference among multiple mean

values. There is no statistical difference among the results for the four plant species at 2

mg/ml, 2OO g/ml, or 2O mmg/mi of the particle suspensions, with p = O.7189, O.6911, and

O.1931 for 2 mg/mI, 2OO g/ml, and 2O g/ml, respectively. At 2O mmg/mi however, the

RRG result obtained from the test using the C. sativus showed a difference from what

obtained through the tests using two other plant species: the Z. mays, and the D. carota.

The mean value of RRG for 2O mg/mi of particle suspension thus was calculated from the

other three plant species: the Z. mays, the D. carota, and the B. oleracea. The dose-effect

relationship of 13 nm alumina particles was evaluated by a linear regression, which was

performed based on the logarithm of concentration of particle suspensions and the mean

value of the RRGs (Figure 4.2).



The linear regression was performed according to the standard data analysis

procedure in toxicology, and can be referenced in published studies (Ryan et al., 2OO4;

Xu et al., 2OO4; Kmetic et al., 2OO3; McDonaid et al., 1996; and Lee et al., 1989). The

toxicity threshold value, for example, LC 50 (the median lethal concentration), IC10 (the

1O% inhibitory concentration), and LD90 (the 9O% lethal dose), were often calculated

from the linear regression between the different levels of acute toxic effect that were

determined in a toxicity test (e.g. O% lethal, 9% lethal, 21% lethai, 73% lethal, and 92%

lethal) and concentrations/doses or a function (typically is a logarithm) of concentrations

or doses of the toxic substances.

The inhibition effect of 13-nm alumina particles at 2OO mmg/mi compared to the

blank is around 1.O9 (1.O6 to 1.15, the number was calculated as the ratio of RRG from
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blank to RRG from particle suspension), 1.25 (1.2O to 1.28) fold at 2 mg/mi, and 1.71

(1.56 to 1.89) fold at 2O mg/ml. The linear regression evaluated by the logarithm of

particle suspension concentrations (log10C, C in utg/ml) to RRG [Fig 4.2.1(b)] suggests

that the root growth inhibition effect of 13-nm alumina particles is dose dependent, with

the R2 = O.9281. The high coefficient of determination means that the linear fit for the

data analysis is feasible, and the RRG values are highly related to the logarithm of the

particle suspension concentrations. The negative slope (-O.156) indicates the RRG of

seedlings exposed to the 13-nm alumina particles decreases with the increase of the

logarithm of the particle concentration, which means that the phytotoxic effect of 13-nm

alumina particles on the seedling root growth increases with the increase of the particle

concentration. The linear regression analysis suggests that the inhibitory effect of the 13-

nm alumina particles is dose-dependent. The fact that at 2OO g/ml, the alumina particles

have no effect on seedling root growth with p larger than O.O5, indicates the existence of

a phytotoxicity threshold value for 13-nm alumina particles.

4.1.2 72-hr EDposure to the 13-nm Alumina Particles

C. sativus seedlings were exposed to 2 mg/mi of alumina nanoparticle suspensions for 24

hrs, 48 hrs and 72 hrs. B. oleracea seedlings were exposed to 2O mg/ml of alumina

nanoparticle suspensions for 24 hrs, and 48 hrs. The pH values of particle suspensions in

the Petri dishes were determined by pH test strips at the end of each test duration. All of

the pH values were found to be around 7 (6.5 to 7.O). R1 values of seedlings were

obtained (Table 4.4).

The RRG of C. sativus seedlings exposed to 2 mg/mi of particle suspensions is

O.9O at the end of the first 24 hrs of exposure, compared to O.93 and O.98 at the end of the
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second 24 hrs and the third 24 hrs of exposure. B. oleracea seedlings were exposed to 2O

mg/mi of particle suspensions. The RRG was observed as O.57 at the end of the first 24

hrs of exposure, and O.61 at the end of the second 24 hrs of exposure (Figure 4.3).

It is observed and considered reasonable that the root elongation of seedlings

decreases as the exposure or culture duration increases. The statistical analysis that was

based on the RRG results shows no statistically significant difference among the RRG

values of seedlings exposed to 2 mg/ml or 2O mg/ml alumina nanoparticles suspensions

in the first 24 hrs of exposure and after the first 24 hrs of exposure. The statistical

analysis performed for the exposure of the C. sativus seedlings to 2 mg/ml of alumina
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nanoparticle suspensions shows that the value of p is O.586O for 24hr-48hr-72hr, and

O.4255 for 1 st 24hr-2"d 24hr-3rd 24hr. The statistical analysis performed for the exposure

of the B. sativus seedlings to 2O mg/mi of particle suspensions shows that the p is O.9992

for 24hr-48hr, and O.997O for 1 st 24hr-2 24hr. All of the p values are much larger than

O.O5, indicating there is no statistically significant difference between the RRG results

that were being compared. Compared to the blank control, for C. sativus seedlings that

were exposed to 2 mg/mi of the particle suspensions, the p value is O.OO78 in the first 24
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hrs of exposure, O.386O in the second 24 hrs of exposure, and O.7598 in the third hrs of

exposure. The R2 , which evaluates the correlation between two samples, keeps increasing

from O.8841 in the first 24 hrs, O.987O in the second 24 hrs, to O.9983 in the third 24 hrs,

suggesting that in the 1 st 24 hrs, the particles inhibited the root growth, whereas after the

1 st 24 hrs, the root growth of the seedlings exposed to the particle suspensions was not

statisticaily different than that of the seedlings cultured in the blank. The situation was

different for B. oleracea seedlings that were exposed to 2O mg/ml of the particle

suspensions, the p value is O.OOO and O.OO1 for the first 24 hrs and the second 24 hrs

respectively, the R2 increased from O.6224 in the first 24 hrs to O.8153 in the second 24

hrs. The increasing R2 suggests the root growth of the seedlings exposed to the particles

approaches that of the seedlings cultured in the blank. If the toxic effect of the particles is

time-dependent, which means that the toxic effect increases with the increase of exposure

duration, the RRG values should significantly decrease with the exposure duration. The

value of R2 that evaluates the correlation between the R1 result from the particle

suspensions and the R1 results from the blank control should decrease with the exposure

duration. The RRG results observed in this study suggest that the most toxic effect of

alumina nanoparticles is present at the first 24 hrs, and that the effect of 13-nm alumina

particles on plant seedling root growth is not time dependent, relative to the 72-hr time

period of these studies.

4.1.3 Water Treatment Test on the 13-nm Alumina Particles

This test was designed to investigate whether the inhibition effect of the 13-nm alumina

particles is reversible. The effect is not adverse if it is reversible, and the particles are not

toxic, by definition.
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The C. sativus seedlings were used in this test. The seedlings were exposed to 2

mg/mi of the particle suspensions for 24 hrs. The seedlings were taken out at the end of

the exposure and rinsed with Milli water from a plastic wash bottle to remove the

particles. The rinse was repeated till the effluent was visibly clear to the eye instead of

cloudy as it originally appeared (this rinse required approximate 5OO ml of Milli

water). They were then cultured for 24 hrs on a filter paper that was soaked in 5 mi Milli-

Q water in Petri dishes. The R1 and RRG of seedlings were obtained, and compared to

the blank controls and the results from the first 24 hrs of exposure (Table 4.5).

The RE of the seedlings changed during the first 24 hrs and the second 24 hrs (for

example, p = O.OO11 for the blank). The RRG ratios of the seedlings however were

similar, either during the first 24 hrs and the second 24 hrs (p = O.9992 for the particles),

or during the first 24 hrs and the whole 48 hrs (p = O.9998 for the particles). The mean

value of RE of the seedlings exposed to the 2 mg/mi of the particle suspensions was

significantly smaller than that of the seedlings in the blank control in the first 24 (p =

O.OO16). It was also significantly smaller than that of the seedlings in the blank control in

the second 24 hrs and the whole 48 hrs (p = O.OO44 and O.OOO2 for the second 24 hrs and

the whole 48 hrs, respectively). The data signifies that first, the root growth of the

seedlings was still inhibited after the particles have been removed for 24 hrs; second, the

inhibition effect of the 13-nm alumina particles is an adverse effect on plant seedling root

growth; and third, the 2 mg/mi of the 13-nm alumina particle suspensions are toxic to the

root growth of the seedlings. It has been determined at the same time, when compared to

the results from the test for 48-hr exposure, that after the same duration of incubation, the

RRG of the seedlings in the water treatment test was not significantly smaller than that of
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the seedlings in the particle suspensions (p = O.O86 for the second 24 hrs, and O.O72 for

the whole 48 hrs), indicating that the water treatment had a similar effect to the long time

exposure.

4.1.4 Conclusions — the Effect of 13-nm Alumina Particles on Root Growth

The results from the root elongation test using four plant species and 13 nm alumina

particle suspensions with concentrations of 2O mg/mi, 2 mg/mi, 2OO g/ml, and 2O mg/mi

suggest that:
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1) The inhibition effect of the alumina nanoparticles presents itself at concentrations
equal to or larger than 2 mg/mi.

2) The inhibitory effect of the alumina nanoparticles is dose-dependent, with the IC10
(concentration that produces 1O% of the inhibitory effect) is determined as 281
mmg/mi by the linear regression equation.

3) The inhibitory effect of the alumina nanoparticies is not time-dependent, and
occurs during the first 24 hrs of exposure, and

4) The inhibitory effect of the alumina nanoparticles is irreversible, indicating that
the effect is toxic effect, and the alumina nanoparticles are phytotoxic.

4.2	 14-nm Hydrophilic Silica Particles

4.2.1 24-hr EDposure to the 14-nm Hydrophilic Silica Particles

The 14-nm hydrophilic silica particles were obtained from Cabot. The aggregate size of

the particles is 215.7 ± 56.3 nm (analyzed by Coulter N4+, Table 3.1). Phytotoxicity of

the particles was investigated by a root elongation test using three plant species: B.

oleracea (cabbage), D. carota (carrot), and C. sativus (cucumber). A series of

concentrations was tested including 2O mg/mi, 2 mg/mi, 2OO g/ml, and 2O g/ml. The

determination procedure is similar to that had been done for the 13-nm alumina particles

(see Section 4.1.1). The RE values were obtained by comparing the root lengths before

and after exposure. Relative root growth (RRG) was calculated (Table 4.6 and Figure

4.4). The statistical analysis was performed by the Student's t-test and one-way ANOVA

(Table 4.7 and Table 4.8).

The mean value of R1 of plant seedlings that were exposed to 2O mmg/mi of the

particles is 1.15 (D. carota) to 1.22 (C. sativus) fold greater, compared to the R1 from the

blanks. The root elongation of seedlings of every plant species decreases with the

decrease of the concentration, and approaches the R1 results from the blanks at the
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particle concentration of 2O umg/ml. Statistical analysis that compared the RE results from

particle suspensions to the results from the blanks (Table 4.7) shows that the difference is

significant between the R1 values of the seedlings exposed to 2O mg/mi of the 14 nm

hydrophilic silica particles and the REs of the seedlings cultured in the blank control,

whereas there is no statistical difference between the root growth of seedlings exposed to

2 mg/mi, 2OO uug/ml, or 2O u tg/ml and the blank controls exists.



	2O mg/mi	 pia = O.O36
pub=O.O356

R2 = O.9248
2 mg/mi pi = O.193

p2 = O.1929
R2 =0.97O4

2OO upg/ml pi = O.897
p2 = O.8966
R2 = O.9997

2O umg/mi pi = O.627
p2= O.6266
R2 = O.9958

pi = O.O4O
p2= O.O397
R2 = O.8622
pi = O.985

p2= O.9849
R2 = 1.OOOO

P I = O.887
p2= O.8869
R2 = O.9996

pi = O.6O6
p2 = O.6O59
R2 = O.9951

pi = O.O54
p2= O.O536
R2 = O.9121
pi = O.538

p2= O.5376
R2 = O.99O9
pi = O.56O

p2= O.5599
R2=O.9912
pi = O.636

p2 = O.6357
R2 = O.9947

Table 4.7 	 Statistical Analysis Results of the Root Elongation (RE) of Plant Seedlings Exposed to Silica Hydrophilic
Nanoparticles for 24 hrs in the Dark at 25 ± 1°C. Part I — Particles vs. Blanks

Results from the Student's 1-test are reported as the value of t and the value of probability of the result assuming the null hypothesis (p). Results from the one-way
ANOVA procedure are reported as the value off p, and the coefficient of determination (R2). Statistical difference is reported as p smaller than 0.05.

Concentration	 B. oleracea	 D. carota	 C. sativus

a Calculated from the Student's 1-test
b Calculated from the one-way ANOVA procedure
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To examine whether the different particle concentrations have different effects on

root growth, the R1 results from the four concentrations were compared (Table 4.8). The

RRG values from the three plant species were statistically evaluated to determine if

there is difference between the RRG values of seedlings from different plant species.

Statistically, it was found that the effect of 2O mg/ml of the particles is significantly
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different than that of other three concentrations. No difference was found among the three

species within any of the four concentrations, with p from O.4O98 to O.737O.

The results demonstrate that at 2O mg/mi, the 14-nm hydrophilic silica particles

can enhance the root growth of seedlings significantly. This phenomenon was repeatable

in tests using different plant species.

The effect of 14-nm hydrophilic silica particles on seedling root growth was

reported as the mean value of the RRG ratios from the tests using the three plant species:

the B. oleracea, the D. carota, and the C. sativus. The linear regression performed was

based on the logarithm of the concentrations of the particle suspensions and the

respective resulting 1/RRG values (Figure 4.4). The 1/RRG was used in this linear

regression because the effect of the particles is root growth enhancement, not inhibition.

Accordingly, the 1O% of the effect (i.e., 1/RRG = O.9O) is actuaily 1.11 fold larger than

the root growth in the blank.

