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ABSTRACT

MODELING CONTAMINANT TRANSPORT AND FATE AND SUBSEQUENT
IMPACTS ON ECOSYSTEMS

by
Ming Fan

Assessing risks associated with the release of metals into the environment and managing

remedial activities requires simulation tools that depict speciation and risk with accurate

mechanistic models and well-defined transport parameters. Such tools need to address the

following processes: (1) aqueous speciation, (2) distribution mechanisms, (3) transport,

and (4) ecological risk. The primary objective of this research is to develop a simulation

tool that accounts for these processes. Speciation in the aqueous phase can be assessed

with geochemical equilibrium models, such as M1NEQL+. Furthermore, metal

distribution can be addressed mechanistically. Studies with Pb sorption to amorphous

aluminum (HAO), iron (HFO), and manganese (HMO) oxides, as well as oxide coatings,

demonstrated that intraparticle diffusion is the rate-limiting mechanism in the sorption

process, where best-fit surface diffusivities ranged from 10 -18 to 10-15 cm2 s -1 .

Intraparticle surface diffusion was incorporated into the Groundwater Modeling System

(GMS) to accurately simulate metal contaminant mobility where oxides are present. In

the model development, the parabolic concentration layer approximation and the operator

split technique were used to solve the microscopic diffusion equation coupled with

macroscopic advection and dispersion. The resulting model was employed for simulating

Sr" mobility at the U.S. Department of Energy (DOE) Hanford Site. The Sr" plume is

observed to be migrating out of the 100-N area extending into other areas of the Hanford

Site and beyond. Once bioavailability is understood, static or dynamic ecological risk



assessments can be conducted. Employing the ERA model, a static ecological risk

assessment for exposure to depleted uranium (DU) at Aberdeen and Yuma Proving

Grounds (APG and YPG) revealed that a reduction in plant root weight is considered

likely to occur. For most terrestrial animals at YPG, the predicted DU dose is less than

that which would result in a decrease in offspring. However, for the lesser long-nosed

bat, reproductive effects are expected to occur through the reduction in size and weight of

offspring. At APG, based on very limited data, it is predicted that uranium uptake will not

likely affect survival of terrestrial animals and aquatic species. In model validation,

sampling of pocket mice, kangaroo rat, white-throated woodrat, deer, and milfoil showed

that body burden concentrations fall into the distributions simulated at both sites. This

static risk assessment provides a solid background for applying the dynamic approach.

Overall, this research contributes to a holistic approach in developing accurate

mechanistic models for simulating metal contaminant mobility and bioavailability in

subsurface environments.
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CHAPTER 1

INTRODUCTION

Heavy metal contaminants released in the subsurface pose a threat to human health and

the surrounding environment. Concerns about the detrimental effects have resulted in

extensive research efforts to better understand the processes involved in the fate and

transport of these contaminants in subsurface systems. Soils and aquifers are

heterogeneous, subsurface systems composed of a large number of components including

dissolved salts and metals, gases, minerals, natural and anthropogenic organics,

microorganisms, animals, and plants. The subsurface is among the most complex systems

studied by scientists and engineers today. Assessing risks associated with heavy metals to

the surrounding environment and managing remedial activities requires simulation tools

that depict speciation and risk with accurate mechanistic models and well-defined

transport parameters. Such tools need to address the following processes: (1) aqueous

speciation, (2) distribution mechanisms, (3) transport, and (4) ecological risk. The

primary objective of this research is to develop a simulation tool that accounts for these

processes.

Considering the fate and transport of metal contaminants in subsurface

environments, a number of natural processes can be classified as transport and

geochemical. Transport processes include aqueous-, nonaqueous- and gaseous-phase

advection and dispersion, while geochemical processes include hydrolysis and

complexation, precipitation-dissolution, oxidation-reduction, and sorption (Rubin, 1983;

Axe and Anderson, 1998; Cheng and Yeh, 1998; Gauguly et al., 1998; Herbert, 2001).

1
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Among them, sorption is considered a significant process and is also the least well

understood (Sposito, 1986; Mangold and Tsang, 1991). To predict the transport and fate

of heavy metals in subsurface environments, a mechanistic understanding of sorption

processes is needed. Such an understanding can improve the transferability of sorption

measurements and the reliability of models used in interpreting past or in estimating

future migration of contaminants.

One major factor that determines the amount of metals sorbed to soil and

sediment is the quantity and composition of the sorption substrate. Because amorphous

oxide minerals of aluminum, iron, and manganese have large surface areas, porous

structures, and an abundance of binding sites, they can control the distribution of metal

contaminants in many aquatic environments. These oxides occur as coatings on other

mineral surfaces or as discrete particles and are pervalent in aquatic environments (Jenne

and Zachara, 1987; Stumm and Morgan, 1996; Dong et al., 2003).

Sorption can be defined as the accumulation of a substance or materials at an

interface between the solid surface and bulk aqueous phase. Sorption is a general term

that is used when the retention mechanism at a surface is unknown; adsorption, surface

precipitation, diffusion, and polymerization are all examples of sorption. At equilibrium,

there are three basic mathematical approaches to adsorption: distribution coefficient Kd

(isotherm equations), mass action models, and surface complexation models (Sparks,

1995; Jenne, 1998; Herbert, 2001). However, equilibrium relationships comprise a set of

limiting conditions for sorption processes, a set of conditions predicted on there being

sufficient time for a system to achieve thermodynamic stability. In reality, the rates at

which equilibrium is approached may significantly affect the process and the distribution
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of metal contaminants among the phases of the system. In porous media, these rates are

controlled either chemically or by molecular-level mass transport, specifically, reaction

rate and local mass transfer (Weber et al., 1991). Chemical reaction rates depend on the

nature of specific interactions that occur between the solute and sorbent in the sorption

process; on the other hand, local mass transfer is microscopic transfer, which refers to

movement of solute under the influence of molecular or mass distribution by its

concentration gradient. Equilibrium models have been widely developed to simulate

sorption; however, work has shown that metal sorption processes cannot be successfully

simulated only by equilibrium models and that transient processes must be included

(Middelburg and Comans, 1991; Koeppenkastrop and De Carlo, 1993; Bruno et al., 1995;

Axe and Anderson, 1995 and 1997; Altin et al., 1998; Scheidegger et al., 1998;

Thompson et al., 1999; Thrived and Axe, 1999 and 2000; Tonkin et al., 2002). During

local microscopic mass transfer in sorption, which refers to movement of solute under the

influence of molecular or mass distribution by its concentration gradient, research has

shown that three processes, film diffusion (Sparks, 1995; Jackman et al., 2001),

intraparticle diffusion (Auller et al., 1993; Papelis et al., 1995; Thrived and Axe, 1999,

2000, and 2001; Scheinost et al., 2001; Manju et al., 2002), and surface precipitation

(Middelburg and Comans, 1991; Aendorf and Sparks, 1994; Aord et al., 1999;

Karthikeyan et al., 1999; Thompson et al., 1999; Scheckel et al., 2000; Waychunas et al.,

2002), are the potential rate-limiting steps in sorption.

In the sorption of heavy metals to microporous hydrous oxides, numerous studies

have demonstrated that this process is a two-step one (Benjamin and Leckie, 1981;

Barrow et al., 1989; Auller et al., 1993; Axe and Anderson, 1995, 1997; Holmen and
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Gschwend, 1997; Jain and Ram, 1997; Merle et al., 1997; Strawn et al., 1998; Roberts

et al., 1999; Trivedi and Axe, 1999, 2000, and 2001; Scheinost et al., 2001; Manju et al.,

2002; Axe and Trivedi, 2002; Sen et al., 2002): rapid adsorption of metal ions to the

external surface is followed by slow intraparticle diffusion along the oxide micropore

walls. The kinetics of the first step is quite fast where equilibrium is reached within

minutes with sufficient mixing between the bulk aqueous phase and the adsorbent

external surface. In the second step, the contaminant adsorbed at the surface slowly

diffuses along sorption sites in the micropores of the oxide particle.

Studies with real systems emphasize that contributions from slower processes are

needed for accurately depicting metal transport. Thus, models that often employ either

equilibrium or reaction rate approaches (e.g., Gerard et al., 1998; Yabusaki et al., 1998;

Clement, 2003) are inadequate for describing metal mobility in subsurface environments

where amorphous oxides or oxide coatings are present (e.g., Gallo et al., 1998; Baverman

et al., 1999; Zheng and Wang, 1999). To assess risks associated with contaminants to the

surrounding environment and manage remedial activities requires accurate models and

well-defined transport parameters. The objectives of this research are to model metal

contaminant transport, fate, and subsequent impact on ecosystems, specifically to

incorporate the intraparticle diffusion process into solute transport modeling, which

supports advancing the ability of models to apply mobile and available concentrations

found in the soil and subsurface environments and better quantify contaminant mobility

and bioavailability.

This study first requires an understanding of metal speciation, which is a function

of pH, ionic strength, reduction-oxidation potential, and other factors. Thus, a review of
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geochemical equilibrium models to address metal speciation is presented in Chapter 2.

Bioavailable species can be obtained through speciation models coupled with mechanistic

models of metal distribution. A critical review in Chapter 3 demonstrates that equilibrium

models are inadequate for simulating sorption and that transient processes are needed in

transport modeling. Credibly simulating and predicting species mobility relies on

accurate transport models. In Chapter 4, existing groundwater flow and solute transport

models are evaluated and reviewed for addressing macroscopic transport. In Chapter 5,

based on the review of previous chapters, objectives, hypotheses, and an overall transport

modeling approach are developed. In Chapter 6, Pb sorption on microscopic amorphous

oxides as discrete particles and coatings is studied, validating the transient natural

attenuating process of intraparticle diffusion for not only discrete oxide particles but also

oxide coatings. In Chapter 7, the method for coding the transient process, intraparticle

diffusion, is presented for incorporation into the macroscopic transport model,

Groundwater Modeling System (GMS), in depicting metal contaminant mobility. In

Chapter 8, a case study of Sr" transport at the Department of Energy Hanford Site,

Washington, is presented using the newly developed package with GMS. Once

bioavailable species are defined spatially and temporally, the information can be used to

assess static or dynamic ecological risks resulting from exposure to different metals. A

static ecological risk assessment was conducted for depleted uranium (DU) present at

U.S. Army Aberdeen and Yuma Proving Grounds (APG and YPG) in Chapter 9. Finally,

conclusions and recommendations for future work are outlined in Chapter 10.



CHAPTER 2

SPECIATION MODELING

The subsurface is among the most complex systems studied by scientists and engineers

today, as discussed in the first chapter. Because of its complexity, geochemical modeling

has gained widespread acceptance as a useful tool to interpret subsurface geochemical

processes which affect the fate and transport of chemical components under varying

conditions (Cheng and Yeh, 1998; Herbert, 2001). Aor example, these models are being

used to predict the behavior of toxic and radioactive contaminants at proposed waste

disposal sites (Oreskes et al., 1994).

Geochemical modeling of natural aqueous systems was first introduced by Garrels

and Thompson (1962) where they predicted the speciation of seawater. During the

1970's, rapid progress was made in the development of geochemical speciation models,

which focused on mathematical modeling of geochemical reactions and the expansion of

the number of species included in the models, but the models were often machine

dependent and poorly documented (Herbert, 2001). Since the mid-1980's, the

development of geochemical models has focused less on creation of new models and

more on efforts to document and improve existing models. These efforts included the

development of more complete thermodynamic databases, the ability to handle a wide

range of physical and chemical conditions, such as high temperature, pressure, ionic

strength, and improvement of the models' applicability to environmental and industrial

systems (Bassett et al., 1990; Brown et al., 2000). However, since the 1990's, many new

models, which have strong capabilities to deal with various systems, have been

6
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developed; at the same time, great efforts have continued in improving thermodynamic

databases and addressing distribution mechanisms.

2.1 Review of Speciation Models

Speciation modeling is the most common type of geochemical models, providing a

quantitative description of the activities of different forms or species of a chemical.

Speciation models have been developed to predict concentrations of the ions and

complexes that will form, their thermodynamic activities, and the saturation state with

respect to different species and minerals. (Rubin, 1983; Mangold and Tsang, 1991;

Gavaskar et al., 1997; Salmon 1999; Chilakapati, et al., 2000). A competent speciation

model should include a comprehensive thermodynamic database for aqueous complexes,

solids, and gases of the elements of interest needed to adequately understand a given data

set. These models also require a numerical method to solve the matrix for conservation

and constitutive equations describing the system. Other important aspects of a model

include an efficient solution method and the ability to model redox reactions and

sorption. Additionally, integral to a model is the activity coefficient calculation and

database modification ability.

This review on speciation models attempts to summarize several major numerical

codes in a comparative evaluation based on published and unpublished reviews and the

original documentation for individual codes (Yeh and Tripathi, 1989; Allison et al., 1991;

Mangold and Tsang, 1991; Wolery, 1992; Crawford, 1996; Butler and Cogley, 1998;

Ganns, 1998; Schecher and McAvoy, 1998; HydroGeoLogic et al., 1999; Parkhurst et al.,
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1999; Lee and Windt, 2001; Post, 2001). In addition, in some cases, the code developers

were directly consulted to get first-hand information.

There are many speciation models available, such as GEOCHEM (Sposito and

Mattigod, 1980), ERAUILIB (Money and Shannon, 1981), ECHEM (Money, 1988),

SOLMINERA (Kharaka et al., 1988), SOILCHEM (Sposito and Coves, 1989), WATERA4A

(Ball and Nordstrom, 1991), ERA3/6 (Wolery, 1992), MINTERAA2 (Allison et al., 1991;

HydroGeoLogic et al., 1999), OLI (OLI Systems, 1999), and PHREERAC (Parkhurst et

al., 1999; Post, 2001). Some models listed above include mass transfer calculations. The

models reviewed were chosen on the basis of four criteria: (1) models are in the open

literature with full descriptions and complete documentation; (2) models have been

verified and validated; (3) models are widely used and updated; and (4) models are fully

maintained and supported by organizations. After preliminary evaluation and screening

of existing models, four models, MINERAL+, MINTERAA2, ERA3/6, and PHREERAC, were

selected for critical review in this chapter. Airst, background and feature descriptions of

the models are presented. Second, model evaluation is discussed. In the last section,

recommended models are provided for the software tool development, which is the

inclusion of speciation as well as transport modeling into the ecological risk assessment

(ERA) software (Lu et al., 2003).

2.1.1 MINEQL+

The model MINERALL+ descended from REDERAL, and is a refinement of Westall's

model, MINERAL (Westall et al., 1976). The MINERALL+ is an interactive data

management system for chemical equilibrium modeling (Schecher and McAvoy, 1998).

Since 1998, the model employed a Windows environment instead of DOS providing
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simultaneous on-screen display of data entry screens, spreadsheet, and graphs. The

features include: automatic highlighting of zero values for enthalpy and log K; input

wizards to help users with data entry for pH and alkalinity; fixed ionic strength

computation options; special reports where output can be summarized in a number of

reports that perform additional data extraction or additional calculations on the output

data; and autopilot that automates the progression of tools which are needed to solve a

chemical equilibrium problem. Also, the temperature range of this version for model

calculations has changed to 0-100 °C instead of 0-50 °C as provided in version 3.0.

The model MINERALL+ version 4.5 (Schecher and McAvoy, 2001) updates the

thermodynamic database with 400 new species; this database is consistent with that used

in MINTEQA2 (Allison et al., 1991). It also includes full documentation for the database.

2.1.2 MINTEQA2

Like MINERALL+, MINTEQA2 has been derived from Westall's model, MINERAL

(Westall et al. 1976). The MINTEQA2 and its documentation can be downloaded at no

charge from the Center for Exposure Assessment Modeling (CEAM), U. S. EPA

(Environmental Protection Agency) Environmental Research laboratory in Athens,

Georgia (http://www.epa.gov/ceampubl/mmedia/minteq/index.htm,  2004). The CEAM

software products are built using AORTRAN77, assembler, and operating system

interface command languages (Butler and Cogley, 1998). The MINTEQA2 includes an

extensive database of reliable thermodynamic data and an interactive program

PRODEAA2 designed to be executed prior to MINTEQA2 for the purpose of creating the

required input file (Allison et al., 1991; HydroGeoLogic et al., 1999). The version 4.02

was released in June 2000. Relative to MINERALL+, MINTEQA2 may be a little more
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difficult to use because of the user interfaces operating in DOS. This code has been used

in a number of applications, including groundwater analysis, simulation of reactive solute

transport, restoration of an aquifer used for in situ uranium mining, and reactions among

uranium mill tailings, clay liners, and natural sediments.

Visual MINTEQA which is a Windows version of MINTEQA2 ver 4.0 has been

developed by Gustafsson (Gustafsson, 2001) and supported by the Swedish NFR (Natural

Science Research Council) and MISTRA (Aoundation for Strategic Environmental

Research). This program is distributed via interne free of charge.

2.1.3 PHREEQC

The model PBREEQC was developed by Parkhurst and his colleagues at the U.S.

Geological Survey (USGS) to focus on the application of computerized calculation

methods for problems in geochemistry, including assessments of acid mine drainage in

the western United States (Butler and Cogley, 1998). The PHREEQC is based on an ion-

association aqueous model and has capabilities for (1) speciation and saturation-index

calculation; (2) batch-reaction and one-dimensional (1D) transport calculations involving

reversible and irreversible reactions; and (3) inverse modeling, which evaluates mineral

and gas transfers that account for differences in composition between waters, within

specified compositional uncertainty limits (Crawford, 1996; Parkhurst et al., 1999). The

new features in PHREEQC version 2 relative to version 1 include capabilities to simulate

dispersion and stagnant zones in 1D-transport calculations, to model kinetics with user-

defined rate expressions in Basic, and to model fixed-volume gas phases in addition to

fixed-pressure gas phases (Parkhurst et al., 1999). In reaction path calculations, this

software is oriented more toward system equilibrium than just aqueous equilibrium.
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Essentially, all the modes of each element in the system are distributed among the

aqueous phase, pure solid and gas phases, exchange sites, and surface sites to attain

system equilibrium (Butler and Cogley, 1998).

Inverse modeling attempts to account for the chemical changes that occur as a

water evolves along a flow path. Assuming two water analyses which represent starting

and ending water compositions along a flow path, inverse modeling is used to calculate

the modes of minerals and gases that must enter or leave solution to account for the

differences in composition. Inverse models that mix two or more waters to form a final

water can also be calculated. The PHREEQC allows uncertainty limits to be defined for

all analytical data, such that inverse models are constrained to satisfy mole balance for

each element and valence states as well as charge balance for each solution, but only

within these specified uncertainty limits (Parkhurst et al., 1999).

The PBREEQC version 2.4.2 (Post, 2001) was released July 2001 for Windows,

which is an extended version of PBREEQC version 2 (Parkhurst et al., 1999). This

software has the same familiar user interface as other common Windows programs.

Newer features of PHREEQC for Windows include an input editor with some help

features such as syntax highlight, a keyword index, and an output manager. Both

PHREEQC version 2 and PHREEQC for Windows can be downloaded at no charge from

USGS web site: http://wwwbrr.cr.usgs.gov/projects/GWC coupled/phreeqc/index.html 

(2004). In the later section of evaluation models, the review will concentrate on the

equilibrium speciation part of PHREEQC and compare it with other models.
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2.1.4 EQ316

The EQ316 software package originated in the mid-1970s. It was originally developed by

Wolery (1978) at Northwestern University to model seawater-basalt interactions in mid-

ocean ridge hydrothermal systems. The model was brought to Lawrence Livermore

National Laboratory in 1978 by the original author, and there underwent extensive

development for modeling geological disposal of high-level nuclear waste (Wolery,

1992). Many of the refinements that have been incorporated into the code for use in

nuclear waste applications are readily adaptable to applications in other environmental

areas, such as the evaluation of acid mine waters, low-level radioactive waste, and

chemical waste. Some of the more general processes that can be modeled using EQ316

include mineral dissolution, mineral precipitation, and waste leaching. Modeling can be

accomplished over a temperature range from 0 to 300°C, a pressure range of 1 to

approximately 100 atm, and an ionic strength range from dilute to greater than 10 molal

(Wolery, 1992; Butler and Cogley, 1998).

The major components of the program are EQPT, EQ3NR, and EQ6. EQPT is the

data file preprocessor used to prepare input files. The EQ3NIR is the speciation solubility

code and will be evaluated further with other speciation models in following section. EQ6

is the reaction path code that conducts calculations following the evolution of a reaction

system. EQ316 version 7.2c has been released by LLNL (Lawrence Livermore National

Laboratory). The comprehensive documentation for EQ316 version 7.0 (Wolery, 1992) is

available at: http://eedllnlgov/geosciences/esd/geochem/eq36.html (2002).
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2.1.5 Evaluation

In this section, the four models are comparatively evaluated, MINERAL+, MINTEQA2,

EQ316, and PBREEQC, and based on this evaluation, model(s) will be recommended for

use in the software tool development.

Before the discussion on model evaluation, model validation is considered.

Geochemical model validation is important if model results are used in remediation

decisions and policy formation, though the extent that numerical, geochemical models

can be verified and validated has been questioned (Oreskes et al., 1994). There are

several definitions of model validation. Mangold and Tsang (1991) reported one

definition adapted from the International Atomic Energy Agency (IAEA) "A conceptual

model and the computer code derived from it are validated when it is confirmed that the

conceptual model and the computer code provide a good representation of the actual

processes occurring in the real system. Validation is thus carried out by comparison of

calculations with experimental measurements and field observations." Another definition

from Davis et al. (1991) in the Performance Assessment Plan for the proposed high-level

nuclear waste repository at Yucca Mountain, Nevada, "the most common method of

validation involves a comparison of the measured responses from in situ testing, lab

testing, or natural analogs with the results of computational methods that embody the

model assumptions that are being tested." Arom these definitions, it is shown that only

through comparative analysis between lab data and model results are geochemical models

validated. Other illustrations of models, such as model comparison, are generally called

model evaluation.
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Researchers at Battelle's Pacific Northwest Laboratory conducted an evaluation

of the extent that geochemical codes could be used by the electric utility industry to study

leachate migration from solid-waste sites (Kincaid et al., 1984; Money et al., 1986). The

EQ316, MINTED (earlier version of MINTEQA2), PBREEQE, GEOCHEM, and

EQUIL1B were selected to be evaluated and several cases were tested, including

comparison of solubility calculations for common minerals, evaluation of adsorption

models, prediction of leachate from fly ash, and prediction of leachate composition in

contact with soil. Money et al. (1986) concluded that PHREEQE, GEOCBEM, and

EQUIL1B were not as useful as the EQ316 and M1NTED for several reasons. The

EQUIL1B model required adding additional species along with adsorption ability, which

would necessitate significant restructuring of the code. The GEOCBEM has the most

significant limitation where dissolution of finite quantities of solids is not feasible under

most circumstances. The PBREEQE was not able to predict mineral precipitation that

involved ones not initially specified in the problem configuration. The EQ316 and

MINTED were further studied under comparison tests. EQ316 was found to be the most

comprehensive available code for modeling the approach to equilibrium. The M1NTEQ

was selected because its convergence algorithm was mathematically compact and simple,

its data were extensive, and it had the broadest ability to model adsorption. Subsequently,

researchers completed five modeling tests of EQ316 and M1NTEQ and concluded that

both codes were valuable as standalone models, but were too slow and complex to be

incorporated as a geochemistry code module in a transport code. As introduced in the

previous section, M1NTEQA2, an updated version of M1NTEQ, became available in

1991 and has an interactive program used to create input files, which makes the model
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more user oriented requiring less effort to set up a problem. Based on their review and

available information on the equilibrium models, M1NTEQA2 appeared be the most

useful because it performed consistently in the geochemical test cases (Kincaid et al.,

1984; Money et al., 1986) and it has been improved while other models have not been

updated to the same degree. In the following, the review will critically evaluate the four

models based on the following categories: activity coefficients, adsorption, and

thermodynamic database.

Activity Coefficients

Geochemical equilibrium models predict the activities, activity coefficients, and

concentrations of individual species based upon input values for the total concentrations

of the chemical components present in the system. Most models rely on one of two

theoretical approaches, the ion-association or the specific ion-interaction, to explain the

relationship between activity and concentration under varying solution chemistry. These

models are used to define mathematical relationships which define activity coefficients as

a function of properties of the aqueous solutes (i.e., size and charge) as well as solution

chemistry (i.e., ionic strength). Ion-association is the theoretical approach first used to

predict activity coefficients based on the Debye-Htickel equation to relate aqueous

activities to concentrations; this is one of the most common models used in speciation

models (Berbert, 2001). One key assumption of the Debye-Biickel derivation is that ions

can be treated as point charges. The ions interact with each other by coulombic forces

(Bethke, 1996). Generally, the Debye-Btickel expressions do not account for all

interactions among solutes. This limits the ability of the model to accurately predict

activity coefficients of simple electrolytes at higher ionic strengths. A variety of
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empirical and semi-empirical expressions have been proposed to extend the applicability

of the Debye-Huckel equation to higher ionic strength systems. The Davies equation is

one that improves the fit between the theoretical and experimental observations.

The other major approach describing ion interaction in aqueous solutions is the

specific ion-interaction model. At higher ionic strengths both long-range electrostatic and

short-range forces affect the complexation of ions in aqueous solutions. The specific ion-

interaction model accounts for both of these types of forces through the use of a virial

coefficient expansion of the Debye-Huckel equation. The Pitzer equation is used widely

as the ion-interaction model, which applies empirical data to account for complexation

and ion pair formation by describing the change in free ion activity with a series of

experimentally defined virial coefficients. The ion-interaction model is superior to the

ion-association model at calculating activity coefficients at high ionic strength, and can

be used at low-ionic strengths as well. With this formulation, it is possible to compute the

activities of many electrolytes at ionic strengths up to 20 M and temperatures up to 250°C

(Benjamin, 2001; Berbert, 2001).

