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ABSTRACT

NETWORK ANOMALY DETECTION USING MANAGEMENT INFORMATION
BASE (MIB) NETWORK TRAFFIC VARIABLES

by
Jun Li

In this dissertation, a hierarchical, multi-tier, multiple-observation-window, network

anomaly detection system (NADS) is introduced, namely, the BIB Anomaly Detection

(BAD) system, which is capable of detecting and diagnosing network anomalies

(including network faults and Denial of Service computer network attacks) proactively and

adaptively. The BAD system utilizes statistical models and neural network classifier to

detect network anomalies through monitoring the subtle changes of network traffic

patterns. The process of measuring network traffic pattern is achieved by monitoring the

Management Information Base (BIB) II variables, supplied by the Simple Network

Management Protocol (SNBP) II. The BAD system then converted each monitored BIB

variable values, collected during each observation window, into a Probability Density

Function (PDF), processed them statistically, combined intelligently the result for each

individual variable and derived the final decision. The BAD system has a distributed,

hierarchical, multi-tier architecture, based on which it could provide the health status of

each network individual element. The inter-tier communication requires low network

bandwidth, thus, making it possibly utilization on capacity challenged wireless as well as

wired networks.



Efficiently and accurately modeling network traffic behavior is essential for

building NADS. In this work, a novel approach to statistically model network traffic

measurements with high variability is introduced, that is, dividing the network traffic

measurements into three different frequency segments and modeling the data in each

frequency segment separately. Also in this dissertation, a new network traffic statistical

model, i.e., the one-dimension hyperbolic distribution, is introduced.
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CHAPTER 1

INTRODUCTION

In this information era, many claim that with the advent of the web and Internet, the future

has arrived. The dream of an interconnected planet where physical labor becomes

minimally important and knowledge creation becomes the source of value and wealth

appears to be here. The Internet is becoming more and more important for the world:

today, the Internet has become one of the most important carriers of information; people

also start to use the Internet to receive education, shop for groceries and do banking and

stock transactions. The new information and communication technologies increase the

installation choices. Bill Gates believes "it will affect the world seismically, rocking us in

the same way the discovery of the scientific method, the invention of printing, and the

arrival of the Information Age did."

However, today's communication network is still not very reliable and safe.

Network anomaly happens every once in a while. Network anomalies typically refer to

circumstances when network operations deviate from normal behavior [1-2]. Network

anomalies can arise due to various causes such as malfunctioning network devices,

network overload, malicious denial of service (DOS) attacks and network intrusions that

disrupt the normal delivery of network services; and may appear as severe network/service

outages or failures, or performance degradation which may finally lead to severe failure

due to untimely correction. Traditional network anomaly/fault management emphasizes

detection and processing of serious service failures and alarms [3]. This method is

necessary but when network alarms are captured, filtered and analyzed, service and

network failures are already present. Therefore, traditional anomaly management is more

1
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reactive in nature. In order to let network operate stably and reliably, one has to deal with

those anomalies which lead to network/service performance degradation. Since network

performance degradations are signatures of network anomalies and are preludes to service

failures, being able to detect them early and automatically enabling timely and rapid

anomaly containment and correction, through which serious network and service failures

can be avoided. This approach complements the traditional anomaly management.

1.1 Background

In the past few years, network anomaly detection has become an active research field.

Bany approaches were introduced to the design of the network anomaly detection system

(NADS). Basically, the proposed NADSs fall into two major categories according to their

functionality: signature based NADS and statistical based NADS.

1.1.1 Signature Based Network Anomaly Detection System

General speaking, the signature based NADS carries out its functionality based on the

knowledge/signatures obtained from the previously occurred anomalies. Many approaches

were studied in the design of the signature based NADS, including Expert System,

Bayesian Network, and Finite State Bachine. In the remainder of this section, each

approach will be reviewed and its advantages and problems will be given.

1.1.1.1 EDpert System. The IMPACT system, proposed by Jakobson et al. [4], is a

typical example of a signature based NADS using Expert System. The IBPACT system

employs an exhaustive database containing knowledge of previously occurred network

anomalies as "if-then" rules. The "if part" contains a symptom. This symptom is tested

against the current network situation and if the symptom is met, the "then-part" is
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executed, possibly activating other rules. When the symptoms of all rules of an anomaly

are activated, the anomaly is identified. Thus, the identification of anomalies heavily relies

on the symptoms that are specific to a particular manifestation of an anomaly. In [5], a

computationally based Expert System was proposed to manage anomaly propagation in

internetworks using the Fuzzy Cognitive Baps (FCB). The dynamic features of FCB are

exploited to characterize the time-varying aspects of network anomalies, while its

graphical features were used as a framework for representing the distributed properties of

anomaly propagation.

Expert System is a good approach for diagnosing anomalies, as it appears relatively

easy to implement and can provide accurate diagnosis. However, there are potential flaws

after some observations. When a potential issue arises, there is a strict definition of what

constitutes an anomaly from the diagnosis system point of view; either a potential anomaly

matches a rule of what an anomaly should be or it is defined as not being an anomaly

whatsoever. This means that the system cannot intelligently indicate what could be a

potential new anomaly arising. Another flaw derived from this is the human intervention

involved to create a new anomaly profile. To create a new profile, the administrator will

have to detect and pinpoint the anomaly "by hand" and insert its characteristics and

properties into the knowledge database in the form of a rule. This discrepancy makes these

unscalable and very sensitive to "noise" data. Finally, a minor flaw detected within the

system is the potential flagging of duplicate anomalies: two separate symptoms of a single

anomaly flagged by two individual rules, thus creating two anomaly indications.
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1.1.1.2 Bayesian Network. Bayesian Network (BN) is another solution for implementing

a signature based NADS due to their ability to handle uncertainty and represent cause and

effect relationships. A BN is a representation consisting of nodes representing uncertain

variables that are connected by arcs that represent cause and effect dependencies among

the nodes. The information known about one node (i.e. effect node) depends on the

information of its predecessor nodes that represent its causes. The relationship is expressed

by a probability distribution of each effect node, based on the possible values of its

predecessor nodes' variables. Notes that an effect node can also lead into other nodes,

where it then plays the role of a cause node. An important advantage that BSs offer is the

avoidance of building huge joint probability distribution tables that include permutations of

all the nodes in the network.

The BNs can represent deep knowledge by modeling the functionality of the

transmission network in terms of cause and effect relationships between element and

network behavior and anomalies. Also they can provide guidance in anomaly diagnosis.

Calculations over the same BN can determine both the precedence of anomaly alarms and

the areas that need further clarification in order to provide a finer grained diagnosis.

Several approaches were studied to design a signature based NADS using BNs. A typical

example can be found in [6], where Hood and Ji proposed an anomaly detection scheme

based on autoregressive models and BNs. In their work, a simple BN was constructed to

derive the network node level anomaly detection result from combining the network

performance variable level anomaly indicators. In [7], Huard and Lazar used a more

general BN model with multiple root nodes as the candidate anomalies. They also

presented a dynamic programming (DP) formulation for the network troubleshooting



5

problem. In [8], an anomaly detection framework was proposed based on a BN with

multiple root nodes chosen as the knowledge representation scheme. In their work,

multiple anomalies could be handled concurrently and the anomaly diagnosis procedure

was formulated as a partially observable Barkov decision processes.

The development of a diagnostic BN requires a deep understanding of the network

configurations in a domain, provided by domain experts. Also an anomaly detection

scheme based on BNs needs to maintain the possibility distribution that expresses the

relationship of the cause and effect used to establish the BN for each network anomaly.

Similar to the problem met in the Expert System, obtaining such information relies heavily

on network experts and it should be frequently updated in fast evolving network

environments. These constraints badly limit the capability of an anomaly detection scheme

based on BNs to operate in a new network environment.

1.1.1.3 Finite State Machine. An anomaly detection system based on finite state

machine (FSB) [9] models the network, and its behavior when an anomaly occurs, as a

FSB. It consists in a set of states, with transitions between states dictated by input events

such as anomaly alarms coming from the network. Each of the states defines either the

correct functioning of the network or a failure scenario. Therefore, only the failure

scenarios considered in the FSB can be identified. In [10-11], Bouloutas et al. proposed a

signature based NADS using the FSB model. The system consists of two FSBs, G and A,

one observing the behavior of the other. The behavior of G is described by Gbh before the

anomaly, and by Ga after the anomaly. The signals from G, after processed by a maximal

filter (i.e. the smallest set of symbols is passed), is fed into the observer A which can detect

that an anomaly took place. Wang and Schwartz [12] refined this detection scheme by
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constructing multiple independent FSB observers and proposing a fast real-time anomaly

detection mechanism to eliminate synchronization problems arising in the original FSB

decomposition method. Another work using FSBs in the design of a signature based

NADS was presented in [13]. First, the right FSB was constructed for each anomaly. And

then, given the anomaly model, the FSB correlates alarms "on-line" and identifies the

anomalies at the origin of the observed alarms. The advantage of this work is that an

extension of the Viterbi algorithm was used to deal with the corrupted data, thus enhancing

the system's capability to handle the alarm symbols with deletions, additions and changes.

General speaking, the advantage of the FSB model is that state machines are

designed with the intention of not just detecting an anomaly but also possibly identifying

and diagnosing the problem. The disadvantage of using FSM in network anomaly detection

lies in that the requirement that a FSB should be established for each existing anomaly

makes this approach of no capability to detect unknown anomalies. This is also

complicated by the fact that not all anomalies can be captured by a finite sequence of

alarms of reasonable length. Furthermore, the already established FSBs should be updated

each time the network configurations (including hardware and software) are changed.

1.1.1.4 Summary. It is well known that a single network anomaly may generate several

alarms at different segments within a network domain [14-15]. To identify the anomaly at

the original place, a network manager should check the alarms one by one. This is

impractical, and may soon be impossible, since networks and their dynamics are getting

ever more complex. The main advantage of the signature based NADS is its capability of

correlating several alarms generated by a single anomaly and providing the network

manager more accurate information on the type and location of the anomaly, thus making
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the task of solving the problem much easier. However, to correlate the alarms, the

signature based NADS requires the specification of the anomaly and the detailed network

configurations (both hardware and software). Obviously, these requirements badly limit

the performance of these approaches since it is not feasible to specify all possible

anomalies; and much more importantly, it is almost impossible to specify every detail of

the network configurations in a large scaled network. In addition, changes in network

configuration, either the hardware or the software, can change the types and nature of

anomalies that may occur, making modeling anomaly more difficult and in many cases

impractical.

1.1.2 Statistical Based Network Anomaly Detection System

Typically, statistical approaches generate statistical measures to determine how far the

observed behavior deviates from the previously measured one. Activity measures, like the

consumed CPU time, the consumed network bandwidth and the number of service

invocations, are typically taken as measures. Usually several of these measures are

included in a profile. Some systems merge the currently measured profile with the stored

one, while others keep the profile constant for a certain amount of time.

In [16-17], the authors proposed and implemented a real-time statistical based

anomaly detection system which used to identify anomaly condition in a transaction-

orientated wide area network. In their work, they attempt to deal with the variability in the

network traffic behavior. A normal traffic threshold is built from historical data. These

thresholds are then categorized by time of day, day of week and special days, such as

weekend and holidays. When newly measured data fails to fit within some confidential

interval of the threshold, an anomaly alarm is generated. The challenge in this case
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concerns the threshold themselves: what proper confidential interval of the threshold to set

for each measured network performance variable and what are their corresponding values.

This is complicated by the well-known fact that performance variables (such as utilization)

of networks undergo cyclic evolution and temporal fluctuation [18-19]. However,

improper settings of the thresholds may render high false alarm rate of the anomaly

detection scheme. These challenges are being tackled in [20-21].

Another typical example of the statistical based NADS design was presented in

[22-23]. In this system, the generalized likelihood ratio test and duration filter were

employed to measure the deviations of the behavior of six network performance variables

in two successive observation windows. However, identifying anomalies as significant

deviation between the measurements of the performance variables in two adjacent

observation windows may raise the false alarm rate, especially in a network environment

with highly variable traffic behavior. In this design, there is an underlying assumption that

the detection scheme considers the data in the first one of the two adjacent observation

windows as the normal profile. Thus, if a detection error occurs, this error will be

propagated in the future detection results.

