

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

STATISTICAL ANOMALY DENIAL OF SERVICE AND
RECONNAISSANCE INTRUSION DETECTION

by
Zheng Zhang

This dissertation presents the architecture, methods and results of the Hierarchical

Intrusion Detection Engine (HIDE) and the Reconnaissance Intrusion Detection

System (RIDS); the former is denial-of-service (DoP) attack detector while the latter

is a scan and probe (P&P) reconnaissance detector; both are statistical anomaly

systems.

The HIDE is a packet-oriented, observation-window using, hierarchical, multi-

tier, anomaly based network intrusion detection system, which monitors several

network traffic parameters simultaneously, constructs a 64-bin probability density

function (PDF) for each, statistically compares it to a reference PDF of normal

behavior using a similarity metric, then combines the results into an anomaly status

vector that is classified by a neural network classifier. Three different data sets

have been utilized to test the performance of HIDE; they are OPNET simulation

data, DARPA'98 intrusion detection evaluation data and the CONEX TESTBED

attack data. The results showed that HIDE can reliably detect DoP attacks with

high accuracy and very low false alarm rates on all data sets. In particular, the

investigation using the DARPA'98 data set yielded an overall total misclassification

rate of 0.13%, false negative rate of 1.42%, and false positive rate of 0.090%; the

latter implies a rate of only about 2.6 false alarms per day.

The RIDS is a session oriented, statistical tool, that relies on training to model

the parameters of its algorithms, capable of detecting even distributed stealthy

reconnaissance attacks. It consists of two main functional modules or stages: the

Reconnaissance Activity Profiler (RAP) and the Reconnaissance Alert Correlater

(RAC). The RAP is a session-oriented module capable of detecting stealthy scanning

and probing attacks, while the RAC is an alert-correlation module that fuses the RAP

alerts into attack scenarios and discovers the distributed stealthy attack scenarios.

RIDS has been evaluated against two data sets: (a) the DARPA'98 data, and (b) 3

weeks of experimental data generated using the CONEX TESTBED network. The

RIDS has demonstrably achieved remarkable success; the false positive, false negative

and misclassification rates found are low, less than 0.1%, for most reconnaissance

attacks; they rise to about 6% for distributed highly stealthy attacks; the latter is

a most challenging type of attack, which has been difficult to detect effectively until

now.

STATISTICAL ANOMALY DENIAL OF SERVICE AND
RECONNAISSANCE INTRUSION DETECTION

by
Zheng Zhang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Department of Electrical and Computer Engineering

May 2004

Copyright © 2004 by Zheng Zhang

ALL RIGHTS RESERVED

APPROVAL PAGE

STATISTICAL ANOMALY DENIAL OF SERVICE AND
RECONNAISSANCE INTRUSION DETECTION

Zheng Zhang

Dr. Constantine N. Manikopoulos, Dissertation Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Atam P. Dhawan, Committee Member 	 Date
Professor and Chairman of Electrical and Computer Engineering, NJIT

Dr. Sotirios G. Ziavras, Committee Member 	 Date
Professor and Associate Chair of Electrical and Computer Engineering, NJIT

Dr. Roberto Rojas-Cessa, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Jose Ucles, Committee Member 	 Date
President, XPRT Solutions, Inc.

BIOGRAPHICAL SKETCH

Author: 	 Zheng Zhang

Degree: 	 Doctor of Philosophy

Date: 	 May 2004

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering
New Jersey Institute of Technology, Newark, NJ

• Master of Science in Telecommunication Engineering
Beijing University of Posts and Telecom., Beijing, China

• Bachelor of Science in Electrical Engineering
Zhejiang University, Hangzhou, Zhejiang, China

Major: 	 Electrical Engineering

Presentations and Publications:

Zhang, Z. and Manikopoulos, C., "Detecting Denial-of-Service Attacks Using PDF
Statistics", to be submitted to IEEE Trans. Pystems, Man and Cybernetics.

Zhang, Z. and Manikopoulos, C., "Methods of Classifier Training for Anomaly
Network Intrusion Detection in a Production Network Using Test Network
Information", to be submitted to IEEE Trans. Pystems, Man and Cybernetics.

Zhang, Z. and Manikopoulos, C., "Architecture of the Reconnaissance Intrusion
Detection System (RIDS)" , submitted to the W004 IEEE Workshop of Information
Aussrance (IAWW004), June, 2004.

Zhang, Z. and Manikopoulos, C., "Detecting Denial-of-Service Attacks Through
Feature Cross-Correlation", in the Poster Pession of the W004 IEEE Parnoff
Symposium, April, 2004.

Manikopoulos, C. and Zhang, Z., "Packet Anomaly Intrusion Detection (PAID)",
Proceedings of the Workshop on Statistical and Machine Learning Techniques in
Computer Intrusion Detection, September, 2003.

iv

Zhang, Z. and Manikopoulos, C., "Investigation of Neural Network Classification
of Computer Network Attacks" , Proceedings of the International Conference on
information Technology: Research and Education (ITRS W003), August 2003.

Zhang, Z., Manikopoulos, C. and Jorgenson, J., "Representation and Reduction of
Network Intrusion Detection Data" , WPEAS Transactions on Communications,
vol. 1, pp. 47-52, 2002.

Zhang, Z., Manikopoulos, C. and Jorgenson, J., "Representation and Reduction
of Network Intrusion Detection Data" , Proceedings of the 6th World
Multiconference on Circuits, Pystems, Communications & Computers (CPCC
W00W), July 2002.

Zhang, Z. and Manikopoulos, C., "Methods of Classifier Training for Anomaly
Network Intrusion Detection in a Deployed Network Using Test Network
Information" , Proceedings of the 3rd Annual IEEE Systems, Mans, Cybernetics
Information Assurance Workshop (lAW W00W), June 2002.

Zhang, Z., Manikopoulos, C. and Jorgenson, J., "Experimental Comparisons of
Binning Schemes In Representing Network Intrusion Detection Data", The 36th
Conference of Information Sciences and Systems (CISSW00W), March 2002.

Zhang, Z., Manikopoulos, C. and Jorgenson, J., "Architecture of Generalized
Network Service Anomaly and Fault Thresholds", Proceedings of IFIP/IEEE
International Conference on Management of Multimedia Networks and Services
W001, October 2001.

Zhang, Z. and Manikopoulos, C., "Neural Networks in Statistical Anomaly Intrusion
Detection" , Neural Network World, International Journal on Non-Ptandard
Computing and Artificial Intelligence, vol. 11, no. 3, pp. 305-316, 2001.

Zhang, Z., Manikopoulos, C., Jorgenson, J. and Ucles, J., "Comparison of
Wavelet Compression Algorithms in Network Intrusion Detection", Proceedings
of The International Conference on Computing and Information Technologies
(ICCITW001), October 2001.

Zhang, Z., Li, J., Manikopoulos, C., Jorgenson, J. and Ucles, J., "Neural Networks
Using Neural Network Classification" , Proceedings of the 5th World Multi-
conference on Circuit, Systems, Communications and Computers (CSCCW001),
July 2001.

Zhang, Z., Li, J., Manikopoulos, C., Jorgenson, J. and Ucles, J., "HIDE: A
Hierarchical Network Intrusion Detection System Using Statistical Preprocessing
and Neural Network Classification" , Proceedings of the Wnd Annual IEEE
Systems, Mans, Cybernetics Information Assurance Workshop (IAWW001), June
2001.

Zhang, Z., Li, J., Manikopoulos, C., Jorgenson, J. and Ucles, J., "A
Hierarchical Anomaly Network Intrusion Detection System Using Neural
Network Classification", Proceedings of W001 WPES International Conference
on Neural Networks and Applications (NNA'01), February 2001.

vi

To my parents

and

my beloved wife, Xiao Shi.

vii

ACKNOWLEDGMENT

I would like to express my sincere thanks to my advisor, Constantine N. Manikopoulos,

for giving me the opportunity to work with him and leading me into this exciting field.

This dissertation could not have been completed without his continuous guidance,

support and encouragement. Moreover, he taught me the discipline to become a

good and effective researcher.

Special thanks to Dr. Atam Dhawan, Dr. Sotirios Ziavras, Dr. Roberto Rojas-

Cessa and Dr. Jose Ucles for serving on my committee, reviewing this dissertation

and providing valuable suggestions.

All the fellow members of my project team and all my friends in and out of

NJIT have been great sources of ideas and fun. I thank them for making my Ph.D.

study productive and enjoyable.

I am forever indebted to the love and trust of my family. My parents, my sister

and my wife have always been a source of inspiration, support, advice and happiness

without which I would not have been able to go this far. Words are not enough to

express how much I need to thank you.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 	 1

1.1 Background in Intrusion Detection 	 1

1.2 Dissertation Approach 	 2

1.3 Basic Concepts 	 3

1.3.1 	 Terminologies 	 4

1.3.2 	 Evaluation Criteria 	 4

1.4 Dissertation Outline 	 6

2 INTRUSION DETECTION AND LITERATURE REVIEW 	 7

2.1 Information Security 	 7

2.2 A Generic Diagram for Intrusion Detection Systems 	 9

2.3 The State of the Art in Intrusion Detection 	 10

2.3.1 	 Statistical Detection 	 10

2.3.2 	 Neural Networks 	 11

2.3.3 	 Pattern Matching Systems 	 11

2.3.4 	 Data Mining Approaches 	 11

2.3.5 	 Computer Immune Systems 	 12

2.4 Attack Scenarios and Alert Correlation 	 13

2.5 Intrusion Detection Evaluation 	 15

2.5.1 	 DARPA/MIT-LL Intrusion Detection Evaluation Projects . . . 16

2.6 The Framework of EWIDS 	 17

2.6.1 	 Known Activity Filter 	 18

3 HIDE: A HIERARCHICAL INTRUSION DETECTION ENGINE 	 19

3.1 Literature Review in DoP Attack Detection 	 19

3.2 The System Architecture of HIDE 	 20

3.3 The Monitored Events and Descriptive Statistical Features 	 21

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.4 The PDF Statistical Model 	 22

3.5 The Detection Results of HIDE 	 26

3.5.1 The OPNET Simulation Data 	 26

3.5.2 The DARPA'98 Intrusion Detection Evaluation Data 	 28

3.5.3 The CONEX TESTBED Data 	 30

3.5.4 Existing DARPA Results of Other IDSs 	 32

4 IDENTIFYING IMPORTANT HIDE FEATURES 	 34

4.1 Introduction 	 34

4.1.1 Related Work in Intrusion Detection 	 36

4.2 Objective Functions 	 36

4.3 Classification using Single Feature 	 39

4.4 Experimental Results 	 39

4.4.1 Feature Filtering Based on All Attacks 	 40

4.4.2 Feature Filtering Based on Individual Attacks 	 41

4.4.3 The Feature Subset of Decision Tree 	 44

4.4.4 Comparing Different Feature Subsets 	 44

4.5 Conclusions 	 45

5 OPTIMIZING HIDE 	 47

5.1 The Study of PDF Partitioning Algorithms 	 47

5.2 Compressing PDFs Using Wavelet Compression 	 50

5.3 The Effectiveness of Similarity Metrics 	 53

5.4 The Study of Neural Network Classifiers 	 54

6 METHODS OF CLASSIFIER TRAINING IN A PRODUCTION
NETWORK USING TEST NETWORK INFORMATION 	 58

6.1 The Challenge in Training Classifiers for a Production Network . . . 	 58

6.2 Attack Modeling and Simulation 	 61

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

	

6.2.1	 Attack Abstract Extraction 	 63

'	 6.2.2	 Attack Transplant Sample Grafting 	 63

	

6.2.3	 PDF Figures of a Grafted Attack Sample 	 64

6.3 The OPNET Experimental Results 	 64

6.3.1	 Model Similarities 	 66

6.3.2	 Comparison of Classification Performance 	 67

6.4 The DARPA-CONEX TESTBED Experimental Results 	 69

6.5 Conclusion 	 70

7 RECONNAISSANCE INTRUSION DETECTION SYSTEM 	 72

7.1 Literature Review in Reconnaissance Intrusion Detection 	 72

7.2 Reconnaissance Intrusion Detection System 	 73

7.3 Reconnaissance Activity Profiler 	 74

7.3.1	 Session Monitoring and Categorization 	 75

7.3.2	 RAP Events and Statistical Features 	 76

7.3.3	 Reference Models and Score Metrics 	 77

7.3.4	 Session Classifier 	 78

7.4 Reconnaissance Activity Conelater- 	 78

7.4.1	 Address-Based Vertical Alert Correlation 	 79

7.4.2	 Similarity-Based Horizontal Scenario Correlation 	 80

7.4.3	 RAC Events and Statistical Features 	 81

7.4.4	 Scenario Classification 	 82

7.4.5	 Correlation Decision 	 82

7.5 Experimental Results 	 85

7.5.1	 Results on the DARAPA'98 Data Set 	 86

7.5.2	 Results on the CONEX TESTBED Non-Stealthy Attacks . . . 87

7.5.3	 Results on the CONEX TESTBED Stealthy Attacks 	 88

xi

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

7.6 Comparison and Conclusion 	 90

8 CONCLUSIONS 	 92

8.1 The System Architecture and the Statistical Model of HIDE 	 92

8.2 HIDE Feature Subset Selection 	 92

8.3 Systematic Research Efforts to Optimize the Performance of HIDE . 	 92

8.4 Methods of Classifier Training in a Production Network 	 93

8.5 Reconnaissance Intrusion Detection System 	 94

APPENDIX A MONITORED STATISTICAL FEATURES 	 95

A.1 The HIDE Features 	 95

A.1.1 The IP Features 	 95

A.1.2 The TCP Features 	 96

A.1.3 The UDP Features 	 97

A.1.4 The ICMP Features 	 97

A.1.5 Features in the OPNET Data Set 	 98

A.1.6 Features in the DARPA'98 and CONEX TESTBED Data Sets 98

A.2 The RAP Features 	 99

A.2.1 The TCP Features 	 99

A.2.2 The ICMP Features 	 101

A.2.3 The UDP Features 	 103

A.3 The RAC Features 	 104

APPENDIX B ATTACK AND BACKGROUND TRAFFIC EMULATION IN
THE CONEX TESTBED NETWORK 	 107

B.1 The Network Topology 	 107

B.2 The Emulation Tools 	 109

B.2.1 Background Traffic Emulation 	 109

B.2.2 Attack Traffic Emulation 	 109

xii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

B.3 The Attack Labeling Tool 	 110

REFERENCES 	 113

LIST OF TABLES

Table Page

3.1 Traffic Load Specifications of the OPNET Simulation 	 27

3.2 Summarized Detection Results of the DARPA'98 Data Set 	 29

3.3 Itemized Detection Results of the DARPA'98 Data Set 	 30

3.4 Summarized Detection Results on the CONEX TESTBED Data Set 	 . . 31

3.5 Itemized Detection Results on the CONEX TESTBED Data Set 	 32

4.1 The Feature Ranking Table of All Attacks 	 40

4.2 The Feature Ranking Table of the neptune Attack 	 41

4.3 The Feature Ranking Table of the scurf Attack 	 42

4.4 The Feature Ranking Table of the pod Attack 	 43

4.5 The Features in Set22 	 43

4.6 The Features Selected by Decision Tree 	 44

4.7 The Performance of Different Feature Sets 	 44

5.1 Number of Wavelet Coefficients per Range 	 51

6.1 The Average Similarity Results 	 66

6.2 Misclassification Rates after Training for 300 Epochs 	 68

6.3 The Misclassification Rates on the CONEX TESTBED Data 	 69

7.1 The RAP Detection Results on the DARPA'98 Data 	 86

7.2 Attack Scenarios in the Tuesday of Week 6 	 87

7.3 RAP Detection Results on the Non-Stealthy Data Set 	 88

7.4 RAC Detection Results on the Non-Stealthy Data Set 	 88

7.5 RAP Detection Results on the Stealthy Data Set 	 89

7.6 RAC Detection Results on the Stealthy Data Set 	 89

7.7 The RAC Decision Results of CONEX TESTBED Stealthy Data 90

xiv

LIST OF FIGURES

Figure Page

1.1 A sample ROC curve. 	 5

2.1 Anti-intrusion techniques 	 8

2.2 A generic diagram of intrusion detection systems 	 9

2.3 A sample attack scenario 	 13

2.4 The system diagram of the EWIDS. 	 17

2.5 Known activity filter 	 18

3.1 The diagram of intrusion detection agent. 	 21

3.2 The probe and the event preprocessor 	 22

3.3 The statistical model of HIDE 	 24

3.4 OPNET simulation testbed 	 26

3.5 The detection results on the OPNET data 	 27

3.6 The DARPA IDEVAL network 	 28

3.7 The topology of the CONEX TESTBED network 	 30

4.1 The computation cost at different a's 	 37

5.1 Sample PDF figures with different partitioning algorithms 	 49

5.2 Misclassification rates vs. attack levels 	 50

5.3 The sample figure of a PDF with different wavelet compressions. 	 51

5.4 The results of wavelet compression experiments. 	 52

5.5 The misclassification rates of different similarity metrics 	 54

5.6 The models of neural classifiers tested 	 55

5.7 The results of BP and PBH classifiers 	 57

6.1 The phases of attack estimation. 	 62

6.2 The PDF figures in attack grafting. 	 65

6.3 The ROC curves at different attack levels 	 68

6.4 The ROC curves of the CONEX TESTBED experiment 	 70

Dv

LIST OF FIGURES
(Continued)

Figure Page

7.1 Reconnaissance intrusion detection system. 	 73

7.2 The diagram of the reconnaissance activity profiler 	 74

7.3 The session categories 	 75

7.4 Sample categorical reference models. 	 77

7.5 Sample continuous reference models. 	 78

7.6 Reconnaissance activity correlation. 	 79

7.7 Sample scenario sets. 	 80

7.8 The horizontal scenario correlation. 	 81

7.9 Scenario correlation decision. 	 82

7.10 A sample diagram of attack scenarios. 	 83

7.11 The RAC correlation decision algorithm 	 85

B.1 The topology of the CONEX TESTBED network. 	 108

B.2 The background traffic generator 109

B.3 The attack traffic generator 	 109

B.4 The system diagram of the packet filter 111

Dvi

CHAPTER 1

INTRODUCTION

1.1 Background in Intrusion Detection

The ubiquity of the Internet allows attackers to pose serious threats on the security

of computer infrastructures and the integrity of sensitive data. Computer-based

intrusions in the form of a series of malicious activities typically target computer

systems or the services that a host provides. The attackers often aim to obtain

unauthorized privileges or to downgrade or block the availability of the services.

Computer attacks may be classified into the following categories [1]:

Reconnaissance Attacks are actions initiated by attackers to probe a victim
network for vulnerable servers and possible penetrating points.

Denial-of-Service Attacks are destructive attempts to interrupt or degrade the
services provided by the system so that legitimate users are denied from
accessing these services.

Privilege Escalation Attacks are attacks through which an attacker illegally
escalates his privilege level to access and control the victim system.

Data Intercept/Alternation Attacks are activities that aim to intercept and
alter sensitive data without the authorizations to do so.

System Use Attacks are actions to hijack the victim system for some other
unauthorized usage, such as converting the host into an FTP server to store
pirated music, or using the system as a staging point to launch attacks on other
systems.

Intrusion detection systems (IDSs) are designed to automatically detect these

malicious activities against a computer or a computer network.

Intrusion detection has been an active field of research for more than two decades

since James Anderson published his ground-breaking paper about computer security

in 1980 [2]. In 1987, Dorothy Denning [3] laid the methodological framework to detect

computer-based intrusions. The basic assumptions of intrusion detections are:

1

2

• The behaviors of users and programs are observable and can be modeled from
various types of audit data, for example, from system logs or from network
traffic;

• Moreover, by finely tuning the system, intrusive activities can be differentiated
and identified from normal activities.

Intrusion detection techniques can be broadly partitioned into two

complementary approaches: cisuse detection, and anocaly detection. Misuse

detection systems, such as [4,5], model the known attacks and scan the audit data for

the occurrences of these specific patterns. Anomaly detection systems, such as [6, 7],

flag intrusions by observing significant deviations from typical or expected behavior

of the system or users.

The majority of the intrusion detection systems are developed following either

one or the both of these two approaches. For example, SNORT [8], Bro [9] and

JAM [5] are misuse detection systems; IDES [10] and INBOUND [11] detect attacks

based on anomalies; some other systems, such as NIDES [12] and CMDS [13], use

both misuse and anomaly techniques to detect attacks.

1.2 Dissertation Approach

This dissertation describes the studies on

The application of probability density function (PDF) statistics and neural

network classification in the fields of anocaly intrusion detection and alert

correlation.

More specifically, this dissertation aims to answer the following questions:

• Can PDF statistics be used for anomaly intrusion detection?

• What is the achievable performance of an IDS by using PDF statistics in
anomaly intrusion detection systems?

• How do different classification algorithms perform in detecting network-based
attacks?