A high coefficient of determination, O.9497, exists between the two parameters,

which suggests that the linear fit is feasible for the data analysis, and the enhancement

effect of the silica nanoparticles on seedling root growth is closely related to the

logarithm of the particle concentrations. The negative slop (-O.O549) suggests the

decrease of 1/RRG with the increase of the logarithm of the particle concentrations. The

smaller 1/RRG indicates larger enhancement effect in this case of the 14-nm hydrophilic

silica particles. The negative slop thus suggests the increase in the enhancement effect of

the particles with larger concentrations of the particle suspensions. The enhancement

effect of the 14-nm hydrophilic silica particles is dose-dependent under these conditions.
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The toxic effect of a chemical is defined as "any adverse effect of the chemical on

a living organism". Further, the definition of adverse effect is "an abnormal or harmful

effect to an organism caused by exposure to a chemical", and it is indicated by "...altered

living activities such as body or organ weight, and enzyme levels etc"

(hyperdictionary.com, 2O04). The enhancement of root growth brought on by the

hydrophilic silica particles might be regarded as an adverse effect of the particles from

this definition. The difference between an adverse effect and a non-adverse effect is

whether the change resulting from the effect is reversible or not. A non-adverse effect

will usually be reversed when the organism is no longer being exposed to the chemical.
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The seedlings were treated by Milli-Q water after 24 hrs of exposure to the particles to

determine whether the enhancement effect of the silica nanoparticles is reversible, which

is discussed in Section 4.2.3.

4.2.2 48-hr EDposure to the 14-nm Hydrophilic Silica Particles

Seedlings of the B. oleracea were exposed to 2O mg/mi of the silica nanoparticles for 24

hrs and 48 hrs. Figure 4.5 shows the results.

The mean root growth of the seedlings cultured in the particle suspensions during

the total 48 hrs was larger than that of the seedlings cultured in the blanks at all times.

The statistical analysis found that during the whole 48 hrs of exposure the p value is

O.OOO1 for the comparison between the R1 of the seedlings exposed to 2O mg/mi of the

particle suspensions and that of the seedlings in the blank. The 2nd 24 hrs of exposure
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resulted in enhanced root growth of 1.36 fold compared to the blank, with p = O.OOO1,

which is larger than the 1.22 fold to the blank in the 1 st 24 hrs of exposure. The R2

decreased from O.8326 in the 1 st 24 hrs of exposure to O.6152 in the 2 nd 24 hrs of

exposure. It is suspected from the increasing of 1.22 fold to 1.36 fold as well as the

decreasing R2 from O.8326 to O.6152, that the enhancing effect of the particles increases

with the increase of the exposure duration.

No significant different however was found between the RRG results from the 1 st

24 hrs and the 2nd 24 hrs of exposure (p = O.O899), which means the effect of the silica

nanoparticles on plant root growth is not statistically different during both halves of the

48 hrs of exposure. Similarly, no significant difference was found between the RRG

results from the 1 st 24 hrs and the whole 48 hrs of exposure (p = O.526O).

The enhancement effect of the 14-nm hydrophilic silica particles, from the data

analysis, is suspected to be time-dependent, i.e., the effect increases with the length of

exposure duration. This postulation has no statistical significance under the experimental

conditions in this study.

4.2.3 Water Treatment Test on the 14-nm Hydrophilic Silica Particles

B. oleracea seedlings were exposed to 2O mg/ml of the 14-nm hydrophilic silica particle

suspensions. The particles were removed after 24 hrs from the seedling cultures. The

seedlings were rinsed with Milli-Q water to remove any loose particles that were on the

seedling surface. The rinse was repeated till the effluent was visibly clear to the eye

instead of the cloudy as it originally appeared (approximate 5OO mi water was required).

The seedlings were then transferred to clean Petri dishes with filter papers and 5 mi Milli-

Q water in each dish. The R1 was obtained after 24 hrs of treatment (Table 4.9).
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The root growth of B. oleracea seedlings during the 24 hrs of exposure to 20

mg/ml of the silica nanoparticles was enhanced 1.19 fold compared to the blank (p =

O.02). The removal of the particles however did not return the seedlings growth to that of

those cultured in the blanks, as seen in the R1 values of seedlings during the 2 nd 24 hrs of

water treatment (Table 4.9): the mean root elongation of seedlings grown in the blank is

14.6 mm, compared to the 20.2 mm of that of seediings exposed to the particles, with p =

O.0218. No significant difference has been found between the 1 St 24 hrs of exposure to 20

mg/ml silica nanoparticle suspensions and the 2nd 24 hrs of water treatment (p = O.875, R2

= O.9996), as well as between the 2 nd 24 hrs of exposure to 20 mg/ml silica particle

suspensions and the 24 hrs of water treatment without presence of the silica particles (p =

O.8331, R2 = O.9992). This result suggests that the enhancement effect of the silica

nanoparticles is not reversible under these conditions. The enhancement effect of the 14-

nm hydrophilic particles thus may be deemed as a toxic effect caused by the particles, by

definition.

Moreover, no statistically significant difference has been found between the RRG

result for 48-hr exposure and that for the water treatment test (p = O.7725 for the whole

48-hr duration, and O.6683 for the second 24-hr duration), indicating that the water

treatment and the 48-hr exposure had similar effects on the root growth.

4.2.4 Conclusions — the Effect of 14-nm Hydrophilic Silica Particles on Root
Growth

Hydrophilic silica particles of 14 nm can enhance the root growth of plant seedlings. This

enhancement effect is dose-dependent, with EC90 (90% enhancement concentration) =

5.420 mg/mi as determined using the linear regression equation. It is suspected that the
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enhancement effect of the particles increases with the increase of exposure duration,

although it is not statistically significant. Results from the root growth after the removal

of particles show that the effect of the particles is not reversible. The enhancement effect

of the particles is suggested to be an adverse effect, and the 14-nm hydrophilic silica

particles are toxic to plant seedling root growth.

4.3	 21-nm Titania Particles

4.3.1 24-hr EDposure to the 21-nm Titania Particles

The titania particles studied in this dissertation were purchased from Degussa. The

individual particle size, according to the MSDS sheet, is 21nm. The aggregate size of the

particles, which was determined by a Coulter N4 plus, is 119.5 ± 58.2 nm. The particles
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were suspended in Milli-Q water. The acute toxic effect (i.e., 24-hr toxicity) of the

particle suspensions at 20 mg/mi, 2 mg/mi, and 200 mmg/mi was investigated by the root

elongation test using four plant species: B. oleracea (cabbage), C. sativus (cucumber), D.

carota (carrot), and A. sativa (oat). The concentration of 20 mmg/mi was not tested because

in a preliminary study that was designed to determine the test concentration range, the R1

of seedlings exposed to 20 g/ml of the particle suspensions was not different than the

R1 of seedlings exposed to either 2 mg/mi or 20014/ml of particle suspensions. 20 mmg/mi

was then excluded to facilitate the testing procedure. The R1 and RRG during particle

exposure was calcuiated in the testing of 24-hr exposure (Table 4.10) and statistically

analyzed (Table 4.11).
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Ultrafine Titania particles (particles with diameter smaller than 100 nm) have

been found more likely to induce the development of particle-mediated lung diseases than

the same mass of larger particles (Donaldson et al., 1998, and 1999). They can impair

macrophage phagocytosis (Renwick et al., 2001). This study of 24-hr phytotoxicity of

titania nanoparticies however showed no difference in root growth of seedlings cultured

in the Milli-Q water or grown in the particle suspensions (see Table 4.11).

The average RRG of seedlings grown in the 20 mg/mi, 2 mg/mi, or 200 Kg/m1 of

titania nanoparticle suspensions is O.93 + O.02 (0.91 — O.95), O.96 ± O.04 (0.91 — 1.00),

and 1.04 ± O.07 (0.97 — 1.11), respectively. No significant difference was found between

the RRG results of blank (1.00 + O.002, 1.00 ~ 1.002) and 2 mg/ml or 200 g/ml, with

p=0.309, and O.2657. Significant difference with p = O.0427 exists however between the

20 mg/ml exposure and the blank when the RRG values of the four plant species are

combined.

4.3.2 48-hr EDposure to the 21-nm Titania Particles

The 48 hrs of exposure was done with the seedlings of the C. sativus at 20 mg/ml and 2

mg/ml of the titania nanoparticle suspensions. The mean value of R1 of seedlings after

48 hrs was obtained (Table 4.12).

The root elongation of seedlings exposed to the particles was similar to that of the

seedlings cultured in the Milli-Q water during the 1 st 24 hrs (p = O.0506 for 20 mg/mi,

O.3389 for 2 mg/mi), 2nd 24 hrs (p = O.5831 for 20 mg/mi, O.3707 for 2 mg/ml), or 48 hrs

(p = O.7508 for 20 mg/ml, O.1267 for 2 mg/mi). The results indicate that no adverse effect

of the titania nanoparticles during the 48 hrs of exposure.



Table 4.11	 Statistical Analysis Results of the R1 and RRG of Plant Seedlings Exposed to Titania Nanoparticles for 24 hrs in the
Dark at 25 ± 1°C

The results in the single concentration and plant species as well as between concentrations are from the analysis between the blank and the concentration, and are
based on the RE values. Comparisons between plant species are based on the RRG results. Statistical difference is reported as p < 0.05.

B. oleracea	 C. sativus	 D. carota

pla=0.447,p2b = 0.4472
R2 = 0.9888

pi= 0.058, p2 = 0.0585
R2 = 0.9316

PI= 0.051, p2 = 0.0506
R2 = 0.9450

p i = 0.339, p2 = 0.3389
R2 = 0.9865

p i = 0.150, p2 = 0.1495
R2 = 0.9362

p i = 0.267, p2 = 0.2670
R2 = 0.9626

p i = 0.445, p2 = 0.4446 p i = 0.833, p2 = 0.8327 p i = 0.079, p2 = 0.0792
R2 = 0.9878 R2 = 0.9993 R2=0.9039

p i = 0.004, p2 = 0.00039 pi = 0.896, p2 = 0.8960
R2 = 0.9248 20 mg/ml - 2 umg/ml - 200 gg/ml R2 = 0.9994

p i = 0.089, p2 = 0.0891
R2 = 0.9433

P2 = 0.2492 Pi = 0.006, /32 = 0.0065
R2 = 0.7694

P I = 0.207, p2 = 0.2074 Pi = 0.022, p2 = 0.0218
R2 = 0.9678 R2=0.8358

20 mg/ml

2 mg/ml

200 umg/ml

20 mg/mi
vs.

2 mg/ml
20 mg/ml

vs.200m/m1

2 mg/mi vs.
200 pg/m1

A. sativa

pi = 0.588, p2 = 0.5882
R2 = 0.9941

pi = 0.894, p2 = 0.8942
R2 = 0.9996

Pi = 0.877, p2 = 0.8774
R2=0.9994

20 umg/ml - 2 umg/ml - 200 tg/m1

p2 = 0.7566

	20 mg/mi
	

All plant species: f = 0.1713,p = 0.9209, no significant difference

	2 umg/ml 	 The result from the test using the B. oleracea is found to be significant different than that from the test using the other three plant species.
The other three species: C. sativus - D.carota - A. sativa: if= 0.5470,p = 0.5812, no significant difference

	200 umg/ml 	 All plant species: f = 1.7607, p = 0.2806, no significant difference

a Calculated from the Student's 1-test
b Calculated from the one-way ANOVA procedure
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4.4	 161.2-nm Hydrophilic Spherical Silica Particles

4.4.1 24-hr EDposure to the 161.2-nm Hydrophilic Spherical Silica Particles

Three plant species, inciuding B. oleracea (cabbage), C. sativus (cucumber), and A.

sativa (oat), were used to investigate the phytotoxicity of the hydrophilic spherical silica

particles, of which the size determined by a Coulter N4+ is 161.2 ± 45.6nm. The

seedlings were exposed to the particle suspensions at the concentrations of 20 mg/mi, 2
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mg/mi and 200 g/ml. The RE and RRG values during the 24 hrs of exposure is given in

Table 4.13.

The difference is significant in the mean R1 of the seedlings exposed to the 20

mg/ml titania particle suspensions compared to that of the seedlings cultured in blanks for

all of the tests with different plant species. The mean R1 of the seedlings when grown in

the 20 mg/ml particle suspensions is O.62 to O.77 fold of the mean RE of the seedlings in

the Milli-Q water, with similar statistical analysis results of p values 0.000 for all of the

plant species. The situation for 2 mg/mi was different. The mean R1 of the seedlings in

the 2 mg/ml of particle suspensions is determined to be significantly different than that of

the seedlings in the blank when the plant species of C. sativus and A. sativa were used,

whereas in the test using the B. oleracea, no difference can be found, although the mean

RRG values of the seedlings of the three plant species are very similar: O.90 for B.

oleracea, O.91 for C. sativus, and O.90 for A. sativa. Further statistical analysis was made

in order to evaluate the phytotoxicity of the particles (Table 4.14).

The result for C. sativus was significantly different from those for the other two

plant species B. oleracea and A. sativa for the 20 mg/mi concentration. The mean RRG at

20 mg/ml was thus calculated from the other two species, resulting in 0.64 ± O.03 (95%

CL is O.60 ~ O.69). This mean value was found to be significantly different than the RRG

from the blank, with the p O.0001.

The mean RRG for 2 mg/ml was calculated from the tests using the three plant

species because no significant difference was found among the three RRG values for the

three plant species, resulting in O.90 ± 0.01 (0.89 — 0.91), which is significantly different

than the mean RRG of the seedlings grown in the blank, with the p 0.0012.