General speaking, the main advantages of the statistical based NADS over the

signature based NADS include: 1) its operation doesn't need the specifications of the

anomalies to be detected and the detailed configurations of the network; 2) it has the

capability to detect unknown anomalies. However, there are three major difficulties

encountered by the statistical based anomaly detection scheme:

a) The statistical based NADS can only alert the occurrence of network anomalies, but it
can't provide further information or clues for pinpointing the location of the anomaly,
thus complicating the task of solving the problem;
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b) Obviously, the operation of the statistical based network anomaly detection scheme
relies heavily on accurate normal profiles. Indeed, the more accurately the network
performance parameters can be modeled, the better the anomaly detection system will
perform [24]. However, the accurate definitions of normal behavior for measured
network performance parameters are challenging tasks, dependent on several network
specific factors, such as the dynamics of the network configurations, the types of
applications running on the network and the statistically averaged user service
command pattern for a particular service. Actually, accurate modeling of normal
network behavior is still an active field of research, especially the online modeling of
network traffic [25-27]. For most measured network data, there are no analytically
simple models that can be used to learn the normal behavior.

c) Recent measurements of local-area and wide-area network traffic demonstrate that they
exhibit fractal behavior [28-29] and high burstiness [30]. The highly variable nature of
traffic behavior may affect the performance of an anomaly detection system by raising
the false alarm rate even though an accurate traffic normal profile can be achieved.

Since the advantages and disadvantages of the signature based and statistical based

network anomaly detection schemes have been demonstrated, an attempt can be made to

find an approach which will combine the advantages of signature based and statistical

based network anomaly detection techniques.

1.2 The Proposed Approach

In this dissertation, a novel design of a statistical based network anomaly detection system,

namely MIB Anomaly Detection (BAD) system, is proposed. The advantages of BAD

over other NADSs presented in the previous section can be summarized as follows:

• The BAD system is of a hierarchical, multi-tier architecture, with which BAD can
provide the operating status of each device affiliated to the network domain. In case
that an anomaly occurs, even though several alarms may be rendered at different
segments within the network domain, using this information the network manager can
track the original location of the network anomaly very easily. Not like the signature
based anomaly detection schemes, tracking the location of the anomaly in such a way
doesn't require the specification of the anomaly and the detailed network
configurations.
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• The BAD system detects network anomalies using only network performance
parameters that are provided by the Banagement Information Base (MMIB) variables.
Currently simple network management protocol (SNBP) is already installed in most
computer networks, thus the collection of local information required by anomaly
detection system needs little in additional resources. Also the standardized
representation of the data collected in each node facilitates data exchange between
nodes. The potential use of MMIB variables in network anomaly detection has been
explored previously in [22-23] by Thottan and Ji. The drawback of their work has
been discussed in Subsection 1.1.2. In this dissertation, a simpler, more efficient
anomaly detection algorithm has been developed which takes advantage of the
statistical differences of the MMIB variable measurements before and after an anomaly
occurs.

• As discussed previously, most earlier statistical based NADSs simply measured the
means and variances of the monitored network performance variables and detected
whether certain thresholds were exceeded; in nonstationary systems that often do not
follow the normal distribution, such systems generate incorrect decisions. To
overcome some of this problem, BAD system presented the measured MMIB variable
data in probability density function (PDF) format rather than isolated sample values,
and used statistical model (also mentioned as goodness-of-fit statistical tests [31-32])
and a neural network classifier [33] to identify network anomalies. Our simulation
results demonstrated that BAD could reliably detect the anomalies with traffic
intensity as low as 1% of the typical background traffic. These results show promise
for the use of BAD in detecting the anomalies in their early stages before they
develop into serious failures.

• As mentioned in last section, one challenge that is faced in the design of a statistical
based NADS is that the detection scheme may encounter difficulties in distinguishing
network anomalies from traffic bursts due to their similar characteristics, which may
lead to high false alarm rate. To enhance the anomaly detection capability of BAD
and reduce its false alarm rate, low pass filters are introduced to reduce the burstiness
in the measurements of the MIB variables.

• As mentioned previously, to achieve reliable detection results, the statistical based
NADS needs to maintain an accurate and efficient statistical model for each parameter
monitored. This task is challenged by the well-known fact that performance
parameters of networks exhibit high variability and cyclic evolution [19]. In this
dissertation, a novel approach is introduced to statistically model the network traffic
measurements with high variability, i.e., dividing the network traffic measurements
into three different frequency segments and modeling the data in each segment
separately. Also a new network traffic statistical model, i.e., the one-dimension
hyperbolic distribution, is introduced.
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1.3 Roadmap of This Dissertation

The whole dissertation is presented in six chapters:

1) Introduction;

2) A Novel Statistical Based Network Anomaly Detection Based on BIB — MIB
Anomaly Detection (BAD) system;

3) The Performance Evaluation Process;

4) The Grafted and Re-use Classifier Training Bethods;

5) The Application of Low Pass Filters in NADS Design;

6) A Frequency Based Network Traffic Statistical Bodeling Scheme;

7) Conclusions and Future Work.

Chapter 2 presents the implementation of the proposed BAD system, where each

system component is elaborated and corresponding algorithms are presented in detail. A

systemic performance evaluation process for BAD is shown in Chapter 3. In Chapter 4,

two approaches for adequately training the neural network classifier in a new production

network environment are presented in detail, namely the re-use and the grafted classifier

methods. In Chapter 5, the employment of low pass filters in the NADS to smooth the

burstiness in network traffic measurements and thus reduce the false alarms is investigated.

In Chapter 6, a frequency based network traffic statistical modeling scheme is presented.

Finally, Chapter 7 evaluates the work of this dissertation as a whole, concludes and

outlines further research possibilities.



CHAPTER 2

A NOVEL STATISTICAL BASED NETWORK ANOMALY DETECTION USING
MIB — MIB ANOMALY DETECTION (MAD) SYSTEM

In this chapter, a hierarchical, multi-tier, multiple-observation-window, statistical based

Network Anomaly Detection System (NADS) using only Management Information Base

(MIB) II supplied traffic related variables is introduced, as carried out by the BIB

Anomaly Detection (BAD) system which is capable of detecting and diagnosing the

anomalies (network/service anomaly or performance degradations) proactively and

adaptively. The MAD system utilizes statistical models and neural network classifier to

identify network anomaly through detecting the subtle changes in network traffic. It

monitors many BIB variables simultaneously, analyzes statistically their performance,

combines intelligently the individual decisions and derives an integrated result of service

compliance. This provides variable specific decisions on service compliance as well as

combined-variable decisions employing a neural network classifier, all based on

calculations using PDFs rather than individual or averaged sampled values, to detect

network/service anomalies with low false alarm rates. The BAD system has a distributed,

hierarchical, multi-tier architecture, based on which BAD could provide the health status

of each network individual element. Using this information, the network manager may

locate the network anomaly much more easily. The inter-tier communication requires low

network bandwidth, thus, making it possibly utilization on capacity challenged wireless as

well as wired networks.

12
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2.1 The Hierarchical Architecture of MAD

BAD is, in general, a distributed application, deployed hierarchically over several tiers,

with each tier containing several Anomaly Detection Agents (ADAs). ADAs are the basic

anomaly detection components that monitor the activities of the network to which they are

attached. Different tiers correspond to different network scopes that are monitored by the

agents affiliated to them.

Figure 2.1 A sample network.

For the sample network shown in Figure 2.1, the anomaly detection system can be

divided into 2 tiers, that is, Tier ADA and Tier2 ADA. A Tier ADA monitors the

activities of each network device, including workstation, server, switch and each interface

of the router within a departmental LAN, through measuring its BIB variables. Through

statistically analyzing the BIBS variable data collected from each network device, the Tierl

ADA derives a Network Device Status Indicator (NDSI) that presents the operating status

of the monitored network device; and then generates a report, which contains the NDSI for

each network device and its corresponding IP address, and sends to the Tier2 ADA. The
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Tier2 ADA collects MMIB variable data from the firewall and the routers as well as the

reports from Tier 1 ADAs. The system hierarchy is shown in Figure 2.2.

From this example, one can clearly see that with the hierarchical architecture BAD

system can monitor the operating status of each device within the network domain. In case

that an anomaly occurs, although several alarms may be generated at different segments of

the network, it is very easy to track the anomaly at its originally occurred place using the

detection results provided by the ADAs at different tiers. Furthermore, it is advantageous

over the signature based NADS that tracking the anomaly in such a way doesn't require the

specification of the anomaly and detailed network configurations.

Figure 2.2 System hierarchy.

2.2 Anomaly Detection Agent: The Basic Network Anomaly Detection Unit

Anomaly Detection Agent (ADA) is the basic network anomaly detection unit, which uses

statistical model and a neural network based classifier to detect anomalous network

conditions. The monitoring process utilizes multi-layered time windows, ranging from a

few seconds to several hours or more, each layer aggregating the layer below. ADA

monitors many MMIB variables simultaneously from each network element affiliated to it,

analyzes statistically their performance, combines intelligently the individual decisions and
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derives an integrated result of service compliance. The philosophy of ADA is that the

heavier part of the analysis of the data be carried out early on, at the statistical analysis

stage, before the observed status data arrives at the classifier, in order to make the critical

and delicate task of classifying as easy as possible.

The statistical component builds and analyzes real-time probability density

functions (PDFs) of the monitored ,MIB variables and continuously compares the measured

PDFs to preset or generated reference PDF models of normal activity. This provides

variable specific decisions on service compliance as well as combined-variable decisions

employing a multivariate classifier, all based on calculations using PDFs rather than

individual or averaged sampled values, to detect network/service anomalies or failures with

low false alarm rates. The statistical analysis bases its calculations on PDF algebra, in

departure from the commonly used isolated sample values or perhaps their averages. The

use of PDFs is much more informative, allowing greater effectiveness than just using

averages. A diagram of an ADA is illustrated in Figure 2.3, which consists of the following

components: the BIB data probe, the low pass filter, the statistical model, the neural

network classifier and the post processor. The functionality of these components is

described below:

• MIB Data Probe: Collects MIB variables from each individual network element the
ADA is attached to, abstracts the data into a set of statistical variables to reflect the
network status, and periodically generates reports to the low pass filter module.

• The Statistical Bodel: Baintains a reference model of the typical network and host
activities, compares the reports from the low pass filter module to the reference models,
and then generates a variable-level anomaly decision for each of the monitored BIB
variables individually and forms a anomaly status vector (ASV) that combines all or
groups of variable-level anomaly detections to feed into the neural network classifiers.

• Neural Network Classifier: Processes the ASV vector from the statistical model to
decide whether each host affiliated to the ADA operates in normal condition.



• Post Processor: Generates reports for the high tier ADA.

16

Figure 2.3 Anomaly detection agent.

2.2.1 MIB Variable Collection

In network anomaly detection systems, gathering the network traffic data needed to

evaluate the operating status of the network is a significant portion of the overall

processing burden. However, many networks already deploy SNBP based network

management [34], thus MMIB variables are available to be collected, in many network

entities. By enlisting the BIB objects, BAD promises a lower overhead approach for

analysis by the anomaly detection engine. The SNBP server queries the SNBP agents and

retrieves the value of MMIB objects to perform monitoring functions. It can also modify the

value of specific BIBS variables thus changing the settings of agents. According to

configuration and policy specification, agents can send unsolicited information to the

network manager or controller. The advantages of this approach are:

• If an SNBP agent already is operating at the node, as is likely, the collection of local
information needs little in additional resources.

• A large number of traffic related performance parameters are readily available, as
needed for network anomaly detection.
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• The standardized representation of the data collected in each node facilitates data
exchange between nodes.

• It can be extended to collect additional data relative to network activities.

• It does not depend on the operating system.

Choosing a subset of MMIB variables is the first important step toward developing an

efficient network anomaly detection system. The Management Information Base maintains

a database of 171 variables [35]. According to the functionalities described by these

variables, they fall into the following eleven groups: System, Interfaces, Address

Translation (AT), Internet Protocol (IP), Internet Control Message Protocol (ICMP),

Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Exterior Gateway

Protocol (EGP), OSI Internet Management (01M), Transmission, and Simple Network

Management Protocol (SNMP). Each group of MMIB variables describes a specific

functionality of a network entity. In terms of the syntax ruled by Structure of Management

Information, these MMIB variables can be categorized into ten types [36]. In the

implementation of MAD, only the counter type MMIB variables are selected since this type

of variable changes frequent, thus can provide more clues for tracing the subtle changes in

the network traffic pattern.

