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ABSTRACT

CARRIER TRANSPORT IN Ge NANOWIRES
AND ONE DIMENSIONAL Si/Ge HETEROJUNCTIONS

by
Eun Kyu Lee

Ge Nanowires (Ge NWs) on single crystal, (100) and (111) oriented n-type Si substrates

were grown via the vapor-liquid-solid (VLS) mechanism and studied with respect to their

electrical properties.

Using different contact geometries, direct current (DC) and alternating current

(AC) electrical and photoelectrical measurements were carried out at room temperature to

investigate electrical properties of Ge NWs and Ge NWs/Si substrate one-dimensional

(1D) heterojunctions (HJs). A rectifying junction behavior is observed at NWs/substrate

interface, but many orders of magnitude greater AC conductance than DC in Ge NW

volume is measured at high frequencies. The obtained experimental data are consistent

with the result of structural and optical studies and support the conclusion that the Ge

NWs/Si substrate interface is nearly defect free while most of the structural defects in the

form of twin dislocations are located within Ge NW volume. These defects control

optical and carrier transport properties in the Ge NW volume. In addition, the frequency

dependent AC conductance shows a power law behavior, suggesting that carrier transport

in Ge NW volume is associated with hopping processes.
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CHAPTER 1

INTRODUCTION

High aspect ratio one-dimensional (1D) nanostructures or nanowires (NWs) are ideal

systems for investigating the dependence of structural, electrical, optical and mechanical

properties as a function of size and dimensionality. These NWs are expected to play an

important role as both, interconnects (e.g., passive) and functional (e.g., active)

components in nanoscale electronic and optoelectronic devices.

One of the key features in the NW properties is the quantum confinement effect.

The effect of quantum confinement may play a crucial role transforming indirect band gap

semiconductors such as Si and Ge into quasi-direct band gap materials, where

optoelectronic applications no longer limited by an inefficient, phonon-assisted carrier

recombination. The excitonic Bohr radius (RB) in bulk Ge is 24.3 nm, resulting in a more

prominent quantum size effect compared to Si with RB = 4.9 nm [1]. In addition, there is a

relatively small difference of 200 meV between fundamental, indirect band gap and the

first direct band gap in bulk Ge. Other interesting phenomena related to an increase in Ge

NW carrier mobility due to band structure modifications are also very interesting for

device applications [2].

In this thesis, I present detailed studies of Ge NWs fabricated on single crystal Si

substrates produced by the method named vapor-liquid-solid (VLS) growth [3]. In the

second chapter, I will discuss several possible fabrication procedures and NW structural,

optical, electrical and mechanical properties using mostly the published data. The original

part of this thesis is focused on electrical properties and carrier transport in a

1
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one-dimensional heterostructure, e.g., a hetero-junction between a Si substrate and Ge

NWs. I will present DC and AC electrical and photoelectrical measurements, and will

discuss in details the admittance spectroscopy data in a wide range of frequencies from 10

to 107 Hz. I will show that these electrical measurements correlate with the optical

measurements recently obtained in Prof. Tsybeskov's group. My data support the

conclusion that Ge NWs/Si substrate interface is nearly defect free while most of the

structural defects in the form of twin dislocations are located within a Ge NW volume. In

the case of non-passivated NW surfaces, these defects control optical and carrier transport

properties in Ge NWs.



CHAPTER 2

BACKGROUND

2.1 Vapor-Liquid-Solid and Other Mechanisms of NW Growth

A critical issue in the study and application of NWs is how to assemble individual atoms

into such a unique one-dimensional (1D) nanostructure in an effective and controllable

way. A general requirement for any successful preparative methodology is to be able to

achieve nanometer scale control in diameter during anisotropic crystal growth while

maintaining a good overall crystallinity.

During the past decade, many methodologies have been developed to synthesize

1D nanostructures. Generally, they can be categorized into two major approaches based on

the reaction media which were used during the preparation: solution and gas phase based

processes. More detailed description includes several major techniques as the following:

(a) Template-directed synthesis represents a convenient and versatile method for

generating 1D nanostructures. In this technique, the template simply serves as a

scaffold against which other kinds of materials with similar morphologies are

synthesized. These templates could be nanoscale channels within mesoporous

materials or porous alumina and polycarbonate membranes, etc. The produced

NWs can then be released from the templates by selectively removing the host

matrix.

(b) Solution-liquid-solid (SLS) method has been used to obtain highly crystalline

semiconductor NWs at low temperatures, e.g., for the growth of InP, InAs, and

GaAs nanowhiskers. This approach uses simple, low-temperature (less than or

3
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equal to 203 °C), solution phase reactions. The materials are produced as

near-single-crystal whiskers having widths of 10 to 150 nanometers and lengths up

to several micrometers.

(c) Lately, solvothermal methodology has been extensively examined as one possible

route to produce semiconductor NWs and nanorods. In these processes, a solvent

was mixed with certain metal precursors and possibly a crystal growth regulating or

templating agent such as amines. This solution mixture was then placed in an

autoclave kept at relatively high temperature and pressure to carry out the crystal

growth and assembly process. This methodology seems to be quite versatile and

has been demonstrated to be able to produce many different crystalline

semiconductor nanorods and NWs.

(d) A well-accepted mechanism of NW growth via gas phase reaction is the so-called

vapor-liquid-solid (VLS) process proposed by Wagner in 1960s during his studies of

single-crystalline whisker growth [4]. According to this mechanism, the anisotropic

crystal growth is promoted by the presence of liquid alloy/solid interface. This

process is illustrated in Figure 2.1 for the growth of Ge NW using Au clusters as

catalyst at high temperature.
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In VLS, a metal particle is used as a catalytic nucleation site during the growth of

semiconductor NWs. Various metals, such as Au, Fe, Ti, and Ga, catalytically enhance the

growth of NWs. A phase diagram of these metal-semiconductor alloys determines the

eutectic temperature, and the growth temperature is set in between the eutectic point and

the melting point of the materials. However, the growth temperature can be lower than the

eutectic temperature reported on the binary phase diagram; the equilibrium melting point

of solid decreases with decrease in the size of its particle (Gibbs-Thomson effect).

For Au-Ge system, eutectic temperatures as low as —360 °C (Figure 2.1) enable

low temperature synthesis of Ge NWs, which is likely to give possible future advantage of

easy incorporation with existing semiconductor electronic devices. It is already shown that

Au-Ge chemical vapor deposition by Au-catalyzed decomposition of GeH4 source gas is

possible even below the eutectic temperature, 360 °C [5]. A temperature given, NWs grow
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passing three states as described in Figure 2.1 by the arrowed line from left to right through

the phase diagram. The decomposition reaction can be expressed as below.