Table 4.13 The R1 and RRG of Plant Seedlings Exposed to 20 mg/ml, 2 mg/mi, and 200 mg/ml of 161.2-nm Hydrophilic Spherical
Silica Particle Suspensions

The results reported are the mean value ± S.D. Statistical analysis was performed by the Student's 1- test and the one-way ANOVA procedure to determine the
difference between the RE results from the blanks and the particle suspensions. Significant difference is reported when p < 0.05.

R1
(mm)

Blank

20 mg/mi

RRG 2 mg/ml

200 mg/nil

20 mg/ml

2 mg/mi2001.1g/m1

C. sativus A. sativa

31.9 	 5.2, 30.0 	 33.7 25.9± 4.1, 24.7 - 27.1

24.4 ± 4.4, 22.8 ~ 26.0 17.3 ± 5.6, 15.1 19.5
0.000, p2 = 0.0001, R 2 = 0.6182 19 = 0.000,192= 0.0001, R 2 = 0.5548

23.3 ± 4.0, 21.9 - 24.8
m=0.009, p2 = 0.0085, R2 = 0.9090

23.0 ± 5.9, 20.7 - 25.2
1,1= 0.450, p2 = 0.4499, R2 = 0.9890 	 =

31.2 ± 4.3, 29.6 - 32.7
0.561, p2 = 0.5606, R2 = 0.9940 	 p =

24.6 ± 2.8, 23.6 - 25.6
0.143, p2 = 0.1428, R2 = 0.9708

0.62 ± 0.19, 0.540.69 0.77 ± 0.14, 0.720.82 0.67 ± 0.21, 0.58 0.75

0.90 ± 0.30, 0.79-1.01 0.91 ± 0.16, 0.86-0.97 0.90 ± 0.16, 0.84 - 0.96

1.06 ± 0.27, 0.951.16 0.98 ± 0.13, 0.931.03 0.95 ± 0.11, 0.91 - 0.99

B. oleracea

21.7 ± 5.8, 19.6 - 23.9

13.5 ± 4.1, 11.8- 15.1
pi a = 0.000, pub = 0.0001, R2 = 0.5879

19.5 ± 6.6, 17.2 - 21.9
p i = 0.184, p2 = 0.1843, R2 = 0.9682

=
29.1 ± 5.1, 27.3 - 30.9

p i = 0.041, /02= 0.0406, R2 = 0.9296

a Calculated from the Student's 1- test
b Calculated from the one-way ANOVA procedure
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The mean RRG for 200 mmg/ml was also calculated from the tests using the three

plant species and is O.99 ± O.05 (0.93 ~ 1.06), which was not found to be significantly

different than the mean RRG of the seedlings in the blank, with the p O.8451.

The statistical analysis results performed between the mean RRG for particle

suspensions and that for the blank suggest that at either 20 mg/ml or 2 mmg/ml, the 161.2-

nm hydrophilic spherical silica particles can inhibit the root growth.

A linear regression was evaluated by comparing the logarithm of particle

suspension concentrations (log 10C) to RRG to determine whether the inhibition effect of

the particles on the root growth is dose-dependent. The result is shown in Figure 4.6.
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Similar to the 13-nm alumina particles, the 161.2-nm hydrophilic silica particles

inhibit the root growth of plant seedlings in a dose-dependent manner, with the R2

O.8955, which means the linear fit for the data analysis is feasible, the RRG is closely

related to the logarithm of particle suspension concentration, and the inhibition effect of

the particles on the plant root growth is dose—dependent. The particles have no effect on

root growth at 200 g/ml, with p larger than O.05 (p = O.0844), which suggests the

existence of a phytotoxicity threshold value for 68.1-nm hydrophilic silica particles. The

IC10 of the particles is about 1.803 mg/mi.

4.4.2 48-hr EDposure to the 161.2-nm Hydrophilic Spherical Silica Particles

The B. oleracea seedlings were used to investigate the 48-hr exposure effect of the 161.2-

nm hydrophilic spherical silica particles at 20 mg/ml. Figure 4.7 presents the RE results

after the first 24 hrs, the 48 hrs, and the second 24 hrs of exposure. The 20 mg/mi
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concentration was chosen because the inhibition effect of the particles is the most

obvious at this concentration. The average R1 + Standard Deviation (S.D.) during the

first 24 hrs of exposure of the seedlings was 14.5 ± 6.6 mm, compared to the 21.7 ± 5.8

mm of the seedlings in the blanks (p = O.0001, and R2 = O.6132). The average RE during

the second 24 hrs of exposure of the seedlings was 11.5 ± 5.9 mm, compared to the 17.1

+ 5.0 mm in the blanks (p = O.0016, and R2 = O.7520). All together, the 48 hrs of

exposure resulted in the R1 of 28.3 ± 9.5 mm of the seedlings in the 20 mg/ml of the

particle suspensions, compared to the 39.3 ± 7.3 mm in the blanks.

Statistical analysis for the first 24 hrs and the second 24 hrs as well as the 48 hrs

of exposures did not indicate a significant difference in the root growth (p = 0.5157 for

the first 24 hrs vs. the total 48 hrs based on the RRG values, and O.0942 for the first 24

hrs vs. the second 24 hrs based on the R1 values).
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The root inhibition effect of the 161.2-nm silica particles during the second 24 hrs

was less than that of particles during the first 24 hrs because the R2 between the samples

and the blank is larger during the second 24 hrs (0.7520) than during the first 24 hrs

(0.6132), although it is not statistically significant. If the inhibition effect of the particles

is time-dependent, the RRG at the end of the 48 hrs should be significantly smaller than

that at the end of the first 24 hrs. The RRG in this test was O.67 at the end of the first 24

hrs, and O.72 at the end of the 48 hrs. It can thus be postulated that the inhibition effect of

the particles is not time-dependent in the 48 hrs under the experimental conditions in this

study.

4.4.3 Water Treatment Test on the 161.2-nm Hydrophilic Spherical Silica Particles

The experiment of water treatment was designed to evaluate whether the effect of the

particles is reversible after the particles have been removed from the seedling cultures.

The B. oleracea seedlings were first exposed to the 20 mg/mi of the 161.2 nm silica

particle suspensions for 24 hrs in the dark at 25 ± 1 °C. The seedlings were removed from

the 20-mg/ml particle suspensions at the end of the 24 hrs, and rinsed with Milli-Q water

till the effluent was eye-visibly clear instead of the original cloudy. The seedlings were

then transferred to clean Petri dishes with filter papers and 5 mi of Milli-Q water in each

dish. They were incubated for another 24 hrs in the dark at 25 + 1 °C. The R1 values of

the roots were obtained and statistically analyzed (see Table 4.15).

The root growth of the seedlings during the 24 hrs of water treatment in the 20-

mg/m1 particle suspensions was still slower than that of the seedlings in the Milli-Q water

(p = O.0036). There is no difference between the R1 of the seedlings in the first 24 hrs of

exposure to the particles and the second 24 hrs of water treatment (p = O.1614). It can be
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suggested based on this fact, that the inhibition effect of the particles is not reversible

under these conditions.

No statistically significant difference has been found between the RRG result for

the water treatment test and that for the 48-hr exposure (p = O.1235 for the whole 48 hrs

of duration, and O.8356 for the second 24 hrs of treatment or exposure), indicating that
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the water treatment and the 48-hr exposure had similar effect on root growth. The water

treatment did not reverse the inhibition of the particle suspensions of the 161.2-nm silica

particles.

4.4.4 Conclusions — the Effect of the 161.2-nm Hydrophilic Spherical Silica
Particles on Root Growth

The particles can inhibit the growth of the plant seedlings at 20 mg/mi and 2 mg/mi.

There is a threshold value of the toxicity because of the fact that no adverse effect was

found for the 161.2-nm silica particles at 200 mg/ml. The 1C 10 (concentration that causes

10% of inhibitory the effect, i.e., RRG = O.90 in this case) was determined as 1.803

mg/mi according to the linear regression equation. The inhibition effect of the particles is

dosedependent. The largest effect occurs during the first 24 hours, and there is no

difference in root growth after the first 24 hours of exposure. The effect is adverse since

it is irreversible.

4.5	 Sub-micron and Micron Sized Particles

Particles within the same material category (i.e., particles made up of the same chemical

material) yet with different sizes were studied in this dissertation (Table 3.1). This section

focus on studies of the effects of sub-micron and micron sized particles on the plant

seedling growth. The sub-micron and micron sized particles studied include 667.6 nm

hydrophilic spherical silica, O.96 p.m titania, and 1.0 im alumina. Their effects on plant

growth were investigated with two plant species: the B. oleracea, and the C. sativus.

The plant seedlings were incubated with 20 mg/mi and 2 mg/mi of the particle

suspensions in the dark at 25 ± 1 °C for 24 hrs. Table 4.16 gives the RE and RRG results.



667.6 nm Si02

22.4 ± 6.2, 20.1 - 24.6
1.00 ± 0.28, 0.91 - 1.09
21.9 ± 7.9, 19.0 ~ 24.7
0.98 ± 0.35, 0.86-4.09

= 0.786,
pub = 0.7864, R2 = 0.9987

21.4 ± 4.9, 19.6 - 23.2
0.96 ± 0.22, 0.86-1.05

• = 0.505
P2 = 0.5051, R2 = 0.9922

0.96 [tam Ti02

22.4 ± 6.2, 20.1 -24.6
1.00 ± 0.28, 0.91 - l.09
20.1 ± 4.6, 18.5 - 21.8
0.90 0.21, 0.81-0.99

p = 0.117
p2 = 0.1170, R2 = 0.9575

22.9 ± 5.7, 20.9 - 25.0
1.02 ± 0.26, 0.931.12

p = 0.726
P2 = 0.7265, R 2 = 0.9978

1.0 Jim Al203
15.6 ± 4.0, 14.l 	 17.0

1.00 ± 0.26, 0.90 - 1.09
14.9 ± 4.0, 13.4 16.4
0.95 ± 0.26, 0.851.05

p i = 0.538
P2 = 0.5383, R2 = 0.9931

15.3 ± 4.3, 13.7 17.0
0.98 ± 0.28, 0.88-1.09

= 0.815
p2 = 0.8149, R2 = 0.9990

Plant species	 Concentration

Blank
B. oleracea

20 mg/mi

2 mg/ml

Table 4.16 The R1 and the RRG of Plant Seedlings Exposed to Sub-micron and Micron Sized Particles in the Dark at 25 ± 1°C for
24 hers

The results are reported as mean ± S.D. and 95% confidence interval. The values of p were calculated from the comparison between particle exposure and
negative control. Statistically significant difference is reported when P < 0.05.

C. sativus
Blank

20 mg/ml

2 mg/ml

33.0 ± 4.1, 31.6 - 34.5
l.00 ± 0.12, 0.94 1.06
33.8 ± 4.0, 32.3 35.2
0.96 ± 0.12, 0.92-1.01

• = 0.491
p2 = 0.4907, R2 = 0.9918

31.0 4.6, 29.3 32.7
0.94 ± 0.14, 0.89-0.99

• = 0.075
P2= 0.0749, R2 = 0.9456

33.0 ± 4.1, 31.6 34.5
1.00 ± 0.12, 0.94 - 1.06
32.2 ± 5.4, 30.2 - 34.1
0.91 ± 0.16, 0.86-0.97

p i = 0.484
P2 = 0.4837, R2 = 0.9915

33.8 ± 3.1, 32.5 35.2
0.99 ± 0.10, 0.95=1.03

= 0.477
P2 = 0.4769, R2 = 0.9894

33.0 ± 4.1, 31.6 - 34.5
l.00 ± 0.12, 0.94 1.06
32.3 ± 3.1, 31.l -33.4

0.98 ± 0.094, 0.94 - 1.02
= 0.424

p2 = 0.4245, R2 = 0.9888
32.7 ± 3.4, 31.4 - 33.9

0.99 ± 0.10, 0.95 - 1.03
p i = 0.697

p2 = 0.6971, R2 = 0.9974
a Calculated from the Student's 1-test
b Calculated from the one-way ANOVA procedure
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The 24 hrs of exposure to all of the three particles did not produce significant

change of the root growth even at 20 mg/mi, compared to the blanks, with p from 0.1170

to 0.7864. The R1 results from 20 mg/ml and 2 mg/ml are not statistically different: for

the Him alumina particles, the p is O.7268 for the B. oleracea, and 0.6541 for the C.

sativus; for the 0.96-pm titania particles, the p is 0.4060 for the B. oleracea, and 0.2243

for the C. sativus; and for the 667.6-nm silica particles, the p is 0.7830 for the B.

oleracea, and 0.1620 for the C. sativus.

4.6 Summary and Conclusions

The effect on plant seedling growth of three categories of manufactured particulate

materials with multiple sizes was investigated in this chapter by the root elongation test.

Phytotoxicity of the particulate materials in this dissertation is interpreted as either an

inhibition effect or an enhancement effect of the particles, because either of the two

effects results in abnormal seedling growth compared to Milli-Q water used as the

control. It was found that either of the two effects caused by the particles is irreversible

under the conditions of the experiments. The 13-nm alumina particles in this sense are

suggested to be the most phytotoxic, since the ICE 0 of the particles is 0.281 mg/ml as

determined by the linear regression equation, compared to the 5.420 mg/ml for the 14-nm

hydrophilic spherical silica, and the 1.803 mg/ml for the 161.2-nm hydrophilic spherical

silica particles. The 21-nm titania particles were not found to have any impact on the root

growth, thus suggesting that they have no toxic effects on the plant seedling growth.