Selecting the appropriate BIBS variables should be carried out in two steps. The

first step is selecting proper BIBS variable groups and the second is selecting the

appropriate variables in the groups selected in the first step. Since commonly encountered

network anomalies occur in the data link, network, and transport layers of IP/data

networking environment, one should pay more attention to the Interface, IP, TCP and UDP

BIBS variable groups. Within a particular BIBS variable group, there exists some

redundancy. Thus, when selecting the variables within a specific group, the first thing one
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needs to do is avoid the redundant variables and ensure that key information is indeed

captured in at least one variable. The reason for wanting all key information is that: the

anomaly detection system should be provided with all important clues for capturing the

occurred anomaly. The desire to avoid redundant variables stemmed from a concern that

the operating efficiency of the system designed may be reduced if implementations

contained excessive instrumentation. To explore the relationship of BIBS variables within a

particular group so as to avoid the redundant variables, the case diagram [37] is utilized.

The case diagrams for the Interface, IPA, UDP and TCP (divided into two parts, one

presents the relationship between the TCP connection/session related BIBS variables and

the other presents the relationship between the TCP segment related BIB variables) are

illustrated in Figure 2.4. Considering these case diagrams and the potential use for the

anomaly detection, 27 BIBS variables are selected, as listed in Table 2.1.

In the Interface group, nine BIBS variables are selected as listed in Table 2.1. When

the network operates in the normal situation, these variables may provide redundant

information for the network anomaly detection system. For instance, consider the variable

interface outgoing unicast packet rate ifOutUcastPkts, interface outgoing non-unicast

packet rate ifOutNUcastPkts and the interface outgoing byte rate ifOutOctets. The variable

ifOutUcastPkts and ifOutNUcastPkts actually contain the same traffic information which

may be provided by ifOutOctets in case of the normal network operating situation.

However, this principle doesn't hold in some anomaly network operating situation. To

understand this point, one may consider the following scenario. Assume that the Ethernet

card of a host malfunctions due to improper configuration and sends out network frames

with improper small size. In such a situation, the final destination or the medium relay
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devices may receive a flooding of small packets. In measuring the variables ifOutOctets at

the faulty host, one may not find out the abnormal activities since the outgoing byte rate

doesn't change so much. On the other hand, the variables ifOutUcastPkts demonstrates

significant change since the packet with normal size from upper layers is cut and

encapsulated into frames with improper small size. Considering this issue, the

implementation of the proposed network anomaly detection algorithm adopts all of these

three MIB variables although they may provide redundant traffic information.
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In the IP and UDP groups, six and four MMIB variables are selected respectively.

From the case diagram illustrated in Figure 2.4(b) and 2.4(c), obviously these variables are

non-redundant. The counter type BIBS variables in the TCP group may be divided into two

categories, i.e., connection related variables and TCP segment related variables. Four BIBS

variables are selected in each category. From the case diagram shown in Figure 2.4(d), one

can clearly see that these selected variables are non-redundant.

2.2.2 The Statistical Model

The statistical model provides the two basic functionalities, i.e., 1) convert the BIBS traffic

variable data into PDF format, and 2) compare the real-time PDF to the preset or generated

reference PDF models using the similarity measurement algorithm to generate the variable
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level abnormality indicator. In this section, these two functions will be described in detail.

2.2.2.1 Data Format Conversion. Representing the BIBS variable measurements into

PDF formats involves partitioning the sample spaces of the measurements into a set of

complete non-overlapping bins and calculating the frequencies (i.e., probabilities) that the

observed events fall within particular bins of the PDF histogram, for the partition scheme

deployed. The choices of the partition scheme and the value of the total number of bins

utilized in that partition scheme are determined by tradeoffs that optimize classification

effectiveness along with the cost of system resources, such as computational complexity

and storage and processor memory. Yet, little systematic investigation seems to have been

undertaken on this issue. In this dissertation, seven different partition schemes were

investigated: uniform, uniform percentile, logarithmic, x-axis linear, x-axis square root, y-

axis linear and y-axis square root.

• Uniform Partition Scheme (UPS): The UPS is the most straightforward one; it
partitions the sample space into bins of equal width. Assume x 0 , x1 , 	 AN  is the
partition boundaries of the sample space with the minimum x0 and the maximum AN  ,
where N is the total number of bins. The partition boundaries can be calculated using
the following enuatinns

• Uniform Percentile Partition Scheme (UPPS): The UPPS is an extension version of
UPS. It generates bin boundaries so that a coming event falls into each bin with equal
probability. Assume F(x) is the cumulative distribution function (CDF) of a PDF.
Thus:
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• Logarithmic Partition Scheme (LPS): The LPS is designed to divide the sample space
into the segments with the same width in the logarithm order, as represented more
clearly by the following equations.

log (1,x, _x0) (1+ - Bo ) = Ni ,i =1,2, 	 N-1	 (2.5)

xi = Bo -1+ (1+ xi - Bo  )7i, i =1,2, 	 N -1	 (2.6)

• X-axis Linear Partition Scheme (XLPS): The XLPS is designed to partition the sample
space symmetrically with the symmetric point placing at the central point of the sample
space. At the left side of the symmetrical point, the bin span increases linearly when
the bin index increases. On the contrary, at the right side of the symmetrical point the
bin width decreases linearly when the bin index increases. Figure 2.5 may illustrate the
XLPS partition scheme more clearly. The bin boundaries can be calculated by the
following equations.
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Figure 2.5 The XLPS partition scheme.

• X-axis Square Root Partition Scheme (XSRPS): The XSRPS is similar to XLPS except
that the bin width is decreasing or increasing at the left or right side of the symmetrical
point at a rate of the square root of its index, as illustrated in Figure 2.6. The bin
boundaries can be calculated by the following equations.
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2.2.2.2 Similarity Measurement Metrics. Statistical methods have been used in security

and fault management systems to detect anomaly network activities; however, most of

these systems simply measure the means and the variances of some variables and detect
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whether certain thresholds are exceeded. Valdes, et al, developed a more sophisticated

statistical algorithm, for SRI's NIDES system, by using a 2 -like test to measure the

similarity between short-term and long-term profiles [38]. Cabrera, et al, used Kolmogrov-

Smirnov (KS) statistics to model and detect anomaly traffic patterns [39].

In this work, the similarity measurement metric (SMM) is mainly used to compare

the real-time observed Probability Density Function (PDF) or Cumulative Density

Function (CDF) of the BIB variable measurements to its corresponding preset or

generated reference PDF or CDF models. The distance or associated probability produced

by the SMM for each BIBS variable will be used to construct an anomaly status vector

(ASV) and fed into the Neural Network Classifier for further process. In the design of

MAD, the comparative efficiency of seven groups, seventeen SMMs, was investigated.

Notation:

ski): the values at bin i of the observed PDF histogram partition.

rki): the values at bin i of the reference PDF histogram partition.

Ski): represents the value of bin i of observed CDF.

Oki: represents the value of bin i of reference CDF.

Ns: represents the number of samples in the observed PDF or CDF

NR: represents the number of samples in the reference PDF or CDF

N PDF : represents the number of bins in the partition of the observed or reference PDF

A. X2 type Tests (CST).	 The x2 type tests have been employed in the analysis of data

in a number of scientific areas since they were introduced by Mise [40]. In this

dissertation, two versions of X2 type tests are under investigation. The x2 distances and an
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associated probability value V of the SMMs, for the two versions of x2 type tests, are given

by:
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C. Weighted Similarity Statistic (WSS). Since the network anomalies mainly reflect as

the traffic overwhelm which appears as the extreme high traffic rate, or congestion which

appears as the extreme low traffic rate, a successful design of the similarity measurement

metric should be most sensitive to the difference between the current observed and

reference PDFs/CDFs at the extreme ends of the distribution of the traffic measurements,

but not the median part. Considering that, a weight function is designed, which amplifies

the difference between the values in the bins of the observed and reference PDFs at the

extreme ends, but reduces those at the medium part, as shown in Equation 2.27. Figure 2.9

illustrates the weight function with 16 bins.
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Three versions of weighted SMMs are shown in the following. The weight function

proposed above is applied in the metrics WSS1 and WSS1; while another weight function,

derived from Anderson-Darling similarity measurement test [42], is applied in the metric

WSS3.
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V = 2E (— y -1 - 2 i 2 D 2e 	
(2.33)

i =1

E. Fractional Deviation type Statistic (FDS). 	 In the design of MAD, two versions of

FDS are studied, as illustrated below.

• Fractional deviation type statistic version 1 (FDS1): The distance and an associated
probability value V of the FDS1 are given below.

D = E 'ski) x Ns — rki)x NR I
(2.34)

rki) x NR

tan -i (0.01 x D)
V = 	 (2.35)

2

• Fractional deviation type statistic version 2 (FDS2): The distance and an associated
probability value V of the FDS1 are shown as below:

Is (i) X Ns — r (i)x N R ID —
	

[s (i) xN s + r (i) X N R 	(2.36)

2

V = 
tan -1 (0.01 x D) 	 (2.37)

2

F. Single Number Statistics (SNS)

• Single number statistic version 1 (SNS 1): The distance of the SNS1 can be calculated
through the following two steps:

i. Calculate the mean of the observed PDF: m = is(i) 	 (2.38)

ii. D = 2  r(m) 1
rm.

(2.39)

• Single number statistic version 2 (SNS2): The procedure to calculating the distance of
the SNS1 is given by the following two steps:

i. Calculate the mean of the observed PDF: m = is(i) 	 (2.40)

ii. D = 2R(m) —1	 (2.41)
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G. Other types of Similarity Statistics

• Fractional Deviation from the Mean (FDM): Let As be the average of the
measurements of a monitored variable in a given observation time window and AR be
the average of the measurements of the reference model for that variable, then the
distance of the fractional deviation from the mean statistic is given as:

• Fractional Deviation from Mean over Standard Deviation (FDMSD): The distance of
the fractional deviation from the standard deviation is given as.

where O'R stands for the standard deviation of the measurements of the reference
model.

Extensive experiments have been carried out, to evaluate the effectiveness of the

partition schemes and similarity measurement metrics presented above. The investigation

results will be presented in Chapter 3.

2.2.3 Neural Network Classifier

Neural network classifiers are widely considered as an effective approach to detect

network anomaly and intrusion. Ghosh et al., used backpropagation (BP) neural networks

to detect anomalous user activities [44]. Jiang et al., built a network security management

system using artificial intelligence technologies [45].

In MAD, a neural network classifier is utilized. The type of neural network adopted

here is the typical BP network, shown in Figure 2.10, characterized by a 3-layer

architecture. The BP is a multi-layer feedforward network, which contains an input layer,

one or more hidden layers, and an output layer. BPs have strong generalization capabilities

and have been applied successfully to solve a variety of difficult and diverse problems,

especially as they may relate to pattern recognition challenges. For this study, after testing
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BP networks with the number of hidden neurons ranging from 2 to 8, it was found that two

hidden neurons were sufficient to carry out the task at hand. This results in a rather small

neural network, which economizes computation and storage and improves behavior.

During initialization, a sequence of labeled ASVs is provided as input to the neural

network classifier in order to train it. During run time, the ASVs are submitted to the

neural network for classification. The neural network processes the pattern of the ASV

components at hand and generates a value v E [-1, 1], where v= —1 corresponds to an

anomaly and v=1 to normal conditions, with absolute certainty. For simplicity, it is

presumed here that values for v in-between these two extremes, represent anomaly or

normalcy with confidence proportional to the numerical magnitude of v. Thus, using the

neural net classifier, MAD's decision process combines the similarity information of all

PDFs in one integrated and unified result. This combining is powerful in that it achieves

higher discrimination and decision robustness.

In the MAD system design, an algorithm for the real-time updating of the reference

model was also designed. Here, the output of the BP neural network classifier is a

continuous variable u that attains values between —1 and 1, where —1 means anomaly, with
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absolute certainty, and 1 means normalcy, again with complete confidence. In between, the

values of u indicate proportionate levels of certainty. Ordinarily, the value of u=0 separates

anomalies (u<0) from normal occurrences (u..0). The function for calculating s is

Let from be the reference model before updating, rnei the reference model after

updating, and robs the observed normal activity within a particular time window. The

formula to update the reference model is:

where a is a system operator defined learning rate, while s, the output of the neural

network classifier when detecting a normal event, serves here as a dynamic adaptation rate

that is proportional to the confidence value.