The mechanism of VLS growth mode for Au-catalyzed Ge NWs begins with a

formation of a eutectic alloy between Au particle and Ge. Au particles are usually prepared

by evaporating Au film onto Si wafer, which acts as catalytic sites for NWs growth. The

catalytic reaction forms a very thin, Ge-rich layer on the surface of the Au-Ge alloy particle

at the growing end of the wire. The excess Ge near the surface results in a concentration

gradient that causes the excess Ge to diffuse to the Au-Ge island. The excess Ge is likely to

precipitate (nucleate) usually at the alloy/solid interface.

According to the reference [6], this process can be explained with respect to energy

conservation law as the following. In order to form macroscopic quantities of Ge on the

free surface of the Au-Ge alloy, an additional interface must be formed, probably

increasing the energy of the system. On the other hand, if the excess Ge diffuses to the

underlying Au-Ge and Ge interface, it can attach to the Ge there without requiring an

additional interface to form, and the energy of the system does not need to increase. As the

Ge atoms precipitate on the underlying Ge, the Ge-Au island is pushed up, forming a wire.

Transport of excess Ge from the alloy surface is accommodated by bulk diffusion through

the alloy particle or surface diffusion around it on its surface, and Ge could reach the

growing NW along the interface between the alloy particle and the NW. Figure 2.2 is the

schematic representation of Ge NW growth mechanism.



Figure 2.2 Schematic representation of NW growth mechanism.

The supersaturation and following precipitation on the growth interface depends on

the diameter of NW. The Gibbs-Thomson equation places a lower limit on the diameter of

structures for thermal growth [7]. The growth rate of NWs is lower for smaller diameter

and a critical diameter is found below which the growth stops completely [7]. However, the

lower limit for the wire diameter decreases for increasing gas pressure, i.e., higher pressure

increase the NW growth rate. An increased source gas pressure appears to enhance the

catalytic growth process.

To allow wire growth, transport of Ge away from the surface must not be the

slowest process. If neither bulk nor surface diffusion is adequately rapid, the Ge

decomposing on the surface covers the catalyst particle. The incoming gas is then shielded
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from the particle so that the particle cannot continue catalyzing the decomposition, The

growth rate then slows to the normal Ge growth rate on Ge, the surrounding Ge grows at

the same rate as that of the Ge above the nanoparticle, and no wires form. As

metal-containing liquid nanoparticles move along with the tip of the wire, Ge NWs grow.

Figure 2.3 In situ high temperature TEM images during the growth of Ge NW. (a) Au
nanoclusters in solid state at 500 °C, (b) alloying initiated at 800 °C, at this stage Au
exists mostly in solid state, (c) liquid Au/Ge alloy, (d) the nucleation of Ge NW on the
alloy surface, (e) Ge NW grows with further Ge condensation and eventually forms a
wire (f) [8].

Figure 2.3 shows the real time sequential pictures of Ge NWs synthesis taken by in

situ high temperature TEM performed by Wu et al. [8], which corroborate interpretation of

NWs synthesis by VLS mechanism. Three stages mentioned before, (I) alloying , (II)

nucleation and (III) axial growth, are well matched with the pictures (a) to (c), (d), and (e)

to (f), respectively. Before Ge vapor applied, Au particles remain in solid state. Wu et al.

observed that Au particles kept their state up to 900 °C. With increasing amount of Ge

vapor on the surface of Au particle, Ge condenses, diffuses and forms an alloy with Au
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particle and then liquefies as the Ge fraction increases in the alloy. In Figure 2.3 (a) to (c),

the tendency of increase in size of the alloy droplet and decrease in elemental contrast

indicate that, while the alloy composition changes with the increase of Ge fraction, the

droplet undergoes the transition from a bi-phase region of solid Au and Au-Ge liquid alloy

to a single phase region of Au-Ge liquid alloy. With further concentration of Ge in the

Au-Ge alloy droplet, the precipitation of Ge after diffusion to the interface between the

liquid alloy and the solid lead to the beginning of NW nucleation (Figure 2.3 (d)). After the

Ge nanocrystal nucleates, further transport of the Ge vapor into the system increases the

amount of Ge precipitation from the alloy (Figure 2.3 (e)). The interface is then pushed up

to form NWs (Figure 2.3 (0).

2.2 Characterization of NWs

2.2.1 Structural Characterization

Mostly, structural characterization of NWs is performed by a combination of scanning

electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction

(XRD) and electron diffraction (ED). While TEM and SEM provide actual image of

structure, XRD and ED helps quantitative analysis of it. Through structural

characterization, it is also possible to investigate the growth mechanism.

Figure 2.4 (a) and (b) show a high resolution transmission electron microscopy

(HRTEM) image of a Si NW and a SEM image of a Ge NW grown by VLS, respectively.

Straight NWs shows high crystallinity. It is also seen that the outer layer of Si NW are

surrounded with native amorphous Si02; an oxide layer is characteristic of Si NWs and Ge

NWs.



Figure 2.4 (a) HRTEM image of a portion of Si NW [7] and (b) SEM image of a Ge
NW [9].

Sometimes, amorphous worm-like NWs or 3D nanorods structure are formed at

different growth conditions. When source gas decomposition and diffusive transport of it

through or on the catalyst particle is so fast, then the transport supplies source material at a

higher rate than the crystallization rate for a given diameter, resulting in amorphous NWs

[7]. TEM image of an Au-catalyzed Si NW grown by plasma enhanced CVD shows that

increased growth rate, which is accommodated by radio-frequency plasma, causes

amorphous growth (Figure 2.5 (a)). However, 3D nanorods can form instead of NW when

the decomposition is faster than transport as was already mentioned at section 2.1 or

diffused material can not effectively surmount chemical potential barrier at the liquid

eutectic-solid interface (the energy barrier for nucleation and for growth of NWs, in VLS

this barrier provides rate limiting step for NW solidification), e.g., due to a low source gas

pressure (Figure 2.5 (b)) [10].
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Figure 2.5 (a) TEM image of a amorphous Si NW [7] and (b) SEM image of Ge
nanorods [ 10] .

Defects in the highly crystalline NW likely to create different crystal planes during

growth, causing the shape of wire kinked [6, 9]. Kinks can be observed at sharp angles in

NWs. These kinks are likely to be related especially to dislocation defect. Qiang Tang et al.

