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ABSTRACT

SINGULAR VALUE DECOMPOSITION OF ANALOGS OF GBR 12909

by
Anna Fiorentino

Analogs of GBR 12909 are drugs that could potentially be used to treat cocaine

addiction. Singular Value Decomposition (SVD) is a multivariate analysis technique used

to show relationships between the data and the variables associated with the data. The

input data consists of the conformers of each analog (DM324, 728 conformers; TP250,

739 conformers) along with the eight torsional angles (Al, A2, B 1 -B6). A novel scaling

technique was developed to address the problem of data circularity by subtracting the

values of the torsional angles of the global energy minimum conformation from those of

each conformer.

In SVD the original data matrix X of dimensions r x c is decomposed into three

matrices, U, S, and V where X=USV T . The columns of U represent the principal

component (PC) scores. The rows of SVT contain the PC loadings. Analysis of the score

and loading plots shows that DM324 separates into three distinct groups along PC1 due

to Al and six groups due to A2. TP250 separates into three groups along PC7 (due to

B4) and three groups along PC8 (due to B3) resulting in nine clusters. The significance of

this work is that it is the first application of SVD to the clustering of very flexible

molecules. In the future, representative conformations of these analogs will be used in

pharmacophore modeling with the ultimate goal of designing a drug useful in the

treatment of cocaine abuse.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to apply a multivariate analysis technique known as

singular value decomposition (SAID) to classify the conformations of two analogs of the

dopamine reuptake inhibitor, GBR 12909. The analogs, DM324 and TP250, differ only

by a small change in the central heterocyclic ring; yet have different binding and

selectivity characteristics as well as a different distribution of conformer populations

among molecular shapes. The purpose of this project is to explore the potential

usefulness of SVD in uncovering the relationships of torsional angles to subtle

differences in conformations of GBR 12909 analogs.

SAD analysis was carried out on the eight torsional angles which connect the ring

systems of the analogs and which determine the overall shape of the molecules. The

reason for using this approach is to see if there are any distinctive differences in the range

of torsional angles available to the conformations of these analogs that could be related to

the differences in their biological activity. The long-range goal is to see if these subtle

differences can be related to differences in biological activity with the goal of designing a

more effective drug useful in the treatment of cocaine abuse.

This analysis was accomplished by calculating the score and loading plots

generated from SVD using the conformation data generated by the Random Search

function of the molecular modeling program SYBYL. A novel type of scaling that

addresses the circular nature of the data proved to be critical for visualizing clusters

1
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1.2 Background Information

1.2.1 The Dopamine Transporter and Cocaine

The dopamine transporter (Figure 1.1) is a widely-studied protein. It consists of 12

membrane-spanning segments. Though the tertiary structure is unknown it is evident that

when certain molecules bind to the dopamine transporter they affect the way in which the

neurotransmitter dopamine is released into the body. The dopamine transporter is located

on the plasma membrane of nerve terminals and functions to transport dopamine across

the membrane. Dopamine plays a very important role in the neurotransmission of the

central nervous system. The dopamine transporter is a major target for drugs of abuse,

mainly psychostimulants such as cocaine. The drugs can affect the way dopamine is

distributed through the body by blocking the transport of dopamine[1].
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Dopamine plays an important role in the control of movement, cognitive

functions, and neuroendocrine systems. The dopamine transporter is a membrane-bound

protein that functions to release dopamine into presynaptic terminals. The dopamine

transporter works closely with the norepinephrine and serotomn transporters. All of these

transporters are dependent on the presence of Na and Cl in the extracellular fluid.

Though substances such as cocaine and amphetamine can inhibit all three transporters, it

is thought that the dopamine transporter is responsible for the locomotor stimulatory

effects of these drugs. However, it is not clearly understood how dopamine or cocaine

interact with the dopamine transporter [2].

Cocaine (Figure 1.2) blocks the normal role of the dopamine transporter in

terminating dopamine signaling [3]. Structure-activity relationships have suggested the

effects of cationic and aromatic interactions among dopamine, cocaine and the protein

itself [4]. Studies have shown that the phenyl ring of cocaine is necessary for normal

cocaine recognition by the dopamine transporter. Selective blockade of cocaine

recognition in the brain reward pathway of cocaine has importance for anticocaine

medications [5].

Cocaine-induced euphoria appears to result from dopamine reuptake inhibition

that increases extracellular dopamine concentration in the mesolimbic and mesocorticol

pathways in the transporter cocaine exerts a conformational change in the protein [7].

Cocaine appears to brain [6]. Studies have shown that upon binding to the dopamine bind

to the external face of the dopamine transporter [8]. In order to develop an antagonist for

drugs of abuse the relationship between inhibitor binding sites must be determined. The
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challenge is to find a drug that will block the action of a drug of abuse while still

allowing the dopamine transporter to function properly to transport dopamine.

Cocaine is a member of a class of compounds known as phenyltropanes. The

cocaine-like compounds all share a tropane-like structure which contains a quaternary

nitrogen and a phenyl ring that is attached by an ester link. These compounds have a high

affinity for the dopamine transporter. However, other ligands that are structurally

dissimilar to cocaine, such as the GBR 12909 series, have been shown to also have a high

binding affinity for the dopamine transporter and to be highly potent inhibitors of

dopamine reuptake [91 These compounds will be discussed in the next section.

Many compounds are under investigation as potential treatments for cocaine

addiction. One of the most promising candidates is GBR 12909 shown in Figure 1.3.

GBR 12909 is a dopamine reuptake inhibitor. Notice the structure of GBR 12909 is much
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different than that of cocaine and yet both molecules contain the important aromatic

(phenyl) ring and quaternary nitrogen. GBR 12909 was found to be competitively

interactive at the cocaine-binding site. It is also important to note that GBR 12909 is

highly selective for the dopamine transporter and not the serotonin transporter [10]. It

has been shown that only one of the two nitrogens in the central piperazine ring is

required for activity at the dopamine transporter [11]. Structures DM324 (piperazine,

Figure 1.4) and TP250 (piperadine, Figure 1.5) are analogs of GBR 12909 which differ

only in their heterocyclic ring system. They were chosen for analysis because they are

somewhat less flexible than GBR 12909 and therefore are easier to deal with

computationally. They have fewer rotatable bonds than GBR 12909 on the "A"

(naphthyl) side of the molecule, while the "B" (bisphenyl) side is exactly the same as

GBR 12909. Table 1.1 shows the difference in binding and selectivity for GBR 12909,

DM324 and TP250 at the dopamine transporter (DAT) and serotonin transporter (SERT).

The piperidine TP250 has the highest dopamine transporter binding affinity (lowest 1C50)

and significantly better selectivity than the piperazines GBR 12909 and DM324 [12].

Since DM324 and TP250 have different biological activities, a set of conformers of each

analog was analyzed in the present study to see if there are any differences in the

relationship of the torsional angles to the molecular shapes.



The eight rotatable torsional angles of DM324 and TP250 (shown in Figures 1.4.

and 1.5, respectively) are the key to understanding the molecular shape. A centroid is

defined here as the average position of the atoms of a ring. Deepangi Pandit of the

Venanzi group classified each set of DM324 or TP250 conformations into shapes based

on the distance between each "A"-side and each "B"-side centroid. The lowest of these

four values was selected and used to classify the conformers into shapes. Conformers

having the lowest minimum distance between centroids were classified as the C (cup)

shape, followed by the I (intermediate between C and V), V (open cup), and E (extended)

shapes. DM324 and TP250 were found to have a slightly different distribution of

conformations among the shapes. It is for this reason that multivariate analysis is being

used to elucidate the underlying relationships between the torsional angles and the

molecular shapes for the DM324 and TP250 analogs.
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The long-range goal is to see if these subtle differences can be related to

differences in biological activity with the goal of designing a more effective treatment for

cocaine abuse.

1.2.3 Principal Component Analysis and Singular Value Decomposition

Clustering is a method that uses no prior information about the class variable assumed,

and the objective is to find the groups in the data. Principal component analysis (PCA)

constructs a set of uncorrelated directions that are ordered by their variance. In many

cases, directions with the most variance are the most relevant to the clustering. PCA

works by filtering out the features with the lowest correlation between the leading

principal components (PC). However, if all of the principal components are correlated to

each other, then this will result with those specific components having a relatively high

variance. The PC's are orthogonal directions that can be defined as the leading

eigenvectors of the covariance matrix. The eigenvalue associated with each vector is the

variance in that direction. Therefore the first PC explains the most variance [14].

The concept of SAD goes as far back as 1884 and is a more general form of PCA.

SAD can tackle certain problems that standard PCA cannot [15]. SAID decomposes the

data matrix into a score matrix and a loading matrix. Class separation is obtained via the

score plots, whereas relations between variables are visualized through the loading plots.

