

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

SLIMSVM: A SIMPLE IMPLEMENTATION OF SUPPORT VECTOR
MACHINE FOR ANALYSIS OF MICROARRAY DATA

by
Avik Karmaker

Support Vector Machine (SVM) is a supervised machine learning technique being widely

used in multiple areas of biological analysis including microarray data analysis. SlimSVM

has been developed with the intention of replacing OSU SVM as the classification

component of GenolterSVM in order to make it independent of other SVM packages.

GenolterSVM, developed by Dr. Marc Ma, is a SVM implementation with an iterative

refinement algorithm for improved accuracy of classification of genotype microarray

data. SlimSVM is an object-oriented, modular, and easy-to-use implementation written in

C++. It supports dot (linear) and polynomial (non-linear) kernels. The program has been

tested with artificial non-biological and microarray data. Testing with microarray data

was performed to observe how SlimSVM handles medium-sized data files (containing

thousands of data points) since it would ultimately be used to analyze them. The results

were compared to those of LIBSVM, a leading SVM software, and the comparison

demonstrates that implementation of SlimSVM was carried out accurately.

SLIMSVM: A SIMPLE IMPLEMENTATION OF SUPPORT VECTOR
MACHINE FOR ANALYSIS OF MICROARRAY DATA

by
Avik Karmaker

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of Requirements for the Degree of

Master of Science in Computational Biology

Department of Computer Science

August 2004

APPROVAL PAGE

SL1MSVM: A SIMPLE IMPLEMENTATION OF SUPPORT VECTOR
MACHINE FOR ANALYSIS OF MICROARRAY DATA

Avik Karmaker

Dr. Marc Q Ma, Thesis Advisor 	 Date
Assistant Professor of Computer Science, NJIT

Dr. Usman W. Roshan, Committee Member 	 Date
Assistant Professor of Computer Science, NJIT

K. Frank Shih, Committee Member 	 Date
Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Avik Karmaker

Degree:	 Master of Science

Date:	 August 2004

Education:

• Master of Science in Computational Biology
New Jersey Institute of Technology, Newark, NJ, 2004

• Bachelor of Science in Biology
Binghamton University, Binghamton, NY, 2001

Major:	 Computational Biology

"Brightest flame burns the quickest."
In memory of my mother.

v

ACKNOWLEDGEMENT

Many people have been a part of my graduate education, as friends, teachers, and

colleagues. Marc Ma, first and foremost, has been all of these. The best advisor and

teacher I could have wished for. Thank you for all the ideas, advices, support,

encouragement, and reassurance. I would also like to thank Dr. Frank Shih and Dr.

Usman Roshan for taking the time to review my work and offering me valuable

suggestions concerning the content of the thesis.

Additionally, I would like to thank Kai Zhang and Damien Spivak for helping me

with MATLAB. I am greatly indebted to Suresh Solaimuthu for his help during the

development of the software.

Finally, I would like to thank my family for their constant support and

encouragement throughout my studies at NJIT.

vi

TABLE OF CONTENTS

Chapter	 Page

1. INTRODUCTION 	 1

2. SUPPORT VECTOR MACHINES 	 8

2.1 Theory 	 8

2.1.1 VC Theory 	 10

2.1.2 SRM Principle 	 11

2.2 Hyperplane Classifiers 	 12

2.3 Linearly Nonseparable Data 	 16

2.4 Kernel and Feature Spaces 	 17

	

3. DUAL FORM OF SVM 21

	

4 IMPLEMENTATION OF SVM 25

4.1 General Formula 	 25

4.2 Optimization Techniques Used 	 26

4.2.1 Decomposition Method 	 26

4.2.2 Verification of Optimal Solution 	 28

4.2.3 Selection of theWorking Set 	 29

4.2.4 Shrinking 	 31

4.2.5 Reconstruction of the Gradient 	 34

4.2.6 Calculation of b and p 	 34

4.2.7 Caching 	 35

4.2.8 Implementation of Solution to Decomposition Method Sub-problem 	 35

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.2.9 Unbalanced Data 	 37

4.2.10 Multi-class Classification 	 37

	

5. DEVELOPMENT OF SLIMSVM 39

5.1 General Description of the Software 	 39

5.2 Software Structure 	 39

5.3 Software Specifications 	 40

5.4 File Format 	 41

5.4.1 Training Input File 	 41

5.4.2 Training Model File 	 41

	

5.4.3 Classification Test File 42

5.4.4 Classification Result File 	 43

5.5 Software File Description 	 43

5.5.1 Description of SlimSVM cpp 	 43

5.5.2 Description of GetModeLcpp 	 46

5.5.3 Description of SolveSVM cpp 	 50

5.5.4 Description of classify. cpp 	 57

5.5.5 Description of kernel. cpp 	 59

5.5.6 Description of cache. cpp 	 61

6 TESTING 	 63

6.1 Artificial Data Set 	 63

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

6.1.1 Classification with set3_1.txt and setl2.txt 	 64

6.1.2 Classification with set22.txt and setl2.txt 	 66

6.1.3 Classification with set3_2.txt and set3_1.txt 	 68

	

6.2 Microarray Data 70

6.2.1 Preparation of Data 	 70

6.2.2. Classification of Data 	 70

6.3 Discussion of Classification Results 	 74

7 CONCLUSION 	 75

APPENDIX SAMPLES FROM INPUT AND OUTPUT FILES... 	 77

REFERENCES 	 79

ix

LIST OF TABLES

Table Page

6.1 Summary of training result using set2_1.txt 	 64

6.2 Summary of testing result using set3_1.txt 	 64

6.3 Summary of training result using set2_1.txt 	 66

6.4 Summary of testing result using set2_1.txt 66

6.5 Summary of training result using set3_1 txt 	 68

6.6 Summary of testing result using set3_1.txt 68

6.7 Summary of microarray data training results using dot kernel 71

6.8 Summary of microarray data training results using polynomial kernel 	 71

6.9 Summary of classification results using dot kernel training model 72

6.10 Summary of classification results using polynomial kernel training model 	 72

x

LIST OF FIGURES

Figure Page

2.1 Example of over fitting dilemma 	 9

2.2 Training sample biased decision surface 	 10

2.3 Schematic illustration of Equation 2.4. 	 12

2.4 Weight vector diagram 	 13

2.5 Hyperplane and margins 	 14

2.6 Advantage of maximized hyperplane 	 15

2.7 Disadvantage of non-maximized hyperplane 	 15

2.8 Nonlinearly separable data with smaller C 	 16

2.9 Nonlinearly separable data with larger C 	 17

2.10 Mapping of training data to a feature space 	 18

5.1 Software Structure 	 39

5.2 Function Structure of SlimSVMcpp 	 46

5.3 Function Structure of GetModeLcpp 	 50

5.4 Function Structure of SolveSVMcpp 	 56

5.5 Function Structure of classifii.cpp 	 59

5.6 Function Structure of kernel. cpp 	 61

5.7 Function Structure of cache. cpp 	 62

6.1 Data points from set2_1.txt file before classification 	 65

6.2 Data points from setl_2.txt file after classification 	 65

6.3 Data points from set2_1.txt file before classification 	 67

xi

LIST OF FIGURES
(Continued)

Figure Page

6.4 Data points from set2_2.txt file after classification 	 67

6.5 Data points from set3_2.txt file before classification 	 69

6.6 Data points from set3_1.txt file after classification 	 69

6.7 Microarray data points before classification 	 72

6.8 Microarray data points after classification using dot kernel 	 73

6.9 Microarray data points after classification using polynomial kernel 	 73

Al Data sample from training file 	 77

A2 Sample from training model file using dot kernel 	 	 77

A3 Sample from training model file using polynomial kernel 	 78

A4 Sample from classification result file 	 78

xii

LIST OF SYMBOLS

Real numbers

Output and output space

Input and input space

Feature space

Mapping to feature space

Weight vector

Bias

Dual variables or Lagrange multiplier

Primal Lagrangian

Dual Lagrangian

Training set size

VC dimension

Slack variables

CHAPTER 1

INTRODUCTION

In the past several years, a new technology known as microarray has received a great

amount of attention from biologists and biomedical researchers. Microarray expression

experiments allow the recording of expression levels of thousands of genes, giving

scientists a better picture of simultaneous interactions among these genes. These

experiments can be categorized into two general groups. The first group of experiments

consists of monitoring each gene several times under various conditions (Chu, 1998;

Derisi, 1997). This type of experiments has allowed for the identification of genes that

are functionally related to common expression patterns (Brown, 2000; Wen, 1998). The

second group of experiments evaluates each gene in a single environment but in different

types of tissues (Derisi, 1996; Golub, 1999; Zhu, 1998). This type of experiments could

be used to identify genes whose expression levels help to diagnose diseases (Golub,

1999).

Support Vector Machine (SVM) is a machine learning technique based on the

Structural Risk Minimization Principle (Vapnik, 1995). SVM is used for various

purposes, some of which include image detection, 3-D object recognition, hand writing

detection, text categorization, speech recognition, and temperature prediction. It has also

been shown to perform well in various areas of biological research such as protein

structure prediction, alternative splice site prediction, breast cancer prognosis, and

microarray analysis.