[9] made an explanation of the origin of kinks by twin dislocation formation during the

growth (Figure 2.6 (a) and (b)). In their theory, twin dislocation defect form due to lattice

mismatch between catalyzing islands and NWs. Figure 2.6 (b) is TEM image of Si NW

grown by molecular beam epitaxy using TiSi2 catalyst and Si2H6 gas source. The growth

process can be explained by VLS except for the situation that the catalyzing islands remain

in solid state during the growth different from VLS situation wherein they are in the liquid

state, reducing the stress at the island-Si interface. The strain from the lattice mismatch of

—6 % between Si NW and TiSi 2 island forms a twin crystal during the growth, which

dominates the growth direction resulting in formation of kinks.
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Figure 2.6 (a) shows a Si NW growing toward the right-hand side, in which a twin

crystal is starting to develop at its lower edge and a highly defected Si crystal containing

stacking faults is being formed at the upper edge. At initial stage, the lattice stress at the

interface between TiSi2 islands and Si causes the Shockley partial dislocation at the edge of

TiSi2 islands, where the stress is highest and the starting of dislocation is easiest, and then,

it glides along Si { 111 } planes. As the partial dislocation glides through every parallel

11111 plane, a twin crystal forms; otherwise, a highly defective crystal full of stacking

faults forms. After the twin is formed, it grows along with the NW. When the twin is large

enough to dominate the growth, the wire changes to a new growth direction dominated by
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the twin crystal, resulting in a kink. The twinning process can happen several times during

the NW growth. Therefore, the NW can change growth direction several times, leaving

large amounts of twinned regions in the NWs.

Compared to electron microscopy, X-ray and electron diffraction can give

complementary quantitative information about the structure. Diffraction technique is the

method that permits the direct identification of any crystalline material based on their

unique crystal structure.

In X-ray diffraction (XRD) technique, the intensity of the diffracted X-rays is

measured as a function of the diffraction angle, and the material's orientation. Electron

diffraction (ED) technique, since the diffracted electron beams have a high intensity and

exposure times are in the order of a few seconds, enables the patterns to be directly

observed on the viewing screen of the electron microscope. Furthermore, diffraction
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patterns can be obtained from very small crystals selected with a diffracted aperture

(Selected Area Electron Diffraction or SAED) and by a focused electron beam even from

nm-sized regions (Convergent Beam Electron Diffraction or CBED).

Figure 2.7 is SAED pattern and XRD spectrum of Si NWs arrays synthesized by

CVD template method with an alumina template [11]. A single Si NW is taken for SAED.

It can be seen that the diffraction spots are organized in a precise hexagon or parallelogram,

indicating that the diamond lattice structure of bulk Si is preserved in the Si NWs. The

pattern shows that each single Si NW is a single crystal. From the XRD results, the arrays

of Si NWs show a polycrystalline structure and the result conflicts with the SAED data

above. Considering statistical nature of XRD pattern and the diffraction pattern of different

grains indicate different orientations, it can be proposed that these individual Si NW is

essentially single crystal and Si NWs in an array has a different crystal orientation.

2.2.2 Optical Characterization

Raman scattering and photoluminescence (PL) measurement are usually done for the

optical characterization of NWs. Intensity and emission peaks in measured spectra gives

direct information about the material properties. Raman peaks of well-defined phonons in

single crystal semiconductor are very sharp. Raman spectroscopy is a suitable tool for

investigating the phonon confinement effect of nanomaterials. The peak-position shift,

broadening, and asymmetry of the Raman bands are characteristic of NWs.

The small physical dimension of the scattering crystalline NWs leads to a

downshift and broadening of the first-order Raman line through a relaxation of

size-dependent momentum vector selection rule [12]. Because the NWs are only
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two-dimensionally confined crystals, there is a momentum k = 0 along their axis direction.

Hence, the zone-center phonons allow for the Raman scattering to occur at the original

peak position. However, in the direction perpendicular to the axis of NWs, nonzero k

phonon dispersion may participate in Raman scattering and lead to both a peak broadening

and an extension of the Raman peak towards low frequencies. Raman scattering is very

sensitive to the lattice structure and crystal symmetry of microcrystalline materials. When

the core diameter of a NW is small, the Raman peak width increases and becomes more

asymmetric with an extended tail at low frequencies. Figure 2.8 (a) is Raman spectra of

bulk Ge and Ge NWs measured by Y.F. Zhang et al [12]. The first-order Raman spectra in

bulk Ge at 298.5 21cm-1 is symmetric with a full width at half maximum (FWHM) of 7 cm"1 .

Raman scattering from the Ge NW sample with diameters of 3683 nm shows a peak at

298.5 cm"1 that is slightly broadened (a FWHM of 10 cm "1) and asymmetric. Raman

spectrum of Ge NWs with diameters ranging from 12 to 28 nm is peaked at 293 cm "1 ,

asymmetric with a FWHM of cm-1 and has an extended tail at low frequencies.

Figure 2.8 (b) shows Raman spectrum of Si NWs on Si substrates prepared by Mei

Lu et al [11]. The peak located at —513 cm "1  is originated from the scattering of the first

order optical phonon mode (TO) of Si, which corresponds to the TO mode peak of Si, 520

cm"1 [13]. The full width at half maximum (FWHM) of the TO mode is broadened to —18

cni 1 from the typical value 3-5 cm"1 of bulk Si [14]. They ascribed the downshift and

larger FWHM to the quantum confinement effect caused by the small diameters, unique

shapes and high surface-to-volume ratio of Si NWs. In addition, there are two broad peaks

at —286 cm"1 and 920 cm1 , which are due to the scattering of the second order transverse

acoustic phonon mode (2TA) and the second order optical phonon mode (2T0),
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respectively. It is also found that the two broad peaks are down-shifted from the value —300

cm-1 and 970 cm-1 and relative intensities increase as compared with those of 2TA and 2

TO mode of Si. These properties are typical of crystalline Si NWs [15].

PL spectrum modification due to quantum confinement in undoped Si has been

reported besides those due to phonon assisted excitonic recombination characteristic for

bulk indirect bandgap Si (Figure 2.10 (a)) [16]. A typical low-temperature PL spectrum

from a Si crystal containing low concentration of shallow phosphorus atoms is shown in

Figure 2.9, which consists of the bound-exciton no-phonon (NP) transition and their

phonon replicas, TA and TO, at lower energies [17]. Due to the indirect nature, the

radiative recombination of electron-hole pairs in Si requires creation of a phonon with a

certain k value to conserve momentum. On the other hand, in doped Si, it is possible for the

bound electron-hole pair to recombine without phonon participation because impurity
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itself transfers the momentum in NP transition. In general, the NP line is weak and even

forbidden in intrinsic bulk silicon. The intensity ratio of the NP line to the phonon replicas

depends strongly on the binding energy and the type of impurity and are different for

materials In Si, coupling to TO phonon is strongest followed by the coupling to TA

phonons. In Ge, LA and LO phonon replicas are favored.