The application of SVD to the classification of molecular structures has been tested by

application to DNA. SAD has been shown to correctly classify DNA X-ray structures

into four well-known molecular shapes (A, B1, B11, and crankshaft) based on the nine

torsional angles that define the monophosphate backbone [1]. The same general type of

approach was applied here. However, the GBR analogs are far more flexible than DNA.
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The work of Deepangi Pandit seems to indicate that the conformations of DM324

and TP250 take on a continuous range of shapes rather than the well-defined and

distinctively different shapes of DNA. However the purpose of this project is to explore

the potential usefulness of using SAD to uncover the relationships of torsional angles to

subtle differences in conformations of GBR 12909 analogs.



CHAPTER 2

METHODS

2.1 Problem Statement

The SAD method is sensitive to how the data is presented to the program. The data must

first be scaled before it can be decomposed. The "svd" command of MATLAB 6.0 was

used to decompose the original data matrix into the three matrices, U, S, and V. The

output was then plotted for every combination of two PC's. Any separation of conformers

shows that those specific PC's are responsible for that separation. The variables with the

highest correlation coefficient to the PC's that separate the conformers are considered to

be the major contributors. The input data for SAD are the conformations of the GBR

12909 analogs generated by the random conformational search function of SYBYL. The

rows of the input data are the conformers while the columns are the eight torsional

angles.

2.2 Random Conformational Search

Conformational analysis was carried out by Milind Misra of the Aenanzi group using the

Random Search (RS) option in the SYBYL molecular modeling program (available from

Tripos, Inc.). The algorithm is designed to locate the local minima on the conformational

potential energy surface. The RS algorithm randomly alters the values of chosen

torsional angles and then optimizes the geometry by minimizing the energy of the

molecule at each new conformation. All of the eight non-ring torsional angles of DM324

and TP250 were allowed to vary. The torsional angles are numbered consecutively,

9
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starting from the central heterocyclic ring: Al andA2 on the "A" side, with Al the closer

to the central ring; B1 through B6 on the "B" side, with B1 closest to the central ring. All

the angles are shown in Figure 1.4 and 1.5. The rings were held fixed as aggregates. The

conformational energy of the analogs was calculated using the Tripos force field and

Gasteiger-Huckel atomic point charges. The RS was allowed to run for 1,000 cycles and

an energy cutoff of 20 kcal/mol was used to ensure that the RS algorithm collected all

conformers with energies within 20 kcal/mol of the conformation it found to be the global

minimum energy (GEM). The relative energy of each conformer was calculated by

subtracting the absolute energy of the GEM from that of each conformer.

2.3 Data Pre-treatment

The input data consisted of the conformations of each analog (DM324: 728

conformations; TP250: 739 conformations) along with the eight torsional angles (Al, A2,

B1 — B6). The DM324 and TP250 data were analyzed separately. Then they were

combined into one 1467 x 8 matrix and analyzed together. The torsional angles of the

conformers in the original RS data ranged in value from -180 ° to 180° .

In the case of circular data such as torsion angle data, SAID can produce erroneous

results because distances between two circular data objects are defined differently than

the case for linear data [16]. This is illustrated in Figure 2.1 where the distance between

two data points is visualized for both linear and circular examples.



Figure 2.1 Linear data (left) shows a very large difference between the two data points.
However, for circular data (right) the difference between the two data points is small.

Two approaches were used to deal with the circular data. First, the angle range

was changed to be from 0° to 360° as opposed to -180° to 180° because the former range

has proven to be more accurate for representing circular data [16]. The data were changed

by taking all of the negative values and adding 360° to them, while leaving the positive

values untouched. Second, it was suggested by Kathleen Gilbert of the Aenanzi group

that the data should be "GEM-scaled" by taking the values of the torsional angles of the

GEM conformer of each data set and subtracting them from the corresponding torsional

angle values of each conformer in the data set. For example if the GEM value has an Al

angle of 60° and another conformer has an Al angle of 70° then that conformer has an

angle value of 10° relative to the GEM angle. If another conformer has an Al value of 50°

then this new circular value is -10° relative to the GEM angle. Furthermore, to ensure that

no difference between any angle and the GEM angle is either greater than 180° or less

than -180°, the smallest difference between those two angles was taken. For example, if

the Al GEM value is 60° and another conformer has a value of 300° for Al, then to

obtain the new, scaled Al value for that conformer, the GEM value is subtracted from

300° (giving 240°) and that result is then subtracted from 360° to attain a value of -120°.

In other words, that conformer has an Al value that is -120° (rather than 240°) relative to
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the GEM. In the opposite case where the GEM is 300° and the other conformer is 60°,

then that conformer angle value is subtracted from the GEM value to give -240° and 360°

must be added to this value to attain the correct value of 120°. In other words the

conformer has angle 120° relative to that of the GEM.

When analyzed separately, the DM324 and TP250 data were GEM-scaled to their

respective GEM conformers. When they were analyzed together, two separate

calculations were carried out: one in which the data were GEM-scaled to the DM324

GEM and one in which they were GEM-scaled to the TP250 GEM.

Originally the data was median-scaled (see Appendices A and B) because some of

the variables did not have a normal distribution [1]. However this presented a problem

because it led to errors because the data is circular. Box plots of the data were constructed

to see energy outliers. The reason for detecting outliers is to see if any data points should

be discarded from the data set because they are too far away from the median value. The

outliers found were only mild outliers and therefore were not removed.

2.4 Singular Value Decomposition

Singular value decomposition (SAD) decomposes the original data matrix X of

dimensions r x c into three matrices, U, S, and V where X=USV T [17]. Each row of the

matrix represents a separate conformer with eight torsion angle variables contained in the

columns. U represents a unitary matrix of dimensions r x r, V is also a unitary matrix

with dimensions c x c, and S represents a diagonal matrix of singular values with the

same dimensions as the original data matrix. The columns of U are left singular vectors

of XX', where as the rows of V are right singular vectors of X'X. S contains the square
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roots of the eigenvalues ordered from highest to lowest [15]. Therefore the first principal

component has the highest eigenvalue and consequently the largest amount of variance.

These eigenvalues are the singular values.

Important analysis features of SVD are the scores and the loadings. The scores

show the relationships between the principal components and each conformer while the

loadings show the contribution and correlation of each angle. The columns of U contain

the principal component scores; score values were plotted for every possible combination

of two principal components. The rows of SV T contain the principal component loadings

and these were plotted for every possible combination of two principal components [1].

In the loading plots the relative contribution of each torsional angle variable to each set of

principal components is given by the placement of that variable from the origin, with

those that contribute the most being furthest away.

2.5 Variance Explained by Each Principal Component

The matrix S contains the square roots of the eigenvalues. Therefore by squaring these

values the eigenvalue of each principal component is obtained. Consequently, the

variance explained by each principal component is simply the sum of all the eigenvalues

divided by the eigenvalue of that corresponding principal component [1].

2.6 Correlation Coefficients

The correlation coefficients between the variables and the principal components are

obtained by using the MATLAB function corrcoegx,y) where x is the column of the

corresponding U matrix and y is the column of the variable from the data matrix X [1].
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For instance to find the correlation coefficient between PC1 and angle Al, x is the first

column of matrix U, and y is the first column of the data matrix X. The correlation

coefficient is related to the covariance matrix. If C is the covariance matrix, then the

correlation coefficient matrix is the matrix whose (i,j)th element is

The correlation coefficient between the variables and the principal components

indicates which variables contribute to each principal component. High values with either

negative or positive signs indicate major contributors [1].

The correlation coefficients between the variables themselves are obtained by

taking the correlation coefficient matrix of the entire data set. Therefore the correlation

coefficient matrix has dimensions c x c.

2.7 Software

Singular value decomposition including the correlation matrices and plots was performed

with MATLAB for Windows version 6.0 by The Mathworks, Inc. Detection of outliers

was performed using Microsoft Excel Add-In SSC Stat 4.0 box plot option.



CHAPTER 3

RESULTS

3.1 DM324

3.1.1 Random Conformational Search

The random conformational search of DM324 produced 728 conformers with energy

ranging from that of the GEM conformer at 11.2 kcal/mol to a maximum of 28.9

kcal/mol. This is a range of 17.7 kcal/mol relative to the energy of the GEM taken as 0.0

kcal/mol. The torsional angles Al, A2, and Bl-B6 of the GEM conformer are 63.8°,

88.6°, 262.7°, 310.1°, 183.4°, 64.4°, 115.1 0, and 339.8°, respectively. These were used

to carry out the GEM scaling described in the Methods section.

3.1.2 Box Plots

Figure 3.1 shows the box plot of the energies for DM324. The box plot was used as a

means to search for any outliers. The outliers shown are only mild outliers and were

subsequently not removed from the data set before performing SVD analysis.

Figure 3.1 Box plot of DM324 based on energy. Outliers are shown in blue; the median
is represented by the red line.

15
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3.1.3 Singular Value Decomposition

Score plots were plotted for every possible combination of two principal components (see

Appendix C). Those that did not involve PCi did not show separation of the data.