The 48-hr or 72-hr exposure experiments were designed to investigate if the effect

on the root growth of the particles is time-dependent. A 72-hr exposure study was
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performed for the 13-nm alumina particles. The study found that the relation (R2) of the

R1 of seedlings in the alumina particle suspensions relative to the blank controls was the

smallest during the first 24 hrs of exposure (0.8841 for C. sativus at 24 hrs of exposure,

and O.6224 for B. oleracea at 24 hrs of exposure), and increased with the exposure

duration (increased to O.9870 and O.9983 for C. sativus at the second 24 hrs and the third

24 hrs of exposure respectively, and to 0.8153 for B. oleracea at the second 24 hrs of

exposure). This result indicates that the largest inhibition effect of the 13-nm alumina

occurs during the first 24 hrs of exposure under the experimental conditions. The results

from the 48-hr exposure to the 161.2-nm hydrophilic spherical silica particles suggest the

same thing that the largest inhibitory effect of the particles occurs during the first 24 hrs

of exposure.

The situation is different for the 14-nm hydrophilic spherical silica particles.

There is an enhanced growth and there is a larger effect in the 2 nd 24-hr period. Less R2

occurred between the second 24 hrs and the blank control, which means that the

enhancement of root growth is larger in the second 24 hrs. The effect on plant growth of

the 14-nm hydrophilic spherical silica particles is supposed to be time-dependent,

although no significant difference was found between the RRG in the first 24 hrs and the

second 24 hrs. The difference of the time-dependence pattern of different particles

suggests that there are different toxic effect-inducing mechanisms of the particles.

Generally, nanometer sized particles (13-nm alumina particles, 14-nm hydrophilic

particles, and 161.2-nm hydrophilic spherical silica particles) are more toxic to plant

seedling growth than the particles with the same chemical composition and larger sizes

(1.0-itm alumina particles, and 667.6-nm hydrophilic silica particles). Sub-micron and
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micron sized particles including 1.0-1.tm alumina, 0.96-jim titania, and 667.6-nm silica

particles were not found toxic to the plant seedling growth. Particle size alone however is

not the deciding factor, because the 21-nm Titania does not have any kind of effect on the

seedling growth. The particle properties that may account for the particle toxicity are

discussed in Chapter 6.



CHAPTER 5

INFLUENCE OF PHENANTHRENE LOADING ON PARTICLE
PHYTOTOXICITY AND THE MECHANISM STUDY

The toxic effect of the manufactured particulate materials has been investigated in

Chapter 4. The toxicity of 13-nm alumina, 14-nm silica, and 161.2-nm silica has been

determined. The toxic effect of chemical loaded particles is studied in this chapter. The

24-hr exposure protocol is used for the investigation. This study is to investigate the

potential influence of chemicals associated with the particle surface on the particle

toxicity. Phenanthrene (Phen) is chosen as the study chemical because it is a major

component of airborne and particle surface associated polycyclic aromatic hydrocarbons

(PAHs).

5.1	 Phen-loaded 13-nm Alumina Particles

5.1.1 Loading of the Phenanthrene (Phen)

The amount of Phen used in the loading process was calculated according to Equation

5.1, and given in Table 5.1. Phen was weighed and dissolved in 4 mi of acetone. Samples

of particles, 0.5 grams of 13-nm alumina particles were weighed and dispersed by

continuous stirring into the 4 ml Phen-acetone solution to make the "loaded" particles.

0.5 grams of 13-nm alumina particles were at the same time weighed and dispersed into 4

ml acetone to make the "nonloaded" particles. The slurries were left under vacuum at 38

± 1°C overnight, and kept in vacuum for 24 hrs to ensure the removal of residue acetone.

The effects on plant seedling growth of the loaded particles and the nonloaded particles

84
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were then tested. The acetone volume of 4 ml was selected based on preliminary studies,

which demonstrated that 4 ml of solvent was enough to immerse 0.5 grams of the

nanoparticles.

The amount of Phen used in coating was calculated from the molecular cross

section area of Phen and the total surface area of the particles. The amount of

phenanthrene needed for a 100.0 % monomolecular layer (MML) of loading, is:

where, M is the mass of phenanthrene (g), m is the mass of particles (g), s is the particle

specific surface area (m 2/g), S is 107.3 A2 , the molecular cross Section area of Phen

(Barbas et al., 1996), and 178.22 is the molecular weight of Phen (g/mo).

Table 5.1 gives the amount of Phen loaded.
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It is possible during the loading process that some Phen also evaporated under the

condition of vacuum with heat (the vapor pressure of Phen at 40°C is 215 mm Hg).

Therefore, the amount of Phen may be actually somewhat less than the monomolecular

layers that were presented in Table 5.1. FTIR studies however show that detectable levels

of Phen were loaded in all three of the MML Phen loadings (see Section 5.1.2).

Theoretically, the particles were evenly coated. This may not be true in actuality.

Some places on the particle surfaces might be loaded with more than a monomolecular

layer of Phen, and exceed the level of MML that is reported, while some other surfaces

might not be loaded.
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5.1.2 FTIR Study on the Nonloaded and Phen-Loaded Particles

10 mg of particle samples were mixed in 200 mg of ground KBr (IR grade, 99+%, Fisher

Scientific). The powder was pressed into pellets (0 = 10 mm). Each pellet contained 3 to

5 mg of the particles. The instrument recorded 2500 scans on each pellet. The

background spectrum was also collected by 2500 scans on a KBr pellet. The spectrometer

used was a Mattson Research Series FT-JR.

The spectra of nonloaded particles, along with particles loaded with Phen are

given in Figure 5.1 and Figure 5.2.

A band in the 850 — 1050 cm' range appears after subtraction of the spectrum of

nonloaded particles from the spectra of loaded particles. This band was assigned to

surface vibrational modes of alumina nanoparticles and its appearance arises from the

disappearance of free alumina hydroxyl (0H) groups (Lavalley and Benaissa, 1985).

5.1.3 PhytotoDicity Study by the Root Elongation Test

The phytotoxicity of the Phen-loaded particles was investigated by the root elongation

test using the C. sativus seedlings. The seedlings were exposed to 2 mg/mi of the

nonloaded particles or thel0.0% MML, 100.0% MML, and 432.4% MML of Phen-

loaded particles. Table 5.2 and Figure 5.3 present the R1 and RRG values. The toxicity

of Phen was tested as well at the same level as in the 2 mg/mi of particles loaded with

432.4% ML of Phen (0.28 mg/ml) (see Chapter 3, Section 3.2.3 for the procedure).

The R1 values of C. sativus seedlings exposed to 2 mg/mi suspensions of 10.0%

MML and 100.0% MML of Phen-loaded particles are very similar to those of the

seedlings in the blank control (p is 0.341 and O.632, R2 is O.9870 and O.9960), but it was
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significantly different than the R1 values of the seedlings exposed to the 2 mg/mi of the

nonloaded particles (p is 0.000 and O.0067, R2 is 0.8200 and 0.8907). Moreover, the RRG

values of C. sativus seedlings exposed to 2 mg/ml of suspensions of Phen-ioaded

particles increased to 1.24 fold (10.0%), 1.21 fold (100.0%), and 1.15 fold (432.4%) to

those of the seedlings exposed to 2 mg/mi of suspensions of nonloaded particles, with p =

O.0001 (10.0%), 0.0067 (100.0%), and O.0681 (432.4%), respectively, which means that

the toxicity of the particles is reduced significantly compared to the Phen-nonloaded

alumina particles. The situation of the 432.4% MML of Phen-ioaded particles is

complicated. The R1 of the seedlings grown in the presence of the 2 mg/ml suspension of

the 432.4% MML of Phen-ioaded particles was comparable to of the R1 of the seedlings

grown in the blank control (p = 0.228), at the same time it was comparable to the R1 of

the seedlings exposed to the 2 mg/mi of the nonloaded particles (p = O.068). It can

however still be stated that the 432.4% MML of Phen-ioaded particles are not toxic to the

root growth, because whether the sample is toxic or not is concluded referring to the

negative control, i.e., the blank in this study.

The three levels of loaded particles have increasing R2 compared with the

nonloaded particles (from O.8200 for the 10.0% MML of Phen-ioaded particles, O.8907

for the 100.0% MML of Phen-ioaded particles, to 0.9489 for the 432.4% MML of Phen-

ioaded particles). This increase in R2 indicates that the toxic effect of the loaded particles

increases with the loading amount of the Phen, and approaches the inhibitory effect of the

nonloaded alumina particles. This phenomenon is assigned to the toxicity of the particle

loaded Phen, not the particles, because the only thing that changed in these three particle



Table 5.2 	 Phen Loading Changes the Phytotoxicity of the 13-nm Alumina Particles

Phytotoxicity was evaluated by root elongation test using the C. sativus seedlings, at 2 mg/mI of the particle suspensions, in the dark at 25 ± 1 °C for 24 hrs.
Results are expressed as mean ± S.D. and 95% confidence interval.

Nonloaded 	 10.0%MML of
	

100.0%MML of
	

432.4%MML of O.28 mg/ml Phen a

	

Phen - loaded
	

Phen - loaded
	

Phen - loaded
Blank

R1 	 Sample
(compared to the blank)

27.0 ± 6.5, 24.8 - 29.1

22.6 ± 3.8, 21.4 - 23.8
A i b = 0.000

A c = 0.0009
R2 = 0.8538

27.0 ± 6.5, 24.8 - 29.1

28.4 ± 5.8, 26.4 - 30.3
A 1 = 0.341

P2 = 0.3407
R2 = 0.9870

20.0 ± 6.0, 17.9 - 22.2

19.4 ± 4.5, 17.7 - 21.0
A 1 =0.632

/32 = 0.6321
R2 = 0.9960

20.0 ± 6.0, 17.9 - 22.2

18.4 ± 4.2, 16.9- 19.9
A i =0.228

P2 = 0.2281
R2 = 0.9750

24.5 ± 4.8, 22.9 - 26.1

26.0 ± 6.0, 24.0 - 28.0
A i = 0.266

A2 = 0.2657
R2 = 0.9821

RRG
	

0.83 ± 0.14, 0.79-0.88 1.05 ± 0.22, 0.98-4.12 0.97 ± 0.23, 0.88-1.05 0.92 ± 0.21, 0.84-0.99 1.06 ± 0.24, 0.98-4.14

Compared to the
nonloaded particles

N/A Ai = 0.000
A2 = 0.0001
R2 = 0.8200

A i = 0.0067
P2 = 0.0067
R2 = 0.8907

Al =0.068
/92 = 0.0681
R2 = 0.9489

N/A

10.0% MML -
100.0% MML

10% MML -
432.4% MML

100.0% MML -
432.4% MML

N/A pie =0.132
A2 = 0.1320
R2 = 0.9649

p i = 0.015
p2 = 0.0148
R2 = 0.9107

A i = 0.398
/32 = 0.3983
R2 = 0.9877

N/A

a The same amount of Phen in the 2 mg/mi of the 432.4% MML of Phen-loaded particles
b Statistical analysis performed by the Student's 1-test
C Statistical analysis performed by the one-way ANOVA procedure.
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suspensions was the amount of the Phen that had been loaded. The O.28 mg/ml of Phen,

which is the same amount of Phen as contained in the 2 mg/ml of the 432.4% MML of

Phen-ioaded particle suspension, when tested separately, was found to be nontoxic to the

root growth. The particles loaded with the same amount of the Phen however, were

significantly increased in the inhibitory effect on root growth than the Phen alone (p =

0.0165). A possible explanation for the observation is that the bioavailability to the root

of Phen may be increased after it becomes attached to the particle surfaces.

The influence on the toxicity of particles with the 10.0% MML of Phen loading

was further investigated using additional four plant species: Z. mays, G. max, B. oleracea,

and D. carota. Table 5.3 presents the RE and RRG results of the seedlings exposed to the

nonleaded particles or 10.0 % MML of Phen— loaded particles. Figure 5.4 shows the R1

of the seedlings.



92

The nonloaded particles in this study were not the original particles. They were

instead treated with 4 ml of acetone in the same way as the coating process (see Section

5.1.1) in order to provide a more realistic experimental condition. Results from the

phytotoxicity studies found no difference in the toxicity exists between the exposure to

the 2 mg/mi original particles and exposure to the same concentration of particles treated

with acetone (see the according data in Table 4.1 and Table 5.2).
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The nonloaded particles can inhibit the root growth in a significant manner: the

average p value is about O.015 when compared to the control. The effect on root growth

of the 10.0% MML Phen-ioaded particles however is significantly different than the

nonloaded particles: the average p value is about O.018. The loaded particles have no

detectable effect on root growth: the average p value is about 0.84 when compared to the

control. This result, along with that found in the study discussed above, demonstrates that

the Phen-ioading reduces the inhibitory effect of the particles significantly.



94

5.1.4 Study on the Possible Mechanisms

5.1.4.1 Size of the Particles. The size of the alumina nanoparticles might be changed

after the Phen-loading, which possibly would induce the change in the toxic effect of the

particles. To investigate this possibility, the size of the loaded particles was analyzed by

the instrumentation of a Coulter N4+ (Table 5.4).

No significant change within error tolerance in the size has been found.

The size of the particles remained almost unchanged after the Phen-ioading. The

possibility that the change in the particle size induces the change in the toxic effect of the

particles does not exist.

5.1.4.2 Other Possibilities. The FTIR study on the nonloaded and Phen-ioaded alumina

particles found that an infrared band in the 850 — 1050 cm -1 range appears after the

particles are loaded with 10.0% MML, 100.0% MML or 432.4% MML of Phen. This

band was assigned to surface vibrational modes of alumina nanoparticles and its

appearance was suggested to arise from the disappearance of free alumina hydroxyl

(•0H) groups (Lavalley and Benaissa, 1985).

The particles were treated with dimethyl sulphoxide (DMS0) in order to
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determine whether the free hydroxyl groups are important to the toxic effect of the

alumina nanoparticles. DMS0 in water can react with '0H, forming stable products (Tai

et al., 2002; Zhang et al., 2002).