Z. G. Bai et al. observed three emission bands in the red, green and blue regions

from the oxidized Si NWs and found out that as the core size of Si NWs decreases with

additional oxidation time, especially the red peak intensity increases much faster than the
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other two (Figure 2.10). They proposed that the green and blue bands are attributed to

recombination from the defects centers in oxidized layer and the quantum confinement

results in both the blue shift of the energy gap and a transition from the indirect towards the

direct gap, which in turn dramatically increase the efficiency and intensity of red PL and

cause the blue shift of red PL.

Figure 2.10 (b) is PL spectra of ball-milled Si nanocrystals (average diameter d =

100 nm) and bulk Si at T = — 4 K obtained by B.J. Pawlak [18]. D1 in Figure 2.10 (b) is a

band related to dislocations in Si nanocrystal due to fabrication process. There were some

indications of confinement effect in the investigated silicon nanocrystals. First, the ratio

between NP transition and its replica is significantly different from the ratio usually found

for bulk material. Second, they also found from their experiments that this excitonic lines

up-shifted with diminishing grain diameter, leading to conclusion that these were

associated with band structure perturbation due to size-confinement.
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2.2.3 Electrical Characterization

Much useful information about NWs such as doping status and transport mechanism can be

obtained by studying the electrical characterization. However, little has been reported

regarding electrical characterization compared with structural and optical properties. To

date, most of electrical characterizations are performed through the investigation of single

NW.

Figure 2.11 SEM image of three terminal Si single NW device, with the
sorce (S), gate (G), and drain (D) labeled [19].

Figure 2.11 is an SEM image of a Si NW device produced via VLS growth with Au

particles for the electrical measurement carried out by a group of Sung-Wook Chung et al.

[19]. A gate electrode is used to vary the electrostatic potential of a NW while measuring

current versus voltage of the NW. The change in conductance from I-V curves of Si NW as

a function of gate voltage can be used to distinguish whether a given NW is p-type or

n-type since the conductance will vary oppositely for increasing positive (negative) gate

voltage.
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They found out that the NWs were p-doped even before annealing and the

comparison between the devices before and after thermal annealing (as indicated in figure

2.12 (a) and (b)) led them to the conclusion that thermal treatment of the device resulted in

better electrical contacts. From the I-V curves in Figure 2.12 (c), metallic-like curve, which

has shown no gate-voltage effect up to VG = ±40 V, indicates that diffusion of dopant

atoms from Au contacts heavily doped the NWs during the thermal treatment; the diffusion

coefficient of Au in Si at 750 °C is sufficient to heavily dope the entire wire with Au.

Figure 2.12 (a) Three terminal transport measurement of Si NW device with Al contacts
without annealing (a) and after annealing at 550 °C (b). (c) I-V characteristics of Si NW
with Ti/Au contacts, before (solid line) and after (dashed line) annealing at 750 °C for Rh
[19].

Because nonlinear I-V curve indicates that metal/NW contact is characterized by a

non-ohmic Schottky barrier, this measurement could not directly give the intrinsic
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resistance of the NW without the knowledge of the contact resistance due to the metal/NW

junction.

The first demonstration of intended and controlled doping of Si NWs and the

characterization of the electrical properties of these doped NWs was achieved by Yi Cui et

al. [20]. They doped Si NW during the growth by incorporating dopants in the reactant

flow and their estimates of the carrier mobility made from gate-dependent transport

measurements were consistent with diffusive transport and showed an indication for

reduced mobility in smaller diameter wires due to the enhanced scattering in the smaller

diameter NWs.

Figure 2.13 (a) I-V curves of Ge NWs at different temperatures and (b) Linear resistance
dependence on the temperature, where diamonds are experimental data and the solid line is
the fitting curve according to the thermal fluctuation-induced model [1].

Thermal scanning of resistance of individual NW also can be used for the study of

transport mechanism. Figure 2.13 (a) and (b) are the I-V curves and temperature dependent
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resistance curve measured on individual Ge NWs grown by Au-catalyst particle with Au

contacts [1].

At temperatures higher than 100K, linear current dependence on voltage indicates

ohmic contacts between Ge NW and Au contacts. From the temperature dependence of the

linear resistance at small bias voltage (figure 2.13 (b)), G. Gu et al. found out that the

resistance data could be fitted well with the fluctuation-induced tunneling model in heavily

doped Ge NWs with Au atoms which could serve as both p-type and n-type dopants in Ge

NWs.



CHAPTER 3

EXPERIMENTAL

Ge NWs/Si substrate HJ samples for this study were grown via the VLS technique using

low pressure chemical vapor deposition by the collaborating group at Hewlett-Packard

Research Laboratories [5]. The samples were prepared on (100) and (111) oriented Si

substrates and found out to have different structural [5] and optical [21] properties, which

will be described in the first section of this chapter.

Measurements were carried out by preparing contacts on the samples with different

configurations for a comparison, and direct current-voltage (I-V) measurement and AC

admittance spectroscopy were applied for the electrical characterization of Ge NWs/Si

substrate HJs. All data were measured by KEITHLEY 6517A electrometer and HP 4192A

impedance analyzer and recorded by a PC connected to them. Electrical measurements

under illumination were also carried out. Detailed measurement setup regarding apparatus

arrangement, experimental procedure and specifications are described below in this

chapter. Especially, one section is devoted to a description of auto-balancing bridge circuit

theory which is adopted in HP 4192A impedance analyzer.

3.1 Samples and Contacts

3.1.1 Ge NWs/Si Substrate HJ Samples

The description of the sample preparation entirely refers to the references [5, 21]; structural

and optical characterization data of as-grown Ge NWs were obtained with the samples

23
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fabricated in the same facilities. Particularly, the optical characterization was performed in

Prof. Leonid Tsybeskov's group, and these results are subjects for the oncoming paper.

CVD by Au-catalyzed decomposition of GeH 4, has been used to grow Ge NWs on

single crystal silicon. First, 20-nm-diamter nanoparticles as catalyst were deposited by

dispersion of Au aqueous suspension onto cleaned (100) and (111) Si substrates and

subsequent drying. The density of nanoparticles in aqueous suspension was 7 X 10 11 /mL.

The suspension contained less than 0.01 % of HAuC14. Substrate cleaning via 5% HF/H2O

was performed before the deposition of Au particles to remove surface oxide layer and

obtain H-termination accompanied by minimal deionized water rinsing; it is known that

the NWs direction loses preferential orientation during the growth due to the high growth

rate and the oxide layer screening the substrate orientation [7].