Figure 3.2 shows the score plot of all 728 conformers of DM324 for PCi vs PC2.

Because the data are GEM-scaled the points are given relative to the GEM conformer

located at the origin. It is clear from the figure that the data separate into three distinct

groups along the PC Z-axis. Furthermore each of the three groups appears to be

subdivided into two groups (or possibly three, in the case of the middle cluster). The

separation of data seen in this plot is typical of the score plots of any PC with PCi. The

PCi vs. PC2 plot was selected for presentation because it shows the best separation of the

data and corresponds to the components which explain the highest percentage of the

variance.
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Figure 3.3 shows the loading plot of all eight torsional angles for PC1 vs. PC2.

The variables with the largest contribution to each principal component are furthest from

the origin. The loading plot is a way to visualize the correlation coefficients between the

angles and the PC's (given in Table 3.2 below). The loading vector for each angle has a

component along the PCi (or PC2) axis proportional to its correlation coefficient to PCi

(or PC2). As is evident from Figure 3.3, angles Al and A2 are the highest contributors to

PCi because they are the furthest away from the origin along the PCi axis. Therefore the

angles Al and A2 are responsible for separating the data in Figure 3.2. Since the Al and

A2 loading vectors are found along the negative PCi axis, these variables have a large

negative correlation with PCi and a small positive correlation to PC2.

Figure 3.3 The loadings plot of the variables on PCi vs. PC2.

The terms "high", "middle", and "low" will be used throughout the next sections

to describe the values of the (Al, A2, B1-B6) torsional angles of each conformer relative

to those of the GEM conformer. Each term is associated with a range of values of the
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principal component along which the data separates and can be related to a range of

values of those torsional angles which are the chief contributors to that principal

component. If those torsional angles have a negative correlation to the principal

component (as seen in the loading plot of PCi vs. PC2 for DM324 in Fig. 3.3), then

"high" will be defined in terms of negative values of that principal component as

described below. If, however, those torsional angles which are the chief contributors

have a positive correlation to the principal component (as is the case of TP250, Figures

3.8 and 3.i0), then "high" will be defined in terms of positive values of that principal

component as described in the TP250 section below.

The data points in Figure 3.2 can roughly be divided into three clusters based on

their values along the PCi axis. The left-hand cluster has a PC1 value approximately

equal to -0.02 to -0.06. Conformers in that cluster are defined to have "high" values of

Al and A2 relative to the values of Al and A2 in the GEM conformer. The right-hand

cluster has PCi values equal to 0.02 to 0.06. Conformers in that cluster are defined to

have "low" values of Al and A2 relative to the values of Al and A2 in the GEM

conformer. Data points in the middle cluster have PCi values between -0.02 to 0.02.

Conformers in this cluster have similar (or "middle" between high and low) values of Al

and A2 relative to the values of Al and A2 in the GEM conformer.

The concept of "high", "middle", and "low" can be illustrated by plotting angles

of representative conformers from each of the three groups on the clock face shown in

Figure 3.4.
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Figure 3.4 Clock face showing low, middle, and high values of angle A2
relative to GEM A2 of DM324.

Points on the clock face designate torsional angle values between 0 ° and 360° .

Those data points in the left-hand cluster of Figure 3.2 will be distributed along the

clockface going in a clockwise direction from the GEM value, such that those that

correspond to the more negative value of PC1 will be found on the clock face closer to

the GEM value plus 180°. These are said to have "high" values relative to the

corresponding GEM angle. Similarly, those data points in the right-hand cluster of Figure

3.2 will be distributed along the clockface going in a counter-clockwise direction from

the GEM value, such that those that correspond to the more positive values of PC1 will

be found on the clock face closer to the GEM value plus 180 ° . These are said to have

"low" values relative to the corresponding GEM angle. Those data points in the middle

cluster of Figure 3.2 will be distributed around the GEM values in both a clockwise and

counter-clockwise fashion, depending on their corresponding negative or positive value

of PC1, respectively. These angles are said to have "middle" values with respect to the

corresponding angle in the GEM conformer.

Figure 3.4 plots the A2 values of some DM324 conformers relative to the DM324

GEM value of A2. Torsional angle A2 of the GEM conformer (conformer number 683)
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has a value of 88.6 ° . Conformers with "high" values of A2 are found distributed

clockwise along the clock face closer to 88.6° + 180° = 268.6 °. Conformer values with

"low" values of A2 are found distributed counter-clockwise along the clock face closer to

268.6°. Conformers with "middle" values of A2 are found distributed around the GEM

value at 88.6° . For example conformer 490 has a value of -0.04 for PC1 and is found in

the left-hand cluster of Figure 3.2. It has an A2 value of 219.3 ° and is found on the clock

face by moving in a clockwise direction from the GEM A2 value of 88.6°. Its value is

relatively close to 268.6°, so it is said to be "high" relative to the GEM value of 88.6°.

Similarly conformer 408 has a PCi value of 0.04 and is found in the right-hand cluster of

Fig. 3.2. It has an A2 value of 322.i ° and is found on the clock face by moving in a

counter-clockwise direction from the GEM. It is relatively close to 268.6 ° and is said to

have a "low" value relative to the GEM A2 value. Finally, conformer 682 has a PCi

value of 0.0006 and is found in the center cluster of Figure 3.2. It has an A2 value of

89.9° which is close to the GEM value. So this angle has a "middle" value compared to

the GEM A2 value.

3.1.4 Variance Explained by Each Principal Component

Each principal component has a specific variance associated with it. The sum of the

variances of each PC is equal to 100. The percentage of the variance explained by each

PC is shown in the Table 3.i. Table 3.i shows that for DM324 no one PC explains a

large part of the variance. In fact the first three PC's explain only 53.55% of the

variance.



3.1.5 Correlation Coefficients

Table 3.2 shows the correlation coefficients between the PC's and each variable. The

values in red indicate the major contributors to each PC. This table shows a quantitative

view of Figure 3.3. PCi and Al have the second highest negative correlation (-0.7), while

PC2 and Al have a small positive correlation (0.i). That is why the Al loading vector

appears along the negative PCi axis slightly tilted towards the positive PC1 axis in

Figure 3.3. Similarly, PC1 and A2 have the highest negative correlation (-0.9), while PC2

and A2 have a small positive correlation (0.i). That is why the A2 loading appears

farthest from the origin along the negative PC1 axis, tilted slightly towards the positive

PC2 axis. On the other hand, B2 and B5 have negative correlations to PC2 (-0.6) but a

very small negative correlation (-0.05) to PCi, so their loading vectors appear to fall

along the negative PC2 axis, slightly tilted towards the negative PC1 axis. With this in

mind, it can be said that if a loading plot for a variable appears very close to the origin

this means that it does not contribute to either PC. This is the case of B3, which has a

value of -0.i correlation coefficient with both PCi and PC2.



Table 3.3 shows the correlation coefficients between all eight angles. These

correlation coefficients are not partial coefficients but full coefficients. Table 3.3 shows

that angles Al and A2 have a high positive correlation (0.39), which is the highest
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correlation out of all the possible combinations of variables. This is twice the magnitude

of the next largest correlation coefficients for B2/B3 (0.17), B3/B6 (-0.15) and B4/135

(0.18). This is important because Al and A2 are responsible for separating the data and

contain the highest variances of any of the PC's.

3.2 TP250

3.2.1 Random Conformational Search

The random conformational search of TP250 produced 739 conformers with energy

ranging from that of the GEM conformer at 15.8 kcal/mol to a maximum of 29.1

kcal/mol. This is a range of 13.3 kcal/mol relative to the energy of the GEM taken as 0.0

kcal/mol. The torsional angles Al, A2, and B1-B6 for the GEM conformer are 298.7°,

291.8°, 51.5°, 58.5°, 189.6°, 306.7°, 67.9°, and 6.5°, respectively.

3.2.2 Box Plots

Figure 3.5 shows the box plot of energies of TP250. The box plot shows only mild

outliers and therefore they were not removed from the data set before performing SAID

analysis.

Figure 3.5 Box plot of energy for TP250. Mild outliers are shown in blue; the median is
represented by the red line.
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3.2.3 Singular Value Decomposition

Score plots were constructed for all possible combinations of PC's (see Appendix D) but

the data did not separate on any of the PC's from PC1-PC6. For example, Figure 3.6

shows that the data does not separate on either PC 1 or PC2. This means that the variables

responsible for those PC's do not separate the data into clusters.

However, the score plot of PCi vs PC7 (Figure 3.7) shows that the data separates

into three groups along the PC7 axis. This is typical of the score plot of any PC with PC7.

Figure 3.8 shows the loadings for PC I vs PC7. It is evident that the major contributor to

PC7 is angle B4. Since angle B4 is the furthest away from the origin on the positive PC7

axis, it has a large positive correlation to PC7. Since the data do not separate on PC1, the

angles (A2 and B1) that are the major contributors to that PC are not as important as B4.