3

• How well can distributed, stealthy probing and scanning attacks be identified
using PDF statistics and neural classifiers?

Differing from most contemporary intrusion detection systems, which model

user and attacker activities using statistical counters about system utilization and

the frequencies of interesting events, this dissertation proposes a novel approach to

represent statistical features in the formats of Probability Density Functions (called

PDF from now on), to compare the observed parameters with the reference models

using PDF similarity metrics, and to classify the measured similarity distances using

neural networks.

These PDF statistics and neural classification approaches are also applied

to detect stealthy probing and scanning attacks, whose objectives are to gather

important information, such as network topologies, services and vulnerabilities, about

a victim network.

Two intrusion detection prototypes have been designed and implemented to

validate this proposed "PDF/neural network" approach:

HIDE (or Hierarchical Intrusion Detection Engine) is an anomaly intrusion detection
system, with hierarchical architecture, that utilizes PDF statistical models and
neural classifiers to detect Denial-of-Service (DoP) attacks.

RIDS (or Reconnaissance Intrusion Detection System) is a session-oriented,
statistical anomaly detection system that detects probing and scanning (PAS)
reconnaissance attacks. It consists of two main function modules: the
reconnaissance activity profiler (RAP) for P&S attack detection and the
reconnaissance activity correlater (RAC) for alert and scenario correlation.

1.3 Basic Concepts

Some basic terminologies of intrusion detection, which will be extensively used

throughout this dissertation, will be first introduced in this section. The criteria

in evaluating intrusion detection systems are described in the following subsection.

4

1.3.1 Terminologies
Intrusion is "any set of actions that attempt to compromise the integrity,

confidentiality, or availability of a resource" [14].

Event is the unit of analysis, or the granularity, of an IDS (see Section 2.5 for more
discussions). In HIDE, an event is defined as all the packets that are observed
within a time window. In RAP, an event is defined as a session state transition.
In RAC, an event is defined as an alert generated by RAP.

Intrusion Detection is a process to automatically detect and alarm when an
intrusion is taking place.

Attack Scenario is a sequence of attacks that an attacker launches in order to
achieve certain purposes.

Alert is a warning message that an IDS generates when it finds that an intrusion is
undergoing.

Alert Correlation is a procedure that automatically correlates alerts based on their
similarities; it also rebuilds the attack scenarios so that more contextual and
environmental information could be provided to administrators.

PDF Statistics is a set of statistical algorithms about how to represent the
distribution of descriptive and representational parameters of the system under
monitoring and how to statistically compare two distributions.

Detection Classifier is the algorithm that an intrusion detection system uses to
classify the input data into either normal or anomalous category based on the
knowledge it learned from the training data.

1.3.2 Evaluation Criteria

The performance of an intrusion detection system is generally evaluated by the

following two quantities:

True Positive Rate (or detection rate) is the rate that an attack event will be
detected. An ideal IDS is expected to operate at detection rates as close to 1
as possible. In the remaining of this dissertation, the detection rates are also
represented as "TPR".

False Positive Rate (or false alarm rate) is the rate that normal events will be
mistakenly classified as attacks. False alarm rates are expected to be close to
0. In the rest of this dissertation, the false alarm rates are noted as "APR".

These two criteria are intertwined, and in general it is not possible to

simultaneously achieve a TPR of 1 and a APR of 0. Therefore, for IDSs with

5

adjustable detection thresholds, Receiver Operating Characteristic curves are also

used to evaluate the system performance:

Receiver Operating Characteristic curve (or ROC curve) is the curve of FPR
vs. TPR at various detection thresholds. The area below the curve represents
the probability of correctly distinguishing a (normal, attack) pair. A sample
ROC curve is illustrated in Figure 1.1. The point at the upper left corner
corresponds to the optimal detection threshold with high detection rate and
low false alarm rate.

Figure 1.1 A sample ROC curve.

In this dissertation, another quantity is also used to represent the system

performance.

Misclassification Rate is the probability that an observation could be mistakenly
classified. It is calculated as the ratio between the number of misclassifications,
including both false positives and false negatives, and the total number of
observations. In the rest of this dissertation, misclassification rate is also
symbolized as ERR.

The misclassification rate can be regarded as the metric describing the overall

classification performance. It may be used as the objective function to train all

classifiers tested in this dissertation.

6

1.4 Dissertation Outline

The rest of this dissertation is organized in the following way.

Chapter 2 introduces the basic concepts and the state of art in information

security, intrusion detection, alert correlation and the issues on intrusion detection

evaluation.

Chapter 3 describes the system architecture and the statistical model of HIDE.

The classification results of HIDE on three independent test data sets are also reported

in this chapter.

Chapter 4 reports the research to identify and select feature sets important for

HIDE to detect DoS attacks.

Chapter 5 presents the systematic studies on various approaches to optimize

the detection performance of HIDE, which includes the PDA partitioning schemes,

the distribution similarity metrics, the classification algorithms, and the application

of Wavelet compressions.

Chapter 6 presents two different methodologies to train the neural classifiers

based on the attack and background traffic information collected from a controlled test

network and the background traffic information collected from a production network.

Chapter 7 introduces the algorithms, the architectures and the experimental

results of the proposed reconnaissance intrusion systems.

Chapter 8 summarizes this dissertation and outlines future work.

Appendix A lists the statistical features monitored by HIDE, RAP and RAC,

and provides a description of each feature.

Appendix B briefly introduces the network topology, the related traffic

emulation software and the attack label tools of the CONEX TESTBED network.

CHAPTER 2

INTRUSION DETECTION AND LITERATURE REVIEW

2.1 Information Security

Similar to other business and financial assets, the computation and information

resources are also valuable assets of an organization. Therefore they should be

appropriately protected. The main attributes of the computer and network security

are commonly referred to as CIA [15]:

Confidentiality : to keep sensitive information from unauthorized disclosure.

Integrity : to protect sensitive information from unauthorized modification.

Availability : to prevent the unauthorized withholding of information and resources.

Josson [16] added another feature to this list with regard to the usage of

information:

Accountability : to avoid the unauthorized use of computation resources.

The goal of information assurance is to prevent these four aspects of security

from being violated. A computer-based intrusion is a series of malicious activities

that target a computer or network system or services in order to compromise their

security. Halme et al. [17] listed six general, non-exclusive approaches to anti-intrusion

techniques to protect an organization from attacks:

• Preecption: To strike against the security threat before it has had a chance to
launch its attack. This pro-active measure is difficult to practice since most of
the attacks cannot be foreseen.

• Prevention: To preclude or significantly reduce the possibility of the success
of a particular intrusion. Examples of this approach are "user identification
and authorization" , "access control" and "information encryption" . These
prevention approaches are necessary but far from sufficient since, as systems
become ever more complex, there are always exploitable weaknesses in the
systems due to various design and programming errors. The enormous bugs and
the wide spreading virus and worms targeting such bugs in Windows operating
systems are obvious examples.

7

8

• Deterrence: To intimidate attackers to hold off their attacks in fear of increasing
risks and the negative consequences. Of course, if the protected resources are
highly important, or if the perpetrations are unlikely to be caught, the attackers
may not be scared off so easily.

• Detection: To identify intrusion attempts, so that the proper response can
be evoked. It also can provide the important information of the incidents to
administrator and proper authority for damage recovery and for tracing the
perpetrator.

• Deflection: To divert an intruder to a pre-designed controlled "honey pot" so
that no real damage could be caused, and to lure the intruder into believing
that he has succeeded. The main difficulty for this approach is that to set up
the "honey pot" realistically enough to fool an experienced attacker is far from
easy.

• Counterceasures: To actively respond against intrusions while they are in
progress. Common practices include "blocking the traffic from firewall" ,
"disabling the user account" and, in some extreme cases, "shutting down
the system temporarily" . The effectiveness of the countermeasures is highly
dependent on the accuracy of intrusion detections. An erroneous action on a
normal user could deny the user's legitimate access to the services.

These anti-intrusion techniques may cooperate with each other to form multi-

layered protection of the system resources, Aigure 2.1.

Figure 2.1 Anti-intrusion techniques. (adapted from [17D

In light of the above taxonomy, most of the current intrusion detection systems

fall exclusively in the category of detection, although some systems have started to

implement automated responses.

9

2.2 A Generic Diagram for Intrusion Detection Systems

Although intrusion detection systems may vary significantly from each other, in terms

of data sources, feature extraction and classification, etc, they do share common

aspects of functionality and structure among all of them. In order to tell the

differences between normal and malicious activities, an IDS needs to be able to

abstract the user activities to a set of statistical features. It also needs to maintain

a knowledge database of known normal or attack patterns. A generic architectural

model of intrusion detection systems is depicted in Aigure 2.2.

Figure 2.2 A generic diagram of intrusion detection systems.

The input data of an IDS can be from various sources: network traffic, system

and application logs, network management information, etc. The input data are first

processed and reduced into small sets of selected features. A database of reference

models maintains the information about known attack signatures, for misuse systems,

or known normal user patterns, for anomaly systems. The classification engine

determines whether the data received from the data processor actually contains

malicious activities. Alarms will be generated when suspicious activities are detected.

Administrators may also configure the detection parameters and specify the security

policies to control system reactions on different attacks.

10

2.3 The State of the Art in Intrusion Detection

Intrusion detection, in its essence, is a classification process, in that it tries to identify

small amount of interesting attacks or anomalous patterns out of huge amount of

input raw data. Therefore, the existing pattern classification techniques in other

research domains, such as statistics, neural networks, pattern matching, data mining

and, even, immunology, etc, had been widely borrowed and applied in this area. For

example, the "association rule" , which was originally proposed by Argawal et al. [18]

to find out the frequent item sets in customer transaction data, had been applied

to automatically discover attack detection rules in JAM [5]; The NIDES [12] used

both statistical metrics and expert systems to detect anomalies and misuses; Neural

Networks and Support Vector Machines (SVM), which are commonly used in the

machine learning disciplines, have been used by researchers to detect attacks [19,20].

The rest of this section will briefly introduce the various intrusion detection

techniques found in literature and commercial products.

2.3.1 Statistical Detection

Statistical algorithms have been widely utilized by various intrusion detection systems

to extract the statistical features describing the activity patterns within the input

data, to predict the expected measurements of normal/attack instances, and to

compare the observed feature vectors with the expected patterns. Aor example,

the INBOUND, [11], detects traffic anomalies by measuring the deviations of the

traffic parameters from the averages of the normal users. Gao et al. [21] studied

the application of Hidden Markov Models (HMMs) to profile UNIX processes. The

NIDES, [12], represents user or system behaviors by a set of statistical variables

and detects the deviation between the observed and the standard activities. In [22],

Kolmogorov-Smirnov statistics was used to model and detect Denial-of-Service and

Probing attacks.

11

2.3.2 Neural Networks

The neural networks are widely considered as an efficient approach to adaptively

classify patterns. In [7,19], backpropagation (BP) neural networks were used to detect

anomalous user activities. The Self-Organization Maps (SOMs) were applied to detect

host-based attacks in [23]. Sung et al. [20] tested the importance of the prominent

features in intrusion detection by using Support Vector Machines (SVMs). If properly

trained, neural network classifiers can learn the mapping function between the input

and output sample spaces and accurately classify unforeseen input data based on the

learned knowledge. However, the knowledge that neural network classifiers acquired

from training data is difficult to interpret. High computation intensity and long

training cycles also hinder the applications of neural networks in real-time systems.

2.3.3 Pattern Matching Systems

Pattern matching is the most commonly used technique in misuse intrusion

detection systems by searching the specific attack signatures within files or packet

payloads. Example commercial systems include the RealSecure from Internet Security

Systems [24], NAR from NAR Security [25]. Example open source software includes

the detection engine of SNORT [8] and BRO [9]. The advantage of this technique is

that this approach is straightforward and easy to be understood by administrators.

However, developing and testing attack signatures are labor-intensive. It is very

difficult for these systems to keep up with the evolution paces of today's attack

techniques. Moreover, these systems can not detect unforeseen new attacks.

2.3.4 Data Mining Approaches

Due to the difficulties in manually developing the attack signatures and normal

patterns, data mining techniques have been introduced by various researchers to

automatically discover these patterns. Data mining (also known as Knowledge

12

Discovery in Databases - KDD) has been defined as "The nontrivial extraction of

implicit, previously unknown, and potentially useful information from data" [26].

The commonly used data mining algorithms in intrusion detection systems include

association rules [5], decision trees [27, 28] and clustering [29, 30], etc. These data

mining techniques have drawn growing research interests since they can automatically

discover detailed attack or normal models that can be easily understood by human

beings. However, the drawback is that these data mining systems tend to generate

a large number of models, especially for input data with large size. Extra human

intervention and care must be taken to reduce and refine the extracted models.

2.3.5 Computer Immune Systems

Natural immune systems protect animals from dangerous foreign pathogens, including

bacteria, viruses, parasites, and toxins. The role of the computer security systems

in computers is analogous to that of the natural immune systems in animal bodies.

Inspired by the principles in Immunology, Aorrest and her group [31] applied the

ideas from Immunology into building artificial immune systems for computers. In

their approach, the problem of protecting computer systems from attacks was viewed

as an instance of the more general problem of distinguishing self (legitimate users,

uninfected programs) from others (unauthorized users, viruses and other malicious

codes). Dasgupta et al. [32] presented another immunology-inspired intrusion

detection system by using both positive (non-self) and negative (self) selection

mechanisms of the immune system to detect computer attacks either in positive space

(attack signatures) or in negative space (normal patterns). Although theoretically are

these systems interesting, the actual effectiveness of this immunological approach is

still waiting to be proved.

13

2.4 Attack Scenarios and Alert Correlation

An attack scenario is a sequence of attacks that an attacker launches in order

to achieve certain malicious purposes. While some isolated attacks occur without

warning, most network-based intrusions go through certain fairly well-defined stages

to scan and compromise victim hosts. Aor example, the attack scenario resulting a

DDoS attack, Aigure 2.3, contains the following distinctive steps:

Figure 2.3 A sample attack scenario.

I. The attacker site-maps the topology of the victim network through IP sweeping;

2. Port scanning and probing attacks are launched to identify open ports, the
provided services, the operating systems and the possible penetrating points
and methods against the victim hosts;

3. The attacker breaks into the victim machines and gains the root privileges by
exploiting these identified weaknesses;

4. Trojan and "back-door" programs are installed in the compromised systems;

5. These compromised systems are then used as attack agents to launch a
distributed Denial-of-Service (DDOS) attack to another network.

The gradually unfolding characteristic of this attack scenario provides ample

time for an IDS to detect and arrest it in the early stages so that the severe damages

could be prevented. Detecting these different threats and discovering the attack

scenarios at the earliest possible time would provide a lot of important information

for system administrators to take appropriate countermeasures promptly.

Traditional intrusion detection systems are trained to detect as many suspicious

activities as they could find. However, the usefulness of the generated alerts is often

limited by the following two factors:

14

1. The positives (alerts) are in general fine-grained, low-level. Each alert
corresponds to an attack fingerprint the IDS detected in a packet or a session.
The arrival of the alerts is bursty and sometimes temporally overlapping. A
high-level situational overview describing the whole attack scenarios is absent.

2. The "effectiveness" of current IDSs is low. "Effectiveness" is defined as the
probability that a positive alert detection by an IDS is actually true. Axeisson
pointed out that base-rate fallacy applies to Intrusion Detection [33]. It means,
even for an IDS with very low false positive rate, the probability that an alarm
indicates a real intrusion is still low, due to the fact that the population of
normal activities is overwhelmingly larger than the population of intrusions.

The base-rate fallacy is one of the most serious problems for current IDSs. Every

alert needs time and human power to investigate. A large number of false positives

can distract the attention of administrators so that the true critical positives could

accidentally be ignored. Aurthermore, the number of false positives might become so

high that administrators could get bored and simply ignore all alerts.

Aor the above reasons, the alert correlation (also called data fusion in some

literature) is drawing more research interests as a solution to the above problems.

The alert correlation correlates alerts of different attacks and heterogeneous ID sensors

together into attack scenarios, which provides coarse-level description about intrusion

plan. These scenarios could help to infer the intruders' intentions and appraise the

security threats. Also, the false positives could be isolated and filtered out based on

their differences in space, time and other aspects.

A number of research projects have been started in the field of alert correlation.

The GrIDS, [34], uses predefined rule sets to combine alerts and network data into

a graph structure to discover large scale coordinated attacks. The EMERALD, [35],

correlates alerts using a probabilistic approach by comparing the similarities among

the alerts. Bain, [36], proposed algorithms to estimate the probability that an alert

belongs to a given scenario, and to fuse the alert with the most possible scenario.

Staniford et al., [37], used simulated annealing to cluster anomalous packets together

into portscan scenarios.

15

2.5 Intrusion Detection Evaluation

Intrusion detection is a classification process, which involves the fitting of models

to data, then enabling inferences from these models. Generally, the performance

of a pattern recognition system can be quantified by two measurements: the true

positive rate (TPR, Probability(positiveattack)) and the false positive rate (APR,

Probability(positivenormal)). As stated in Section 1.3.2, in general, it is not possible

to achieve a TPR of 1 and a APR of 0. The common practice in evaluating pattern

recognition algorithms is to choose the one with the best TPR within the constraints

of an acceptable APR.

Unfortunately, evaluating intrusion detection systems by using the above stated

criteria is problematic due to the following reasons.

Problem 1 There is no standard definition of what constitutes conitored security

events.

A typical IDS looks at a series of events and tries to identify those that represent

an intrusion. The input data may be log records from one or more monitored services

on a host, packets on a network, or some other descriptors of activity within the

monitored domain. A security event, the unit of analysis, could be defined as a log

record, a network packet, or a TCP session. This lack of universal acceptance of the

event definitions could lead to big difference in TPR and APR values, thus making

comparison of systems with different event definitions meaningless.

Problem 2 ID perforcance is traffic/attack sensitive.

Intrusion detection systems are trained and tested by data collected from a test

environment containing a limited number of attack instances. An IDS having good

training and testing performance could yield very high APR in another environment

with completely different background settings.

16

Moreover, the abundance and the fast evolution on attack tools make it

impossible to train ID systems with all possible attack patterns. Therefore, an

IDS could have high detection rate on some kinds of attacks but perform poorly

on detecting other types of attacks in a real network.

Problem 3 Independent and unbiased data sets are hard to obtain.

The above two stated problems could be alleviated somehow by testing IDSs

with a common data set. Unfortunately independent data sets are hard to obtain,

because 1) network data are hard to be properly identified (one can never be sure

that there are no subtle attacks hiding undiscovered in the data); 2) background and

attack models are not stationary and can not be clearly defined, thus rendering the

usefulness of any static evaluation data short-lived.

2.5.1 DARPA/MIT-LL Intrusion Detection Evaluation Projects

As an effort to reliably evaluate the capabilities of existing intrusion detection systems,

MIT Lincoln Labs (MIT-LL) was designated by DARPA to build a simulation network

at about 1998. The background network traffic was simulated according to the traffic

statistics observed in an Air Aorce base. A mixture of different user profiles and

different attacks were simulated in the network. So far, three data sets (named as

DARPA98, DARPA99 and DARPA2000) have been released and can be publicly

downloaded from their web site [38].

The definitions of security events are slightly different among these three data

sets. In DARPA98, an event is defined as a session, which can be TCP, UDP or ICMP.

A session is characterized by a start time, duration, service, source and destination

(IP address and port). Using the session as the unit of analysis is less than satisfactory

since it does not provide accurate results if

• A single attack requires more than one service to be used or involves multiple
sessions of the same service to be completed or

17

• A false alarm determination is based on data from more than one session.

In DARPA98 and DARPA2000, events are defined as attack instances, which

may include multiple sessions. An attack instance is characterized by the attack date,

the attack time and the victim IP address.

2.6 The Framework of EWIDS

An early warning intrusion detection system (EWIDS) is designed to detect three

types of attacks: reconnaissance attacks (P&P), denial of service (DoS) attacks,

and privilege escalation attacks (RWL or UWR). It also correlates the alerts of

reconnaissance attacks into attack scenarios, discovers the coordinated distributed

attacks, and alarms the system administrators at the earliest possible time that

attacks are undergoing. A complete early warning system usually consists of the

following five sub systems (see Aigure 2.4):

Figure 2.4 The system diagram of the EWIDS.

• Known Activity Ailter (KAA): works as the packet filter for the EWIDS. It
bypasses those known normal packets and drops those known attack packets.
The detailed diagram of KAA is given in Subsection 2.6.1.

• DoP Detection System: detects DoP attacks at the earliest possible stage so
that the attack traffic could be blocked from entering the network and significant
service degradations could be avoided. The DoS detection system used in this
EWIDS system is HIDE, which is described in Chapter 3.