After inserting the substrates into the lamp-heated CVD reactor, they were

annealed at —650 °C in H2 at a pressure of 12.6 kPa for 10 min to remove surface

contamination from the nanoparticles and to enhance contact to the Si substrates, which

would contribute to the NWs adopting the orientation of the substrates during the growth.

Then GeH4 was introduced into the chamber after temperature was reduced to

320°C. The length of the grown Ge NWs increased approximately linearly with the

deposition time. The typical diameter of the wires were 40 nm and the samples were

prepared with different length of 360, 710, and 1400 nm, which depended on the deposition

time 9, 18, and 36 minutes, respectively.

Finally, the samples were cooled in H2 and then N2 to < 200 °C to minimize

oxidation of the wire surface.
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Figure 3.1 is an SEM image of the as-grown GeNWs, where both the Ge NWs on

(100) and (111) oriented Si wafers have the same <111> preferential growing direction,

i.e., on (100) Si substrate, most of NWs grow at an angle of —55° to the substrate (Figure

3.1 is a view in a <110> direction which is perpendicular to Si substrate normal), which

corresponds to <111> direction, and on (111) Si substrate, they grow in the direction

perpendicular to the substrate, the same <111> direction. The preferential growth direction

and structural investigation show that NWs are highly crystalline. However, in the SEM

image, some twin dislocation related kinks are seen.

By optical characterization of the Ge NWs on Si substrate, additional information

was obtained. Raman and low temperature PL spectra of Ge NWs on Si substrate are

shown in Figure 3.2 (a) and (b), respectively.
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In the Raman spectrum of Ge NWs on (100) Si substrate, there are only two clear

Raman peaks originated from Si substrate and Ge NWs, respectively; Si-Si vibrations at

—520 Anil and Ge-Ge vibrations at —300 cm-1 . Fully symmetric and narrow FWHM of —6

- I • icm , which is comparable with that of the bulk Ge, provides an additional proof that Ge

NWs are unstrained and have high crystalline quality. Moreover, absence of Si-Ge

vibration implies that Ge NWs/Si substrate interface region is very thin. With the Ge NWs

samples grown on (111) Si substrate, very similar spectra were obtained.

The main PL spectrum peak, TO of Ge NWs on (111) Si substrate, which

originates at the Ge NWs/Si substrate interface other than Ge NW volume or Si substrate

[21], is red-shifted and broader compared to the PL spectrum from NWs grown on (100)

substrates. This indicates that the intermixing at the base of NW is more efficient in

samples grown on (111) substrate; B. V. Kamenev et al. attributed it to the difference of
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initial stage of NW growth due to the crystallographic orientation and possible differences

in strain resulting from the differently oriented substrates.

3.1.2 Contact Fabrication

So far, the electrical measurements of NWs have been carried out after preparing single

NW device by peeling off the NWs from the substrate and dispersing them parallel to the

substrate surface followed by lithographical deposition of contacts on each NW. In this

thesis, the electrical measurements were performed vertically through NWs to substrate

including NWs/substrate HJ interface by placing one contact on the Ge NWs and the other

on the bottom of Si substrate as shown in Figure 3.3.

Figure 3.3 Schematic representation of the samples with contacts. (a) Metal contact and
(b) graphite contact configuration.

As a back side contact, indium was pressed onto the bottom of Si substrate. The

indium contact has the advantage of being chemically stable once placed and robust to

attachment of wires for electrical measurement.
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Top contacts were made with different configurations. A graphite or metal contact

was used for each configuration. For the measurement of Ge NWs grown for 36 min on

(100) Si substrate, two samples were prepared by fabricating different contacts on Ge

NWs: one sample with metal contact which penetrates presumably toward to the Ge

NWs/Si substrate HJ interface and the other with a graphite contact on the tips of Ge NWs

(Figure 3.3).

The metal contact was made by soldering Wood's alloy on the Ge NWs at low

temperature. Wood's alloy is composed of bismuth, lead, tin, and cadmium, and the

melting point is about 70 °C. In addition, it was necessary to guarantee the wood's alloy

not to make a direct contact on Si substrate. A reference contact was made with Wood's

alloy on the top of substrate for this purpose. By observing quite a different I-V

characteristic from the measurement with the reference contact, compared with that from

the measurement with the Wood's alloy contact on top of Ge NWs, a successful contact

fabrication was confirmed. The graphite contact was achieved by locating a graphite sharp

tip on top of Ge NWs layer.

Two more samples were prepared with graphite contacts for the mesurements of

the Ge NWs grown for 9 min on (111) Si substrate and the Ge NWs grown for 9 min on

(100) Si substrate.

3.1.3 Ge/Si HJ Band Discontinuity

Band discontinuity at the interface of semiconductor Hi is one of crucial parameters which

determine electrical carrier transport property and has been a central problem of

lattice-mismatched HJ.
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In an ideal case, the conduction band discontinuity DE S would be the difference in

electron affinities q(x2 - x i ), and the valence band AE, would be found from AE g - AE ,

which is known as the Anderson's affinity rule. However, no clear picture exists at present

for the expected band alignments and band offsets for the real (Ge, Si) system, which can

be changed from type Ito type II [22, 23, 24]. Historically, the accepted band offsets values

for semiconductor HJs are usually based on a consensus derived from the result of a

number of different measurement techniques. The lattice constants of the pure elements Si

and Ge are mismatched by 4.2 %. It has been possible to fabricate Ge/Si HJs with no misfit

defect generation, but the mismatch is accommodated by lattice strain. Besides, it has been

reported that the band lineups at the Si/Ge interfaces, even though essentially no misfit

defect generation is found, is dependent on the interface orientation, and also upon the

strain conditions in the materials [9]. Unfortunately, most of the experimental values for

Ge/Si HJ band offsets that have been reported did not specify the exact structure of the

interface, but it is accepted that the conduction band offset is negligibly small with a large

valence band offset.

In case of self-assembled zero-dimensional Ge quantum dot embedded in Si matrix

layer, the results are known to be very different from those in a biaxially strained 2 D layer

HJ. Since the growth mode is strain induced and the dot formation is a result of elastic

relaxation, the Si above and below the spherically strained islands exhibits tensional strain.

It is known that in tensile strained Si, the two fold degenerate A(2) valleys of the

conduction band is downshifted, which result in a clear type-II band alignment with

significant offset in both bands at the interface between the Ge dots and the surrounding Si

[23, 25].



30

For 1 D NW system, because of a small NW diameter, the stress from the mismatch

can relax without creating defects at the interface. This may introduce an additional benefit

which is the advantageous condition for combining highly mismatched materials, achieved

by the efficient strain relaxation through the open side surface in the NW geometry.