Therefore it is angle B4 that is responsible for separating the data into those three groups.
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The three groups in Figure 3.7 contain conformers that have values which are

either "high", "low", or "middle" relative to the B4 value of the GEM conformer, 306.7°,

based on their range of PC7 values. Since angle B4 has a large positive correlation to

PC7, "high" is defined in terms of positive values of PC7 (in contrast to the definition of

"high" for DM324). Conformers that have PC7 values in the range of 0.04 to 0.06 have

"high" values of B4 relative to the GEM B4. Their B4 values would be distributed on a

clock face in a clockwise fashion from the GEM value of 306.7 ° to 126.7° (i.e. 306.7° +

180 ° — 360°). Those with more positive PC7 values would be found closer to 126.7°.

Conformers that have PC7 values in the range of -0.04 to -0.06 have "low" values of B4

relative to the GEM conformer's B4. Their B4 values would be distributed on a clock

face in a counter-clockwise fashion from the GEM value of 306.7° to 126.7° . Those

angles with more negative PC7 values would be found closer to 126.7 °. Conformers with

PC7 values between -0.02 and 0.02 are defined as "middle" relative to the B4 GEM.

Their values would be found on either side of the B4 GEM on the clock face.

Representative conformers were chosen from each of the three groups in Figure

3.7 in order to illustrate the definitions of "high, "middle, and "low". Conformer number

135 is the GEM conformer of TP250. Conformer number 9 has PC7 value equal to 0.05

and was chosen from the "high" cluster of conformers with PC7 between 0.04 and 0.06.

This conformer has a value for B4 of 55.7°, which is found by moving clockwise from

306.7° and is considered "high" relative to the GEM B4. Conformer number 737 was

taken from the "low" cluster with PC7 value of -.04. It has B4 value of 189.3° which is

found by moving in a counter-clockwise direction from 306.7° and is considered "low"
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relative to the GEM. Conformer number 84 was taken from the "middle" cluster and is

very close to the origin. It has a B4 value of 308.8° which is very similar to the GEM.

The data also separates into three groups along the PC8-axis as shown in Figure

3.9. This is typical of the score plots of any PC with PC8. The loading plot for PC1 vs

PC8 (Figure 310) shows that the major contributor to PC8 is angle B3, as B3 is the

furthest from the origin along the positive PC8 axis. Since B3 has a large positive

correlation to PC8, the three clusters can be divided into groups of angles with values that

are "high" (conformers with PC8 between 0.04 and 0.06), "middle" (conformers with

PC8 between -0.02 and 0.02), and "low" (conformers with PC8 between -0.04 and -0.06)

relative to the GEM B3.

Figure 3.9 Score plot of all 739 conformers of TP250 GEM-scaled data for PCi vs.
PC8.
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However, since both angles B3 and B4 are responsible for separating the TP250

data into groups, the data was also plotted on PC7 vs PC8. Nine separate groups are

formed as shown in Figure 3.11.
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The same representative conformers from the PC7 plots were analyzed for their

respective B3 values. The GEM conformer, number 135, has a B3 value of 189.6°.

Conformer number 9 is from the "high" cluster in Fig. 3.9 and has a PC8 value of 0.06. It

has a B3 value of 306.7° which is located by moving clockwise from the GEM by 117.1°.

This angle is relatively far from the GEM and is therefore considered "high" compared to

the GEM. Conformer number 737 is from the "low" cluster in Figure 3.9. It has a PC8

value of -0.06. It has a B3 value of 89.3°, which is located by moving 100.3° in a

counter-clockwise direction from the GEM value. It is relatively far from the GEM and

is considered "low" compared to the GEM value. Conformer number 84 is from the

"middle" cluster in Figure 3.9 and is close to the origin. It has a B3 value of 192.2° which

is very similar to that of the GEM conformer.

Since conformers 9 and 737 both have positive values of PC7 and PC8 in the

range of 0.4 to 0.6, they are found in the group of conformers (Group 3, see below) that

are in the upper right quadrant in Figure 3.11. This means that these particular

conformers all have B3 and B4 values that are high relative to those of the GEM. Since

these conformers have high PC7 and PC8 values, there exists a high correlation with B4

and B3, respectively.

Each of the nine groups in Fig. 3.11 cluster by PC7/PC8 values as well as B3B4

angles. Group 1 in the upper left-hand corner has low PC7 values (-0.04 to -0.06) but

high PC8 values (0.04 to 0.06). Therefore these conformers have low B4 and high B3

values with respect to the GEM'S B4 and B3 values. Group 2, the upper middle group in

Figure 3.11, has middle PC7 values (-0.02 to 0.02) and high PC8 values. These

conformers in turn have B4 values similar to that of the GEM and B3 values higher than
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that of the GEM. Group 3 conformers (in the upper right-hand corner) have high PC7 and

PC8 values and therefore have high B4 and B3 values with respect to the GEM.

Conformers 283 and 737, used as examples above, are found in this group. Group 4, the

middle left group, has low PC7 and middle PC8 values. These conformers have low B4

values and similar B3 values with respect to the GEM. Group 5, the middle group, has

values for both PC7 and PC8 near the origin. Therefore conformers in this group, such as

conformer 84, have B4 and B3 values similar to those of the GEM. Group 6, the middle

right group, has high PC7 values with PC8 values near the origin. Therefore these

conformers have high B4 values and similar B3 values relative to the GEM. Group 7 in

the lower left hand corner of Figure 3.11 has conformers with both low PC7 and PC8

values which, in turn, have low B3 and B4 values with respect to the GEM. Group 8 is

the lower middle group and these conformers have PC7 values near the origin and low

PC8 values. Therefore these conformers have similar B4 values and low PC8 values with

respect to the GEM. Group 9 has high PC7 values and low PC8 values and contains

conformers that have high B4 values and low PC8 values with respect to those of the

GEM.

The major contributors to each PC can also be found by calculating the

correlation coefficients of each variable with each PC. The results of the correlation

coefficients are shown in Section 3.5 and agree with the loading plots of each data set.



As with DM 324, Table 3.4 shows that for TP250 no one PC explains a large part of the

variance. The first three PC's taken together explain only 47.42% of the variance.

3.2.5 Correlation Coefficients

The correlation coefficients between the angles and each of the PC's for the TP250

GEM-scaled data set are given in Table 3.5. This is the data used to produce the

qualitative pictures shown by the loading plots in Figures 3.8 and 3.10. Table 3.5 shows

that A2 has a high positive correlation (0.79) with PCi and a very small negative

correlation (-0.02) with PC7. That is why, in the PCi vs. PC7 loading plots shown in
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Figure 3.8, the A2 loading vector appears far from the origin along the positive PCi axis.

Similarly, B4 has a high positive correlation (0.98) with PC7 and a small positive

correlation (0.08) with PCi. That is why the B4 loading vector is found far from the

origin along the positive PC7 axis, slightly tilted towards the positive PCi axis, in Figure

3.8. B3 has a high positive correlation (0.98) with PC8 but a very small negative

correlation (-0.03) with PCi. That is why, for the PCi vs. PC8 loading plot in Figure

3.10, the B3 loading vector is found far from the origin along the positive PC8 axis,

slightly tilted towards the negative PCi axis. Although A2 is not responsible for

separating the TP250 data, Table 3.5 shows that A2 has a large positive correlation (0.79)

with PCi and a small positive correlation (0.07) with PC8. For this reason, in Figure

3.10 the A2 loading vector is found far from the origin along the positive PC1 axis, tilted

slightly towards the positive PC8 axis.



Table 3.6 gives the correlation coefficients between all the eight angles for the

TP250 GEM-scaled data. These coefficients represent full, not partial, coefficients. The

table shows that, in contrast to DM324, there is no large correlation between any of the

variables. Although angles B4 and B3 separate the data along PC7 and PC8,

respectively, they have only a very small, positive correlation (0.07) because this

separation occurred along two different PC's. This is in contrast to the DM324 case,

where Al and A2 have a correlation of 0.40 (Table 3.3) and both are responsible for

separating along the same PC (PC1). Therefore angles B3 and B4 in the TP250 data set

do not behave similar to angles Al and A2 in the DM324 data set. The angles B1 and B2

have the largest correlation (-.10) in the table. In summary, the DM324 data separate

along PC1 due to Al and A2. The TP250 data separate along PC7 due to B4 and PC8

due to B3.
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3.3 DM324 and TP250 Together

Two different approaches were used to analyze the combined data sets. The first

approach used the GEM conformer of DM324 to scale the data. The second approach

used the GEM conformer of TP250 to scale the data. Only the score plots that showed the

best separation of the data are given below. The other score plots are given in the

appendix (Appendix E: combined data scaled to DM324 GEM; Appendix F. combined

data scaled to TP250 GEM). In the score plots the DM324 conformers are indicated by

circles and the TP250 conformers by plus (+) signs.