The alumina particles were dispersed in 5 ml of Milli-Q water at 2 mg/mi, in

which 25 [1.1 [0.5% (v/v)] and 50 ill [1.0% (v/v)] of DMS0 had been added. The toxicity

of the treated particles was then tested by the root growth of Z. mays seedlings in

triplicates. Table 5.5 presents the results.

The treatment of 0.5% or 1.0 % of DMS0 increased the root elongation of

seedlings compared to the untreated particles to 1.39-fold (p = 0.0001) or 1.24-fold (p =

O.002) respectively, and was not statistically different than the negative controls (0.5%: p

= O.301 for the blank control, and O.9111 for the 0.5% DMS0 in water that was tested as

the solvent control; and 1.0%: p = 0.656 for the blank control, and 0.1252 for the 1.0%

DMS0 in water that was tested as the solvent control). The result suggests that the

addition of DMS0 was causing the reduction in 0H groups, and significantly reduced the

phytotoxicity of the alumina nanoparticles under these conditions.
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5.1.5 SEM Study on the Particle-EDposed Root Samples

The Z. mays seedlings were exposed to 5-ml 2 mg/ml of nonloaded or 10.0% MML of

Phen-ioaded alumina particle suspensions for 24 hrs before the S1M study was initiated.

The primary roots of the seedlings were cut, fixed, dehydrated, and dried after exposure.

The specimens were sliced from the sites that were about 5 mm from the root tips. The
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slices were then sputter-coated with gold, and observed by the S1M (see Chapter 3,

Section 3.2.4 for the details of this procedure). The 1DS was used to collect the energy of

X-ray emitted by element Al at accelerating voltage of 5 keV and magnification of 5 kX.

The collection time for the 1DS spectra was 20 minutes.

The results from the 1DS analysis on the element aluminum (Al) demonstrate that

fewer particles were inside the plant roots after the particles have been loaded with 10.0%

MML of Phen than the nonloaded particles (Figure 5.5).

5.1.6 Summary and Conclusions

The phytotoxic effect of the 13-nm alumina particles after being loaded with Phen has

been investigated in this study. The results demonstrate that after the Phen loading, the

phytotoxicity of the particles decreased significantly even to a nontoxic level. That

alteration is the opposite of what has been found in the study of the toxic effect of

particles involving human cells. This non-agreement may come from the difference

between the study objects: the particles that have been studied on human cells are not the

13-nm alumina particle, and the study object in this dissertation is the plant seedling root

system, whereas the objects in other published studies are human cells.

The FTIR results suggested that after the Phen loading, the particle surface had

been changed. It is suggested that during the loading process, the free hydroxyl groups on

the particle surface are altered. The further study on the toxicity change of particles

treated with O.5% or 1.0% DMS0 may support this proposal. The S1M/EDS analysis of

the root samples indicates fewer of the loaded particles inside the roots, compared to the

nonloaded particles.



Figure 5.5 	 The SEM pictures (the upper layer) and the results from the EDS analysis of the element Al (the lower layer). The
bright spots in the pictures of the below layer indicate the appearance of the element Al.
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Based on the results from this study, it is proposed that 1) the loading of 10.0%

ML, 100.0% ML, and 432.4% ML of phenanthrene did not change the size of the

alumina nanoparticles; however it may change the surface characteristics of the alumina

nanoparticles through interaction with the free hydroxyl groups on the particle surface, 2)

the change of the surface characteristics of the alumina nanoparticles changes the

phytotoxicity of the particles, possibly through a change in the extent to which the

particles may enter the root systems and induce physiological changes of the roots, and 3)

the surface characteristics of alumina nanoparticles contribute to the phytotoxicity of the

alumina nanoparticles.

Though some preliminary conclusions may be drawn from the results of this

study, determination of the detailed mechanisms of how alumina nanoparticles inhibit

root growth of the seedlings will require additional study. It will be important to elucidate

the contributions of the surface characteristics of the particles to their toxicity. This type

of information can provide a scientific basis for pollution control of manmade

nanoparticles.

5.2 Phen-Loaded 21-nm Titania Particles

5.2.1 PhytotoDicity Study

The amount of the Phen that was loaded on the particles is 5.13 mg loaded onto O.5

grams of the titania nanoparticles, resulting in 10.26 mg/g, which is equivalent to 100.0%

MML of loading for this particle material. Two categories of loaded particles were

studied: the freshly loaded particles, and the aged loaded particles. The aged loaded
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particles were freshly loaded particles that had been kept in dark at room temperature for

six months.

The toxicity of both freshly Phen-ioaded and aged Phen-ioaded 21-nm titania

particles was investigated by the root elongation test using the B. oleracea and the C.

sativus at 2 mg/ml. The aged Phen and fresh Phen not adsorbed on particles were also

tested. The test concentration of Phen was O.02 mg/ml, which is the same amount as the

Phen in the 2 mg/mi dosing of the particle suspensions (refer to Chapter 3, Section 3.2.3

for the procedure for Phen testing). Table 5.6 gives the R1 and RRG results.

Compared to the R1 of seedlings in the blanks, in all of the titania nanoparticle

suspensions tested, only the aged Phen-ioaded titania particles were found harmful to

seedling root growth, with a mean value of the R1 for the B. oleracea of 14.6, compared

to the 21.7 from the blanks (p = O.000), and for the C. sativus of 22.8, compared to the

31.9 from the blanks (p = O.000). There is no significant difference between the RRG for

the B. oleracea and the C. sativus within a concentration.

Statistically significant differences have been found between the RRG of the aged

and freshly loaded particles or nonloaded particles (p = 0.0001 between the aged and the

freshly loaded, and 0.0001 between the aged and the nonloaded), whereas no difference

has been found between the RRG of the freshly loaded and the nonloaded particles (p =

O.443 for the B. oleracea, and 0.540 for the C. sativus). The aged Phen didn't show

similar effects as the aged Phen-ioaded particles (p = O.0003 for the B. oleracea, and

0.0001 for the C. sativus). This result suggests that either the toxic effect of the aged

loaded particles does not come from the aged Phen, or the aged Phen that has been

adsorbed on the surface of the particles is different than the aged Phen that has been kept
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alone. It was noticed that after six months, the color of the Phen-ioaded particles turned

to light brown, whereas the aged Phen remained white. Therefore, the latter suggestion

may be the reason. The aged Phen that has been kept alone at the same time did not show
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any difference in toxicity compared with the fresh Phen that was kept in dark under

vacuum (p = O.7359 for the B. oleracea, and O.7276 for the C. sativus). The FTIR study

on the two particle free-forms of Phen does not show any difference in structure between

them (data not shown).

5.2.2 FTIR Study

The freshly Phen-ioaded particles, the "aged" Phen-ioaded particles, as well as the

nonloaded 21-nm Titania particles were analyzed by the FTIR. Figure 5.6 gives the

spectra that were obtained by subtraction of the spectrum of nonloaded particles from

either the spectrum of the freshly loaded particles or the spectrum of the "aged" loaded

particles.

A new band near 676 ~ 885 cm' appeared after the loading of the Phen. The

loading of Phen for the freshly loaded particles can decrease the absorbance at 1600

1700 cm-1 , and at 3150 — 3700 cm', which result in the two inversed bands in the two

wavenumber ranges. The two inversed bands however disappeared if the particles were

stored six months after they were loaded with Phen, and some broad bands near

wavenumbers of 1110 cm -1 , 1200 cm1 , 1435 cm1 , and 1637 cm1  appeared. The

absorbance at the wavenumber of 1383 cm1  at the same time was enhanced. It is

proposed from the FTIR results that new substances were formed on the surface of the

particles, and the substances are oxidization products of the particle adsorbed Phen.
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Figure 5.6 FTIR study on the 21-nm Titania particles that were loaded with 100.0%
MML of Phen. The FTIR studies were performed on the freshly loaded particles, the
loaded particles that have been stored in the dark at room temperature for six months, and
the nonloaded particles. The spectra presented here are the results of subtraction of the
spectrum of the nonloaded particles from the spectra of loaded particles, (a) the original
subtracted spectrum, and (b) the original subtracted spectra eight times enlarged.
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5.3	 Phen-loaded 14-nm Hydrophilic Silica Particles

5.3.1 PhytotoDicity Study by the Root Elongation Test

The 0.5 grams of particles were loaded with 25.0 mg of Phen to get 50.0 mg/g

(equivalent to 90.6% MML) of Phen loading. The toxicity of the loaded particles was

investigated by the root elongation test using the B. oleracea and the D. carota seedlings

at 2 mg/mi. The R1 and RRG results are given in Table 5.7.

It has been discussed in Chapter 4, Section 4.2, that the 14-nm hydrophilic silica

particles can enhance the root growth of the seedlings, and the enhancement effect was

seen as an adverse effect. The mechanism that leads to the phytotoxicity for the silica

particles was suggested to be different than that of the 13-nm alumina particles because

of the unusual nature of the response.

It was found in this study that after being loaded with 50.0 mg/g (i.e., 0.1 mg/ml

in the particle suspensions that were being tested, which should be nontoxic since the

0.28 mg/mi of Phen has been tested and found nontoxic), the particles could inhibit the

root growth of the seedlings. The average R1 of the B. oleracea seedlings in the loaded

particle suspensions was 18.8 mm, compared to the 22.4 mm of the seedlings in the

blank, with p = 0.009. The average R1 of the D. carota seedlings in the loaded particle

suspensions was 11.8 mm, compared to the 13.7 mm of the seedlings in the blank, with p

= O.0002. The RRG from the loaded particles is significantly different than the RRG from

the nonloaded particles, which is reasonable since the RRG from the nonloaded particles

is larger than the blanks.
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This finding is different than that had been discovered in the studies on the Phen-

ioaded 13-nm alumina particles, in which the loaded particles were found to be nontoxic

whereas the nonloaded particles were determined to be phytotoxic. These disagreeing

observations may be explained as the result of different mechanisms of action by these

two different particles.

5.3.2 FTIR Study

The silica particles that had been loaded with 90.6% MML Phen and the nonloaded

particles were studied by FTIR. The spectrum of the nonloaded particles was subtracted

from the spectrum of the loaded particles (Figure 5.7).
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It was noticed that after the particles were loaded with Phen, the absorbance near

800 cm' and 1100 cm"1 was enhanced, whereas the absorbance in the range of 3300

3500 cm1 was reduced (see Spectrum c in Figure 5.7). Two bands near 730 cm1  and 975

-1cm appeared, which were assigned to the absorption of the surface adsorbed Phen.

5.4	 Phen-Loaded 161.2-nm Hydrophilic Spherical Silica Particles

5.4.1 PhytotoDicity Study by the Root Elongation Test

The 1.0 grams of 161.2-nm silica particles were loaded with 20.2 mg Phen to get 40.4

mg/g (i.e., 99.6% MML) of Phen loading. This amount of Phen was selected because the

100% MML theoretically gives a theoretically complete cover of Phen layer on the

particle surface, which can become a good study object for both the investigation of the

interaction between the adsorbed Phen and the particles and the toxicity study of the

loaded particles.

The phytotoxicity of the loaded and nonloaded particles in this study of Phen-

ioaded 161.2-nm hydrophilic spherical silica particles was investigated by the B. oleracea

seedling root elongation test. The test concentration of the particle suspensions was 20

mg/ml, because at 20 mg/ml the toxic effect of the particles was prominent under the

experimental conditions. The "nonloaded" particles for this study were treated with 4 mi

of acetone, just as what had been done in the investigation of the influence of the Phen-

ioading on the particles previously studied in this way. Table 5.8 gives the R1 and RRG

results of the phytotoxicity test.
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The 161.2-nm hydrophilic spherical particles turned less toxic or even nontoxic

after being treated with acetone (mean R1 = 18.0 mm, compared to the 18.9 mm from the

blanks, and the p = O.5171), unlike the other particles that have been discussed in the

above sections. The toxicity of the particles increased compared to the particles treated

with acetone if it is loaded with 99.6% MML of Phen (mean RE = 15.3 mm, compared to

the 18.0 mm from the acetone-treated particles, with the p = 0.0336), but decreased

compared to the original particles for which the toxicity has been tested previously (see

Chapter 4, Section 4.4) with the p = 0.00155. A significant difference was also found

between the original particles and the acetone-treated particles (p = O.0001).
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The results are very hard to explain based on the toxicity tests alone. The size of

the loaded particles was determined by the Coulter N4+, which is 322.5 ± 29.0 nm after

being treated with acetone, and 325.2 ± 23.7 nm after being loaded with Phen (compared

with 161.2 nm of the original particles). FTIR studies at the same time were performed to

investigate whether the surface characteristics of the particles had been changed by the

acetone treatment, which is discussed in the following Section.

5.4.2 FTIR Study

The particles were studied by FTIR following the procedure that was given in Section

3.2.1. The FTIR spectra of the nonloaded but acetone treated particles, as well as of the

original particles were compared [Figure 5.8 (a)]. The FTIR spectrum of the Phen-ioaded

particles was given in Figure 5.8 (b), along with the spectrum of the original particles and

the spectrum obtained by subtraction.