However, to the best of my knowledge, there has been no experimental or theoretical report

on the band lineup of Ge NW grown on Si substrate.

3.2 Experimental Techniques

3.2.1 DC Measurements

Carrier transport in ideal HJ can be explained only by diffusion of minority carriers over

the potential barrier formed by the energy band discontinuities at the interface. One of

unique property of HJ compared to homojunction is that if the barrier for hole is much

higher than that for electrons, then the current will consist almost entirely of electrons and

vice versa.

Realistically, the I-V characteristics of HJ are explained by various mechanisms. If

the barrier width is very thin, the dominant current can be tunneling current through narrow

nearly triangular barrier or thermionic emission current if the interface behaves like a

Schottky barrier. As another source of current, thermal generation of carriers in the

semiconductor bulk or via deep levels at the HJ interface can contributes to the current.

The I-V characterization of the samples in this thesis is quite attractive since they

have complex and unique structure which has never been considered before, HJ comprised

of n-doped 3D bulk and presumably intrinsic 1D NWs; Au can acts as dopant or carrier



31

scattering center in Ge and there is a possible incorporation of Au into the Ge NW during

the growth.

3.2.2 AC Admittance Spectroscopy

Admittance spectroscopy is one of major techniques to diagnose semiconductor junction.

Admittance signals can originate from deep level traps [26] and band offsets [27] in the

junction. This technique has several modifications and the applications seem to be limited

by device structure. Conventionally, most admittance spectroscopy has been performed for

the investigation of Schottky barrier defect levels [26] and subsequently used to extract the

band offsets in the HJ system such as Si/SiGe system [27]. During admittance

spectroscopy the zero bias capacitance and AC conductance are both measured as a

function of temperature at a number of different frequencies. These experiments give

information about the temperature-dependent thermal relaxation times of the deep levels

which are present in a semiconductor band gap [26] or can used to obtain the activation

energy controlling the carrier transport in HJ related to band offsets [26]. For the latter

application, the HJ is usually placed close to the depletion layer formed by a Schottky

barrier, p-n junction or MOS capacitor. Frequency scanning of admittance is alternatively

used as an admittance spectroscopy by measuring complex admittance of a junction as a

function of frequency at several temperatures for the investigation of defect levels.

Because in response to the testing AC electric potential, defects change their occupation

numbers depending on their relaxation times, they have frequency dependent charge

storing ability, thus, contributing to frequency dependent admittance.
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As another modification of admittance spectroscopy, voltage-dependent

capacitance data can be used to investigate the band offsets. Among electrical methods,

Capacitance-voltage (C-V) profiling, especially known as C-V intercept method, is a

commonly used technique to determine the band offsets in HJ structures [28, 29]. While

frequency dependent admittance is generally attributed to defects, C-V profiling tests the

spatial charge distribution.

The technique use the theory that the depletion region in a reverse biased

semiconductor junction varies with applied bias. The band bending on either side of the

junction contributes to the total built-in voltage Vb, with the relationship of Vb Vb1 1 + Vb2 •

From the band diagram of a HJ (Figure 3.4) consists of smaller band gap p type and larger

band gap n-type semiconductor, the conduction band offset can be written as

where 61 and 62 is the relative position of the Fermi levels from the valance band and the

conduction band respectively. Applying Poisson's rule, we obtain
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W 1 and W2 are the depletion width in each side of the junction. Then, corresponding

depletion capacitances for each region are C 1 = --E1 , and C2 = E2
W2

The total capacitance of the junction is series capacitance of C I and C2,

When plotting 1/CD2 versus V, the plot shows linear curve and, from the intercept

value at V = 0, Vb can be obtained. Doping concentration given, from the band offset

equation, the conduction band offset DE S is calculated. As a matter of fact, this equation is

applied only for the HJ comprised of two opposite types of semiconductors. For isotype

HJs, because one side of junction has accumulation region, the depletion approximation

can not be applied to get the equations. However, for both case, the linear relationship,

1/CD2 cc V, is valid in most cases [28].

Admittance spectroscopy in this thesis is different from the conventional junction

admittance spectroscopy which is achieved by performing both frequency and temperature

sweeping in order to extract quantitative information about deep states or band offsets.

Instead, it is carried out by measuring sample admittance as a function of frequency and

bias voltage at room temperature. The purpose is to understand and compare behavioral

properties of the carrier transport associated with the defects in Ge NWs/Si substrate HJ

interface and Ge NW volume. Also, the use of light provides information about

defect-related transport mechanism of photo-generated carriers.
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3.3 Measurement Setup

3.3.1 Apparatus for Measurement

The entire arrangement of apparatus set up for the electrical measurements is shown in

Figure 3.5. The samples were located in a sample holder with two side electrodes to which

the cables of electrometer or impedance analyzer were connected.

Figure 3.5 Measurement apparatus setup.

KEITHLEY 6517A electrometer, which can generate DC source voltage in itself,

was used for the I-V measurement. The admittance data were measured by HP 4192A

impedance analyzer. The impedance analyzer can operate in self-scanning mode under the

control of a personal computer. HP 4192A impedance analyzer provides a constant

alternating voltage signal at the selected frequency to the sample. The magnitude and phase

of the steady state current (after transient behavior has decayed) taken by the sample is

recorded and converted into real and imaginary admittance or impedance. Thus, the

impedance analyzer measures impedance by simultaneously measuring two independent,
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complimentary admittance or impedance parameters in each measurement cycle. The

frequency is then augmented to the next step and the process is repeated over the entire

selected frequency range. The voltage sweeping measurement employs the same

mechanism. Detailed description of the mechanism will be made in the next section.

An Ar laser was used in the measurement, and it can produce wavelengths of 514,

488, 457 nm and a multi-line as well. The laser beam was focused by lens and guided to the

sample via several mirrors (Figure 3.5).

3.3.2 Auto-Balancing Bridge and Vector Ratio Detector

Traditionally, bridge method has been used with high accuracy and wide frequency

coverage up to 300 MHz by using different types of bridges in order to measure impedance

or admittance. These bridges are composed of certain combination of capacitors, inductors,

and resistors with respect to the types of bridge which is suitable for measuring specific

characteristic of impedance such as capacitance or inductance, and frequency range where

the measurement is carried out.

These bridges are operated on the same principle of a dc bridge, Wheatstone bridge.