Figure 3.12 Score plot of DM324 and TP250 data GEM-scaled to DM324 GEM for
PC1 vs. PC2.

The score plot in Figure 3.12 is somewhat similar to that in Figure 3.2 in which the

DM324 data is analyzed separately. In both figures there are three major groups with two

clear subdivisions in the right- and left-handed groups. Figure 3.12 shows three

subdivisions in the middle cluster of conformers. This is less obvious in Figure 3.2. The
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score plots differ in the orientation of the three clusters with respect to the PC1 and PC2

axes. In Figure 3.2 the three groups are oriented parallel to the PC2 axis and clearly

separate along the PCi axis. In Figure 3.12, they are slightly "skewed" with respect to

the two axes, almost as if the three clusters had been rotated clockwise around the origin.

In the case of the DM324 data, Figure 3.2 is typical of the score plot of any PC

with PC1. This is not true for Figure 3.12. For the combined data, the score plots of

higher PC's with PCi give data that is progressively more skewed so that data separation

decreases as the PC number increases except for PCi vs. PC8 (see Appendix E).

Figure 3.12 shows that the analogs do not separate from one another in the PC 1 vs

PC2 score plot. Conformers of DM324 and TP250 are found throughout each of the

groups. This is typical of all the score plots in Appendices E and F and shows how

similar the analogs are in comparison to one another. This is not surprising based on the

similarity of their molecular structures (Figures 1.4 and 1.5). The two analogs differ only

by the replacement of a nitrogen (lone pair) by a carbon (hydrogen) in the central ring

system.

Figure 3.13 Loading plot of DM324 and TP250 data GEM-scaled to the DM324
GEM for PCi vs. PC2.
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The loading plot of the combined data GEM-scaled to the DM324 GEM (Figure

3.13) is similar to that of the DM324 data (Figure 3.3) in that Al, A2, B2, and B5 are the

major contributors. As with the DM324 data, Al and A2 have large negative correlations

to PCi and are responsible for separating the data along PC1. For both data sets, B2 and

B5 have large negative correlations to PC2. The loading plots differ in the fact that, for

the combined data, Bi has a larger positive correlation to PCi than for the DM324 data

and is therefore a major contributor for the combined data set. The loading plot in Figure

3.13 appears to be rotated clockwise from that in Figure 3.3. This is due to the fact that,

in the combined data, Al and A2 have larger positive correlations to PC2, B2 and B5

have larger negative correlations to PC1, and Bi has a larger positive correlation to PCi

than in the DM324 data. This causes the skewing of the data so that the clusters do not lie

parallel to the PC2 axis and makes it difficult to define "high", "middle", and "low"

values of the angles relative to the GEM angles because the data do not separately cleanly

along PC1.

In contrast, the TP250 data, when analyzed alone, do not separate along PCi as

shown in the PCi vs. PC2 score plot (Figure 3.6). Table 3.5 shows that A2 and Bi are

the chief contributors to PCi and B2 and B6 are the chief contributors to PC2 for this

data set. Bi also has a negative correlation to PC2 (-0.33) and B6 has a negative

correlation to PC1 (-0.38). This gives a very different loading plot (not shown) for the

TP250 data in Figure 3.6 and explains, in part, why the TP250 score plot for PCi vs. PC2

is so different from that of the combined data set. It appears that scaling the TP250 data

to the DM325 GEM angle values causes the TP250 data set to take on some of the

characteristics of the DM324 data set.
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Figure 3.14, the score plot of the combined data for PC7 vs PC8, shows a

separation into three groups along the PC8 axis. This plot is typical of the score plots of

the combined data for any PC with PC8 for this data set. This figure is similar to Figure

3.9 where TP250, when analyzed alone for PCi vs. PC8, separated into three groups

along the PC8 axis. Similarly, the loading plot for the combined data (Figure 3.15) shows

that the major contributor to PC8 is B3, as in the TP250 case (Figure 3.10).



Table 3.7 gives the percentage of the variance explained by each of the PC's. As

in the case of the DM324 data (Table 3.1) and TP250 data (Table 3.4), no one PC

explains a large amount of the variance and the first three PC's explain about 50% of the

variance.
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Table 3.8 gives the correlation coefficients between the angles and the PC's and

explains the loading plots (Figures 3.13 and 3.15). Angles Al and A2 have a large

negative correlation with PCi (-0.66 and -0.89, respectively) and are major contributors

to PC1. Angles Bi (0.49), B2 (-0.47), and B5 (-0.60) are all contributors to PC2. Angle

B3 (0.94) is the only major contributor to PC8, whereas Al (0.55) and B4 (0.45) are

contributors to PC7.

Comparison of Table 3.8 (combined data) to Table 3.5 (TP250 data) explains why

Figure 3.14 is distinctly different than Figure 3.11. Both figures show the score plots for

PC7 vs PC8. The TP250 data (Figure 3.11) separate into nine clusters: three along PC7

and three along PC8, whereas the combined data (Figure 3.14) separate into only three

clusters along PC8. Table 3.5 shows that B4 has a very large positive correlation to PC7

for the TP250 data, whereas Table 3.8 shows that B4 and Al have only a moderate

correlation to PC7 for the combined data. Appendix E shows that the combined data does

not separate along PC7. But both data sets show a very large positive correlation

between B3 and PC8 and both separate into three groups along PC8. Although a large

correlation (±0.9) between an angle and a PC does not guarantee that the data will

separate along that PC, it is interesting to note that in all cases in which the various data

sets are found to separate along a certain PC, each of those PC's has a ±0.9 correlation

coefficient with a particular angle.

Table 3.9 gives the correlation coefficients between the angles. As was seen in

the DM324 results (Table 3.3), angles Al and A2 have a high correlation (0.34). Table

3.9 shows that angles B4 and B5 have the second largest correlation (0.16). This is also
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typical of the DM324 data in Table 3.3. This is in contrast to the TP250 results (Table

3.6) where no angle pairs have a large correlation (the largest being Bi and B2 (-0.10)).

In order to see if the results were independent of what conformer was used as

the reference for the scaling procedure, the data was also scaled relative to the TP250

GEM angle values. The results are discussed in the next section.

3.3.2 Results of Scaling to the TP250 GEM Conformer

Figure 3.16 gives the score plot of the combined data scaled to the TP250 GEM for PCi

vs. PC2. The figure is similar to the DM324 data (Figure 3.2) and the combined data

scaled to the DM324 GEM (Figure 3.12) in that there are three main clusters that separate

along PC1. As in Figure 3.12, the data are skewed relative to the axes and do not cleanly

separate along PC1. Similar behavior is seen in the PCi vs. PC3 and PC1 vs. PC5 score



41

plots (Appendix F). The three clusters do not separate into the subdivisions seen in

Figures 3.2 and 3.12.

Figure 3.16 Score plot of DM324 and TP250 GEM-scaled to TP250 GEM for PCi vs.
PC2.

Although the score plots appear to be somewhat similar, the loading plot for the

combined data scaled to the TP250 GEM (Figure 3.17) is dramatically different from that

of DM324 (Figure 3.3) and the combined data scaled to the DM324 GEM (Figure 3.13).

(It is also different than the loading plot of the TP250 data (not shown) that corresponds

to the PCi vs. PC2 score plot in Figure 3.6.) Comparison of Figure 3.17 to Figures 3.3

and 3.13 shows that Bi has a large positive correlation to PCi for the combined data

scaled to the TP250 GEM, but a positive correlation to PC2 for the DM324 and combined

data scaled to the DM324 GEM. Also, Al and A2 have large negative correlations to

PC2 in the combined data scaled to the TP250 GEM, but large negative correlations to

PC1 for the other two data sets. B5 is not a major contributor in the combined data scaled

to the TP250 GEM, but has a large negative correlation to PC2 in the other two data sets.
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For all three data sets, B2 has a large negative correlation to PC2. So even though all

three data sets separate along PC1, the separation is due to Bi in the case of the combined

data scaled to the TP250 GEM and due to Al and A2 for the other two data sets.

In addition, Figure 3.17 shows that Bi has a moderate negative correlation to

PC2, while A2, B2 and B6 have small correlations to PC1. This causes a slight skewing

of the data so that it does not lie parallel to the PC2 axis and makes it difficult to define

"high", "middle", and "low" values of the angles relative to the GEM angles because the

data do not separately cleanly along PC1.

Figure 3.18 gives the score plot of the combined data scaled to the TP250 GEM

for PC7 vs. PC8. The data separates into three groups along the PC8 axis. This plot is

typical of the score plot of any PC with PC8 for this data set (see Appendix F) in that the

data always separates along the PC8 axis. The corresponding loading plot (Figure 3.19)

shows that angle B3 is the major contributor to PC8. This is similar to the separation seen
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along PC8 due to B3 in the TP250 data (Figures 3.9 and 3.10), as well as the combined

data scaled to the DM324 GEM (Figures 3.14 and 3.15).