The MINTEQA2 and M1NERAL+ models include both the Davies and the Debye-

Huckel equations (Table 2.1). The EQ3NR has a more comprehensive set of models for

predicting activity coefficients, and besides the Davies and Pitzer equation, the B-dot

equation is also included in this code (Table 2.1). Few geochemical models incorporate

activity coefficient calculations for solid-phase minerals. Most geochemical models

assume that solid-phase minerals are in their standard states, and therefore, their activity

coefficients are one. The EQ3NR is one geochemical model that can predict solid-phase

activity coefficients as a function of mineral composition. There are two types of solid



Table 2.1 Equations for Predicting Activity Coefficients in Speciation Models

Name 	 Equation' 	 Definition 	 Ionic 	 MINEQL+ MINTEQA2 EQ3/6 PHREEQE
strength

Az.2 117 	 A =1.82x10 6 (e7') -3/ 2
Debye-	 log y, - - '
Bickel 	 1 + a igj 	 where 6' is the dielectric	 <0.1	 x	 x	 x

constant of the medium,

Zipis ionic charge,

I is ionic strength,

B 50.3(a )" 2

ailis ion size parameters,

Davies Log y, = - Az N1-1, 	 0.2/
1+ 4

Az F' mid is molality (mole/kg

<0.5 x x x

Pitzer y. - - 	 0	 + E M.log	 I
1+ Hai solution) of j,

Bib is specific interaction

term between ions i and j,

<1

B-dot
N17Az 2

B is based on the mean saltLogy 	 B I- 	 0 ' 	 +
1+ Hai activity concept and is

linearized derivation

function.

<1

a Compiled from Bethke (1996) and Benjamin (2001)
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phase activity coefficient models: molecular-mixing models and site-mixing models.

EQ3NR use site-mixing models to describe the activity coefficient of mixed composition

minerals (Wolery, 1992). Butler and Cogley (1998) reported that EQ316 is the computer

program of choice for modeling complex geological phenomena with large numbers of

components and potential solid phases, especially over a range of temperature and ionic

strengths. EQ316 has the uncommon capability to model precipitation and dissolution of

solid solutions. PBREEQC uses the Debye-Hiickel equation to account for the non-

ideality of aqueous solutions and approaches for the higher ionic strength issues are not

incorporated in this software (Parkhurst et al., 1999).

Adsorption

Sorption can be defined as the accumulation of a substance or materials at an interface

between the solid surface and the bathing solution. Sorption is a general term that is used

when the retention mechanism at a surface is unknown, and adsorption, surface

precipitation, and polymerization are all examples of sorption (Sparks, 1995). As

mentioned in the first chapter, sorption is considered significant for chemical transport,

and is also the least well understood (Sposito, 1986; Mangold and Tsang, 1991). All

speciation models only address adsorption; other processes like precipitation are

kinetically limited. At equilibrium, there are three basic mathematical approaches to

adsorption: distribution coefficient (isotherm equations), mass action models, and surface

complexation models. Isotherm equations are simplest and most convenient models

taking account of adsorption process, but they are unable to treat species having multiple

oxidation states, variable degrees of complexation, or heterogeneous sorption sites. Mass

action models handle ion exchange and heterogeneous sorption sites, which are widely
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employed in existing codes and make use of thermodynamic databases. Bowever, they

lack full capability to model multiple oxidation states and specific adsorption, and

additionally, the variation of adsorption with pH cannot be properly modeled. Surface

complexation models, on the other hand, are sufficiently general to account for all the

above variables, however, more data are needed (Sposito, 1989; Allison et al., 1991;

Mangold and Tsang, 1991; Marmier et al., 1999). Weber et al. (1991) discussed

concepts, models, and factors affecting contaminant fate and transport and presented a

review of sorption phenomena in terms of adsorption, absorption, and precipitation,

where absorption and precipitation are preceded by adsorption. The driving force for

chemical equilibrium in adsorption processes is a reduction in surface energy. Adsorption

is the accumulation of a species at a two-dimensional, solid-liquid interface; it strongly

influences the transport of trace metals in subsurface systems and forms the basis for

many remediation options.

There are a number of equations that are supported by many geochemical

speciation programs including Freundlich, and Langmuir adsorption isotherms.

Adsorption isotherms are commonly used to predict adsorption reactions because of their

convenience and computational simplicity. On the other hand, these models are site

specific and can be quite limited in reliably predicting adsorption under changing

conditions. The most widely used models for describing sorption behavior are those

based on the electric double-layer theory, such as the Gouy-Chapman model and the

Stern model. A more sophisticated approach relies on surface complexation models,

which include the constant capacitance, triple layer and modified triple layer, generalized

two-layer, and the one-pK model (Sparks, 1995). These models describe adsorption based
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on molecular descriptions of the process. Surface complexation models predict cation and

anion adsorption in complex systems as a function of pH, ionic strength, complexing

ligands, competition between ions, surface chemistry of particle surface, interaction

between adsorbents, and effects of changing solution composition (Berbert, 2001). These

characteristics make surface complexation models potentially invaluable for the

prediction of adsorption reactions for different remediation methodologies, especially

those techniques that affect solution or mineral surface chemistry. Unfortunately, as will

be shown below, these models require knowledge of a number of different parameters

which may not be available to the modeler.

Surface complexation models vary in how they describe the surface potential and

where they allow the differing types of species to be sorbed. The constant capacitance

model uses two layers to represent adsorption, where chemical adsorption occurs in the

layer adjacent to the surface. In the triple layer model, specific adsorption occurs in the

first two layers adjacent to the surface. However, only protonation or deprotonation is

allowed in the first layer adjacent to the surface. Physically adsorbed species reside in the

third layer extending out from the surface. This model uses two fitting parameters to

describe the capacitance changes in the two outer layers (Allison et al., 1991; Sparks,

1995).

Seven models are currently available in M1NTEQA2 and M1NERAL+ for modeling

surface reactions and include: (1) the Ad, (2) the Langmuir (non-electrostatic model), (3)

the Areundlich, (4) the ion exchange, (5) the constant capacitance, (6) the triple-layer, and

(7) the diffuse-double layer. Thermodynamic databases of surface reactions are generally

not complete for these models; the user often must provide the set of surface reactions
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and their equilibrium constants. However, a database of several surface reactions relevant

to the diffuse-double layer model for trace metal adsorption onto an iron oxide surface is

included (Allison et al., 1991; Schecher and McAvoy, 1998). During the 1990's,

development of the database for diffuse-double layer sorption reactions at the hydrous

ferric oxide (HFO) interface provided equilibrium speciation calculations for the

Bazardous Waste Identification Rule (HWIR) (U. S. EPA, 1996). The contaminant

metals and metalloids of interest in HWIR were arsenic, antimony, barium, beryllium,

cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium,

silver, thallium, tin, vanadium, and zinc. M1NTEQA2 version 4.02 and M1NERALL+ 4.5

include the most recent data for all HW1R contaminant metals pertinent to diffuse-double

layer model adsorption reactions on HFO. EQ3NR does not include any adsorption

model. PHREEQC incorporates ion exchange, diffusion-double layer, and non-

electrostatic models such as the Langmuir and Areundlich isotherms. Table 2.2 provides

an overview of adsorption models incorporated in each of software.

Thermodynamic Database

Much effort surrounding speciation model development is centered on the standardization

of the associated thermodynamic databases. Variation in the thermodynamic constants

can have a significant effect on variability in model predictions. Most databases used by

speciation models contain algorithms that are used to estimate thermodynamic parameters

at conditions of temperature and pressure other than the ones at which the data were

collected. Many models use extrapolation techniques to determine equilibrium constants

or Gibbs Aree Energy values at higher temperatures and pressures. The extrapolation

techniques generally do not include the ability to estimate error or uncertainty in the



Table 2.2 Adsorption Models in Speciation Software

Name MINEQL+ MINTEQA2	 EQ316 PHREEQC

Aa x x

Langmuir x x x

Freundlich x x x

Ion exchange x x x

Diffuse - double layer x x x

Constant capacitance x x

Triple - layer x x
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estimates. The uncertainty of these estimates can be large, especially at higher

temperatures and pressures. If the accuracy of geochemical model predictions is critical,

it is imperative that the modeler critiques the thermodynamic database in terms of

parameter accuracy, error, and applicability to the conditions of the system being

modeled (Bassett and Melchior, 1990; Berbert, 2001). The thermodynamic database used

by M1NTEQA2 version 3.0 (Allison et al., 1991) contains over 1000 species and includes

31 organic ligands and associated reactions to represent complexation with trace metals.

In version 4.0 (HydroGeoLogic et al., 1999), all species involving the 31 organic ligand

components have been reviewed and corrected. One organic component was found to

have no corresponding species and was removed from the database. Of the 450 species

associated with the other 30 organic ligands, 370 have been retained, most with updated

thermodynamic constants or other parameters. Eighty of the original 450 have been

deleted due to an absence of data within the necessary range of ionic strength and

temperature. More than 200 new species involving these organic ligands have been added

to the database. In addition to the correction of errors in the metal-organic complexes, the

revised database for version 4.0 includes reactions for aqueous species of beryllium,

cobalt, molybdenum, and tin. Compilations of stability constants have been used to verify

and update the thermodynamic constants for inorganic species. Where possible, the

source of the thermodynamic data has been cited in M1NTEQA2 version 4.0 database.

Data are mainly from the following organizations: (1) the Critical Stability Constants of

Metal Complexes Database (CR1T1CAL) published by the National Institute of Standards

and Technology (N1ST), (2) Stability Constants Database (SC-DATABASE) published

by the International Union of Pure and Applied Chemistry (IUPAC) and Academic Press,
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(3) the U.S. Geological Survey equilibrium model WATEQ, and (4) other sources,

including literature and other compilations.

The M1NERAL+ bases its thermodynamic data on that of the M1NTEQA2. In

EQ3NR, there are five data files that are based on several data sources, such as

SUPCRT92, Data Bank of the Nuclear Energy Agency of the European Community, and

also some data summarized by Barvie et al. (1984) and Pitzer (1979). All data files are

maintained at Lawrence Livermore National Laboratory (LLNL) in a relational database.

In PHREEQC, three database files are distributed within the program:

phreeqc.dat, wateq4f.dat, and minteq.dat. The file named phreeqc.dat contains the

thermodynamic data for aqueous species and gas and mineral phases that are essentially

the same as those found in the program PHREEQC (Parkhurst et al., 1980), which is the

earlier version of PHREEQC. Only minor modifications have been made to make the

data consistent with the tabulations in Nordstrom et al. (1990) and WATEQ4A (Ball and

Nordstrom, 1991). The file named wateq4f.dat contains thermodynamic data for the

aqueous species and gas and mineral phases that are essentially the same as WATEQ4A.

In addition to data for the elements in the database file, phreeqc.dat, the database file

wateq4f.dat contains data for the elements: arsenic, cesium, iodine, nickel, rubidium,

selenium, silver, and uranium. The file named minteq.dat contains thermodynamic data

for the aqueous species and gas and mineral phases that are derived from the database

files of MINTEQA2 version 3.0 (Allison et al., 1991). The user needs to select the

aqueous species and thermodynamic database (Parkhurst et al., 1999). In selecting the

database, the software does not include preferences between the three.
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2.1.6 Model Recommendation

Arom comparative evaluation of the four models M1NERALL+, M1NTEQA2, EQ316, and

PHREEQC with respect to activity coefficients, adsorption, and thermodynamic database,

we have a basis for selection. Considering activity coefficient calculations, EQ316 is the

most robust one among the models, as it not only includes the Davies, Pitzer, and B-dot

equations, but also incorporates activity coefficient models for solid-phase minerals and

can predict solid-phase activity coefficients as a function of mineral composition. The

M1NERAL+ and MINTEQA2 include both the Davies and the Debye-Huckel equations,

and are also robust in predicting activity coefficients up to an ionic strength of 0.5 molal.

EQ316 does not include any adsorption model, which prevents its use for equilibrium

adsorption, a very important mechanism in chemical transport. Although all these models

are limited due to the lack of development of kinetically limited processes, M1NERALL+

and MINTEQA2 are preferred, given that each has seven adsorption equilibrium models

for surface reactions. The PBREEQC incorporates three kinds of adsorption models, ion

exchange, double layer, and non-electrostatic ones such as the Langmuir and Areundlich

isotherms.

The thermodynamic database has a great effect on speciation variability in model

prediction. The MINTEQA2 and M1NERAL+ have broader and more updated databases,

and also have better documentation for the database compared with models EQ316 and

PBREEQC. The thermodynamic data in M1NERALL+ are based on that of the M1NTEQA2.

When evaluating models for software development, another important aspect, ease of use,

should be considered as well. MINERALL+ is a Windows system based software. Although

the Windows version of M1NTEQA2, Visual MINTEQA (Gustafsson, 2001), has been
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developed recently, validation is needed in using this program. In addition, the interface

of Visual M1NTEQA is not as user-friendly as that of MINERALL+, and also

documentation as comprehensive as M1NERAL+ is needed for this free software.

Recently, Meeussen (2003) developed an object-oriented structure for chemical

equilibrium modeling, ORCBESTRA. The novel idea for this framework is that model

equations are not hard-coded in the source code, but instead all equations are defined in

text format and read by ORCHESTRA calculation kernel at run time. The advantages of

this structure over other standard speciation algorithms are two fold. Model flexibility

allows users to change or add model definitions without changing or recompiling the

source code. Model compactness is achieved because the calculation kernel does not

contain any information on chemical models. However, currently ORCHESTRA does not

include a thermodynamic database, and also requires users be more knowledgeable with

respect to equilibrium equations. In addition, this model does not have a user-friendly

interface, which is an important aspect of new software development.

Overall, considering its comprehensive thermodynamic database, relatively strong

ability to predict activity coefficients, more options for modeling adsorption at

equilibrium, and user-friendly interface, MINERAL+ is recommended for our software

development. This speciation model will be linked with other functioning sub-models.

2.2 Summary

Geochemical modeling is an attempt to interpret or predict the geochemical processes

which occur in subsurface systems. To propose an appropriate model for aqueous

speciation in our software development, speciation models were critically reviewed. After
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preliminary evaluation and screening of existing models, four models, M1NERALL+,

MINTEQA2, EQ316, and PHREEQC, were selected for evaluation in this review. All

four models have been verified and validated to some extent and are relatively widely

used and updated. These models are readily available with full descriptions and complete

documentation. The four models were compared for activity coefficients, adsorption, and

thermodynamic database. Another important aspect, user-friendly interface, was also

considered. The M1NERAL+ is recommended because of its comprehensive

thermodynamic database, relatively strong ability to predict activity coefficients, more

options for modeling adsorption under equilibrium conditions, and user-friendly

interface.

Through speciation modeling, M1NERALL+, aqueous phase is obtained; however,

credibly simulating and predicting metal contaminant species mobility relies on

mechanistic models of metal distribution. In the next chapter, sorption processes are

reviewed where intraparticle diffusion is demonstrated to be an important and rate-

limiting step in the sorption. A subsequent review on existing solute transport models

shows that either equilibrium or reaction rate approaches are often employed for

describing metal sorption. Consequently, realistic solute transport models need to

consider the intraparticle diffusion process.



CHAPTER 3

SLOW SORPTION PROCESS MODELING

Sorption processes at the mineral/water interface greatly affect the mobility and

bioavailability of heavy metals in aquatic and soil environments. It is imperative that the

kinetics and mechanisms of metal sorption be precisely understood. This chapter begins

with a literature review on sorption, then will continue with a discussion on intraparticle

diffusion and modeling the sorption process in existing solute transport codes. The

review includes a discussion on the use of equilibrium models for sorption, which are

generally found to be inadequate in simulating sorption. Secondly, the two-step process

observed for metal sorption to microporous amorphous hydrous oxides is reviewed where

rapid adsorption to the external surface is followed by slow intraparticle diffusion along

the oxide micropore walls. Lastly, existing solute transport models often employ either

equilibrium or reaction rate approaches for describing metal sorption processes.

Therefore, realistic solute transport models need to consider the transient processes such

as that observed for sorption to microporous sorbents.

3.1 Equilibrium Models

The fate and transport of heavy metals in soil and sediments are largely dependent upon

the metal's interaction with mineral surfaces. As discussed in Chapter 1, amorphous

oxide minerals of aluminum (BAO), iron (HFO), and manganese (HMO) are persistent in

the subsurface and can control the distribution of metal contaminants in many aquatic

environments. Sorption can be defined as the accumulation of a substance or material at

28
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an interface between the solid surface and the bulk aqueous phase. It is a general term

that is used when the retention mechanism at a surface is unknown, and adsorption,

surface precipitation, and polymerization are all examples of sorption. Adsorption is the

accumulation of a species at a two-dimensional, solid-liquid interface; it strongly

influences the transport of trace metals in subsurface systems and forms the basis for

many remediation options. At equilibrium, there are three basic mathematical approaches

to adsorption: mass action models, distribution coefficient Ad (isotherm equations), and

surface complexation models (Sparks, 1995; Jenne, 1998; Berbert, 2001), as presented in

Chapter 2. Isotherm equations are simplest and often the most convenient, taking account

of adsorption processes. There are a number of models supported by geochemical

speciation programs including the linear, Areundlich, and Langmuir adsorption isotherms.

Adsorption isotherms are commonly used to predict adsorption reactions because of their

convenience and computational simplicity. However, these models are site specific and

can be quite limited in reliably predicting adsorption under changing conditions. They are

unable to treat species having multiple oxidation states, variable degrees of complexation,

or heterogeneous sorption sites.

Mass action models handle ion exchange and heterogeneous sorption sites

utilizing thermodynamic databases. However, they lack full capability to model multiple

oxidation states and specific adsorption. In addition, the variation of adsorption with pB

cannot be properly modeled. Surface complexation models, on the other hand, are

sufficiently general to account for most of the above variables (Sposito, 1989; Mangold

and Tsang, 1991). Surface complexation models include the constant capacitance, triple

layer and modified triple layer, generalized two-layer, and the one-pA model (Sparks,
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1995). These models describe adsorption based on molecular descriptions of the process.

Surface complexation models predict cation and anion adsorption in complex systems as

a function of pB, ionic strength, complexing ligands, competition between ions, surface

chemistry of the particle surface, interaction between adsorbents, and effects of changing

solution composition (Herbert, 2001). These characteristics make surface complexation

models potentially invaluable for the prediction of adsorption reactions for different

remediation methodologies, especially those techniques that affect solution or mineral

surface chemistry. Unfortunately, these models require knowledge of a number of

different parameters which may not be available to the modeler (Allison et al., 1991;

Marmier et al., 1999).

Surface complexation models vary in how they describe the surface potential and

where they allow different types of species to be sorbed. The constant capacitance model

uses two layers to represent adsorption, where chemical adsorption occurs in the layer

adjacent to the surface. Similarly with the constant capacitance model, the generalized

two-layer model assumes that all surface complexes are inner-sphere. The difference

between the constant capacitance and the generalized two-layer models is that the

constant capacitance model assumes a linear relationship between surface charge and

surface potential, and two-layer model describes this relationship by the Poisson-

Boltzmann equation. In the triple layer model, specific adsorption occurs in the first two

layers adjacent to the surface. Bowever, only protonation or deprotonation is allowed in

the first layer adjacent to the surface. Physically adsorbed species reside in the third layer

extending out from the surface. This model uses two fitting parameters to describe the
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capacitance changes in the two outer layers (Allison et al., 1991; Bruno et al., 1995;

Sparks, 1995).

As shown above, many equilibrium models have been developed to model

sorption; however, sorption processes generally cannot be successfully simulated by

equilibrium models (Middleburg and Comans, 1991; Aoeppenkastrop and Carlo, 1993;

Bruno et al., 1995; Altin et al., 1998; Scheidegger et al., 1998; Thompson et al., 1999;

Tonkin et al., 2002). Middleburg and Comans (1991) studied sorption of cadmium on

hydroxyapatite (Ca5(PO4)3(OH)) where Cd adsorption displayed an initial rapid uptake

followed by a relatively slow process that continued beyond 28 days. The high affinity of

the hydroxyapatite surface for Cd is consistent with the enrichment of cadmium in

phosphorite deposits. The Langmuir isotherm was used to model the first rapid step. The

slow process may have resulted from surface precipitation and recrystallization.

Middleburg and Comans used a time-dependent distribution ratio, 1Q; however, this

approach is based on equilibrium and does not reflect the mechanistic transient process.

In addition, Aoeppenkastrop and Carlo (1993) investigated rare earth element (REE), La,

Sm, Ho, and Lu, uptake from solution by metal oxides. Their model development began

with describing metal sorption the simplest way by assuming a one-step reversible

reaction, which was inadequate as transient processes could not be ignored. This simple

model did not fit experimental data successfully. They added parallel reactions and

developed six different reaction paths, and then, finally obtained good fits to the

experimental data. In these two examples, equilibrium could not describe sorption

process and reactions kinetics was employed. However, complementary microscopic

investigations are needed to support their proposed mechanisms.
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Altin et al. (1998) used general purpose adsorption isotherm equations to fit the

sorption data of Pb and Cd on both unmodified and Ca-saturated kaolinite and

montmorillonite. In the case of Cd sorption, a single site Langmuir isotherm was not

successful; the experimental data could be divided into two linear portions, potentially

illustrating adsorption of Cd ion at the two different surfaces, kaolinite and

montmorillonite. Tonkin et al. (2002) used the equilibrium speciation computer program

PBREEQC along with the diffuse double-layer surface complexation model to simulate

metals, such as Pb, Cu, As, Mo, and Sb, removal onto natural oxide particles formed

during the mixing of acid rock drainage with ambient surface water. The equilibrium

sorption model, with a single set of surface parameters and surface complexation

constants, predicted the partitioning of Pb and Cu on iron oxides. However, they found

that the use of this simple model did not work for metals like As, Mo, and Sb, and

suggested there may be additional removal mechanisms that are not represented by the

equilibrium model.

Bruno et al. (1995) experimentally studied and modeled U(VI)-Fe(OH)3 surface

precipitationlcoprecipitation equilibrium. They differentiated the various phenomena that

occur after metal ions are adsorbed onto the surface of the hydrous oxide: surface

precipitation, then surface/structure diffusion, finally solid solution formation. They

considered that as the diffusion in this solid matrix is a very slow process, surface

precipitation is the process expected to take place at room temperature. The experiment

indicated a very fast sorption of U(VI) in the amorphous Ae(I1I)-oxyhydroxide initially

followed by a slow surface precipitation process. The model based on surface

complexation was developed and resulted in a clear overestimation of the calculated
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concentration of uranium in solution with respect to the measurements. They applied two

alternative models by assuming another surface coordination and varying site density and

obtained a better fit with experimental data. Alternatively, using spectroscopy Thompson

et al. (1999) investigated the dynamic interactions of mineral dissolution, cation surface

adsorption, and precipitation in an aging Co(II)-clay-water system. Long-term Co(II)

sorption experiments were continued for up to 7,000 h, during which time samples were

collected periodically. The two-step uptake was described as surface adsorption rapidly

occurring initially followed by precipitation of cobalt hydrotalcite during most of the

7,000 h. The rate varied considerably with the availability of dissolved Al. Surface

precipitation was the rate-limiting process and equilibrium could not describe the

mechanism. Therefore, non-equilibrium models are needed to describe the phenomenon.

Scheidegger et al. (1998) also conducted short-term and long-term Ni sorption

studies on clay and aluminum oxide minerals to determine the sorption mechanisms.

Their studies are not solely based on a macroscopic analysis, but combine kinetic and

spectroscopic investigations, X-ray Absorption Aine Structure (XAAS) measurements.

The experiments showed that the Ni sorption kinetics strongly depend on the mineral

surface present. For the Ni/pyrophyllite system, Ni uptake is nearly completed within 24

h; for the Ni/gibbsite and Ni/montmorillonite systems the uptake reactions were much

slower where 1-2 months were required until most of the Ni was removed from solution.

The XAAS analysis revealed that as the reaction time increased, the number of Ni

second-neighbor (N) atoms increased in all sorption systems, suggesting the continuous

growth of a mixed Ni/Al hydroxide phase. Roberts et al. (1999) monitored the effect of

time of Ni sorption to soil clay at pH 6.0, 6.8, and 7.5. Sorption increased as a function of
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time. Specifically, at pH 6.8, Ni sorption proceeded quite rapidly initially within 10 h,

followed by a more gradual sorption period of 800 hours. The kinetics at pB 7.5 were

characterized by an extremely rapid initial step occurring over 12 h, then by a much

slower sorption region where Ni was nearly completely removed from solution within

200 hours. These phenomena clearly demonstrate that kinetics is important. Based on the

review above, equilibrium models alone cannot accurately simulate sorption, and non-

equilibrium models are indeed needed.

During local microscopic mass transfer in sorption, which refers to movement of

solute under the influence of molecular or mass distribution by its chemical gradient,

research shows that film diffusion (Sparks, 1995; Jackman et al., 2001), intraparticle

diffusion (Fuller et al., 1993; Papelis et al., 1995; Trivedi and Axe, 1999, 2000, and

2001; Scheinost et al., 2001; Manju et al., 2002), and surface precipitation (Middelburg

and Comans, 1991; Aendorf and Sparks, 1994; Aord et al., 1999; Aarthikeyan et al., 1999;

Tompson et al., 1999; Scheckel et al., 2000; Waychunas et al., 2002), are the potential

rate-limiting steps in sorption. Ailm diffusion involves transport of metal ions through a

boundary layer of film that surrounds the particle surface. Intraparticle diffusion involves

transport of ions along pore-wall surfaces and/or within the pores of microporous

sorbents. As the amount of a metal ion sorbed on a surface increases to some maximum

or limiting surface coverage, a surface precipitate may form (Sparks, 1995).

Film diffusion and intraparticle diffusion are rate-limiting processes under

different circumstances. Axe and Anderson (1998) examined the hydraulic regime along

with the adsorbate diffusivity and estimated the Biot number (Bi), which is the ratio of

external to internal mass transfer. They concluded that external film mass transfer is not
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an important resistance for systems when intraparticle diffusivities are much smaller than

bulk values. Under these conditions the Biot number is greater than 1 and intraparticle

diffusion controls mechanism. On the other hand, when diffusion is equal to bulk values,

film diffusion becomes important in groundwater systems. In the next section, the review

focuses on the intraparticle diffusion, which has been demonstrated to be a rate-limiting

process in sorption by a number of researchers.

3.2 Intraparticle Diffusion

Among various sorts of sorption substrates, amorphous oxide minerals of aluminum, iron,

and manganese can control the distribution of inorganic contaminants in many aquatic

environments. These oxides are not only persistent in aquatic environments, but are also

important adsorbents for metal ion contaminants (Jenne and Zachara, 1987; Axe and

Anderson, 1995, 1998). Many studies have shown that sorption of heavy metals to

hydrous oxides is a two-step process (Benjamin and Leckie, 1981; Barrow et al., 1989;

Auller et al., 1993; Papelis et al., 1995; Axe and Anderson, 1995, 1997; Strawn et al.,

1998; Roberts et al., 1999; Trivedi and Axe, 1999, 2000, and 2001; Scheinost et al.,

2001; Manju et al., 2002; Axe and Trivedi, 2002; Sen et al., 2002): a rapid adsorption of

metal ions to the external surface is followed by slow intraparticle diffusion along the

oxide micropore walls. The kinetics of the first step are quite fast where equilibrium is

reached within minutes with sufficient mixing between the bulk aqueous phase and the

adsorbent external surface. In the second step, the contaminant adsorbed at the surface

slowly diffuses along sorption sites in the micropores of the oxide particle.
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In the 1980's, Benjamin and Leckie (1981) observed that adsorption of Cd, Zn,

Cu and Pb on amorphous iron oxyhydroxide was initially fast followed by a much slower

second step. Barrow et al. (1989) studied adsorption kinetics of Ni, Zn, and Cd on

goethite and concluded that the observed two-step kinetics corresponded to an initial

rapid reaction followed by slow diffusion of the metal ions into goethite. Auller et al.