The results from the FTIR study showed that after being treated with acetone, the

absorbance around 805 cm"' and 945 cm -I was enhanced. This change however doesn't

happen after the Phen—loading. Both the acetone treatment and the Phen — loading reduce

the absorbance near 1400 cm -I where a reversed peak appears at this wavenumber in

either case of subtraction.
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Figure 5.8 FTIR study of the 161.2-nm hydrophilic spherical silica particles: (a)
comparison between the spectrum of the original particles and the spectrum of the
acetone — treated particles; and (b) comparison between the spectrum of the original
particles and the 99.6% MML Phen loaded particles.
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5.5 Phen-Loaded Particles with Sub-micron and Micron Sizes

The effect on plant root growth of the sub-micron and micron particles after being loaded

with — 100% MML of Phen was studied using the B. oleracea seedlings. Compared to

their nanometer scaled siblings, a much smaller amount of Phen was required for the

—100% MML loading: for the 667.6-nm hydrophilic spherical silica particles, it is 1.50

mg/g (94.9% MML, 1.50 mg phenanthrene to 1.0 grams particles in this study), for the

0.96-ilm titania particles, the amount is 3.30 mg/g (97.9% MML, 3.30 mg phenanthrene

to 1.0 grams particles in this study), and for the 1.0-iim alumina particles, O.52 mg/g

(92.6% MML, O.52 mg Phen to 1.0 grams of particles in this study) was loaded. Similar

quantities of the particles were also treated with 4 mi acetone to get the nonloaded

particles for the study. The root elongation test was performed at the concentrations of 20

mg/ml, which was the largest concentration of the submicron and micron particles that

has been toxicity-tested. The R1 and RRG results are given in Table 5.9.

The toxic effect of the nanoparticles was changed more or less by the Phen

loading, as discussed in the above sections, except for the freshly loaded 21-nm titania

that showed no difference in toxicity. The Phen loading in the case of the particles with

sub-micron or micron sizes however does not change the root growth effect of the

particles, and the loaded particles remained nontoxic to the root growth of the seedlings.

The acetone treatment at the same time did not change the effect of the particle on the

root growth either. This is similar to what has been found with most of the nanoparticles

except the 161.2-nm silica particles.
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5.6 Summary and Conclusions

The phytotoxicity of the Phen-ioaded particles was studied in this chapter. Results

demonstrate that the loading of the Phen can change the toxic effect of the nanoparticles,

but not the effect of the particles in the sub-micron or micro size scales.

The inhibitory effect of the 13-nm alumina, if loaded with 10.0% or 100.0%

MML of Phen particles, was decreased significantly. This phenomenon is postulated to

come from changes of the particle surface characteristics in which the free hydroxyl

groups on the particle surfaces may play an important role.

The Phen loading of the 14-nm hydrophilic silica changed the enhancement effect

of the particles into an inhibition effect. This toxicity change does not result from the

change of particle size, because after being loaded with Phen, the size of the particles

remained almost the same. FTIR study revealed that after being loaded with Phen there

were some changes on the particle surface. No evidence available to date however can

support whether or not it caused the toxicity change of the particles. The mechanisms that

cause the adverse effect were postulated to be different than those of the 13-nm alumina

particles. These two particles may interact with the plant seedlings and damage the root

growth in different ways. The reasons for these differences need more exploration.

The freshly Phen-ioaded 21-nm titania particles were found to be just as nontoxic

as the nonleaded 21-nm titania. 0nce the loaded particles were stored for some time (6

months in this study), they showed toxicity. The adsorbed Phen may change to some

toxic form, which leads to the toxicity of the aged Phen-ioaded particles, even though the

storage was in the dark. This phenomenon may result from the fact that the titania

nanoparticles are an oxidative catalyst.
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Both the acetone treatment and the Phen-ioading decreased the toxic effect of the

161.2-nm silica particles significantly. Statistical differences were also found between the

phytotoxic effects of the acetone treated particles and particles loaded with Phen, and the

latter was found more toxic than the former. It is postulated that the Phen-ioading on the

particles results in more bioavailability of the Phen. The non-toxicity of Phen that has

been found in this study may come from the non-bioavailability of the Phen, which has

also been suggested in the literature (Hubner et al., 2000; Becker et al., 2002). FTIR

study results alone did not provide any evidence that can help to explain the toxicity

change of the 161.2-nm hydrophilic spherical silica particles after they were loaded with

Phen. The size of the particles almost doubled in this case after being treated with acetone

or loaded with Phen. The 161.2 nm silica particles were made locally as part of an

experimental program. The particles were made to be mono-dispersed. The acetone

treatment and Phen-ioading changed the status of mono-dispersion of the particles, which

may result in the reduction of the particle toxicity.

The results from this chapter suggest that the study of the toxicity change of the

particles after being loaded with chemicals is applicable to investigation of the

mechanisms of particle-induced injury to the living organisms. The study of the

mechanisms in most of the published literature focuses on the living organisms, not the

particles. In fact, good understanding of the particle properties can help to discover the

underlying mechanisms that lead to particle-induced injury.



CHAPTER 6

INVESTIGATION OF PARTICLE PROPERTIES THAT
CONTRIBUTE TO PARTICLE INDUCED TOXIC EFFECTS

The phytotoxicity of manufactured particulate materials was investigated in Chapter 4.

The 13-nm alumina particles, the 14-nm hydrophilic silica particles, and the 161.2-nm

hydrophilic spherical silica particles were found to have adverse effects on the plant

seedling growth. The influence of phenanthrene loading on the toxicity of the particles

was studied in Chapter 5 to investigate the role taken by particle surface associated

chemical species in the particle phytotoxicity. Phen-ioading can decrease the

phytotoxicity of the 13-nm alumina particles, as well as that of the 161.2-nm silica

particles. The root growth enhancement effect of 14-nm hydrophilic silica particles was

changed into inhibitory effect after the Phen-ioading. The particle properties that may

contribute to the particle-induced toxic effects are examined in this chapter.

6.1	 Particle Size

Particles with different sizes but within the same material category, i.e., same chemical

composition (i.e., Ti02, Si02 and Al203), were obtained in this study. The experimental

design was to investigate the contribution of the particle size to the particle-induced

adverse effect. The phytotoxicity of the particles with different sizes but within the same

chemical category is given as the RRG values in Table 6.1. The effects on the plant

seedling root growth were compared at 20 mg/mi for the particles for which the

phytotoxic effects have been investigated. The Student's t-test and the one-way ANOVA

115



116

procedure were performed to compare the RRG results from the testing of the particles

with different sizes. The significant difference was reported as the possibility of the null

hypothesis (p) being smaller than 0.05 as usual.

Table 6.1	 The RRG Values of Plant Seedlings Exposed to 20 mg/ml of the Particle
Suspensions — the Investigation of the Contribution of the Particle Size to the Phytotoxic
Effect of the Particles

The RRG values were reported as the mean value of the RRG results from the root elongation tests using
different plant species ± S.D. 
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It was demonstrated for the alumina and silica particles, that smaller particles

(within the same material) have larger toxicity. It cannot be concluded though that the

size of the particles alone decides the toxic effect of the particles. The example is the 21-

nm titania, for which the mean aggregate size is 119.5 nm, which is similar to the size of

the 161.2-nm silica particles. The 21-nm titania however was not found to be toxic to the

root growth, and its effect on the root growth was determined to be very similar to the

effect of the titania particles with a mean size of 0.96 pin.

6.2 Specific Surface Area of the Particles

This study included particles with different specific surface areas and the same chemical

composition, as well as particles with similar specific surface areas and different

chemical composition. Table 6.2 gives the mean RRG values of the particles according to

their specific surface area.
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The phytotoxicity is similar for the particles with specific surface area larger than

100 m2/g, including the 13-nm alumina particles, the 14-nm silica particles, and the

161.2-nm silica particles, although significant differences in the RRG values can be

determined among the particle types. No toxic effects have been found for other particles

with specific surface much smaller than 100 m 2/g, including the 21-nm titania, 667.6-nm

silica, 0.96-iim titania, and 1-11m alumina. The data demonstrates that among the

materials studied, larger specific surface area is related to increased phytotoxicity. The

specific surface area is more important than the particle size where the toxic effect of the

particles is concerned.

6.3	 The Mass Concentration and Number Concentration of the Particles

The influence of the mass concentration (mg/mi) on the toxicity of the particles was

studied in Chapter 4. It was stated that the toxic effect of the particles is dose-dependent.

The number concentration (numbers of particles per ml) of the particles may also

play an important role in the toxicity of the particles. For example, the number

concentration of the 13-nm alumina particles is about 4.52 fold larger compared to that of

the 21-nm titania particles (which was calculated from the density and the diameter of the

particles). The RRG data showed that the toxicity of the 13-nm alumina particles is about

1.8 fold greater compared to that of the 21-nm titania, which may suggest that the toxicity

of the particles increases with the increase of the number concentration of the particles.

No conclusion can be drawn from the available evidence though because the specific
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surface area values of these two particles are different. The difference in their toxicity

may result from the difference of the specific surface area, or some function related to

that.

6.4 Particle Surface-Associated Chemical Species

Phenanthrene was loaded on the particles in Chapter 5. The phytotoxic effect of the

particles was studied after the Phen-ioading. The results showed that the Phen-ioading

could decrease the phytotoxicity of some of the particles that have been found toxic to

root growth, including the 13-nm alumina particles and the 161.2-nm hydrophilic

spherical silica particles. The root growth enhancement effect of 14-nm hydrophilic silica

particles was changed into root inhibitory effect after Phen-ioading. The freshly Phen-

ioading failed to change the observed lack of phytotoxicity of the 21-nm titania particles

though. It was postulated however, from the results of a long time storage study that the

titania particles were able to accelerate the reaction (probably oxidation) of the particle

surface adsorbed—Phen, which resulted in the formation of a more toxic chemical species.

The adsorption of chemical species on the surface of the particles is suggested to

change the particle surface characteristics according the FTIR study results (for example,

the probable modification of the free hydroxyl group in the case of the 13-nm alumina

particles), and the bioavailability of the chemical species, which results in changes of the

particle toxicities.
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6.5 Summary and Conclusions

The contribution of particle properties including particle size, particle specific surface

area, mass concentration (mg/mi), number concentration (in milliliter of water), and

surface-associated chemical species were evaluated in this chapter. It was suggested that

where the phytotoxicity of the particles is concerned, the particle specific surface area,

the mass concentration, and the particle surface — associated chemicals are important. It

was determined that particle size, although important, was not the deciding factor. The

particle surface—associated chemicals are important partly because they can change the

particle surface characteristics, which were found to be crucial to the particle toxicity.



CHAPTER 7

SUMMARY AND CONCLUSIONS

The toxicity as well as the underlying responsible characteristics of manufactured

particulate materials on plant seedling root growth was studied in this dissertation. The

manufactured particles within the nanometer scale range were used as models to

investigate the properties that are important to the toxicity of airborne nanoparticles.

The manufactured particles studied in this dissertation include the Alum from

Degussa (13-nm alumina), the Cab-0-Sil M5 from Cabot (14-nm hydrophilic silica), the

Aeroxide Ti02 P25 from Degussa (21-nm titania), O.96-pm titania and 1-tm alumina

from Atlantic Equipment Engineers, 667.6-nm hydrophilic spherical particles, and a

locally made hydrophilic spherical silica particles with the diameter of 16l.2 nm.

The phytotoxicity of the particles was investigated by the root elongation test,

which followed the 1PA recommended standard procedure with slight modifications. The

particles were suspended in Milli-Q water at a series of concentrations. The plant seeds,

including seeds of B. oleracea, C. sativus, A. sativa, G. max, Z. mays, and D. carota,

were cultured into seedlings at 25 ± 1 °C in the dark before exposure to the particle

suspensions. The exposure to the particle suspensions was done at 25 ± 1 °C in the dark

for 24 hrs (for long time exposure, 48 hrs and 72 hrs were also included). Milli-Q water

was used as the control blank.

Adverse effects on root growth were found for the 13-nm alumina particles, the

14-nm hydrophilic silica particles, and thel6l.2-nm hydrophilic spherical particles,
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among which the 13-nm alumina particles and the 16l.2 hydrophilic spherical particles

inhibited the root growth, whereas the 14-nm hydrophilic silica enhanced the root growth.

The phytotoxicity was determined to be dose-dependent, with the IC10 (concentration that

causes 10% of inhibitory effects) of 0.281 mg/mi, 1.803 mg/mi, and 5.420 mg/mi for the

13-nm alumina particles, the 16l.2-nm hydrophilic spherical silica particles, and the 14-

nm hydrophilic spherical silica particles, respectively. Long time exposure (24 hrs, 48 hrs

and 72 hrs for the 13-nm alumina, and 24 hrs and 48 hrs for the 14-nm silica and 16l.2-

nm silica) showed that the adverse effect of the particles happens in the first 24 hrs of

exposure under these experimental conditions.

The 21-nm titania particles, the 667.6-nm hydrophilic spherical silica particles,

the 0.96-pm titania particles, and the 1.00-lim alumina particles were not found to have

any effect on the plant seedling growth compared to the blank control. Note that particles

with similar sizes and chemical compositions have been shown to cause abnormal

physiological change in both human cell in vitro tests and animal in vivo tests (Churg et

al., 1998; Renwick et al., 2001; Stearns et al., 2001). This difference suggests that the

plant root cells respond differently to the particle toxicity than do animal cells.

The influence of chemical species on the particle surface on seedling growth was

investigated using phenanthrene (Phen) as the study chemical. Phen was dissolved in

acetone, and loaded onto the particles. Both the Phen—loaded particles and the nonloaded

particles were analyzed by FTIR, which is a powerful technique to determine particle

chemical compositions as well as particle surface characteristics. The phytotoxicity of the

loaded particles as well as of the nonloaded particles were determined by the root

elongation test following the same procedure that has been used for the investigation of
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the phytotoxicity of the particles. The results from the phytotoxicity tests demonstrate

that Phen-ioading can change the toxicity of the particles.

The loading of 10.0% and 100.0% MML of Phen of the 13-nm alumina particles

decreased the phytotoxicity of the particles significantly, to the degree that the particles

actually showed similar effects on seedling growth as did the blank control. The FTIR

study on the Phen-ioaded particles revealed that the decrease of the phytotoxicity of the

13-nm alumina particles might be associated with the loss of the free hydroxyl groups on

the particle surfaces. The results from the phytotoxicity determination study on the

DMS0-treated particles also supported this. It was observed by S1M/EDS that fewer

particles were observed within the plant roots if the particles had been loaded with the

10.0% MML of Phen, than were seen with the nonloaded particles.