Comparison of Figure 3.19 (combined data scaled to TP250 GEM) to Figure 3.15

(combined data scaled to DM324 GEM) shows that in both cases B4 is the major

contributor to PC7 and B3 is the major contributor to PC8. However, B3 and B4 have

positive correlations to PC8 and PC7 for the combined data scaled to the DM324 GEM,

but negative correlations for the other combined data set. Also Al has a large positive

correlation to PC7 for the combined data scaled to the DM324 GEM, but not for the other

data set.
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Table 3.10 gives the percentage of the variance explained by each of the PC's. As

in the case of the DM324 data set, TP250 data set, and the combined data scaled to the

DM324 GEM, no one PC explains a large amount of the variance. The first three PC's

explain only 45.38% of the variance--a result similar to that of the other data sets.

Table 3.11 gives the correlation coefficients between the angles and the PC's for

the combined data scaled to the TP250 GEM. The table explains the loading plots in

Figure 3.17 (PC 1 vs. PC2) and Figure 3.19 (PC7 vs. PC8). For example, although B1 has

a large positive correlation to PC1 (0.92) it lies off the PCi axis in Figure 3.17, tilted

towards the negative PC2 axis because B1 has a negative correlation coefficient (-0.21)

with PC2. Table 3.11 shows that B1 is the major contributor to PCi with correlation

coefficient 0.92; A2 (-0.55), B2 (-0.54), and B6 (0.80) contribute to PC2; B4 (-0.76)

contributes to PC7 and B3 (-0.93) contributes to PC8. Even though B4 has a large

negative correlation to PC7, the data do not separate along PC7 (see Figure 3.18 and



In summary, when analyzed together using the DM324 GEM angles as the GEM,

the combined data set separates along PCi due to Al and A2, as occurred when the

DM324 data set was analyzed alone. The TP250 data set, when analyzed alone, does not

separate along PC1. The combined data set also separates along PC8 due to B3. This is

behavior typical of the TP250 data set, but not of the DM324 data set.

When the analogs were analyzed together using the TP250 GEM angles as the

GEM, the combined data set separates along PC1 due to B1 and along PC8 due to B3.

Some behavior of the TP250 data set when analyzed alone (separation along PC7 due to
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B4) was not observed in the combined data set for either DM324 or TP250 GEM scaling.

This indicates that the results of SAD are sensitive to the conformer chosen as the GEM

for scaling and suggests that it may be more accurate to analyze the data separately,

scaled to each analog's GEM, rather than together, scaled to the GEM of either analog.

The application of SAD to the combined data set (using either GEM scaling) showed the

similarity of the molecular conformations because the DM324 and TP250 conformers

occupy relatively the same regions in the score plots.

Comparison of the score plots and correlation coefficients between angles and

PC's for all four data sets shows that every time data separation occurs along a particular

PC, there is one angle which has a very large (+0.9) correlation coefficient with that PC.

For all four data sets, no one PC explains a significant amount of the variance. Even the

first five PC's explain only 75% of the variance. This is why PC7 and PC8 are important

to the data analysis; they make up 15% of the data.



CHAPTER 4

DISCUSSION

4.1 The Problem of Circular Data

The objective of this project was to see if SAD could be useful in uncovering the

relationship of torsional angles to subtle differences in the conformations of the GBR

12909 analogs, DM324 and TP250. Data separation (i.e. separation of conformers into

groups) was obtained by using a novel scaling technique based on defining the torsional

angles of each conformer relative to the corresponding angles of the GEM conformer.

This was in contrast to median scaling, which failed to lead to data separation. Therefore,

the classification of these conformers is very sensitive to the way in which the data is

scaled.

The original approach was to median-scale the data since this technique was

useful in the analysis of DNA data [1]. Median scaling is obtained by subtracting the

median of each angle (Al, A2, B1-B6) from the value of that angle in each conformer of

the data set. However, after median scaling the data did not separate along any principal

component. The results of median scaling are shown in Appendix A for DM324 and

Appendix B for TP250.

GEM scaling was then hypothesized as a better way to address the issue of data

circularity. It was applied to the DM324 and TP250 data sets separately by scaling the

data to their individual GEM angle values. The data was GEM scaled so that no

difference between any angle and the GEM value of that angle was greater than 180° or

less than -180°, as was explained in Chapter 2. This was shown to be important to
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accurately represent the data because this procedure resulted in a clear separation of the

data along certain principal components. The data separation was attributed to the angles

that have the largest correlation to those principal components.

This procedure allows one to backtrack to find the actual torsional angle values of

a conformer given the conformer's value for any PC, as described in Chapter 3. For

instance if a conformer has a value for PC1, the corresponding angle values can be

obtained by finding the X value through the equation of SAD X=USV', and can then be

descaled. Descaling takes into account the fact that all angles are given relative to the

GEM.

In order to test the effect of GEM versus median scaling on a well-known data set,

a form of GEM scaling was performed on the DNA data (kindly provided by Dr. Ron

Wehrens of the University of Nijmegen) to see if it produced results similar to those of

median scaling. Since the energies of the DNA conformers were not known, the first

conformer in the DNA data set was arbitrarily chosen to be the "GEM". All the angles in

the other conformers were scaled relative to the angles in this conformer using the

procedure described in Chapter 2. The results of GEM scaling for DNA (see Appendix

G) produced better results than the median scaling approach. The data still separate in the

same way as with median scaling, but the clusters are easier to distinguish [1]. Since the

DNA data consists of four different types of structures (A, B1, B11, and crankshaft) this

suggested that it might be useful to analyze the DM324 and TP250 data together by

scaling the data relative to an arbitrarily chosen conformer, such as the GEM of DM324

or the GEM of TP250. This procedure was carried out, but the combined data sets did not

separate as cleanly as the individual data sets nor as well as the DNA data set. This is not
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surprising since DNA can take on four distinctly different shapes, whereas the GBR

12909 analogs can take on a continuum of related shapes. SAD was carried out on the

phosphate backbone torsional angles of DNA which are locked into fairly rigid

orientations due to the restrictions of the double helix. There are few restrictions on the

range of the torsional angles in the GBR analogs. Each torsional angle can take on a

range of values between 0° and 360°, limited only by the fact that certain values are not

allowed because of poor steric interactions (i.e. interactions of high energy) between the

functional groups of the torsional angle. For example it is known that "eclipsed"

conformers (where functional groups on either side of the angle are lined up in close

proximity) are of higher energy than "staggered" conformers (where functional groups

are set as far away from each other as possible, staggered between positions of high

energy). So, for example, rotation around a C (sp a) - C(sp3) bond will result in three low

energy conformers spaced 120° apart. Rotation of the molecule around this bond has

three-fold "symmetry". Since the Random Search procedure that produced the GBR

analog data sets finds only conformers of low energy, only those conformers constitute

the data set. However, since the GBR 12909 analogs are not constrained to a particular

molecular framework, such as a double helix, there is a continuum of related conformers

available to them.

In summary, the idea of GEM scaling seems appropriate on a chemical level

because the torsional angles of the GEM conformer produce the conformer of least

energy. It also makes sense on a statistical level because other types of scaling do not

take the chemical aspect of the data into account. This novel scaling procedure allows the

GEM conformer to act as a circular median.
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4.2 Comparison to Fuzzy and Hierarchical Clustering Results

In order to validate the SAD procedure for the analysis of molecular conformations, the

results of SAD analysis were compared to the results of fuzzy and hierarchical clustering

of the DM324 data set. The DM324 data set was shown in Chapter 3 to separate along

PCi whose major contributors are Al and A2. Fig. 3.2 shows three major groups, each

of which is divided into two parts. Fuzzy clustering of the same DM324 data set was

carried out by Milind Misra of the Venanzi group and Amit Baneijee of the Dave group

at New Jersey Institute of Technology using the Dave k-means fuzzy clustering algorithm

and software. They defined a unique feature vector to analyze the conformers which were

first superimposed by four atoms of the central piperazine ring. The results show three

main clusters (Figure 4.1), each of which is subdivided into two clusters (Figure 4.2).

These results are quite similar to the SAD results (Figure 4.3). In order to be able to

visually compare the SAD results to the fuzzy clustering results, the conformers in the

three figures were superimposed in the same way as above (by four atoms of the

piperazine ring). However, it should be noted that since the SAD technique uses only the

values of the torsional angles, the results are independent of how the conformers are

superimposed. This is in contrast to the fuzzy and hierarchical clustering techniques

which give results that are sensitive to the way in which the conformers are superimposed

From the structure of DM324 (Figure 1.4) it can be seen that the three clusters are

due to the approximate three-fold rotational symmetry around the C (sp a) - C(sp3) bond of

the Al torsional angle. Similarly, each large cluster is divided in two due to the

approximate six-fold rotational symmetry around C (sp a) - C(sp2) bond of the A2

torsional angle. Figure 4.3 is a representation of the six clusters obtained with SVD.
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Although the figure is not identical to Figure 4.2 the results are quite similar. There are

three major groups with two subdivisions.