18

• Reconnaissance Detection System: detects the reconnaissance attacks.
Although reconnaissance attacks do not cause any material damage on the
victim systems, they do provide the useful information about the imminence
of more malicious attacks. By detecting reconnaissance activities in the earliest
possible time, an early-warning system can provide the protection to thwart
potential attack devastating scenarios in their early stages. The algorithms and
results of the proposed RIDS system are presented in Chapter 7.

• Privilege Escalation Detection System: prevents attackers from gaining
unauthorized privileges by exploiting system weaknesses. This subsystem is an
integral part of a complete EWIDS but not within the scope of this dissertation.

• Security console: is the interface between administrators and the early warning
system. It visualizes the attack alerts detected by the system and provides the
administrator the interface to configure and to administer the whole system.

Figure 2.5 Known activity filter.

The KAA module, Aigure 2.5, processes the packets sniffed from the network

and filters out the packets whose source or destination addresses are listed in the back

or white lists. The black list lists the IP addresses of the known attackers. Whenever

KAA detects packets from these attackers, it will immediate report to security console

and then drop the packets. The white list lists the IP addresses of the known normal

users. By filtering out packets of known status, a great portion of computational

powers can be saved to concentrate on analyzing unknown traffic.

CHAPTER 3

HIDE: A HIERARCHICAL INTRUSION DETECTION ENGINE

The HIDE [39] is a statistical anomaly intrusion detection system. It represents

statistical parameters in PDA format, compares the observed parameters with the

reference models using PDA similarity metrics, and classifies the measured similarity

distances using neural network classifiers.

Section 3.1 briefly reviews the existing literature on DoP attack detection.

Section 3.2 introduces the system architecture of HIDE. Section 3.3 describes the

event definition and the monitored statistical features. Section 3.4 presents HIDE's

statistical mode. The detection results are reported in Section 3.5.

3.1 Literature Review in DoS Attack Detection

The DoS attacks pose serious threats on the computer infrastructures of both

commercial and governmental organizations. Any interrupt or downgrade of the

services provided by an organization could cause huge financial loss and impair the

public reputation of the organization. The recent trend of the marriage between

computer viruses and DoS attacks (e.g. the DoS attacks on the web sites of Microsoft

and SCO launched by the machines infected by the Mydoom virus [40]) makes this

threat even more immense.

There are many varieties of DoP attacks. Some DoP attacks (for example

mailbomb, neptune, or smurf attacks) abuse some legitimate features. Some other

attacks (e.g. teardrop, Ping of Death) create malformed packets that target the

TCP/IP protocol stacks of the susceptible machines. Still others (back, syslogd)

exploit the bugs of particular network services and applications.

Most commercial and open source intrusion detection systems, such as

RealSecure [24], SNORT [41] and Bro [9], etc, use both the signatures and the

19

20

frequency counters of events of interest to detect DoS attacks. These techniques

are useful in detecting known DoP attacks using malformed packets and exploiting

specific application bugs, but they have difficult to detect new or old DoP attacks

that abuse legitimate features.

A lot of research activities have been conducted to detect DoS attacks. The

NIDES [12] developed sophisticated statistical algorithms to measure the distributions

of short-term and long-term profiles using a 2-1ike test to measure the similarity

between these two profiles. Lee et al. [5] represented network sessions using 41 various

quantitative and qualitative features and utilized association rules to automatically

discover the attack patterns. They processed a portion of the DARPA'98 data set

using these 41 features and published the resulted data files as the KDD CUP 1999

contest data [42]. Sung [20] evaluated the importance of these 41 features using

both neural network classifiers and support vector machines (SVMs). Giacinto [43]

tested the effectiveness of classifying the KDD CUP 1999 data using multiple neural

classifiers, one classifier for features within a category. Dasgupta [32] used immunity-

based techniques and a nearest-neighbor classifier to detect the network-based attacks

in the DARPA'99 data set.

3.2 The System Architecture of HIDE

The HIDE is a distributed hierarchical application, which in principle consists of

multiple tiers, each tier containing several Intrusion Detection Agents (IDAs). The

IDAs are intrusion detection components that monitor the activities of a host or a

network. The diagram of an IDA is illustrated in Aigure 3.1; it consists of the following

components: probe, event preprocessor, statistical processor, neural network classifier

and post processor. The functionalities of these components are described below:

• Probe: Collects the network traffic of a host or a network, abstracts the traffic
into a set of statistical variables to reflect the network status, and periodically
generates reports to the event preprocessor (see Aigure 3.2).

l..... -4

Figure 3.1 The diagram of intrusion detection agent.

• Event Preprocessor: Receives reports from both the probe and IDAs of lower
tiers, and converts the information into the format required by the statistical
model (as shown in Aigure 3.2).

• Statistical Processor: Maintains the reference models of typical network
activities, compares the reports from the event preprocessor to the reference
models, and forms a stimulus vector to feed into the neural network classifiers.

• Neural Network Classifier: Analyzes the stimulus vector from the statistical
model to decide whether the network traffic is normal or not.

• Post Processor: Generates reports for the agents at higher tiers. At the same
time, it may display the results through a user interface.

3.3 The Monitored Events and Descriptive Statistical Features

The HIDE is a packet-oriented, time-window based intrusion detection system. The

event, or the unit of analysis, of HIDE is defined as "the aggregated statistical pattern

of all network traffic, including both incoming and outgoing packets, observed within

a time window" . At the end of each time window, all monitored statistical features,

which represent the traffic statistics of the current time window, are extracted by

22

Figure 3.2 The probe and the event preprocessor.

the "Event Preprocessor" and forwarded to the following stages to detect possible

attacks. The "Neural Network Classifier" will output a continuous value describing

the normality of the current network traffic.

The HIDE is capable of monitoring many different statistical traffic features

simultaneously to accurately describe the network status (a detailed description of all

statistical features is given in Appendix A.1). However, monitoring all these features

is computationally expensive and a subset of these features may already be sufficient

to detect DoS attacks. Therefore, to achieve the maximum flexibility and efficiency,

HIDE is purposefully designed to allow users to customize the statistical feature set

as desired in order to monitor traffic at run-time.

3.4 The PDF Statistical Model

Statistical methods have been used in intrusion detection systems. Most of these

systems simply measure the means and the standard deviations of statistical

parameters and detect whether certain thresholds have been exceeded, like

INBOUND [11]. SRI's NIDES [12] developed a more sophisticated statistical

algorithm by using a 2-1ike test to measure the similarity between short-term and

23

long-term profiles. In [22], Kolmogorov-Smirnov (KS) statistics was used to model

and detect Denial-of-Service and Probing attacks. The current statistical model of

HIDE uses a modified KS algorithm. Therefore, some basic information about X2

and KS statistics will first be briefly introduced in this chapter.

In HIDE, user activities are represented by a number of probability density

functions. Let S be the sample space of a random variable and events A1 , A2 , . . . , AK

a mutually exclusive partition of S. Assume p i is the expected probability of the

occurrence of the event Ai , and let pi be the frequency of the occurrence of Ai during

a given time interval. Let N denote the total number of occurrences.

The 2-1ike test, Equation 3.1, is used as the statistical engine of NIDES to

determine the similarity between the expected and actual distributions.

When N is large and the events A1 , A2, , AK are independent, Q

approximately follows a X2 distribution with K — 1 degrees of freedom. However, in

a real-time application, the above two assumptions generally can not be guaranteed,

thus, empirically, Q may not follow a X2 distribution.

The Kolmogorov-Smirnov test, given in Equation 3.2, is applicable to measure

the similarity when the underlying distribution is unknown. Assume F(x) is the

expected cumulative probability distribution (CDA); (x) is the measured CDA;

and Fi are the expected and the measured CDAs at event

24

The strength of the KS test is that, if F(x) is continuous, the distribution of DN

does not dependent on the underlying distribution of F(x), but only on the number

of samples N.

Because neural networks are used as classifiers to identify possible intrusions

in HIDE, it is not necessary for HIDE to know the actual distribution of DN.

However, since network traffic is not stationary and network-based attacks may

have different time durations, varying from a couple of seconds to several hours or

longer, a robust and efficient algorithm is needed to monitor network traffic with

different time windows. Based on the above observations, a layer-window statistical

model, Aigure 3.3, with each layer-window corresponding to a monitoring time slice

of increasing size, is chosen.

Figure 3.3 The statistical model of HIDE.

The newly arrived events will first be stored in the event buffer of layer 1. The

stored events are compared with the reference model of that layer and the results are

then fed into the neural network classifier to decide the network status during that

time window. The event buffer will be emptied once it becomes full, and the stored

events will be averaged and forwarded to the event buffer of layer 2. This process will

be repeated recursively until the top level is reached where the events will simply be

dropped after processing.

25

The similarity-measuring algorithm used in HIDE is given in Equation 3.3.

The right-hand side of the equation is the combination of the KS test and the area

difference between the distributions. Therefore, this equation is called the AKS test.

The function f (N) is a function of the number of samples N.

A reference updating algorithm has also been designed to update the reference

model based on the newly observed real-time traffic. Let Mold be the reference model

before updating, M„,, be the reference model after updating and K be the observed

user activity within a time window. The formula to update the reference model is

given in Equation 3.4.

in which a is a predefined adaptation rate and s is the value generated by the

output of the neural classifier. Assume that the output of the neural network classifier

is a continuous variable c between —1 and 1, where —1 means intrusion with absolute

certainty and 1 means no intrusion again with complete confidence. In between, the

values of indicate proportionate levels of certainty. The function for calculating s is

Through the above equations, it can be ensured that the reference model

would be actively updated for typical traffic while kept unchanged when attacks

occurred. The attack events will be diverted and stored, as attack scripts, for future

investigation.

26

3.5 The Detection Results of HIDE

Three different data sets have been used to evaluate the performance of HIDE. The

first data set is generated from OPNET simulations. The second data set is provided

by the DARPA'98 intrusion detection evaluation project. And the third data set is

collected from a testbed network setup within the CONEX laboratory of NJIT. Aor

simplicity, the first data set will be referred as the "OPNET" data set, the second

data set as the "DARPA'98" data set and the third data set as the "TESTBED"

data set, here on.

3.5.1 The OPNET Simulation Data

A virtual network using simulation tools has been used to generate attack scenarios.

The experimental test bed that was built using OPNET, a powerful network

simulation facility, is shown in Aigure 3.4. The test bed is a 10-BaseX LAN that

consists of eleven workstations and one server.

Figure 3.4 OPNET simulation testbed.

In the simulation network, three types of network traffic comprise the simulated

traffic: HTTP, ATP, and SMTP (Email). To generate enough UDP background

traffic, UDP is configured as the transport protocol of the SMTP services. Even

though this configuration is not quite realistic, it does not undermine the general

conclusions got in this experiment.

The UDP flooding attacks were simulated within the testbed. To stress-test the

performance of the system, multiple simulation scenarios with different background

27

traffic and attack traffic loads were carried out. Table 3.1 lists the traffic specifications

of the simulated scenarios.

Aor each simulation scenario, ten thousand records of network traffic were

collected. These data were divided into two separate sets, one set of 6000 data for

training and the other of 4000 data for testing.

Figure 3.5 The detection results on the OPNET data.

The classification results of stress testing are shown in Aigure 3.5. Arom the

figure, the reader can see that the misclassification rates decrease as the attack level

increases. This is because the traffic patterns of higher-volume attacks yield greater

differences from the reference model than the differences created by lower-volume

attacks. It can also be noticed that, for a certain attack level, the performance for the

28

600Kbps background traffic is consistently better than that of the 2Mbps background.

One plausible explanation is that intruders can more easily cover their behavior

patterns from being detected in high background traffic environments. Please refer

to the paper [44] for more stress testing results.

Overall, the results indicate that HIDE can effectively detect UDP flooding

attacks with traffic intensity as low as five to ten percent of the background intensity.

Figure 3.6 The DARPA IDEVAL network (adapted from [38]).

This data set was generated by the MIT Lincoln labs in 1998 as the intrusion

detection offline evaluation project sponsored by DARPA [38]. These data were

collected in an isolated controlled network environment (see Aigure 3.6), which

consists of two segments: the "inside" network simulates the network of an Air

force base; and the "outside" network simulates the Internet. These two segments

are interconnected by a router, and a sniffer is used to capture the packets passing

through the router. The DARPA'98 data set includes seven weeks of training data

and two weeks of testing data and contains the following attack types:

• Surveillance and Probing (PlS) Attacks: are used to gather information about
the victim network topology, the network services, and the potential penetrating
points.

• Denial of Service (DoS) Attacks: are attacks aiming at bringing down a server
or a network so that normal users would not be able to access the services.

• Remote to Local (RWL) Attacks: are attacks aiming to gain unauthorized access
to a local server from a remote machine.

29

• User to Root (UWR) Attacks: are used by a local unprivileged user to gain
unauthorized access to local super-user privileges.

Only the network-based DoS attacks with observable disturbance on the

network traffic are considered in the experiment. The rest attack packets are simply

filtered out before entering HIDE. The DoP attacks considered include:

neptune is a PYN flooding denial-of-service attacks on one or more TCP ports to
overflow TCP connection buffer through creating a large number of half-open
TCP connections.

pod (or Ping of Death) is a Denial-of-Service attack to crash victim servers by
sending large amount of over-sized IP packets.

Smurf is a DoP attack to flood the victim server by creating a large, continuous
stream of ICMP "ECHO" replies.

Teardrop is a DoS attack that exploits the flaws of IP defragmentation programs
of many older operating systems.

The detection results of HIDE are tabulated in Table 3.2. In total, 59226

useful data samples were collected. Among them, 1074 samples are attacks while the

remaining 58152 samples are normal. Therefore, the base-line misclassification rate

30

for this DARPA'98 data set is 1074/59226 = 0.0181; the latter indicates a dummy

IDS that could achieve a 98.2% detection rate by simply classifying all of the attacks

as normal. Table 3.2 showed that HIDE performed more than 30 times better than

the base-line rate.

The detection performance of HIDE on different DoP attacks is described in

Table 3.3. Arom the table, it can be seen that HIDE had very low false negative rates

on all the four monitored DoS attacks.

Figure 3.7 The topology of the CONEX TESTBED network.

31

The CONEX TESTBED network, see Aigure 3.7, is a testbed network setup in

the CONEX lab of NJIT as a platform to emulate network-based attacks in order to

test the performance of intrusion detection prototypes. The network includes three

subnets: victic subnet, background subnet and the attack subnet. A more detailed

description about the network topology, the attack emulations and the related tools

can be found in Appendix B.

Three days worth of TCPDUMP data were collected from the CONEX

TESTBED network. The detection results in testing HIDE are listed in Table 3.4.

Here the base-line misclassification rate is 568/7582 = 0.0749. As shown in the table,

the misclassification rate of HIDE is about 25 times lower than the base-line error

rate.

The detection performance of HIDE on detecting the five different DoP attacks

is listed in Table 3.5. Arom the table the reader can see that, except for the four false

negatives of the "teardrop" attacks, HIDE had perfect detection results on the other

four kinds of attacks.

32

3.5.4 EDisting DARPA Results of Other IDSs

Because the DARPA98 data sets are publicly accessible and have been widely used

in various intrusion detection literatures, a natural question that may rise is how

the performance of HIDE compares with other state-of-the-art intrusion detection

systems.

Unfortunately, a fair comparison is difficult because the definitions of events are

different between HIDE and MIT-LL evaluation projects: as stated in Section 3.2,

time windows are defined as the basic units of analysis in HIDE, whereas the DARPA

MIT-LL projects used "sessions" or "attack instances" as the basic events (see

Section 2.5.1).

Some of the existing results when using DARPA MIT-LL data sets are briefly

listed below:

1. The best DoG detection result in the DARPA'98 IDEVAL project can detect
around "65% of all DoP attacks, but with very few false alarms" [45]. The
DARPA'98 IDEVAL project used "session" as the unit of events.

2. The best DoG detection results in DARPA'99 IDEVAL project can detect about
85% of all "clear" DoG attacks with 10 false alarms per day (see Aigure 3 of [46]).
The DARPA'99 IDEVAL project used "attack instance" as the unit of events.

3. Sung [20] reported a 99.25% detection rate on DoP attacks by using support
vector machines. "Session" is used as the basic unit in [20].

33

4. Dasgupta [32] detected around 96.2 percent of the selected clear P&G and DoG
attacks in the DARPA'99 data set. In [32], time windows with 1-minute window
size are used as basic events.

Among the listed results, Dasgupta [32] has similar definition of events as HIDE.

The "99.4%" detection rate of HIDE on the DARPA'98 data set (see Section 3.5.2)

is higher than that reported in [32].

The other results mentioned earlier in this section are not directly comparable

with HIDE. They are listed to illustrate the performance level of the current state of

the art in DoG detections.

CHAPTER 4

IDENTIFYING IMPORTANT HIDE FEATURES

4.1 Introduction

Detecting intrusions involves the multi-variate classifications based on the monitored

features. Generally, intrusion detection systems are designed to use as many features

as the designers could think they might be useful. Aor example, JAM [5], an

intrusion detection system prototyped by Columbia University, monitors 41 different

parameters for each session; HIDE (see Chapter 3) monitors 45 traffic measurements

observed within a time window. The experimental results on these systems had proved

that all these selected features could be used to accurately detect attack activities.

Three questions may naturally arise for these multi-variate classification

approaches:

1. Are all these features equally useful?

2. If not all features are equally important, which features are more important?

3. Is it possible to remove some of the features without performance deterioration?

The issue of the Aeature Subset Selection (ASS) has been widely studied in the

various fields, such as Machine Learning [47], Pattern Recognition [48], Statistic [49]

and Data Mining [50], etc. Generally, the researches in those areas address the ASS

problems via two major models:

1. Filter Model [51] ranks and selects the features by measuring the statistical
properties and the discrimination power of the feature subset. The commonly
used filtering methods are the correlation criterion, the single feature
classification, the information theoretic ranking and the Aisher criterion score.

The "correlation criterion" [52] ranks the features based on the absolute
values of the correlation coefficients between the features and the target;
the "information theoretic ranking" method [53] selects features according to
the mutual information between each variable and the target; the "Aisher

34

35

criterion'', [52], scores features by calculating the statistical difference of
an individual feature in positive and negative classes; the "single feature
classification" [54] selects features according to the predictive power of the
individual features.

2. Wrapper Model [51] searches the feature subset by using the learning
algorithm of interest as a black box to score subsets of features based on
their classification performance. Liu et al. [50] surveyed the commonly feature
searching strategies in the wrapper model: cocplete search, heuristic search
and no-detercinistic search.

The cocplete search strategy evaluates all possible combinations of the feature
set. This strategy guarantees to find the optimal feature subset, but quickly
becomes computationally impractical when the number of features grows large;
the heuristic search strategy avoids the needs of cocplete search by employing
heuristics in conducting search. This method is more computationally efficient
than the complete search, but it could result sub-optimal feature subset if it's
stuck in the local maxima; the no-detercinistic search strategy tries to escape
from local maxima by introducing randomness into the searching process.

The filter model is faster and can be used as a generic method for feature

selection, without relying on a specific learning method. On the other hand, the

wrapper model is slower but it's capable of finding an optimal or suboptimal feature

subset for a given learning method.

The objective of this chapter is to identify important HIDE features, not

necessary to be optimal, and to evaluate the performance of HIDE using different

feature subsets. Therefore, three different feature subsets are constructed using the

filtering methods:

1. Pingle feature classification on all attacks. This method evaluates the
classification performance of individual features on all attacks that HIDE
detects. These results are then compared with the base-line classification rates
(please refer to Section 3.5.2 for the definition of base-line classification rates).
The features, which perform better than the base-line rate, are regarded as
important/relevant features and selected into the first feature subset.

2. Pingle feature classification on individual attacks. This method evaluates
the classification performance of individual features when classifying different

, where Dun and an are the mean and the variance of feature r in the negative

class; pp and op are the mean and the variance of feature r in the positive class

36

attacks, one attack at a time. The relevant features (features that perform
better than the base-line rates) are selected into the second feature subset.

3. Feature selection using decision tree. This method utilizes a decision tree, which
is capable of automatically selecting the features based on the information gain
ratio [53]. The features selected by the decision tree are used as the third feature
subset.

Three neural network classifiers will be trained using the three above-selected

feature subsets. The classification performance will be compared with the HIDE

performance, when using the full feature set (see Section 3.5).

4.1.1 Related Work in Intrusion Detection

Although all intrusion detect systems involve multi-feature classifications, surprisingly

few papers have been published to systematically study the ASS problems in intrusion

detection systems. Lee et al. [5] proposed an automated process to discover important

features using association rules and frequent episode. Sung et al. [20] ranked the 41

features provided in the KDD Cup 99 data set [42] using support vector machines

(SVMs) and neural networks.

4.2 Objective Functions

The objective function is a cost measurement function to evaluate the goodness

of a particular feature subset. The commonly used objective functions in the

classification problems are the measurements of the classification/prediction accuracy,

such as mean-square root error, misclassification rate, false positive rate and false

negative rate. Sometime, the number of features (to be minimized) is also used as a

regularization term in the functions.