1

2

Recently, Dr. Marc Ma (NJIT), in collaboration with Dr. Honghua Li (Cancer

Institute of New Jersey), developed GenolterSVM for analysis of microarray data (Ma et

al., 2004). GenolterSVM integrates SVM classification algorithm with an iterative

refinement algorithm for improved accuracy of genotype classification using microarray

data. OSU SVM Classifier Matlab Toolbox (Version 3.00) is used as the SVM

classification component of GenolterSVM. OSU SVM is based on LIBSVM Version 2.33.

Analysis of microarray data with GenolterSVM showed that dot kernel (linear

classification) is the most effective kernel for genotype classification. In order to make

GenolterSVM a stand-alone distribution independent of other SVM packages, SlimSVM, a

C++ implementation based on the algorithms of LIBSVM version 2.5, was developed

with the intention of replacing OSU SVM as the SVM component. Eventually,

GenolterSVM would be developed in MATLAB for genotype microarray data analysis,

and implementation of SlimSVM is the first step towards creating a working SVM

implementation in MATLAB. There are many implementations of SVM available in

different programming languages that allow the user to perform data classification and

regression analysis of data using different options. A brief description of some of the

implementations is provided below.

GIST is a web-based support vector machine. It can be found at

http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi . Since it is run on a web server, its use is

limited to small training and testing jobs. The interactive site also limits the number of

concurrent jobs. Compared to most other SVM implementations, GIST uses different

formats for input files and output files. Input files for both training and testing are tab-

delimited text files where the first row consists of a feature name or id and the first

3

column consists of data point names. The rest of the file contains a matrix of numbers

where each value corresponds to a feature of a data point. Unlike other SVMs, the class

labels for the training data points are put in a tab-delimited text file and submitted

separately to the server for training. For training purposes, GIST provides several options

for normalizing data. The user can also select the kernels for training. The default is dot

kernel and the other two kernels supported are polynomial and Radial Basis Function

(RBF). The website allows the user to enter values for the parameters of the kernels

depending on the kernel selected. The training output file consists of all the data points

from the training input file. The support vectors are indicated by nonzero weight values.

For each of the data points, a value for the discriminant, which indicates the distance of

the data point from the hyperplane, is provided. The classification output file contains the

predicted class for each of the data points and the discriminant value. Unlike other SVM

implementations, GIST does not provide any documentation on the algorithms used and it

can only perform binary classification.

SVMsequel is a SVM implementation in Haskell. The program is based on the

kernel minover algorithm. Unlike other SVM implementations, it provides a shell for

executing a set of predefined commands for training and classifications instead of

executables, as well as more kernel options. Besides the typical kernels such as linear,

polynomial, RBF and sigmoid kernels, it includes information diffusion kernels, diffusion

kernels on graphs, string kernels and tree kernels. Furthermore, it allows the user to

combine kernels. It can perform both binary classification and multi class classification.

SVMsequel supports heterogeneous data; it can handle data consisting of both strings and

real values. The different data types are separated and grouped together for training and

4

classification. The data sets are prepared by using commands. The data sets consisting of

strings are in dense format and those of real values are in sparse format. It also allows the

user to normalize the data. For training, the user can enter the values for parameters or

can perform cross-validation to estimate the parameters. Once training is completed the

model can be saved in a file for classification. After completion of training, the results

displayed on screen include the values of parameters, type of kernel used, and number of

support vectors. When classification is performed, the result of the classification is saved

in a file specified by the user or it can be displayed on screen. Even though SVMsequel

offers more kernel options and supports a heterogeneous data format for input file, the

program is heavily command based and the user would need to rely immensely on the

user manual to use the program.

SVMLight is an implementation of SVM in C. It has been developed by Thorsten

Joachims. The optimization technique used in SVMLight is used by many other

implementations of SVM. The algorithm performs working set selection based on

steepest feasible descent. It also contains shrinking heuristics and use of folding in the

linear case. The kernel evaluations are cached, making the program more memory

efficient. In addition to solving classification problems, SVMlight solves regression and

ranking problems. The latest version of SVMLight also includes an algorithm for

approximately training large transductive SVMs. The optimization algorithm and the

caching technique enable SVMLight to handle several hundred-thousand data points. It

includes dot, polynomial, RBF, and sigmoid kernels. In addition, the user can enter his

own kernels. SVMLight supports sparse data format for the input files for both training and

classification. Since SVMLight is command based program, training requires the user to

5

enter the training parameters, the name of the input file containing training data, and the

file name for writing the training model through stdin. For classification, the user has to

enter the names of the file containing the data to be classified, the model file, and the file

where the result of classification is to be written.

mySVM is based on the optimization algorithm of SVMlight While it is

implemented in C, there is also a java version available. In addition to pattern

recognition, it supports regression estimation and distribution estimation. It consists of

two modules-one for training called mySVM and another for classification called predict.

What makes mySVM unique is that it supports multiple formats for the input file and also

allows the user to use stdin to input the data if the user chooses not to use an input file.

The input file comprises SVM parameters, kernel parameter, and data sets. For the input

file, SVM parameters and at least one set of data for training must be provided. If no

kernel parameter is provided, dot kernel is used as the default. In addition to dot kernel,

mySVM provides polynomial kernel, radial kernel, neural kernel, and anova kernel. It also

lets the user enter his own kernels. If more than one set of data is provided in the input

file, the first set is used for training and the subsequent sets are used either for testing or

predicting, depending on whether Y value is provided for these data sets. mySVM

performs cross validation on the training examples as well. The data points of the input

file can be either in sparse format or in dense format. mySVM supports multiple formats

such as xy, yx, and xyx for the dense format. The training output is shown on the screen.

The statistics printed include total number of support vectors, bounded support vectors,

and the minimal and maximal values of the alphas. The optimization result of training is

6

saved in a file in the format of the input file. When testing is performed, the predicted

class labels are saved in a file.

LIBSVM is a library of support vector machines in C developed by Chih-Chung

Chang and Chih-Jen Lin. It is based on SVMLight and the sequential minimal optimization

algorithm. In addition to performing support vector classification, it performs support

vector regression and one-class distribution estimation. In terms of classification it

supports C-SVM and nu-SVM and for regression it implements epsilon-SVM and

nu-SVM. It supports dot, polynomial, RBF, and sigmoid kernels but does not allow the user

to enter his own kernels. LIBSVM supports both binary and multi-class classification.

Like SVMLight, LIBSVM also implements shrinking heuristics. The input for both training

and classification are in the same format as those for SV.AILight. It supports sparse data

format for the input files and also implements a caching technique for efficient memory

handling. It offers cross-validation for model selection and performs probability estimates

for the classification and regression functions. The user can use weighted cost for

unbalanced classes, as well as many other tools for performing additional functions using

SVM.

Since further development of GenolterSVM would be carried out by Dr. Ma's

group, the design and implementation of SiimSVM emphasized ease of use and

minimalism while maintaining accuracy and efficiency of training and classification. It

supports dot kernel for linear classification and polynomial kernel for non-linear

classification. The polynomial kernel was implemented since it is the simplest kernel that

can perform non-linear classification. SlimSVM is menu based and prompts the user for

input as needed. It can perform binary and multi-class classification and uses sparse data

7

format for the input file. The implementation was tested with artificial non-biological

data and microarray data used in (Ma et al., 2004). Testing with microarray data was

carried out to observe how SlimSVM handles medium sized data files (thousands of data

points) since ultimately SlimSVM would be used to analyze microarray data.

The purpose of this thesis is to provide a comprehensive description of the

mathematical basis of SVM and the development process of SlimSVM. The thesis

consists of seven chapters. In the second chapter, a theoretical overview of SVM is

presented. In the third chapter, a description of the dual form of SVM is given. The

implementation techniques and algorithms used are described in the fourth chapter. The

fifth chapter consists of the description of the software files and the development process.

In the sixth chapter, the description and results of testing are provided. The thesis

concludes with a summary of the results of developing SlimSVM and possible future

work with it.

CHAPTER 2

SUPPORT VECTOR MACHINES

2.1 Theory

Support Vector Machine is a supervised learning method. Given the task of classification

of data, the objective is to find a rule which will assign the data into several classes based

on characteristics of the data. In the simplest case, the data can be separated into two

different classes. The task can be formalized as an estimation of the function f. RN —> {-

1, 1} using input-output training data

such that f will correctly classify unseen examples (x, y). An unseen example will be

assigned to class +1 iff (x) 0 and to class -1 otherwise.