Through the above equations, it was ensured that the reference model would be

updated actively and proportionately for typical traffic, while kept unchanged when

anomalies occurred. The anomaly events will be diverted and stored for future neural

network learning.
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THE PERFORMANCE EVALUATION PROCESS

3.1 The Evaluation Testbed Configuration

A research stand-alone network was constructed for the purpose of carrying out actual

network anomaly experiments in a controlled setting. The network topology is shown in

Figure 3.1. It comprises four network subnet segments, connected by a layer 3 switch,

labeled L3S. Each subnet consists of several workstations of various operating systems,

namely, Windows, Linux and Solaris. A powerful PC located in Subnet 4 serve as HTTP,

SMTP and FTP servers, and visited by the workstations in Subnet 1, 2 and 3. The L3S

switch provides the routing functionality needed for communication from one network

segment to another. In these experiments, traffic with self-similar characteristics that

mimics Internet type traffic was constructed, as the background traffic of a given intensity.

Many actual network experiments have been carried out focusing on the various

network anomalies; including ethernet broadcast storm, ethernet runt flood, ethernet

improper long/short frame errors and so on. In order to demonstrate the integrated

performance of the proposed MAD system, representative results collected during nine

different Ethernet improper short frame error scenarios are presented here, which were

constructed by improperly configuring Network Interface Card (NIC) of the workstation

located in Subnet 1 and triggering off transmitting ethernet frames with improper short

size, namely, 100 bytes/frame, from it. These scenarios ranged from modest (10%) to small

(0.5%) values of the ratio of anomaly to background, R=(AIB), traffic intensity, so as to

33
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investigate the sensitivity of MAD to the network anomaly activity, as the ratio R became

small, to almost insignificant levels. The results obtained with other anomalies are similar.

Figure 3.1 Schematic of the testbed network facility.

As mentioned, representative results of nine Ethernet improper short frame error

scenarios, with different background and anomaly traffic loads, are presented here, as

listed in Table 3.1. For each simulation scenario, network traffic was collected over a

duration of 24 hours. The data were recorded, by polling the monitored network entities

through sending them SNMP queries from the anomaly detection agent (ADA)

periodically, with a period of one second. As listed in the last two columns of Table 3.1,

the degree of self similarity (measured by Hurst Parameter [46]), and intensity of Noah

effect (measured by the Hill estimator [47]), for the background traffic simulated in the

experiments, have been estimated. The estimating results of Hurst parameters indicated

that the background traffic simulated in the experiments present medium degree of self-
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similarity, or high degree in some cases, such as scenario 8 and 9; and the estimating

results of the Hill estimator indicated that the background traffic demonstrated high degree

of burst. The background traffic simulated in such way is conductive to investigate the

performance of MAD operating in the some extreme worse network environments.

The observation window, over which the variable PDFs were built, was of 64

seconds in duration. Therefore, the total collected data were gathered using 24*3600/64

=1350 observation windows, generating 1350 PDF records for each variable and for each

scenario. These data were segmented into two separate sets, one set of 800 records for

training and the other of 550 records for testing. The training records included typical as

well as anomaly traffic, labeled accordingly. In each scenario, the system was trained for

100 epochs. As mentioned, the system classifier used throughout this study was a

backpropagation neural network classifier with 2 hidden neurons.

3.2 Experiment Results and Discussion

The performance of MAD is evaluated based on the misclassification rates and the mean

squared root errors kMSR) of the classifier. The misclassification rate is defined as the

percentage of the network traffic that is misclassified by the neural network classifier. The
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misclassification rate is the sum of the false positive and false negative misclassifications.

Typically, the mean squared root errors kMSR) metric, computed at the output of the

classifier, serves as an indicator of convergence of the neural network; it is, of course,

directly related to the misclassification rate.

3.2.1 The Results for Investigating the Efficaciousness of the Partition Schemes

The MSR criterion data for the seven partition schemes, UPS, UPPS, LPS, XLPS, XSRPS,

YLPS and YSRPS, over the nine anomaly scenarios, are given in Table 3.2. It should be

noted that KS3 similarity measurement algorithm is employed in this evaluation

experiment. The values are presented after multiplication by a factor of 100 for ease of

display. It may be seen that the neural network may be judged as having converged for all

seven schemes for scenarios 1 through 8 (R=10 to 1%), while for scenario 9 (R=0.5%)

convergence appears to have failed. This assessment is confirmed in Table 3.3 that depicts

the misclassification performance, as should be the case due to the direct relationship of

MSR to misclassification rate.

The experimental results of the evaluation of the performance of the above

mentioned seven partition schemes are listed in Tables 3.3, 3.4 and 3.5. Specifically, Table

3.3 depicts the total misclassification rate, while Tables 3.4 and 3.5 show its component

false positive and false negative rates, respectively. From the results, it is found that all of

the seven metrics perform well and achieve roughly comparable results. For example, for

scenario 6 (R=3%), the total misclassification rate achieved by the UPPS schemes is only

0.32%, with the UPS, LPS, XLPS, XSRPS, YLPS and YSRPS schemes only slightly

behind at 0.43%. These are low misclassification rates for such small anomaly ratio values.

For the thresholds used in this study at the output of the classifier (s=0), most of the
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misclassifications are of the false positive character and not the false negative type;

however, this balance could be tipped the other way by a different threshold value choice.

Most importantly, MAD discerns a network anomaly when the anomaly is still in

its very early stages, at about 1 percent of the background intensity. This early warning of a

developing anomaly is beneficial because it allows countermeasures to be launched by the

network administrator before damage occurs.



3.2.2 The Results for Investigating the Effectiveness of the Similarity Measurement
Metrics

The classification results for evaluating the effectiveness of the seventeen similarity

measurement metrics are presented in Table 3.6, 3.7, 3.8 and 3.9. Specifically, Table 3.6

lists the M5R criterion data over the nine scenarios; Table 3.7 presents the total

misclassification rate and Table 3.8 and 3.9 depict its component false positive and false

negative rates, respectively. It should be noted that UPB5 partition scheme is employed in

these evaluation experiments. From the results, one can make the following conclusions:

A. All of the proposed similarity measurement metrics, except the W553, can achieve
good performance over the scenarios 1 through 8; while the neural network can not
achieve convergence in the case of scenario 9, due to its anomaly traffic is too low to
be detected by MAD. The results are consistent with those received from the
experiments for evaluating the partition schemes.

B. Comparing the two versions of x2 type metrics, it is found out that both of C5T1 and
C5T1 can achieve prefect performance, while C5T1 has a slightly lower
misclassification rate than C5T1.

C. Regarding the versions of K5 type metrics, the K51 and K53 perform significant better
than K51 and K54, especially in the cases of scenario 1 through 4.

D. The three versions of weighted similarity statistic (W55) present far different
performance. In comparison of the classification results of W551 and WSS3 which
applied the weight function designed by ourselves and the weight function borrowed
from Anderson-Darling similarity metric respectively, to the same similarity
calculation equation, it is observed that the performance of W553 is not comparable
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with that of W551. Also the W553 can not achieve stationary performance, which
indicates that the weight function borrowed from Anderson-Darling statistic doesn't
work consistently with the rest part of W553. On the other hand, the W551 performs
very well. It can achieve 0% misclassification rate over scenario 1 through 4, which
means that the weight function designed by us works consistently with the rest part of
W551. When applying the weight function designed by ourselves to K52, resulting in
W552, one can find out that W552 works worse than K52, which indicates that the
weight function designed by us doesn't work consistently with K52.

E. Referring to the two versions of Kupier's K5 type statistic, one can find out that the
KK5 1 achieves better results than KKS1 does over most scenarios. For example, over
scenario 1 through 4, KK51 can achieve 0% misclassification rate, but KK52's
misclassification rates are ranged from 0.32% to 2.37%.

F. In case of two versions of fractional deviation type statistic, the classification results
indicate that FD52 performs slightly better than FD5 1.

G. The 5N5 1, 5N52, FDM and FDM5D are only four versions of similarity measurement
metrics studied here that utilized the scalar value, instead of PDF, for their evaluation.
Although these metrics has shown similar performance as other PDF based metrics has
when the anomaly traffic is low, it performs rather poorly when the anomaly traffic is
higher (more than R=5% or so), therefore they are not the best choice here.

Based on the observations above, it is found out that C5T1, C5T2, K51, KS3,

W551, KK5 1 and FD52 achieve roughly comparable classification results and perform

significantly better the other metrics. Especially, they achieve 0% misclassification rate

over the scenario 1 through 4, which means utilizing these metrics MAD can detect all of

the anomalies with no false alarm. Therefore, they can be the best choices for MAD.
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Table 3.6 The Mean 5quare Root Error (x100) Neural Network Convergence Criterion in
the Emulation of the Effectiveness of the Similarity Measurement Metrics

Scenario #
SMM* 2 2 3 4 5 6 7 8 9

CST2 0 0 0 0 2.52 0.96 2.63 2.28 42.57
CST2 0 0 0 0 2.26 2.02 2.57 0.96 29.64
KS1 0 0 0 0 2.46 1.06 2.64 0.77 46.60
KS2 2.05 0.77 0.59 2.95 3.40 4.92 2.29 2.89 33.28
KS3 0 0 0 0 2.57 2.24 2.62 2.56 45.23
KS4 2.22 0.79 6.69 3.58 2.38 2.85 2.59 2.60 37.40

WSS2 0 0 0 0 2.24 2.02 2.62 2.24 39.94
WSS2 5.52 2.57 2.63 3.70 5.77 5.37 4.42 4.55 39.54
WSS3 26.89 32.02 4.92 2.92 45.27 2.27 2.55 32.92 44.65
KKS 2 0 0 0 0 2.47 2.20 2.60 2.02 43.45
KKS2 0.92 2.63 6.23 5.28 2.60 2.08 2.22 0.82 42.26
FDS 2 2.28 2.02 2.52 2.58 2.55 2.55 2.63 2.57 25.25
FDS2 0 0 0 0 0.86 0.95 2.55 0.62 27.27
SNS 2 2.65 2.24 2.53 2.82 2.66 2.64 2.66 2.62 40.00
SNS2 2.99 2.58 0.94 2.33 2.62 2.62 2.65 2.58 46.78
FDM 2.92 2.04 6.36 2.68 2.64 2.53 2.57 2.72 55.36

FDMSD 3.69 3.29 4.47 3.04 6.27 2.62 2.06 6.02 50.49
*SMM stands for 5imilarity Measurement Metric.

Table 3.7 The Misclassification Rate in the Emulation of the Effectiveness of the
Similarity Measurement Metrics (in Percentage)

Scenario # 2 2 3 4 5 6 7 8 9

CST2 0 0 0 0 0.43 0.32 0.43 0.32 29.53
CST2 0 0 0 0 0.32 0.32 0.43 0.32 29.42
KS2 0 0 0 0 0.43 0.32 0.43 0.22 28.46
KS2 0.59 0.30 0.30 0.89 0.89 2.48 0.59 0.90 22.07
KS3 0 0 0 0 0.43 0.43 0.43 0.43 29.74
KS4 0.32 0.43 2.37 2.78 0.43 0.53 0.43 0.43 28.46

WSS1 0 0 0 0 0.32 0.32 0.43 0.32 28.67
WSS2 1.48 0.89 0.89 2.29 2.78 1.48 2.48 2.50 22.07
WSS3 6.72 8.00 2.08 0.89 22.32 0.32 0.64 26.43 32.02

KS1 0 0 0 0 0.43 0.43 0.43 0.32 29.00
KKS2 0.32 0.53 2.37 2.78 0.43 0.53 0.43 0.43 29.74
FDS 2 0.53 0.32 0.59 0.59 0.43 0.42 0.43 0.43 24.55
FDS2 0 0 0 0 0.64 0.32 0.43 0.22 27.22
SNS 2 0.43 0.32 0.89 0.89 0.43 0.43 0.43 0.43 29.00
SNS2 0.53 0.43 0.59 0.59 0.43 0.43 0.43 0.43 28.78
FDM 0.53 0.53 2.08 0.59 0.43 0.43 0.43 0.43 29.53
FDMSD 2.03 0.85 2.37 0.89 2.72 0.43 0.53 2.60 29.53

*SMM stands for Similarity Measurement Metric.
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Table 3.8 The False Positive Rate in the Emulation of the Effectiveness of the Similarity
Measurement Metrics (in Percentage)

Scenario #
SMM* 1 2 3 4 5 6 7 8 9

CST1 0 0 0 0 0.43 0.32 0.43 0.32 9.18
CST2 0 0 0 0 0.32 0.32 0.43 0.32 9.61
KS2 0 0 0 0 0.43 0.21 0.43 0.21 8.43
KS2 0.59 0.30 0 0.89 0.89 1.48 0.59 0.90 12.46
KS3 0 0 0 0 0.43 0.43 0.43 0.43 8.96
KS4 0.32 0.43 2.37 1.78 0.43 0.53 0.43 0.43 8.43

WSS1 0 0 0 0 0.32 0.32 0.43 0.32 8.43
WSS2 1.48 0.59 0.89 0.89 1.78 1.48 1.48 1.45 13.06
WSS3 0 0 1.78 0.89 0.21 0.21 0.43 9.18 23.91
KKS1 0 0 0 0 0.43 0.43 0.43 0.32 7.90
KKS2 0.32 0.53 2.37 1.78 0.43 0.53 0.43 0.43 8.96
FDS1 0.53 0.32 0.30 0.59 0.43 0.43 0.43 0.43 17.29
FDS2 0 0 0 0 0.64 0.21 0.43 0.21 11.63
SNS1 0.43 0.32 0.89 0.89 0.43 0.43 0.43 0.43 8.64
SNS2 0.53 0.43 0 0.59 0.43 0.43 0.43 0.43 8.64
FDM 0.53 0.53 2.08 0.30 0.43 0.43 0.43 0.43 9.28

FDMSD 0.43 0.85 2.37 0.89 1.07 0.43 0.53 1.60 8.96
*5MM stands for Similarity Measurement Metric.