In this chapter, six different objective functions are devised to study their

impacts on the ASS process. The first objective function, see Equation 4.1, measures

the misclassification rate of a feature subset.

37

Where s is a given feature set; N is total number of samples; Nofn(s) is the

number of false positive outputs of a classifier using the feature subset s; Nofn (s) is

the number of false negative outputs of a classifier using the feature subset s.

The second objective function, see Equation 4.2, takes the size of the feature

subset, Is', into consideration as a cost factor.

In the equation, the second RHS term measures the related computation cost

of the feature subset s, which is a product of Jibs) and logo, Is' to avoid those trivial

feature subsets with high misclassification rates and small numbers of features.

a is a scaling constant determined by the maximum computation cost, which

is specified by users. Aor example, if max Is! is the size of the full feature set, and if

the maximum computation cost is set to c, a can be calculated using Equation 4.3.

Figure 4.1 The computation cost at different a's.

38

Several curves of Is' and logic, Is! at different c's and a's are plotted in Aigure 4.1

to illustrate the impact of a's on the computed costs. In this chapter, the maximum

computation cost c is set to 0.25, therefore, a is set to maxlsI 4 accordingly.

To compare the impact of different computation cost functions, another

objective function is devised to include the computation cost as a square-rooted factor,

see Equation 4.4.

In the equation, /3 is a constant to modulate the computation cost. It is set to

0.25 in this chapter to conform with the maximum computation cost c, which is set

to 0.25.

Because the false positives have larger impact on the performance of an IDS,

three other objective functions are designed as an effort to reduce the false positives,

see Equation 5 to Equation 7.

In the equations, y is an adjustable constant to emphasize the importance of

reducing false positives. In this chapter, 7 is set to 0.6.

The feature subsets that lead to lower values of the six objective functions are

desirable.

39

4.3 Classification using Single Feature

The performance of individual features can be measured as the lowest misclassification

rate in the ROC curves, which are defined as the graphs between the true positive

rates bTPRs) and the false positive rates bAPRs) at different detection thresholds [55].

The relationship between the misclassification rate, error, and the TPR and the APR

is given in Equation 4.8.

Where N is the total number of samples; Nt is the number of attack samples;

Mtn is the number of normal samples; Nofn is the number of false negatives; and

Nofp is the number of false positives.

The minimum misclassification rate of a feature can be calculated by examining

all possible thresholds from the training data. It might seem to be computationally

expensive to examine all possible thresholds, but, for a given training data with m,

records, there are maximally c-1 possible different thresholds. Once the training

data has been sorted, the searching process can be carried out in one pass.

4.4 EDperimental Results

The data files used in this chapter are the similarity distance files generated by

HIDE, which monitors the 45 traffic features in the DARPA'98 data set bplease

refer to Appendix A for the detailed description of these 45 features). As listed

in Section 3.5.2, there are totally 59226 records, including 1074 attack records and

58152 normal records, in the data files.

A heuristic backward search strategy is deployed in this experiment, in that it

starts with the full 45 features and, after examining the performance of individual

features, removes those irrelevant features.

4.4.1 Feature Filtering Based on All Attacks

Table 4.1 The Aeature Ranking Table of All Attacks

40

The classification performance of these features to detect all the four kinds of

attacks is evaluated and listed in Table 4.1, in which the "Error" corresponds to the

misclassification rates of individual features.

Arom Table 4.1, it can be seen that only 25 features are relevant in DoS attack

detection, the other 20 features, ranked from 26 to 45, have the same misclassification

rate 0.0181, which is the base-line misclassification rate of the DARPA'98 data files.

Therefore, only the first 25 useful features are selected in the feature subset. Aor

simplicity, this feature subset is called Set 25 from now on.

41

Another feature set, which includes only the best-performed feature "in.tcp-

con-new-opened", is selected to illustrate the performance of the best variable. This

set will be noted as Setl in this chapter.

4.4.2 Feature Filtering Based on Individual Attacks

This experiment examines the performance of the 45 features on individual attacks,

one attack at a time.

Neptune Attack

The classification performance of individual features on neptune attacks is

ranked and listed in Table 4.2.

Table 4.2 The Aeature Ranking Table of the neptune Attack

Because there are 798 neptune attack samples within the DARPA'98 data set,

the base-line misclassification rate is 798/59226 = 0.0135. Arom Table 4.2, it can

42

be seen that only 16 features, out of the full 45 features, have misclassification rates

lower than the baseline rate.

Moreover, because the misclassification rates of the last two relevant features in

the table, in.udp-diff-src and out.udp-diff-dst, are very close to the baseline rate, and

because these parameters are monitoring the UDP trafflc, which intuitively should

not be closely correlated to TCP trafflc, these two parameters are also not selected.

The 14 selected features are highlighted in bold fonts in Table 4.2.

Smurf Attack

The classification performance of HIDE features on smurf detection is listed

in Table 4.3. Because there are 267 smurf attack samples in DARPA'98 data, the

baseline rate is 267/59226 = 0.00451.

Table 4.3 The Aeature Ranking Table of the scurf Attack

Arom Table 4.3, it can be seen that only six parameters have misclassification

rates lower than the baseline rate. Therefore, these six parameters will be selected in

the new feature subset.

Pod and Teardrop Attacks

Because the pod and teardrop have similar traffic patterns, these two attacks will

be grouped and analyzed together in this experiment. The classification performance

of the 45 features on these two attacks is listed in Table 4.4.

43

Table 4.4 The Aeature Ranking Table of the pod Attack

Because there are 24 pod attack samples and 12 teardrop attack samples in

DARPA'98 data, the base-line rate of pod and teardrop attacks is 36/59226 =

0.000608. Table 4.4 indicates that there are only two features, "in.ip-frag-rate" and

"in.ip-defrag-error-rate", which are relevant to detect pod and teardrop attacks.

The Selected Feature Subset

Based on the above feature ranking tables, a feature subset of twenty-two

features is selected and listed in Table 5. This feature subset will be noted as Set 22

from now on, for simplicity.

44

4.4.3 The Feature Subset of Decision Tree

A decision tree [56] was induced using the DARPA'98 data. Only 8 features were

selected by the induced tree bsee Table 4.6). It can be seen from the table that the

features selected by the decision tree is quite different from the features listed in

Table 4.5. Aor simplicity, this feature subset will be referred to as Set8 in the rest of

this chapter.

4.4.4 Comparing Different Feature Subsets

Neural networks are trained using the feature subsets selected in the above

experiments. The misclassification rates of these neural networks, after being trained

after 2000 epochs, are tabulated in Table 4.7, together with the values of the six

objective functions, which are defined in Section 4.2.

45

In the table, the "Seto" corresponds to the HIDE performance when using

all 45 features bsee Section 3.5.2). The results show that "Set 8" has the lowest

misclassification rates and the minimum values in objective functions among the four

sets. This proves that the classification accuracy and the computation effectiveness

of HIDE can be significantly improved by selecting a proper feature subset.

4.5 Conclusions

This chapter constructed three different feature subsets using different feature

filtering methods and evaluated the corresponding classification performance. The

experimental results on DARPA'98 data set indicated that both the classification

accuracy and the system effectiveness can be significantly improved by selecting a

proper feature subset.

Amongst the four feature subsets, the Set 8 has the best performance, which

includes eight features: in. ip-frag-rate, in. tcp-con-new-opened, in. tcp-con-new-closed,

in. tcp-new-aborted, in. tcp-con-diff-src, in.iccp-byt-rate, out. tcp-pkt-len and out.

tcp-pkt-len.

By using the eight features in Set 8 , HIDE can effectively reduce the values of

the four objective functions by almost a half. This proves the importance for an IDS

to properly select the feature set it monitors to maximize the classification accuracy

and to minimize the computation cost.

However, please note that this feature set may not be the optimum feature set,

in terms of the misclassification rate and the number of features, for HIDE to detect

DoS attacks. As reported by John [57], the process of feature subset selection should

depend not only on the features and the objective functions, but also on the learning

algorithm. In the future, an experiment using wrapper searching methods might be

carried out to search the optimum feature subset for backpropagation networks.

46

Moreover, it needs to be kept in mind that the whole feature identification

process is data driven, in that the selected feature subsets are highly dependent on

the training data. Therefore, special care is needed to avoid over-fitting the feature

subset for a specific training data.

Given the constant fluctuation and evolution of both background and attack

traffic in Internet, the real objective of feature selection is not to find a feature subset,

which may be optimal for a specific data set but generalize poorly on other data files,

but to select a feature subset that is capable of operating at optimal or near-optimal

conditions over a broad range of network settings. Therefore, the next step for this

research is to apply this feature selection process to data collected from various sources

to further understand the correlations between HIDE features and DoS attacks and

to extensively verify the selected feature subsets.

CHAPTER 5

OPTIMIZING HIDE

The results in Section 3.5 indicated that HIDE can effectively detect DoG attacks

using PDA statistics and neural classifiers with very high accuracy. This section

reports a series of research efforts to optimize the performance of HIDE.

The study of various PDA partitioning algorithms is reported in Section 5.1.

Section 5.2 explores the feasibility of reducing the computation and storage

complexity of HIDE using Wavelet compression. Section 5.3 compares the

performance of different similarity metrics. Section 5.4 tests the classification

performance of different neural networks.

5.1 The Study of PDF Partitioning Algorithms

Representing network measurements into PDA formats involves partitioning the

sample spaces of the measurements into a set of complete and non-overlapping bins

and calculating the frequencies of the observed events that fall within the bins.

Traditional PDA algorithms, e.g. NIDES, built PDA histograms using equally sized

bins, while the total number of bins utilized is determined by expediency. Aor

example, NIDES used 32 bins, chosen to be large enough so details will not be

lost at the cost of additional computational complexity. However, the choice of the

partitioning structure may have significant consequences in the accuracy and the

effectiveness of the numerical representation of a monitored parameter. Yet, little

systematic investigation seems to have been undertaken on this issue. Here three

different partitioning schemes, uniform, logarithmic and percentile, have been tested

in [58].

47

48

Uniform Partitioning Scheme

The uniforc partitioning algorithm divides the sample space into bins of equal

parameter width. Assume x 0 , x1 , . . . , xi is a partition of the sample space with x0 the

minimum and xi the maximum, where N is the total number of bins. The partition

can be calculated using Equation 5.1.

Logarithmic Partitioning Scheme

In the logarithcic partitioning scheme, the sample space is segmented using

Equation 5.2.

Percentile Partitioning Scheme

Assume that Fbx) is the cumulative distribution function bCDA) of a PDA. The

percentile partitioning algorithm generates bins so that all bins have equal probability

value bor mass) following Equation 5.3.

49

Sample PDAs using these three partitioning schemes are illustrated in

Aigure 5.1. It can be seen that the log partition has small widths at the lower end and

large widths at the higher end. The percentile partition uses small bins to represent

the middle part of the distribution but uses very large bins to represent the two tails.

The uniforc partition gives equal emphasis to all bins.

Figure 5.1 Sample PDA figures with different partitioning algorithms.

The misclassification rates of 8-bin and 16-bin PDA representations as functions

of attack level are plotted in Aigure 5.2. Arom the figure, the readers can see that, as

the attack level increases, the misclassification probabilities of the systems decrease,

as might be reasonably expected. When the attack levels are low bsay 40 kbps), it

is difficult for the PDA schemes with fewer bins be.g. 4 bins) to detect the attacks,

while the PDAs with more bins be.g. 16 bins) still result in low misclassification rates.

This supports the theory that using PDAs to represent system variables improves the

classification accuracy since they abstract more detailed information that might be

useful for intrusion detection systems.

As the total numbers of bins increase, the behaviors of the three partitioning

algorithms become more similar. At 64, they all perform about the same. This can be

explained by observing that the differences between the real PDAs of the monitored

parameters and their histogram representations decrease as more bins are used to

represent them. As the total numbers of bins changes from 4 bins to 64 bins, in

all sub-figures, the misclassification rates at first decrease, denoting improvement,

50

however, when the total number of bins rises beyond 16, the curves become almost

flat, denoting no further performance improvement. This observation suggests that

PDA representations with 16 bins could be the optimum choice for the trade off

between processing complexity and system performance. Please refer to [58] for more

detailed results.

5.2 Compressing PDFs Using Wavelet Compression

Building and handling PDAs consumes much in system processing power, memory

and storage resources. Therefore, an effective data compression algorithm has the

potential to significantly enhance the system efficiency. This section reports the

experiments on compressing PDA data using Wavelet compression.

Among the many wavelet families that exist, [65-68], a wavelet is selected

from each of the following families: the classical Haar basis bcalled haar afterward),

the Symlets basis bcalled sycW afterward), Coiflets bcalled coif3 afterward), and

Daubechies bcalled db4 afterward) wavelets. Samples of compressed PDAs using one

of these four wavelet compression algorithms are plotted in Aigure 5.3.

Figure 5.3 The sample figure of a PDA with different wavelet compressions.

51

Experiments with various wavelet compression ranges bsee Table 5.1 have been

carried out and reported in [69]. In the table, PDAs at compression range 1 correspond

to uncompressed PDAs. Note that the wavelets coif8 and db4 require the largest

52

number of coefficients at each range, while the wavelets Naar and syc2 provide the

greatest amount of compression.

The above-mentioned wavelet algorithms were used to compress the PDA data

files collected from the OPNET simulations bsee Section 3.5.1), in which the PDAs

are represented using unfiorc partitioning algorithm, see Section 5.1, with 64 bins

into sets of wavelet coefficient. To compare the system performances under various

wavelet compression ranges, the compressed PDAs were reconstructed from the

wavelet coefficients found and then processed by the statistical modules and the neural

network classifier.

Figure 5.4 The misclassification rates of HIDE at different wavelet compression
ranges.

The misclassification rates of HIDE, when trained using these reconstructed

PDAs, are plotted in Aigure 5.4, in which the x-axis represents the five compression

ranges and the y-axis represents the misclassification rates. It can be seen from

the figure that the curve of wavelet compression algorithm sym2 rises slowly, and,

even for compression range 5, the algorithm still shows strong performance with

misclassification rate about 2%. Aor the other three wavelet bases, the system

53

performance is satisfactorily for ranges 1 to 3, but then deteriorates for ranges 4

and 5.

The experimental results indicated that the wavelet compression algorithm sycW

is a more appropriate choice for PDA compression. In practice, it was found that sycW

wavelet compression with compression range of 3 b18 wavelet coefficients) is a safe

choice for HIDE to maintain a satisfying performance while boosting system resource

efficiency by almost four fold.

5.3 The Effectiveness of Similarity Metrics

This section investigates the effectiveness of different similarity metrics in intrusion

detection. The four metrics studied are: x 2 test bsee Equation 3.1); KS test bsee

Equation 3.2); AKS test bsee Equation 3.3); and a simplified single-number statistic

bso called SG test, see Equation 5.4). The SG test is used to simulate intrusion

detection using traditional rate-based single-number parameters.

where r is the average value of the monitored parameter within a time window;

pbr) is the probability of r in the reference distribution; and Amax is the maximum

probability of the reference distribution.

The classification performance of these four metrics, when detecting the OPNET

data set, is depicted in Aigure 5.5. The SG metric performs the worst, especially when

attack intensities range from low to medium. This indicates that, by using the PDA

statistics, IDSs can potentially improve the detection rate of early detection of DoG

attacks.

The AKS metric has slightly better performance than the KS statistic. The

X2 test has the lowest misclassification rates when the attack intensity is low. The

Figure 5.5 The misclassification rates of different similarity metrics.

plausible explanation for this observation is that, because the underlying driving

distributions of the OPNET simulations are "Poison" and "Exponential" , which are

memoryless and individually independent, the resulted x 2 distances closely follow

their theoretical distributions. Therefore, the x2 test can accurately tell the difference

between normal and attack PDAs. However, in real network environments, where the

traffic distributions are often bursty and self-similar [59], the above "Poisson" and

"Exponential" assumptions are no longer valid. Due to the inherent distribution

sensitiveness, x2 test may not be a good choice for real network detection. Therefore,

the AKS test is chosen as the similarity metric for most of this work.

5.4 The Study of Neural Network Classifiers

Neural networks are widely considered as an efficient approach to adaptively classify

patterns, but high computation intensity and long training cycles have hindered

their applications in real-time systems. In [7, 19], BP neural networks were used

to detect anomalous user activities. In [39], a hybrid neural network paradigm, called

perceptron-backpropagation-hybrid bor PBH) network [60], which is a superposition of

a perceptron and a small backpropagation network, was deployed to detect intrusions.

55

As the core of decision making modules of many anomaly IDSs, classification

techniques have profound impact on system performance and efficiency, but little

research has been carried out to compare the effectiveness of different neural network

classifiers as applied to ID problems. In order to comprehensively investigate the

performance of neural networks, five different types of neural networks are examined

in this section: Perceptron, BP, PBH, Auzzy ART MAP and RBA.

Figure 5.6 The models of neural classifiers tested.

The perceptron [61], Aigure 5.6ba), is the simplest form of a neural network used

for the classification of linearly separable patterns. It consists of a single neuron with

adjustable synapses and threshold. Although the data sets will not, in general, be

linearly separable, the perceptron was used as a baseline to measure the performance

of other neural networks.

The Backpropagation network [61], Aigure 5.6bb), or BP, is a multi-layer

feed-forward network, which contains an input layer, one or more hidden layers,

56

and an output layer. BPs have strong generalization capabilities and have been

applied successfully to solve some difficult and diverse problems. The classification

performance of BP networks, with the number of hidden neurons ranging from 2 to

8, was tested.

Perceptron-backpropagation hybrid network [60], or PBH, Aigure 5.6bc), is a

superposition of a perceptron and a small backpropagation network. PBH networks

are capable of exploring both linear and nonlinear correlations between the input

stimulus vectors and the output values. The classification performance of PBH

networks, with the number of hidden neurons ranging from 1 to 8, was tested.

The Auzzy ARTMAP, [62], in its most general form is a system of two Auzzy

ART networks ARTa and ARTb whose A2 layers are connected by a subsystem

referred to as a "match tracking system" . A simplified version of Auzzy ARTMAP [63],

Aigure 5.6bd), which is implemented for classification problems, was used in this

experiment. The ARTMAP networks, with the number of category neurons ranging

from 2 to 8, was tested.

Radial-basis function network [61], or RBA, Aigure 5.6be), involves three entirely

different layers. The input layer is made up of source nodes. The second layer is a

hidden layer of high enough dimension, which serves a different purpose from that in a

BP network. The output layer supplies the response of the network to the activation

patterns applied to the input layer. The RBA networks, with hidden neurons ranging

from 2 to 8, was tested.

The misclassification rates of BP and PBH neural networks are plotted in

Aigure 5.7. The detailed results of all these four classifiers can be found in the

paper [64]. Due to the space limitations, they are not included in this section.

The conclusion in [64] was that BP and PBH networks had similar detection

performance, and that the both neural networks consistently performed better than

the other three types. The misclassification rates of these two networks do not

Figure 5.7 The results of BP and PBH classifiers.

decrease as the number of hidden neurons increases. The explanation could be

that the sample spaces of attack and normal patterns are clearly divided after being

processed using PDA statistics. They are not challenging enough for BP and PBH.

Therefore, the BP network is chosen as the HIDE'S classifier in most of this work.

CHAPTER 6

METHODS OF CLASSIFIER TRAINING IN A PRODUCTION

NETWORK USING TEST NETWORK INFORMATION

6.1 The Challenge in Training Classifiers for a Production Network

In a production network, during its intended operation, an anomaly intrusion

detection system is expected to find anomalous activities. As shown in Aigure 2.2, the

pattern classifier processes the current activity pattern and rates it with a similarity

score as to whether it is more similar to normal or anomalous activity. Similar to

most other learning techniques using supervised training, the HIDE classifier, which

is a back-propagation neural network, needs to be trained with data records of the

typical bnormal) and attack-labeled banomalous) variety in sufficiently large amounts.

Moreover, if one desires to distinguish between different classes of attacks or perhaps

individual attacks, data for all such different attacks need to be made available for

training. Such data will enable the neural net classifier to learn the difference between

normal and anomalous activities, thus achieving high detection and low false alarm

rates. In a test or laboratory network, the researchers and developers can investigate

and record the launching of all desired known attacks, selecting from a library of

attacks, with accurate labels. Such investigations of attacks can be carried out and

recorded for various background traffic types and levels.

The challenge that HIDE faces is that, while both normal and attack data are

easily and conveniently available for a test network, only normal data are routinely

available for a production network. Hence, the classifier of the IDS will probably

be ill-trained for the new network environment and thus unsuitable for use without

changes if b1) the new network is sufficiently different from the test network, so the

new background will not be close to that of the test network, or b2) the IDS lacks

58

59

training that includes attack data for the new network. One or the other, or more

likely both conditions hold in most realistic cases of installations of a new intrusion

detection system and thus the IDS classifier will need to be re-trained at some stage

during or soon after installation.