The unseen or test examples are assumed to have the same probability distribution

P(x, y) as the training data. The best function f that can be obtained is the one that

minimizes expected error, or risk R, which is the possible average error from f on the test

examples drawn randomly from the sample distribution P(x, y) :

However, since the underlying probability distribution of the test examples is not known,

a function close to the optimal one has to be estimated based on the training examples

and function class F the solution f is chosen from. This estimation is done by

approximating the minimum of the risk (Boser et. al, 1992) by the training error or

empirical risk:

8

It is possible to have the empirical risk converge towards the expected risk by placing

conditions on the learning machines as the number of sample data increases. However,

with small sample sizes for training the problem of over fitting could arise as illustrated

in the figure below:

Figure 2.1 Example of over fitting dilemma. When the sample size is small, either the
dashed line or the solid line could be the decision function. The solid line is less complex
and less accurate since it misciassifies two data points (left). When the sample size is
large, the solid line under fits the data if the dashed line is correct (middle). When the
sample size is large, the dashed line over fits the data if the solid line is correct (right)
(Muller, 2001).

The problem of over fitting can be overcome by reducing the complexity of the decision

function f (Vapnik, 1995). In most training methods, the classifier tends to minimize

misclassification error by increasing the complexity of the decision function. Complex

decision functions result in small training errors, which imply small misclassification

errors for the unseen data. By making the decision function complex, the classifier tends

to produce a decision surface biased by the training sample and it becomes less flexible

for the unseen data. The figure below illustrates this problem:

10

In the figure above, the decision boundary is not linear. According to the decision

boundary the unseen data denoted by "?", should belong to the class "sea bass."

However, by visual inspection, it is more likely to belong to the "salmon" class. The

complexity of a decision function can be specifically controlled by VC theory and the

SMM principle (Vapnik, 1998).

2.1.1 VC Theory

VC (Vapnik and Chervonenkis) theory shows that it is imperative to restrict the class of

functions that f is chosen from to one that has a capacity suitable for the amount of

available training data (Advances in Kernel Methods, 1). According to the VC theory, the

concept of complexity mentioned earlier is captured by the VC dimension of the function

class F that the estimate f is chosen from. The VC dimension is defined as the largest

number h of data points from the training sample that can be shattered or separated for all

11

possible ways using functions of the class; this provides bounds on the training error. The

minimization of these bounds leads to the SMM principle (Vapnik, 1995).

2.1.2 SRM Principle

Structural Misk Minimization (SMM) chooses function class F and the function f such that

an upper bound on the training error is minimized. This can be computed using the

following theorem:

Let h denote VC dimension of the function class F and let Rem be defined by (2.3).

For all ö > 0 and f E F the inequality bounding the risk

holds with probability of at least 1- 8 for h< l.

The goal of SMM is to minimize the generalization error given by R[f]by getting

a small training error R emp[f while keeping the function class as small as possible. Two

extreme conditions arise for (2.4):

i) a very small class may give a vanishing square root term but a large

training error might remain

ii) a very large function class may give a vanishing empirical error but a large

square root term.

The best class is usually the one in between the two extremes which would yield a

function that explains the data well and involves a small risk in getting that function. This

can be illustrated by the diagram below:

12

Figure 2.3 Schematic illustration of Equation 2.4(Vapnik, 1996).

In the above diagram, the vertical axis represents overall error and the horizontal axis

represents complexity of the decision function. The overall error decreases as the

complexity of the decision function increases. However, when the complexity of the

function goes beyond a certain point the overall error begins to increase. Since the goal is

to find the best tradeoff between empirical error and complexity, h* should be chosen as

the complexity of the decision function since it is in between the two extremes.

Support Vector Machines, SVM, are able to achieve the goal of minimizing the

upper bound of RV] by minimizing a bound on the VC dimension h and Remp]

simultaneously during training. The design of SVMs is based on a set of hyperplanes.

2.2 Hyperplane Classifiers

To design learning algorithms with a class of functions whose capacity can be computed,

Vapnik and Chervonenkis considered functions of the form:

13

corresponding to the decision functions:

According to Statistical Learning Theory (Vapnik, 1998), for the class of hyperplanes,

the VC dimension h itself can be bounded in terms of another quantity called margin. The

margin is the minimal distance from the hyperplane to the closest points of the two

classes. It can be measured by the length of the weight vector w in Equations 2.5 and

2.6. The weight vector, w , is perpendicular to the hyperplane as shown in the diagram

below:

Figure 2.4 Weight vector diagram. The circles and the triangles belong to two different
classes. The normal to the hyperplane is the w vector (Source: Mukherjee).

In order to get a better understanding of how a hyperplane and margins can be

used to separate two classes, let's look at a simple problem of separating circles and

rectangles. In the following diagram (Figure. 2.5), the hyperplane is represented by a

solid line. It is located halfway between the two dotted lines. Since the problem can be

separated into two classes, there is a weight vector w and a threshold b such that yid •((w

• xi) + b) > 0 where i = 1,...,1. The threshold b is the minimum distance from the origin to

14

the hyperplane. The values of w and b can be resealed to obtain points closest to the

hyperplane that satisfy the following:

to obtain a canonical form (w, b) of the hyperplane satisfying:

When considering samples from two different classes, in this case rectangles(xi) and

circles(x2):

The margin is given by the distance of these two points from the hyperplane, measured

perpendicularly, and it equals. The points on the margins are called the support

vectors.

Figure 2.5 Hyperplane and margins.

15

The goal is to maximize the distance between the hyperplane and the closest

points on the margins with the constraint that there are two margins on opposite sides of

the hyperplane. The objective can be achieved by the following optimization problem:

Support Vector Machine finds the hyperplane that maximizes the margins. The following

diagrams show the advantage of maximizing the margins.

16

2.3 Linearly Nonseparable Data

In practice, the input data may not be linearly separable, and as a result a linear separating

hyperplane may not be found. This might happen if there is a high noise level, which

causes the classes to overlap. If a linearly separable hyperplane doesn't exist, a linear

decision function can still be found using a set of variables called slack variables

(Vapnik, 1995), 4,

subject to the constraints 2.13 and 2.14. The Equation 2.15 trades off the two goals of

finding a hyperplane with minimum ilk and finding a hyperplane that separates the data

well by minimizing 4i. The parameter C in 2.15 regulates this tradeoff.

Figure 2.8 Nonlinearly separable data with smaller C (Mukherjee).

17

If the value for C is large, the margin is small but classification is more accurate. On the

other hand, if the value for C is small, the margin is large and there could possibly be

classification errors. This is demonstrated by Figures 2.8 and.2.9. In Figure 2.8, with

smaller C, the margin is large and as a result the blank rectangle and the blank triangle

are misclassified. In Figure 2.9, with larger C the margin is small, the blank rectangle and

the blank triangle are correctly classified. The dotted line represents the solution of the

classifier. For both figures, the slack variables, , represent the distance of the

misclassified points from the dashed lines for the corresponding classes.

Figure 2.9 Nonlinearly separable data with larger C (Mukherjee).

2.4 Kernel and Feature Spaces

In most cases of classification, the separating plane is non linear. The theory of

SVM can be extended to handle such cases. This is done by mapping the input data x1, ...

, xi E RN into a potentially much higher dimensional feature space F (Boser et. al,

1992):

The linear SVM algorithm is applied to the higher dimensional feature space. The sample

data can be described as:

The optimal separating linear hyperplane in the feature space corresponds to a nonlinear

separating hyperplane in the original input space. This is demonstrated by the following

diagram.

Figure 2.10 Mapping of training data to a feature space. In the input space the
hyperplane is nonlinear(ellipsoidal), but when the data is mapped to a feature space the
hyperplane is linear(Scholkopf, 2001).

With the introduction of mapping to feature space, Equation 2.5 can be rewritten as

The normal to the hyperplane can also be rewritten as a linear combination of the training

points in the feature space:

By substituting Equation 2.21 into Equation 2.20, Equation 2.20 can be rewritten as

The equation for decision function (Equation 2.6) can be rewritten as

A function K, called kernel function, can be used to simplify Equation 2.23. The kernel

function can be defined as the dot product of two points in the feature space. The

equation for the kernel function is written as (Advances in Kernel Methods, 4)

By substituting Equation 2.24 into Equation 2.23, the decision function obtained is

The support vectors will have nonzero coefficients cif since they are the closest points to

the maximum margin hyperplane in the feature space. All other points will have a

coefficient value of zero.

The following is an example of how mapping into a feature space and kernel

function is connected (Mukherjee). Suppose in a microarray experiment the expression

levels of two genes for breast cancer (BRCA1 and BRCA2) are measured. For each

sample, the expression vector is x = (xBRcAi, xBRcA2) and the following mapping into the

feature space is used:

19

If there are two samples x and z, then the kernel function would be:

20

This kernel function is called a second order polynomial kernel. This kernel uses

information about expression levels of individual genes and also expression levels of

pairs of genes which can be interpreted as a model that takes into account co-regulation

information. The polynomial kernel is a commonly used kernel function and its general

form can be written as

where d is the degree of the polynomial function.