Table 3.9 The False Negative Rate in the Emulation of the Effectiveness of the Similarity
Measurement Metrics (in percentage)

SMM*
Scenario # 1 2 3 4 5 6 7 8 9

CST1 0 0 0 0 0 0 0 0 10.35
CST2 0 0 0 0 0 0 0 0 9.82
KS1 0 0 0 0 0 0.11 0 0 10.03
KS2 0 0 0.30 0 0 0 0 0 8.61
KS3 0 0 0 0 0 0 0 0 10.78
KS4 0 0 0 0 0 0 0 0 10.03

WSS1 I 0 0 0 0 0 0 0 0 10.25
WSS2 0 0.30 0 0.30 0 0 0 0 8.01
WSS3 6.72 8.00 0.30 0 11.10 0.11 0.21 7.26 8.11
KKS1 0 0 0 0 0 0 0 0 11.10
KKS2 0 0 0 0 0 0 0 0 10.78
FDS 1 0 0 0.30 0 0 0 0 0 7.26
FDS2 0 0 0 0 0 0.11 0 0 15.47
SNS1 0 0 0 0 0 0 0 0 10.35
SNS2 0 0 0.59 0 0 0 0 0 10.14
FDM 0 0 0 0.30 0 0 0 0 10.25
FDMSD 1.60 0 0 0 0.64 0 0 0 10.57

*SMM stands for Similarity Measurement Metric



CHAPTER 4

THE GRAFTED AND RE-USE CLASSIFIER TRAINING METHODS

4.1 Methodology

In the previous chapters, a hierarchical, multi-tier, multi-observation-window, statistical

based network anomaly detection system have been prototyped, namely the BIBS Anomaly

Detection (MAD) system. In installing and operating MAD, while both normal and

anomaly data may be available in a test network, only normal data may be routinely

available in a production network, thus MAD may be ill-trained for the unfamiliar network

environment. In this section, two approaches for adequately training the neural network

classifier in the target network environment are presented in detail, namely the re-use and

the grafted classifier methods. The re-use classifier method is better suited when the target

network environment is fairly similar to the test network environment, while the grafted

method can also be applied when the target network may be significantly different from the

test network.

In a production network, during its intended operation, anomaly detection is

expected to find deviant activity. The classifier processes the current pattern of activity and

rates it with a similarity score as to whether it is more similar to normal or anomalous

activity. The MAD classifier has employed supervised training that utilized labeled data

collected during normal and anomalous activity periods in some test network. The MAD

classifier, like most such classifiers, requires data records of the typical (normal) and

anomaly-labeled variety in sufficiently large amounts. Moreover, if one desires to

distinguish between different classes of anomalies or perhaps individual anomalies, data

for all such different anomalies need to be made available for training. Such data will
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enable the neural net classifier to learn the difference between normal and anomalous

patterns of activities, thus achieving high detection and low false alarm rates. In a test or

laboratory network, the experimenter or developer can investigate and record the launching

of all desired known anomalies selecting from a library of anomalies. Such investigations

of anomalies can be carried out and recorded for various background traffic types and

levels.

The challenge that is faced is that while both normal and anomaly data are easily

and conveniently available for a test network, only normal data are routinely available for a

production network. The classifier of the network anomaly detection system will probably

be ill-trained for the new network environment and thus unsuitable for use without changes

if (1) the unfamiliar network is sufficiently different from the test network, so the new

background will not be close enough to that of the test network, or (2) it lacks training that

includes anomaly data for the unfamiliar network. One or the other, or more likely both

conditions hold in most realistic cases of installations of new NADS and thus the NAD5

classifier will need to be re-trained at some stage during or soon after installation.

A network anomaly detection tool that is to be installed in an unfamiliar real

network environment can reasonably expect some initialization period that will provide

sufficient estimates of the normal behavior of the network. In a typical setting, by far most

of the traffic that the NAD5 sees is normal, with only a sprinkling of anomaly traffic.

Thus, algorithms could conceivably be used to separate out the normal traffic from any

anomalies, whenever they might occur in the unfamiliar network, based on intensity

comparison considerations alone. Such algorithms, employing clustering techniques, have

been investigated elsewhere [48].
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Additionally, it may be that during the initialization phase, all the traffic in the new

setting is in fact normal. Even if some anomaly traffic is found in the unfamiliar network,

it may be difficult, at this stage, to characterize what type of anomaly it is. This leaves us

with an estimate of normal traffic in the unfamiliar network setting, which is possible to

carry out, but no clear description of network anomalies. Although theoretically possible, it

would be unreasonable and unsafe to launch anomalies in the production network to be

protected, solely for the benefit of the learning phase of the NADS. Most likely it would

not be permitted to take place. Thus, somehow, while using the normal and anomaly data

from a test network, as well as the normal data from the production network, it is needed to

ensure that a properly trained classifier is generated.

In this dissertation, two alternative solution approaches to this challenge are

proposed, the re-use classifier and the grafted classifier:

• The re-use classifier method is straightforward and consists of employing the test-
network classifier in the new network, as is after training only in the test network that
is without any modifications at the beginning. This approach is expected to perform
adequately if the unfamiliar network is similar in architecture and usage to the test
network, but will likely increasingly deteriorate in performance the more dissimilar
the two settings are.

• The grafted classifier method essentially consists of abstracting an estimate of the
anomaly model, in "pure" form, from the test network and then "grafting" this
anomaly onto the normal model in the new network, thus "transplanting" the anomaly
model from the test network to the production network.

In this way, the grafted classifier method will provide anomaly models as well as

normal models in the unfamiliar network setting, thus enabling the training of the classifier

in this new network. Simulation measurements have been used to investigate the

effectiveness of these techniques in an experimental setting, where both have been found to

be effective. The grafted classifier approach will work adequately for the class of
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parameters where the effect of the anomaly is of "additive" character to that of the

background.

Nevertheless, it should be noted that the expectation regarding these techniques is

not that they generate the final best model of an anomaly, but that they will provide a good

"seed" of such a model, allowing the system to adapt the model by "learning" from then

on, thus bootstrapping onto an accurate anomaly model from an initially only adequate

estimate. MAD employs an adapting algorithm that adjusts the normal as well as the

anomaly models, by using the descriptions of the current normal and anomaly data, after

they are detected to be so.

The grafted classifier approach described above, may, in general, depend on the

nature of the monitored parameter as well as the type of anomaly. Basically, it relies on the

normal background model to vary most from network to network while the anomaly

models vary least. This is intuitively reasonable and has been observed to be the case for

many types of networks and anomalies. The normal background network traffic changes in

time and from network to network. On the other hand, the behavioral profiles of various

kinds of anomalies are comparatively stationary and exhibit similarities from network to

network.

In more detail, this approach involves extracting anomaly profiles, for each

monitored parameter, from a test network and then applying them to a new production

network. First, the models of anomalies and background traffic from the data collected in a

test network are extracted. Second, the anomaly profiles are calculated by removing the

components of normal traffic from the anomaly models. Third, the anomaly models for the

new network can be estimated by combining and merging the models of normal traffic of
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the real network with the models of anomalies that have been extracted from the test

network. Finally, the anomaly traffic itself can be simulated according to the estimated

anomaly models, thus enabling the NADS classifier to be trained using the data thus

generated.

Before describing the details of the grafted classifier method, it is desired to

provide and differentiate the definitions of anomaly models and anomaly profiles:

• Anomaly model is the statistical representation of the network traffic pattern when
both the background traffic and the anomaly traffic are observed in a network.

• Anomaly profile is the statistical representation of the network traffic pattern when
only the anomaly traffic is observed in a network.

The grafted classifier method operates through the following five steps. The details

of the algorithms are clearly illustrated in Figure 4.1.

Step 1. The reference models of both the normal traffic and the anomaly traffic are
calculated from the test network through statistically averaging the normal and
anomaly PDF data records. Afterward, the test models of normal background traffic
will be called MBT and the test anomaly traffic will be named MAT for

simplicity.

Step 2. The anomaly profiles are generated. The reference models MAT contain both

anomaly traffic and background traffic, because both kinds of traffic may be
observed within a time window. This is the reason why the anomaly models
collected in the test network cannot be applied directly to an unfamiliar production
network. The profiles of anomalies PA are calculated by removing the components

of the background traffic MB  from the anomaly models MAT . The equations

to calculate the profiles of the pure anomalies are given below:
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• M Bp : The measured model of the background traffic in the production
network.

• N B: The number of samples comprising MB .
• PA: The anomaly profile derived from the test network.
• Bp: The number of samples comprising PA .

Step 5. At this point, an estimate of the anomaly model in the unfamiliar production
network has been computed. Then anomaly PDFs can be generated as the sum of
the estimated anomaly models and the background traffic collected from the
production network. The simulated anomaly PDFs will be used to train the neural
net classifier so as to let it adapt to the production network environment. The
equations are:

NKr A p (t) * KB , p (i, ± Bp * PA 0)
K A ,p (i,t)= '

B KA,p(t)+ B p
(4.3)

B K KA,p(t) = NKB,p (t) B p

where:

• i: The itch bin of the PDF.
• t: The time window
• KB,p(t): The simulated anomaly traffic in the production network.

• KA,p(t): The measured background traffic in the production network at
time window t.

• PA: The extracted anomaly profile.

• NKAp (t): The number of samples of KA ,p (t) .

• NKB,p (t) : The number of samples of KB 
,p

 (t) .
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Figure 4.1. The grafted classifier method.

4.2 Evaluation Process

In order to investigate the performance of the re-use and grafted classifiers methods,

extensive simulation experiments were carried out, under various conceivable production

network environments, i.e., variations in network topology, typical background traffic and

anomaly traffic characteristics and load.

The rest of this section is organized as follows: Section 4.2.1 present the test and

production network model architectures and the corresponding background network traffic

configurations used in the various simulation scenarios. Numerical results and additional

discussions regarding the effectiveness of these two classifier methods are presented in

Section 4.2.2.

4.2.1 The Testbed Configuration

The test network was built using the Optimized Network Engineering (OPNET) tool, as

shown in Figure 4.2. In this network model, there are 3 servers, namely, Main Server

(responsible for file access and mail service), HTTP Server, and TELNET Server, as well

as 11 clients, connected by a hub.
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Figure 4.2 The test network.

The production network model, shown in Figure 4.3, consists of four subnetworks

connected by four routers. The links that connect the network components are assumed to

be Ti links. The clients are located in all the four subnetworks as follows: Subneti

(Ethernet Network), Subnet_2 (Token Ring Network), Subnet3 (Fast Ethernet Network)

and Subnet_Server (FDDI Network). The clients located in each of the four subnetworks

communicate with the server located in Subnet Server.