An anomaly intrusion detection tool that is to be installed in a new real

network environment can reasonably expect some initialization period that will

provide sufficient estimates of the normal behavior of the network. In a typical setting,

by far most of the traffic that the IDS sees is normal with only a sprinkling of attack

traffic. Thus, algorithms could conceivably be used to separate out the normal traffic

from any attacks, whenever they might occur in the new network, based on intensity

comparison considerations alone. Such algorithms, employing clustering techniques,

have been investigated elsewhere [29].

Additionally, it may be that, during the initialization phase, all the traffic in

the new setting is in fact normal. Even if some attack traffic could be found in the

new network, it may be difficult, at this stage, to characterize what type of attack it

is. Therefore only normal traffic models in the new network setting can be observed,

but no clear description of network attacks can be expected. Although theoretically

possible, it would be unreasonable and unrealistic to launch attacks in the network

to be protected, solely for the benefit of the learning phase of the IDS. Most likely it

would not be permitted to take place. Thus, somehow, while using the normal and

attack data from a test network as well as the normal data from the new network, it

needs to be ensured that the classifier is properly and correctly trained.

Two alternative solution approaches to this challenge, the re-use classifier and

the grafted classifier, were proposed in [70]:

• The re-use classifier method is straightforward and consists of employing the
test-network classifier in the new network, as is after being trained only in
the test network, which is without any modifications at the beginning. This
approach is expected to perform adequately well if the new network is similar

60

in architecture and usage to the test network, but will likely increasingly
deteriorate in performance the more dissimilar the two settings are.

• The grafted classifier method essentially consists of abstracting a database of
attacks, in their "pure" forms, from the test network and then "grafting"
these attacks onto the normal traffic in the new network, thus "transplanting"
the attack models from the test network to the production network.

In this way, the grafted classifier method will provide adequate attack samples

as well as normal samples in the new network setting, thus enabling the training of

the classifier in the new network. Experiments have been performed to investigate

the effectiveness of these two techniques in an experimental setting, where both have

been found to be effective. The grafted classifier approach will work adequately for

the class of parameters where the effect of the attacks is of "additive" character to

that of the background, which is the case for the DoG attacks that HIDE is designed

to detect.

Nevertheless, it should be noted that the expectation regarding these techniques

is not that they generate the final best codel of an attack, but that they will provide a

good "seed" of such a codel, allowing the system to adapt the model by "learning"

from then on, thus bootstrapping onto an accurate attack model from an initially

only adequate estimate. The HIDE employs an adapting algorithm that adjusts the

normal as well as the attack models, by using the descriptions of the current normal

and attack data, after they are detected to be so.

The grafted classifier approach described above may, in general, depend on the

nature of the monitored parameter as well as the type of attack. Basically, it relies

on the assumption that the normal background models vary most from network to

network while the attack models vary least. This assumption is intuitively reasonable

and has been observed to be the case for many types of networks and attacks. The

normal background network traffic changes in time and from network to network. On

the other hand, the behavioral profiles of various kinds of attacks are comparatively

stationary and exhibit similarities from network to network.

61

In more detail, this approach involves extracting attack profiles, for each

monitored parameter, from a test network and then applying them to a new

production network. Airstly, the samples of attacks and background traffic are

extracted from the data collected in a test network. Secondly, the attack instances

are calculated by removing the components of normal traffic from the attack models.

Thirdly, the attack samples for the new network can be simulated by combining and

merging the normal samples of the production network with the attack instances that

have been extracted from the test network. Ainally, the IDS classifier can be trained

using the attack data simulated in the previous step together with the normal data

samples.

The definitions of attack sacples, norcal sacples, attack instances and attack

profile, for each parameter, are provided as below:

• Attack Hybrid is the observed traffic pattern, which is represented in PDA
format, with both normal and attack traffic.

• Norcal Pacple is the observed traffic pattern with normal traffic only.

• Attack Abstract is the instance of attack traffic, in its "pure" form, by removing
the normal traffic components from attack samples.

• Attack Profile is an aggregated database of all attack instances.

6.2 Attack Modeling and Simulation

The models of normal network traffic are generally bursty and vary considerably in a

network from time to time and from network to network, therefore it is hard to predict

or estimate the models of normal traffic in advance. However, because the schemes

and patterns of particular attacks often have their own specific characteristics, their

effects on the normal traffic may be fairly consistent. Thus, it may be feasible to

estimate attack models based on the knowledge collected from a test network, at

least well enough to serve as seeds in the new network setting. The flow diagram

62

of the attack modeling and simulation is shown in Aigure 6.1, which involves the

following steps:

Figure 6.1 The phases of attack estimation.

1. Hybrid Traffic Sampling in the Test Network: measures the network
traffic, including both normal and attack packets, of the test network, into
PDA data samples.

2. Attack Packet Filter: blocks the attack packets so that only normal packets
can pass through this block.

3. Normal Traffic Sampling in the Test Network: measures the network
traffic, including normal packets only bthe attack packets are filtered out by the
"Attack Packet Ailter"), of the test network, into PDA data samples.

4. Attack Abstract EDtraction: extracts the attack instances by removing the
normal traffic components from the attack samples.

5. Attack Record: is the database of all attack abstract instances extracted from
the previous step.

6. Normal Traffic Sampling in the Target Network: measures the normal
traffic patterns in the target network.

7. Attack Transplant Sample Grafting: at this stage both the attack abstract
instances, which are collected from the test network, and the normal samples,
which are collected from the target network, have all become available. However,
the real objective of these data is to simulate enough attack samples to be used
as training, test and validation data. Explicitly, this algorithm needs to be
able to randomly generate the presumed attack samples that are PDAs that
statistically predict the traffic patterns, should the same attack be observed in
the target network. Subsequently, these simulated attack samples together with
the normal samples of the target network are both used to train the classifier
of HIDE.

63

6.2.1 Attack Abstract EDtraction

Assume that AH is a measured attack sample, which contains both attack and normal

traffic. BA is the measure normal sample, which contains the normal traffic only.

Then the equations to calculate the attack instance are given in Equation 6.1

Where:

• i: itch bin of a PDA sample.

• AH t : is the measured attack traffic sample in the test network.

• BA t : is the measured normal traffic sample in the test network.

• NAIL: the number of samples of AH.

• NBA , : the number of samples of BA t .

• AA: is the calculated attack abstract instance.

• NAA: is the number of samples of AA.

6.2.2 Attack Transplant Sample Grafting

The attack sample grafting is the reversed process of the attack instance extraction

step. Airst, an attack abstract, AA, is randomly chosen from the Attack Record;

then, the attack transplant sample, AT g , is generated by grafting the selected attack

abstract onto a normal sample collected from the target network. The equation of

attack transplant grafting is given in Equation 6.2.

64

.n of a PDA sample.

the calculated attack abstract instance.

is the number of samples of AA.

le normal traffic sample of the target production network.

the number of samples of BNp .

Please refer to [70] for the detailed information about the algorithms and the

pseudo codes of attack instance extraction and simulation.

6.2.3 PDF Figures of a Grafted Attack Sample

Example PDAs of the measured normal and the measured attack samples, the

extracted attack abstracts and the resulted attack transplant samples are plotted

in Aigure 6.2 for some parameter. Aigure 6.2ba) and Aigure 6.2bb) are the measured

normal and attack PDA samples in a test network. Aigure 6.2bc) is the extracted

attack abstract instance based on Aigure 6.2ba) and Aigure 6.2bb). Aigure 6.2bd)

and Aigure 6.2be) are the measured normal and attack samples in a target network.

Aigure 6.2bf) is the simulated attack transplant sample in the target network. Arom

the figures, it can be seen that, although the normal traffic samples in the two

networks are quite different bas seen by comparing Aigure 6.2ba) and Aigure 6.2bd)),

the simulated attack transplant sample is visually close to the measured attack sample

in the target network bas seen by comparing Aigure 6.2bf) and Aigure 6.2be)).

6.3 The OPNET EDperimental Results

The first experiment is designed to evaluate the performance of the "graft" and

"re-use" algorithms, when both the test and the target networks have similar network

settings. The OPNET simulation data sets bsee Section 3.5.1) are used in this

experiment.

65

Figure 6.2 The PDA histograms corresponding to the steps utilized in estimating
an attack transplant sample of a parameter.

The 600kbps network bsee Table 3.1) serves as the test network bA). The

background and attack traffic data of the test network are used for training the test

classifier. This test classifier is used in the investigation of the efficacy of the re-use

classifier method. These data are also used to calculate the attack abstract instances

by using the algorithms described earlier that are part of the grafted classifier method.

The 2Mbps network bsee Table 3.1) serves as the production network bB). The

background traffic data of the network B are used to compute the background models

and then to estimate the attack models in the production network. The attack models

then generate simulated attack transplant samples for training.

66

6.3.1 Model Similarities

To further quantify the similarities between the measured and the estimated models,

three different similarity measurements are calculated using the similarity equation

listed in Equation 3.3: b1) the similarity between the actual background model and

the actual measured attack model bcalled AaBa from now on) bhere the term "actual"

refers to measured, rather than estimated, quantities in the simulated network, not

live network data); b2) the similarity between the actual background model and the

estimated attack model bcalled Ae Ba from now on); b3) the similarity between the

actual attack model and the estimated attack model bcalled AeAa from now on); b4)

the similarity between the actual 600kbps-background model and the actual 2Mbps-

background model bcalled 13„600,Ba2, from now on). The average of the similarity

results are tabulated in Table 6.1.

In examining Table 6.1, it can be noticed that, when the attack level is very low

compared with the background, i.e., 10 to 50 kbps, all models are close to each other,

and in fact, none of the classifiers can reliably detect attacks. At higher attack levels,

i.e., 100-200 kbps and more, the estimated attack models remain very similar to the

measured attack models but different from the actual normal models. Therefore, these

results suggest that the attack models can be estimated with adequate correctness in

that they are quite similar to the actual models. The last column strongly indicates

67

that the background at 600kbps and 2Mbps network conditions are consistently very

different from each other.

6.3.2 Comparison of Classification Performance

Three classification experiments are performed to examine the classification

performance outcomes of HIDE for the networks at hand for the two approaches,

the re-use and the grafted methods.

1. The actual PDA data of the production network B are used for the training,
testing and validation of the HIDE classifier. The results are used as the baseline
of the system performance in that they should be the best that can be achieved
for the actual 2 Mbps network. Aor simplicity, this experiment is called the
opticuc for experimental outcomes.

2. The generated PDA data, using the grafted classifier method, are used for
training the HIDE classifier, while the actual data are used for testing. The
results reflect the performance of the "grafted" method and are referred to as
the grafted method experiment.

3. The 600 kbps PDA data are used for both training and testing of the HIDE
classifier. Subsequently, the classifier is used to validate the PDA data from the
production network. Thus, this corresponds to examining the efficacy of the
"re-use" method and is to be referred to as the re-use method experiment.

The ROC bReceiver Operating Characteristic) curves of the three experiments

under different attack levels are plotted in Aigure 6.3.

Arom the figures, it can be seen that the classification performance of HIDE

improve, as the attack intensity gets higher, as expected. Also, the classification

performance of the opticuc measurements is best. As mentioned earlier, at the very

low attack levels, all classifiers are basically failing and any measured classification

results bear little meaning or interest; that is the case here for the 10 kbps graphs.

At higher, more meaningful, attack rates, the classification performance of the two

methods, the grafted and re-use classifiers, are quite encouraging and basically on par

with each other and only a little inferior to the opticuc results.

The misclassification rates of HIDE for the opticuc, grafted classifier and re-use

classifier experiments are listed in Table 6.2. The values seen in the table follow

what was observed from Aigure 6.3. The misclassification rates of the opticuc

experimental measurements are better but close to those found for the grafted

and re-use classifier experiments. This indicates that the latter two modeling and

69

estimation algorithms can be used as effective starting points, when migrating an

anomaly IDS from the test network to an unfamiliar network setting, where accurate

attack models are not available. However, the grafted approach performs better as

the environment becomes increasingly unfamiliar.

6.4 The DARPA-CONEX TESTBED EDperimental Results

The second experiment is designed to evaluate the performance of these graft/reuse

approaches in detecting DoP attacks collected from two networks with disparate

network topologies and traffic models.

The DARPA IDEVAL network bsee Aigure 3.6) serves as the test network bA).

The background and the DoG attack traffic data are used as the training data to train

the "re-use" classifier. These data are also used to extract the attack profile in the

same way as the previous subsection.

The CONEX TESTBED network bsee Aigure 3.7) is used as the production

network bB). The background traffic data, together with the attack profile of the

DARPA IDEVAL network, are used to simulate the grafted attack samples, which in

turn are used to train the "graft" classifier.

In the same fashion as what has been done in Section 6.3.2, the three classifiers,

opticuc, grafted and re-use, are trained to detect the DoG attacks in the CONEX

TESTBED. The misclassification rates are listed in Table 6.3. As expected, the

opticuc classifier has the lowest misclassification rate, as low as 0.290%. The grafted

70

classifier comes in second with a 0.791% error rate. The re-use classifier performs the

worst with a 1.58% misclassification rate.

Figure 6.4 The ROC curves of the CONEX TESTBED experiment.

The ROC curves of these three classifiers are plotted in Aigure 6.4. Aigure 6.4ba)

shows the ROC curves in the regular scales and Aigure 6.4bb) gives the details at the

upper left corner of Aigure 6.4ba), which is the region of interests. The figures show

that the detection bor true positive) rate of opticuc classifier is about eight percent

higher than the other two classifiers. Interestingly, the grafted approach has a slightly

lower false positive rate than the opticuc, which is highly desirable since high false

positive rates are the major drawback of intrusion detection systems.

The above observations show that the "graft" approach has a performance

advantage over the "reuse" approach in the terms of false positive and misclassification

rates, when both are used as bootstrapping classifiers of HIDE for the CONEX

TESTBED network.

6.5 Conclusion

The classifier of an IDS, which is well-trained in a test network, could be ill-trained in

an unfamiliar network setting. This is because, while typical background traffic data

are available in the new network, attack data usually is not. To solve this problem,

71

two techniques, the re-use classifier and the grafted classifier methods, are proposed

and presented in this chapter to bootstrap the classifiers of a production network by

using the attack information obtained from a test network.

Two experiments have been carried out by using HIDE, an intrusion detection

prototype, to compare the opticuc outcomes bwhen the classifier knows the attacks in

the unfamiliar network) to the results for the grafted and re-use classification methods:

the first experiment used data sets generated by OPNET simulations at various

background and attack intensity settings; the second experiment used TCPDUMP

trace files derived from the DARPA intrusion detection evaluation projects and the

CONEX TESTBED network of the CONEX lab in NJIT.

It has been seen from the results of the first experiment bsee Section 6.3) that

the classification performance of the grafted and opticuc classifiers improves as the

attack intensity gets higher, while the classification performance of the opticuc are

the best in all scenarios, as expected. This indicates that the both algorithms, "graft"

and "re-use" , can be used as the bootstrapping approaches to train classifiers for a

new environment with insufficient attack information. The results of the second

experiment bsee Section 6.4) show that the grafted classifier has a performance edge

over the re-use classifier, especially in terms of false positive rates, which is highly

desirable for an IDS.

CHAPTER 7

RECONNAISSANCE INTRUSION DETECTION SYSTEM

This chapter describes the architectures, the algorithms and the experimental results

of the reconnaissance intrusion detection system bRIDS), which is designed to detect

P&S attacks and to discover the distributed stealthy attack scenarios.

Section 7.1 briefly reviews the existing literature in reconnaissance attack

detection. Section 7.2 introduces the architecture of the reconnaissance intrusion

detection system bRIDS). Section 7.3 describes the diagram and the algorithms of

RAP. Section 7.4 explains the details of the RAC system. Section 7.5 reports the

testing results of RAP and RAC on three different P&S attack data sets. Section 7.6

summarizes and concludes this chapter.

7.1 Literature Review in Reconnaissance Intrusion Detection

Reconnaissance attacks balso called probing and scanning attacks or P&L attacks) are

often used by hackers as the starting phase of a series of hostile activities by scanning

a set of addresses or ports, looking for vulnerabilities and possible penetrating points.

Therefore, it is important for an IDS to be able to accurately detect reconnaissance

attacks as early warnings for more serious attacks.

The state of the practice in P&L attack detection is surprisingly simple. Nearly

all commercial and open-source intrusion detection systems, e.g. NAR [25] and Bro [9],

etc, contain primitive modules to detect portscans and other forms of surveillance

activities by looking for X "events of interests" for host Y with Z seconds [71]. These

techniques can be easily defeated by attackers simply by increasing their scanning

interval or by using multiple hosts to simultaneous scanning a site.

Snort [41] uses three portscan detection methods. The first is a signature

detection method by matching packets with the pre-specified scan signatures. The

72

73

second is connection-oriented method by using the simplistic method mentioned in the

previous paragraph. As of version 2.0, SNORT starts to include a new preprocessor

"flow-portscan" to detect surveillance attacks by scoring the flows accessing unopened

or unpopular services and generating alerts when a certain score threshold have been

exceeded.

Several research papers have been published to address the issue of scanning

detection using probabilistic methods. Staniford et al. [37] proposed algorithms

to detect scans based on the probability of accessing each destination host and

port. Leckie et al. [72] designed a probabilistic model to detect likely scan sources.

Robertson et al. [73] monitored failed connections attempts and used a simple

thresholding method to detect scans. Jung et al. [74] also monitored failed sessions

and used a threshold random watch algorithm to detect scanning sessions.

Figure 7.1 Reconnaissance intrusion detection system.

The reconnaissance detection system, Aigure 7.1, consists of two functional

subsystems:

• Reconnaissance Activity Profiler bRAP): is a session-based intrusion detection
module capable of detecting stealthy scanning and probing attacks. The
detailed information about RAP will be described in Section 7.3.

• Reconnaissance Activity Correlater bRAC): is an alert-correlation module to
correlate the alerts generated by RAPinto attack scenarios and to discover the

74

distributed stealthy attack scenarios. The detailed information about RAC will
be described in Section 7.4

7.3 Reconnaissance Activity Profiler

The RAP module processes the packets from the KAA module, builds sessions,

aggregates the sessions based on the client IP addresses, extracts and scores the session

features, classifies the features, and reports the alerts to both the security console and

to RAC module. As illustrated in Aigure 7.2, RAP consists of the following functional

sub-modules:

Figure 7.2 The diagram of the reconnaissance activity profiler.

• Session Assembly: assembles the packets into sessions. There are three
types of sessions: TCP sessions, UDP sessions, and ICMP sessions. Although
UDP and ICMP packets are essentially connectionless, the exchange of packets
between clients and servers does convey a lot of valuable information, which can
be utilized for the purpose of intrusion detection.

• Client Session Aggregation: aggregates all sessions according to their client
IP addresses. The aggregated behaviors of the attack clients significantly
differ from the behaviors of the normal users. Therefore, client-level session
aggregation is very useful for detecting attacks.

• Session Feature EDtraction and Scoring: extracts the features statistically
describing the behaviors of the sessions and their client addresses. It calculates
the probability scores these features by comparing the features with the
reference models of normal and attack users. The probability scores are
measurements indicating how likely for a feature to take the observed values.

• Reconnaissance Classifier: classifies the score vectors to detect
reconnaissance attacks. The positive battack) classification outputs are reported

75

to both security console and to following RAC module. The negative bnormal)
samples are sent to the stealthy reconnaissance classifier for further detection.

• Stealthy Reconnaissance Classifier: detects the stealthy reconnaissance
activities by further analyzing the negatives of the non-stealthy classifier. It
will generate alters to RAC module for whenever stealthy attacks are detected.

7.3.1 Session Monitoring and Categorization

RAP monitors the sessions by rebuilding session dialogs between clients and servers.

RAP is designed to monitor three kinds of sessions: TCP, UDP and ICMP. These

sessions are aggregated according to their client IP address. Aor each client, a set of

timestamps and counters is used to describe the traffic activities.

Figure 7.3 The session categories.

The monitored sessions can be categorized into two categories according to their

activity patterns:

• Control Sessions: are the sessions exchanging control packets only.

• Data Sessions: are the sessions exchanging both control and data packets.

Based on control packets and the following state transition paths monitored,

sessions are also classified into three different categories:

76

• Normal Sessions: are the sessions without any invalid control packets and
anomalous state transitions.

• Abnormal Sessions: are the sessions with some anomalous state transitions
but no invalid control packets. The possible causes for this kind of sessions are
either server busy or packet lost when sniffing.

• Suspicious Sessions: are the sessions with invalid control packets. Most
commonly these sessions are launched by attacks.

Sessions can also be classified according to their service definition:

• Defined Sessions: are sessions accessing the services that are open for normal
users.

• Undefined Sessions: are sessions accessing either non-existing services or
services not open to regular users.