CHAPTER 3

DUAL FORM OF SVM

As discussed in the previous chapter, the goal of SVM is to maximize the distance

between the hyperplane and the closest points on the margins with the constraint that

there are two margins on opposite sides of the hyperplane. The objective can be achieved

by the following quadratic optimization problem

This constrained optimization problem can be solved by introducing Lagrange multipliers

The task is to minimize Equation 3.1 with respect to primal variables k, b, and to

maximize it with respect to dual variable a il. The corresponding dual functions are found

by differentiating with respect to k and b

22

into Equation 3.2 eliminates the primal variables and the Wolfe dual of the optimization

problem is found

By solving the quadratic dual optimization problem, the coefficients a l, are found, which

are needed to express the k that solves Equation 3.1. The hyperplane decision function

can be written as

23

The solution vector k thus has an expansion in terms of a subset of the training patterns,

namely those patterns whose a l is not zero, and these are the support vectors. By the

Karush-Kuhn-Tucker(KKT) complimentarity conditions

the support vectors lie on the margin. All remaining data points in the training set are

irrelevant because their constraint (Equation 3.1) does not play a role in the optimization

and they do not appear in the expansion (Equation 3.9). This properly captures the

intuition of SVM since the hyperplane is completely determined by the data points

closest to it, but not by any of the other data points. The threshold value, b, from

Equations 3.12 and 3.13 is computed using Equation 3.14.

As mentioned in the previous chapter, when dealing with linearly non separable

data, Equation 3.1 is written as (Joachims, 1998)

When the equation is rewritten after the inclusion of kernels and in terms of Lagrange

multipliers, it leads to the same problem as Equation 3.10 subject to slightly different

constraints:

24

The difference is found in the upper bound C on the Lagrange multipliers a l. This limits

the influence of individual data points which could be outliers. As above, the hyperplane

takes the form of Equations 3.12 and 3.13. The threshold value can be computed by

taking advantage of the fact that for all support vectors x i with ail < C, the slack variable 4,

is zero. This follows the KKT conditions.

CHAPTER 4

IMPLEMENTATION OF SVM

4.1 General Formula

As discussed in the previous chapter, the training of support vector machine leads to the

following quadratic programming problem:

In the above equations, a is a vector of / variables. Each component of ail corresponds to a

training data point(x, y,). The solution of Equation 4.1 is a vector a* for which Equation

4.1 is minimized and constraints 4.2 and 4.3 are fulfilled. Equation 4.1 can be rewritten as

25

26

4.2 Optimization Techniques Used

The number of the training data points, 1, determines the size of the optimization problem

(Equation 4.4). As the size of 1 increases, the size of the Q matrix also increases since it is

defined as /2 . If the number of data points for training for a given classification task is

10,000, then it may be impossible to keep the Q matrix in memory and the training would

be computationally time intensive. In order to tackle this problem and make the

implementation more efficient, several different algorithms are implemented in the

program. The descriptions of the algorithms and how they improve the efficiency are

provided below.

4.2.1 Decomposition Method

In order to deal with training SVMs with regards to problems with many training

examples, this program uses a decomposition method proposed by Osuna (Osuna et. al,

1997). The purpose of the method is to decompose the quadratic problem into a series of

smaller tasks. In each iteration, the variables a ids of Equation 4.4 are divided into two

parts: an active set and an inactive set. The active set, B, consists of free variables. Free

variables are those which can be updated in the current iteration. The active set is also

referred to as the working set. The inactive set, N, consists of fixed variables which are

temporarily fixed at a particular time. The working set has a constant size q which could

be equal to / or smaller than 1.

Algorithm

1. Given a working set B of size q, find a l as the initial solution. Set k =1.

27

2. If aka is an optimal solution of Equation 4.4 then stop. Otherwise find a working

set B of size q and inactive set N of size l-q. Define aka and aka to be subvectors

of ak corresponding to B and N, respectively.

3. Solve the following sub-problem

constant. They can be omitted from Equation 4.7 without having any effect on the

solution. Therefore, the problem can be written as

28

The active set B is updated in each iteration. Equation 4.11 is a positive semidefinite

quadratic programming problem and obtaining a fast solution to the problem depends

heavily on selecting good working sets (Joachims, 1998).

4.2.2 Verification of Optimal Solution

In the algorithm for the decomposition method, the second step verifies if a is an optimal

solution of Equation 4.4. If a is not the optimal solution then the subproblem (Equation

4.7) is solved. In order to determine if the current a is the optimal solution, KKT

conditions are checked. The Lagrange multiplier, aT, in the equality constraint (Equation

4.5) can be denoted with 2e and the Lagrange multipliers for the lower and upper bounds

in Equation 4.6 can be denoted with 2` and 2u respectively. The current a is the optimal

solution for Equation 4.4 if there exists 2' , 2' and 2' such that

If the optimality conditions do not hold as described above, the decomposition method

works on the subproblem (Equation 4.11).

29

4.2.3 Selection of the Working Set

When the working set is selected, it is imperative to select a set of variables so that the

current iteration will make progress towards finding the optimal solution by minimizing

W(a) (Joachims, 1998). It is an important issue of the decomposition method. The primal

and dual forms of the KKT condition (Equation 4.12) are the same. Equation 4.12 can be

written as

where b is the same as the decision function. It also coincides with Equation 4.5 which is

the Lagrange multiplier of the linear constraint. Using the assumption that C > 0 and Om =

{ - 1, 1}, Equation 4.18 further implies that

In the decomposition method, the algorithm checks to see if a is the current solution. If it

is, the following problem is solved:

In the above equations, d represents the steepest feasible descent. The idea is to find d

with q non-zero elements. The Equation 4.22 tries to find d. Equations 4.23, 4.24 and

4.25 ensure that d is projected along the equality constraint (Equation 4.5) and follows

the active bound constraints. Equation 4.26 normalizes the descent vector to make the

optimization problem well-posed. Equation 4.27 states that the direction of descent will

only involve q variables. The components of a with nonzero d, are included in the

working set B. This ensures that the working set selected contains the steepest feasible

direction of descent. It is evident from the above information that if q = 2 then the

solution to Equation 4.22 is

Equations 4.28 and 4.29 are the same as Equations 4.20 and 4.21. To find the optimal

solution one more condition is checked. When the following condition holds true

31

then the current a is the optimal solution and gib and gib are defined as

The stool:Ana criterion is written and implemented as

where e is a small positive number.

4.2.4 Shrinking

For many classification problems the number of support vectors is significantly smaller

than the number of training data points. If it were known beforehand which of the

training data points could be used as SVs, training on those data points would result in

the same solution. It would also make the decomposition method more efficient and

faster, since the size of data points is reduced. In addition, with regards to problems with

noisy training data points, there are often many SVs with a l at the upper bound C called

"bounded support vectors" (BSVs). The non SVs and BSVs can be treated in the same

way- if the BSVs were known beforehand, the corresponding a l could then be fixed at C

leading to a new optimization problem with fewer training data points (Joachims, 1998).

During the decomposition method, it often becomes clear that certain training data

points are likely to be BSVs or non SVs. These data points have a ilequal to C for several

iterations (Chang, 2004). If these data points are eliminated, the size of the problem

becomes l'and the decomposition method could be used to work on a smaller problem.

32

The solution of the smaller problem could be used to construct the solution of Equation

4.7. The subproblem that the decomposition method works on is defined below.

Let R denote the indices corresponding to the SVs, S denote indices of BSVs and

T the indices of non SVs. The subproblem is similar to Equation 4.7:

subject to

and

where

In the above Equation (4.34),
1

—CAT QssCA - 1.11C is constant and it can be dropped
2

without changing the solution. If the solution of the equation does not correspond with

Equation 4.4, the whole problem has to be optimized again starting from a point U where

aa is an optimal solution of Equation 4.12 and UN are BSVs and non SVs. The algorithm

for shrinking of training data points is provided below (Chang, 2004).

Algorithm

1. After every min (l, 1000) iterations, some variables are shrinked. During the

iteration process

33

is not satisfied yet.

There are two sets of values that are inactivated in order to perform the shrinking

by reducing the set R of activated variables. For those

and Um resides at a bound then Um can be deactivated since the value may not

change anymore.

Similarly, for those

and Um resides at a bound then Um is deactivated.

2. The decomposition method achieves the following tolerance condition

When this condition is fulfilled, the whole gradient is reconstructed. Based on the

reconstructed gradient, Equations 4.40 and 4.42 are used to deactivate the

variables for the decomposition method.

34

This is done because the procedures in Step #1 might be too aggressive and it is

possible that the decomposition method works on an incorrectly shrinked problem

(Equation 4.34).

4.2.5 Reconstruction of the Gradient

Since the gradient is reconstructed in Step #2 of the shrinking algorithm, the cost of

performing reconstruction is reduced by keeping the following during the iterations

4.2.6 Calculation of b and p

The value of p is calculated after the optimal solution U of Equation 4.4 is found. It is

used in the decision function. In order to calculate p the following formula is used

where Si and s2 correspond to yid= 1 and yid= - 1, respectively. When considering the y id= 1

class, if there are ai which fulfill 0 < < C, then s ib= If(U)..In order to avoid numerical

errors Si is calculated in the following way:

If, on the other hand, there is no ail which fulfills 0 < ail< C, sib is taken as the midpoint of

the range since sib must satisfy the following:

The s2 value for y id = -1 is calculated the same way.