In the simulation experiments, in order to comparatively evaluate the performance

of the two proposed classifier methods under the variation of the production network

topology, the number of the clients located in each subnet, which establish the

communication with the server located in the Subnet_Server, was changed. Three

simulation scenarios are investigated, i.e., "10 clients", "15 Clients" and "20 Clients".
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Figure 4.3 The production network.

In the simulation experiments, the four most popular TCPIIP services were

modeled: HTTP (TCP), TELNET (TCP), FTP (TCP) and SMTP (UDP). The application-

layer workload characteristics of these four Internet services, as used in the simulations,

derived from the literature, as in [49-52]; such work indicates that the workload

characteristics utilized closely resemble network conditions.

In this experiment, the network anomaly conditions were simulated by injecting

various volumes of TCP anomaly traffic into the simulation testbed, i.e. the TCP small

packet flooding anomaly traffic. Specifically, in the test network, a client (workstation) is

assumed to generate and send TCP flooding packets to the HTTP server periodically, and

in the production network, a client located in the Subnet_1 will send the TCP flooding

anomaly packets to the server located in Subnet Server. As presented in detail in Section

4.2.2, various experiments were performed and the performance of re-use and grafted

classifier methods under many different scenarios was tested, where several characteristics

regarding the network topology and the anomalous traffic and background traffic were

varied, such as the number of clients located in each subnet, and the background and

anomalous traffic patterns.
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4.2.2 Numerical Results and Discussion

In this section, the numerical results for the various simulation experiments described in

the previous sections are presented. The objective of the results presented, in the remainder

of this section, is to evaluate the effectiveness of the re-use and grafted classifier methods,

and demonstrate that the grafted method performs significantly better than the re-use

method in most simulation scenarios.

As mentioned, extensive simulation experiments have been carried out. The

purpose of these simulation experiments is to investigate the performance of re-use and

grafted classifier methods, when the network topology and the background and anomaly

traffic of the production network vary. The production network configurations, for these

simulation experiments, are given in Table 4.1.

Three scenarios are carried out. In each scenario, the data sets collected from the

test network (the test network configuration presented in Table 4.2) are used as training

data for training the test classifier. This test classifier is used in the investigation of the

efficacy of the re-use classifier. This data are also used for the calculation of the anomaly

profiles, by using the algorithms described earlier that are part of the grafted classifier

method. The data sets collected from the production network are used to estimate anomaly

models and to simulate anomaly data for that environment. The classification rates of

MAD using the simulated data are compared with those using the actual data, to carry out

performance comparisons.

For each simulation scenario, three different experiments are performed to examine

the classification performance outcomes of MAD for the production networks at hand for

the two approaches, the re-use classifier and the grafted classifier.
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1. The actual PDF data collected from the production network are used for the training
and testing/validation of the MAD classifier. The results are used as the base line of the
system performance, in that they should be the best that can be achieved for the actual
production network. For simplicity, this experiment is called as the baseline for
experimental outcomes.

2. The generated PDF data, using the grafted classifier method, are used for training the
MAD classifier, while the actual data are used for testing. The results reflect the
performance of this method and is referred to as the grafted method experiment.

3. The PDF data collected from the test network are used for both training and testing of
the MAD classifier. Subsequently, the classifier is used to validate the production
network setting PDF data. Thus, this corresponds to examining the efficacy of the re-
use method, to be referred to as the re-use method experiment.
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The misclassification rates of MAD, for the baseline, grafted classifier and re-use

classifier experiments, are listed in Table 4.3. The Receiver Operating Characteristic

(ROC) diagrams are presented in Figure 4.4, where the x-axis is the false alarm rate and

the y-axis is the detection rate. The false alarm rate is the rate of the typical traffic events

being classified as anomalies, while the detection rate is calculated as the ratio between the

number of correctly detected anomalies to their total number. The values seen in the table

follow what was observed from Figure 4.4.

From the simulation experiments, oiled can observe that the misclassification rates

of the grafted experimental measurements perform significantly better than the re-use

classifier experiments. This may be due to the significant dissimilarity between the test

network configuration and the production network configuration. In fact, the grafted

classifier performance is close to that found for the baseline experiments; the results of the

latter are, of course, the best that can be achieved for the production network. This

indicates that the grafted modeling and estimation algorithms can be used as effective

starting points for the case which the network topology of the production network is

significantly different from the topology of the test network, when migrating an anomaly

NAD5 from the test network to an network setting, where accurate anomaly models are not

available.



55



CHAPTER 5

THE APPLICATION OF LOW PASS FILTERS IN NADS DESIGN

A common method of identifying network anomaly with statistical based NAD5 is to

detect significant deviations in network traffic compared to normal conditions. Such

changes may include unexpected high traffic volume, caused by e.g., a packet storm or

Denial of Service (DoS) attack. However, recent research on traffic engineering has

demonstrated that modern data network traffic exhibits high burstiness at a wide range of

observation window sizes. Moreover, these bursts can not be smoothed by simply

increasing the observation time window, which is in contrary to those encountered in the

traditional telephony network. This effect is described statistically as long-range

dependence (LRD), and the time series description showing this effect is said to be self-

similarity [29]. The challenge here is that in a network environment with a traffic pattern of

high burst rate and self-similarity, a statistical based network anomaly detection scheme

may wrongly identify network traffic burst as network anomalies, thus suffering from high

false alarm rate. Thus, to achieve high anomaly detection capability while maintaining low

false alarm rate, the statistical based NAD5 should recognize the different characteristics

between network bursts and network anomalies.

Through analyzing network traffic measurements containing traffic bursts and

network anomalies collected from various network environments, it is found out that the

main difference between network anomalies and traffic bursts lies in the duration of high

traffic volume caused by them; the former always appears as high traffic volume with a
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long period until it is corrected by the network administrator, while the latter always

presents itself only as a high traffic volume lasting for a very short period.

Figure 5.1 illustrates a typical example of network traffic measurements collected

from the research testbed (details of the configuration of the testbed presented in Chapter

3) when ethernet improper short frame errors are launched. From this example, one can

clearly observe the different characteristics of traffic bursts and network anomalies; that is,

traffic bursts typically appear as a sprinkling of high traffic volume instances of short

duration, scattered apart from one another, while network anomalies appear as cases of

high traffic rate of long duration. However, since both traffic bursts and network anomalies

appear as high traffic volume occasions, statistical based NAD5 may have great difficulty

in distinguishing one from the other, thus generating false alarms. Hence, to diminish the

false alarms caused by traffic bursts, one should find out a method to reduce the degree and

frequency of traffic bursts. Since traffic bursts appearing as a smattering of high traffic

volume, one can consider them as noise in the numerical processing, and utilize a low pass

filter to smooth the noise.
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In the design of MAD, a low pass filter is introduced to smooth the burstiness in

network traffic measurements, so as to reduce its false alarm rate. Seven types of low pass

filters have been investigated, including the moving window averaging (MWA) filter, the

Savizky-Golay filter [53], and four variants of 4 th order Butterworth filters with different

cutoff frequencies [54]. Choosing the optimal filter in network anomaly detection should

be carried out in accordance with two criteria:

1) The filter should not significantly change the statistical properties of the network traffic
measurements, upon which the network anomaly detection scheme relies to identify
network anomalies, and

2) The filter should improve the false alarm rate of statistical based NADS, by reducing the
bursts encountered in network traffic measurements.

Through statistically analyzing the traffic measurements processed by the low pass

filters and further testing their performance by applying them to MAD, it was found out

that the Savizky-Golay filter and the 4th order Butterworth filter with cutoff frequency 0.2

are effective choices, and could be the preferred choices of all, according to the criteria

mentioned above.

In the rest of this Section, the low pass filters investigated in this dissertation will

be discussed. Specifically, in Section 5.1 the Moving Window Average filter and Savitzky-

Golay filter will be introduced, while Section 5.2 will present the Butterworth filter. In

Section 5.3, the effect of the low pass filters on alternating the statistical properties of

network traffic measurements will be compared. And in Section 5.4, the effectiveness of

the low pass filters on reducing the false alarm rate of NAD5 is investigated through

applying the filters to the MAD system.



59

5.1 Comparing Savitzky-Golay Filter with Moving Window Average Filter

Since the Savitzky-Golay filter (also called least-squares [55], or DI5PO (Digital

Smoothing Polynomial) [56] filters) was first introduced by Savitzky and Golay (1964)

[57], it has been used to analyze data in a number of scientific areas. Rather than having

their properties defined in the Fourier domain, and then translated to the time domain,

Savitzky-Golay filters derive directly from a particular formulation of the data smoothing

problem in the time domain.
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time (increasing or decreasing), then no bias is introduced into the result. Higher points at

one end of the averaging interval are, on average, balanced by lower points at the other

end. A bias is introduced, however, if the underlying function has a nonzero second

derivative. At a local maximum, for example, MWA always reduces the function value.

The main concept, behind the Savitzky-Golay low pass filtering, is to approximate

the underlying function within the moving window not by a constant (whose estimate is

the average), but by a polynomial of higher order, typically quadratic or quartic: For each

point f , the Savitzky-Golay filter fits a polynomial to all nL +nR +1 points in the moving

window by the least square algorithm, and then sets g, to be the value of that polynomial

at position i.



The main advantage of the Savitzky-Golay low pass filtering over other low pass filtering

methodology is that it can filter out the noise (e.g., unreasonable burstiness) in the data,

while preserving its high statistic moments, thus keeping its statistical properties

unchanged.

5.2 The Butterworth Filter

Butterworth filter is an infinite impulse response (11R) filter [54, 58]. It is well known by

its Butterworth or Maximum-flat response. It exhibits a nearly flat low passband with no

ripple, and the rolloff is smooth and monotonic. The general equation for a Butterworth

low pass filter's frequency response is given below:



where n is the order of the filter, and can be any positive integer number (1, 2, 3 ...), and w

is the cutoff frequency, i.e., the -3dB frequency of the filter.

Figure 5.2 presents the frequency responses of the 2nd, 4th4t and 8 th order Butterworth

low pass filters. As shown in this figure, the Butterworth low-pass filter does not

completely pass the frequency components lower than the cutoff frequency, nor completely

stops those higher than the cutoff frequency. As the filter order increases, the transition

from the pass band to the stop band gets steeper. In the meantime, the computation

complexity for implementing the filter also increases exponentially. Thus, considering

online operation of network anomaly detection system, in the design of MAD the 4 th order

Butterworth low pass filter was considered.
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5.3 Do the Low Pass Filters Alternate the Statistical Properties of Network Traffic
Measurements?

Recall that choosing the optical low pass filter applied in statistical based NADS should

accord with two criteria: 1) the filter shouldn't significantly change the statistical

properties of network traffic measurements, and 2) the filter should improve the false alarm

rate of statistical based NADS by reducing the bursts encountered in network traffic

measurements. In this section, the effect of the low pass filters on the statistical properties

of network traffic measurements will be investigated. In the next section, the effect of these

low pass filters on reducing the false alarm rate of statistical based NADS will be studied,

through applying them to MAD system.

Figure 5.3 The frequency responses of the low pass filters under investigation.

Figure 5.3 presents the frequency response of the seven types of low pass filters

studied in this work, i.e., the Moving Window Average (MWA) filter, Savitzky-Golay

filter and four variants of the 4 th order Butterworth filters with different cutoff frequencies

0.1, 0.2, 0.3 and 0.4 Hz. From now on, the four variants of Butterworth filters will be

noticed as Butterworth (0.1) filter, Butterworth (0.2) filter, Butterworth (0.3) filter and



64

Butterworth (0.4) filter according to their corresponding cutoff frequencies. From Figure

5.3, one can see that the spectrums of these low pass filters are significantly different from

one to another. The MWA filter has very narrow passband, and thus may eliminate most

frequency components. Though it removes the bursts from the network traffic

measurements which normally appear as the high frequency components; it may also strain

some statistical information, which reflects in the medium or low frequency components,

out of the network traffic measurements, which is crucial for statistical based NAD5 to

identify network anomaly. One can observe that the passband of the Butterworth filter

expands when the cutoff frequency increases. It is also interesting to observe that the

Savitzky-Golay and Butterworth (0.2) filters have similar spectrum except the ringing in

the high frequency band of the Savitzky-Golay filter.

Figure 5.4 A sample of the network traffic measurements collected from the main router
of Bergen County Library Network System.