Similar to the anomalous score described by Standiford et al. [37], RAP

calculates the session anomalous entropies Abs) using Equation 7.1:

Where Pbs) is the likelihood for a service s to be accessed; Pmax is the maximum

likelihood among all services; a is a predefined small constant coefficient to avoid logo

error, which is defined as 0.05 in our system.

7.3.2 RAP Events and Statistical Features

Whenever the state of a session changes, this session together with its correspondent

client aggregation will be inspected by RAP for possible anomalous activities. A

vector of session features, which statistically describes the session and client activities,

are extracted and compared with the reference models.

A RAP event is defined as a session state transition. Different fear' tures are

extracted from sessions of different protocols. The detailed description about these

features is given in Appendix A.2.

77

7.3.3 Reference Models and Score Metrics

The extracted session features are then scored based on the information of the

reference models. The reference models are in fact probability density functions

bPDA) of the feature values. Differing from the reference models of HIDE, the

reference models of both normal users and attackers are maintained in RAP. Based

on the nature of these features, these reference models can be categorized into two

categories:

• Categorical Reference Models: are the reference models of features with discrete
values. Two sample categorical reference models are plotted in Aigure 7.4.
Aigure 7.4ba) is the reference model of normal users and Aigure 7.5bb) is the
reference model of attackers.

• Continuous Reference Models: are the reference models of features with
continuous values. Two sample continuous reference models are plotted
in Aigure 7.5. Aigure 7.5ba) is the reference model of normal users and
Aigure 7.5bb) is the reference model of attackers.

Two different score metrics are tested. Let x be the feature value, pabx) be the

probability of x in the normal reference model, pax) be the probability of x in the

attack reference model, npn,max be the maximum probability of the normal reference

model, and Da,max be the maximum probability of the attack reference model.

Arom the above equations, it can be seen that the score metric 1 essentially is

an anomaly detection approach by comparing feature values with the known normal

patterns, while the score metric 2 is a hybrid signature-anomaly detection approach

by utilizing both known normal and known attack knowledge. Aor simplicity, the

score metric 1 will be referred as "METRIC" and the score metric 2 will be referred

as "METRIC2" .

7.3.4 Session Classifier

The Back-Propagation Neural Networks are used as the session classifiers of RAP.

The inputs of the classifiers are the session feature score vectors and the outputs are

the classification results.

7.4 Reconnaissance Activity Correlater

The RAC module builds attack scenarios from the RAP alerts and tries to discover

the distributed attack scenarios. The diagram of RAC is shown in Aigure 7.6, which

consists of the following sub modules:

• Address-Based 	 Vertical 	 Alert 	 Correlation: 	 correlates RAP 	 alerts
vertically, which means all alerts with the same client/server addresses are
correlated together.

• Similarity-Based Horizontal Scenario Correlation: 	 horizontally
correlates attack scenarios, which means that scenarios that are temporally
and statistically similar will be fused bcorrelated) together into one scenario.

• Scenario Feature EDtraction and Scoring: extracts the statistical features
measuring the similarity between two scenarios. These features are then
compared with the known reference models.

• Scenario Feature Classification: classifies the feature scores and forwards
the scores to scenario fusion decision module.

• Scenario Correlation Decision: decides whether two scenarios are belong to
one distributed attack scenario and hence should be fused together.

7.4.1 Address-Based Vertical Alert Correlation

The alert correlation algorithm of RAC differs from the existing attack fusion

algorithms in that it divides the correlation task into two steps: vertical alert

correlation and horizontal scenario correlation. The underlying assumption is that

the alerts, which have the same client/server addressed pair and are temporally close,

always belong to the same attack scenario. This assumption is straightforward and

true for both the DARPA data and the data collected from the CONEX TESTBED

network.

The vertical alert correlation is invoked whenever RAC receives a new alert

from RAP; the horizontal alert correlation is more complicated and is invoked only

80

at constant time interval. By splitting the attack fusion problem into two sub

problems and invoking related modules in different manners, the fusion accuracy

can be maximized by removing the unnecessary uncertainties and the mean time the

computation cost of alert correlations can be minimized.

When a new alert arrives from the RAP module, the vertical alert correlation

module first searches the scenario table for a scenario with the same client/server

address pair as the alert. If the scenario is not found, a new scenario is created;

otherwise, the statistics of corresponding scenario is updated by the new alert.

Scenarios will be purged from the scenario table after a certain inactive period.

Figure 7.7 Sample scenario sets.

As stated in the previous subsection, the horizontal scenario correlation function

is invoked at a constant time interval, e.g. every 60 seconds. When invoked, it first

divides all the existing scenarios into two sets: the first set Cnew includes the scenarios

that have been updated since the last horizontal correlation; the second set C old

includes the scenarios that were not updated since the last correlation.

81

The scenarios in Set Gnew are compared with both the other scenarios in Gnew

and the scenarios in Set G old one by one to determine whether they actually are

correlated. Aor the sample scenarios in Aigure 7.7, the binding strengths between

scenario Si in set Gnew is and the rest scenarios in Gnew and Gold are calculated as

a full search for possible correlated scenarios. However, no separate full search will

be conducted for the scenarios in Set Cold, because no new information is available

for these "old" scenarios.

Figure 7.8 The horizontal scenario correlation.

The flow chart to calculate scenario binding strength is shown in Aigure 7.8.

A vector of statistical features describing the similarity between the two scenarios

is extracted. This feature vector is then scored using feature scoring metrics and

the learned reference information. A neural network is used to classify the feature

scores into a scenario binding strength, which is a comprehensive measurement about

the overall similarity of the two scenarios in question. The binding strength is a

continuous value, ranging from -1 bsame) to 1 bdifferent).

7.4.3 RAC Events and Statistical Features

In RAC, an event is defined as an alert generated by RAP. Totally 28 statistical

features are monitored by RAC to describe the statistical similarities between two

scenarios. A detailed description of the extracted scenario features is given in

Appendix A.3. The feature scoring algorithms are the same as the scoring algorithms

of session features described in Section 7.3.3.

82

7.4.4 Scenario Classification

A Back-Propagation neural network is used as the scenario classifier. The inputs of

the classifier are the scenario feature score vectors from the "Aeature Scoring" module

in Aigure 7.8. The outputs of the classifier are the scenario binding strengths.

7.4.5 Correlation Decision

The decision of scenario correlation has profound impact on the system performance.

A false decision to mistakenly merge two uncorrelated scenarios could corrupt all the

results after that. The purpose of this algorithm is to design an effective decision-

making approach, with as few false alarms as possible, on fusing two scenarios.

Figure 7.9 Scenario correlation decision.

The block diagram of the scenario correlation decision module is shown in

Aigure 7.9. In the figure, Scenario A and Scenario B are the two scenarios need

to be inspected; bA,B is the binding strength between A and B; rA,B represents the

address relationship between A and B, which will be elaborated in Subsection 7.4.5;

and dA,B is the correlation decision.

Terminologies

To facilitate the description of the correlation decision algorithm, the definitions

of several terminologies are given as below:

• Scenario: is the aggregate of the RAP alerts according to their client/server
address pairs. In the rest of this chapter, scenarios are represented by capital
letters, e.g. A, B, C

83

• Binding Strength: is the output of the neural classifier to indicate the closeness
between two scenarios. It ranges from —1 to 1. The closer is the binding
strength to —1, the more similar are the two scenarios. In the rest of this
chapter, binding strength between two scenarios A, B at time t is denoted as

dtbA, B).

• Address Relationship: indicates the geographical relationship among the
scenarios in the scenario diagram. The definitions of scenario diagram and
the scenario address relationship will be given in the next subsection. The
symbol RA,B is used to symbolize the address relationship between scenario A
and scenario B.

• Correlation Decision: is the output of this algorithm. It equals to either
"CORRELATED" or "UNCORRELATED" . "CORRELATED" indicates that
the two scenarios are correlated and actually belong to one distributed scenario,
therefore they should be fused together; "UNCORRELATED" means that the
two scenarios look different. Binding decision between scenario A and B at time
window t is symbolized as dt bA, B).

A Sample Scenario Diagram

A sample diagram of different scenarios is illustrated in Aigure 7.10. The x-axis

is the client IP address; and the y-axis is the server IP address. Seven scenarios bA,

Figure 7.10 A sample diagram of attack scenarios.

84

The address relationships among the scenarios are defined as below:

• VERTICAL Relationships: are the scenarios that have the same client IP
address, e.g. B and C.

• HORIZONTAL Relationships: are the scenarios that have the same server IP
address, e.g. A and B, and C and D.

• CROSSING Relationships: are the scenarios that do not share the same
client/server IP addresses, e.g. A and C, A and D, B and D, A and F, A
and G, etc.

The VERTICAL address relationship occurs when an attacker scan two servers

simultaneously. This kind of attacks is very common in both stealthy and none-

stealthy attack scenarios and can be easily detected with high accuracy. Therefore,

the RAC system should be able to identify this relationship and fuse the vertical-

neighboring scenarios promptly.

The HORIZONTAL address relationship happens when attackers launch

coordinated attacks scanning server. This kind of attacks is not common but

does happen in mostly stealthy attack scenarios. RAC can detect the horizontally

distributed scenarios but with less certainty. Therefore, it should be cautious when

making the decision to fuse the horizontal scenarios.

The CROSSING address relationship happens mostly among irrelevant attack

scenarios or even among false positives. Only in very rare cases, attacker may

launch distributed attacks from different sources probing different victim machines.

Therefore, it should be very conservative in fusing scenarios with this kind of address

relationship.

The RAC Correlation Decision Algorithm

Based on the above observations, a RAC correlation decision algorithm is

devised and visualized in Aigure 7.11. In the figure, t is the discrete time window

index; Cc, CH and Cc are the three constants indicating how many consecutive

before making a "CORRELATED" decision and fusing the two scenarios.

The basic idea of the RAC decision algorithm is to be conservative, when

correlating/fusing two scenarios, by using multiple consecutive "positive" observations

so that the isolated "false positives" can be filtered and avoided. By adjusting

the three constants, Cm, CH and Cc, the RAC differentiates the likelihood that

a "positive" binding strength is actually a "true positive" based on the address

relationship between the two scenarios. In this way, a balance between the correlation

accuracy and promptness can be achieved and easily configurable by administrators.

7.5 EDperimental Results

Three different data sets, which are the DARPA'98 data set, the COAEX TESTBED

non-stealthy data set and the CONEX TESTBED stealthy data set, have been used

to test the performance of RAP and RAC.

RAC Evaluation Criteria

Same as before, the false positives, false negatives, and misclassifications can

be used to evaluate the performance of RAC, but the definitions of these three

measurements are slightly different from before.

• Aalse Positives: are the instances that two uncorrelated scenarios are mistakenly
classified as correlated.

86

• Aalse Negatives: are the instances that two correlated scenarios are mistakenly
classified as uncorrelated.

• Misclassifications: are the instances of either false positives or false negatives.

7.5.1 Results on the DARAPA'98 Data Set

In this experiment, the RAP is trained to detect the TCP-related reconnaissance

attacks b"portsweep" , "nmap" and "ratan") within the DARPA'98 data set. Aive days

of traffic bby98w8d8, y98w6d4, y98w6dW, y98w6d4 and y98w7dW) within the DARPA'98

training data set are tested. The detection results are listed in Table 7.1.

Arom Table 7.1, it can be seen that both Metric 1 and Metric 2 performed

very well in detecting reconnaissance attacks with very low misclassification rates. In

comparison, Metric 2 could have a small performance advantage over Metric 1.

Because there is no distributed reconnaissance attack scenario in the DARPA'98

data, only the vertical correlation algorithm can be tested. The attack scenarios in

the y98w6dW TCPDUMP trace files are listed in Table 7.2 as examples of the vertical

scenarios discovered by RAC.

In the table, the "start time" and the "duration" are the starting time and

the duration of the attack scenario; "Server" is the IP address of the victim server;

87

"Client" is the IP address of the attacker; "Ssns" is the number of attack sessions

detected; and "Tv" is the average period of the attack sessions bin seconds/scan).

Arom Table 7.2, it can be seen that the TCPDUMP trace file of the Tuesday of

Week 6 contains the following four independent scanning scenarios.

1. Scenario 1 is a stealthy "portsweep" scenario with 97 scans at the average scan
interval of 226 seconds;

2. Scenario 2 is a clear "portsweep" scenario with 300 scans at the scan interval
close to 0 seconds;

3. Scenario 3 is a clear "satan" attack;

4. Scenario 4 is a "portsweep" scenario with 1024 scan sessions at the rate of 2.1
seconds per scan.

7.5.2 Results on the CONEX TESTBED Non-Stealthy Attacks

Aon-stealthy PlP attacks are simulated within the COAEX TESTBED network

bsee Aigure 3.7). In the simulation, the non-stealthy P&P attacks are defined as

distributed attack scenarios with short to medium probing intervals ranging from 2

seconds to 2 minutes. The RAP detection results on the non-stealthy data set, using

both METRIC and METRIC2, are listed in Table 7.3.

The results in Table 7.3 show that RAP can reliably detect non-stealthy P&S

attacks with very low false negative rate and zero false positive rate.

Table 7.4 gives the detection performance of RAC on the non-stealthy data set.

Arom the table, it can be seen that the METRIC2 has much lower false positive rates

than the METRIC1. This is highly desirable, because, as stated in Section 7.4.5, a

Table 7.3 RAP Detection Results on the Non-Stealthy Data Set

88

Table 7.4 RAC Detection Results on the Non-Stealthy Data Set

false positive bmistakenly merging two uncorrelated scenarios) could corrupt all the

results after that.

7.5.3 Results on the CONEX TESTBED Stealthy Attacks

Stealthy PlS attacks, which are defined as distributed scanning attacks with medium

bstarting from 5 minutes) to long bup to 1 hour) scan intervals, are also simulated

within the CONEX TESTBED network. The RAP detection results on stealthy

attacks are tabulated in Table 7.5. The table shows that RAP can detect all stealthy

scanning attacks without a single false positive.

Similar to the RAP detection results, the RAC detection results of METRIC1

and METRIC2 are evaluated and listed in Table 7.6. The misclassification rate of

89

METRIC2 is once again lower than that of METRIC1. This hints that the METRIC2

could be more accurate in correlating attack scenario. The misclassification rates of

the both metrics are relatively high when comparing the results of non-stealthy attacks

bsee Table 7.4). This indicates that distributed stealthy attack scenarios, which are

widely separated in time and the address/port spaces, are much more difficult to be

correctly correlated than the non-stealthy scan scenarios.

Table 7.7 lists the performance of RAC decision module at different

combinations of Cc, CH and Cc. The last three columns of the table give the

numbers of merging decisions and the numbers of false merging decisions in the

format of "number of merging decisions/number of false decisions". The "Vertical"

column corresponds to the performance when merging scenarios of VERTICAL

90

Table 7.7 The RAC Decision Results of CONEX TESTBED Stealthy Data

address relationship; the "Horizontal" column corresponds to the performance

when merging scenarios with HORIZONTAL address relationship; and the "Cross"

column corresponds to the performance when merging scenarios with CROSS address

relationship.

When Cm, CH and Cc are all set to one, there are 12 false merges out of the

total 32 merges. As Cm, CH and Cc are set to larger values, the number of merges

and the number of false merges become smaller. When Cm, CH and Cc are set to

three, three and four, respectively, the number of false merge becomes zero. This

indicates that, by selecting proper Cc , CH and Cc, the RAC decision module can

significantly reduce the number of false merges.

7.6 Comparison and Conclusion

Almost all the existing literatures used different data sets, most of which are not

publicly accessible. Many of these publications used network logs collected from real

networks, which do not have the necessary attack truth. Therefore, a fair comparison

on the reconnaissance detection performance among these systems is difficult. Instead,

some of the existing results on P&S attacks are listed as below:

1. The best P&S detection result in the DARPA'98 IDEVAL project can detect
"almost 90% of the probes but with very few false alarms" [45]. The DARPA'98
IDEVAL project used "session" as the unit of events.

2. The best P&S detection results in DARPA'99 IDEVAL project can detect about
70% of all probes with 10 false alarms per day bsee Aigure 3 of [46]). The
DARPA'99 IDEVAL project used "attack instance" as the unit of events

91

3. Leckie et al. [72] tested their systems using packet logs from two sources. The
event unit they used was "traffic source" , which is very similar to the definition
of attack scenarios of RAC. According to the paper, the false positive rate was
70%.

The following conclusions can be got from the results shown in the above section:

• RAP is a very promising session-based ID system to detect reconnaissance
attacks, stealthy or non-stealthy. Some early results indicate that RAP can
detect attacks with high detection rates and very low false alarm rates.

• RAC can reliably discover distributed non-stealthy scanning scenarios with very
low misclassification rates. The misclassification rates for the stealthy scenarios
are relatively higher that the non-stealthy scenario, but, when considering the
difficulty of correlating stealthy scenarios, these results are still regarded as very
good.

• The performance of the score metric 2 is consistently better than the score
metric 1.

CHAPTER 8

CONCLUSIONS

This dissertation presented the research efforts to apply PDA statistics and neural

network classification in network intrusion detection and alert correlation. The

following research topics have been addressed and reported in the dissertation:

8.1 The System Architecture and the Statistical Model of HIDE

HIDE, a hierarchical statistical anomaly intrusion detection systems to detect DoS

attacks, were presented in Chapter 3. The system had been tested by three different

data sets: the OPNET simulation, the DARPA'98 intrusion detection evaluation

data and the CONEX TESTBED data. The results indicated that HIDE can reliably

detect DoS attacks with very false positive and false negative rates.

8.2 HIDE Feature Subset Selection

Experiments to select feature subsets important for HIDE to detect DoS attacks had

been carried out and report in Chapter 4. The experimental results indicated that, by

selecting proper feature subset, HIDE can effectively reduce the number of monitored

features from 45 to 8.

8.3 Systematic Research Efforts to Optimize the Performance of HIDE

Various research activities to optimize the performance of HIDE had been performed.

The results and conclusions are reported in Chapter 5, which include:

1. The study of the PDF binning schemes

The study on three different PDA binning algorithms, which are used to build

and to represent probability density functions in computer systems, had been

92

93

carried out and reported in Section 5.1. The results showed that the "percentile"

partition with 16 bins could be the optimum choice for the trade off between

the computation complexity and the system performance.

2. Compressing PDFs using wavelet compressions

Aour different wavelet algorithms, Naar, sycW, coif8 and dd4, with various

compression ranges, were tested to compress PDAs generated by HIDE bsee

Section 5.2). The results showed that all four wavelet bases could reliably

compress the PDAs from 64 bin values to 16 to 28 wavelet coefficients

bcompression range 3), without major performance deterioration. Among the

four wavelet algorithms, the sycW wavelet family seemed to perform the best.

3. The study of similarity metrics

The effectiveness of four different similarity metrics, which are used to measure

the similarity distances between two PDAs, has been investigated in Section 5.3.

By comparing and analyzing the experimental results of these metrics, the AKS

bsee Equation 3.3) was chosen as the similarity metric of HIDE.

4. The study of neural network classifiers

As the kernels of intrusion detection systems, classifiers have profound impacts

on the system performance and efficiency. Experiments had been conducted and

reported in Section 5.4 to evaluate five different types of neural networks with

various numbers of hidden neurons. The results indicated that BP and PBH

networks provide more efficient classification results than the other alternatives.

8.4 Methods of Classifier Training in a Production Network

Two different algorithms to train ID classifiers in a production network using the

information gathered from a test network, graft and re-use, had been studied and

reported in Chapter 6. The results showed that the both algorithms can be used as the

94

bootstrapping approaches to train classifiers for a new environment with insufficient

attack information.

8.5 Reconnaissance Intrusion Detection System

The architectures and the detection algorithms of the proposed reconnaissance

intrusion detection system bRIDS), which consists of two consecutive modules, RAP

and RAC, had been presented in Chapter 7 to detect PPS attacks and to discover

distributed scan scenarios. The results showed the systems can reliably detect

reconnaissance attacks and discover distributed reconnaissance scenarios.

APPENDIX A

MONITORED STATISTICAL FEATURES

This appendix gives the detailed descriptions on the statistical features monitored by

HIDE, RAP and RAC.

A.1 The HIDE Features

The HIDE is capable of monitoring traffic into and out of the protected network. The

HIDE statistical features can be categorized based on the protocols of network traffic.

A.1.1 The IP Features

Six IP traffic parameters can be monitored by HIDE.

I. IP Packet Length measures the averages and the distributions of the IP packet
lengths within a time window. Aor simplicity, this parameter is symbolized as
"ip-pkt-len" afterward.

2. IP Packet Rate measures the averages and the distributions of the packet
rates of all observed IP packets within a time window. This feature will be
symbolized as "ip-pkt-rate" afterward.

3. IP Byte Rate measures the averages and the distributions of the byte rates of
all observed IP packets within a time window. This feature will be symbolized
as "ip-pkt-rate" afterward.