(1993) found that sorption of arsenate on hydrous ferric oxide proceeded in two steps

with a fast uptake on the exterior of the aggregate and a slow uptake limited by the rate of

intraparticle diffusion. Papelis et al. (1995) investigated cadmium and selenite adsorption

on aluminum hydroxides and found that the sorption data were consistent with diffusion,

assuming solute diffusion in a sphere with limited volume.

Recently, Axe and co-workers (Axe and Anderson, 1995 and 1997; Trivedi and

Axe, 1999, 2000, and 2001; Axe and Trivedi, 2002) conducted series of sorption studies

with Sr, Cd, Zn, and Ni on amorphous HAO, HAO, and BMO oxides. Besides adsorption

edge and isotherms, they used constant boundary batch (CBC) experiments, where the

bulk adsorbate concentration was maintained approximately constant for all times. They

found intraparticle diffusion is an important and rate-limiting process in the sorption. In

aquatic systems representative of natural environments, the internal micropore surfaces of

HAO, FIFO, and HMO can account for 40 to 90% of the sorption sites. Their research

also demonstrated that thermodynamic and transport parameters can be predicted based

on theoretical methods. Strawn et al. (1998) studied kinetics and mechanisms of Pb(II)

sorption and desorption at the aluminum oxide-water interface. They observed that

adsorption kinetics were initially fast, resulting in 76% of total sorption occurring within

15 min, followed by a slow continuous sorption reaction. There are three possible
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explanations for the slow sorption: diffusion to internal sites, surface precipitation, or

slow reactions with aluminol sites. They ruled out surface precipitation based on XAFS

results. Consequently, slow sorption was attributed to intraparticle diffusion through

micropores. They also suggested that slow reactions with aluminol sites might occur

because different types of ligand sites exist on y-A1203 and sorption onto sites with large

activation energies is possible resulting in slower kinetics.

Scheinost et al. (2001) measured Cu and Pb sorption as a function of ferrihydrite

morphology, reaction temperature, metal competition, and fulvic acid concentration over

a period of two months, in which surface diffusion was recognized as the limiting

process. Manju et al. (2002) conducted an investigation into the sorption of heavy metals,

including Pb, Hg, and Cd, from wastewater by polyacrylamide-grafted iron (III) oxide.

Intraparticle diffusion of metal ions through pores in the adsorbent was shown to be the

rate-limiting step. Sen et al. (2002) studied kinetics and adsorption of Cu and Ni metal

ions from their aqueous solutions on iron oxide, kaolin, and sand. Their kinetic

experiments indicated that the adsorption of Cu and Ni metal ions on oxides is a two-step

process: a rapid adsorption of metal ions to the external surface is followed by potentially

slow intraparticle diffusion in the interior of the particles. They reported that in the case

of kaolin, intraparticle diffusion occurs through the space between the lattice layers;

while in the case of iron oxide, it occurs in the micropores of the oxide particles.

Based on previous studies, intraparticle diffusion of heavy metals on hydrous

oxides is a critical step in sorption and plays an important role in fate and transport of

metal contaminants in subsurface environments. Thus, realistic transport models should

consider this diffusion process, as models that often employ either equilibrium or reaction
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rate approaches (e.g., Gerard et al., 1998; Yabusaki et al., 1998; Clement, 2003) are

inadequate for describing metal mobility in subsurface environments where amorphous

oxides or oxide coatings are present (e.g., Gallo et al., 1998; Baverman et al., 1999;

Zheng and Wang, 1999). In the following section, a review of applying sorption

processes in existing solute transport modeling is presented.

3.3 Sorption Process in Solute Transport Modeling

A comprehensive review on groundwater flow and transport models is provided in the

next chapter. In this section, sorption processes in existing solute transport modeling are

reviewed.

Mangold and Tsang (1991) give a thorough summary of solute transport models

developed during the 1970's and 1980's. Most of them simulate sorption processes based

on the local equilibrium assumption, such as Groundwater Package (Marlon-Lambert,

1978), AONBRED (Aonikow and Bredehoeft, 1978), GWTHERM (Runchal et al.,

1979), SHALT (Pickens and Grisak, 1979), MAGNUM 2D-CHA1NT (Baca et al., 1981),

CAEST (Gupta et al., 1982), FTRANS (GeoTrans, 1982), PORALOW (Runchal, 1985),

SW1FT 1I (Reeves et al., 1986), HST3D (Aipp, 1987), and NEFTRAN (Longsine et al.,

1987). In addition, some transport models do not incorporate sorption, for example,

Grove/Galerkin (1977), SALTRP (Arind and Trudeau, 1980), RESTOR (Warner, 1981),

and PTC (Lai et al., 1986). Since 1990, solute transport models have been developed for

various scenarios; however, like counterparts developed earlier, many apply a local

equilibrium assumption for sorption. However, there are some models which use kinetic
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approaches when the local equilibrium assumption is not valid. Further discussion

regarding specific models follows.

Engesgaard and Aipp (1992) developed a one-dimensional solute transport model

MST1D using finite difference techniques, which can simulate multispecies solute

transport in groundwater systems, with precipitation-dissolution and oxidation-reduction

reactions under local chemical equilibrium. Its equilibrium-sorption process simulation is

based on the PBREEQC code (Parkhurst and Appelo, 1999) and incorporates ion

exchange, diffuse-double layer, and Langmuir and Areundlich isotherms. The PHREEQC

was presented in detail in Chapter 2. The M1NTRAN (Walter et al., 1994) applies the

thermodynamic approach in modeling transport of multiple chemical substances in

groundwater systems. Its sorption processes make use of M1NTEQA2 (Allison et al.,

1991), a well-known speciation model discussed earlier. The transport module,

PLUME2D accounts for advection and dispersion and does not include sorption kinetics.

The mobility of potentially toxic dissolved metals, Cr, Pb, and Mn, discharged from mine

tailing sources into an aquifer in northern Ontario was investigated with MINTRAN

(Walter et al., 1994). In the case of a 12-year old source, the model showed most metals

were immobilized through precipitation, where the groundwater was expected to meet

drinking water standards without costly remediation measures. The accuracy of this

model remains to be investigated. The HYDROGEOCHEM (Cheng and Yeh, 1998)

and its precursor HYDROGEOCHEM (Yeh and Tripathi, 1991) are coupled models of

subsurface flow, heat transfer, and reactive chemical transport. The sorption process is

dealt with by ion-exchange, the Langmuir isotherm, surface complexation, and triple-

layer models where local equilibrium is assumed. Cheng and Yeh (1998) emphasized that
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sorption processes could be simulated more adequately by incorporating chemical

kinetics into 3DHYDROGEOCHEM model, which they proposed is the first task needed

in improving the model.

Many significant groundwater pollution problems involve complex reactive

mixtures of inorganic and organic pollutants, such that of the co-disposal of a

radionuclide and organic ligands, in a metal oxide-coated sand aquifer. The FEREACT

(Tebes-Stevens et al., 1998) is a reactive transport model which handles such interacting

processes. Considering the sorption processes, this code has advantages over previous

models. It treats heterogeneous reactions as reaction kinetics controlled. Specifically,

AEREACT was developed using a module structure so that users could define the

reactions. The subroutines for computing the rate terms are external to the code and they

can be thought of as reaction modules to be added for any particular application.

Although using reaction kinetics would not accurately describe intraparticle diffusion, the

model does attempt to include transient processes. The AEREACT has been applied to

simulate the migration of a radionuclide, 60Co, and an organic ligand, EDTA, through a

sandy aquifer. The B1ORXNTRN (Hunter et al., 1998) is another reactive transport

model which was developed for biogeochemical transport systems. Similar to FEREACT,

B1ORXNTRN focuses on inorganic and organic transport and microbially-driven

reactions. The model incorporates kinetic descriptions for the microbial degradation

pathways of organic matter; on the other hand, the treatment of heterogeneous sorption

processes was kept relatively simple and only local equilibrium was applied to this

process. Bunter et al. (1998) used B1ORXNTRN to simulate the distribution of chemical

species and reaction rates along flow paths in subsurface environments, in which a
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pristine aquifer is contaminated by an organic-rich leachate from a landfill. The microbial

oxidation of organic matter resulted in the degradation of dissolved and solid oxidants

and the appearance of reduced species. They believed that the reactivity, or

biodegradability, of the organic matter is shown to be a major factor governing the

biogeochemical dynamics in the plume. The model predicted different distributions of the

biodegradation pathways, depending on whether the organics of the leachate have

uniform or variable reactivity. However, Hunter et al. did not consider intraparticle

diffusion processes, which may affect the concentration profiles as well. Provided that

this mechanism could be simulated, coupled with other biogeochemical processes,

predictions would have more credibility and dependability.

The KIRMAT (Gerard et al., 1998) is a 1D multi-solute mass transport system

and treats multi-components in advective transport, subjected to several equilibrium-

controlled dissolution and precipitation reactions. Bowever, this model does not give

much attention to the sorption process. Baverman et al. (1999) developed a geochemical

and transport simulation tool, CHEMFRONTS, used to calculate mass transport and fluid

rock interactions. This model is based on the quasi-stationary approximation which

describes the evolution of geochemical processes occurring in a sequence of stationary

states. The model focuses the mineral dissolution and precipitation using a kinetic

expression and does not consider sorption processes in the overall mass transport. The

CHEMFRONTS has been applied to predict geochemical transformations in unsaturated

porous media in subsurface from the Aitik site in northern Sweden. They simulated the

breakthrough of Cu in drainage water from mining waste and the release of dissolved Cu.

Considering the many biogeochemical processes, pH conditions were regarded as the most
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influential factor affecting the mobility of copper. The breakthrough curves showed that

the peak concentration of copper was obtained between 14 and 15 years, due to the

release of previously accumulated copper. In accounting for the sorption process in this

model simulation, it is reasonable to predict that this will happen even later.

The MT3DMS (Zheng and Wang, 1999) superseded by RT3D (Clement, 2003) is

a 3D solute transport model for simulating advection, dispersion, and chemical reaction

in groundwater. Three types of adsorption isotherms, linear, Freundlich, and Langmuir,

are considered. In addition, the code simulates first-order reversible reaction kinetics.

Zheng and Wang (1999) applied the MT3DMS to investigate the effectiveness and

performance of various remedial scenarios for a 1,2-dichloroethane plume. The

unconfined aquifer consisted of an upper zone of fine and medium grain sands and a

lower zone of medium sands. Aor sorption, they compared the linear isotherm to a first-

order reaction kinetics expression and while the equilibrium assumption was inadequate,

a first-order reaction was also unsuccessful in addressing the transient process(es).

Studies with real and model systems emphasize that contributions from slower processes

should be included together with equilibrium models for accurately depicting

contaminant sorption processes.

Based on the review of existing solute transport models, either equilibrium

models or reaction rate approaches are often employed for describing metal sorption

processes. However, many studies have demonstrated that intraparticle diffusion is an

important and rate-limiting process in the sorption, which needs to be considered in

realistic solute transport modeling. In the next chapter, groundwater flow and solute

transport models will be reviewed for addressing macroscopic transport in developing a
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comprehensive evaluation of contaminant transport and fate. Transient processes can then

be simulated and incorporated into the selected model for accurately depicting metal

contaminant mobility.



CHAPTER 4

GROUNDWATER FLOW AND TRANSPORT MODELING

Numerical simulation in space and time is an established method in hydrological

transport studies. Different codes address different aspects of fluid flow and mass

transport. Flow of groundwater is governed by the principles of conservation of mass and

momentum. Conservation of mass for the fluid is expressed as the equation of continuity,

and the conservation of momentum is expressed in the Navier-Stokes equation.

Microscopic movement through pores and fractures may be averaged over a sufficiently

large volume of the medium to obtain a macroscopic description of the flow. Solute

transport is governed by the conservation of mass and the processes of advection,

molecular diffusion, and kinematic dispersion. Advection describes the movement of

solutes carried by groundwater flow. The process of molecular diffusion is the spread of

the solute molecules throughout the fluid by virtue of their kinetic motion. Ainematic

dispersion (diffusion imposed on advection) is the spreading of solute due to the

heterogeneity of the microscopic velocities in the motion of the fluid (Mangold and

Tsang, 1991). This chapter is focused on a review and evaluation of existing groundwater

flow and solute transport models, one of which is proposed for addressing macroscopic

solute transport and incorporation of mechanistic transport processes such as intraparticle

diffusion.

44
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4.1 Background

The use of hydrological transport models is prevalent in the field of environmental

science and engineering. Models have been applied to investigate a wide variety of

hydrogeologic conditions and are being applied to predict the fate and transport of

contaminants for risk evaluation. In this section, background of groundwater flow and

solute transport models is reviewed with the objective of selecting one for incorporation

of intraparticle diffusion.

A groundwater flow model is intended to calculate the bulk rate and direction of

groundwater through aquifers and confining units in the subsurface. These calculations

are referred to as simulations. The simulation of groundwater flow requires a thorough

understanding of the hydrogeologic characteristics of the site. The hydrogeologic

investigation should include complete characterization, such as thickness of aquifers and

confining units, hydrologic boundaries, hydraulic properties, distribution of hydraulic

head, and distribution and magnitude of groundwater recharge, pumping, or leakage to or

from surface water bodies. These characteristics may be constant or may change with

time. The output from model simulations is the hydraulic heads and groundwater flow

rates which are in equilibrium with the hydrogeologic conditions defined for the modeled

area. The model can also be used to simulate possible future changes to hydraulic head or

groundwater flow rates as a result of changes in characteristics of the aquifer system.

Overall, hydraulic head gradients and hydraulic conductivity determine the direction and

magnitude of groundwater flow (M1DEQ, 2001).

A transport model simulates the movement of a solute via groundwater. As

mentioned previously, the transport of solutes is a process governed by the principle of
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conservation of mass and the processes of advection, molecular diffusion, and kinematic

dispersion. Transport models require the development of a calibrated groundwater flow

model. In addition to a thorough hydrogeological investigation like in groundwater flow

modeling, the simulation of solute transport processes requires further characterization,

such as boundary conditions for the solute, initial distribution of solute, location, history

and mass loading rate of chemical sources or sinks, effective porosity and soil bulk

density, and longitudinal and transverse dispersivity (MIDEQ, 2001). Output from the

model simulations are contaminant concentrations that exist in the groundwater flow

system under the geochemical conditions defined for the modeled area.

Transport models describe the groundwater flow and fate using mathematical

equations based on certain simplifying assumptions. The governing hydrological

equations are briefly presented as follows. For a more in depth discussion, Mangold and

Tsang (1991) and Yeh and Tripathi (1989) provide excellent reviews and illustrations.

4.1.1 Flow Equations

As discussed previously, the flow of groundwater is governed by the principles of

conservation of mass and momentum; the conservation of mass for the fluid is expressed

as the equation of continuity, and the conservation of momentum is expressed in the

Navier-Stokes equation for the flow of a compressible fluid. To obtain a macroscopic

description of the flow in terms of measurable attributes of the fluid and the rock matrix,

the microscopic movement through the subsurface may be averaged over a sufficiently

large volume of the medium. Darcy's law is a macroscopic equation of motion for the

flux of a unit mass of fluid, v (L/T), flowing relative to the rock under the fluid potential

(mechanical energy per unit fluid mass) (Bubbert, 1940).



where k is the permeability tensor (L2); ,u is the dynamic viscosity of the fluid (MJLT);

V is the gradient operator; p is the fluid pressure (M/LT); p is the fluid density

(MJL3 ); g is the acceleration due to gravity (L/T); z is vertical distance (L) above a

datum level (positive upward); K is the hydraulic conductivity tensor (L/T); and h is the

total head (L). Darcy's law describes a linear relationship between groundwater flow and

the hydraulic gradient, which holds under a broad range of conditions common in

hydrogeological environments.

The equation of continuity (mass conservation) for the fluid is

where t is the time (T); 0 is the porosity of the medium (dimensionless, 0 _. 0 1); and

Q is a prescribed source or sink of volumetric fluid flow (positive for fluid withdrawn)

per unit volume (1/T). The equation applies either to a porous medium ( 0 < 1) or a

fracture (0 .------ 1); it describes the rate of accumulation of fluid mass within a given volume

of the medium and accounts for transient effects from changes in storage, due to the

compressibilities of both the rock matrix, a (LT2IM), and the fluid, /3 (LT 2IM). The

effect of the second term in Equation 4.2 may be written as si s (ahIat), where

is the coefficient of specific storage (1/L) that describes the volume of

fluid released from storage under a unit decline in hydraulic head.

The governing equation of groundwater flow may thus be derived from the

equation of continuity by expanding the first term of Equation 4.2 and assuming terms
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involving changes in fluid density ( v • op) to be negligible when compared to terms

involving changes in velocity ( pV • v) over the volume of a spatial mesh element. Now,

substituting Darcy's law for v and the specific storage term for a (p0)/at , the governing

equation may be given as

This is an equation describing the transient flow of groundwater as a function of

hydraulic head in the presence of fluid sinks or sources in an anisotropic saturated

medium. Steady state exists when Bahl at = 0 . Many simplifications are possible, and

various models use the above equation at steady state (ah/at = 0) or with isotropic media

However, there is an increasing trend for models to retain the full

generality in order to accurately simulate complex hydrogeological environments.

4.1.2 Solute Transport Equations

The transport of solutes is a process governed by the principle of conservation of mass

and the processes of advection, molecular diffusion, and kinematic dispersion. The

governing equation of solute transport is given by:

where v is the Darcian flow velocity (L2/T) from Equation 4.1; C 3 is the volumetric

concentration of the j th substance (M/L3T); D is the dispersivity tensor (L2/T); 0 is the

porosity; Q, is a source/sink term (M/L 3T); and AT, is the number of independent

chemical entities. The first term describes transport of substance j due to advection, and
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the second term gives transport due to hydrodynamic dispersion (including diffusion).

Together they yield the change in flux. The microscopic balances addressing sorption and

other chemical reactions in solute transport will be illustrated in the next section.

This section reviewed groundwater general flow and transport equations, which

are used to set up the hydrological solute transport models. By mathematically

representing a hydrogeological system, reasonable alternative scenarios can be predicted,

tested, and compared. The applicability or usefulness of a model depends on how closely

the mathematical equations approximate the physical system being modeled. In order to

evaluate the applicability or usefulness of a model, it is necessary to have a thorough

understanding of the physical system and the assumptions embedded in the derivation of

the mathematical equations. In the next section, transport model evaluation will be

presented with recommendations for use in addressing transient processes.

4.2 Review and Evaluation of Groundwater Flow and Transport Models

There are many transport models existing as commercial products, and some models are

available in the open literature. Tables 4.1 and 4.2 show a relatively comprehensive

model list. Among them, transport models reviewed and evaluated were chosen on the

basis of four criteria: (1) models are in the open literature or commercial products with

full descriptions and complete documentation; (2) models have been verified, validated,

and are updated; (3) models not only have been applied to specific field problems, but

also can deal with other circumstances; and (4) models are fully maintained and

supported by organizations. Based on the above criteria, six models, WinTran (ESI,

2002), FLOWPATBI1 (Waterloo Hydrogeologic, 2002), Visual MODFLOW (Visual
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MODFLOW Pro) (Waterloo Hydrogeologic, 2002), Groundwater Vistas (GV) (ESI,

2002), HTDROGEOCBEM 2 (Teh and Salvage, 1997), and GMS (Groundwater

Modeling System) (BTU, 2002) were selected for further review in this chapter.

In the following sections, background and descriptions of the above models are

presented. Model evaluation is then discussed. Finally, the recommended transport

models are provided for use in this research.

4.2.1 WinTran

WinTran is a 2D groundwater flow and contaminant transport model, which couples the

steady-state groundwater flow model from WinFlow (ESI, 2002) with a contaminant

transport model. Both WinFlow and WinTran are developed by ES1 (Environmental

Simulation International, Inc.). The transport model is an embedded finite-element

simulator, which is constructed automatically by the software but displays numerical

criteria to allow the user to avoid numerical or mass balance problems. In this model,

contaminant mass may be injected or extracted using any of the analytic elements,

including wells, ponds, and linesinks. WinTran displays both head and concentration

contours, and concentration may be plotted versus time at selected monitoring locations.

This model can (1) simulate steady-state flow and transient transport in confined and

unconfined aquifers; (2) simulate effects of wells, linesinks, ponds, and constant

concentration sources; (3) display mass balance error during simulation; (4) contour

concentration at user-specified time steps during simulation; and (5) compute velocities

either analytically or using the finite-element flow model (ESI, 2002).
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4.2.2 Visual MODFLOW

Visual MODFLOW is a 3D groundwater flow and contaminant transport model. Visual

MODFLOW was first released in August 1994 by Waterloo Hydrogeologic, Inc. and is

currently being used by over 3,000 consultants, regulators and educators worldwide

(Guigual and Franz, 2002). In addition, it is the featured software package in many

continuing education courses offered around the world (Guigual and Franz, 2002). Visual

MODFLOW is based on MODFLOW (Harbaugh et al., 2000) with an incorporated

contaminant transport model. MODFLOW is the U.S. Geological Survey (USGS)

modular 3D finite difference groundwater flow model that was first published in 1984 by

USGS (McDonald and Barbaugh, 1984). It has a modular structure that allows it to be

easily modified to adapt the code for a particular application. Many new capabilities have

been added to the original model. Further discussion about the MODFLOW model will

be provided in Section 4.2.7.

The Visual MODFLOW interface has been specifically designed to increase

modeling productivity and decrease the complexities. Three modules control the

program: the input, the run, and the output modules. When opening or creating a file, the

code switches between these modules to build or modify the input parameters, run the

simulations, and display results (Waterloo Hydrogeologic, 2002). Recently, Visual

MODFLOW Pro has been further developed to combine the standard Visual MODFLOW

package with WinPest (Waterloo Hydrogeologic, 1999) and the Visual MODFLOW 3D-

Explorer. WinPEST is a Windows version of the PEST program (Water Numerical

Computing, 2000), which is a model-independent parameter estimator. With its inversion

engine, WinPEST sets bounds on parameters while minimizing the discrepancy between
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model results and field observations and has achieved good results in the calibration of

large and complex models (Waterloo Hydrogeologic, 2002). The Visual MODFLOW

3D-Explorer is a built-in 3D visualization system for displaying and animating Visual

MODFLOW models using 3D graphics technology.

4.2.3 Groundwater Vistas

Groundwater Vistas (GV), developed by ES1 (Environmental Simulation International,

Inc.), is a sophisticated Windows graphical user interface for 3D groundwater flow and

transport modeling. Groundwater Vistas incorporates MODFLOW, MT3D (Zheng,

1990), and MODPATH (Pollock, 1994), and supports PEST and UCODE (Poeter and

Hill, 1998), both of which are model-independent calibration software tools.

Calibration is one of the most complex parts of applying groundwater models.

Groundwater Vistas has advantages over other models and can assist model calibration in

four ways: (1) calibration statistics for head, drawdown, concentration, or flux; (2)

automated parameter sensitivity analysis; (3) automatic model calibration using a

nonlinear least-squares technique built into the GV interface; and (4) support for the

PEST model. The sensitivity analysis tests the model parameters or boundary conditions

where the resulting effect on model calibration statistics is observed. By producing a

series of simulations with different values for a single model parameter, the model

demonstrates how a parameter may be modified in order to achieve a better calibration.

This analysis is a tedious process because many simulations are required for each

parameter and there are often many parameters to analyze. GV provides an automated

way of performing a sensitivity analysis that improves the process. In 2002, an advanced
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version of Groundwater Vistas was released by ESI, called Stochastic MODFLOW (ESI,

2002). The changes include Monte Carlo simulations that can be launched directly from

GV and hydraulic conductivity can use geostatistical simulation results.

4.2.4 FLOWPATHII

The FLOWPATH was first released in 1989 by Waterloo Hydrogeologic, Inc. At that

time, it was an integrated groundwater flow and pathline modeling software package.

FLOWPATH 1I for Windows, the latest version of FLOWPATH, is the 2D groundwater

model and includes contaminant transport, which has graphical display for flexibility and

control (Waterloo Hydrogeologic, 2002).

The FLOWPATH 1I uses a finite difference modeling scheme to simulate

confined, leaky, or unconfined flow in both heterogeneous and anisotropic porous media

with spatially varying thickness and/or bottom elevation. The program can account for

multiple pumping and injection wells; spatially variable groundwater recharge and

evapotranspiration; variable leakage characteristics of underlying and overlying

aquitrads, ditches and drains; and interaction between groundwater aquifers and surface

water bodies. The program will also perform a water balance to check how well solutions

converged. The model: (1) imports all previous FLOWPATH model files; (2) provides

grid rotation over the site map; (3) includes an expandable model domain; (4) has fully

object-oriented wells, properties and boundary conditions; (5) allows for cell-by-cell

anisotropy for hydraulic conductivity properties; (6) applies customizable display of

contoured results, pathlines and overlay priorities; (7) plots concentration versus distance
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at each output time step; and (8) animates particle tracking and contaminant transport

simulations (Waterloo Bydrogeologic, 2002).

4.2.5 HYDROGEOCHEM 2

The BTDROGEOCHEM 2 is a modification of HTDROGEOCHEM 1.0 (Teh and

Tripathi, 1991), developed by Teh and Tripathi at the Pennsylvania State University.

This computer program is designed to solve coupled hydrologic transport and

geochemical equilibrium problems. This modification includes replacement of chemical

equilibrium subroutines by a mixed chemical kinetic and equilibrium model to deal with

species whose concentrations are controlled by either thermodynamics or kinetics (The

Scientific Software Group, 2002). The BTDROGEOCHEM 2 is 2D hydrologic transport

and geochemical reaction model for saturated and unsaturated media. It comprises two

basic modules: the transport module and the geochemical reaction module which are

solved iteratively with three options: (1) a complete iteration, (2) an operator splitting,

and (3) a predictor-corrector method. The transport module includes advection,

hydrodynamic dispersion, and diffusion. In the geochemical reaction module, nine types

of reactions are included to generate eight types of product species, such as complex,

adsorbed, and precipitated ones.