Calculation of b

The values of s1 and s2 are used to calculate the b term also. The following formula is

used

4.2.7 Caching

In this implementation of SVM, the technique of caching is used to reduce computational

time. The caching technique used is a simple least-recent-use strategy. Since the size of E

matrix is /2 and it is fully dense, it becomes impossible to keep in memory if the training

sample size is large. This problem is solved by calculating and storing elements of ERR of

Equation 4.34 as needed. This reduces the computational cost of later iterations as well.

4.2.8 Implementation of Solution to Decomposition Method Sub -problem

The sub-problem described in section 4.2.1 can be considered to be a simple problem

consisting of only two variables

If the value of all is outside the feasible region of Equation 4.11 then it is

clipped into the feasible region and it is assigned as the new ch i. For example, if yid = y3 and

37

4.2.9 Unbalanced Data

In order to handle cases where the classification data consists of substantially different

number of data in each of the classes, Osuna has proposed to use different penalty

parameters in the formula for SVM. Using different penalty parameters, Equation 3.15

becomes

For unbalanced data, the implementation to obtain the solution is the same, except for

Equation 4.50 where only the constraints change. The modified constraints are as follows

4.2.10 Multi-class Classification

In order to perform multi-class classification, the one-against-one approach (Knerr et al.,

1990) is used. To train the data, k(k-1)/2 classifiers are constructed, where k is the number

38

of classes. Each classifier trains data from different classes. For training data from the ith

and jth classes, the following binary classification problem is solved

CHAPTER 5

DEVELOPMENT OF SLIMSVM

5.1 General Description of the Software

SlimSVM is a menu driven software consisting of ten files. The files are compiled with

gcc on SunOS 5.9. A makefile containing all the commands needed for compilation is

also provided. Both the training and classification is done by SlimSVMcpp. A file

containing the training data is specified by the user and SlimSVM.cpp writes the model in

another file provided by the user. The model file is used for classification and the results

are written in a file specified by the user. The other files included in the software contain

functions that are used for both training and classification. The descriptions of the

functions are provided in section 5.5.

Figure 5.1 Software Structure.

39

40

5.3 Software Specifications

• Training data for the training part of the program follow a specified file format.
Similarly, the input test data for the classification part of the program follow a
specified file format. A description of the training file and classification input file
format is provided in section 5.4.

• For both the training and classification files, the feature values of the data points
must be normalized by scaling to the range El . +1] or [0, 1] in order to prevent
feature values in greater numeric ranges from dominating those in smaller
numeric ranges.

• The model file used for the classification part of the program has to be a model
file written by the training module of the program. It is the responsibility of the
user to make sure that the correct model file is provided. A model file that results
from training in other software will not work with SlinSVM.

• The result of the training will be written in a user specified file at the end of
training. The file format description is provided in section 5.4.

• The results of classification will be written in a user specified file at the end of
classification. The file format description is provided in section 5.4.

• The degree parameter of polynomial kernel for training must be greater than 0;
otherwise, an error message is shown.

• The stopping criterion, epsilon, must be greater than 0; otherwise, an error
message is shown.

• The C parameter, which determines the tradeoff between the errors and the
separating margin, must be greater than 0; otherwise, an error message is shown.

• For the weight parameter, both class labels and their weight must be entered;
otherwise, the default value of 1 is used.

• The training part of the software will display on screen the number of iterations
performed, the value for the objective and rho, and the number of support vectors
and bound support vectors obtained by training.

• The classification module of the software will display on screen the total number
of data points to be classified, total number of correct classifications, accuracy of
classification, and the mean squared error.

41

5.4 File Format

5.4.1 Training Input File

The data in the input file is in sparse format as follows:

Class Label Feature ID: Feature Value Feature ID: Feature Value

The class label must be provided for the training file and the class labels must be correct.

Note that some other implementations of SVM use dense format where only the class

label and feature values are provided for the data points. A sample from the training file

is shown in Figure Al.

5.4.2 Training Model File

For the dot kernel, the result of the training obtained from SiiinSVM is written in the

following format:

Lineal: Type of Kernel Used for training

Line 2: Total Number of Classes

Line 3: Total Number of Support Vectors

Line 4: Value of rho

Line 5: The labels of each class separated by a space

Line 6: Number of support vectors in each class corresponding to the class labels

separated by a space

Line 7 to EOF: the support vectors are listed in the same file format as the input

file and the test file. The support vectors are grouped and listed together according

to their class labels.

42

A sample from the training model file using dot kernel is shown in Figure A2. For the

polynomial kernel, the result of the training obtained from SlimSVM is written in the

following format:

Linel : Type of Kernel Used for training

Line 2: Polynomial Degree

Line 3: Value for gamma

Line 4: Value for coefficient

Line 5: Total number of classes in the model

Line 6: Total number of support vectors in the model

Line 7: Value for rho

Line 8: The labels of each class separated by a space

Line 9: Number of support vectors in each class corresponding to the class labels

separated by a space

Line 10 to EOF: the support vectors are listed in the same file format as the input

file and the test file. The support vectors are grouped and listed together according

to their class labels.

A sample from the training model file using polynomial kernel is shown in Figure A3.

5.4.3 Classification Test File

The format of the test file is same as that for the input file for training. Class labels must

be provided but they do not have to be correct, since the classification option of SlimSVM

program will actually determine the labels based on the model obtained from the training

of SlimSVM.

43

5.4.4 Classification Result File

The classification file contains the labels predicted by classification part of SlimSVM. For

example, with regards to binary classification, if the data belongs to the first class it is

labeled 1 and the data in the other class is labeled 2. A sample from the classification file

is shown in Figure A4.

5.5 Software File Description

As mentioned above, SlimSVM consists of ten files containing functions for both the

training and classification. In this section, a description of the C++ source files is

provided along with descriptions of the functions and the algorithm used in each file.

Note that only the description of cpp files is provided and not the header files, since the

header files contain variable and function declaration.

5.5.1 Description of SlimSVIII.cpp

This file builds a SVM model based on the training file and user input of parameters. The

user can select one of two types of training options: training with default value of

parameters or training with custom values. The user can select the parameters to change.

If a wrong value is entered for the parameters, an error message is displayed. The user

can also select to view a brief description and the default values of the parameters. The

program stores the model in a file provided by the user. It also classifies data based on the

model file obtained from training and stores the result of classification in a file provided

by the user.

44

5.5.1.1 Description of the Functions of SlimSVM.cpp

• void defaultTrainO — This function asks the user to enter the training data file

name and the model file name to write the output of training. It also contains the

default values for each of the parameters used for training. After it reads in the

training data file it stores the data points in the struct training_model data_points.

The struct is defined in SlimSVMh. Then the function build model stores the

training model in the struct training_model model. The function store_model

writes the model to the model file specified by the user. The memory used by the

model is freed by the free_model function.

• void customTrain() — This function allows the user to view a brief description

and the default values for the parameters to be used for training. It also allows the

user to enter custom values for the parameters to be used for training. If the user

chooses to view the parameter description then the defaultValues() function is

called. If the user chooses to change the parameters then the customValues()

function is called.

• void defaultValues() — This function displays a brief description and the default

values of the parameters for training. After displaying them, the customTrain()

function is called so the user could select and enter values for parameters.

• void customValues() — This function asks the user to enter the training data file

name and the model file name to write the output of training. It displays the list of

parameters that can be changed. The function allows the user to select the

parameters to be modified and reads in the values entered by the user. If incorrect

values are entered then an error message is displayed on screen. After the values

45

for the parameters are read, the function build_model stores the training model in

the struct training_model model. The function store_model writes the model to

the model file. The memory used by the model is freed by the free_model

function.

• void read_problem(const char *) — This function reads in the data in the training

data file specified by the user. If the file is not found or if it cannot be opened, an

error message is displyed. After opening the file the function scans through it to

calculate the total number of data points and total number of features for each of

the data points. Then it allocates memory for arrays to hold the labels of each data

point along with the features. The function scans through the file again to read in

the labels and the features of each data point.

• void classify() — This function does the classification of data based on the training

model obtained from the training module of SlimSVM. It asks the user to enter the

names of the file containing data to be classified, the model file, and the file

where classification results are to be written. If any of these files cannot be

opened an error message is displayed. The function opens the input file for

classification and gets the label of each data point and the features one data point

at a time, then calls the get_class(const struct training_model *, const struct

feature *) function to get the label after classification. The newly classified label

is stored in the result_class variable and written to the output file. This function

also outputs classification accuracy statistics to the screen. It calls the free_model

function to free the memory used by the training model.

5.5.1.2 Flok Chart of SlimSVM.cpp

46

5.5.2 Description of GetModel.cpp

This file contains functions that are used for building a training model. The functions

extract the data from the struct data points and group them by the labeled classes

provided in the training file. After training, the model is stored in a file specified by the

user.