4. IP Fragment Rate measures the averages and the distributions of the packet
rates of all observed IP fragments within a time window. This feature will be
symbolized as "ip-frag-rate" afterward.

5. IP Defragmentation Error Rate measures the averages and the distributions
of the IP defragmentation error rates occurred within a time window. This
feature will be symbolized as "ip-defrag-error" afterward.

6. IP Checksum Error Rate measures the averages and the distributions of the
IP checksum error rates occurred within a time window. This feature will be
symbolized as "ip-csum-error" afterward.

95

96

A.1.2 The TCP Features

The HIDE is capable of monitoring 14 different kinds of TCP-related traffic features.

1. TCP Invalid Packet Rate measures the averages and the distributions of the
rates of the TCP packets with invalid combinations of TCP control flags. This
feature will be symbolized as "tcp-pkt-invalid".

2. TCP Packet Length measures the averages and the distributions of the
lengths of IP packets within a time window. This feature will be symbolized as
"tcp-pkt-len".

3. TCP Packet Rate measures the averages and the distributions of the TCP
packet rates within a time window. This feature will be symbolized as "tcp-
pkt-rate" .

4. TCP SYN Packet Rate measures the averages and the distributions of the
rates of TCP control packets with SYN flag set within a time window. This
feature will be symbolized as "tcp-syn-pkt-rate" afterward.

5. TCP FIN Packet Rate measures the averages and the distributions of the
rates of TCP control packets with AIN flag set within a time window. This
feature will be symbolized as "tcp-fin-pkt-rate" afterward.

6. TCP RST Packet Rate measures the averages and the distributions of the
rates of TCP control packets with RST flag set within a time window. This
feature will be symbolized as "tcp-rst-pkt-rate" afterward.

7. TCP Connection Open Rate measures the averages and the distributions
of the TCP connection open rates within a time window. This feature will be
symbolized as "tcp-con-new-opened" afterward.

8. TCP Connection Close Rate measures the averages and the distributions
of the TCP connection close rate within a time window. This feature will be
symbolized as "tcp-con-new-closed" afterward.

9. TCP Connection Abort Rate measures the averages and the distributions
of the TCP connection abort rate bconnection closed by RESET or TIMEOUT
other than normal three-way hand shaking) within a time window. This feature
will be symbolized as "tcp-con-new-aborted" afterward.

10.TCP Connections from Different Source Address measures the
distributions of TCP connections from different source IP addresses within a
time window. This feature will be symbolized as "tcp-con-diff-src" afterward.

11. TCP Connection to Different Destination Address measures the
distributions of TCP connections to different destination IP addresses within a
time window. This feature will be symbolized as "tcp-con-diff-dst" afterward.

97

12.TCP Connection Anomalous Entropy measures the averages and the
distributions of the anomalous entropies of all TCP connections within a time
window. This feature was first proposed in Staniford [37]. The equation to
calculate the connection anomalous entropy is given in Equation 7.1. This
feature will be symbolized as "tcp-con-anomalous-entropy" afterward.

13.TCP Connection Half Opened Ratio measures the averages and the
distributions of the ratio between the half-opened TCP connections and all
TCP connections within a time window. This feature will be symbolized as
"tcp-con-half-opened-ratio" afterward.

14. TCP Connection Duration measures the averages and the distributions of
the TCP connection durations within a time window. This feature will be
symbolized as "tcp-con-duration" afterward.

A.1.3 The UDP Features

The HIDE can be configured to monitor five different UDP-related trafflc features.

1. UDP Packet Length measures the averages and the distributions of UDP
packets within a time window. This feature is symbolized as "icmp-pkt-len"
afterward.

2. UDP Packet Rate measures the averages and the distributions of UDP
packets within a time window. This feature will be referred as "icmp-pkt-rate"
afterward.

3. UDP Byte Rate measures the averages and the distributions of UDP packets
within a time window. This feature will be referred as "icmp-byt-rate" afterward.

4. UDP Packets from Different Sources measures the distributions of UDP
packets from different IP addresses. This feature will be referred as "icmp-diff-
src" afterward.

5. UDP Packet to Different Destinations measures the distributions of UDP
packets destined to different IP addresses. This feature will be referred as
"icmp-diff-dst" afterward.

A.1.4 The ICMP Features

The HIDE can monitor seven different UDP-related trafflc features.

1. ICMP Packet Length measures the averages and the distributions of UDP
packet lengths within a time window. This feature will be referred as "

icmp-pkt-rate" afterward.

98

2. ICMP Packet Rate measures the averages and the distributions of ICMP
packets within a time window. This feature will be symbolized as "icmp-pkt-
rate" afterward.

3. ICMP Packets from Different Sources measures the distributions of ICMP
packets originated from different IP addresses within a time window. This
feature will be symbolized as "icmp-diff-src" afterward.

4. ICMP Packet to Different Destinations measures the distributions of
ICMP packets destined to different IP addresses within a time window. This
feature will be referred as "icmp-diff-dst" afterward.

5. ICMP Anomalous Echo Replies measures the averages and the distributions
of anomalous ICMP echo replies, which are ICMP echo reply packets without
previous echo request packets, within a time window. This feature will be
referred as "icmp-anomalous-echo-reply" afterward.

6. ICMP DUR Packet Rate measures the averages and the distributions of
ICMP DUR bdestination-Unreachable) packets within a time window. This
feature will be referred as "icmp-dur-pkt-rate" afterward.

A.1.5 Features in the OPNET Data Set

To detect the UDP flooding attacks simulated in the OPNET data set bsee

Section 3.5.1 for detailed information), ten traffic features are monitored by HIDE.

They are: in.ip-pkt-len, in.ip-pkt-rate, in.ip-byt-rate, in.ip-diff-src, in.ip-diff-dst,

icmp-pkt-raten, in.icmp-pkt-rate, in.icmp-byt-rate, in.icmp-diff-src and in.icmp-difft.

A.1.6 Features in the DARPA'98 and CONEX TESTBED Data Sets

Aorty-five traffic parameters are monitored by HIDE to detect the DoS attacks

in the DARPA'98 data set bsee Section 3.5.2) and the CONEX TESTBED data

set bsee Section 3.5.3). They are: in.ip-pkt-len, in.ip-pkt-rate, in.ip-byt-rate, in.ip-

frag-rate, in.ip-defrag-error-rate, in.ip-csum-error-rate, in.tcp-pkt-len, in.tcp-pkt-rate,

in.tcp-syn-pkt-rate, in.tcp-fin-pkt-rate, in.tcp-rst-pkt-rate, in.tcp-con-new-opened,

in.tcp-con-new-closed, in.tcp-con-new-aborted, in.tcp-con-half-opened-ratio, in.tcp-

con-duration, in. tcp-con-diff-src, in.tcp-con-diff-dst, in. tcp-con-anomalous-entropy,

in.icmp-pkt-len, in.icmp-pkt-rate, in.icmp-byt-rate, in.icmp-diff-src, in.icmp-diff-

99

dst, in.udp-pkt-len, in.icmp-pkt-rate, in.udp-byt-rate, in.icmp-diff-src, in.udp-diff-

dst, out.ip-pkt-len, out.ip-pkt-rate, out.ip-byt-rate, out.tcp-pkt-len, out.tcp-pkt-

rate, out.tcp-con-diff-src, out.tcp-con-diff-dst, out.icmp-pkt-len, out.icmp-pkt-rate,

out.icmp-diff-src, out.icmp-diff-dst, out.icmp-pkt-len, out.icmp-pkt-rate, out.icmp-diff-

src, out.icmp-diff-dst and io.icmp-anomalous-echo-reply.

A.2 The RAP Features

The RAP is capable of detecting TCP, UDP and ICMP reconnaissance attacks.

Different feature sets are monitored to detect attacks of different protocols.

A.2.1 The TCP Features

In the current implementation, twenty-seven statistical features are monitored by

RAP to detect TCP scanning attacks. They are:

1. Session Action ID, or tcp-ssn-act-id, is an enumerated number to describe
the session transition action, e.g. session opened, session established, and session
closed.

2. Client Number of Sessions, or tcp-total-ssns, is the total number of sessions
from the client.

3. Client In-bound Session Ratio, or tcp-in-ssn-ratio, is the ratio between the
number of inbound sessions and the total number of sessions.

4. Client Out-bound Session Ratio, or tcp-out-ssn-ratio, is the ratio between
the number of outbound sessions and the total number of sessions.

5. Client Open Session Ratio, or tcp-open-ssn-ratio, is the ratio between the
number of half-open sessions and the total number of sessions.

6. Client Established Session Ratio, or tcp-estab-ssn-ratio, is the ratio
between the number of established sessions and the total number of sessions.

7. Client Closed Session Ratio, or tcp-close-ssn-ratio, is the ratio between the
number of closed sessions and the total number of sessions.

8. Client Rejected Session Ratio, or tcp-reset-ssn-ratio, is the ratio between
the number of sessions rejected by servers and the total number of sessions.

9. Client Normal Session Ratio, or tcp-normal-ssn-ratio, is the ratio between
the number of normal sessions and the total number of sessions.

100

10. Client Abnormal Session Ratio, or tcp-abnorm-ssn-ratio, is the ratio
between the number of abnormal sessions and the total number of sessions.

11. Client Suspicious Session Ratio, or tcp-susp-ssn-ratio, is the ratio between
the number of suspicious sessions and the total number of sessions.

12. Client Control Session Ratio, or tcp-control-ssn-ratio, is the ratio between
the number of control sessions and the total number of sessions.

13. Client Data Session Ratio, or tcp-data-ssn-ssn-ratio, is the ratio between
the number of data sessions and the total number of sessions.

14. Client Defined Session Ratio, or tcp-defined-ssn-ratio, is the ratio between
the number of defined sessions and the total number of session.

15. Client Undefined Session Ratio, or tcp-undefined-ssn-ratio, is the ratio
between the number of undefined sessions and the total number of sessions.

16. Client Session Status, or tcp-mean-ssn-status, is the average session status
of all sessions.

17. Client Average Session Entropy, or tcp-mean-ssn-entropy, is the average
session entropy of all sessions.

18. Client Average Session Duration, or tcp-mean-ssn-duration, is the average
session duration of all sessions.

19. Session Direction, or tcp-ssn-direction, is the direction of the session b0 for
inbound sessions; and 1 for outbound sessions).

20. Session Server Protocol State, or tcp-server-state, is an enumerated sever
state of the session.

21. Session Client Protocol State, or tcp-server-state, is an enumerated client
state of the session.

22. Session Status, or tcp-ssn-status, is an enumerated number to describe the
overall session state, which inclicmes both client and server states b0 indicates
an "open" session; 1 indicates an "established" session; 2 indicates a "closed"
session; and 3 indicates that the session is rejected).

23. Session Normality, or tcp-ssn-direction, is an enumerate number for the
session normality b0 for normal sessions; 1 for abnormal sessions; and 2 for
suspicious sessions).

24. Session Type, or tcp-ssn-cntrl-data, is an enumerate number for session types
b0 for control session, within which no real data is exchanged; 1 for data
sessions).

101

25. Session Service Definition, or tcp-ssn-definition, is an enumerated number
indicating whether the service is defined or not b0 for defined services; 1 for
undefined services).

26. Session Entropy, or tcp-ssn-entropy, is the entropy of the session bsee
Equation 7.1).

27. Session Duration, or tcp-ssn-duration, is the duration of the session.

A.2.2 The ICMP Features

The following features are monitored by RAP to detect ICMP scanning attacks.

1. ICMP Session Action ID, or icmp-ssn-act-id, is an enumerated number to
describe the ICMP session transition action, e.g. session opened, session reset,
and session closed.

2. Client Number of ICMP Sessions, or icmp-total-ssns, is the total number
of ICMP sessions from the client.

3. Client In-bound ICMP Session Ratio, or icmp-in-ssn-ratio, is the ratio
between the number of inbound ICMP sessions and the total number of ICMP
sessions.

4. Client Out-bound ICMP Session Ratio, or icmp-out-ssn-ratio, is the ratio
between the number of outbound ICMP sessions and the total number of ICMP
sessions.

5. Client ICMP RESET Session Ratio, or icmp-reset-ssn-ratio, is the ratio
between the number of ICMP sessions, being rejected by ICMP DUR packets
from the other side, and the total number of ICMP sessions.

6. Client ICMP One-Way Session Ratio, or icmp-one-way-ssn-ratio, is the
ratio between the number of one-way ICMP sessions, ICMP sessions with only
one-way traffic observed, to the total number of UDP sessions.

7. Client ICMP ECHO Session Ratio, or icmp-echo-ssn-ratio, is the ratio
between the number of ICMP ECHO sessions bsessions of ICMP ECHO request
/ ECHO reply packets) and the total number of ICMP sessions.

8. Client ICMP RESET ECHO Session Ratio, or icmp-echo-reset-ratio, is
the ratio between the number of ICMP reset ECHO sessions and the total
number of ICMP sessions.

9. Client ICMP One-Way ECHO Session Ratio, or icmp-echo-one-way-ratio,
is the ratio between the number of ICMP one-way ECHO sessions and the total
number of ICMP ECHO sessions.

102

10. Client ICMP MASK Session Ratio, or icmp-mask-ssn-ratio, is the ratio
between the number of ICMP ADDRESS sessions, sessions of ICMP address
mask request/reply packets, and the total number of ICMP sessions.

11. Client ICMP RESET MASK Session Ratio, or icmp-mask-reset-ratio,
is the ratio between the number of ICMP reset MASK sessions and the total
number of ICMP MASK sessions.

12. Client ICMP One-Way MASK Session Ratio, or icmp-mask-one-way-
ratio, is the ratio between the number of ICMP one-way MASK sessions and
the total number of ICMP MASK sessions.

13. Client ICMP TIMESTAMP Session Ratio, or icmp-time-ssn-ratio, is the
ratio between the number of ICMP TIMESTAMP sessions, sessions of ICMP
timestamp request/reply packets, and the total number of UDP sessions.

14. Client ICMP RESET TIMESTAMP Session Ratio, or icmp-time-reset-
ratio, is the ratio between the number of ICMP reset TIMESTAMP sessions
and the total number of ICMP TIMESTAMP sessions.

15. Client ICMP One-Way TIMESTAMP Session Ratio, or icmp-time-one-
way-ratio, is the ratio between the number of ICMP one-way TIMESTAMP
sessions and the total number of ICMP TIMESTAMP sessions.

16. Client ICMP Misc. Session Ratio, or icmp-misc-ssn-ratio, is the ratio
between the number of ICMP sessions that do not belong to the above stated
sessions and the total number of ICMP sessions.

17. Client ICMP RESET Misc. Session Ratio, or icmp-misc-reset-ratio, is the
ratio between the number of ICMP reset misc. sessions and the total number
of ICMP misc. sessions.

18. Client ICMP One-Way Misc. Session Ratio, or icmp-misc-one-way-ratio,
is the ratio between the number of ICMP one-way misc. sessions and the total
number of ICMP misc. sessions.

19. ICMP Session Direction, or icmp-ssn-direction, is an enumerated number
indicating the direction of the session b0 for inbound; and 1 for outbound).

20. ICMP Session Type, or icmp-ssn-type, is an enumerate number of ICMP
session type, e.g. ECHO, MASK, TIMESTAMP, etc.

21. ICMP Session Status, or icmp-ssn-status, is an enumerate number of ICMP
session status b0 for two-way session; 1 for one-way session; 2 for reset session).

22. ICMP Session Request/Reply Ratio, or icmp-ssn-req-rep-ratio, is the ratio
between the ICMP request packets and the UDP reply packets.

23. ICMP Session Duration, or icmp-ssn-duration, is the duration of the ICMP
session.

103

A.2.3 The UDP Features

The RAP monitors the following features of UDP clients to detect UDP P&G attacks.

1. Client UDP Session Action ID, or icmp-ssn-act-id, is an enumerate number
describing the UDP session transition action.

2. Client Number of UDP Sessions, or icmp-total-ssns, is the total number of
UDP sessions from the client.

3. Client In-bound UDP Session Ratio, or icmp-in-ssn-ratio, is the ratio
between the number of inbound UDP sessions and the total number of UDP
sessions.

4. Client Out-bound UDP Session Ratio, or icmp-out-ssn-ratio, is the ratio
between the number of outbound UDP sessions and the total number of UDP
sessions.

5. Client UDP RESET Session Ratio, or icmp-reset-ssn-ratio, is the ratio
between the number of reset UDP sessions bsessions rejected by the other side
using ICMP DUR packets) and the total number of UDP sessions.

6. Client UDP One-Way Session Ratio, or icmp-one-way-ssn-ratio, is the ratio
between the number of one-way UDP sessions bsessions with only one-way traffic
observed) and the total number of UDP sessions.

7. Client UDP Defined Session Ratio, or icmp-defined-ssn-ratio, is the ratio
between the number of inbound UDP sessions accessing "defined" services and
the total number of inbound UDP sessions.

8. Client UDP Average Session Entropy, or icmp-mean-ssn-entropy, is the
average entropy of all UDP sessions from the client.

9. Client Average Session Duration, or icmp-mean-ssn-duration, is the average
duration of all UDP sessions.

10. UDP Session Direction, or icmp-ssn-direction, is the direction of the UDP
session b0 for inbound; and 1 for outbound).

11. UDP Session Status, or icmp-ssn-status, is an enumerated number of UDP
session status, e.g. ONE-WAY, TWO-WAY and RESET.

12. UDP Session Entropy, or icmp-ssn-entropy, is the anomalous entropy of the
UDP session.

13. UDP Session Service Definition, or icmp-ssn-definition, is an enumerated
number indicating whether the accessed UDP service is defined or not b0 for
defined UDP services; and 1 for undefined services).

14.UDP Session Duration, or icmp-ssn-duration, is the duration of the UDP
session.

104

A.3 The RAC Features

Twenty-eight scenario features are monitored by RAC to measure the similarity

between two scenarios. They are:

1. Start Time Difference, or start-time-duff, is the difference between the
scenario start times.

2. Last Alert Time Difference, or last-alert-time-diff, is the difference of the
times of the last alerts.

3. Duration Ratio, or duration-ratio, is the ratio between the durations of the
two scenarios.

4. Alert Number Ratio, or alert-num-ratio, is the ratio between the numbers
of alerts of the two scenarios.

5. Alert Rate Ratio, or alert-rate-ratio, is the ratio between the alert rates of
the two scenarios.

6. Session Number Ratio, or ssn-num-ratio, is the ratio between the numbers
of alert sessions of the two scenarios.

7. Session Rate Ratio, or ssn-rate-ratio, is the ratio between the rates of the
alert sessions of the two scenarios.

8. Defined Service Ratio, or defined-srv-ratio, is the ratio between the numbers
of the accessed "defined" services of the two scenarios.

9. Undefined Service Ratio, or undefined-srv-ratio, is the ratio between the
numbers of the accessed "undefined" services of the two scenarios.

10.Defined/Undefined Service Ratio, or def-undef-srv-ratio, is the ratio
between the defined/undefined service rates of the two scenarios.

11. Scenario Suspicious Ratio, or susp-ratio, is the ratio between the average
scenario suspiciousness, which are the outputs of the RAP classifier.

12. Scenario Entropy Ratio, or entropy-ratio, is the ratio between the average
scenario entropies.

13. Server Site Overlapping, or server-site-overlap, is the ratio between the
numbers of equivalent server addresses and the total number of different server
addresses.

14. Server Alert Overlapping, or server-alert-overlap, is the ratio between the
numbers of alerts to the same servers of the two scenarios and the total number
of scenarios.

105

15. Client Site Overlapping, or client-site-overlap, is the ratio between the
numbers of equivalent client addresses and the total number of different client
addresses.

16. Client Alert Overlapping, or client-alert-overlap, is the ratio between the
numbers alerts from the same clients and the total number of alerts.

17. Server Network Overlapping, or server-net-overlap, is the ratio of the
maximum number of overlapping "1" bits in the server network masks of two
scenarios.

18. Client Network Overlapping, or client-net-overlap, is the ratio of the
maximum number of overlapping "1" bits in the client network masks of two
scenarios.

19. Sever Port Site Overlapping, or server-port-site-overlap, is the ratio between
the numbers of equivalent server ports and the total number of different server
ports.

20. Server Port Alert Overlapping, or server-port-alert-overlap, is the ratio
between the numbers of alerts to equivalent server ports and the total number
of alerts.

21. Client Port Site Overlapping, or client-port-site-overlap, is the ratio
between the numbers of equivalent client ports and the total number of different
client ports.

22. Client Port Alert Overlapping, or client-port-alert-overlap, is the ratio
between the numbers of alerts from equivalent client ports and the total number
of alerts.

23. Server Address/Port Site Overlapping, or server-addr-port-site-overlap, is
the ratio between the numbers of equivalent server address/port pairs and the
total number of different server address/port pairs.

24. Server Address/Port Alert Overlapping, or server-addr-port-alert-overlap,
is the ratio between the numbers of alerts to equivalent server address/port pairs
and the total number of alerts.