The BTDROGEOCHEM 2 is reported to be flexible and versatile in modeling a

relatively wide range of problems (The Scientific Software Group, 2002). Specifically,

the model can: (1) treat heterogeneous and anisotropic media, (2) consider spatially and

temporally-distributed as well as point sources/sinks, (3) accept the prescribed initial

conditions or obtain initial conditions by simulating the steady-state version of the system
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under consideration, (4) handle time-dependent fluxes over variable boundaries, (5) deal

with time-dependent total fluxes over Cauchy boundaries, (6) include the off-diagonal

dispersion coefficient tensor components in the governing equation for dealing with cases

when the coordinate system does not coincide with the principal directions of the

dispersion coefficient tensor, (7) give three options (exact relaxation, under- and over-

relaxation) for estimating the nonlinear matrix, and (8) include two options (direct

solution with Gaussian elimination method and successive point iterations) for solving

the linearized matrix equations.

4.2.6 GMS

GMS (Groundwater Modeling System) is a comprehensive groundwater modeling

software developed by Environmental Modeling Research Laboratory at Brigham Toung

University (BTU, 2002). GMS is a widely used package that provides tools for most

groundwater simulation phases including site characterization, model development, post-

processing, calibration, and visualization. GMS is the only system that supports T1Ns

(Triangulated Irregular Networks), solids, borehole data, 2D and 3D geostatistics, and

both finite element and finite difference models in 2D and 3D (EMS, 2002).

Environmental Modeling System and BOSS International give a relatively

comprehensive description about GMS software. Further information can be found at:

http://www.ems-i.com/GMS/gms.html and http://www.bossintl.com (2004).

The GMS provides complete support for the USGS MODFLOW finite difference,

MODPATH particle tracking (Pollock, 1994), MT3DMS multi-species contaminant

transport (Zheng and Wang, 1999), RT3D solute transport (Clement and Jones, 2000;
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Clement, 2003), the recently released SEAM3D bioremediation transport (Waddill and

Widdowson, 1997), the Army Corps SEEP2D finite element (Tracy, 2002), and

FEMWATER finite element groundwater models (Teh et al., 1992) (Table 4.3). Tools

are provided for site characterization, model conceptualization, mesh and grid generation,

geostatistics, telescopic model refinement, automated model calibration, and output post-

processing. The modular design of GMS enables the user to select modules in custom

combinations choosing only those groundwater modeling capabilities the user requires.

GMS is composed of several modules (EMS, 2002):

(1) Map module allows the user to develop a conceptual model and a

corresponding numerical model for the area being studied where boundary conditions and

parameter values can then be directly assigned to these graphical entities.

(2) Grid module is used to construct both 2D and 3D Cartesian grids. These

grids can be used for 3D interpolation, iso-surface rendering, cross-sections, and finite

difference modeling.

(3) Finite element mesh module is used to construct both 2D and 3D finite

element meshes. A variety of tools are provided for automated mesh generation and mesh

editing.

(4) Subsurface characterization module is used to construct T1Ns (Triangulated

Irregular Networks) and solid models and to display borehole data. T1Ns are formed by

connecting a set of x-y-z points with edges to form a network of triangles. TINs can be

used to represent the surface of a geologic stratum, and can be displayed in oblique view

with hidden surfaces removed. Solid models of stratigraphy can also be constructed,

allowing cross-sections to be cut anywhere in the model.



Table 4.3 Models Supported by GMS

Model 	 Function 	 Reference

MODFLOW 	 Groundwater flow 	 Harbaugh and McDonald (1996)
MODPATH 	 A particle tracking code that is used in conjunction with MODFLOW. 	 Pollock (1994)

After running a MODFLOW simulation, the user can designate the

location of a set of particles. The particles are then tracked through time

using the flow field computed by MODFLOW.

MT3DMS 	 A modular 3D transport model for the simulation of advection, 	 Zheng and Wang (1999)

dispersion, and chemical reactions of dissolved constituents in

groundwater systems.

RT3D 	 A multi-species reactive transport model and modified version of 	 Clement (2003)

MT3DMS. Numerous pre-defined reactions are available.

SEAM3D 	 A reactive transport model used to simulate complex biodegradation 	 Waddill and Widdowson (1997)

problems involving multiple substrates and multiple electron acceptors.

It is based on the MT3DMS code.

SEEP2D 	 A 2D finite element groundwater model, which is designed to be used 	 Tracy (2002)

on profile models such as cross-sections of earth dams or levees.

FEMWATER 	 A 3D finite element flow and transport model. GMS supports a coupled 	 Yeh et al. (1992)

version of the original FEMWATER model (which is for flow only)

with the transport model LEWASTE.
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4.2.7 Model Evaluation

In the previous section, background and features of six groundwater flow and transport

models were presented. Among them, Visual MODELOW (Visual MODELOW Pro),

Groundwater Vistas (GV), and GMS (Groundwater Modeling System) use the USGS

MODELOW model as the groundwater flow module and incorporate solute transport.

MODELOW-2000 (Barbaugh et al., 2000) released by the USGS is the latest version of

MODELOW, which simulates steady and non-steady state flow in an irregularly shaped

flow system where aquifer layers can be confined, unconfined, or a combination of

confined and unconfined. Flow from external stresses, such as flow to wells, evapo-

transpiration, flow to drains, and flow through riverbeds, can be simulated. Hydraulic

conductivities or transmissivities for any layer may be anisotropic, and the storage

coefficient may be heterogeneous. The MODELOW was designed to have a modular

structure that facilitates ease of understanding and ease of enhancing. Ease of

understanding means that modelers should understand how a model works in order to use

it properly. Ease of enhancement was an objective because experience showed that there

was a continuing need for new capabilities (Harbaugh et al., 2000).

The groundwater flow equation of MODELOW is solved using the finite

difference approximation. Because of its ability to simulate a wide variety of systems, its

extensive publicly available documentation (Hill, 1992; Harbaugh and McDonald, 1996;

Bill, 1998; Hill et al., 2000; Harbaugh et al., 2000; Mehl and Hill, 2001), and its wide

application (Rhee et al., 1993; Osiensky and Williams, 1996; Wang and Zheng, 1997;

Lassenre et al., 1999; Chu et al., 2000; Tork et al., 2000; Anderson et al., 2002; Mattson

et al., 2002), MODELOW is currently the most used groundwater flow model in the
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USGS (Osiensky and Williams, 1996; USGS, 2002). With repect to the accuracy of

MODELOW, developers (Aonikow and Harbaugh, 2002) were consulted and associated

literature was reviewed (Aonikow and Bredehoeft, 1992; Lasserre et al., 1999; Chu et al.,

2000; Mattson et al., 2002). Aonikow and Bredehoeft (1992) illustrate that groundwater

models, such as MODELOW, cannot be validated by comparison with field data because

of significant uncertainty in defining field parameters. In personal communication,

Aonikow (2002) stated: "The model can be made to match the field observations using

any of an infinite set of combinations of values for the model parameters. This

nonuniqueness makes validation with field data a fruitless exercise." On the other hand,

Aonikow (2002) also reported that there are many examples of successful validation

studies. MODELOW has been used as predictive tool (Rhee et al., 1993; Osiensky and

Williams, 1996; Wang and Zheng, 1997; Lasserre et al., 1999; Chu et al., 2000; Tork et

al., 2000; Anderson et al., 2002; Mattson et al., 2002). Lasserre et al. (1999) tested the

G1S-model and MODELOW on a 20-km 2 hydrogeological catchment, particularly

vulnerable to agricultural nitrate pollution. The results indicated that the simulated nitrate

concentrations were consistent with measured values. Because nitrate is relatively stable

in the subsurface, bulk transport modeling should be sufficient in describing mobility.

Therefore, Lasserre et al. successfully modeled the field data. Chu et al. (2000) applied

MODELOW to simulate pesticide transport in the subsurface and detected groundwater

vulnerability to aldicarb pollution. Compared with the other analytical models, aldicarb

residual concentrations in soil and in aquifer were in good agreement. Aldicarb is very

soluble in water and is highly mobile in soil (Aoc: 8-37); therefore, the pesticide can be

modeled well by MODELOW without considering complicated sorption mechanisms.
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Mattson et al. (2002) studied electro-kinetic transport of acetate through an unsaturated

heterogeneous soil and compared the field data with that observed in numerical modeling

predictions by MODELOW and MT3D. The model predictions using a three-layer

electrical conductivity/moisture content profile were in agreement qualitatively with the

observed acetate distribution.

Another important feature of MODELOW is the ability to model 3D in the

subsurface; on the other hand, models, such as WinTran, FLOWPATHII, and

HTDROGEOCHEM 2, are 2D groundwater flow and transport models. Therefore, this

review will focus on the three 3D models, Visual MODELOW, GV, and GMS. The

following review will critically evaluate these based on groundwater flow, solute

transport, and model presentation, new versions and costs.

Groundwater Flow

As introduced previously, the three models under review incorporate groundwater flow

and transport to simulate the subsurface. The groundwater flow module in the Visual

MODELOW, GV, and GMS are all based on the USGS MODELOW model. Specifically,

GMS version 3.1 and earlier Visual MODELOW versions both use MODELOW 96; GV

supports MODELOW 2000. Compared with the 96 version, MODFLOW 2000 is

designed to accommodate two additional equations, including solute transport and

equations for estimating parameters that produce the closest agreement between model-

calculated heads and flows and measured values. In the earlier MODELOW versions, two

other models as extensions of MODELOW, MODELOWP (Hill, 1992) and MOC3D

(Aonikow et al., 1996), were developed to solve parameter calibration and solute

transport problems in addition to the groundwater flow equation. MODFLOWP solves a
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MODELOW calibration problem by using nonlinear regression to calculate values of

selected input data that result in agreement between measured and model calculated

values, and MOC3D uses the method of characteristics (Abbott, 1966) to solve the solute

transport equation for concentration. Users can add both modules into MODELOW 96.

Therefore, MODELOW 2000 has been developed to facilitate the addition of multiple

types of equations without the complexity of selecting appropriate modules (Barbaugh et

al., 2000).

Environmental Modeling Systems and Waterloo Hydrogeological Inc. released

GMS version 4.0 and Visual MODELOW 3.1, both with integration of MODELOW

2000. For calibration tools, GMS supports two other models, PEST and UCODE. The

PEST is a general purpose parameter estimation utility developed by Watermark

Numerical Computing (2000). The purpose of PEST is to assist in data interpretation,

model calibration, and predictive analysis. The UCODE is another parameter estimation

utility developed by Poeter and Bill (1998). In addition to evaluating estimated

parameters, UCODE can be used to evaluate model representation, diagnose inadequate

data, and quantify the likely uncertainty of model simulated values (Poeter and Hill,

1998). The objective of both PEST and UCODE is to run a model as many times as

needed in minimizing the variance using least squares analysis. In Visual MODFLOW,

WinPEST is a functional version of the PEST program that has been compiled and

optimized to run as a Windows application.

As discussed earlier, the groundwater flow module in Visual MODELOW, GV,

and GMS is based on the USGS MODELOW model. Currently, they all integrate

MODELOW-2000. The GMS and Visual MODELOW have capabilities of model
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calibration by UCODE, PEST, and WinPEST and also simulating solute transport, which

will be addressed in the following section.

Solute Transport

The MT3DMS (Zheng and Wang, 1999) superseded by RT3D (Clement and Jones, 2000;

Clement, 2003) is a solute transport model in GMS. The precursor of MT3DMS is

MT3D, a 3D solute transport model for simulation of advection, dispersion, and chemical

reactions of contaminants in groundwater systems. The governing equation including

advection and dispersion was presented in the Section 4.1 Equation 4.4. The mass

balance addresses fluid sinks/sources, equilibrium adsorption, and first-order irreversible

rate reactions (Zheng and Bennett, 2002):

function of the dissolved concentration S , as defined by a sorption isotherm; B 1 is the

Darcy velocity (L2/T); Dq is the dispersion coefficient tensor (L2/T); Bs  is the flow rate of

a fluid source or sink per unit aquifer volume (VT); S s is the concentration of the fluid

source or sink flux (MJL3 ); Al is the reaction rate constant for the dissolved phase (1/T);

22 is the reaction rate constant for the sorbed phase (1/T); 0 is the porosity; and Kb  is

the bulk density of the porous medium (MJL 3). If local equilibrium cannot be assumed for
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the adsorption process, Zheng and Bennett (2002) use a first-order reversible kinetic

expression to represent the sorption process.

The MT3D was first developed by Zheng (1990) with partial support from the

U.S. EPA. Since 1990, MT3D has been available in the pubic domain from the U.S. EPA.

MT3D is based on a modular structure to permit simulation of transport components

independently or jointly. The MT3DMS is the enhanced version that retains the modular

structure of the original code and is used in conjunction with MODFLOW in a two-step

flow and transport simulation. Heads and flux terms are computed by MODELOW on a

cell by cell basis during the flow simulation and are written to a formatted file. This file is

then read by MT3DMS and utilized as the flow field for the transport portion of the

simulation. The MT3DMS differs from MT3D in that it has multi-species structure for

accommodating add-on reaction packages, supports additional solvers, and allows for cell

by cell input of all model parameters.

The RT3D is a multispecies reactive transport model developed by the Battelle

Pacific Northwest National Laboratory (Clement and Jones, 2000; Clement, 2003); it

employs a set of chemical reaction packages including BETX (benzene-toluene-xylene

mixture) degradation, sorption of organics, a double-monod model, sequential decay, and

aerobic/anaerobic model for PCE (tetrachloroethene)/TCE (trichloroethene) degradation.

In GMS, RT3D also allows the user to define reactions that are not pre-defined. The user-

defined reaction packages can be created by two approaches: the dynamically linked

library option and the linked subroutine option (Clement and Jones, 2000). The user can

predict reactions and build a set of partial differential equations, then code their own

functioning part. The functioning part can be linked to RT3D and executed when RT3D
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is launched. This feature gives the user more flexibility to build their model to simulate

different scenarios. In addition, Environmental Modeling System hosts training courses

annually to present instructions for using RT3D with GMS. This is another important

advantage for users.

Like GMS, GV and Visual MODELOW both have transport modules, MT3DMS

and RT3D. Although general functions of MT3DMS and RT3D can be found in GV and

Visual MODELOW, neither supports the user-defined reaction packages of RT3D.

Clement and co-workers (Clement and Jones, 2000; Clement, 2003), developers of

RT3D, have an ongoing collaboration with GMS developers (Johnson, 2002). Therefore,

GMS can simulate solute transport under more varying scenarios with greater capabilities

than the two others. In the next section, model presentation, new versions, and costs of

three models will be reviewed.

Model Presentation, New Versions, and Costs

Besides groundwater flow and transport, the three software described above have other

important features as well. In this section, model overview, new versions, and costs will

be presented.

In GMS, the map module can be used to construct a conceptual model directly on

an actual site map using the G1S (Geographic Information System) object. The boundary

conditions and parameter values can be assigned directly to the G1S object. This map can

be defined and edited in MODELOW at the conceptual level or on a cell-by-cell basis at

the grid level (EMS, 2002). Another characteristic of GMS is that FEMWATER and

SEEP2D are supported, which are finite element models to simulate flow in both the

saturated and unsaturated zones. Visualization animation of transient simulation results
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and transient data sets can be converted into an animation film loop. For an academic

license, GMS costs $2, 990 and Environmental Modeling Systems provides free updates

within a major version.

As discussed in Section 4.2.2, Visual MODFLOW Pro is the updated version of

Visual MODFLOW, which has some advanced features. Among them, the Visual

MODELOW 3D-Explorer has a built-in 3D visualization system for displaying transient

groundwater flow and contaminant transport modeling results. The animation tool

automatically steps through the entire sequence of output time steps for the selected

model parameters (heads, drawdowns, or concentrations). Other features include

automated model calibration using WinPEST and natural attenuation by RT3D. The

natural attenuation by RT3D includes BETX degradation, sequential decay,

aerobic/anaerobic degradation, and rate-limited sorption represented by a first-order

reversible reaction. Visual MODELOW costs $1,490 for academic license and the user is

charged for model upgrades. Groundwater Vistas also has its advanced version,

Stochastic MODELOW. The new features of this model are that Monte Carlo simulations

for model parameters may be launched directly from GV and hydraulic conductivity can

use geostatistical simulation results. For this advanced version and single license, GV

costs $1,425 and the updates of GV are free within the major version.

4.2.8 Model Recommendation

In the previous section, the three models were evaluated, GMS, GV, and Visual

MODFLOW (Pro) with respect to groundwater flow, transport, and model presentation,

new versions, and costs (Table 4.4). In all models, groundwater flow is based on the
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USGS MODFLOW, and currently, they all integrate the MODFLOW-2000, which is

designed to accommodate two additional equations compared with MODFLOW 96,

including solute transport and equations for estimating parameters that produce the

closest agreement between model-calculated heads and flows and measured values.

The MT3DMS and RT3D are two solute transport models incorporated by all

three models. Most functions of the two transport models can be found in GMS, GV, and

Visual MODFLOW. The only advantage provided by GMS over the others is that the

user-defined reaction subroutine can be linked and automatically launched with the

RT3D package. Therefore, GMS gives users more flexibility for building their model to

simulate various scenarios. The GMS also includes finite element models, FEMWATER

and SEEP2D, to simulate flow in the saturated and unsaturated zones, the map module

using G1S objects, and visualization animation of transient simulation results. Visual

MODFLOW provides visualization capabilities of 3D representations.

Overall, considering its extensive ability to address groundwater flow and solute

transport in the subsurface, its flexibility for user modeling under various scenarios, and

its comprehensive model presentation, GMS is recommended as the transport routine to

be linked with other functioning parts in this research.

4.3 Summary

Groundwater flow and solute transport models are used widely to help understand

complex hydrogeological processes during solute transport in the subsurface. The models

of reactive transport employ two basic sets of equations, flow and solute transport

equations. There are many hydrological transport models available commercially, and



Table 4.4 Major Comparison with GMS, Visual MODFLOW, and Groundwater Vistas

Category 	 GMS
	

Visual MODFLOW
	

Groundwater Vistas

Groundwater flow 	 MODFOLW 2000
	

MODFOLW 2000
	

MODFLOW 2000

Solute transport 	 MT3DMS, RT3D; 	 MT3DMS, RT3D; 	 MT3DMS, RT3D;

RT3D supports user-defined

package

Model presentation and new Map module construct

versions 	 conceptual model using GIS

object;

FEMWATER and SEEP2D

are supported, which are finite

element models to simulate

flow in both saturated and

unsaturated zone;

Excellent visualization

animation of transient

simulation results;

Free updated during minor

upgrades.

RT3D does not support user-

defined package

Updated version Visual

MODFLOW Pro includes

Visual MODLFOW 3D-

Explorer, a visualization

system for viewing transient

groundwater flow and

contaminant transport

modeling results;

Automated calibration model

using WinPEST;

User needs to pay model

update.

RT3D does not support user-

defined package

Updated version Stochastic

MODFLOW supports the

Monte Carlo model launched

directly from GV;

Automated model calibration

using a nonlinear least-

squares technique;

Updates are free within a

major version.
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some models are in the open literature. To propose an appropriate model for solute

transport in software development, groundwater flow and solute transport models were

critically reviewed. After preliminary evaluation and screening, six models, WinTran,

FLOWPATHII, Visual MODELOW (Visual MODFLOW Pro), Groundwater Vistas,

BTDROGEOCHEM 2, and GMS were selected for further review. The USGS code

MODELOW is currently the most widely used numerical model in the USGS for

groundwater flow problems (Osiensky and Williams, 1996; USGS, 2002). Because

Visual MODFLOW, Groundwater Vistas, and GMS all use MODELOW for groundwater

flow and include contaminant transport codes, these were further evaluated for

groundwater flow, solute transport, model presentation, new versions, and costs. GMS is

selected for its extensive ability to address groundwater flow and solute transport, its

flexibility for user modeling under various scenarios, and its comprehensive model

presentation.

Based on review and evaluation above, GMS will be employed as the macroscopic

transport model in this research where the intraparticle diffusion process will be

incorporated. This process is a critical step in sorption and plays an important role in fate

and transport of metal contaminants in subsurface environments. In the next chapter,

objectives, hypotheses, and the approach are overviewed.



CHAPTER 5

OVERVIEW OF OBJECTIVES, HYPOTHESES, AND APPROACH

Assessing risks associated with heavy metals to the surrounding environment and

managing remedial activities requires simulation tools that depict speciation and risk with

accurate mechanistic models and well-defined transport parameters. Such tools need to

address the following processes: (1) aqueous speciation, (2) distribution mechanisms, (3)

transport, and (4) ecological risk. The primary objective of this research is to develop a

simulation tool that accounts for these processes. Speciation in the aqueous phase is a

function of pH, ionic strength, and redox potential. Once the chemical form is

understood, its mobility can be addressed through sorption modeling. Based on the

review of geochemical equilibrium models, M1NERALL+ is proposed for considering metal

speciation in the aqueous phase because of its comprehensive thermodynamic database,

relatively strong ability to predict activity coefficients, more options for modeling

adsorption under equilibrium conditions, and user-friendly interface.

Sorption or distribution processes greatly affect metal mobility and bioavailability

in aquatic and soil environments. Based on the review presented in Chapter 3, kinetics

and mechanisms of metal sorption in the subsurface environments have been widely

investigated. Numerous studies have demonstrated that sorption of heavy metals to

hydrous Al, Mn, and Fe oxides is a two-step process: a rapid adsorption of metal ions to

the external surface is followed by slow intraparticle diffusion along the oxide micropore

walls. Intraparticle diffusion is the rate-limiting step. Equilibrium models for simulating

the sorption process are generally found to be inadequate and transient processes are

72
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indeed important. Nevertheless, current solute transport models often employ either

equilibrium models or reaction rate approaches for describing metal sorption. Therefore,

an objective of this research is to include intraparticle diffusion in addressing solute

transport in macro scale codes to accurately describe metal contaminant transport and fate

in the soil and subsurface environments.

Once metal distribution is addressed mechanistically, accurate bulk transport

modeling is needed. An evaluation and review of existing groundwater flow and transport

models in Chapter 4 resulted in identifying GMS (Groundwater Modeling System) for

addressing macroscopic solute transport. The advantages of GMS over other transport

models lie in its extensive ability to address groundwater flow and solute transport, the

flexibility for user modeling under various scenarios, and the comprehensive model

presentation. In GMS, RT3D is the reactive transport module that allows users to define

reactions for different processes. The user-defined reaction packages in RT3D are

amenable for linking the microscopic intraparticle diffusion with the macroscopic

advection and dispersion transport in GMS. Modeling intraparticle diffusion requires

balance of definition and solution given the initial and boundary conditions, code

development into the RT3D reaction module, and lastly, execution of the intraparticle

diffusion package within GMS.

The hypotheses for this research center on the presented modeling approach for

simulating metal contaminant speciation, mobility, and bioavailability, and that this

approach can be applied in conducting ecological risk assessment. Specifically

(1) Solute mobility based on transport modeling (micro- and macro-transport)

can be simulated and validated through field studies and laboratory studies.
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(2) Intraparticle surface diffusion can be coded into a macroscopic transport

model for depicting sorption of heavy metals to microporous amorphous Al, Mn, and Fe

oxides as discrete particles and coatings under variable boundary conditions.

(3) Bioavailable species can be used to assess static or dynamic ecological risks

resulting from exposure to contaminants.

To address these hypotheses and the research objectives in developing

mechanistic and accurate simulation tools, the approach includes first validating the slow

sorption process on a system of discrete and coated minerals with the contaminant Pb

(Chapter 6). Then in an effort to account for these surfaces, intraparticle diffusion is

incorporated into a macroscopic solute transport code (Chapter 7) and subsequently

tested on a field-scale level for the Hanford site with Sr 90° (Chapter 8). Lastly, this

research demonstrates that once the bioavailable form of a contaminant is understood,

static and/or dynamic ecological risk assessments can be conducted. This phase of the

research focused on depleted uranium and its presence at the Aberdeen and Tuma

Proving Grounds (Chapter 9). Overall, this work contributes to applying a holistic

approach to addressing contaminant transport and fate.



CHAPTER 6

MODELING Pb SORPTION TO MICROPOROUS AMORPHOUS OXIDES AS
DISCRETE PARTICLES AND COATINGS

Heavy metals such as Pb released into the subsurface pose a threat to human health and

the surrounding environment. Concerns about the detrimental effects have resulted in

extensive research efforts to better understand processes involved in the fate and transport

of these contaminants in subsurface systems. Substantial studies have shown that trace

metals are strongly associated with the particulate phases in aquatic environments

(Turekian, 1977; Brewer, 1975; Lion, 1982; Jackson and Inch, 1989; Dong, et al., 2000;

Weng et al., 2001). These particulate phases are comprised of a diverse mixture of clay

minerals, metal oxides, and organic matter. Therefore, the sorption of metals in natural

aquatic and/or soil environments is expected to be complicated given the varying

composition of the interfaces.

Amorphous oxide minerals of aluminum, iron, and manganese occur as coatings

on other mineral surfaces or as discrete particles, and are persistent in aquatic

environments (Jenne and Zachara, 1987; McLaren et al., 1996; Stumm and Morgan,

1996; Dong et al., 2000 and 2003). They have large surface areas, porous structures, and

an abundance of binding sites; therefore, they have a significant impact on contaminant

mobility (Jenne, 1968; Coughlin and Stone, 1995). In the sorption of heavy metals to

hydrous oxides, numerous studies have demonstrated that this process is a two-step one

(Benjamin and Leckie, 1981; Barrow et al., 1989; Fuller et al., 1993; Waychunas et al.,

1993; Papelis et al., 1995; Axe and Anderson, 1995, 1997; Strawn et al., 1998; Roberts et

al., 1999; Trivedi and Axe, 1999, 2000, and 2001; Scheinost et al., 2001; Manju et al.,
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2002; Axe and Trivedi, 2002; Sen et al., 2002): rapid adsorption of metal ions to the

external surface is followed by slow intraparticle diffusion along the micropore walls of

the oxide. Benjamin and Leckie (1981) observed that adsorption of Cd, Zn, Cu, and Pb

on amorphous iron oxyhydroxide was initially fast followed by a much slower second

step. Barrow et al. (1989) studied adsorption kinetics of Ni, Zn, and Cd on goethite and

concluded that the observed two-step kinetics corresponded to a fast initial adsorption

reaction followed by slow diffusion of the metal ions into the goethite. Fuller et al.