5.5.2.1 Description of the functions of GetModel.cpp

• trainingmodel *build_model(const trainingdata * data points, const

training parameter *param) — This function prepares the data read from the

training file, calls the function train_S1imSVM for training, and stores the model

from training to be written to the model file. First, it allocates memory and stores

47

the parameter values for training. In preparation for training, the function first

counts the number of classes in the training file and the number of data points in

each class. It then allocates an array to store the data points. The data points are

grouped by classes and stored in the array. Next, the function calculates the

weighted cost of each class as entered by the user. It allocates two arrays of a size

equal to the number of classes. In the weight_array array, the class labels are

stored. In the array weight_array, the product of the weight for each class and the

cost parameter is stored. After calculating the weighted cost of each of the classes,

the function calls the train_SlimSVM function, which takes the data structure that

holds the data points read from the training file, the parameters from training, and

the weighted costs for the classes as its function parameters. The result of the

train_SlimSVM function is used to change values in the array bool_array which is

initialized to false. If the result of train_S1imSVM is not zero (a value is not zero)

for a data point, the bool_array value is changed to true for the data point and it is

considered to be a support vector. Then the function stores the labels of classes

and the value for rho from the training in struct model. The number of indices

with a true value in bool_array is counted and stored as the number of support

vectors of the training model. The true value of bool_array is also used to store

the data points and their features in struct model. The support vectors are grouped

and stored by the same class in model.

• decisioi_fuictioi traii_SlimSVM(coist traiiiig_data *data_poiits, coist

traiiiig_parameter *param, double Ca, double Cb) — This function allocates

an array called alpha and declares struct dec_soln of type S1imSVM_solution

48

which is defined in SolveSVM. h. The function calls train model function with the

function parameters data_points, param entered by the user, dec_soln and the

weighted costs Ca and Cb. It outputs the value for rho and objective to the screen.

It also counts the number of support vectors and bound support vectors and

outputs to the screen. The function then stores the value for the decision function

obtained by train_model function and returns the decision function to the calling

function.

• static void traii_model(const training_data *prob, coast

training parameter* param, double *alpha, SolveSVM::SlimSVM_solutioi*

si, double Ca, double Cb) — This function allocates memory for holding the class

labels of the data points and an array called neg_ones. The alpha array declared in

train_SlimSVM function is initialized to zero. The neg_ones array is initialized

with -1 and the array for class labels is initialized with the class labels. It declares

an object of the SolveSVM class called S1imSVM and invokes the solve function

defined in SolveSVM. cpp.

• iit store_model(const char *model file iame, coast trainingmodel *model)

— This function stores the model from training in a file specified by the user. It

prints the kernel type, the number of classes, total number of support vectors, the

value for rho, the number of support vectors in each class, and the support vectors

along with their labels and the features. If the kernel type used for training is

polynomial, then it prints the degree, gamma, and coefficient of the polynomial

kernel.

49

• void free_model(training_model * model) — This function frees the memory for

all the data structures used by the model.

• Q_matrix(coast training_data& prob, coast trainingparameter& param,

coast schar *y_):Kernel(prob.1, prob.x, param) — This function serves as the

constructor for the Q_matix class. The function initializes the kernel constructor.

It also allocates the cache size set by the cache value in the training parameter.

• float *get_Q_column(iit i, iit len) coast — This function calculates the kernel

values for a column in the E matrix and returns the values to the calling function.

• void skap_index(iit i, iit j) coast — This function swaps the values in the

cache, kernel and the y array between the indices specified in the function

parameter.

• —Q_matrix — This is the destructor for the E_matrix class. It deletes memory

taken up by the cache and the y array.

5.5.2.2 Flok Chart of GetModel.cpp

50

5.5.3 Description of SolveSVM.cpp

This file contains functions that are used to calculate the values of the alpha array used to

get the training model. The Solve function does the calculations and it is called by the

train_model function in GetModel.cpp.

51

5.5.3.1 Description of the Functions of SolveSVM.cpp

• void So1veSVM:: Solve(iit 1, const Kernel& Q, coast double *b_, const schar

*y_, double *alpha_, double Ca, double Cb, double eps, SlimSVMsolution*

si) — As mentioned above, this function is called by train_model. First, the Solve

function copies all the parameters of the function and initializes the Boolean

shrink status to false. It declares a character array called alpha_status and calls

the update_alpha_status() function to initialize the array. It also allocates another

array called active_set_array. The arrays for gradient calculation are then declared

and initialized. To begin calculation for the alpha array, the function calls

select_working_set function to get the indices i and j of the working set. If the

select_working_set function does not satisfy the stopping criterion then it returns i

and j. On the other hand, if it does satisfy the stopping criterion, the gradients are

reconstructed using the rebuild_gradient function. Then the select_working_set

function is called again to verify whether the stopping criterion has been satisfied.

If it has been satisfied, then Solve() continues with the rest of the function to

calculate alpha at i and j. If the stopping criterion has not been satisfied, then the

shrink_problem function is called to shrink the active set.

Using the indices, the get_E_column function is called to get the values in the

columns of Q matrix, and they are stored in the arrays Q_i and E j. Then the

weighted costs at the indices are stored using the get_C function. The value stored

in indices i and j of the alpha array is copied into old_alpha_value2 and

old_alpha_value2 for later calculations. Depending on whether or not the class

labels are same at indices i and j, the value for alpha is calculated and stored at

52

those indices using different constraints. After the value for alpha array is

calculated, old_alpha_value for both i and j are subtracted from alpha[i] and

alpha[j] and the result is stored in delta_alpha and delta_alpha _j. Then using

delta_alpha and delta_alpha _j, the gradient is updated. Next, the function

is_upper_bound() is called with i and j to get boolean values, and the alpha_status

array is updated with update_alpha_status() at i and j. Using the boolean values,

the gradient° is updated.

After optimizing the alpha value, the calculated() function is called to

calculate the value for rho and store it in the solution info struct called si. The

objective value calculation is done using the gradient and the alpha value, with the

result also stored in si. Finally, the entire solution to the optimization problem is

stored in the alpha_[] from the alpha array. The values for weighted costs of the

classes are also stored in si. The total number of iterations performed during the

optimization is displayed on screen. The arrays declared and used by this function

are deleted.

• iit SolveSVM::select_korking_set(iit &maxi, iit &max j) — This function

verifies whether the stopping criterion was reached and it also returns the indices

for the working set for the optimization problem. If the stopping criterion is

satisfied, the function returns 1. Otherwise, it returns the indices i and j to the

calling function through the function parameters and returns 0 to the calling

function. Depending on the label of the training data, different constraints are

used to find the maximum gradient values to determine whether the stopping

53

criterion has been satisfied. The function then returns the indices of the maximum

gradient values to be used for working set.

• void SoIveSVM::shrink_problem() — This function shrinks the active set for the

optimization of the alpha values. First, it checks to see if the stopping criterion has

been satisfied by calling the select_working_set() function. If it has been, the rest

of the code in the function is not executed. The select_working_set function

returns the indices i and j for the working set. Using the i and j values, the values

in the gradient array and the y array containing the class label are multiplied and

stored in variables grad_i and grad j. For indices starting from 0 to the size of

active set, if the alpha_status array contains a 0 or 1, different conditions are

checked depending on the class label contained in the y array. After all the

conditions are met, the value in active_set_size is decremented. Then the

swap_index function is called with the index that satisfied all the conditions and

the value of active_set_size. If the shrink_status variable is true or if -(grad] +

grad_i) > epsilon* 10 then the function is returned. The shrink_status variable is

declared and initialized to false in SolveSVM h. Finally, for indices decrementing

from 1 to active_set_size, if the alpha_status array contains 0 or 1, different

conditions are checked depending on the class label contained in the y array. After

all the conditions are met, the index that satisfied all the conditions checked and

the value in the active_set_size array are passed to swap_index function. The

index and the active_set_size are incremented.

54

• void SolveSVM::skap_index(iit i, iit j) — This function swaps the value in

different arrays between the indices specified by the two integers. The indices that

are to be swapped are passed to the function as integers by the calling function.

• void SolveSVM::rebuild_gradient() — This function rebuilds the gradient arrays.

If active_setsize is equal to the number of data points in the training file then it

exits and returns to the calling function. Otherwise, both gradients are

reconstructed. To reconstruct the gradient array for the indices from

active_setsize to the number of training data points, the values in the b array,

which contains -1, is added to the value in the gradient° array and the result is

stored. Depending on whether the alpha_status array contains the value 2 at those

indices, alpha value is then multiplied by the values in the E_i array at those

indices and the result is stored in the gradient array.

• double SolveSVM::get_C(iit i) — This function returns the weighted cost of the

class by checking the array containing the labels of the classes. The position of

the array checked is equal to the integer passed to the function.

• void So1veSVM::update_alpha_status(iit i) — This function calls the get_C

function and the result of get_C is compared with the contents of the alpha array.

The index compared is the integer passed to the function by the calling function.

Depending on whether the content of the alpha array is greater than, less than, or

equal to the weighted cost of classes, the alpha_status array is stored with 0, 1 or

2.

55

• boot SotveSVM::is_toker_bound(iit i) — This function takes an integer as a

function parameter and returns true to the calling function if the alpha_status array

at the integer index contains 0.

• boot SotveSVM::is_upper_bound(iit i) - This function takes an integer as a

function parameter and returns true to the calling function if the alpha_status array

at the integer index contains 1.