25. Client Address/Port Site Overlapping, or client-addr-port-site-overlap, is
the ratio between the numbers of equivalent client address/port pairs and the
total number of different client address/port pairs.

26. Client Address/Port Alert Overlapping, or client-addr-port-alert-overlap,
is the ratio between the numbers of alerts from equivalent client address/port
pairs and the total number of alerts.

27. Scan Number Ratio, or scan-num-ratio, is the ratio between the numbers of
scans bnumber of distinctive server address/port pairs) of two scenarios.

106

28. Scan Rate Ratio, or scan-rate-ratio, is the ratio between the scan rates of two
scenarios.

APPENDIX B

ATTACK AND BACKGROUND TRAFFIC EMULATION IN THE

CONEX TESTBED NETWORK

The CONEX TESTBED network is a network simulation facility setup in the CONEX

lab. of NJIT. This network is designed to emulate the network-based attacks within

a fully controlled environment, to provide abundant clearly-labeled network traces

and system logs to train and test intrusion detection systems, and to evaluate the

real-time detection performance of ID systems.

This chapter introduces the topology and the methodologies of

background/attack traffic simulation in the CONEX TESTBED network. The

topology of the CONEX TESTBED network will be described in Section B.1.

Section B.2 outlines the software tools developed to simulate background and attack

traffic with the CONEX TESTBED. Section B.3 presents the details of an attack

labeling tools, which is designed to generate the detailed attack truth.

B.1 The Network Topology

As shown in Aigure B.1, the CONEX TESTBED network inclicmes the following five

subnets, interconnected by three layer-3 Ethernet Switches:

1. Background Subnet: consists of simulated normal users, who send out service
requests to the servers of the victim network. Several programs have been
implemented to initiate requests automatically according to the preset traffic
configuration so that little human intervention is needed once the programs are
properly configured and start running.

2. Attack Subnet: consists of attackers, who try to break into the servers in
the victim network. Both DoP and P&S attacks are simulated in the CONEX
TESTBED network.

3. Victim Subnet: consists of several servers, which are interconnected with a
Aast Ethernet. These servers provide services for the normal users and they are

107

Figure B.1 The topology of the CONEX TESTBED network.

also the targets of the simulated attacks. A packet sniffer is installed within the
victim subnet to collect TCPDUMP files for later analysis.

4. WLAN Subnet: consists of a wireless access point and several mobile stations,
which are interconnected through an IEEE 802.11 wireless LAN. This subnet
will be used as both the background and the victim subnets to emulate the
increasing 802.11 WLAN traffic of both home and business users.

5. MANET Subnet: is an emulated mobile ad-hoc subnet. Instead of setting
up a real ad-hoc network, which is technically and financially impractical in a
laboratory environment, a "virtual" ad-hoc network, which is emulated with
an Ethernet LAN, is used. Intensive R&D efforts are currently undergoing to
design and implement the algorithms to emulate the wireless link over a wireless
network, to simulate the movements of mobile stations using stationary hosts,
and to implement ad-hoc algorithms within a Linux kernel.

At the time when this dissertation is written, the "WLAN" and the "MANET"

subnets are still under construction. Therefore, only those "wired" subnets are used

in attack simulation and data collection currently.

109

B.2 The Emulation Tools

This section will concentrate on describing the conceptual and architectural aspects

of the background and attack simulation tools.

Figure B.2 The background traffic generator.

The background traffic generator, Aigure B.2, is the program responsible

for launching normal network traffic using commonly used network applications.

The generator reads the user-specified background configuration information, such

as traffic intensity, the server addresses and the ratio of different applications,

etc, and randomly schedules the network applications. To emulate the Internet

traffic, an "on/off" traffic model is used to generate traffic with high degree of

self-similarities. The background traffic generator can generate traffic using different

TCP/IP protocols, e.g. HTTP bweb browsing), FTP bfile transferring), TELNET

bremote accessing) and SMTP bemail sending and retrieving). The program has been

designed in a way that more applications could be inclicmed easily.

Figure B.3 The attack traffic generator

110

The flow diagram of the attack traffic emulation procedure is illustrated in

Aigure B.3. The scenario generator randomly generates the attack scenarios based

on the scenario configuration parameters, such as attack duration, attack types,

attack hosts, victim targets, etc, which are specified by users. The resulted attack

scenarios together with the detailed information about the attack schedules, e.g.

attack commands, parameters, targets, scheduled launching time and so on, are stored

into a scenario file, which is in turn the input of the attack scheduler.

The attack scheduler is responsible for scheduling and launching attacks based

on attack schedule specified in the scenario file. When a scheduled attack is due, the

scheduler will commands a subordinate attack machine to launch the attack. Once

the attack machine finishes the attack, it will send an attack report, which reports

the starting and the ending times as well as the attack status, whether it is successful

or failed, back the scheduler. The scheduler will record all this attack information

into an attack log, which will be used by the attack labeling tool bsee Section B.3) to

generate the detailed attack truth.

B.3 The Attack Labeling Tool

Because there is no standard of the formats of attack logs, different attack simulation

programs use different logging formats. Aor example, the DARPA'98 data set used a

truth list format to keep the information of attack sessions; the DARPA'99 data set

used HTML files to store both the condensed and the detailed attack information;

the DARPA'2000 data set used the IDMEA bIntrusion Detection Message Exchange

Aormat) format to specify the high level attack truth; in the CONEX TESTBED

network, a XML format with a tag set different from the IDMEA format is used to

label both the high-level attack truth and the high-level attack scenario truth.

Due to the diversity and the incompatibilities among these different attack log

formats, it is computationally inefficient and difficult to implement for an intrusion

111

detection system to correctly match these logs with various levels of attack details

in the network packets. This tool, Packet Filter, is designed to provide a generic

solution to convert these attack logs of different sources into standard truth formats

so that the problem for an IDS to match network packets and the attack truth could

be greatly standardized and simplified. The "Packet Ailter" needs also be expandable

so that the future models to process new attack log formats can be easily plug into

this tools without major modifications on the other parts of the source codes.

Figure B.4 The system diagram of the packet filter.

The system diagram of the "Packet Ailter" is show in Aigure B.4, in which

inclicmes the following components:

• The Packet Decoder decodes the sniffed packets from either a TCPDUMP
file or a live network.

• The Session Reassembler reassembles the network sessions based on the
decoded packets.

• The Log Parsers parse the input attack logs from various sources into an
internal attack log format and stores the parsed information into the attack
label set.

• The Attack Log Set is the set of parsed attack logs generated by label parser.

• The Packet Matcher matches the packets from the packet decoder and the
sessions from the session reassembler against the attack log set.

• The Output Modules outputs the matched/mismatched packet/sessions and
the attack logs into files or databases in formats specified by users.

Currently, the "Packet Ailter" can parse the attack log files in three different

formats: the DARPA'98 truth format, the partial attack log format and the CONEX

112

XML log format. The program can be easily extended to parse attack logs in other

formats by developing a new parser and plugging the parser into the system via a

unified parser registration interface.

The packet filter can output the low-level attack truth in three different formats:

the TCPDUMP binary format, the DARPA'98 truth format and the packet list

format. Similar to the log parsers, the output modules are also extendible via a

standard class inheritance and registration interface.

REFERENCES

[1] D. Weber, "A taxonomy of computer intrusions," Master's thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1998.

[2] J. P. Anderson, "Computer security threat monitoring and surveillance," tech. rep.,
James P. Anderson Co., Aort Washington, PA, April 1980.

[3] D. E. Denning, "An intrusion detection model," IEEE Transactions on Software
Engineering (SE-18), pp. 222-232, Aebruary 1987.

[4] G. Vigna and R. A. Kemmerer, "Netstat: a network-based intrusion detection
approach," in Proceedings of the 14th Annual Cocputer Security Applications
Conference, pp. 25-34, 1998.

[5] W. Lee, S. Stolfo, and K. Mok, "A data mining framework for building intrusion
detection models," in Proceedings of 1999 IEEE Sycposiuc of Security and
Privacy, pp. 120-132, 1999.

[6] H. Javitz and A. Valdes, "The NIDES statistical component: description and
justification," tech. rep., SRI International, March 1993.

[7] A. Ghosh, J. Wanken, and A. Charron, "Detecting anomalous and unknown intrusions
against programs," in Proceedings of IEEE 14th Annual Cocputer Security
Applications Conference, pp. 259-267, 1998.

[8] J. Beale and J. Aoster, Snort W.0 Intrusion Detection. Syngress Publishing, Inc., 2003.

[9] V. Paxson, "Bro: a system for detection network intricmers in real-time," Cocputer
Networks, no. 31, pp. 2435-2563, 1999.

[10] T. Lunt and et al., "IDES: an enhanced prototype, a real-time intrusion detection
system," tech. rep., SRI International, October 1988.

[11] B. Tjaden, L. Welch, and et al., "INBOUND: the integrated network-based
Ohio university network detective service," in the Proceedings of 4th World
Multiconference on Pystecics, Cydernetics and Inforcatics (SClW00), bOrlando,
Alorida), July 2000.

[12] A. Valdes and D. Anderson, "Statistical methods for computer usage anomaly
detection using NIDES," tech. rep., SRI International, January 1995.

[13] P. Proctor, "Aicmit reduction and misuse detection in heterogeneous environments:
Aramework and applications," in Proceedings of the 10th Annual Cocputer
Security Applications Conference, pp. 117-125, December 1994.

113

114

[14] R. Heady, G. Luger, A. Maccabe, and Z. Servilla, "The architecture of a network
level intrusion detection system," tech. rep., Computer Science Department,
University of New Mexico, August 1990.

[15] D. Goliman, Cocputer Pecurity. John Wiley and Son Ltd., 1st ed., 1999.

[16] E. Jonsson, "An integrated framework for security and dependability," in Proceedings
of the New Security Paradigcs Workshop, bCharlottesville, VA, USA), pp. 22-29,
September 1998.

[17]L. Halme and K. Bauer, "AINT misbehaving - a taxonomy of anti-intrusion
techniques," in Proceedings of the 18th National Inforcation Systec Security
Conference, bBaltimore, MD, USA), pp. 163-172, 1995.

[18] R. Agrawal and R. Srikant, "Aast algorithms for mining association rules," in
Proceedings of the W0th VLDB Conference, bSantiago, Chile), 1994.

[19] J. Bonifacio and et al., "Neural networks applied in intrusion detection systems," in
Proceedings of The 1998 IEEE Internal Joint Conference on Neural Networks,
pp. 205-210, May 1998.

[20] A. Sung and S. Mukkamala, "Identifying important features for intrusion detection
using support vector machines and neural networks," in Proceedings of the W003
Sycposiuc on Applications and the Internet (SAINT'03), pp. 209-216, 2003.

[21] B. Gao, H. Ma, and Y. Yang, "HMMS bhidden markov models) based on anomaly
intrusion detection method," in Proceedings of the W00W International Conference
on Machine Learning and Cydernetics, bBeijing, China), pp. 381-385, 2002.

[22] J. Cabrera, B. Bavichandran, and R. Mehra, "Statistical traffic modeling for network
intrusion detection," in Proceedings of 8th International Sycposiuc on Modeling,
Analysis and Siculation of Cocputer and Telecoccunication Systecs, pp. 466-
473, August 2000.

[23] P. Lichodzijewski, A. Nur Zincir-Heywood, and M. Heywood, "Host-based intrusion
detection using self-organizing maps," in Proceedings of the W002 International
Joint Conference on Neural Networks, bHonolulu, HI), pp. 1714-1719, May 2002.

[24] Internet Security Systecs (ISS). http://www.iss.net/.

[25] NFR Security. http://www.nfr.com/.

[26] W. Arawley, G. Piatetsky-Shapiro, and C. Matheus, "Knowledge discovery in
databases: an overview," AI Magazine, vol. 13, pp. 57-70, 1992.

[27] N. Ye, X. Li, and S. Emran, "Decision trees for signature recognition and state
classification," in The Proceedings of the IEEE SMC Inforcation Assurance
Security Workshop, bWest Point, NY), pp. 189-194, June 2000.

115

[28] D. Gunneti and G. Ruffo, "Intrusion detection through behavioral data," in
Proceedings of Intelligent Data Analysis (IDA'99), bAmsterdam, Netherlands),
August 1999.

[29] L. Portnoy, E. Eskin, and S. Stolfo, "Intrusion detection with unlabeled data using
clustering," in Proceedings of ACM Workshop on Data Mining for Security
Applications, pp. 1-14, November 2001.

[30] H. Shah, J. Undercoffer, and A. Joshi, "Auzzy clustering for intrusion detection," in
The Proceedings of the 1Wth IEEE International Conference on Fuzzy Systecs,
vol. 2, pp. 1274-1278, May 2003.

[31] S. Aorrest and et al., Cocputer Icmune Systecs. http://www.cs.unm.edu/ immsec/.

[32] D. Dasgupta and A. Gonzalez, "An immunity-based technique to characterize
intrusions in computer networks," IEEE Transactions on Evolutionary
Cocputation, vol. 6, pp. 281-291, June 2002.

[33] S. Axeisson, "On a difficulty of intrusion detection," in Proceedings of the
Wnd Intl. Workshop on Recent Advances in Intrusion Detection (RAID'99),
bhttp://www.raid-symposium.org/raid99/PAPERS/Axelsson.pdf), September
1999.

[34] S. Staniford and et al., "GRIDS - a graphic based intrusion detection system for
large networks," in Proceedings of 19th National Inforcation Systecs Security
Conference, pp. 361-370, October 1996.

[35] A. Valdes and K. Skinner, "Probabilistic alert correlation," in Recent Advances
in Intrusion Detection (RAID W001), no. 2212 in Lecture Notes in Computer
Science, pp. 54-68, Springer-Verlag, 2001.

[36] 0. M. Bain and R. K. Cunningham, "Ausing a heterogeneous alert stream into
scenarios," in Proceedings of the Eighth ACM Conference on Cocputer and
Coccunications Security, pp. 1-13, 2001.

[37] S. Staniford, J. Hoagland, and J. McAlerney., "Practical automated detection of
stealthy portscans," Journal of Cocputer Security, vol. 10, pp. 105-126, 2002.

[38] 1998 Intrusion Detection Evaluation Data Set. http://www.11.mit.edu/IST/ideval/.

[39] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J. Ucles, "A hierarchical anomaly
network intrusion detection system using neural network classification," in CD-
ROM Proceedings of W001 WSEG International Conference on: Neural Networks
and Applications (NNA'01), Aebruary 2001.

[40] MyDoom. http://vil.nai.com/vil/content/v_100983.htm, January 2004.

[41] Snort. http: //www. snort. Borg/

116

[42] KDD cup 1999 data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[43] G. Giacinto and A. Roli, "Intrusion detection in computer networks by multiple
classifier systems," in Proceedings of the 16th International Conference on
Pattern Recognition (ICPR2002), vol. 2, pp. 390-393, 2002.

[44] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J. Ucles, "HIDE: a hierarchical
network intrusion detection system using statistical preprocessing and neural
network classification," in Proceedings of the Wnd Annual IEEE Systecs, Mans,
Cydernetics Inforcation Assurance Workshop, pp. 85-90, June 2001.

[45] R. P. Lippman and et al., "Results of the darpa 1998 offline intrusion detection
evaluation," in Proceedings of the RAID 1999 Conference, bWest Lafayette,
Indiana), September 1999.

[46] R. P. Lippman and et al., "The 1999 darpa off-line intrusion detection evaluation,"
Cocputer Networks, vol. 34, pp. 579-595, October 2000.

[47] I. Inza, R. Etxeberria, and B. Sierra, "Aeature subset selection by Bayesian networks
based optimization," tech. rep., University of the Basque Country, Spain, 1999.

[48] R. 	 Martinez, 	 A 	 Pattern 	 Recognition 	 Feature 	 Opticization
using 	 the 	 Visual 	 Empirical 	 Region 	 of 	 Influence 	 Algorithc.
http://www.sandia.gov/imrl/XVisionScience/XVERIAeatureOp.htm, 2002.

[49] A. Miller, Sudset Selection in Regression. Washington, DC.: Chapman and Hall,
1990.

[50] H. Liu and G. Motoda, Feature Selection for Knowledge Data Mining. Kluwer
Academic Publishers, 1998.

[51] R. Kohavi and G. John, "Wrappers for feature selection," Artificial Intelligence,
pp. 273-324, December 1997.

[52] T. Aurey and et al., "Support vector machine classification and validation of
cancer tissue samples using microarray expression data," Bioinforcatics, no. 16,
pp. 906-914, 2000.

[53] J. Quinlan, C4.5 Progracs for Machine Learning. Mogan Kaufmann Publisher, Inc.,
1993.

[54] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal
of Machine Learning Research (JMLR), no. 3, pp. 1157-1182, 2003.

[55] A. Dhawan, Medical Icage Analysis. John Wiley and Sons, Inc., 2003.

[56] C. Borgelt, http: //fuzzy . cs. uni-cag dedurg . de/ dorg elt/ s oftw are. htcl.

117

[57] G. John, R. Kohavi, and K. Pfleger, "Irrelevant features and the subset selection
problem," in Proceedings of the Eleventh International Conference on Machine
Learning, pp. 121-129, 1994.

[58] Z. Zhang, C. Manikopoulos, and J. Jorgenson, "Experimental comparisons of
binning schemes in representing network intrusion detection data," in The 36th
Conference of Inforcation Sciences and Systecs (CISS2002), March 2002.

[59] W. Leland and et al., "On the self-similar nature of ethernet traffic," IEEE/ACM
Transactions on Networking, pp. 1-15, Aebruary 1994.

[60] R. Dillon and C. Manikopoulos, "Neural net nonlinear predication for speech data,"
IEEE Electronics Letters, vol. 27, pp. 824-826, May 1991.

[61] S. Haykin, Neural Network a Cocprehensive Foundation. Macmillan College
Publishing Company, 1994.

[62] G. Carpenter and et al., "Auzzy artmap: an adaptive resonance architecture for
incremental learning of analog maps," in Proceedings of International Joint
Conference on Neural Networks, pp. 759-771, 1992.

[63] NeuralWare Inc., Neural Cocputing a Technology Handdook for Neuralworks
Professional I I/PLUS and Neural Works Explorer, 1998.

[64] Z. Zhang and C. Manikopoulos, "Neural networks in statistical anomaly intrusion
detection," Neural Network Word, International Journal on Non-Standard
Cocputing and Artificial Intelligence, vol. 11, no. 3, pp. 305-316, 2001.

[65] R. Ogden, Essential Wavelets for Statistical Applications and Data Analysis.
Birhauser: Boston, 1997.

[66] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 2 ed., 1999.

[67] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: SIAM, 1992.

[68] D. Donoho, M. Duncan, and et al., WAVELAB 802 for Matlad 5.x.

[69] Z. Zhang, C. Manikopoulos, J. Jorgenson, and J. Ucles, "Comparison of wavelet
compression algorithms in network intrusion detection," in Proceedings of
The International Conference on Cocputing and Inforcation Technologies
(ICCITW001), October 2001.

[70] Z. Zhang, J. Li, C. Manikopoulos, and J. Jorgenson, "Methods of classifier training for
anomaly network intrusion detection in a deployed network using test network
information," in Proceedings of the 3rd Annual IEEE Systecs, Mans, Cydernetics
Inforcation Assurance Workshop (IAW 2002), June 2002.

[71] Ayodor, "The art of port scanning," Phrack 51, vol. 7, 1997.

118

[72] C. Leckie and R. Kotagiri, "A probabilistic approach to detecting network scans,"
in Proceedings of the Eighth IEEE Network Operations and Managecent
Sycposiuc (NOMS 2002, bAlorence, Italy), pp. 359-372, April 2002.

[73] S. Robertson, E. Siegel, M. Miller, and S. Stolfo, "Surveillance detection in high
bandwidth environments," in Proceedings of the 2003 DARPA DISCEX III
Conference, pp. 130-138, April 2003.

[74] J. Jung, V. Paxson, A. Berger, and H. Balakrishnan, "Fast portscan detection using
sequential hypothesis testing," in Proceedings of IEEE Sycposiuc on Security
and Privacy, bhttp://www.sds.lcs.mit.eduipapers/portscan-oakland04.html),
2004.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright
	Approval Page
	Biographical Sketch (1 of 3)
	Biographical Sketch (2 of 3)
	Biographical Sketch (3 of 3)

	Dedication
	Acknowledgment
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: Intrusion Detection and Literature Review
	Chapter 3: Hide: A Hierarchical Intrusion Detection Engine
	Chapter 4: Identifying Important Hide Features
	Chapter 5: Optimizing Hide
	Chapter 6: Methods of Classifier Training In A Production Network Using Test Network Information
	Chapter 7: Reconnaissance Intrusion Detection System
	Chapter 8: Conclusions
	Appendix A: Monitored Statistical Features
	Appendix B: Attack and Background Traffic Emulation in the Conex Testbed Network
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