In the remainder of this section, how the statistical properties of network traffic

measurements are altered by these low pass filters will be investigated, based on six

criteria, i.e., mean, standard deviation, variance, autocorrelation, cumulative density
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function (CDF) and Hurst parameter [46]. The data used for this examination is collected

from the main router of Bergen County Library Network System, as illustrated in Figure

5.4. The results are present in Figure 5.5, 5.6 and Table 5.1.

According to the results, one can observe that these low pass filters alternate the

statistical properties of the network traffic measurements in different degrees. The MWA

and Butterworth (0.1) filters change the statistical properties of the network traffic

measurement data significantly. For instance, the variance of the data after processing by

MWA is almost 1/4 of that of the original data. The Savitzky-Golay and Butterworth (0.2)

filters alter the data moderately, while the Butterworth (0.3) and Butterworth (0.4) filters

change data lightly. Obviously, the degree that the low pass filter alters the statistical

properties of the network traffic measurements closely relates to its passband. The broader

passband the low pass filter has, the more lightly it would alter the statistical properties of

the network traffic measurements. As mentioned previously, the low pass filter with

narrow passband may change the statistical properties of the network traffic measurements

significantly and render the loss of crucial information for statistical based NAD5 to

identify network anomalies. On the other hand, though the low pass filter with broad

passband may alter the statistical properties of the network traffic measurements lightly, it

may not effectively remove traffic burstiness and further diminish the false alarm rate of

statistical based NADS. For this reason, it is deserved to calibrate the performance of the

low pass filter through applying it to a statistical based NAD5 and measuring on what

degree it can reduce the false alarm rate of the NADS, i.e., the second criteria mentioned

previously. In this dissertation, this task is carried out through applying the low pass filters

to MAD system. The details of the experiments are present in the next section.
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Figure 5.5 Autocorrelation.

Table 5.1 Mean, Variance, Standard Deviation and Hurst Parameter

Figure 5.6 Cumulative density function.
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5.4. Can the Low Pass Filters Reduce the False Alarm Rate of NADS?

The effectiveness of the low pass filters on reducing the false alarm rate of NADS is

investigated through applying them to the MAD system. In Figure 5.7 the refined

architecture of an Anomaly Detection Agent (ADA) is presented. Comparing the refined

architecture of the ADA shown in this figure with that presented in Figure 2.3, one can

clearly observe that a Low Pass Filter module is inserted between the BIB Data Probe

module and the Statistical Model module to smooth the collected BIB variable data.

Figure 5.7 The refined architecture of ADA.

The performance of the low pass filters on reducing the false alarm rate of MAD

system is evaluated using two criteria, including the improvement of misclassification rates

and the improvement of mean squared root errors kMSO), i.e., the difference of the

misclassification rate and MSR before and after employing the low pass filter. The data

used in these evaluation experiments are the same as those used to evaluate the

performance of MAD in Chapter 3. The results are illustrated in Figure 5.8 and 5.9 and

corresponding numerical results list in Table 5.2 and 5.3. In Section 3.2.2, the effectiveness

of seventeen alternative similarity measurement metrics has been investigated. The results
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presented here reflect the average improvement of these criteria when all the similarity

metrics are applied to MAD.
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A close look at the results reveals that the performance of Butterworth (4, 0.3) and

Butterworth (4, 0.4) filters cannot compare to that of other filters. MWA, Butterworth (4,

0.1), Savitzky-Golay and Butterworth (4, 0.2) filters perform similarly in the simulation

scenarios 1 through 6 when the anomaly traffic intensity is high. However, in scenarios 7,

8 and 9 when the anomaly traffic intensity is comparably low, the Savitzky-Golay and

Butterworth (0.2) filters perform better than the MWA and Butterworth (4, 0.1) filter. One

may find the reason for this in the analysis results presented in Section 5.3. When the

MWA and Butterworth (4, 0.1) remove the traffic bursts, it also significantly changes the

statistical properties of the network traffic measurements which are crucial for MAD to

identify network anomalies. Since the characteristics of network anomalies become more

subtle when the anomaly traffic intensity gets lower, the statistical properties of the

network traffic measurements become more important for MAD to identify the anomalies.

Thus, when these statistical properties are altered, new false alarms may be introduced.
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Combining the results presented in this section with the statistical analysis results shown in

Section 5.3, the Savitzky-Golay and Butterworth (4, 0.2) filters should be the preferred

choices.



CHAPTER 6

A FREQUENCY BASED NETWORK TRAFFIC STATISTICAL MODELING
SCHEME

6.1 Motivation

As discussed previously, the operation of the statistical based network anomaly detection

system is based on the expectation that the traffic behavior with anomaly will be

noticeably different from that without anomaly. Thus, for the purpose of anomaly detection

one must characterize normal traffic behavior. Actually, the more accurately the normal

traffic behavior can be modeled the better the anomaly detection scheme will perform.

These models may be describing cumulative density functions (CDFs) or probability

density functions (PDFs) of the monitored traffic variables; examples, of such variables

include, incoming packet rate, outgoing byte rate, etc., during an observation time window.

Although the size of the observation window varies depending on implementation, in

practice, it ranges from a few seconds to many minutes. Thus, for typical actual traffic

volumes, the generated CDFIPDF may consist of large numbers of samples for each traffic

variable and for each of the observation windows; such representations are expensive in

terms of memory storage and computational expense. It is greatly desirable to generate

analytical models that are accurate and efficient in terms of representing such data; this

directly reduces the storage requirements of the raw data that are collected; such models

also allow methods that carry out mathematical computations on the CDFs/PDFs, in terms

of their parametric analytic model representations, rather than the raw data that constitute

the CDFs/PDFs; this reduces the associated processing cost. Thus, efficient statistical

network traffic activity models are desirable.

71
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Accurately and efficiently modeling the traffic variables is a hard task. The biggest

challenge in this case is the well-known fact that these variables of networks undergo

cyclic evolution and temporal fluctuation [18-19, 59-61]. Figure 6.1 and 6.2 illustrated this

phenomenon more clearly. Figure 6.1 plots three weeks of network traffic observations

collected from the Main Router of BCCLN5 network, while Figure 6.2 depicts an example

of a weekday's traffic observations collected from the same router (the details of the traffic

variable data collection are present in section 6.3.1). From Figure 6.1, one may observe

that there is an underlying trend for every week. For each weekday morning, the network

traffic volume increases as people arrive at work. Soon afterwards, the network traffic

volume peaks and remains there for most of the day. In the late afternoon, values return to

a lower level. Such high variable traffic patterns are illustrated more clearly in Figure 6.2.

On weekends, the usage is comparably low throughout the day.

r 'guru u.i run 01 nree weeks or irariic vanaoie ooservanons.
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Figure 6.2 Plot of one day of traffic variable observations.

Obviously, the traffic variable observations are non-stationary in that the mean

changes with time-of-day and day-of-week. However, the previous figures suggest that the

same non-stationary pattern is present from week to week (or that it changes slowly). Thus,

one may view the full process of the traffic variable as having a stable mean for each time

of the day along with fluctuations that are modeled by a random variable with a zero mean.

6.2 A Frequency Based Network Traffic Statistical Modeling Scheme

In this work, a frequency based network traffic statistical modeling scheme is introduced,

that is, dividing the full process of the traffic variable observations into three parts

according to their frequency spectrum, namely, low frequency part signal, middle

frequency part signal and high frequency part signal by the 4 th order Butterworth low pass

filter, and then modeling each part of signal separately.

• Low Frequency Part Signal, obtained by filtering the original traffic variable data
process by the 4 th order Butterworth low pass filter with cutoff frequency 0.05 Hz.
Thus the filtered process represents the mean process (or traffic trend pattern) of the
original data process.
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• Middle Frequency Part Signal, obtained by filtering the residue process after
subtracting the low frequency part signal from the original data, by the 4 th Butterworth
low pass filter with cutoff frequency 0.2 Hz.

• High Frequency Part Signal, obtained by subtracting the low and middle frequency
part signals from the original data process.

In the following sections, the traffic variable data, collected from the main router of

BCCLNS beginning at 0:00:OOam Thursday, April 8 th , 2002 and ending at 00:00:OOam

Friday, April 9 th 2002 (shown in Figure 6.3), will be used to illustrate how the proposed

frequency based network traffic statistical modeling scheme works.

Figure 6.3 A sample of one day's traffic variable observations collected from the main
router of BCCLNS.

6.2.1 Modeling Low Frequency Part Signal

Figure 6.4 shows the low frequency part signal of the traffic variable data plotted in Figure

6.3. In this figure, the sampled data processes, obtained by taking one sample in every 100,

150 and 200 successive data records of the low frequency part signal data process, are also

presented. A close look at the figure reveals that the low frequency part signal is quite
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smoothed in comparison with the original data presented in Figure 6.3. Obviously, it can

be found that the low frequency part signal data process is non-stationary since the mean

changes significantly during most of the day; thus it is infeasible to use a single random

distribution to accurately present these data. From the figure, it is found that the curves of

the sampled data follow that of the original low frequency part signal data very well even

though the sampling interval is quite coarse. This observation is confirmed in Figure 6.5,

where the cumulative density functions (CDFs) of the original low frequency part signal

data and the sampled data are plotted. From this figure, one can observe that the curves of

the CDFs of the sampled low frequency signal data are quite close to that of the original

data in shape. To further measure the deviations between the CDF of the original low

frequency part signal and those of the sampled data, the Kolmogorov-Smirnov (KS) type

similarity measurement metric was employed, as given in Equation 2.25. The results are

listed in Table 6.1. From Table 6.1, one may notice that all these K-S distances are

significantly small, which indicates that the CDFs of the original low frequency part signal

data and the sampled data are quite close to each other. Thus, one may use the sampled low

frequency part signal data, rather than the original data, as a data model, to present the low

frequency components of the traffic variable observations. Thus, the size of memory

required for storing the data model for the low frequency part signal is sharply reduced.



Figure 6.5 The CDF plots of the original and sampled low frequency part signal data.
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6.2.2 Modeling Middle Frequency Part Signal

The middle frequency part signal of the traffic variable data plotted in Figure 6.3 is shown

in Figure 6.6. From this figure, one can observe that there still exists high variability in the

middle frequency components of the traffic variable data. As shown in Figure 6.7, where

the whole data process is cut into 10 segments with equal size and then the CDF of the data

in each segment is plotted, the CDFs from the different data segments show significant

deviations, which testifies that the middle frequency part signal data process is also non-

stationary. Thus, like the low frequency part signal, the middle frequency part signal also

cannot be modeled accurately by a single random distribution.

As with the low frequency part signal, the middle frequency part signal can also be

well modeled by its sampled data. As shown in Figure 6.6 and 6.8, the sampled data look

very similar to the original data of the middle frequency part signal. This observation is

confirmed numerically by the K-S distances between the CDFs of the original middle

frequency part signal data and the sampled data listed in Table 6.2. From the results shown

in this table, it is seen that the values of the KS distances are quite small, which indicates

that the CDFs of the original and sampled middle frequency part signals are quite close to

each other. Thus, it is desirable to use the sampled data as a data model to present the

middle frequency components of the traffic variable observations, so as to save the

memory space for containing the data model.
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Figure 6.7. The CDF plots of the segmented middle frequency part signal data.
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6.2.3 Modeling High Frequency Part Signal

Figure 6.9 depicts the high frequency part signal of the traffic variable data shown in

Figure 6.3. Clearly, this plot is more consistent with a stationary process than when the low

and middle frequency part signals are present.

As with the analysis for the middle frequency part signal, the whole data set of the

high frequency part signal is cut into ten segments. The CDFs of the data in the different

segments are compared in Figure 6.10. Also, in this figure the CDF for the whole data
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process of the high frequency part signal is plotted in order to compare with the CDFs of

the segmented data. From this figure, one can clearly observe that the CDFs from the

segmented data are quite close to one another in shape. This observation is confirmed by

the numerical results presented in Table 6.3, where the averaged K-S distances between the

CDFs of the segmented data are listed. From the results shown in this table, one can clearly

see that the values of the averaged K-S distances are quite small. A close look at Figure

6.10 also reveals that the curve of the CDF of the whole data set of the high frequency part

signal follows those of the segmented data quite well, which indicates that a single random

distribution is enough to accurately present the data in the different time period of the high

frequency part signal.

Similar results are obtained when the high frequency part signal data process is cut

into 20, 40 and 60 and 80 segments. The investigation results are presented in Table 6.4.