(1993) found that sorption of arsenate on hydrous ferric oxide proceeded in two steps

with a fast uptake on the exterior of the aggregate and a slow uptake limited by the rate of

intraparticle diffusion. Papelis et al. (1995) investigated cadmium and selenite adsorption

on aluminum hydroxides and found uptake is controlled by intraparticle diffusion.

Recently, Axe and co-workers (Axe and Anderson, 1995 and 1997; Thrived and Axe,

1999, 2000, and 2001; Axe and Trivedi, 2002) conducted a series of sorption studies that

included Sr, Cd, Zn, and Ni on amorphous HAO, HFO, and HMO. In addition to

adsorption edges and isotherms, they used constant boundary condition (CBC) semi-

batch experiments, where the bulk adsorbate concentration was maintained

approximately constant at all times. They found intraparticle diffusion was an important

and rate-limiting process in sorption. Scheinost et al. (2001) measured Cu and Pb

sorption as a function of ferrihydrite morphology, temperature, metal competition, and

fulvic acid concentration over a period of two months, in which surface diffusion was

recognized as the limiting process. Manju et al. (2002) conducted an investigation into

the sorption of heavy metals, including Pb, Bg, and Cd, from wastewater by

polyacrylamide-grafted iron (I1I) oxide. Intraparticle diffusion of metal ions through
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pores was shown to be the rate-limiting step. For porous surfaces such as Al, Fe, and Mn

oxides, where the average pore size is greater than or equal to 1.9 nm (Axe and

Anderson, 1995; Trivedi and Axe, 1999), the distribution falls into the 1UPAC

classification of micro- and meso-pores which is based on gas-solid systems. However, in

the aqueous phase, pore surfaces are hydrated, resulting in potentially layers of water

adsorbed to these pore walls (Aarger and Ruthven, 1992). Therefore, the mesopores may

act as micropores. Based on previous studies, intraparticle diffusion of heavy metals in

hydrous oxides is a critical step in sorption and plays an important role in fate and

transport of metal contaminants in subsurface environments.

In addition to discrete systems, many studies have also revealed that hydrous iron,

manganese, and aluminum oxide coatings substantially affect sorption behavior (Levy

and Tamura, 1973; Lion et al., 1982; Anocke et al., 1988; Edwards and Benjamin, 1989;

Jackson and Inch, 1989; Van Benschoten et al., 1994; Rybicke et al., 1995; Lothenbach

et al., 1997; Naidja et al., 1997; Dong, et al., 2000 and 2003; Zhuang et al., 2000; Papini

et al., 2002). For example, Levy and Tamura (1973) observed that aluminum oxide-

coated montmorillonite exhibited calcium-magnesium exchange properties different from

those of pure montmorillonite. Lion et al. (1982) found Fe/Mn hydrous oxides and

organic coatings controlled Cd and Pb sorption in the South San Francisco Bay estuary.

Anocke et al. (1988) reported in a review that Mn oxide potentially deposits on filtration

media in water treatment facilities increasing Mn removal. Edwards and Benjamin (1989)

found that iron oxide-coated sand had properties similar to discrete Fe oxide in removing

metals over a wide pH range. Van Benschoten et al. (1994) observed that iron oxide

surface coatings reduce metal extraction efficiency from sandy soils. Lothenbach et al.
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(1997) showed that at pH > 6 aluminum-coated montmorillonite was more efficient in

immobilizing heavy metals than untreated montmorillonite, while in more acidic soils

(pH < 5), untreated montmorillonite was expected to be a dominant surface. Naidja et al.

(1997) found tyrosinase sorption on hydroxyaluminum-montmorillonite increased with

increasing coating from 1 to 5 mmol Al g -1 clay.

In this chapter, systematic studies were conducted to assess Pb sorption to

microporous Al, Fe, and Mn oxides. Studies included long-term ones to investigate

intraparticle surface diffusivities. In addition, Pb sorption on montmorillonite and HAO-

coated montmorillonite was evaluated in an effort to better simulate the subsurface.

Montmorillonite is one of the most prevalent clays in soils and sediments and possesses a

large specific surface area (Schlegel et al., 1999; Strawn and Spark, 1999). A number of

studies have been conducted with montmorillonite coated with Al or Fe oxyhydroxide

(Green-Pederson and Pind, 2000; Celis et al., 1997; Helmy et al., 1994) to simulate

natural settings; however, long-term sorption processes have not been investigated to the

same extent as in discrete oxide systems. Therefore, Pb sorption was investigated for

HAO-coated montmorillonite and compared to that of discrete oxide systems.

6.1 Materials and Methods

Sorption studies were conducted with freshly precipitated oxides at 25 °C. All chemicals

used in oxide precipitation were reagent grade and only Millipore-Q Type I deionized

water was employed. All systems were prepared in carbonate-free environment by

purging with N2. BAO was synthesized according to the method described by Gadde and

Laitinen (1974) and others (Anderson and Benjamin, 1990; McPhail et al., 1972;
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Shuman, 1977), by drop-wise addition of stoichiometric amounts of NaOH to aluminum

nitrate solution which was aged for 4 h prior to the sorption experiment. Using the

method detailed by Gadde and Laitinen (1974), HMO was prepared by slowly adding

manganese nitrate to alkaline sodium permanganate solution. The HMO suspension was

then centrifuged, rinsed, and redispersed in sodium nitrate solution at pB 7 where it was

aged for 16 hours. HFO was precipitated as described by Dzombak and Morel (1986);

briefly, NaOH is slowly added to Fe(NO3)3 solution. The suspension is aged with

constant mixing for 4 h at a pH of 7 to 7.5. Additional details for synthesizing BAO,

BFO, and HMO are described elsewhere (Axe and Anderson, 1995; Trivedi and Axe,

1999). Montmorillonite used in the study has been treated (Swy-2, Clay Mineral Society),

and included removal of carbonate, iron and manganese oxides, and organic matter in

accordance with Aunze and Dixon (1986) and O'Day et al. (1994). HAO-coated

montmorillonite was prepared by drop-wise addition of an Al(NO3)3 solution to the

montmorillonite suspension, which was followed by pH adjustment to 7.0 with 0.5 M

NaOH. The suspension was mixed for 2 h, centrifuged, washed repeatedly with deionized

water, and then freeze-dried. In an effort to assess the capacity of montmorillonite for the

coating, a range of Al loadings (0.09, 0.18, 0.27, 0.54, 0.81, and 1.08 g Al g -1 clay) were

applied. Acidic ammonium oxalate was used to extract noncrystalline aluminum oxide

(Blume and Schwertmann, 1969; Dzombak and Morel, 1990); the extractant was filtered

and analyzed with atomic absorption spectrometry (AA) for total Al. Based on the

extraction analysis, the loading of 0.18 g Al g -1 montmoriulonite (or 0.35 g HAO g -1

montmorillonite) was selected as it represents a maximum coating capacity on

montmorillonite.
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Characterization of the hydrous amorphous oxides, montmorillonite, and HAO-

coated montmorillonite included particle size analyses (PSA) using a Beckman-Coulter

LS 230 analyzer, surface area evaluation by N2-BET (Brunauer-Emmett-Teller), and

potentiometric titration to assess the pH point of zero charge (pHpzc). Oxide mineralogy

was characterized by a Philips X'Pert x-ray diffraction (XRD) with Ni-filtered Cu K-a

radiation. Morphology of the oxides was studied by a Philips Electroscan 2020

environmental scanning electron microscope (ESEM) and a LEO 1530 VP field emission

scanning electron microscope (FE-SEM). In addition, energy dispersive x-ray analysis

(EDX) was used for elemental mapping of the mineral surfaces.

Two types of sorption experiments were conducted: (i) conventional short-term

ones, and (ii) long-term studies designed to evaluate diffusivities. Stock solutions were

tagged with 210Pb; its activity in the samples of suspensions and filtrates were measured

with a Beckman LS6500 multipurpose scintillation counter. Turbulent hydraulic

conditions (Reynolds number > 10 4 with respect to the reactor diameter) were maintained

by rapid stirring in all experiments to minimize the external mass-transfer resistance.

Procedures for short-term studies involved adsorption edges and isotherms to evaluate the

effect of pH, ionic strength, and concentration. A NaNO3 electrolyte was used to maintain

the ionic strength of solutions, which ranged from 1.0x 10 -3 to 1.0x 10 .1 . Short-term

adsorption studies were conducted in 250-ml Nalgene® containers with a contact time of

4 hours. In these experiments, contact times from less than 1 to 72 h revealed no change

in the amount sorbed, indicating equilibrium or pseudo-equilibrium between the lead

adsorbed to external surface of the oxides and that in the bulk aqueous phase. The long-

term or constant boundary condition (CBC) experiments were used to study the slow
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sorption process of intraparticle surface diffusion. In these studies, the Pb ion

concentration in the bulk aqueous phase was maintained approximately constant by

continuously monitoring and adding adsorbate as needed (Axe and Anderson, 1995 and

1997; Trivedi and Axe, 1999). Therefore, the adsorbate concentration on the external

surface of the particle was maintained constant. All aqueous concentrations of Pb were

below saturation based on M1NERAL+.

6.2 Results and Discussion

6.2.1 ODide Characteristics

Earlier studies (Axe and Anderson, 1995; Trivedi and Axe, 1999) revealed discrete oxide

aggregates were generally spherical with irregular topography. The coating shows

increased aggregation as compared to discrete aluminum oxide and montmorillonite

(Figure 6.1). An analysis for Al and Si reveals that Al appears to be more abundant on the

BAO-coated montmorillonite than the montmorillonite surface; on the other hand, the

coating has less Si than montmorillonite (Figure 6.2). XRD also confirms the presence of

the HAO coating; although the montmorillonite structure was observed, its intensity

decreased as the degree of coating increased. Furthermore, discrete HAO and

montmorillonite systems have smaller modes in the particle size distribution (PSD) than

the coated system (Figure 6.3). The pBvzc of the HAO-coated montmorillonite is

5.0 ± 0.5 (Table 1), which is consistent with Zhuang and Tu (2002). Avena and De Pauli

(1998) observed a pHpzc of 8.5 for the edge sites of montmorillonite, where most of the

pB-dependent charge is located (Chang and Sposito, 1996; Sposito, 1989). The difference



Figure 6.1 SEM photographs of HAO, montmorillonite, and HAO-coated montmorillonite



figure 6.2 LUX mapping of silicon and aluminum on HAO-coated montmorillonite and montmorillonite
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Figure 6.3 Particle size distributions of BAO, HALO, HMO, montmorillonite, and BAO-
coated montmorillonite at pH 5, ionic strength 1.0 x 10 -2 M with NaNO3, and 25°C



Table 6.1 Characteristics of HAO, BFO, HMO, Montmorillonite, and BAO-coated Montmorillonite
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between our results and others lies in that edge sites only account for less than 4% of the

overall montmonllonite surface area. Given the pHpzc of 8.6 for HAO and 4.2 for

montmonllonite determined expenmentally, montmonllonite still plays a cntical role in

the surface charge of the coating system; this is most likely because of the non-uniform

nature of the coating, which can be observed in the FE-SEM micrograph (Figure 6.2).

Other charactenstics such as porosity, bulk density, and surface area are presented in

Table 6.1. Montmonllonite has a large internal surface area that may not be accounted for

in using N2-BET; however, this does not significantly impact our modeling as sorption

and the associated parameters were normalized to the mass present.

6.2.2 Sorption Studies

In adsorption edge expenments (Figure 6.4), for HFO there was no effect of ionic

strength, suggesting Pb ions may form inner-sphere complexes with this surface, which is

consistent with other studies (Swallow et al., 1980; Tnvedi et al., 2003). Swallow et al.

(1980) reported that sorption of Cu 2  and Pb2  to hydrous fernc oxide was unaffected by

vanations in ionic strength from 0.005 to 0.5 M NaC1O4, or by changes in the nature of

the background electrolyte from NaC1O4 to a complex artificial seawater mixture. Tnvedi

et al. (2003) observed that Pb sorption to fernhydnte did not vary with ionic strength

between 10-3 and 10 -1 M NaNO3. The adsorption edge for HAO begins at pB 4.5, a lower

pH condition may result in dissolution; therefore, given the degree of adsorption, the

effect of ionic strength may not be discernible. For Pb adsorption on HMO,

montmonllonite, and HAO-coated montmonllonite, our results showed Pb sorption

decreased with increasing ionic strength. Pb ions may form outer-sphere complexes on

these surfaces. Other researchers (Tnvedi and Axe, 1999 and 2000; Baeyers and
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Bradbury, 1997; Araepiel et al., 1999) have found similar results. Among them, Tnvedi

and Axe (2000) reported that Cd and Zn ions may retain their waters of hydration upon

sorption to HAO, HFO, and HMO; compared with our investigations, amorphous oxides

can form inner- or outer-sphere complexes with different metal ions. Other studies, for

example, revealed Ni adsorption to Na-montmonllonite decreased with an increase in

ionic strength (Baeyers and Bradbury, 1997). Furthermore, using XAFS (X-ray

absorption fine structure spectroscopy), Strawn and Sparks (1999) found Pb adsorption

on montmonllonite vanes from pnmanly outer-sphere complexation at low ionic strength

and pH to a mixture of outer- and inner-sphere complexation as pH and ionic strength

increase. Pb adsorption at high ionic strength (>0.1 M) may be associated with the

permanently charged surface sites on the clay edges (Strawn and Sparks, 1999). Because

we observed an ionic strength effect suggesting outer-sphere complexation, Pb adsorption

on montmonllonite at a relatively low ionic strength may involve ion exchange sites.

Isotherms for Pb adsorption to the three oxides, montmonllonite, and HAO-

coated montmonllonite show a linear relationship between that sorbed to the external

surface of the mineral and the bulk aqueous concentration (Figure 6.5) suggesting

adsorption can be descnbed with one average type of site. Based on Langmuir-

Hinshelwood kinetics and given that the available sites are approximately equivalent to

the total sites, the Langmuir isotherm reduces to the linear distnbution model (Fogler,

1992). The distnbution coefficient Ad (L g -1 ) is simply the product of the total sites and

the equilibnum constant. This approach is useful for descnbing adsorption in modeling

the long-term sorption process (discussed below). Among a number of macroscopic

studies, Hiemstra et al. (1989) used a single type of surface site to descnbe the titration
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behavior of hematite that exhibited poorly developed crystal planes. Chnstal and

Kretzschmar (1999) showed that the titration behavior as well as the adsorption of Cu and

Pb to hematite could be descnbed very well with a single surface site. Through XAFS,

Manceau et al. (1992) observed lead adsorbed to HFO by one mechanism, a mononuclear

edge-shanng bidentate complex. Tnvedi et al. (2003) found the configuration of the

sorption complex is independent of the adsorbate concentration at constant pH.

Therefore, they concluded that Pb sorption to fernhydrite may be descnbed with one

average type of mechanism. Based on our isotherms of Pb sorption on montmonllonite

and HAO-coated montmonllonite, Pb sorption to the montmonllonite surface is greater

than that for the coated one. On the other hand, Zhuang and Tu (2002) also investigated

similar systems but did not observe an effect of the Al oxide coating on sorption; this

difference may be due to the degree of coating and that the isotherm was conducted at a

different pH, 6.5. While edges and isotherms reveal effects of pB and concentration, they

are short-term (4 h contact time) expenments resulting from adsorption to the external

surface. For microporous sorbents, long-term studies are needed as well.

In these alternative expenments, a constant boundary condition was maintained,

where the initial amount of Pb sorbed represents adsorption to the external surface. Pb

concentrations employed in these expenments are within the linear range studied in the

isotherm studies. Subsequently, the amount of Pb ion sorbed to the oxide gradually

increased due to intraparticle surface diffusion. Initially, pore diffusion was considered in

modeling sorption; however, predictions only accounted for 20% of the total sorbed when

the bulk concentration at pore entrance is used as the boundary condition. Furthermore,

the vanance did not converge and therefore, pore diffusion cannot descnbe the
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expenmental data. On the other hand, when adsorption is significant, transport in pores is

dominated by surface diffusion (Froment and Bischoff, 1990). For sphencal particle

geometry, a linear isotherm, and insignificant pore diffusion, the species mass balance for

Pb is

In this expression, C is the contaminant concentration sorbed; D s is the surface

diffusivity and fitting parameter in the model; Sp  is the oxide porosity; K is the bulk

density; and Kid is the distnbution coefficient representing the product of the equilibnum

constant and the internal site density. The assumption that internal sites are no different

than external ones has also been observed in recent work with XAFS, for example, in Zn

sorption to HMO the local structure from long-term samples was consistent with that

from short-term samples (Tnvedi et al, 2001). In addition, XAFS work with Sr sorption

to HMO (Axe et al., 2000) as well as BFO (Axe et al., 1998) further corroborates this

assumption. Applying this assumption here for Pb sorption, the analytical solution to

Equation 6.1 integrated over the volume of a sphere based on the following initial and

boundary conditions



where C s is the metal concentration sorbed on the oxide external surface. The amount

sorbed to the internal surface of a single particle times the number of particles present for

given radius (R) was summed over the entire particle size distribution to obtain the

concentration sorbed internally. This total plus that sorbed to the external surface found

from the short-term sorption studies provides the theoretical concentration. By

minimizing the variance, the only fitting parameter is surface diffusivity; modeling

results are shown in Figures 6.6 and 6.7. Errors associated with the experiments were

calculated from the propagation of errors (POE) method (Ku, 1966) and range from 7 to

10%. Errors associated with the model from POE method are also shown, which accounts

for standard deviations in the number of particles as well as the error in the distribution

coefficient describing the mass adsorbed to the surface. All data fall within two standard

deviations of the model, which demonstrates the model describes the data reasonably

well. Furthermore, substantial evidence supports intraparticle diffusion as the rate-

limiting mechanism in sorption to microporous oxides: Sr sorption to HFO (Axe and

Anderson, 1995) and HAO and HMO (Trivedi and Axe, 1999), Cu and Pb sorption to

ferrihydrite (Scheinost et al., 2001), and Ni, Cd, and Zn sorption to HAO, BFO, and

HMO (Trivedi and Axe, 2000 and 2001). Based on our adsorption isotherms and recent
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work with XAFS (Axe et al., 1998 and 2000; Trivedi and Axe, 2001), there is no

evidence of either surface precipitation or solid-solid solution formation; long-term

studies suggested that internal surface sites were no different than external ones. In

addition, given the presence of microporosity, intraparticle diffusion is expected and is

therefore modeled as the rate-limiting process in Pb sorption to these oxides and coatings.

Studies with Pb sorption to HALO, HMO, HAO, montmonllonite, and HAO-coated

montmorillonite (Figures 6.6 and 6.7) demonstrate that surface diffusivities range from

10 18 to 10 15 cm2 s -1 . These diffusivities clearly show that diffusion is a slow and rate-

limiting process in sorption. After running the model to equilibrium, which takes

approximately 15 to 30 years, internal sites were found to be responsible for

approximately 45-90% of the total metal uptake to these oxides. For discrete oxides,

surface diffusion is the dominant mode of intraparticle transport, which is consistent with

others (Axe and Anderson, 1995, 1997; Misak et al., 1996; Trivedi and Axe, 1999, 2000,

and 2001). For sorption to montmonllonite, Morrissey and Grismer (1996) studied

sorption of acetone, benzene, and toluene to pure clay minerals including kaolinite, illite,

and Ca-montmorillonitee; they found the process was limited by diffusion. Gemeay et al.

(2002) observed adsorption kinetics of metanil yellow dye, p-aminodiphenylamine (p-

NH2-DP A), and benzidine by montmonllonite, where again intraparticle diffusion

was the rate-limiting mechanism. Furthermore, Fadali (2003) reported the sorption of

basic dyes (Basic Red) onto montmorillonite was intraparticle diffusion-controlled. For

sorption to oxide coatings, intraparticle diffusion has also been observed in a number of

studies (Holmen and Gschwend, 1997; Jain and Ram, 1997; Merkle et al., 1997; gai et

al., 2000; Stefanove, 2001). Among them, Holmen and Gschwend (1997) observed that
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slow diffusion controls the rate of sorption of hydrophobic organic compounds on

quartzitic aquifer sands with iron oxyhydroxide and aluminosilicate (clay) coatings. Jain

and Ram (1997) investigated lead and zinc sorption on sediment which was mainly

composed of sand and Fe/Mn oxides; they observed very slow diffusion of the adsorbed

metals from the surface into the rnicropores. Merkie et al. (1997) studied soluble Mn (II)

removal by oxide-coated media including synthetically coated and naturally coated, in

which surface diffusion was also the rate-limiting mechanism.

Based on the resultant diffusivities for discrete aluminum oxide, aluminum oxide-

coated montmorillonite, and montmonllonite, specifically 10 -16 , 10-17 , and 10-18 cm2 s -1

(Figure 6.7), respectively, substrate surface characteristics influence metal ion mobility.

The smallest diffusivity reflects the surface characteristics of montmorillonite, which

exhibited the greatest affinity for Pb ions among the three systems. When Pb ions sorbed

on aluminum oxide-coated montmorillonite, surface diffusion is affected by both the

discrete oxide and clay. Based on the FE-SEM micrograph (Figure 6.1), diffusion occurs

in both aluminum oxide and montmonlllonite. Furthermore, based on this diffusivity, the

contribution from discrete aluminum oxide and clay can be evaluated by employing their

individual particle size distributions and concentrations. The results suggest 0.82 g

amorphous oxide g -1 clay contributes the overall diffusivity. Compared with that initially

applied, 0.35 g HAO g -1 clay, the amorphous oxide appears to have a greater impact than

that based on stoichiometry. Montmorillonite is comprised of Al (18% by weight), Si

(23%), Fe (7%), and 0 (45%) based on XRF analyses. During the coating process, the

system was initially at about pH 2 for 2 h and then adjusted to pH 7. We hypothesize that

alumina in montmorillonite partially dissolves, then reforms as amorphous oxides, which
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can be demonstrated by the montmonllonite solubility. Al solubility in montmorillonite is

controlled by gibbsite or amorphous aluminum hydroxide (May et al., 1986). At pH 2-3,

Ganor et al. (1999) found that gibbsite dissolved at a rate of 2.2 x 10 -12 mole M-2 s -1

based on column studies and therefore, this rate may include mass transfer limitations.

However, we maintained a turbulent regime in the batch system, thus the dissolution rate

may be greater than that observed in column studies. Furthermore, gydersen et al. (1991)

found amorphous aluminum oxide dissolution can be described as a two-step process at

pH 4.5: the dissolution was relatively fast during the first 2.7 h, and then a far slower rate

followed for the remaining 24 hours. Based on their model, C(t) = Coe-0 45t , where C(t)

is concentration of Al(OB)3( s) present at time t , Co is initial concentration of Al(OH)3(S),

approximately 50-60% of the amorphous aluminum oxide dissolves in the first 2 hours.

Given that 0.15 g of montmorillonite were present in the studies, the coating system is

projected to exhibit a 17-20% increase in the amorphous aluminum oxide from alumina

dissolution, which is consistent with our estimation based on concentrations and particle

size distributions. This result also demonstrates that oxides control Pb sorption in coated

areas, while montmorillonite is the dominant surface at uncoated edge areas.

Because these long-term studies are time-consuming, theoretically based methods

to predict diffusivities may be useful. Based on previous work (Axe and Anderson, 1997;

Trivedi and Axe, 1999, 2000, and 2001), site activation theory can be applied for this

purpose, where the sorbed ion or molecule vibrates at a site until it has sufficient energy,

EA (activation energy), to jump to the neighboring site. Accordingly, assuming a

sinusoidal potential field along the pore surface, the surface diffusivity is a function of

EA and the mean distance between the sites (A)



Boltzmann factor. From the polanyi relation, EA is linearly related to adsorption

enthalpy, 6.1-1 6 , through the proportionality constant a which was studied for transition

and alkaline earth metals (Trivedi and Axe, 2000 and 2001). Using the experimental

diffusivity, EA was estimated by Equation 6.7 and employing the polanyi relation, a for

HAO, HFO, and HMO was obtained (Table 6.2). The results show that the polanyi

constant for Pb adsorption to the three oxides is equivalent. This constant is expected to

be equivalent for metals from the same group of the Periodic Table because of potentially

similar sorption complexes formed with the oxides. Using the a obtained through this

study, activation energies of other metals from Group 14 (IVA) may be calculated, and

theoretical diffusivities can be predicted.

6.3 Summary

gead sorption to hydrous amorphous Al, Fe, and Mn oxides as well as to montmorillonite

and HAO-coated montmorillonite can be described by a two-step process: rapid

adsorption of metal ions to the external surface is followed by slow intraparticle diffusion

along the micropore walls. Best-fit surface diffusivities ranged from 10-18 to 10 -15 cm2 s -1 .

Specifically for Pb sorption on discrete aluminum oxide, aluminum oxide-coated

montmorillonite, and montmorillonite, diffusivities of 10 -16, 10-17 , and 10-18 cm2 s -1 ,

respectively, were observed. The results indicate substrate surface characteristics

influence metal ion mobility, where diffusivity increased as affinity decreased. These
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Table 6.2 Theoretical Parameters of Pb Sorbed to Hydrous Metal Oxides

ODide	 A	 C, (Site Density)	 6s, 0 EDp. Ds 	EA	 a d

be
(mol g-)(nm)a 	(kcal mori)c 	(cm2 S-e ) 	 (kcal mo1-1)

HAO

HFO

HMO

a Calculated from oxide surface area and site density.
b Based on Trivedi and Axe (1999).

Based on correlation between Aliad and RH (hydrated radius) developed by Trivedi
and Axe (2001).
d a for transition metals is 0.80 for HAO, 0.68 for HAO, and 0.60 for HMO (Trivedi and
Axe, 2001).

0.35 0.012 38.2 6.5 x 10 -16 16.8 0.4

0.24 0.025 41.4 1.4x 10-15 16.1 0.4

0.15 0.034 42.3 1.7 x 10 16 17.1 0.4
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studies demonstrate transient natural attenuating processes such as intraparticle diffusion

need to be included in accurately describing the migration of heavy metals in subsurface

environments.

In the next chapter, the approach for incorporating the diffuse model into GMS for

accurately depicting metal contaminant mobility is discussed.