A bridge consists of four arms, an AC source and a balance detector sensitive to small

alternating potential differences respectively (Figure 3.6). When no current flows through

the detector, the value of the unknown impedance Ex can be obtained by the relationship of

the other bridge elements. The general equations for bridge balance are;



The disadvantage of bridge method is that manual balancing is needed for the measurement

and different type of bridge is needed for each particular application.

There are many measurement method of impedance including bridge method

described above such as I-V, BF I-V, Network analysis and auto-balancing bridge method.

HP 4192A LF Impedance analyzer use Auto balancing bridge method to measure the

impedance. Auto-balancing bridge method offers the best accuracy over a wide impedance

measurement range.

The basic operation of the auto-balancing bridge method will be reviewed here

using references [30, 31, 321 In Figure 3.7, an AC signal is applied from the high/current

terminal (Hc). The high/potential (Hp) terminal measures the voltage across Zx with

respect to a virtual ground maintained by the low/potential (Lp) terminal. The

low/potential terminal is kept near the voltage level of ground by a feedback loop called a

null loop. The null loop circuit pulls the current, which flow from He terminal to Z x , to a

range resister (Br ). Impedance analyzer usually has several range resistors for high

resolution measurement. The current flowing through Z x can be measured by detecting the

voltage of the range resistor. Since the range resistor value is known, measuring two

voltages across Zx (Ex) and Br (Er) gives the impedance vector x = Br x ( Ex / Er ).
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Figure 3.7 Simplified block diagram of auto-balancing bridge method [30].

The balancing operation is performed in the null loop (shown with dashed line in

Figure 3.7). When the bridge is unbalanced, the null detector detects current and the next

phase detector separates it into 0° and 90° components. These signals go to the modulator

passing through loop filter, and after modulated with He terminal source current, they are

fed back through the amplifier and the range resistors to cancel out the current flowing

through E. This balancing operation is performed automatically through the frequency

range which is limited by the performance of null loop circuit. In practice, the general LCB

meters, which employ a simple operational amplifier in the null loop, has disadvantage in

accuracy at high frequencies.
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With the balancing maintained, the vector ratio detector measures two vector

voltages across x (E x) and B, (E r). Selector Si selects either one of these signals so that

both the signals alternately flow the same path. Each vector voltage is sent to an AID

converter and separated into its 0° and 90° components by digital processing.

3.3.3 Specifications and Procedure of Measurements

A LabVIEW program developed for HP 4192A and KEITHLEY 6517A was used for all

data acquisition and measurement control. Both I-V and admittance data were collected

and recorded to PC and all the specifications of measurement, such as applied voltage and

frequency range, sweeping interval during frequency and voltage scanning measurement,

and oscillation level, was controlled by this program.

For I-V measurements, a voltage step was set to 5 mV from -1 V to 1 V and the

electrical characterization was carried out with KEITHLEY 6517A electrometer before

and after sample illumination with 40 mW red laser adjusted to multi-wavelength mode.

I-V measurements were followed by admittance scanning with HP 4192A

impedance analyzer. During admittance measurement, parallel conductance and

capacitance of the sample were measured by selecting corresponding circuit mode in the

LabVIEW program window between series B and X (impedance) mode and parallel G and

C (admittance) mode. For each sample, conductance and capacitance as a function of bias

voltage (G-V and C-V) at a number of fixed frequencies were measured as well as

conductance and capacitance as a function of frequency (G-f and C-f) at several fixed bias

voltage. G-V and C-V scanning (In LabVIEW program, it is represented as voltage sweep

mode) can be performed simultaneously at each selected fixed frequency and the same are
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G-f and C-f at each bias voltage (frequency sweep mode). At each scanning, the same

measurements with sample illumination were also carried out. During the voltage

scanning, frequency was sweeping up with logarithmical intervals between 5 Hz to 1.3

MHz automatically, where 130 points were selected, and for frequency scanning, voltage

step was set to 10 mV. Oscillation level of source voltage was set to 30 mV.



CHAPTER 4

RESULTS AND DISCUSSIONS

The results of I-V and admittance measurements on the samples described in chapter 3 are

presented here as well as their discussion. During the measurements, it was possible to

investigate Ge NW volume and Ge NWs/Si substrate interface separately by comparing

data from the samples with different contact configurations. Different carrier transport

properties observed in each region will be discussed.

A nomenclature for samples will be applied during the discussion. Each sample is

assigned a name with respect to its substrate orientation and growth time as shown in Table

4.1 below. All the admittance data of the samples measured in this study are plotted in

logarithmic scale in Appendix in the same order as the samples appear in the first column

of the table.

40
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4.1 DC Measurements

Rectifying property typical of a diode is observed from Ge NWs/(100) Si substrate with

metal contact (GeNW 36 100M) as shown in Figure 4.1. At large forward bias, the I-V

curve saturates with increasing bias, which is probably due to series resistance of

undepleted Si bulk and contacts. The estimated series resistance by measuring the I-V

characteristic curve slope at high bias voltage is —520 C2.

Figure 4.1 I-V characteristic curves of GeNW_36_100M in logarithmic scale. Red curve
is I-V characteristic under illumination. In the inset, I-V characteristics of
GeNW_36_100G are plotted in linear scale.

On the other hand, during the measurement of samples with graphite contacts

(GeNW_36_100G), no photosensitivity was observed. The I-V characteristic curves of the
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sample follow nearly ohmic behavior. The corresponding resistance of —0.6 TS2 is

calculated from the slope of linear-plotted I-V characteristic in the inset of Figure 4.1.

Therefore, it is reasonable to conclude that the huge resistance of Ge NW volume

dominates the I-V characteristic in the graphite contact sample whereas, in the metal

contact sample, the contact reaches almost at the interface of Ge NWs and Si substrate, and

hence the junction I-V characteristic of the interface can be measured without being

shadowed by the resistance of Ge NW volume.

4.2 AC Admittance Spectroscopy

4.2.1 Voltage Independence in Admittance of Ge NW Volume

Significant differences are found between the admittance data from the sample with metal

contact (GeNW 36 100M) and those with graphite contact (GeNW 9 100G and_ _	 _ _

GeNW_ 36 _100G). During voltage-sweep measurements, the conductance and capacitance

of GeNW_ 9 _ G and GeNW_ 36 _100G kept nearly constant value while those of

GeNW_ 36 _100M clearly showed a dependence on bias voltage. Figure 4.2 (a) and (b) are

conductance characteristic curves of GeNW 36 100G and GeNW 36 100M plotted as a_ _	 _ _

function of bias voltage, which clearly show difference in voltage dependence.