The 100.0% MML Phen loading on the 14-nm hydrophilic silica particles

changed the root elongation enhancement effect of the particles into an inhibition effect.

The mechanisms that cause the toxicity of the particles were postulated to be different for

the 13-nm alumina particles and the 14-nm hydrophilic spherical silica particles.

The Phen loading on the 21-nm titania particles did not change the nontoxic

properties of the particles if the Phen were loaded just before the tests for phytotoxicity.

The particles however, if after being loaded with 100.0% MML of Phen and were kept

for six months in the dark, demonstrated high toxicity to the seedling growth. This

phenomenon was postulated to come from an oxidation reaction of the Phen that had

been adsorbed on the 21-nm titania particles since the titania particles are a known

oxidation reaction catalyst.
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The phytotoxic effect of the 16l.2-nm hydrophilic spherical silica particles

disappeared after the particles were treated with acetone, which were the nonloaded

particles in the above discussion. The loading of Phen however increased the toxic effect

of the particles compared to the nonloaded particles, although it decreased the toxicity of

the particles if compared to the original particles. It was postulated that the acetone

treatment finally changed the surface characteristics of the particles.

The 100.0% MML Phen loading did not change the nontoxic characteristics of the

particles with sub-micron and micron sizes.

The toxicity data, along with the physical and chemical properties of the

manufactured particulate materials were compared to determine which particle properties

are important to the toxic effects of the particles. The results indicate that:

1) Larger mass concentration (mg/ml of Milli-Q water) of particles that are toxic
results in more toxicity,

2) Size of the particles alone cannot explain why the particles are toxic, and are not
the sole factor that accounts for particle toxicity. The reason: particles with
similar sizes, including the 13-nm alumina particles, the 14-nm silica particles,
and the 21-nm titania particles do no have similar phytotoxicity. 0n the contrary,
the former two have similar phytotoxicity as does the 16l.2-nm silica particles,

3) The specific surface area of the particles may play an important role in the toxic
effects caused by the particles. The particles with specific surface areas larger
than 100 m2/g were toxic to the root growth of the seedlings, whereas the particles
with specific surface area much smaller than 100 m 2/g were not found to be toxic
to the root growth of the seedlings,

4) The number concentration (numbers of particles in milliliter of Milli-Q water) of
the particles is possibly a particle property that contributes to the toxicity of the
particles. At the same mass concentration (e.g., 20 mg/ml), the number
concentration of 13-nm alumina particles is higher than that of the 21-nm titania
particles (about 4.52 fold), and the 13-nm alumina particles were phytotoxic
according to this study, whereas the 21-nm titania particles were not toxic,
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5) Chemical species on particle surfaces are found to be important to the particle
induced—toxic effects. The adsorption of the chemicals on the particle surface are
shown to change the toxicity of the particles significantly,

6) FTIR study results showed that particle surface characteristics might be changed
after the loading of phenanthrene, which suggests that particle surface
characteristics must be considered if the particle toxicity is concerned, and

7) The change of particle surface characteristics may result in change of particle
toxicity, which can offer help to the control of particle pollution.

The results from this study demonstrate that the particle size alone does not

account for the toxic effect of the particles. This helps to provide the scientific

information to indicate the application of nanoparticles, as well as the development of the

nanotechnology may be completely acceptable to the environment.

The toxicity of some nanoparticles (e.g., the 13-nm alumina particles) was

reduced significantly by changing the particle surface characteristics, which indicates that

the particle surface characteristics of particles may play an important role in the particle

toxicity. This suggests one method for possible control of the particle pollution.

The data collected in this study provide information that is important to the

establishment of particle pollution standards and regulations.



APPENDIX A
PROCEDURE FOR ONE-WAY ANOVA ANALYSIS - AN EXPAMPLE
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The statistical result reported in this dissertation (see Table 4.11) was obtained based on

the RE values for the three concentrations of 20 mg/mi, 2 mg/ml, and 200 ug/ml. The
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Particle Plant Conc. Group Mean RE ± S.D. Sample
(Test) Species # mm Size

2011g/m1 2 38.24 ± 5.67 10
13-nm Alumina C. sativus 3 36.40 ± 5.86 10

(24-hr Exposure) B. oleracea Blank for 2 mg/ml 1 17.97 ± 5.49 10
2 20.09 ± 2.13 10
3 18.43 ± 2.98 10

Blank for the other
three concentrations

1 16.16 ± 4.19 10

2 18.35 ± 3.54 10
3 16.31 ± 8.20 9

20 mg/ml 1 9.43 ± 2.55 10
2 11.22 ± 3.98 10
3 9.13 ± 3.91 10

2 2mg/ml 1 14.48 ± 1.55 10
2 14.83 ± 3.34 10
3 14.97 ± 2.29 10

200 g/ml 1 14.48 ± 6.23 10
2 13.48 ± 5.63 10
3 16.27 ± 2.27 9

20 mg/ml 1 19.82 ± 7.74 10
2 15.94 ± 7.09 10
3 17.61 ± 7.28 10

D. carota Blank for 20 mg/ml 1 8.39 ± 1.57 10
2 8.01 ± 1.39 10
3 8.54 ± 2.07 10

Blank for the other
three concentrations

1 9.92 ± 2.79 10

2 8.80± 1.88 10
3 10.81 ± 2.12 10

20 2mg/ml 1 4.79 ± 1.20 10
2 4.81 ± 1.35 10
3 5.03 ± 1.61 10

2 2mg/ml 1 8.61 ± 1.29 10
2 6.65 ± 2.51 9
3 9.23 ± 1.94 10

200 g/ml 1 8.47 ± 5.51 10
2 9.94 ± 2.56 10
3 9.10 ± 2.30 10

2014/ml 1 10.13 ± 3.19 10
2 10.96 ± 3.07 10
3 12.17 ± 2.12 10
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Particle Plant Species Conc. Group # Mean RE ± S.D. Sample
(Test) mm Size

13-nm Alumina B. oleracea Blank 1 16.16 ± 4.19 10
(48-hr Exposure) 2 16.36 ± 3.74 10

(1 St 24-hr) 3 16.44 ± 4.88 10
20 mg/ml 1 8.84 ± 2.59 10

2 10.62 ± 3.98 10
3 8.50 ± 3.82 10

13-nm Alumina B. oleracea Blank 1 27.62 ± 12.56 10
(48-hr Expo, 48-hr) 2 28.78 ± 8.48 10

3 33.49 ± 8.75 10
20 mg/ml 1 17.10 ± 3.25 10

2 18.70 ± 5.24 10
3 15.57 ± 7.34 10

13-nm Alumina C. sativus Blank 1 41.17 ± 4.64 10
(72-hr Exposure) 2 39.90 ± 5.39 10

(1st 24-hr) 3 36.22 ± 4.72 10
2 2mg/ml 1 34.57 ± 5.82 10

2 35.45 ± 4.35 10
3 36.18 ± 5.66 10

13-nm Alumina C. sativus Blank 1 71.69 ± 7.86 10
(72-hr Expo, 48-hr) 2 71.00 ± 16.12 10

3 69.95 ± 13.01 10
2 mg/ml 1 67.94 ± 9.80 10

2 63.39± 13.07 10
3 63.38 ± 9.34 10

13-nm Alumina C. sativus Blank 1 92.67 ± 10.39 10
(72-hr Expo, 72-hr) 2 95.11 ± 15.95 10

3 94.79 ± 13.08 10
2 2mg/ml 1 87.31 ± 10.42 10

2 86.63 ± 16.59 10
3 88.74 ± 11.96 10

13-nm Alumina C. sativus Blank 1 47.19 ± 15.49 10
(Water treatment) 2 45.70 ± 12.41 10

(1st 24 hrs for expo.) 3 45.97 ± 10.62 10
2 mg/ml 1 38.47 ± 6.63 10

2 37.20 ± 7.37 10
3 36.00 ± 9.74 10

13-nm Alumina C. sativus Blank 1 84.96 ± 15.83 10
(Water treatment) 2 81.29 ± 17.94 10

(48 hrs) 3 82.65 ± 11.44 10
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Particle Plant Species Conc. Group # Mean RE ± S.D. Sample Size
(Test) mm

13-nm Alumina C. sativus 2 mg/ml 1 70.60 ± 14.00 10
(Water treatment) 2 66.85 ± 15.14 10

(48 hrs) 3 63.87 ± 18.15 10
14-nm Silica B. oleracea Blank 1 16.16 ± 4.19 10

(24-hr Exposure) 2 18.35 ± 3.54 10
3 16.31 ± 8.20 9

20 mg/ml 1 20.24 ± 5.46 10
2 21.54 ± 5.52 10
3 17.88 ± 3.38 10

2 mg/ml 1 20.58 ± 4.99 10
2 19.26 ± 6.20 10
3 17.15 ± 7.72 10

200 g/ml 1 17.49 ± 6.65 10
2 16.46 ± 4.96 10
3 16.35 ± 6.82 10

20 mg/ml 1 15.07 ± 4.10 10
2 16.64 ± 3.58 10
3 17.41 ±4.93 9

D. carota Blank 1 12.88 ± 3.46 10
2 11.06 ± 2.75 10
3 14.59 ± 4.24 10

20 mg/ml 1 13.78 ± 3.55 10
2 14.48 ± 2.52 10
3 16.02 ± 3.72 10

2 mg/ml 1 12.50 ± 2.92 10
2 11.65 ± 2.88 10
3 14.33 ± 3.00 10

200 g/ml 1 13.32 ± 3.06 10
2 12.09 ± 2.27 10

3 * 7.83 ± 2.35 10
20 lig/m1 1 14.17 ± 4.83 10

2 11.86 ± 3.52 9
3 10.92 ± 2.43 10

C. sativus Blank 1 19.74 ± 5.20 10
2 16.89 ± 6.11 10
3 15.52 ± 6.33 8

20 g/ml 1 21.55 ± 6.62 10
2 20.87 ± 6.92 10

* Discarded
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Particle Plant Species Conc. Group # Mean RE ± S.D. Sample Size
(Test) mm

21-nm Titania B. oleracea 20 mg/mi 3 13.21 ± 2.18 10
(24-hr Exposure) 2 mg/mi 1 15.47 ± 4.85 10

2 16.86 ± 3.50 10
3 16.36 ± 3.38 10

200 g/m1 1 15.08 ± 2.10 10
2 14.84 ± 3.90 10
3 14.65 ± 4.24 9

C. sativus Blank 1 40.04 ± 5.39 10
2 35.97 ± 4.11 10
3 39.24 ± 3.27 10

20 mg/mi 1 36.06 ± 7.73 10
2 35.09 ± 5.94 10
3 35.52 ± 9.24 10

2 mg/mi 1 38.78 ± 4.02 10
2 37.19 ± 5.20 10
3 36.13 ± 4.70 10

200 utg/ml 1 37.07 ± 7.21 10
2 39.45 ± 5.19 10
3 37.98 ± 5.92 10

D. carota Blank 1 8.39 ± 1.57 10
2 7.98 ± 1.57 10
3 8.40 ± 1.51 10

20 mg/mi 1 7.80 ± 1.88 10
2 6.78± 1.69 10
3 7.78 ± 1.68 9

2 mg/mi 1 7.60 ± 2.95 10
2 7.32 ± 1.83 10
3 7.32± 1.68 10

200 mtg/ml 1 9.31 ± 2.03 10
2 9.20± 1.67 10
3 9.24± 1.99 10

A. sativa Blank 1 13.68 ± 4.84 8
2 11.85 ± 5.14 8
3 14.21 ± 2.67 7

20 mtg/ml 1 12.30 ± 3.55 10
2 13.22 ± 5.34 9
3 12.27 ± 3.17 10

2 mtg/ml 1 14.10 ± 3.26 9
2 11.48 ± 3.31 8
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Particle Plant Species Conc. Group # Mean RE ± S.D. Sample Size
(Test) mm

21-nm Titania A. sativa 2 mg/mi 3 13.39 ± 4.93 9
(24-hr Exposure) 200 g/ml 1 11.42 + 3.44 7

2 12.77 ± 3.95 10
3 15.90 ± 3.21 8

21-nm Titania C. sativus Blank 1 40.04 ± 5.39 10
(48-hr Exposure) 2 36.48 ± 4.39 10

(1st 24-hr) 3 38.55 ± 3.00 10
20 mg/mi 1 36.06 ± 7.73 10

2 35.09 ± 5.94 10
3 35.52 ± 9.24 10

2 2mg/mi 1 38.78 ± 4.02 10
2 37.19 ± 5.20 10
3 36.13 ± 4.70 10

21-nm Titania C. sativus Blank 1 75.25 ± 17.61 10
(48-hr Exposure) 2 73.68 ± 10.81 10

(48-hr) 3 76.78 ± 16.79 10
20 mg/mi 1 74.71 ± 14.36 9

2 76.63 ± 15.65 10
3 76.95± 12.15 10

2 2mg/mi 1 71.36 ± 6.92 9
2 68.33 ± 6.40 10
3 69.49 ± 5.97 8

161.2-nm Silica B. oleracea Blank 1 22.00 ± 5.39 9
(24-hr Exposure) 2 21.09 ± 5.93 9