CHAPTER 7

MODELING MICROSCOPIC TRANSPORT — INTRAPARTICLE DIFFUSION

As intraparticle diffusion is a rate-limiting mechanism in sorption for metal contaminant

sorption to microporous amorphous oxide minerals, this microscopic transport process

will be included into a macroscopic solute transport code to accurately describe metal

contaminant mobility. As discussed in Chapter 4, RT3D (Clement, 2003), developed by

the Battelle Pacific Northwest National gaboratory, is a multispecies reactive transport

model. In the Groundwater Modeling System (GMS), RT3D allows users to define

reactions with greater flexibility in simulating different scenarios. The user-defined

reaction packages in RT3D are amenable for linking the microscopic intraparticle

diffusion model with the macroscopic advection and dispersion transport in GMS. A flow

chart of the intraparticle diffusion modeling process is shown in Figure 7.1.

7.1 Intraparticle Diffusion Equation Setup for Solute Transport

Transport of an adsorbate through interior pores of an amorphous oxide is intraparticle

diffusion. Species flux, N , can be described by Fick's law,

where D is diffusion coefficient and C is the ion concentration. The species mass

balance for a porous, spherical oxide particle yields the following equation (Axe and

Anderson, 1995):
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Figure 7.1 Flow chart of intraparticle diffusion modeling
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In this expression, S is the contaminant concentration in the aqueous phase; C is the

contaminant concentration in the sorbed phase; r is the radial position within the sphere;

ep  is the porosity of the particle; Ds is the surface diffusion coefficient within the

sorbent particle; K is the oxide bulk density; and De is the pore diffusion coefficient

within the sorbent. For instantaneous adsorption and constant diffusivities (for dilute

contaminant concentrations or no adsorbate-adsorbate interaction) (Axe and Anderson,

1995), the balance can be written as

where adsorption equilibrium is described by a linear isotherm. Because of the strong

affinity between the adsorbate and the surface, pore diffusion as a transport process

through the oxide micropores is insignificant (Axe and Anderson, 1995). Therefore,

Equation 7.3 becomes

where K 1 is the distribution coefficient sorption to internal sites.
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The macroscopic, advective-dispersive solute transport is described as (Zheng and

Bennett, 2002),

where B 1 is the Darcy velocity, Du is the dispersion coefficient tensor, qs  is the flow

rate of a fluid source or sink per unit aquifer volume, ,S, is the concentration of the fluid

source or sink flux, and 0 is the porosity. For a volume without source(s), Equation 7.6

can be reduced to

Sorption of heavy metals to hydrous oxides is a two-step process as discussed and

shown previously: a rapid adsorption of metal ions to the external surface is followed by

slow intraparticle diffusion along the oxide micropore walls. Considering the first step of

the process, rapid adsorption that can be described as an equilibrium process, mass

accumulates along the oxide micropores and is removed from the aqueous phase; thus,

solute transport becomes
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where C, is the sorbed concentration on the external surface and pb  is the bulk density

of the porous medium. Substituting Equation 7.9 into Equation 7.8, the following is

obtained

Considering slow intraparticle diffusion is an attenuating mechanism, which is illustrated

by Equation 7.4, the governing equations describing intraparticle diffusion coupled with

advection and dispersion processes are as follows:

Equations above describe macroscopic transport processes as well as the intraparticle

diffusion. Macroscopic solute transport models which employ Equation 7.10 have been

widely applied to predict the fate and transport of contaminants, as discussed in Chapter

4. Based on review of existing transport models, GMS is selected for incorporating

microscopic intraparticle diffusion modeling in accurately describing metal contaminant

mobility in the presence of microporous amorphous Fe, Al, and Mn oxides. In the

following section, modeling of the intraparticle diffusion process is presented and

includes solving the non-homogeneous partial differential equation and building the user-

defined package for microscopic transport in RT3D, the multispecies reactive transport

module in GMS.
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7.2 Modeling for Intraparticle Diffusion

Given the initial and boundary conditions, intraparticle diffusion of metal ions in

microscopic amorphous oxides can be described by the following:

where R is the radius of oxide particle. The microscopic diffusion Equation 7.4 is a

parabolic equation, with Dirichlet and Neumann boundary conditions, Equation 7.12 and

Equation 7.13, respectively. Separation of variables, which is one of the most widely

used solution techniques for second order partial differential equations, can be employed

to solve this type of equation. By applying this analytical method, the solution to

Equation 7.4 applying Equations 7.12-14 is:

Integrating the concentration profile over the volume of a spherical particle yields the

mass of species sorbed internally for a given particle size:

where M is the mass of species sorbed to the particle.



107

This diffusion model was validated by experimental data in this research (Chapter 6) as

well as by others (Axe and Anderson, 1995 and 1997; Trivedi and Axe, 1999, 2000, and

2001), as shown in Figures 7.2-7.6 (Details for experiments and fitting methods are

outlined in Chapter 6). The experimental data included heavy metal, Zn, Ni, Cd, Sr, and

Pb, sorption on amorphous Al (BAO), Fe (HFO), and Mn (HMO) oxides, which occur as

coatings on other mineral surfaces or as discrete particles and are persistent in soil and

the subsurface environments, as discussed in the previous chapter. Errors associated with

the model from the propagation of errors (POE) method (Ku, 1966) are also included in

the figures. The POE analysis accounts for errors that include the standard deviations in

the number of particles as well as the error in the distribution coefficient describing the

mass adsorbed to the surface. The results show that all data fall within one or two

standard deviations of the model and are consistent with the diffusion model describing

intraparticle diffusion in microporous amorphous oxide minerals. Furthermore, running

the model to equilibrium reveals the process ranges from one to more than thirty years

(Figures 7.7-7.11).

Groundwater flow can be characterized as laminar (e.g., Freeze and Cherry, 1979;

Todd, 1980; Bowen, 1986), and therefore mass transfer from bulk solution to the surface

of microporous particles needs to be considered. As a result, the following boundary

condition is used (Crank, 1975)
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Figure 7.3 Ni sorption to HAO, HMO, and HFO as a function of time in constant
boundary condition studies
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Figure 7.4 Cd sorption to HAO, HMO, and HAO as a function of time in constant
boundary condition studies
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Figure 7.5 Sr sorption to HAO, HMO, and HFO as a function of time in constant
boundary condition studies



Figure 7.6 Pb sorption to HAO, HMO, and HALO as a function of time in constant
boundary condition studies
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Figure 7.7 Zn sorption to HAO, HMO, and UFO as a function of time till equilibrium
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Figure 7.8 Ni sorption to HAO, HMO, and HMO as a function of time till equilibrium
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Figure 7.9 Cd sorption to HAO, HMO, and 11F0 as a function of time till equilibrium
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Figure 7.10 Sr sorption to HAO, HMO, and FIFO as a function of time till equilibrium
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Figure 7.11 Pb sorption to HAO, HMO, and UFO as a function of time till equilibrium
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isotherm, and S is the bulk concentration. To solve Equation 7.4 combined with

boundary condition Equations 7.13 and 7.18, first, these equations are transformed to

Specifically, B lies in the range of 0.1-100 based on ranges of parameters, D , 10 -12 to

10-18 k , 10-8 to 10-14 cm/s, and R , 0.13 to 78.3 i_tm. Then, the method of parabolic

concentration layer approximation (Tao and Tien, 1992) is applied. The derivations were

made by assuming that the concentration profile within particle may be represented by a

parabolic expression over a spatial domain with time. The intraparticle concentration

profile is as follows:

where 6 is the concentration layer thickness and a, b , and d are time-varying

coefficients to be determined, and C o is the initial value of C . From continuous

function,
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From Equations 7.24 and 7.25, a, b , and d can be solved. Then, given a vanishing

average residual and assuming 8 is much less than unity, the following equation is

derived (Tao and Tien, 1992):

where

In order to assess the accuracy of the above approximation method, Tao and Tien (1992)

obtained the numerical solution by applying the orthogonal collocation method for

intraparticle diffusion. The solution is exact in the sense that the number of collocation

points is symmetrically increased until there is no discernible change in the solution. The

method of parabolic concentration layer approximation is accurate when comparing the

results with the numerical solution. Based on the example from Tao and Tien (1992),

demonstration and validation of the approximation method with numerical methods are

provided in Appendix A.
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To solve coupled transport equations, such as Equation 7.31, the operator split

(OS) method (Tanenko, 1971) is an efficient numerical strategy. The OS is a decoupling

technique for solving flow problems involving coupled chemical transport and reaction

processes, and is widely used for the numerical computation of reactive flow (Zheng,

1990; Clement, 1997; Barry et al., 1997; gu et al., 1999; Clement et al., 2000; Sportisse

et al., 2000; Diaw et al., 2001; Islam and Singhal, 2002). The reasons for implementing

such an approach to reactive transport problems are as follows: first, existing transport

codes can be used to incorporate new transport modules; and, secondly, computational

requirements are reduced (Barry et al., 1996; Sportisse et al., 2000). Specific examples

for applying the OS are presented below.

Zheng (1990) utilized this operator-split strategy to develop a general numerical

solution scheme for solving the coupled partial/ordinary differential equations, which

described single-species transport with a first-order reaction. Clement and coworkers

(1997 and 2000) applied an OS method to develop a general numerical solution scheme
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for solving the coupled partial/ordinary differential equations for fate and transport of

aqueous and solid phase species in multi-dimensional saturated porous media. They

developed a reactive model to aid in the analysis of a natural attenuating system for

chlorinated solvent sites. gu et al. (1999) used the operator-splitting method to solve a set

of reactive transport equations that describe hydrocarbon decay and transport under

aerobic and sequential-anaerobic environments. Sportisse et al. (2000) performed

numerical tests by the OS method in one-dimensional case with diffusion, chemical

kinetics, dry deposition, and emission. Diaw et al. (2001) used operator splitting to solve

the one dimensional solute transport equation in saturated-unsaturated porous media, with

the discontinuous finite element method for discretization of the advective term. Islam

and Singhal (2002) employed a two-step sequential operator splitting method to solve a

coupled transport model and biogeochemical reaction equation, which simulates one-

dimensional multi-component landfill leachate transport.

In operator splitting, the intraparticle diffusion process can be separated from the

governing equations and assembled into a set of differential equations:

A new user-defined package is developed to setup these equations, which is presented as

following.
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7.3 Coding Process

To simulate the intraparticle diffusion in a solute transport system, the process is coded

into the RT3D reaction module, where a user-defined reaction package is developed.

RT3D's user-defined reaction packages can be created using one of two approaches: the

dynamically linked library (Dgg) option or the linked subroutine option. With the Dgg

option, the subroutine for the reaction package is compiled as a stand-alone Dgg,

automatically launched by RT3D when RT3D is executed. With the linked subroutine

option, the code for the new reaction subroutine is compiled and linked with the RT3D

source code. The RT3D executable must be recompiled each time the reaction package is

modified (Clement and Jones, 2000). Because of the need for portability of the developed

reaction package, the Dgg option is the more convenient of the two options. Therefore,

the intraparticle diffusion package is created using the dynamically linked library (Dgg)

approach.

Furthermore, in the Dgg approach, three methods can be used for coding the

intraparticle diffusion package. The difference between these methods lies in the ways to

treat the process parameters. In the first method, all parameter values are explicitly

assigned within the diffusion module prior to compilation. This is not an efficient method

since it requires recompilation of the diffusion routine whenever a parameter is modified.

In the second method, all of the parameter values are spatially constant but are assigned

and modified externally as input data. In the third method, some parameters are treated as

spatially variable and assigned to each cell. Others are externally assigned and modified

as input data, in a similar fashion to the second method. However, this option requires

more computer resources, both execution time and memory. The third method is the most
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viable one to treat different process parameters, however, initially the first method was

used to reduce the need for debugging. After creating the intraparticle diffusion process

package and linking it to RT3D, the process can run a full-fledged simulation with GAMS.

7.4 Summary

In this chapter, an approach was presented for incorporating the diffusion process into

RT3D module of GMS, which is a macroscopic transport code. A case study of

implementing the new intraparticle diffusion package with bulk transport in GMS is

presented in the next chapter.



CHAPTER 8

INCORPORATING INTRAPARTICLE SURFACE DIFFUSION INTO A BULK
TRANSPORT CODE FOR GROUNDWATER MODELING: CASE STUDY FOR

Sr" AT THE HANFORD SITE

Based on the review of existing solute transport models, either equilibrium or reaction

rate approaches are often employed for describing metal sorption. However, many studies

have demonstrated that intraparticle diffusion is an important and rate-limiting process in

the sorption, and therefore needs to be considered in realistic solute transport modeling.

This work is focused on incorporating intraparticle surface diffusion into a bulk transport

code for groundwater flow and solute transport. Based on earlier work (Trivedi and Axe,

1999, 2000, and 2001), correlations were developed for predicting theoretical

diffusivities; in this chapter an approach for assessing both surface diffusion and

distribution coefficients is presented. The diffusion model was coded into the

Groundwater Modeling System (GMS) (BTU, 2002), where MODEgOW-2000

(Harbaugh et al., 2000) handles groundwater flow, and RT3D addresses solute transport.

The resulting model was employed for simulating and predicting Sr" mobility at the U.S.

DOE Hanford Site, Washington.

8.1 Case Study

The Hanford Site, a facility in the U.S. DOE nuclear weapons complex, encompasses 586

square miles and is located along the Columbia River in southeastern Washington State

(Figure 8.1). The site was acquired by the federal government in 1943, and until the
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Figure 8.1 Map of the Hanford Site (adapted from Hartman et al. (2003))
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1980s was dedicated primarily to the production of plutonium for national defense and

the management of resulting waste. Today, under the direction of the U.S. DOE, Hanford

is engaged in the world's largest environmental cleanup project, with a number of

technical, political, regulatory, financial, and cultural issues (Hartman et al., 2003). Sr"

is a major radionuclide in spent nuclear fuel (from nuclear reactors) and high-level

radioactive wastes associated with weapons production. Sr" is a known carcinogen due

to its emission of ionizing radiation and confirmed by epidemiological studies on

radiation-induced tumors (U.S. EPA, 1994). Contamination has been observed in the

100-N area adjacent to the Columbia River. This plume originates from two liquid waste

disposal facilities, 116-N-1 and 116-N-3, which are still in operation; other wastes

include nitrate, sulfate, and petroleum hydrocarbons (Hartman et al., 2002 and 2003).

In GMS, the grid approach or the conceptual model approach can be used to

construct a groundwater simulation; the latter is usually employed for an irregular and

complex hydrogeological system such as the 100-N area. Based on data availability, an

aquifer can be built by either scatter points or stratigraphy: the scatter points approach is

a simpler method for defining layer elevations, while stratigraphy modeling is

implemented through borehole interpretation based on a set of TINs (Triangulated

Irregular Network) and is best suited for complex systems. Therefore, for the Hanford

Site, the stratigraphy approach is employed where the conceptual model converts the

system into the 3D grid MODEgOW (Harbaugh et al., 2000).

The Hanford Site lies within the Pasco Basin, a structural depression that has

accumulated a relatively thick sequence of fluvial, lacustrine, and glaciofluvial

sediments. The sedimentary deposits comprise an unconfined aquifer system. Based on



127

site characterization (Vermeul et al., 2003), 16 boreholes at Hanford are used and assist

in representing the different types of hydrogeologic units: the Hanford Formation, the

Ringold Formation, and the Basalt Formation (Table 8.1). A set of T1Ns is constructed

representing the interfaces between adjacent layers according the vertices along the

boundary (Figure 8.2). After creating the aquifer model, a conceptual model bounded by

the Columbia River is constructed including the local coverage of sources/sinks and

recharge. Further, the conceptual model is converted to the groundwater grid model with

the active and inactive zones as well as assigned layer ranges to stratigraphic units

representing consecutive sequences coinciding with the aquifer model. After parameters

are defined, the groundwater model is launched to acquire head profiles for the Hanford

Site (Figure 8.3).

As discussed above, the Sr90° plume originates from two disposal facilities, 116-N-

1 and 116-N-3, in the 100-N area (Figure 8.1). Based on the Hanford Site model, a local

model is developed through a regional to local model conversion, and is used to simulate

Sr90°transport in and around the 100-N area. This conversion is often referred to as

telescopic grid refinement and can be implemented through GMS. During this stage,

groundwater elevations computed from the regional model are applied as specified head

boundary conditions to the local scale model. After the conversion process, a local model

is developed (Figure 8.4).

To address Sr90° mobility, distribution and diffusion coefficients were calculated

based on the composition of sediments, which are predominantly quartz with iron and

manganese oxide coatings (Barnett et al., 2002; Pace et al., 2003). Specifically, the



Table 8.1 Summary of Hydrogeological Units at the Hanford Site

Hydrogeological Lithologic Horizontal Hydraulic Vertical Hydraulic Specific Effective

Unit Description Conductivity Conductivity Yield Porosity

(mid) (mid)

Hanford Formation Fluvial gravel and

coarse sands

50 2.5 0.15 0.31

Ringold Formation Fluvial gravel,

sands, and silts

1.0 0.05 0.15 0.33

Basalt Formation Basalt 1.4x 10 -5 7x 10-7 0.15 0.015

a Data collected from Cole et al. (2001)
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Figure 8.2 Aquifer model of the Hanford Site (light grey: the Hanford Formation, black:
the Ringold Formation, and dark grey: the Basalt Formation), where the Ringold
Formation is the primary aquifer (developed based on Vermeul et al. (2003))
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principal aquifer or the Ringold Formation is composed of quartz with the iron oxide,

25.3 g kg1 , and the manganese oxide, 4.0 g kg 1 (Barnett et al., 2002); and the Hanford

Formation consists for the most part of quartz with iron oxide, 5.4 g kg1 (Pace et al.,

2003). As the Ringold Formation, gayer 2 in our model, controls groundwater flow, its

mineralogy is used exclusively to calculate distribution and diffusion coefficients. Based

on correlations for predicting thermodynamic and transport parameters (Trivedi and Axe,

1999, 2000, and 2001), relationships for distribution and diffusion coefficients as a

function of pH were developed for Sr" sorption to aluminum, iron, and manganese

oxides (Figure 8.5). In addressing the transient sorption process as well as surface

affinity, hydrous oxides are assumed dominant (Axe and Anderson, 1995; Trivedi and

Axe, 1999) with respect to interactions with Sr". As the Ringold Formation pH has been

observed to be on average 6.8 ± 0.6 (Barnett et al., 2002), distribution and surface

diffusion coefficients were estimated based on the mass fraction of oxides (Table 8.2).

Barnett et al. (2002) collected samples from the Ringold Formation and found 98% sand,

2% silt, and less than 1% clay (wtiwt) with an associated size range of 0.0625-2 mm for

sand, 0.002-0.0625 mm for silt, and less than 0.002 mm for clay (USGS, 2004). Using

Monte Carlo simulations with 10,000 iterations, the mean is given a Gaussian distribution

and the particle size range of Ringold Formation. The oxide particle size was evaluated

based on the mass present (Table 8.2).

For the boundary condition, the correlation (Bird et al., 2002)

was used to obtain the external mass transfer coefficient, where d is the particle diameter;

Sham, 79, is the Sherwood number; Re= dv/v , 7.2x 10 -5 , is the Reynolds number ( v is the
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Figure 8.4 Local model of the 100-N area converted from the regional model of the
Hanford Site (Unit: m) (developed based on Hartman et al. (2002 and 2003))
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Figure 8.5 Sr90° distribution and diffusion coefficients vs. pH for HAO, HFO, and HMO
at 25°C based on Trivedi and Axe (1999, 2000, and 2001). Kd  is the internal distribution
coefficient representing the product of the equilibrium constant and internal site density;
Kd is the external distribution coefficient and is the product of the equilibrium constant
and external surface site density. For HAO, Kd  is equivalent to Kd as internal sites
constitute approximately 50% of the total sites.



a Data adapted from Cole et al. (2001).
b Data adapted from Barnett et al. (2002).
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bulk velocity and v is the kinematic viscosity); and Sc = 	 , 7.1 x 109 , is the Schmidt

number.

gike many other sites, the recharge rate is an unknown quantity. This is a

common impediment that usually limits the use of transport models in realistic field

simulations. To circumvent this limitation, the recharge rate was quantified through a

model calibration process, which in turn was constrained by measured field-scale data,

aquifer characteristics, and groundwater quality (Table 8.2). Vermeul et al. (2003)

reported the rate ranged between 0.0026 and 0.127 mlyear; the average 0.073 midyear was

employed in this work. However, during the calibration process, varying the rate did not

significantly affect the model results. Source concentration is a more sensitive parameter,

which needed to be qualified and assessed. Samples collected between 1993 and 2002

(Hartman et al., 2003) show Sr90° concentrations in the liquid waste disposal facilities,

116-N-1 and 116-N-3 (Figure 8.6), ranging between 8 and 95 mg L -1 . Calibrating with

varying concentrations revealed that 90.0 and 45.0 mg 1: 1 of Sr90° in the two facilities

were required to simulate measured conditions in 2001 and 2002 (Figure 8.7). Sr 90°

transport was then simulated from 1990 to 2002 (Figure 8.8); the front contour (minimum

plotted) reflects the concentration of 0.0024 mg g -1 , which is one tenth of the drinking

water standard for Sr90° (U.S. EPA, 1996). Over 12 years, the Sr90° plume extended in and

around 100-N area. This contour provides a clear picture of the area adversely impacted

and can assist those individuals assessing remediation and control activities. Furthermore,

Sr" transport is simulated for 2003 and 2004 (Figure 8.9); the most recently available

data of 2003 (Hartman et al., 2004) validated observed modeling results. Sr90° continues to

migrate within the 100-N area and will potentially extend into other areas of the Hanford
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Figure 8.6 Sr90° concentrations in the liquid waste disposal facilities of the 100-N area,
Hanford Site
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Figure 8.7 Calibration results with sampling contours of the Sr 90° plume for 2001 and
2002 over the 100-N area, Hanford Site (Unit: mg L -1 )



Figure 8.8 Modeling results of the Sr90° plume for 1992, 1994, 1996, and 1998 over the 100-N area, Hanford Site (Unit: mg g-1)
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Figure 8.9 Prediction and validation of the Sr90° plume for 2003 and 2004 over the 100-N
area, Hanford Site (Unit: mg gi)
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Site and beyond.

8.2 Summary

Intraparticle surface diffusion, which is the rate-limiting process for metal sorption to

amorphous oxides as discrete particles and coatings, was incorporated into GMS to

accurately simulate metal contaminant transport and fate. In the model development, the

parabolic concentration layer approximation was employed, and the operator split

technique was used to solve the microscopic diffusion equation coupled with

macroscopic advection and dispersion. The resulting model was employed for simulating

Sr90° mobility at the U.S. DOE Hanford Site, Washington. During the simulation, the

conceptual model approach along with stratigraphy modeling based on borehole data was

applied. The methods for addressing the distribution coefficient as well as the surface

diffusivity are outlined and can be applied easily to other sites. Furthermore, the local

model developed to simulate Sr90° transport in and around the 100-N area from 1990 to

2004, indicates the contaminant plume is slowly extending beyond this area and into the

adjacent areas.

For understanding risks associated with heavy metals to the surrounding

environment, bioavailable species can be used to assess static or dynamic ecological risks

resulting from exposure to different metals. A static ecological risk assessment is

conducted for depleted uranium (DU) present at Aberdeen and Tuma Proving Grounds in

the next chapter.



CHAPTER 9

USING A PROBABILISTIC APPROACH IN AN ECOLOGICAL RISK
ASSESSMENT SIMULATION TOOL: TEST CASE FOR DEPLETED URANIUM

(DU)

Once mobile and bioavailable species are known, the last step in the simulation process is

to address risk. An ecological risk assessment is a process that evaluates the likelihood

that adverse ecological effects may occur or are occurring as a result of exposure to one

or more stressors (U.S. EPA, 1992a). The process is used to systematically evaluate and

organize data, information, assumptions, and uncertainties to help understand and predict

the relationships between stressors and ecological effects in a way that is useful for

environmental decision-making. Ecological risks can be assessed through field studies;

however, performing a large number of these studies may be inappropriate because of the

expense in sacrificing receptors and the overall cost in obtaining field data. Because of

the variety of habitats and species in an ecosystem and the associated interactions

between biota and physical-chemical conditions, risk assessment is a complex process.

Therefore, computer simulation tools are needed for risk assessment and they have

become a powerful, cost-effective tool for understanding and managing ecological risks

(Carbonell et al., 2000; Sydelko et al., 2001; Naito et al., 2002; gu et al., 2003).

A computer simulation tool, the ERA model, has been developed for conducting

ecological risk assessments (gu et al., 2003). This tool is based on a preliminary

evaluation of existing eco-risk models and includes a Windows-based interface, an

interactive database management system (DBMS), and a comprehensive evaluation of

exposure pathways addressing site- and species- specific estimation of chemical uptake

141
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from abiotic and biotic media. Monte Carlo simulations are used for characterizing

parameter and risk uncertainty as probabilistic distributions. In the past, risk assessment

methods have focused on a single indicator for risk. While this approach has found its

usefulness as a screening tool, it does not consider the full range of available information,

nor does it explicitly account for important sources of uncertainty in estimating risks

(gahkim et al., 1999; Tegnan et al., 2002). In addition, point estimates of risk may

convey an inaccurate sense of accuracy and can lead to inconsistencies in making

comparisons among risks (Thompson and Graham, 1996). Furthermore, relying on a

single value estimate of risk for remedial activity typically results in an over estimation of

costs (U.S. EPA, 1992a; gahkim et al., 1999).

Probabilistic risk assessment differs from the deterministic approach by allowing

a value to be chosen from a distribution of plausible values for an exposure variable.

Variables that can assume different values for different receptors are referred to as

random variables. In probabilistic risk assessment, one or more (random) variables in the

risk equation are defined mathematically by probability distributions. Similarly, the

output of a probabilistic risk assessment is a range or distribution of risks experienced by

the various members of the population of concern (Warren-Hicks and Moore, 1998).

Probabilistic distribution methods have been employed in human (Vermeire et al., 2001),

ecological (Jager et al., 2001), and technological risk assessments (Schumacher et al.,

2001) to quantify uncertainties in predictions of risks.