These results also correlate very well with the hierarchical clustering of the

DM324 conformers performed by Kathleen Gilbert of the Venanzi group using the

Xcluster module of the Macromodel program (available from Schrodinger, Inc., New

York, NY). Appendix H compares the cluster memberships found by all three techniques.

The major similarities are the following. Fuzzy clustering produced three main groups

containing 229, 270, and 229 conformers each. Hierarchical clustering also found three

main groups of sizes 221, 235, and 262. All of the conformers in the 262-member

hierarchical group are also found in the 270-member fuzzy group. The members of the

SAD groups were chosen by inspection of the score plot in Figure 3.2. Conformers were

assigned to three groups based on the following PCi ranges: -0.08 to -0.03, -0.03 to 0.03

and 0.03 to 0.08. Some arbitrariness was involved in the assignment of conformers with

PCi values of 0.03 and -0.03. Nonetheless, SVD found three groups of sizes 182, 234

and 312. In the first group of 182 members, 142 conformers are common to both the 262-

membered hierarchical group and the 270-membered fuzzy group. Furthermore, SAD

found 620 conformers in total agreement with both the fuzzy and hierarchical clustering

group assignments. The other 108 conformers are either in common with the fuzzy or the

hierarchical groups. However, these discrepancies could be due to the somewhat arbitrary

cutoffs that were applied to the PCi values in order to classify the conformers into three

distinct groups.

Figure 4.4 is a representation of the nine well-defined clusters found for TP250

(Figure 3.11). Members of each cluster were defined by inspection of Figure 3.11. The
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nine groups were defined by the ranges of PC and PC8 as defined in Chapter 3.

Specifically, the (PC7,PC8) ranges are: (-0.08 to -0.03, 0.03 to 0.08), (-0.03 to 0.03, 0.03

to -0.03), and (0.02 to 0.08, -0.08 to -0.03). In order to be able to visualize the clustering,

the conformers were superimposed by the atoms that define angles B3 and B4. In

viewing Figure 4.4 (where the A side of the molecule is not shown for clarity) it would

help to keep in mind that a "cluster" member consists of the whole bisphenyl moiety. So

each cluster will occupy a region such that one phenyl ring is in, say, position X and the

other phenyl ring is in position Y. While two clusters might have overlapping X

positions, their Y positions are different and will be clearly observable. This is true for

all combinations of two clusters in that figure. For example, consider the BLUE and

ORANGE clusters; it is clear that BLUE and ORANGE overlap in one region but not in

the other. Since no fuzzy or hierarchical clustering has yet been carried out on the TP250

data set, no comparison can be made. The nine clusters are due to the approximate three-

fold rotational symmetry around the C (sp a) - C(sp3) bond in the B3 torsional angle

combined with the approximate three-fold rotational symmetry around the C (sp a) -

C(sp3) bond in B4.
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FCNI results: Side \

FCM results (6 clusters): Side A clusters

Figure 4.1. Fuzzy clustering of DM324 on the "A" side shows three groups (figure
provided by Milind Misra). Conformers are superimposed by central piperazine ring.
Only atoms involved in the Al and A2 torsional angles are shown. The view is looking
down the Al torsional angle towards the central piperazine ring.

Figure 4.2 Fuzzy clustering of DM324 on the "A" side shows three main groups each
subdivided into two (figure provided by Milind Misra). Same view as Figure 4.1
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4.3 Comparison of Score and Angle Plots

In order to validate the SAID results, the score plots were compared to plots of the "raw"

data (with angles given between a 0° and 360°) and the GEM-scaled data (with angles

scaled relative to the GEM conformer of each data set) in Figures 4.5-4.7. Neither the raw

data nor the GEM-scaled data plots are identical to the score plots because they show the

data plotted in two-dimensional angle space. The score plots, in contrast, show the data

plotted in two-dimensional principal component space, where each principal component

consists of contributions from all eight angles. However, since the data separate along

particular principal components and only certain angles contribute significantly to these

PC's, some similarities can be seen in the raw data, GEM-scaled data, and score plots.

To show that SAD reproduces the known behavior of the data for DM324, the

SVD score plot of PCi vs. PC2 (Figure 3.2) was compared to the raw data plot of A2 vs.

Al (Figure 4.5). Figure 4.5 shows three main divisions of conformers along the Al axis

for Al approximately equal to 60 °, 180°, and 300°. This illustrates the approximate

three-fold rotational symmetry around Al. The data is much more spread out along the

A2 axis. The intermediate region with Al equal to 100°-150° and 300°-360° and A2

equal to 0°-360° is mainly unoccupied and correspond to regions of high energy due to

steric hindrance. The SAD score plot (Figure 3.2) shows regions of space that are also

empty. These regions represent those same angles. This was proven by looking at the

regions that are unoccupied in PCi vs. PC2 and using MATLAB to find the

corresponding Al and A2 values. The regions that are not occupied by any DM324

conformer have PCi values around -0.03 and 0.03. These correspond to Al values of

100°-150° and 300°-360° values with A2 equal to 0°-360°. It is also evident from Figure
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3.2 that there are some conformers that are in these areas, but for the most part these

regions are unoccupied. Therefore SAD reproduces known behavior of the DM324 data.

Since the separation of the DM324 data along PC1 is due to both Al and A2, a

type of angle plot which better represents the relationships in the score plot (Figure 3.2) is

given in Figures 4.6-4.8. Here PC2 is represented by B5, the angle which has the largest

correlation coefficient with PC2 (Table 3.2). PCi is represented by Al (Figure 4.6), A2

(Figure 4.7), or both (Figure (4.8). Figure 4.6 shows that the data clearly separate along

Al at approximately 60°, 180°, and 300°, again illustrating repeating pattern of

conformational minima which determine the approximate the three-fold symmetry

around Al. Figure 4.7 shows that the data separate along A2, approximately at A2 equal
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to 40°, 80°, 160°, 200°, 280°, and 320°. The conformations of low energy are found in

three groups in the range 0°-120°, 120°-240°, and 240°-360°. These three regions are

subdivided in two groups each at approximately 40° and 80°, 160° and 200°, and 280°

and 320°. This illustrates the sterically-allowed values of A2 and corresponds to a very

rough six-fold rotational symmetry around A2. Conformers of high energy would be

found at A2 values of approximately 0°, 120°, and 240°. These are eclipsed conformers

that are of high energy due to the poor steric interactions. Since the Random Search

procedure locates energy minima, few conformers are found in this region. Figure 4.8

combines the plots from Figures 4.6 and 4.7. The x-axis represents either Al or A2. The

subtle division into six groups noted in Figure 4.7 along the A2 axis is overlayed by the

three major groups along the Al axis that are centered between the regions 40°-80°,

160°-200°, and 280°-320°, obscuring the six clusters. This is similar to the way the score

plot of Figure 3.2 represents the data. The same pattern is seen in the GEM-scaled plots

in Figures 4.9 through 4.12. These plots are given relative to the Al, A2, and B5 angles

taken as zero.



59

Figures 4.13 and 4.14 plots the TP250 raw (Figure 4.13) and GEM-scaled (Figure

4.14) data that correspond to the score plot in Figure 3.11. Since the TP250 data separate

along PC7 (due to B4) and PC8 (due to B3) and since both angles have large correlation

coefficients to their respective PC's (Table 3.5), plotting the data in (B3, B4) space gives

a fairly direct comparison to the score plot in (PC8, PC7) space.

The score plot for PC7 vs. PC8 (Figure 3.11) shows nine clusters. The raw data

plot for TP250 (Figure 4.13) also shows nine clusters centered at (B3, B4) values of

approximately (60 °, 600), (60°, 180°), (60°, 300°), (180°, 60°), (180°, 180°), (180°, 300°),

(300°, 60°), (300°, 180°), and (300°, 300°), and illustrate the threefold rotational

symmetry around both B3 and B4. The empty spaces represent combinations of torsional

value of B3 and B4 not found in any of the low energy conformers. They correspond to

regions of high energy due to poor steric interactions. A few stray conformers fill some

unoccupied spaces but mainly these spaces can be considered "forbidden" to the

conformer.
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Figure 4.14 presents the GEM-scaled TP250 data plotted in (B3, B4) space. The

clusters represent combinations of torsional values of B3 and B4 relative to their GEM

values taken as zero. Figure 4.14 is similar to Figure 4.13.

A check was made of the descaling procedure in the following way. A conformer

was selected from each of the nine clusters in the score plot in Figure 3.11. The data was

descaled to see to which cluster that conformer belonged on the raw data plot of Figure

4.13. Using the notation of Chapter 3, the clusters in each figure were numbered

consecutively across from the upper left (Group 1) to the upper right (Group 3) and so on

down to the lower right (Group 9). Each conformer was found in the same group in both

the figures. For example conformer number 326 is in Group 5 on both plots. It has B3

and B4 values similar to the GEM and is found in the same cluster as the GEM on both

plots. Conformer 157 is found in Group 4 in both plots. It has a B3 value similar to that

of the GEM, but a B4 value smaller than the GEM's B4 value. Conformer 558 is in

Group 7 in both figures. This conformer has a value of 84.8° and 149.8 ° for B3 and B4,

respectively, both of which are less than those of the GEM. Conformer 473 is in Group 8

on both plots. This conformer has a value of 63 ° and 281° for B3 and B4, respectively.