During frequency-sweep measurement of GeNW_9_111G, another sample

containing Ge NW volume, even smaller admittance variation as a function of bias voltage

was confirmed by examining C-f and G-f characteristics (Figure 4.10); hence, the

voltage-sweep measurements were omitted for this sample.
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The voltage independent property in admittance is well consistent with the I-V

characteristics. When AC signal is applied, the Ge NW volume contributes to destructing

voltage dependence of admittance at the junction interface by providing huge series

resistance in the sample.

4.2.2 Carrier Transport in Ge NW Volume

In the admittance characteristic curves of the samples with graphite contacts as a function

of frequency as shown in Figure 4.3, frequency dependence are observed. The observed

behaviors are dominated by Ge NW volume hence they are considered as Ge NW volume

properties. In particular, the G-f characteristic curves clearly show two regimes of one

exhibiting a near power law behavior at high frequencies and the other with frequency

independent response at low frequencies.

At low frequency range, some zeros and small negative values were obtained. The

negative values were found only when a resonance-like curve existed in the characteristics,

especially in illumination condition in the frequency range from —1 kHz to —10 kHz. The

reason is believed that the small conductance of samples at low frequencies is out of

measurable scope of measurement system and there is a resonant frequency caused by an

introduction of a series inductance from the measurement system to the samples, which led

to negative AC conductance. These resonance behaviors can be seen also in the C-f

characteristic curves at the same frequency region as shown in Figure A.12 in appendix.
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On the whole, the G-f characteristic curves obtained from graphite contact samples

are in accordance with conduction model based on hopping processes, where the localized

centers are suggested to be associated with the defects in Ge NW volume. The AC

conductivity due to electron hopping between localized centers at high frequency is known

to have the forma AC (0)) = Aces [33], where A is constant dependent on temperature, w is

the angular frequency of the signal and the exponent s is generally less than or equal to

unity. Then the total conductivity is given by the equationa tot = a Dc + Aces . Here, a Dc is

frequency-independent conductivity due to excited electrons from localized states to the

conduction band. The G-f characteristic curves of graphite contact samples are well fitted

to this relationship.

The observed shift of G-f characteristic curves indicates that photo-generated

electrons and holes are localized on defect states in Ge NW. When the Ge NW volume is

illuminated, photo-generated electrons are immediately captured by defect states rather

than excited to the conduction band, and then, they contribute to the conduction process by

jumping between two states with the field variation (Figure 4.4).

Figure 4.4 Effect of illumination on hopping conduction in Ge NW volume.



47

4.2.3. Carrier Transport in Ge NWs/Si Substrate HJs Interface

During the admittance measurements with the sample with metal contact, significant

frequency and voltage dependence were found, showing behaviors of a semiconductor

junction as shown in Figure 4.2 (b) and Figure 4.5. The C-V characteristic curves (Figure

4.2 (b)) of GeNW 36 100M consist with the I-V characteristics. The curve slope well

reflects the behavior of I-V characteristic curve at corresponding bias voltages.

Additionally, a large difference between the conductance measured under illumination and

dark condition at reverse bias indicates that valence band electrons are easily excited to the

conduction band by the illumination and thus increased free carriers concentration

improve AC differential conductivity. Also, the frequency dependence of the junction

conductance will reduce as the photogenerated free carries dominate the carrier transport

with increasing reverse bias (Figure 4.5).

Figure 4.5 G-f characteristic curves of GeNW_36_100M.
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4.3 Electrical Equivalent Circuit Model

From the discussion of I-V and admittance data, an electrical equivalent circuit model of

GeNWs on Si substrate can be suggested as shown in Figure 4.6.

Ge NW volume can be modeled by a huge resistance RB of the order of ~ 0.6 TSB

parallel with a capacitance CB which values vary with signal frequency by hopping

conduction mechanism. The conductance of Ge NW volume will gradually increase with

increasing frequency as the polarization due to electron hopping between states inside the

bulk has less and less chance to keep pace with the applied field without appreciable phase

shift. The Ge NWs/Si substrate interface is represented as a Si/Ge Hi diode. Besistance B s

—520 D is series combination of the undepleted Si bulk resistance and contacts.

Figure 4.6 Equivalent electrical circuit model of Ge NWs on Si substrate.



CHAPTER 5

CONCLUSION AND FUTURE WORK

In summary, my MS thesis present and discuss studies of electrical properties of Ge NWs

grown on (001) and (111) n-type Si substrate by CVD through VLS mechanism. The

carrier transport investigations are focused on DC conductivity (and photoconductivity)

and AC admittance spectroscopy. The electrical measurements were carried out after

preparing samples with metal or graphite contacts to Ge NWs with different

configurations. Ge NWs/Si substrate one-dimensional HJs were fabricated by locating

Wood metal contact into an interface region and a rectifying behavior is observed during

DC conductivity measurements. The observed frequency and bias dependence in Ge

NWs/Si substrate AC conductivity in samples with metal contact can also be explained

using a simple rectifier model. The electrical properties of Ge NW volume were

investigated by measurements of the samples with graphite contact, presumably contacting

Au tips of Ge NWs. High DC resistance of —0.6 TSB and no voltage dependence from

admittance measurements point on a very low conductivity, while the observed shift in

conductivity as a function of frequency under illumination indicates that photo-generated

electrons and holes are localized on defect states in Ge NWs. In particular, the admittance

frequency dependence in the region of frequencies f > 10 kHz was associated with a carrier

hopping process, and the localized centers are suggested to be associated with the twin

dislocation defects in Ge NWs.

In conclusion, these results are in a good agreement with the data on structural [5]

and optical [21] properties of Ge NWs, and they propose that the Ge NWs/Si substrate
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interface is nearly defect free.

We believe that future work in this direction can be focused on several critical

issues:

(a) Proper passivation of Ge NW surfaces, most likely by Si;

(b) Formation of Ge NWs embedded into a Si matrix;

(c) Temperature dependence of carrier transport in Ge NWs/Si substrate 1D

HJ;

(d) Spectral dependence of Ge NWs/Si substrate 1D HJ photoconductivity;

(e)	 Time-resolved photoconductivity under pulsed laser excitation in all

described samples.



APPENDIX

ADMITTANCE MEASUREMENTS RESULTS

All the measured admittance data are plotted as a function of bias voltage or frequency in

logarithmic scale. Small negative values and zeros are not plotted in the characteristic

curves except for the capacitance result of GeNW_36_100M, where the measured negative

values are replaced with their absolute ones (Figure A.12).

Figure A.1 G-V characteristic curves of GeNW_9_100G.
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Figure A.5 G-V characteristic curves of GeNW_36_100G.
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Figure A.7 G-f characteristic curves of GeNW_36_1 00G.
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Figure A.13 G-f characteristic curves of GeNW_9_1 1 1G.
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