When performing an uncertainty analysis with probabilistic distributions

generated with Monte Carlo simulations in ecological or human risk assessment, several

commercial software packages are widely employed (Morgan and Henrion, 1998;
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gohman et al., 2000; Moschandreas and Karuchit, 2002). For example, Crystal Ball ® was

employed in a probabilistic analysis of regional mercury impacts on wildlife. Another

software, @Risk® was used as a screening level for a probabilistic assessment of mercury

risks in the Florida Everglades food web (gohman et al., 2000). These tools are not

specific for ecological risk assessment and have been widely applied to assess risks in

other fields, such as financial consulting, cost estimate consulting, market research,

engineering cost analysis, and insurance. Therefore, the user needs to be aware of how to

apply software functions and recreate model equations, input parameters, and the

foodweb for a given application. These procedures are relatively time consuming. In a

comprehensive risk assessment, where exposure is addressed via the trophic levels of the

food web, a spreadsheet approach for performing an uncertainty analysis is not practical

as the result is only useful for the one condition studied. The risk assessment model with

probabilistic distributions generated through Monte Carlo simulations addresses

parameters and data (including the food web) are stored in the modifiable DBMS. In this

study, the ERA simulation tool is used to assess risk of depleted uranium (DU) at two

U.S. Army sites, Aberdeen and Tuma Proving Grounds (APG and TPG). Concerns have

been raised at these two sites about the potential exposure to the associated ecosystems

and adverse health effects of DU.

Depleted uranium is a by-product from processing natural uranium to produce the

enriched form used as fuel for nuclear reactors or military applications (Hartmann et al.,

2000). Health risk of exposure to DU is a complex issue. Due to the low specific

radioactivity and the dominance of a-radiation, no acute risk is likely from external

exposure (Bleise et al., 2003). However, internalized DU has a greater potential for



144

adverse impacts on body than that externalized, such as mutagenesis from radiological

effects where risks are a function of the particle characteristics. Renal, reproductive, and

developmental effects from chemical impacts are a function of the route of exposure,

duration of exposure, and speciation (Fulco et al., 2000). McClain et al. (2001) studied

the primary transport route of DU through wounds and confirmed mutagenic behavior of

DU, which transformed human osteoblast cells to a tumorigenic phenotype. The non-

radioactive or chemical effect associated with exposure to uranium and its compounds

involves renal toxicity, detected by the presence of protein and cell casts in the urine.

Additionally, the chemical and radiological impacts of uranium can act synergistically to

cause tissue damage. Therefore, it cannot be assumed that cancer is due solely to the

radiological effects of uranium or that organ damage is exclusively due to its heavy-metal

properties (Fulco et al., 2000).

Since the 1950s, DU has been used as a penetrator in munitions and testing

programs at APG, which is located in the western shore of Chesapeake Bay, a productive

and complex ecosystem. The facility provides design and testing of ordnance material in

close proximity to the nation's industrial and shipping centers. As a result of the program,

DU has been deposited on over 1500 acres. Most penetrator impacts occurred within

about 500 m of the firing axis after the DU munitions passed through soft targets used to

check accuracy and performance. Penetrators strike the ground, trees, and wetlands after

hitting soft targets and eventually come to rest in the impact area (Ebinger et al., 1996). A

second-highly used test area is located at TPG near the Arizona-California border and in

the vicinity of the Colorado River, Squaw gake, and Mittry gake. TPG began testing DU

munitions against soft targets in the 1980s, and the test area comprises 12,000 acres
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(Oxenberg, 1997). Ebinger et al. (1996) reported that redistribution in the arid

environment at TPG was mainly due to erosion of DU fragments and redeposition in

washes that drain the area. Ingestion of DU by wildlife is likely from consuming DU-

contaminated soil accumulated on vegetation or pelts.

In this chapter, the components of the ERA model are discussed and include along

with exposure pathways, the relation-based food web, ecosystem receptors, risk

characterization, and uncertainty analysis. The process for conducting the DU risk

assessment is presented, which includes selecting reference values, obtaining

concentrations in media, and identifying exposure parameters. The risk assessment is

then presented and validated.

9.1 ERA Model

Based on a review by Weiss (1999) and gu et al. (2003), existing ecological risk

assessment models are often site-specific. These models are therefore useful in

addressing site-specific issues. However, when databases exist and are limited to site-

specific conditions and not modifiable, applications have limited use. General models,

which can be easily adapted to other sites, remain few, and are often simple and

associated with significant uncertainties. The ERA model (gu et al., 2003) is a generic

screening tool for ecological risk assessment that can be modified for varying site

conditions and ecosystems through a Windows-based interface and interactive modifiable

DBMS. Based on trophic sources, a food web has been integrated into the framework of

the DBMS.
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9.1.1 EDposure Pathways and the Food Web

Following U.S. EPA and other guidelines (U.S. EPA, 1992b and 1993a; Thomann et al.,

1992; Hope, 1995; Cheng, 1998; PNNg, 1998), the ERA model addresses potential

exposure pathways of ingestion, inhalation, and dermal absorption for terrestrial animals;

root and foliar uptake for plants; and direct absorption for aquatic species. Each

mathematical equation for exposure incorporates species-specific information on diet

composition, body weight, home range, food and water ingestion rates, and incidental

ingestion rates of environmental media. Given a specified set of possible exposure

pathways and routes, these equations can be combined to produce site- and species-

specific estimates of chemical uptake from abiotic and biotic media. The exposure

algorithms applied to the ERA model are based on a compilation of studies (Maughan,

1993; U.S. EPA, 1993a and 1993b; Farago, 1994; Hope, 1995; Cheng, 1998; PNNL,

1998). All equations applied in the ERA model are provided in Appendix B. These

exposure models for terrestrial and aquatic plants and animals are used in software

developed with Visual Basic 6.0. The DBMS provides robust storage and retrieval

capabilities and can solve problems, such as data redundancy and inconsistency, data

relationship definition, and security problems. Based on these advantages, Microsoft

Access DBMS was selected to handle data in this model (gu et al., 2003). The parameters

associated with exposure models including benchmarks, site characteristics, chemical

properties, and exposure parameters are stored in the database. Furthermore, the DBMS

is linked to external databases such as the U.S. EPA ECOTOX to address site-specific

applications.
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9.1.2 Animal and Plant Receptors at APG and YPG

Generally, assessment endpoints are explicit expressions of the environmental value that

is to be protected, operationally defined by an ecological entity and its attributes (U.S.

EPA, 1998). Various endpoints may be used for predictive assessments, but the final

selection is often affected by the availability of toxicity data in the literature and the

quality of the data. Criteria were identified to provide guidance for defining the endpoint

receptors (U.S. EPA, 1992a; PNNg, 1998): (1) Commercial or recreational importance;

(2) Protection status under the Endangered Species Act or similar state legislation; (3)

Critical component of either the terrestrial or aquatic, ecosystem: key predator or prey;

(4) High potential exposure to contaminants; (5) Availability of toxicological information

for the species; and (6) Representatives of a foraging guild. In addition, the species listed

as "threatened, endangered, and sensitive species on DOD lands" by the U.S. Army

(Martin and Fischer, 2000) have also been included (gu et al., 2003).

APG and TPG were identified as baseline ecosystems for the ERA model, which

represent coastal and desert ecosystems, respectively. Considering the diversity of the

APG ecosystem and the large area of TPG, a significant number of wildlife species live

within the two sites. Following U.S. EPA (1998) guidance and criteria above and

considering databases and records maintained by the federal and state agencies including

those associated with the two proving grounds (gu et al., 2003), the list of receptors are

shown in Table 9.1.



148



149

9.1.3 Risk Characterization and Uncertainty Analysis

Once the ecosystem and site characteristics are fully understood, the applied daily dose

(ADD) or body burden can be estimated for an individual receptor. An ecological hazard

quotient (EHQ) is then calculated by dividing the ADDpathway (or body burden) by the

reference value:

The reference value recommended in this model is the no observed adverse effect level

(NOAEg) or no observed adverse effect concentration (NOAEC) for terrestrial and

aquatic species, respectively. The NOAEg and NOAEC are derived from experiments

conducted on laboratory species, and represent the highest dose or contaminant

concentration applied that did not result in a measurable adverse effect (Cockerham and

Shane, 1994; Sample et al., 1996; Weiss, 1999). For example, uranium reference values

for terrestrial animals represent doses that did not adversely affect the receptor's

reproductive system; for terrestrial plants the benchmark represents reduction in the

plant's root weight. Reference values for aquatic species are the highest doses that did not

increase mortality.

Based on the selected reference values, the EHQ represents varying levels of risk

or measures of levels of concern (Tannenbaum et al., 2003). Although risk categories are

outlined here, receptor risk should be evaluated individually based on the endpoint. An

EHQ less than 1 suggests the toxicological effects are unlikely to occur and hence the

potential for unacceptable risk is minimal (Tannenbaum et al., 2003). A NOAEg-based

EHQ greater than 1 but less than the gOAEg (lowest observed adverse effect level)
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indicates that effects are possible but uncertain. Finally a gOAEg-based EHQ>1

indicates that effects are probable and exposure exceeded the lowest dose associated with

effects. The EHQ value provides an indication of level of risk to a receptor.

In the risk assessment, as discussed previously, uncertainties are an inherent part

because the data and understanding of ecosystem may be limited. Therefore, probability

density functions were sampled using Monte Carlo simulations. By applying the

simulation, distribution characteristics were studied and convergence revealed a

minimum iteration of 500 based on the 95 th confidence level, which is in agreement with

Tellinghuisen (2000). However, in this study, the selected iteration is based on a 99 th

confidence level, as we are interested in the lower probability outcomes at the tails of the

distributions. In this case, 1000 iterations were selected (Frey and Rhodes, 1998).

Probabilistic distributions have been used as a tool to qualify uncertainty in

prediction of risks to humans and ecological receptors (Frey and Rhodes, 1998). The

distributions characterize the degree of belief that the true but unknown value of a

parameter lies within a specified range of values for that parameter (Warren-Hicks et al.,

2002). Criteria for selecting a distribution are based on National Council on Radiation

Protection and Measurements (NCRP, 1996) and U.S. EPA (1998) guidelines. The

distribution should represent site-specific uncertainty and variation in that parameter

(Schumacher et al., 2001). Also, the distribution must represent the range of values for

that parameter in a given system. The selected distribution should be consistent between

sites for specific parameters (Warren-Hicks et al., 2002). Moreover, the form of the

distribution should reflect the magnitude, range, and interpretation of the parameter

(NCRP, 1996). For example, contaminant concentration cannot be negative; therefore,



151

the sampling distribution should reflect the restricted range. The probabilistic

distributions of the exposure parameters were gathered from a number of studies and are

summarized in Table 9.2. As the lognormal distribution has a longer tail than other

distributions, it is widely used in environmental analysis to represent positively valued

data exhibiting positive skewness (NCRP, 1999; Cullen and Frey, 1999). Pollutant

concentration tends to be lognormally distributed, which has been explained by the

theory of successive random dilutions (Ott, 1990). After the pollutants are emitted by the

source, they undergo successive mixing and dilution, resulting in a lognormal frequency

distribution. Furthermore, a goodness of fit test was conducted to assess the

appropriateness of the lognormal distribution for sampling data at both APG and TPG

sites. By using the Anderson-Darling (A) test, the lognormal distribution was found to be

the most appropriate for the DU data. Therefore, in this study, the lognormal distribution

is selected to represent the distribution form for the DU concentrations in the media. Both

aquatic species bio-concentration factors and soil to plant uptake factors are defined as

the ratio of contaminant concentration at equilibrium in tissues to that in the water or soil

where values were generated from field and/or laboratory data (Jorgensen et al., 1991;

PNNg, 1998; Sample et al., 1998). The associated distributions have been observed as

skewed, which has led to the use of the logarithmic transformation of the parameter to

obtain the lognormal distribution (Traas et al, 1996; Verhaar et al., 1999; Samsoe-

Petersen et al., 2002; giao et al., 2003).

Physiological parameters such as body weight, surface area, and ingestion and

inhalation rates in terrestrial animals may vary seasonally, geographically, and by age.

These parameters typically follow a Gaussian distribution (U.S. EPA, 1993a and 1997b).
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The normal distribution is commonly used to represent uncertainty resulting from

unbiased measurement errors (Morgan and Henrion, 1998). Because the normally

distributed random variable takes on values over the entire range of real data, the standard

deviation is a measure of the population variance. Surface area, ingestion, and inhalation

rates are a function of the body weight and are often estimated using allometric equations

(U.S. EPA, 1993a).

With limited field or laboratory data, default values are recommended (Hope, 1995

and 1999). The U.S. EPA applied such an approach for soil to skin adherence factors and

the contaminant specific dermal absorption factor (U.S. EPA, 1989; U.S. EPA, 1993a;

U.S. EPA, 2001). Moreover, because of limited data, these values were based on exposure

for humans not terrestrial animals to which they were applied (U.S. EPA, 1989; Hope,

1995). Therefore, in the study, a similar approach was used for parameters related to

dermal contact (Table 9.2): soil to skin adherence factor, contaminant specific dermal

absorption factor, soil contact fraction factor, and site use factor.

9.2 Risk Assessment

Once the ecosystem was defined along with the food web, the process for conducting the

DU risk assessment included selecting reference values, obtaining concentrations in

media, identifying exposure parameters, and validating model results. Among them,

exposure parameters have been discussed previously; in the following, reference value

selection, DU concentrations in media, and model and validation results are presented.
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9.2.1 Reference Value

The relevant NOAEg and NOAEC data were identified from multiple sources for the

terrestrial and aquatic receptors of the case study (Sample et al., 1996; Efroymson et al.,

1997; U.S. EPA, 2003). In instances where toxicological data for receptors were

unavailable, surrogate species were selected based on taxonomy, life style, and/or

toxicological response similarity. Surrogate application requires applying a conversion

method based on test species and the receptor's body weights. Wildlife NOAEgs can be

estimated for an untested species by the following equation (Sample and Arenal, 1999):

Where the NOAELwildlife represents the ecosystem receptor of concern, the NOAELtest is the

surrogate test species for which the NOAEL is available, bw represents their respective

body weights, and b is an allometric scaling factor. From Sample and Adrenal (1999),

scaling factors of 1.2 and 0.94 should be used for birds and mammals, respectively.

NOAEg data on test species, mouse and black duck, were used to calculate other untested

species NOAEg values based on Equation 9.2. (Toxicological data are available in

Appendix C).

9.2.2 DU Concentrations in Media

As discussed previously, the lognormal distribution was applied to describe DU

concentrations in both water and soil for APG and TPG. Sampling data on uranium

concentrations in surface water, groundwater, and soils from APG and TPG were

collected by Ebinger et al. (1996) and stored in a database developed and maintained by
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gos Alamos National gaboratory (Ebinger, 2002). At APG, uranium concentrations in the

surface- and ground-water samples were analyzed based on nine samples near the western

shore of Chesapeake Bay. Potentially impacted soils were sampled mainly in conjunction

with well water sampling and were collected over 1,500 acres; a total of 35 samples were

collected representing an extremely limited data set. (See Appendix D for sampling area

and associated data.)

TPG is characterized as a typical desert ecosystem; therefore field studies were

conducted, for the most part, on soil samples. Ebinger et al. (1996) established sample

plots on two firing ranges at TPG. Plots were distributed nonrandomly along the area of

12,000 acres, where first penetrator impacts were closely clustered and had been identified

as exhibiting elevated levels of DU contamination (Price, 1991; Ebinger et al., 1996;

Oxenberg, 1997). These areas were situated along the axis of the firing line and could be

identified by impact craters, recently displaced soils, and DU fragments. Locations for

sample plots varied along the firing line and from observable impact craters and according

to Ebinger et al. (1996) were assumed to cover a range of contaminant levels for each

firing line. According to U.S. EPA's soil sampling protocol (U.S. EPA, 1992c), when a

plume is suspected and the orientation of the plume can be estimated, the sampling grid

should be oriented in such a manner that the extending axis of the grid is parallel to the

suspected plume center line; however, this is not necessary and a square or rectangular

grid is one of the most useful for reconnaissance. DU concentrations in soil were based on

22 samples, again a very limited data set for the impacted area. (See Appendix D for

sampling area and associated data.)
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9.2.3 Risk Results

Based on speciation, U02C03°(AQ) and U02(0H are the two dominant and mobile

species at pH 6-7 and pE 5-15 that may adversely affect receptors from exposure (see

Appendix E for further review of DU Chemistry) . For TPG terrestrial plants (Figure 9.1),

because of high DU concentration in soil, the overall distributions for DU uptake for the

creosote bush, foothill paloverde trees, and saguaro cactus suggested a 90% likelihood of a

reduction in root weight. For most terrestrial animals at TPG, given DU concentration in

soil, the dose is less than that resulting in a decrease offspring in weight and size.

However, for the lesser long-nosed bat, reproduction effects are expected to occur through

the reduction in size and weight of offspring. Among the different exposure pathways for

the bat, including ingestion, inhalation, and dermal absorption, the dominant pathway is

through insect ingestion, which accounts for 97% of its diet. Furthermore, insect exposure

includes all the concerned ingestion pathways -- soil, water, and food (plants), and also

dermal and inhalation exposure. Based on the characteristics of terrestrial animals and

their responses to DU exposure, the bat is more vulnerable than other terrestrial species.

The positive skewness of EHQ distribution on the bat exemplifies the sensitivity (Figure

9.2).

From the field studies (Ebinger et al., 1996), pocket mice, kangaroo rat, and white-

throated woodrat samples were analyzed for uranium concentrations to estimate risk levels

at TPG. Samples of carcasses, kidneys, and livers from these animals were collected for

identifying uranium concentrations. For pocket mice, the greatest uranium concentration

was found in carcass samples, 115.4 mg kg1 ; for kangaroo rat, the worst case was

observed in kidney samples 4.3 mg kg '; and for white-throated woodrat, the



Figure 9.1 EHQ distributions for YPG terrestrial receptors



Figure 9.2 Statistical data for EHQ (gesser long-nosed bat)
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greatest concentration of uranium was 76.7 mg kg 1  in carcass samples. Based on our risk

assessment, a receptor from the same family Murid, cactus mouse, exhibited a uranium

concentration of 2.46 to 224.6 mg kg1 . Sampling data from Murid receptors, pocket

mice, kangaroo rat, and white-throated woodrat, fall into the distribution predicted in the

ERA tool (Figure 9.3).

At APG, based on limited DU data, exposure potentially poses little risk for

terrestrial animals (Figure 9.4), representing the likelihood that there is no observable

impact on receptor's reproduction or development. Ebinger et al. (1996) collected deer

samples to evaluate potential DU uptake and transfer to humans who consume deer. They

analyzed kidney, livers, muscle, and bone samples, and found that the greatest uranium

concentration among those samples was 0.0051 mg kg, which falls in the distribution

observed here of 0.0042 to 7.3 mg kg for the receptor, white-tailed deer (Figure 9.3).

For APG terrestrial plants (Figure 9.4), modeling results of risk showed that the 90 th

percentiles for rushes, slender blue flag, and fern may result in a reduction in root weight.

Compared with terrestrial plants at APG, uranium potentially poses lower risks to

aquatic plants and again this is based on a very limited set of data (Figure 9.5).

Considering DU exposure to aquatic animals at APG, uranium uptake is potentially not

expected to increase mortality. For the aquatic plant, milfoil, two samples were collected

(Ebinger et al., 1996) from field studies, where 2.1 and 0.8 mg kg "1 of uranium were

observed. 0ur modeling results showed that the uranium concentration in milfoil ranged

from 6.4x 10-3 to 18.6 mg kg"1, and are consistent with field data (Figure 9.3). In

addition, their results (Ebinger et al., 1996) indicated that the presence of DU was

confirmed by isotopic ratios observed in the cattail and pickerel weed, representing
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Figure 9.4 EHQ distributions for APG terrestrial receptors



Figure 9.5 EHQ distributions for APG aquatic receptors
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uptake, attachment, or adsorption of DU from water or sediments where these aquatic

organisms grow.

9.3 Summary

Risks from exposure to DU at two U.S Army sites, APG and TPG, were characterized

based on the data available. Exposure pathways for terrestrial and aquatic plants and

animals were applied in software developed using Visual Basic 6.0 with associated

parameters stored in the Microsoft Access DBMS. To characterize risk and address

uncertainty, the model employs Monte Carlo simulations for assessing parameter and

risks as probabilistic distributions. Results from the ERA model suggest that a reduction

in plant root weight is considered likely to occur from exposure to uranium at TPG and

APG. For most terrestrial animals at TPG, the predicted DU dose is less than that

resulting in a decrease offspring in weight and size. However, for the lesser long-nosed

bat, reproductive effects are expected to occur through the reduction in size and weight of

offspring. At APG, uranium uptake will not likely affect survival of aquatic plants and

animals. However, data were limited reflecting the risk observed and further field

investigations at both sites are recommended. Through model validation, the results from

the ERA model are consistent with sampling data from field studies of Ebinger et al.

(1996). This static risk assessment provides solid background for applying the dynamic

approach. In the next chapter, conclusions and recommendations for future work are

outlined.



CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

10.1 Conclusions

Metals such as lead, strontium, and depleted uranium released into the subsurface pose a

threat to human health and the environment. To assess risks associated with heavy metals

to the surrounding environment and manage remedial activities requires simulation tools

that depict speciation and risk with accurate mechanistic models and well-defined

transport parameters. The aim of this research was to develop a comprehensive modeling

approach or simulation tool for contaminant speciation, distribution, transport, and risk.

In simulating metal contaminant mobility in the subsurface, speciation is required. 0nce

the chemical form is understood, its mobility and bioavailability can be addressed.

M1NERAgg+ was selected and employed for addressing metal speciation in the aqueous

phase because of its comprehensive thermodynamic database, relatively strong ability to

predict activity coefficients, more options for modeling adsorption under equilibrium

conditions, and user-friendly interface.

0nce speciation in the aqueous phase is understood, its distribution with

subsurface minerals needs to be accurately depicted. Amorphous oxide minerals are

important and prevalent surfaces affecting metal mobility as of Al, Fe, and Mn occur as

coatings on other mineral surfaces or as discrete particles, and are persistent in aquatic

environments. They have large surface areas, porous structures, and an abundance of

binding sites. Numerous studies have demonstrated that this sorption process is a two-

step one: rapid adsorption of metal ions to the external surface is followed by slow
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intraparticle diffusion along the micropore walls of the oxide. Through experiments on

Pb sorption to HAO, HA0, and HM0, as well as to montmorillonite and HA0-coated

montmonllonite, intraparticle diffusion was observed to be the rate-limiting mechanism

in the sorption process, where best-fit surface diffusivities ranged from 10 -18 to 1015 cm2

4s . The results suggest oxide coatings and montmorillonite are effective sinks for heavy

metal ions. Therefore, hydrous oxides and oxide coatings greatly affect the metal

bioavailability.

Contributions from slower processes such as intraparticle diffusion should be

included in bulk transport models for accurately depicting metal contaminant sorption

processes. Thus, transport models that often employ either equilibrium or reaction rate

approaches are inadequate for describing metal mobility in subsurface environments.

Therefore, intraparticle diffusion of metal contaminants has been incorporated into

transport modeling. Evaluation and review of existing groundwater flow and transport

models resulted in identifying GMS (Groundwater Modeling System) for addressing

macroscopic solute transport. Diffusion was coded into GMS through the solute transport

module RT3D. The method of parabolic concentration layer approximation was

employed in the diffusion model development. The operator split technique was used to

solve microscopic diffusion equation coupled with macroscopic advection and dispersion

transport. The resulting package in RT3D was linked through Dgg with the advection

and dispersion components. Subsequently, Sr" mobility at the U.S. Department of

Energy Hanford Site was simulated. Methods for addressing the distribution coefficient

as well as the surface diffusivity were outlined in the research. Based on the Hanford Site

model, a local model was developed to simulate Sr" transport in and around the 100-N
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area from 1990 to 2004. Results revealed Sr 90° continues to migrate within the 100-N area

and will potentially extend into other areas of the Hanford Site and beyond.

In the last phase, once the bioavailable species is defined, it can be used to assess

static or dynamic ecological risks resulting from exposure to different metals. Employing

the ERA model, a static ecological risk assessment was conducted for depleted uranium

(DU) present at U.S. Army TPG and APG. A probabilistic approach employing Monte

Carlo simulations for assessing parameters and risks as distributions was used in the ERA

model to characterize risk and address uncertainty. Results suggest that a reduction in

plant root weight is considered likely to occur from exposure to uranium at TPG and

APG. For most terrestrial animals at TPG, the predicted DU dose is less than that

resulting in a decrease offspring in weight and size. However, for the lesser long-nosed

bat, reproductive effects are expected to occur through the reduction in size and weight of

offspring. At APG, based on a very limited data, uranium uptake will not likely affect

survival of terrestrial animals and aquatic species. In a model validation exercise, based

on field and laboratory studies, sampling data collected at APG and TPG of pocket mice,

kangaroo rat, white-throated woodrat, deer, and milfoil revealed that body burden

concentrations fall into the distributions simulated at both sites. This static risk

assessment provides solid background for applying the dynamic approach.

The tool developed is available here at NJ1T and includes the ERA software with

links to MINERAg+, external databases, and the modified GMS code.
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10.2 Recommendations for Future Work

Based on this research, the following are recommended for future work on contaminant

transport, fate, and ecological risk assessment.

(1) To further address contaminant mobility and bioavailability, GMS with the

intraparticle diffusion package can be linked with surface water or watershed models to

fully describe contaminant spatial and temporal aspects beyond groundwater systems.

(2) To fully utilize the G1S tool, ArcG1S or ArcView tools in implementing

GMS for importing and converting G1S data from external sources.

(3) To combine the ecological risk assessment with a life cycle approach taking

into account the overall cradle to grave perspective for sustainable development.

(4) To qualify the magnitude of potential impacts to ecosystems from exposure

to single as well as multiple contaminants requires better toxicological data addressing

communities verses individual receptors.



APPENDIX A

VALIDATION ON THE PARABOLIC CONCENTRATION LAYER
APPROXIMATION METHOD

The purpose of this example is to demonstrate and validate the accuracy of the parabolic

concentration layer approximation method (Tao and Tien, 1992) by applying the

orthogonal collocation and finite difference methods.

From the method of parabolic concentration layer approximation as discussed in

Chapter 7

where C is sorbed concentration, Cry is the variable concentration sorbed on the oxide

where So is the initial concentration of the species in the aqueous phase, and V 1 and K.

are, respectively, the volumes of bulk fluid and of adsorbent. As this is a validation based

on Tao and Tien (1992), their data are used here and S o is set equal to 1, and then define
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Equation A-1 can be integrated numerically in conjunction with Equation A-6 with the

initial condition C = 0 at r =0 , and results are shown in Table A-1. Solutions by the

orthogonal collocation (Tao and Tien, 1992) and the finite difference are also shown in

the following table.



a The parabolic concentration layer approximation method.
b Results from Tao and Tien (1992).
C Results from recalculation based on the approximation method.