• boot SotveSVM::isfree(iit i) — This function takes an integer as a function

parameter and returns true to the calling function if the alpha_status array at the

integer index contains 2.

• double SotveSVM::catcutate_rho() — This function calculates the value for rho

and returns the value to the calling function. The value for rho is used to calculate

the decision function. In order to calculate rho, the values in y array are first

multiplied by the values in the gradient for indices from 0 to size of the active set.

The result of the product is then stored in variable yG_prod. Using

is_lower_bound and is_lower_bound functions, the value of the lower_bound and

lower_bound variables are obtained in each iteration. The lower_bound variable

stores the minimum of yG_prod and the value already stored in it. The

lower_bound variable stores the maximum of yG_prod and the value already

stored in it. Also, the number of indices in the alpha_status array containing the

value 2 is counted and stored in sum_free and the value of yG_prod is added to

sum-free. If the value stored in sum_free variable is greater than 0, rho is

calculated by dividing sumfree by num_free. On the other hand, if the value in

56

num_free is less than 0, rho is calculated by dividing the sum of upper_bound and

lower_bound by 2.

Figure 5.4 Function Structure of SolveSVMcpp.

57

5.5.4 Description of classfy.cpp

The file contains functions that are used to determine the classes of the input data for

classification. The file also contains a function that reads in the model obtained by

training module of SlimSVM. The model read is used to classify the data.

5.5.4.1 Description of the Functions of classfy.cpp

• doubte getclass(const training_modet *modet, connt feature *x) — This

function is called by the classify() function in SlimSVM.cpp. It takes the training

model as one of the parameters, takes the features of a data point for classification

as the other parameter, and then reads in the number of classes in the model. The

function also allocates arrays called class_count and dec_class. The class_count

array is initialized to 0. The dec_class array is passed as a parameter to the

get_values function along with the model and x. The value in the dec_class array

is used to increment the count in the class_count array for each of the indices. A

variable called max count is initialized to 0. For all the indices in the class count

array, the index with the highest value is stored in max_count and is returned as

the label.

• void get_values(const training_modet *modet, coasts feature *x, doubte*

dec_class) - This function is used to determine the class of the data points based

on the model file. The result of calculation for determining the classes are stored

in the array called dec_class. It allocates an array called kernel_val where the

result of dot or polynomial kernel calculation is stored. Then a value called sum,

which is the sum of product of class label and kernel calculation, is calculated.

58

The value for rho is subtracted from sum and the result is stored in get_class

array. This value is used by the get_class function to predict the class as described

above.

• Training model *read_model(const char *model filename) — This function

is called by the classify() function in SlimSVMcpp. It takes the model file name as

its function parameter. Before the function reads in the model file, it allocates

memory for the model and parameter of the model. It scans through the model file

and reads in the kernel type, value for degree, value for gamma, value for

coefficient, total number of classes, total number of support vectors, value for rho,

the labels of classes, and the number of slowort vectors in each class. The values

for degree, gamma, and coefficient are read only if the kernel type is polynomial.

If the kernel type is neither dot kernel nor polynomial then an error message is

displayed. After reading in the model information, the function scans through rest

of the file and reads in the class labels of the slowort vectors and the features of

each of the slowort vectors in the model file. When the slowort vectors are read

and stored the function returns the model to the calling function. Since this

function is called by the classify function in SlimSVM cpp, it is included in Fig.

5.2 for function structure.

5.5.4.2 Flok Chart of classify.cpp

59

5.5.5 Description of kerneLcpp

This file contains functions that calculate linear kernel and polynomial kernel values and

return the result to the calling functions. The header file for kernel. cpp contains the

function headers and the variables used by the functions. In addition, it contains a

template function called make_duplicate that copies data values from one array to another

array.

5.5.5.1 Description of the Functions of kerneLcpp

• Kernel::Kernel(iit 1, feature * const * x, const trainingparameter&

param):kernel_type(param.kernel_opt), degree(param.poly_degree),

gamma(param.poly_gamma), coef(param.coet) — This is the constructor for the

kernel class. Its function parameters include the number of the data points in the

60

training file, the data point features, and training parameters. It initializes kernel

type, degree, gamma, and coefficient using the values from the training

parameter. Based on the kernel type, the constructor calls the functions for dot or

polynomial kernels, which are defined as private in the header file.

• Kernel::—Kernel: :~ This is the destructor. It frees the memory for the arrays

used by the constructor.

• double Kernel::dot(const feature *Mx, coast feature *My) — This function

calculates values for the dot kernel and returns the values to the calling function.

The function first checks if the features for the dot product calculation are valid.

The end of data point feature is indicated by -1 and it is not used for calculation. If

the end is not reached it calculates the dot product of the values stored in each of

the features and adds the result to variable sum.

• double Kernel::kfunction(coast feature *x, const feature *y, coast

trainingMarameter& Maram) — Depending on the kernel type specified by the

training parameter, this function calculates the value for the linear kernel and

polynomial kernel. For linear kernel calculation, only the dot function is called.

For polynomial kernel calculation, dot function along with degree, gamma, and

coefficient values from the training parameters are used. The result is returned to

the calling function.

5.5.6 Description of cache.cpp

This file contains functions for the cache. As mentioned in the previous chapter, caching

is used in order to handle large data sets more efficiently.

5.5.6.1 Description of the Functioas of cache.cpp

• Cache::Cache(iit 1_, iit size_):1(1),size(sizei — This function is the

constructor. It initializes integers size and 1 using the values passed as function

parameters, and then allocates an array called head of size 1 to hold each node of a

circular linked list. The function also initializes the size of cache to hold all the

elements in the linked list based on the training parameter value for cache size.

• Cache::—Cache() — This function is the destructor. It frees the memory used by

the constructor.

• void Cache::lru_delete(head_t *h) — This function deletes the data node

specified by the calling function from the current location.

62

• void Cache::lru_insert(head_t *h) — This function inserts a node of data into the

circular list when a function calls it. The new node is inserted at the last position

of the list.

• iit Cache::get_data(const iit index, float **data, iit len) — This function

allocates more memory as needed and returns the address of the head of the linked

list to the calling function.

• void Cache::skaM_index(iit i, iit j) — This function swaps the values stored in

the indices as specified by the function parameters. In order to swap values it

checks different conditions; if they are satisfied, the values are swapped.

CHAPTER 6

TESTING

Two sets of testing were done on SlimSVM. The first set of testing was performed using

artificial non-biological data sets, while the second set was performed using actual

biological microarray data used in (Ma et al., 2004) provided by Dr. Honghua Li at

Cancer Institute of New Jersey.

6.1 Artificial Data Set

For the testing of SlimSVM with artificial data sets, three sets of data files were created.

The data in the files were two dimensional and generated randomly. Each set of data

consists of two files-one file for training and the other for testing on the model obtained

from training. A brief description of the files is provided below:

• setl_l .txt- Contains two classes of data points. Used for training on linear kernel
for binary classification.

• set1_2.txt- Contains two classes of data points. Used for testing on linear kernel
for binary classification.

• set2_1.txt- Contains three classes of data points. Used for training on linear kernel
for multi-class classification.

• set2_2.txt- Contains three classes of data points. Used for testing on linear kernel
for multi-class classification.

• set3_1.txt- Contains two classes of data points. Used for training on polynomial
kernel for binary classification.

• set3_2.txt- Contains two classes of data points. Used for testing on polynomial
kernel for binary classification.

63

64

For each of the data sets, the testing procedure used is as follows:

1. Train with input file for training and save the training model.

2. Perform a classification using the test file.

3. Use MATLAB to generate results of classification.

6.1.1 Classification kith setl_1.txt and setl_2.txt

File set1_l .txt consists of 184 data points which can be linearly separated. The purpose of

the test is to verify the linear SVM training model created by SiimSVM. The training with

setl_1.txt file was done using default parameter values and a summary of the training

result is provided in Table 6.1.

The model file generated from training was used to classify the data points in setl_2.txt.

Figure 6.1 below shows the data points before classification and Figure 6.2 shows the

data points after classification. The result of the classification is summarized in Table 6.2.

65

66

6.1.2 Classification with set2_2.txt and set22.txt

File set2_1.txt consists of 127 data points which can be linearly separated. As mentioned

above, unlike test set 1, the files in this set contain data from three classes. The purpose

of the test is to verify the linear SVM training model for multi-class classification. The

training with set2_1.txt file was also done using default parameter values and a summary

of the training result is provided in Table 6.3.

The model file generated from training was used to classify the data points in set22.txt.

Figure 6.3 below shows the data points before classification and Figure 6.4 shows the

data points after classification. The result of the classification is summarized in Table 6.4.

67

Figure 6.3 Data points from set2_2.txt file before classification. The data points from the
first class are displayed as upside down red triangles, the second class is displayed as
green diamonds and the third class is represented by yellow circles.

68

6.1.3 Classification kith set3_2.txt and set3_1.txt

File set3_1.txt consists of 164 data points which can be nonlinearly separated. The

purpose of the test is to verify the polynomial kernel of SVM training model. The training

of SlimSVM with set3_1.txt file was done using polynomial kernel with degree 2 and a

cost value of 10 entered as custom parameter values. A summary of the training result is

provided in Table 6.5.