3 22.16 ± 6.55 9
20 mg/mi 1 11.18 ± 1.94 9

2 12.62 ± 3.55 8
3 16.89 ± 4.49 8

2 mg/mi 1 20.79 ± 4.93 10
2 18.45 ± 7.53 10
3 19.34 ± 7.55 10

200 pg/ml 1 20.68 ±5.23 10
2 21.54 ± 6.27 8
3 26.76 ± 4.92 9

C. sativus Blank 1 30.76 ± 6.72 10
2 31.72 ± 3.51 10
3 33.18 ± 5.04 10

20 mg/mi 1 24.78 ± 5.35 9
2 24.71 ±4.53 10
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Particle Plant Species Conc. Group # Mean RE ± S.D. Sample Size
(Test) mm

161.2-nm Silica C. sativus 20 mg/m1 3 23.89 ± 3.75 10
(24-hr Exposure) 2 mg/m1 1 27.42 ± 6.09 10

2 29.82 ± 5.21 10
3 30.09 ± 3.82 10

200 mmg/ml 1 31.59 ± 4.82 10
2 30.88 ± 3.68 9
3 30.99 ± 4.62 10

A. sativa Blank 1 23.87 ± 4.82 10
2 26.02 ± 2.07 10
3 27.89 ± 3.94 10

20 mmg/ml 1 16.28 ± 5.80 8
2 17.20 ± 4.84 8
3 18.30 ± 6.37 9

2 mg/m1 1 22.36 ± 5.27 10
2 23.07 ± 1.11 10
3 24.53 ± 4.58 10

2001Ag/m1 1 24.24 ± 3.24 10
2 23.86 ± 0.70 10
3 25.86 ± 3.39 10

161.2-nm Silica B, oleracea Blank 1 22.00 ± 5.39 9
(48-hr Exposure) 2 21.09 ± 5.93 9

(1 St 24-hr) 3 22.16 ± 6.55 9
20 mg/m1 1 12.97 ± 6.58 10

2 14.75 ± 7.06 10
3 15.86 ± 6.48 10

161.2-nm Silica B. oleracea Blank 1 38.64 ± 9.19 7
(48-hr Exposure) 2 40.91 ±7.41 8

(48-hr) 3 38.31 ± 5.90 8
20 mg/m1 1 27.00 ± 7.87 7

2 27.26 ± 8.04 9
3 31.14 ± 13.16 7

161.2-nm Silica B. oleracea Blank 1 22.00 ± 5.39 9
(Water treatment) 2 21.09 ± 5.93 9

(1S t 24-hr) 3 22.16 ± 6.55 9
20 mg/m1 1 13.26 ± 2.48 10

2 13.43 ± 2.75 10
3 14.47 ± 2.73 10

161.2-nm Silica B. oleracea Blank 1 38.64 ± 9.19 7
(Water treatment) 2 40.91 ±7.41 8

(48-hr) 3 38.31 ± 5.90 8
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Particle Plant Species Conc. Group # Mean RE ± S.D. Sample Size
(Test) mm

161.2-nm Silica B. oleracea 20 mg/ml 1 24.02 ± 7.60 10
(Water treatment) 2 25.52 ± 7.32 10

(48-hr) 3 25.77 ± 10.54 10
667.6-nm Silica B. oleracea Blank 1 23.33 ± 6.03 10

(24-hr Exposure) 2 24.17 ± 5.39 9
3 19.82 ± 6.86 10

20 mg/m1 1 22.55 ± 7.25 10
2 18.91 ± 8.20 10
3 24.16 ± 8.12 10

2 mg/ml 1 23.09 ± 5.66 10
2 18.39 ± 3.50 10
3 22.73 ± 4.20 10

C. sativus Blank 1 32.17 ± 3.24 10
2 32.76 ± 5.60 10
3 34.20 ± 3.27 10

20 mg/m1 1 35.13 ± 3.20 10
2 33.22 ± 4.55 10
3 32.97 ± 4.25 10

2 mg/ml 1 31.15 ± 3.98 10
2 30.05 ± 5.28 10
3 31.79 ± 4.98 9

0.96-}tm Titania B. oleracea Blank 1 23.33 ± 6.03 10
(24-hr Exposure) 2 20.72 ± 6.62 9

3 22.92 ± 6.43 10
20 mg/m1 1 20.80 ± 3.52 10

2 19.29 ± 5.23 10
3 20.26 ± 5.22 10

2 mg/ml 1 20.29 ± 3.85 10
2 24.40 ± 7.26 10
3 24.09 ± 5.15 10

C.sativus Blank 1 32.17 ± 3.24 10
2 32.76 ± 5.60 10
3 34.20 ± 3.27 10

20 mg/m1 1 32.84 ± 3.79 10
2 32.91 ±7.21 10
3 30.74 ± 5.10 10

2 mg/ml 1 34.20 ± 3.55 10
2 33.44 ± 2.69 10

3 * 37.44 ± 4.16 10
* Discarded
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Particle Plant Species Conc. Group # Mean RE ± S.D. Sample
(Test) mm Size

1.00-1.1m Alumina B. oleracea Blank 1 15.92	 2.67 10
(24-hr Exposure) 2 16.22 + 5.74 10

3 14.62 + 3.24 10
20 mg/ml 1 14.48 ± 4.00 10

2 15.03 ± 4.30 7
3 15.30 ± 4.23 10

2 mg/ml 1 14.91 ± 5.44 9
2 15.25 + 3.53 8
3 15.76 + 4.25 10

C. sativus Blank 1 32.17	 3.24 10
2 32.76 ± 5.60 10
3 34.20 ± 3.27 10

20 mg/ml 1 32.07 ± 2.07 10
2 30.99 + 2.48 9
3 33.64 + 4.06 10

2 mg/mi 1 33.18 ± 4.55 10
2 32.07 ± 3.50 10
3 32.73 ± 2.05 10

13-nm Alumina C. sativus Blank 1 1 24.65 + 7.88 10
(Phen-loading) 2 27.35 ± 5.47 10

3 28.88 ± 2.47 10
Nonloaded 1 23.42 ± 3.50 10
(2 mg/ml) 2 22.66 ± 0.37 10

3 21.74 ± 2.77 10
10.0% MML 1 27.11	 5.42 10

(2 mg/ml) 2 29.26 ± 6.20 10
3 28.71 + 6.83 10

Blank 2 1 19.60 ± 4.36 10
2 20.30 + 8.33 10
3 20.17	 5.34 10

100.0% MML 1 18.05 ± 2.91 10
(2 mg/mi) 2 20.89 + 5.99 10

3 19.13 + 4.40 10
432.4% MML 1 19.15 + 3.56 10

(2 mg/mi) 2 16.79 ± 3.50 10
3 19.22	 5.30 10

Blank 3 1 23.57 + 3.69 10
2 26.18	 7.08 10
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Particle Plant Species Conc. Group # Mean RE ± S.D. Sample
(Test) mm Size

13-nm Alumina C. satirus Blank 3 3 23.82 ± 4.20 10
(Phen-loading) Phenanthrene 1 25.52 ± 4.78 10

(0.28 mg/mi) 2 26.86 ± 4.91 10
3 25.61 ± 6.35 10

Z. mays Blank 1 19.60 ± 4.36 10
2 20.30 ± 8.33 10
3 20.17 ± 5.34 10

Nonloaded 1 16.76 ± 3.80 10
(2 mg/mi) 2 16.03 ± 2.61 10

3 16.17 ± 1.41 10
10.0% MML 1 18.90 ± 4.15 10

(2 mg/mi) 2 20.34 ± 4.00 10
3 20.18 ± 6.00 10

G. max Blank 1 36.37 ± 7.43 10
2 38.89± 14.42 10

3 * 45.23 ± 10.40 10
Nonloaded 1 30.21 ± 7.75 10
(2 mg/mi) 2 31.10 ± 6.21 10

3 33.23 ± 8.02 10
10.0% MML 1 34.74 ± 12.08 10

(2 mg/mi) 2 34.82 ± 13.30 10
3 40.00 ± 4.62 10

B. oleracea Blank 1 18.03 ± 5.29 10
2 19.49 ± 3.39 10
3 19.04 ± 1.89 10

Nonloaded 1 14.48 ± 1.55 10
(2 mg/mi) 2 14.83 ± 3.34 10

3 14.97 ± 2.29 10
10.0% MML 1 19.38 ± 3.49 10

(2 mg/mi) 2 18.48 ± 3.20 10
3 19.09 ± 3.33 10

D. carota Blank 1 13.61 ± 0.97 10
2 12.89 ± 1.93 10

3 * 18.36± 1.24 10
Nonloaded 1 11.17 ± 2.37 10
(2 mg/mi) 2 10.36 ± 1.12 10

3 12.04 ± 6.96 9
10.0% MML 1 13.00 ± 2.62 10

(2 mg/ml) 2 13.26 ± 5.30 10
* Discarded
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Particle Plant Species Conc. Group # Mean RE + S.D. Sample
(Test) mm Size

13-nm Alumina D. carota 10.0% MML 3 13.75 ± 2.41 10
13-nm Alumina Z. mays Blank 1 1 16.61 ± 8.98 10

(DMSO) 2 19.02 ± 10.50 10
3 23.41 ±9.52 10

0.5% DMSO 1 24.26 ± 8.65 10
2 20.50 ± 4.35 10
3 18.37 ± 7.48 10

1.0% DMSO 1 23.02 ± 6.67 10
2 19.30 ± 6.64 10
3 22.03 ± 8.16 10

Blank 2 1 16.68 ± 4.12 10
2 17.38 ± 3.62 10
3 19.61± 7.57 10

0,5% DMSO treated 1 18.93 ± 3.30 10
2 17.98 ± 6.26 10
3 19.53 ± 5.53 10

1,0% DMSO treated 1 18.93 ± 3.50 10
2 17.96 ± 6.24 10
3 15.07 ± 2.00 10

Untreated 1 11.97 ± 2.09 10
2 14.72 ± 3.66 10
3 15.13 ±4.10 10

21-nm Titania B. oleracea Blank for 1 16.16 ± 4.19 10
(Phen-ioading) freshly loaded 2 16.31 ± 8.20 9

3 18.35 ± 3.54 10
Freshly loaded 1 19.22 ± 3.75 10

(2 mg/mi) 2 19.38 ± 3.83 10
3 17.36 ± 4.41 10

Blank 1 22.00 ± 5.39 9
2 20.77 ± 5.68 10
3 22.69 ± 6.79 8

Aged loaded 1 15.87 ± 5.42 10
(2 mg/mi) 2 13.03 ± 5.97 10

3 14.77 ± 6.01 10
Fresh Phen 1 23.18 ± 6.89 10

(0.02 mg/mi) 2 20.98 ± 5.61 10
3 19.48 ± 4.15 10

Aged Phen 1 16.68 ± 4.02 8
(0.02 mg/mi) 2 22.76 ± 4.80 8
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Particle Plant Species Conc. Group # Mean RE ± S.D. Sample
(Test) mm Size

14-nm Silica B. oleracea Blank for 2 16.31 ± 8.20 9
(Phen-loading) nonloaded 3 18.35 ± 3.54 10

Nonloaded 1 20.58 ± 4.99 10
(2 mg/ml) 2 19.26 ± 6.20 10

3 17.15 ± 7.72 10
D. carota Blank for 1 14.25 ± 1.31 10

loaded 2 13.56 ± 2.56 10
3 13.24 + 1.61 10

90.6% MML 1 12.26 ± 1.18 9
(2 mg/mI) 2 12.67 ± 1.42 9

3 10.70 ± 1.48 10
Blank for 1 12.88 ± 3.46 10

nonloaded 2 11.06 ± 2.75 10
3 14.59 ± 4.24 10

Nonloaded 1 12.50 ± 2.92 10
(2 mg/ml) 2 11.65 ± 2.88 10

3 14.33 ± 3.00 10
161.2-nm Silica B. oleracea Blank 1 19.40 ± 5.90 10
(Phen-loading) 2 21.33 ± 4.64 10

3 16.05 ± 5.72 10
Nonloaded but 1 18.99 ± 5.18 9
acetone treated 2 18.37 ± 4.36 9

(20 mg/mI) 3 16.80 ± 5.56 10
99.6% MML 1 14.10 ± 3.11 9

(20 mg/ml) 2 15.33 ± 4.27 10
3 16.45 ± 5.18 10

667.6-nm Silica B. oleracea Blank 1 23.33 ± 6.03 10
(Phen-loading 2 24.17 ± 5.39 9

3 19.82 ± 6.86 10
Nonloaded but 1 23.59 ± 5.32 8
acetone treated 2 22.90 ± 6.69 9

(20 mg/ml) 3 23.42 ± 5.98 8
Loaded 1 23.44 ± 6.05 9

(20 mg/ml) 2 19.20 ± 5.70 10
3 22.02 ± 4.26 10

0.96-pm Titania B. oleracea Blank 1 23.33 ± 6.03 10
(Phen-ioading) 2 24.17 ± 5.39 9

3 19.82 ± 6.86 10
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Particle Plant Species Conc. Group # Mean RE ± S.D. Sample
(Test) mm Size

0.96-m Titania B. oleracea Nonloaded but 1 21.99 ± 6.64 9
(Phen-loading) acetone treated 2 22.16 ± 6.29 9

(20 mg/mi) 3 21.70 ± 6.53 9
97.9% MML 1 22.42 ± 9.04 10

(20 mg/mi) 2 24.10 ± 13.52 10
3 24.09 ± 6.72 10

1.0-um Alumna B. oleracea Blank 1 23.33 ± 6.03 10
(Phen-loading) 2 24.17 ± 5.39 9

3 19.82 ± 6.86 10
Nonloaded but 1 21.43 ± 8.98 9
acetone treated 2 21.27 ± 8.34 9

(20 mg/mi) 3 21.28 ± 7.52 9
92.6% MML 1 21.50 ± 6.10 10

(20 mg/mI) 2 19.48 ± 7.18 10
3 25.14 ± 4.37 10
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