APPENDIX B

EXPOSURE ALGORITHMS (ADAPTED FROM LU et al. (2003))

Following U.S. EPA Guidelines (U.S. EPA, 1998), quantitative exposure estimations

address the pathways of ingestion, inhalation, and dermal absorption for terrestrial

animals; root and foliar uptake for plants; and direct absorption for aquatic species

(Cheng, 1998; Hope, 1995; PNNg and CRC1A MTR, 1998; Thomann and Parkerton,

1992; U.S. EPA, 1993a and 1992b). Each exposure equation incorporates species-specific

information on diet composition, body weight, home range, food and water ingestion

rates, and incidental ingestion rates of environmental media, as available. Given a

specified set of possible exposure pathways and routes, these equations can be combined

to produce site- and species- specific estimation of chemical uptake from abiotic media.

The body burden of plants is based on contaminant uptake from air, soil, pore water, and

groundwater. Uptake may be through either the roots or transport across aboveground

membranes of aerial contaminants. Herbivores and omnivores consume primary sources

of contaminants such as soil and water and secondary ones like that of contaminated

plants. 0mnivores and carnivores consume animal prey that has also received some

degree of exposure. Besides the level of contamination present in the various pathways of

exposure, the fractional absorption of these contaminants controls both the resulting

concentrations in the organism and its toxicological response to those absorbed doses.

The predator-prey food web is relationally imbedded within the database structure. This

method allows for any number of organisms to be included without increasing the

mathematical complexity. Compared with a matrix structure method introduced by
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Sharpe and Mackay (2000), the trophic levels expressed by a relational database are more

flexible and easily modified for a specific food web. Furthermore, it is not restricted to

one receptor per species. The exposure algorithms applied to the ERA model are

described as follows.

Uptake of contaminants by plants is complex and involves processes such as

adsorption, complexation, and precipitation, which are not yet mechanistically

understood for modeling purposes (Farago, 1994; Ross, 1994). However, an approach

based on plant-soil (Bps ), plant-soil solution (Kpw ), and plant-air (Kpa) partition

coefficients can provide a simple and useful method for assessing uptake and risk. For the

three exposure pathways, Equation (1) is applied:

where

Cif = contaminant concentration in the receptor from the ith pathway (mg/kg)

Ctotal = total contaminant concentration from exposure to soil, water, and air

EC = contaminant concentration in medium (mg/kg for soil EC„ mg/g for water

Kepi = plant-medium partition coefficient ([mg/kg] soil / [mg/kg] roots for plant-

In the event a partition coefficient is not available, estimation methods include those for

organics based on, for example, the octanol-water partition coefficient (B ow ) (gyman,

Reehi and Rosenblatt, 1990). For inorganics, the geometric mean of bioconcentration
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factors for leafy and root vegetables can be applied to represent above- and below-

ground plants, respectively (Hope, 1995; Strenge and Peterson, 1989). Model validation

assists in affirming the resulting effects.

Ingestion, inhalation, and dermal absorption present the principal means by which

terrestrial wildlife receptors are exposed to contamination. As mentioned above, these

receptors may receive exposure through direct contact (primary pathway) with abiotic

media and through consumption (secondary pathway) of contaminated food. Exposure

estimation for these species must, therefore, include consideration of contaminant body

burdens in the lower trophic level forage or prey, based on the food web. Because using a

food web model requires ecological information with respect to historical data and site-

specific feeding relationships, the process introduces a crucial ecological perspective into

what might otherwise be a purely toxicological exercise (Hope, 1995).

Dermal exposure can be a significant exposure route for animals that are in

frequent contact with contaminated water, sediment, or soil. However, the estimation of

contaminant uptake via dermal absorption is also problematic for ecological resources,

primarily because many of the required parameters have not been measured for terrestrial

biota (Hope, 1995). The following model is developed to evaluate exposure based on an

estimate of the mass of soil or sediment adhering to a surface area of a receptor:

ADDL = applied daily dose through the itch exposure pathway (mg contaminant/kg

of receptor body weight)



174

SA = surface area of ecological receptor (cm2)

AF = soil-to-skin adherence factor (mg/ cm2)

P„ = fraction of receptor surface area in contact with soil per day (d -1 )

oci = contaminant-specific absorption factor (mass fraction absorbed into blood)

Ake = contaminant-specific depuration rate (d -1 )

BW = body weight of receptor (kg)

CF = conversion factor (lx 10 -6 kg/mg)

0 = site use factor

if = seasonality factor; percentage of time per year receptor dwells at site

Exposure via inhalation of volatilized contaminants and fugitive dust is evaluated with

the following equation (Hope, 1995):

where

IRa = inhalation rate (m3/day)

Ingestion of contaminants is typically the most significant route of exposure in assessing

risks to terrestrial animals. Ingestion includes both secondary exposure, where

contaminated forage or prey is consumed, and primary exposure, where contaminated

water, sediments, or soil are consumed. The associated algorithms are
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mass fraction of soil or sediment in the diet (as percentage of diet on dry

weight basis)

ngestion rate on dry-weight basis (kg/day)

ingestion rate of drinking water (mg/day)

wet weight fraction of the k th food item in receptor diet (kg food/kg diet)

The sum of Equations B7—B9 is the applied daily dose through all the concerned

ingestion exposure pathways — namely ingestion of soil, water, and food (mg

contaminant/kg of receptor body weight). These three equations are derived from the

Wildlife Exposure Factors Handbook (U.S. EPA, 1993a) and Hope (Hope, 1995), and

have been applied to wildlife ingestion of contaminated soil, water, and food. The

exposure parameters were obtained from literature (Maughan, 1993; 0wen, 1990) and

peer-reviewed databases (i.e., EC0T0X, (U.S. EPA, 2003) and MEPAS (Strenge and

Peterson, 1989)) or estimated with empirical equations recommended by for example, the

U.S. EPA (U.S. EPA, 1993a).

In the ERA model, aquatic receptors are defined as non-rooted, free-floating

aquatic macrophytes and free-swimming aquatic animals. Total uptake for these species

is represented by partitioning or absorption from surface water (Hope, 1995):

where

Caq = contaminant body burden in aquatic receptor (mg/kg)

BCF = contaminant-specific bioconcentration factor (kg)
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The contaminant-specific bioconcentration factor (BCF) can be obtained from literature

(gyman et al., 1990; U.S. EPA, 2000). Factors not available for inorganic contaminants

(e.g., metals) may be estimated from empirical equations using, for example, the

solubility constant (K s.). Generally, exposure for aquatic receptors will be dominated by

bioconcentration (partitioning from water) mechanisms as opposed to bioaccumulation

(uptake through food and water consumption) ones, unless the contaminant has a log

(BCF) greater than five in which case dietary uptake may play an important role in the

overall exposure of aquatic animals (Thomann, 1992). Because of the lack of data on

aquatic animal uptake through ingestion, this model includes only direct absorption.



APPENDIX C

MORE DATA IN DU RISK ASSESSMENT
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Table C-1 Uranium Toxicological Data for Terrestrial Wildlife

Analyte Forma Test Test Endpoint Estimated NOEL`' d

Species NOAELb (mg/kg/d)
(tng/kg/d)

U02(CH2C0011)2 UO2C03(AQ) UO2(OH mouse 3.07 Little Brown Bat 3.322
U02(CH2C0011)2 UO2C03(AQ) UO2(OH mouse 3.07 Short-tailed Shrew 3.187
U02(CH2C0011)2 UO2C03(AQ) UO2(OH mouse 3.07 White-footed Mouse 3.115
U02(CH2C0011)2 UO2C03(AQ) UO2(OH mouse 3.07 Meadow Vole 2.988
U02(CH2C0011)2 UO2C03(AQ) UO2(011 mouse 3.07 Mink 2.477
U02(CH2C0011)2 UO2C03(AQ) UO2(OH mouse 3.07 Cottontail Rabbit 2.45
U02(CH2C0011)2 UO2C03(AQ) UO2(OH mouse 3.07 Red Fox 2.263
U02(CH2C0011)2 UO2C03(AQ) UO2(OH mouse 3.07 River Otter 2.187
U02(CH2C0011)2 UO2C03(AQ) U02(0H)+ mouse 3.07 White-tail Deer 1.945

DU(S) DUBS) black duck 16 Rough-winged Swallow 6.684
DUBS) DUBS) black duck 16 American Robin 9.163
DUBS) DUBS) black duck 16 Belted Kingfisher 10.442
DUBS) DUBS) black duck 16 American Woodcock 11.068
DUBS) DUBS) black duck 16 Cooper's Hawk 12.979
DUBS) DUB) black duck 16 Barn Owl 13.135
DUBs) DUBS) black duck 16 Barred Owl 14.317
DUBS) DUBS) black duck 16 Red-tailed Hawk 15.669
DUBs) DUB) black duck 16 Osprey 16.594
DUBS) DUBS) black duck 16 Great Blue Heron 18.215
a pH: 6-7.
b Sample et al. (1996).
b=0.94 mammals and 1.2 birds (Sample and Arenal, 1999).

d NOAEL: 0.9 (mg/kg/d) (for Lizards (side-blotched), Western aquatic garter snake, Woodhouse's toad (adult)) (PNNL, 1998).
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APPENDIX D

DEPLETED URANIUM (DU) SAMPLING MAPS AND ASSOCIATED DATA

Figure D-1 APG area, Maryland (adapted from Donnelly et al., 1998)
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Figure D-2 TPG area, Arizona (adapted from Entech Engineers, Inc., 1998)
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Table D-1 Uranium Concentrations in Media at APG and TPG (adapted from
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APPENDIX E

CHEMISTRY OF DEPLETED URANIUM (DU)

Naturally uranium (U) is a radioactive element with three principal isotopes: 238 U, 235 U,

and 234 U. These isotopes are alpha particle emitters (Fulco et al., 2000). DU is a by-

product from the processing of natural uranium to produce enriched uranium that is used

as fuel for nuclear reactors or military applications. The use of uranium in these

applications requires increasing the proportion of the 235 U isotope found in natural

uranium ores (Hartmann et al., 2000). Uranium is enriched to facilitate its use in reactors

and weapons. DU, the byproduct of this process, cannot sustain a nuclear reaction or be

used as the fuel for nuclear weapons because it contains less 234 U and 235 U, but its high

density (18.9 g/cm 3) and metallurgical properties make it useful in kinetic energy

weapons and armor systems (AEPI, 1995).

from natural uranium, which has a ratio of 238 U/ 235 U -437.88 (Ketterer et al., 2000).

Because the 235 U and 234 U are present at much less concentrations in DU as compared to

natural uranium, the term "depleted" is used. The comparison of natural uranium, DU,

and enriched uranium is shown at Table E-1.

The great effort stimulated by the importance of uranium in nuclear chemistry and

technology has generated relatively thorough knowledge of the aqueous chemistry of

uranium (Baes et al., 1986). Uranium occurs in the +4, +5, and +6 oxidation states or
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Table E-1 Comparison of Natural, Enriched, and Depleted Uranium
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U(IV), U(V) and U(VI), respectively. The most important species in nature are those of

uranous [U(IV)] and uranyl [U(VI)]. The uranous ion [U ]and its aqueous complexes

predominate in ground water of low Eh. U(IV) is the most stable oxidation state in

common uranium ore minerals, where uraninite [UO2(c)] dominates. For the U(V)

oxidation state, uranium occurs as the U024  ion, which forms relatively weak complexes.

This species is only found at intermediate oxidation potentials, low pHs, and is generally

unstable relative to U(IV) and U(VI) (gangmuir, 1997). In oxidizing environments,

uranium is highly soluble as the uranyl ion [U022-1 and its complexes (Langmuir, 1997).

A pe-pH diagram at 25°C with a uranium concentration of 10 -8 M is given in

Figure E-1. This plot offers a convenient way to describe the major changes in uranium

speciation in redox-active systems and shows the dominant uranium forms in the

presence of the uraninite [U02(c)]. Given the stability of water, the typical uranium

speciation in natural bodies of water includes the uranyl ion [U02 2+] and its complexes

under oxidizing conditions. 0n the other hand, in reducing environments, uraninite

[UO2(c)] dominates. For a pH of 7 and total uranium concentration of 10 -8 M at

atmospheric C02 pressure (10 -35 bar), the c (concentraton)-pe diagram (Figure E-2)

shows the aqueous complexes like UO2CO3 ° predominate under oxidizing conditions,

and under reducing environments, uraninite [U02(01 is stable. The solubility of uraninite

[U02(01 is shown in Figure E-3 where under typical aqueous pHs the solubility ranges

from 10-13 M to 10 -8 M. Therefore, the U(IV) concentrations in groundwater at low Eh

are usually much less than 10 -8 M. Figure E-4 illustrates U(IV) speciation, which is

dominated by hydroxyl complexes with a U concentration of 10 -14 M.
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With respect to U(VI), the uranyl ion forms strong carbonate complexes in most

natural waters. Their importance as a function of pH at atmospheric C02 pressure (10 -3 • 5

bar) is shown in Figure E-5, which indicates that these complexes largely outweigh the

hydroxo- U(VI)- complexes above pH 6. The carbonate complexes are extremely

important because they greatly increase the solubility of uranium minerals, and also limit

the extent of uranium adsorption in oxidized waters, thus increasing uranium mobility.

Other important U(VI) complexes are formed with fluoride, phosphate, and sulfate

ligands (Langmuir, 1997). The effect of the carbonate complexes on schoepite (13-

UO3•2H20) solubility is evident from Figure E-6, which shows the solubility as a function

of pH at atmospheric C02 pressure. Uranium U(VI) minerals are most often products of

the oxidation and weathering of nearby primary U(IV) ore minerals such as uraninite

[U02(01 and coffinite [USi04(c01 (Langmuir, 1997).

Uranium is the most abundant actinide element, which averages 1.2 to 1.3 ,pg/g in

sedimentary rocks, 2.2 to 15 ,pg/g in granites, and 20 to 120 //gig in phosphate minerals.

According to Bertell (1999), natural uranium in soil is about 1 to 3 //gig, whereas in

uranium ore it is about 1,000 times more concentrated, reaching about 0.05 to 0.2% of the

total weight. Uranium concentrations are usually between 0.1 and 7 ,ug/L in streams

where uranium mineral deposits exists. Seawater contains 2 to 3.7 ,pg/L uranium, and

generally groundwaters in granite have some of the highest uranium concentrations,

although they rarely exceed 20 ,pg/L (Langmuir, 1997).
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Isotopes of uranium have the same chemical properties because they all have the

same number of protons, 92. However, variation in the number of neutrons gives the

isotopes different radiological properties (Fulco et al., 2000). In both DU and natural

uranium, 238 U consitutes more than 99%. Natural uranium contains three isotopes of

atomic masses 234, 235, and 238 (Table E-1) and DU contains these three plus a trace

amount of 236. These isotopes, 234 u , 235 U, and 236 U, vary in their ability to undergo

nuclear fission, interactions with nuclear particles, radioactive decay rates, and the types

of radiation they emit upon radioactive decay (AEPI, 1995). 234U is not a naturally

occurring uranium isotope, but is sometimes present as a byproduct of nuclear fission

derived from nuclear fuel. The radioactivity of DU is roughly 60% that of natural

uranium and 20% of enriched uranium. The reasons for this are the reduction in the 234 U

and 235 U isotopes of DU substantially lowers specific activity. The presence of trace

amounts of 234 U does not significantly increase DU' s radioactivity because the specific

activity of 234U (63.6 Ci/g) is only about 1 percent of that of 234 U (6,200 Ci/g) (AEPI,

1995).

The hazard from the radioactivity of the uranium compounds depends somewhat

on the isotopic composition of the uranium. The 234 U and 235 U isotopes are more of a

radiological hazard than the 238U isotope because of their higher specific activities (Table

E-1). In DU, most of the 234 U and 235 U isotopes have been selectively removed through

industrial processing, the radiological hazard from DU is therefore less than that from

natural or enriched uranium (Hartmann et al., 2000). However, DU has radiological

health risk from exposure to low-level radiation, and this is a complex issue. Alpha

particles are primary emitters in these isotopes with low penetrating ability. The radiation
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emitted by DU results in health risks from both external and internal exposure. According

to U.S. AEPI (1995), potential radiological health effects from external DU exposure are

small and the radioactive properties of DU have a greater potential for health impacts

when DU is internalized. DU can be internalized through inhalation or ingestion.

Internalized DU delivers radiation wherever it migrates into the body. The health risks of

internal DU exposure are a function of the particle characteristics, route of exposure,

duration of exposure, and the speciation.

As previously indicated, DU and natural uranium have the same chemical

behavior and physical properties. Therefore, chemical toxicity data developed for any

isotope of uranium are applicable to DU. Uranium is categorized as a heavy metal (i.e.,

any metal with a specific gravity of 5.0 or greater). The chemical toxicity of a uranium

compound varies depending on the nature of the compound, its solubility, and its route of

exposure (Fulco et al., 2000). The main chemical effect associated with exposure to

uranium and its compounds is renal toxicity, detected by the presence of protein and cell

casts in the urine. When DU is incorporated in the body, the soluble components migrate

throughout the body. The kidney is the most sensitive organ to DU toxicity. Human

epidemiological studies of workers in the uranium mining and milling industries suggest

that nephrotoxicity is of primary concern. 0ther organ systems are less sensitive to the

effects of uranium than the kidney (Hartmann et al., 2000). Rostker (1998) found that

once dissolved in the blood, about 90% of the uranium present will be excreted by the

kidney in urine within 24-48 hours. The remaining 10% is retained by the body, and can

deposit in bones, lungs, liver, kidney, fat, and muscle. Insoluble uranium oxides, if

inhaled, can remain in the lungs for years, where they are slowly taken into the blood.
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The Agency for Toxic Substances and Disease Registry (ATSDR) also found DU's

chemical toxicity presents acute effects on the respiratory system when the health effects

of DU to exposed Gulf War veterans were studied (ATSDR, 1990; McDiarmid et al.,

2000).

Additionally, the chemical and radiological properties of uranium could act

synergistically to cause tissue damage, and therefore, it cannot be assumed that cancer

would be due solely to the radiological effects of uranium or that organ damage is

exclusively due to its heavy-metal properties (Fulco et al., 2000).



APPENDIX F

STEPS IN MODELING APPLICATION ON CONTAMINATED SITES

In this research, a simulation tool (ERA model) was developed with a comprehensive

modeling approach for assessing risks and impacts associated with contaminants to the

surrounding environment. To apply this approach, contaminant speciation, distribution

mechanism, transport, and ecological risks need to be addressed. The steps in applying

this tool to contaminated sites are outlined as follows:

(1) In simulating contaminant mobility in the subsurface, speciation is required.

0nce the chemical form is understood, its mobility and bioavailability can be addressed.

Contaminant speciation in the aqueous phase can be obtained by thermodynamic models,

such as MINERAL+ (linked to ERA model).

(2) Contaminant distribution with subsurface minerals needs to be accurately

depicted. Employing GMS along with the transient process package in RT3D,

contaminant mobility can be simulated. During this process, parameters on aquifer

geology and hydrogeology (Table F-1) need to be obtained based on site specific data.

Although defining hydrology requires field data, modeling the transient sorption process

does not involve the need for laboratory studies. The simulation begins with groundwater

flow development. Stratigraphy modeling is implemented by borehole interpretation

based on a set of T1Ns (Triangulated Irregular Network) to setup the aquifer model; then

the conceptual model is constructed using featured objects in the Map module of GMS.

Groundwater using M0DEL0W-2000 is converted from the conceptual model providing

head profiles.
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(3) Based on the regional groundwater flow model, a local model is developed

through a regional to local model conversion, and is used to simulate solute transport in

and around the local area. To address contaminant mobility, transport parameters (Table

F-1) can be calculated based on the approach outlined in this research (Chapter 8).

Relationships developed for distribution and diffusion coefficients as a function of pH to

aluminum, iron, and manganese oxides can be applied and accounted for by the mass

fraction of oxides (Figure F-1). Specifically, for example, a sandy aquifer with 25.3 g kg 1

iron oxide and 4.0 g kg-1 manganese oxide,

(4) Lastly, once the bioavailable species is defined spatially and temporally, it is

used to assess static or dynamic ecological risks resulting from exposure to different

contaminants. A probabilistic approach employing Monte Carlo simulations for assessing

parameters and risks as distributions is used in the ERA model (Lu et al., 2003) to

characterize risk and address uncertainty. After conducting risk assessment, model

validation is needed based on field sampling data.
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Figure F-1 Sr" distribution and diffusion coefficients vs. pH for HA0, HF0, and HM0
at 25°C based on Trivedi and Axe (1999, 2000, and 2001). Kid; is the internal distribution
coefficient representing the product of the equilibrium constant and internal site density;
Kd is the external distribution coefficient and is the product of the equilibrium constant

and external surface site density. For HA0, Kdi  is equivalent to Kd as internal sites
constitute approximately 50% of the total sites.
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C*End of block 2*** *****************************************************

C*Block 3:**************************************************************

c 	 *Declare intraparticle surface diffusion-specific new variables*

c R = Particle size (cm)
c P = Bulk density (g/cm3)
c D = Diffusivity (cm2/s)
c Kd = Partitioning coefficient(l/g)
c Ct = Sorbed concentration in the particle surface (mg/g)
c S = Bulk concentration (mg/l)
c C = sorbed concentration (mg/g)
c A, Ctc, Cpc,B = Defined variables in the equations (A: cm2.l/cm3, Ctc and Cpc are
dimentionless, and B: cm3/g)

D0UBLE PRECISI0N R, P, D, Kd, A, B, Ctc, Cpc, S, C, Ct

C*End of block 3 ********************************************************

C*Block 4:**************************************************************

c *Initialize reaction parameters here, if required*

1F (First-time .EQ. 1) THEN

P=rhob

First_time = 0 !reset First_time to skip this block later

END IF

C*End of block 4********************************************************

C*Block 5:**************************************************************

c *Assign or compute values for new variables, if required*

S = y(1)
C = y(2)
Kd=vrc(j, i, k, 1)
R=vrc(j, i, k, 2)
D=vrc(j, i, k, 3)

R=vrc(j, i, k, 4)

C*End of block 5 ********************************************************
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C*Block 6:**************************************************************

c *Differential Equations -- Intraparticle diffusion*

Cpc=0.5*sqrt(0.25*((1-B*0.001/Kd)**2)+2*(1+B*P))
Ctc=(1-B*0.001/Kd)/4+Cpc

Ct=S*Kd
A=poros*(1+P*Kd/poros)*R*R

dydt(1) = -(Ctc+0.5)*(6.0*P*D)/A*(Ct-C)
dydt(2) = (Ctc+0.5)*(6.0*D)/(R*R)*(Ct-C)

C*End of block 6********************************************************

RETURN
END
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a=1/pow(i,2)*expeD*pow(i,2)*pow(pi,2)*t[j]*86400/(pow(rad[k],2)*pow(10.0, -

8)));

sum=sum+a;
}

mass[k]=4*pi*pow(rad[k],3)*pow(10, -12)/3*(1-6/pow(pi,2)*sum)*num[k]*Ct*p;

summ[j]=summW+mass[k];
}

summ[j]=summ[j]+Ct;
diff=fabs(dataed]-summed]);
percent=(diff/summ[j])* 100.0;

diff2pow(diff,2);
sum2=sum2+diff2;

sum2=sum2+diff2;
persum=percent+persum;
f2«t[j]<<", "«summed]«", "«dataed]«endl;
}

var=(sum2-(pow(sum1,2)/nnn))/(nnn-1);
sd=pow(var, 0.5);
aveer=persum/nnn;

f6«Ds<<", "«vary<<", "«aveer«endl;
cout«Ds«", "«vary<<", "«aveer«",sd"«sd«endl;
Ds=Ds+pow(10, -18);
}

}
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Code for Finite Difference

#include <iostream.h>
#include <fstream.h>
#include <math.h>
void main 0
{

double u[1110], u0[1110], pi=3.14159, deltaT=O.00001, deltaX=O.O1, T=0.001,
sum, cb, c, a=1, B=100;
int j, k, nh, kk;
ofstream f2("new3.txt");
nh=1/deltaX;
for (int i=0; j<=nh; i++)
{
uO[i]=0;
}
c=0.0;
cb=1-c/a;
uO[nh+1]=2.0*deltaX*B*(cb-uO[nh])+uO[nh-1];

for (int n=1; n<=(T/deltaT); n++)
{

sum=O.O;
for (0=1; j<=nh; j++)
{

ued]=u0W+deltaT*((u0ed+1]-u0ed-1])/(j *deltaX*deltaX)+(u0 ed +1] -2*u0 eed]+u0 ed-

1])/(deltaX*deltaX));

sum=sum+ued];
}
c=sum/nh;
cb=1-c/a;
u[0]=u[2];
u[nh+1]=2*deltaX*B*(cb-u[nh])+uO[nh-1];
for (k=0; k<=nh+1; k++)
{
uO[k]=u[k];
}
}
for (j=0; j<=nh+1; j++)
{
cout«"u["«j«"],"«ued]«",";
f2<<"u["<<j<<"],"<<ued]<<endl;
}
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APPENDIX H

SORPTION EXPERIMENTAL DATA

Pb Adsorption Edges at 25°C

HA0

pH
IS 0.06

% Pb Sorbed pH
IS 0.6

% Pb Sorbed
4.5 88.308 4.5 85.174
5.0 90.846 5.0 88.806
5.5 93.134 5.5 93.284
6.0 94.279 6.0 93.93
6.0 95.955 6.0 95.025
6.5 98.149 6.5 96.318

HM0

pH
IS 0.028

% Pb Sorbed pH
IS 0.1

% Pb Sorbed
3.5 54.298 3.5 47.879
4.0 82.675 4.0 79.393
4.0 82.433 4.2 87.115
4.2 87.259 4.4 93.823
4.4 92.52 4.6 96.578
4.6 96.583 4.6 96.689
4.8 98.441 4.8 98.239
5.0 99.073 5.0 99.32
5.5 99.596 5.5 99.484
6.0 99.804 6.0 99.834

HM0

pH
IS 0.015

% Pb Sorbed pH
IS 0.15

% Pb Sorbed
1.0 72.394 1.0 27.606
1.5 86.438 1.0 30.985
2.0 97.376 1.5 57.239
2.5 99.533 2.0 77.992
3.0 99.939 2.5 98.687
3.0 99.922 3.0 99.756
3.5 99.997 3.5 99.995
4.0 99.996 4.0 99.985
4.5 99.998 4.5 99.995
5.0 99.997 5.0 99.998
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APPENDIX I

GROUNDWATER FLOW SIMULATION STEPS WITH GMS
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Figure 1-2 Aquifer model of the Hanford Site (light grey: the Hanford Formation, black:
the Ringold Formation, and dark grey: the Basalt Formation), where the Ringold
Formation is the primary aquifer.
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