The model file generated from training was used to classify the data points in set3_2.txt.

The data points in this file are also nonlinearly separable. Figure 6.5 below shows the

data points before classification and Figure 6.6 shows the data points after classification.

The result of the classification is summarized in Table 6.6.

69

70

6.2 Microarray Data

A second set of testing was done using microarray data. Since the ultimate reason for

developing SiimSVM is analyzing microarrays, data from microarray experiments was

used for testing.

6.2.1 PreMaration of Data

From the microarray result file, data values from red and green intensity columns were

extracted and grouped into three classes using a MATLAB script for both the training file

and the testing file. In order to make the data files compatible with SlimSVM, Microsoft

Excel was used to organize the data points in sparse format. Also, for each of the data

point features the log was taken. The log value of each of the features was multiplied by

0.10 in order to normalize the data. All calculations were performed in Excel.

6.2.2 Classification of Data

The training file contains 2,293 two-dimensional data points. The first feature of each

data point is from the red intensity column and the second feature is from the green

intensity column. The training was done with default parameters for both the dot kernel

and polynomial kernel. The result of training is summarized below in Table 6.7 and Table

6.8.

71

The model file generated by training for both linear and non-linear training was used for

classification of the unknown data points. The results are summarized in the tables below

and figures are provided also for visualization of the results.

72

Figure 6.7 Microarray data points before classification. The data points from the first
class are displayed as upside down red triangles, the second class is displayed as green
diamonds and the third class is represented by yellow circles.

73

74

6.3 Discussion of Classification Results

In order to verify the results obtained by SthnSVM, training and classification were

performed using LIBSVM with the same data sets for both the artificial data and the

microarray data. The results were identical, which indicates that the results from

SlimSVM are correct. It should be noted that SlimSVM can handle multidimensional data

points for both training and classification. It has been tested with multidimensional data

that has been provided with LIBSVM, and the results were equivalent. In addition, the

testing was not done with data sets containing millions of data points because the

microarray data is usually two-dimensional and on the order of thousands or tens of

thousands.

CHAPTER 7

CONCLUSION

Comparison of the training and classification results using the artificial and

microarray data with those of LIBSVM shows that the implementation of SlimSVM

has been carried out correctly. Training and testing with both artificial and microarray

data took approximately the same amount of time. The number of data points in the

artificial data files ranged from 90 to 343. The microarray data file for training

consisted of 2,293 data points, and the classification file consisted of 4,419 data

points. This shows that SiimSVM can perform training and classification at the same

level of efficiency for small(hundreds) to medium(thousands) sets of data. Since

microarray data files usually contain thousands or tens of thousands of data points,

testing with larger data sets were not performed.

Most available implementations of SVM slowort dot and polynomial

kernels along with additional kernels and functionalities not used by GenolterSVM.

Since SlimSVM was implemented to be used as the SVM classifier component of

GenolterSVM instead of OSU SVM, it sloworts only dot and polynomial kernel for

classification as used by GenolterSVM for genotype microarray analysis. The

implementation of SiimSVM was designed to be simple and easy-to-use so that it can

be easily used and modified. The program files are fully documented and commented

for easy understanding of the algorithms. The documented code along with this thesis

can be used for modification, maintenance and extension of SlimSVM by Dr. Ma's

75

76

group when developing GenolterSVM as stand-alone program, since it is going to

serve as the classifier of GenolterSVM.

APPENDIX

SAMPLES FROM INPUT AND OUTPUT FILES

The appendix contains samples from the training file, model files and the classification

result file.

Figure A2 Sample from training model file using dot kernel.

77

78

REFERENCES

1. Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992), A Training Algorithm for
Optimal Margin Classifier. In Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory, 144-152.

2. Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey, T., M. Ares, J.
and Haussler, D. (2000). Knowledge-based analysis of Microarray Gene
Expression Data by Using Slowort Vector Machines. Proc. Natl. Acad. Sci.
USA, 97, 262-267.

3. Chang, C. C. and Lin, C. J. LIBSVM: A Library for Support Vector Machines, 2001.
http://www.csie.ntu.edu.tw/—cjlin/libsvm/

4. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. and
Herskowitz, I. (1998). The Transcriptional Program of Sporulation in Budding
Yeast. Science, 282, 699-705.

5. Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. Cambridge, UK:
Cambridge University Press.

6. Daume, H. SVMsequel Documentation. Retrieved August 7, 2004, from SVMsequel
Web site: http://www.isi.edu/—hdaume/SVMsequel/

7. DeRisi, J., Iyer, V. and Brown, P. (1997). Exploring the Metabolic and Genetic
Control of Gene Expression on Genomic Scale. Science, 278, 680-686.

8. DeRisi, J., Penland, L., Brown, P., Bittner, M., Meltzer, P., Ray, M., Chen, Y., Su, Y.
and Trent, J. (1996). Use of CDNA Microarray to Analyse Gene Expression
Patterns in Human Cancer. Nat. Genet., 4, 457-460.

9. Ding, C., Dubchak, I. (2001). Multi-class Protein Folding Recognition Using Slowort
Vector Machine and Neural Networks. Bioinformatics, 17, 349-358.

10. Duda, R. and Hart, P. (1973). Pattern Classification and Scene Analysis. New York:
Wiley.

11.GIST:Support Vector Machine 1.0. http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi

12. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller,
H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C. and Lander, E. (1999).
Molecular Classification of Cancer: Class Discover and Class Prediction by
Gene Expression Monitoring. Science, 286, 531-537.

79

80

13. Hsu, C-W., Chang, C. and Lin, C. A Practical Guide to Support Vector
Classification. Retrieved March 23, 2004, from LIBSVM: A Library for
Support Vector Machines Web site:
http://www.csie.ntu.edu.twt—cjlin/papers/guide/guide.pdf

14. Joachims, T. Making Large-scale SVM Learning Practical. (1998). In B. Scholkopf,
C. Burgess and A. Smola(Eds.), Advances in Kernel Methods — Support Vector
Learning, Massachusetts: MIT Press.

15. Joachims, T. SVMLight Support Vector Machine. http://svmlight.joachims.org/.

16. Knerr, S., Personnaz, L., and Dreyfus, G. (1990). Single-Layer Learning Revisited: A
Stepwise Procedure for Building and Training a Neural Network. In J. Fogelman
(Ed.), Neurocomputing:Algorithms, Architectures and Applications. New York:
Springer-Verlag.

17. Ma, M., Zhang, K., Hu, G., Wang, H., Luo, M., Wang, J. and Li, H. (2004). SNP
Genotype-calling Using SVMs with Iterative Refinement. In preparation.

18. Mukherjee, S. Classifying Microarray Data Using Slowort Vector Machines.
Understanding and Using Microarray Analysis Techniques: A Practical Guide
(in press).

19. Muller, K., Mika, S., Ratsch, G., Tsuda, K., and Scholkopf, B. (2001). An
Introduction to Kernel-Based Learning Algorithm. IEEE Transactions of Neural
Networks, 12(2), 181-202.

20. Osuna, E., Freund, R. and Girosi, F. (1997). Training Support Vector Machines: An
Application to Face Detection. In proceedings of CVPR, 97, 130-136.

21. Platt, J. Fast Training of Support Vector Machines Using Sequential Minimal
Optimization. (1998) In B. Scholkopf, C. Burgess and A. Smola(Eds.),
Advances in Kernel Methods — Support Vector Learning, Massachusetts: MIT
Press

22. Ruping, S. mySVM - A Slowort Vector Machine. http://www-ai.cs.uni-
dortmund.de/SOFTWARE/MYSVM/index.html

23. Saunders, C., Stitson, M., Weston, J. Bottou, L., Scholkopf, B. and Smola, A.(1998).
Support Vector Machine Reference Manual. Technical Report CSD-TR-98-03.

24. Scholkopf, B. and Smola, A. (2001).Learning with Kernels. Massachusetts: MIT
Press.

25. Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag.

81

26. Vapnik, V. Structure of Statistical Learning Theory. (1996). In A. Gammerman (Ed.),
Computational Learning and Probabilistic Reasoning (pp. 33-41).New York:
Wiley.

27. Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.

28. Wen, X, Fuhrman, S., Michaels, G., Carr, D., Smith, S., Barker, J. and Somogyi, R.
(1998). Large-scale temporal gene expression mapping of central nervous
system development. Proc. Natal. Acad. Sci. USA, 95, 334-339.

29. Zhu, H., Cong, J., Mamtora, G., Gingeras, T. and Schenk, T. (1998) Cellular gene
expression altered by human cytomegalovirus: global monitoring with
oligonucleotide arrays. Proc. Natal. Acad. Sci. USA, 95, 14470-14475.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Support Vector Machines
	Chapter 3: Dual Form of SVM
	Chapter 4: Implementation of SVM
	Chapter 5: Development of SLIMSVM
	Chapter 6: Testing
	Chapter 7: Conclusion
	Appendix: Samples from Input and Output Files
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Symbols