The first column of this table gives the number of segments that the whole data set of the

high frequency part signal is cut into. The second and third columns list the average and

the standard deviation of the KS distances between the CDFs of the segmented data, while

the last column shows the ratio between the statistics listed in the second and third

columns, which can be used to measure how the individual K5 distance differs from its

corresponding average value. From the results shown in this table, one can clearly observe

that the values of the averages and standard deviations of the KS distances are quite small,

while the values of the ratio between these two statistics as listed in the fourth column are

significantly large. These results demonstrate that the KS distances between the CDFs of

the segmented data converge to a significantly small range with the central point at the

averaged K5 distance which is a quite small value. The results indicate that the data of the
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high frequency part signal process in the different time period has the same (or similar)

CDF. In other words, the CDF of the high frequency part signal is independent of time,

which indicates that the high frequency part signal is approximately consistent with a first-

order stationary process.
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In this work, normal distribution is employed to model the high frequency part

signal data. Besides that, a new statistical model to the study of network statistical

modeling is introduced, namely the one-dimensional hyperbolic distribution. In the recent

past, the hyperbolic distribution has served as a useful alternative to the normal distribution

in the analysis of data in a number of scientific areas [62-64]. The hyperbolic distribution

that has been used as the model in fitting the high frequency part signal data is presented

below:



From Equation 6.1, one can see that the hyperbolic distribution depends on four

parameters, a, 13, 8 and [L. This is two more than the normal distributions, but still a very

compact representation of large numbers of data points. By constructing "best fits" to the

data in this work, it is shown that the hyperbolic distribution outperforms the normal

distributions.

The data values for the high frequency part signal were organized into CDF. Next,

a best fit was obtained to the candidate representational distribution model, followed by the

calculation of the distance of the set of measured points to the model curve using the

Kolmogorov-Smirnov (K-S) distance metric, as given in eq. 2.25, and the following well-

known associated probability expression, shown in eq. 2.26.

The fitting results for the high frequency part signal data depicted in Figure 6.9 are

shown in Table 6.5. The first column gives the distributions used to fit to the data set. The

second and third columns give the fitting results, i.e., the calculated K-S distance, as well

as the associated probability that the data derives from the fitted model distribution.

From the results, one can observe that for normal distribution, though the K-S

distance is small, they are not small enough, so that the K-S probabilities are negligible.

With respect to the hyperbolic distribution, it is found that the K-S distance is significantly

smaller in comparison to that of the normal distribution, resulting in very large K-S

probabilities. This indicates that one should be inclined to accept the hypothesis that the

data in question derive from a population whose true density is hyperbolic.
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Visually as well, in Figure 6.11, it is seen that though the normal distributions fit

the main body of the data reasonably well, there are deviations in the lower and upper tails

of the data. On the contrary, the curve of the hyperbolic distribution not only matches the

main body of the curve of the data quite well, but does so for the lower and upper tails as

well.
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6.3 Model Evaluation

6.3.1 Data Collection

The data traces used in this work were collected from an actual Wide Area Network

(WAN) [65], namely, the Bergen County Cooperative Library Network System

(BCCLNS). In [65] by Y. Y. Lee, the author analyzed the data collected and tried to use

the normal, Pareto, Weibull, and hyperbolic distribution to model the data at hand. In this

dissertation, these data traces will be used to evaluate the performance of the proposed

frequency based traffic variable statistical modeling scheme described in the previous

section.

BCCLN5 is a consortium of public libraries that delivers quality library service to

the general public through sharing a computer system and providing common access to

electronic resources. The 74 members include all 62 of the County's public libraries and 12

libraries from neighboring counties. BCCLNS supports resource sharing with an

automated library circulation, catalog, and wide area network. High-speed connections (2

T3 lines) are connected to local libraries (65 Ti and 13 56k lines from local libraries via

frame relay) and a Ti connection to the Internet. Local libraries are connected to BCCLN5

in a TCPIIP environment with PCs via routers. As of November 2002, 1158 PC devices are

connected to the WAN.

A simplified abbreviated network topology for BCCLN5 is presented in Figure

6.12 that illustrates the network connectivity of this WAN. Each subnet represents a local

area network that serves a library. A central router (labeled BCCLNS Main Router) is

utilized to connect all libraries, as well as provide connectivity to the Internet. An element
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labeled Main Frame, located in the subnet Main Office, maintains the databases for all of

book catalogs that can be queried by the readers and librarians.

Figure 6.12 The simplified abbreviated network topology of BCCLN5

The network traffic was gathered using a collection time window of size 5 seconds,

from five different points, i.e., the BCCLN5 Main Router, the BCCLN5 Main Frame, the

Access Router of Teaneck Library, the Access Router of Little Ferry Library and the

Access Router of Bayonne Library. Such five different collection points may be reasonably

expected to provide a variety of network traffic traces. The interface of the Main Router

that is monitored is the only access point to the internet for the whole WAN, thus, the

traffic collected at this point presents the data transfer requests from the whole library

system community for internet services. The traffic observations obtained from the Main

Frame presents the traffic pattern flowing through a large server. At the data collection

points 3, 4, and 5, the traffic data were collected from the access routers which served a
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local area network of similar scale. Thus, such traffic measurements can present the

network pattern for a local area network. A detailed description of the traffic data traces

that were gathered from these five collection points is given in Table 6.6.

6.3.2 Model Evaluation Results and Discussion

The numerical results for modeling the low and middle frequency part signal data are

present in Table 6.7 and 6.8. The leading columns of these tables give the indices of the

data traces collected from BCCLNS. The following three columns give the K-S distances

between the CDFs of the original low or middle frequency part signal data and its sampled

data obtained by taking samples from the original data using different sampling

frequencies. From the results shown in Table 6.7 and 6.8, it can be seen that all the K-S

distances are quite small, which confirms the results received in Section 6.2 that the low

and middle frequency part signals can be well presented by their sampled data.

Virtually as well, from Figure 6.13 and 6.14, where the CDFs of the original low or

middle frequency part signal data and its sampled data for the data trace MF-1 are plotted,

one can see that the original and sampled data curves are visually indistinguishable. This

visual estimate is, in fact, well supported by the numerical results that the sampled low and
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middle frequency part signal data can present their original data very well, for all the data

traces at hand.

To investigate whether the high frequency part signals of the data traces listed in

Table 6.6 are consistent with a first order stationary process, similar method is employed

as described in Subsection 6.2.3. The investigation results are listed in Table 6.9. The

leading column gives the data trace indices that are designated in Table 6.6. Similarly to

Table 6.4, the second column shows the number of segments that the whole data trace of

the high frequency part signal is cut into, while the last three columns give the statistics

used to measure the deviation between the CDFs of the segmented data. From this table,
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one can clearly find out that the investigation results got from the high frequency part

signals of these data traces are very similar to those listed in Table 6.4, which indicates that

the high frequency part signals of these data traces are also approximately consistent with a

first-order stationary process.



Figure 6.13 The CDF plots of the original and sampled low frequency part signal data for
the data trace MF-1.
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Figure 6.15 The fitting results for the high frequency part signal for the data trace MF-1.
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The fitting results for modeling the high frequency part signal are shown in Table

6.10. The first column gives the indices of the data traces gathered from the BCCLNS. The

second and third columns give the fitting results for the normal distribution, i.e., the

calculated K-S distance, as well as the associated probability that the data derives from the

fitted model distribution; while the last two columns present the fitting results for the

hyperbolic distribution.

From the results shown in Table 6.10, one can clearly see that although in some

cases normal distribution can achieve very small K-S distances, the K-S distances are not

small enough to get large associated probability values. Often, the K-S distances computed

are large and the associated probability values are negligible. With regard to the hyperbolic

distribution, it is observed that consistently the K-S distances are small and the associated

probability values are large. In some cases, the associated probability values approach 1

closely, which implies high confidence that the data derive from the hyperbolic distribution

model. Moreover, its performance is very stable. Going over the results listed in this table,

one cannot find any case in which the associated probability value of the hyperbolic

distribution is less than 0.25. Visually as well, as shown in Figure 6.15 where a sample of

fitting results for the data trace MF-1 is present, the hyperbolic distribution fits the data

very well, it is clearly seen that the curve of the hyperbolic distribution not only matches

the main body of the data quite well, but does so for the lower and upper tails as well.

6.4 Summary

In this chapter, a frequency based network traffic variable modeling scheme is introduced,

that is, dividing the full process of the traffic variable observations into three parts

according to their frequencies, and then modeling each part signal separately. The analysis
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results demonstrated that the low and middle frequency part signal processes are non-

stationary and should not be modeled by a random process or distribution. Instead, they

can be well modeled by their sampled data. On the contrary, the high frequency part signal

is more consistent with a first-order stationary process. The one-dimensional hyperbolic

distribution is proposed as an effective statistical model for the high frequency part signal

of the traffic variable observations. The results showed that the hyperbolic distribution

provides a significantly better fit, and thus a more efficient model than the normal

distribution.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This dissertation is divided into two parts. First, a hierarchical, multi-tier, multiple-

observation-window, statistical based Network Anomaly Detection System (NADS), i.e.,

the BIB Anomaly Detection (MAD) system, is proposed, which is capable of detecting

and diagnosing the network anomalies proactively and adaptively using only Management

Information Base (BIB) II supplied traffic related variables. Extensive simulation

experiments of network anomaly have been carried out, the corresponding numerical

results demonstrate that MAD is very efficient and can reliably detect the network anomaly

with anomaly traffic intensity as low as one percent of the typical background traffic

intensity.

In the design of MAD, seven partition schemes as well as seventeen prominent

and/or promising similarity measurement metrics, applied to each BIBS variable, are also

proposed. The results for evaluating the partition schemes indicate that all the seven

partition schemes perform well and achieve roughly comparable misclassification rate. The

results for evaluating the similarity measurement algorithms show that C5T1, CST2, K5S1,

K53, WS5 1, K5S1 and FD1 perform significantly better than other metrics and should be

the best choices for MAD system.

The classifier of MAD, while well trained in a test network, is ill-trained in an

unfamiliar network setting. This is because while typical background traffic data is

available in the new network, anomaly data usually is not. To solve this problem, two
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techniques have been designed, i.e., the re-use classifier and the grafted classifier methods.

Several experiments that compare the baseline outcomes to the results for the grafted and

re-use classifier methods at various background patterns and network topologies have been

carried out. The classification results show that the re-use classifier method can achieve

modest performance, but cannot perform reliably. However, the classification performance

of the grafted classifier methods is quite satisfactory, being only a little inferior to the

baseline results. This indicates that the grafted modeling and estimation algorithms can be

used as effective starting points, when migrating a statistical NAD5 from the test network

to an unfamiliar network setting. MAD's adaptation and learning algorithm can then

bootstrap the system from adequate anomaly models to excellent ones. Additional

experimentation with a greater variety of test-target network combinations, in both

simulated and real network environments, will be helpful in further investigating the

applicability of these two methods.

In this dissertation, the low pass filter is introduced in the statistical based NAD5

design to reduce the false alarm rate. Several low pass filters are investigated, including the

MWA filter, Savitzky-Golay filter and four variants of the 4th order Butterworth filters

with different cutoff frequencies. Through analyzing the network traffic measurements

after filtering by these low pass filters and further applying these filters to the operation of

MAD, it is found out that the Savitzky-Golay filter and Butterworth filter with cutoff

frequency 0.2 should be the better choices of low pass filter that may be used in NADS to

eliminate traffic bursts and further reduce the false alarm rate.

In the second part of this dissertation, a frequency based network traffic statistical

modeling scheme is introduced. The traffic variable measurements are cut into three
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divisions by the 4th order Butterworth low pass filter according to their frequency

spectrums, and then each part signal is modeled separately. The numerical results

demonstrated that the low and middle frequency part signals could be well modeled by

their sample data. To model the high frequency part signal, a new effective network

statistical model is introduced, i.e., the one-dimensional hyperbolic distribution. The

results showed that the hyperbolic distribution provides a significantly better fit, and thus,

a more efficient model than the normal distribution.

7.2 Future Work

In addition to the coverage in this dissertation of introducing a new statistical based

network anomaly detection system design and a frequency based network traffic statistical

modeling scheme, the following issues should be further studied:

• Integrating the proposed frequency based network traffic statistical modeling

scheme into the design of MAD system.

• Investigating the performance of MAD system on detecting reconnaissance attacks.
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