This conformer has a value less than that of the B3 of the GEM but similar to the B4 of
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the GEM. Conformer 322 has a B3 value of 300.6 ° and a B4 value of 317.5 ° . This

conformer's B3 value is much larger than that of the GEM, but its B4 value is similar to

that of the GEM. This conformer falls into Group 2 in both plots. Conformer 727 has a

B3 value of 297.8° and a B4 value of 73.8°, both of which are larger than the GEM (in a

clockwise direction). This conformer is in Group 3 in both plots. Conformer 151 has a B3

value of 181.7° which is similar to that of the GEM, and a B4 value of 61.5° which is

larger than that of the GEM in a clockwise direction. This conformer falls into Group 2 in

both plots. Conformer 684 has a B3 value of 73 ° which is much less than that of the GEM

and a B4 value of 55.6° which is greater than that of the GEM. This conformer falls in

Group 9 on both plots.

4.4 Evaluation of Combined Data Analysis

The purpose of analyzing the data together was to see if the analogs separate from each

other. The data was combined into one large matrix and analyzed in two different ways.

The first approach scaled all the data to the GEM angles of analog DM324. The second

approach scaled all the data to the GEM angles of analog of TP250. The first approach

produced three major groups with both DM324 and TP250 conformers occupying all

three groups. Instead of the three groups separating along one axis, these groups were

slightly slanted with respect to PCi and PC2. The major contributors to PCi were still Al

and A2; however the TP250 data now separated along PC. This did not occur when

TP250 was analyzed alone nor did it occur when the data were combined and the data

scaled to the GEM of analog TP250. The first approach also showed the data separating
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along PC8, where the major contributor was B3. This was not observed when DM324

was analyzed separately.

The second approach also produced three major groups along PCi (due to B 1,

instead of Al and A2) and PC8 (due to B3). Furthermore, B4 was still the major

contributor of PC7 but did not contribute heavily to the separation of the data. In contrast

to the first approach, angles Al and A2 were not responsible separating the data along

PC1. This is similar to the results of the TP250 data when analyzed separately. However,

when the DM324 data were analyzed separately, it did not separate on the "B" side of the

molecule. Therefore it seems that when analyzed together, the behavior of the analogs is

influenced by the GEM analog to which they were scaled. Therefore this leads to the

conclusion that DM324 truly separates on the "A" side (due to angles Al and A2), while

TP250 truly separates on the "B" side (due to angles B3 and B4).



CHAPTER 5

CONCLUSION

The purpose of applying SAD to two analogs of GBR 12909 was to attempt to uncover

the relationships of torsional angles to the subtle differences in the conformations of the

analogs. SVD was demonstrated to be able to separate conformers of analogs into clusters

once a novel scaling technique based on the GEM conformer was introduced to treat the

problem of circular data. The clusters were defined by torsional angles that have the

largest correlation to the principal components which separate the data. Analog DM324,

the piperazine analog, showed separation along PCi when the data was examined in a

score plot in (PC 1, PC2) space. The major contributors to PC1 are angles A 1 and A2,

which represent the "A" side of the molecule. Separation of the DM324 data along Al

and A2 was noted when the data were plotted in (B5, Al) and (B5, A2) torsional angle

space, where B5 is the chief contributor to PC2. For both the raw and GEM-scaled data,

angle Al separated the data into three large clusters (due to three-fold rotational

symmetry around Al), whereas angle A2 separated the data into six smaller clusters (due

to approximate six-fold rotational symmetry around A2). The conformers identified by

SAD to be in the three large clusters were found to be quite similar to the cluster

memberships determined by fuzzy and hierarchical clustering.

Analog TP250, the piperadine analog, showed separation along PC7 (due to B4)

and PC8 (due to B3). These angles represent the "B" side of the molecule. Each score

plot involving PC7 or PC8 showed three clusters, corresponding to three-fold rotational

symmetry around either B3 or B4. Therefore, nine clusters were obtained when the data
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were plotted in (PC7, PC8) space. Nine clusters were also obtained when the data were

plotted in (B4, B3) torsional angle space using either the raw or GEM-scaled data.

Representative structures from regions of both the DM324 and TP250 score plots

were chosen to validate the results of SVD against the raw data plots. The SVD results

were shown to be consistent with the raw data plots in defining which regions of torsional

angle space can be occupied by the low energy conformers and which regions are

forbidden.

Singular Value Decomposition uncovered a difference in DM324 compared to

TP250. In DM324 angles Al and A2 separate the data into clusters, whereas in TP250

angles B3 and B4 separate the data into clusters. It is not obvious why this should be

true, given the similarity of the two molecular structures (Figures 1.4 and 1.5). This

result may be an artifact of scaling each data set to each analog's GEM torsional angles.

Additional studies were carried out in which the GEM of each analog was used to scale

the data. In both cases the data separated along PC8 (due to B3). For the combined data

scaled to the DM324 GEM, the data also separated along PCi (due to Al and A2). For

the combined data scaled to the TP250 GEM, the data also separated along PCi (due to

B1) Therefore, when the TP250 GEM was used to scale the data, separation only

occurred on the "B" side. This proved to be useful to validate the results of analyzing the

data separately.

Taken together, the results seem to indicate that DM324 truly separates on the

"A" side, while TP250 truly separates on the "B" side. Therefore when the DM324 and

TP250 data are analyzed separately, one is able to see the subtle differences between the

analogs; when the data are analyzed together, the similarity of the analogs is apparent.
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The significance of this work lies in the development of a novel scaling technique

for circular data and in the identification of clusters containing sets of molecular

conformations. The present work is the first application of SAD to the analysis of very

flexible molecules, such as the GBR 12909 analogs. In the future, representative

conformations of these analogs will be used in pharmacophore modeling with the

ultimate goal of designing a drug useful in the treatment of cocaine abuse.
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Figure B.4 Score plot of median-scaled TP250 data.
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Figure B.5 Score plot of median-scaled TP250 data.



Figure C.1 Score plots of GEM-scaled DM324 data.
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Figure C.2 Score plots of GEM-scaled DM324 data.
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Figure C.3 Score plots of GEM-scaled DM324 data.



Figure C.4 Score plots of GEM-scaled DM324 data.
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Figure C.5 Score plots of GEM-scaled DM324 data.



Figure D.1 Score plots of GEM-scaled TP250 data.
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Figure D.2 Score plots of GEM-scaled TP250 data.



Figure D.3 Score plots of GEM-scaled TP250 data.
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Figure D.4 Score plots of GEM-scaled TP250 data.
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Figure D.5 Score plots of GEM-scaled TP250 data.
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APPENDIX F

COMBINED DATA FOR DM324 AND TP250 SCALED TO TP250 GEM

The following figures are the result of GEM scaling the data for both analogs using the
GEM of TP250 to scale the data.
The MATLAB program which creates the graphs is contained in the following directory:
/afs/cad/rese,arch/chem/venanzi/6/SVD/MATLAB programs/combined/usingTP250/runsvdscoresbothcircularTPgem.m

The MATALB data which is needed to run the program is contained in the following
directory:
/afs/cad/research/chem/venanzi/6/SVD/MATLAB programs/combined/usingTP250/DMTPcircularscaledTPgem.mat

(a)	 (b)

(c)	 (d)

Figure F.1 Score plots for DM324 and TP250 GEM-scaled to TP250 GEM.
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Figure F.2 Score plots for DM324 and TP250 GEM-scaled to TP250 GEM.
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Figure F.3 Score plots for DM324 and TP250 GEM-scaled to TP250 GEM.
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Figure F.4 Score plots for DM324 and TP250 GEM-scaled to TP250 GEM.
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Figure F.5 Score plots for DM324 and TP250 GEM-scaled to TP250 GEM.



Figure G.2 GEM-scaled DNA data of PC1 vs PC3
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The following figures are the result of median scaling the data for DNA provided by Dr.
Ron Wehrens of the University of Nijmegen. The MATLAB program which creates the
graphs is contained in the following directory:
/afs/cad/research/chem/venanzi/6/SVD/MATLAB programs/dnalmed/runsvd.m
The MATALB data which is needed to run the program is contained in the following

directory:
/afs/cad/research/chem/venanzi/6/SVD/MATLAB programs/dna/med/test.mat

Figure G.3 Median-scaled score plot of DNA on PC1 vs PC2.

Figure G.4 Median-scaled data plot of DNA on PC1 vs PC3.
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Minor A, B, C, and D indicates groups that do not belong to the three major clusters.
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