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ABSTRACT

UNCERTAINTY ANALYSIS IN ECOLOGICAL RISK
ASSESSMENT MODELING

by

Tepwitoon Thongsri

A probabilistic approach employing Monte Carlo simulations for assessing parameter and

risks as probabilistic distributions was used in an ecological risk assessment (ERA)

model to characterize risk and address uncertainty. This study addresses the following

sources of uncertainty: parameter inputs in the ERA models, risk algorithms and

uncertain input concentrations. To achieve this objective, both sensitivity and uncertainty

analyses are being conducted. Monte Carlo simulations were used for generating

probabilistic distributions of parameter and model uncertainty. All sensitivity,

uncertainty, and variability analyses were coded in Visual Basic as part of the ERA

model software version 2001, which was developed under the Sustainable Green

Manufacturing (SGM) program. This simulation tool includes a Window's based

interface, an interactive and modifiable database management system (DBMS) that

addresses the food web at trophic levels, and a comprehensive evaluation of exposure

pathways. To verify this model, ecological risks from Cr, Ta, Mo and DU exposure at the

U.S. Army Yuma Proving Ground (YPG) and Aberdeen Proving Ground (APG) were

assessed and characterized.

For the case of DU exposure to YPG terrestrial plants, the overall distributions for

DU uptake for plants suggest 90% likelihood in reduction in root weight. For most

terrestrial animals at YPG, the dose is less than that resulting in a decrease in offspring.



At APG, DU exposure potentially poses little risk for terrestrial animals, which is no

observable impact on receptor's reproduction or development. DU potentially poses

lower risks to aquatic species at APG as well. The overall risk posed by the metals

followed the order of Mo>Cr>Ta for both YPG and APG sits. Blacktailed-jackrabbits,

lesser long-nosed bats, mule deer and cactus mice, at YPG site, are expected to have a

reduction in size and weight of offspring. Terrestrial plants are likely to exhibit a

reduction in root weight. For APG site, the vulnerable receptors are white-footed mice,

white-tailed deer, and cottontail rabbits. For terrestrial plants, the risk result suggests a

reduction in root weight. Aquatic species did not show any observable risk from Mo, Cr,

and Ta in the terms of survival, growth and mortality.
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CHAPTER 1

INTRODUCTION

The ecological risk assessment model (ERA 2001 Betal.4) was developed as part of the

Department of Defense "Sustainable Green Manufacturing" program. It was based on a

preliminary evaluation of the existing eco-risk models. ERA 2001 Beta1.4 includes a

Windows interface, an interactive database management system (DBMS), and a

comprehensive evaluation of the exposure pathways (Lu, 2001). In this model, each

mathematical equation for an exposure incorporates species-specific information on the

diet composition, body weight, home range, food and water ingestion rates, and

incidental ingestion rates of the environmental media. All equations are presented in

Appendix A.

There are two types of exposure assessments in this model: aquatic and terrestrial;

both types include animal and plant exposure. The most complicated model among these

is that of terrestrial animal exposure, which is due to the food web that accounts for the

relationships between predator and prey. As such, the accumulated concentration in each

level of the food web is included in assessing higher tropic levels. In all exposure

estimations, the assessor employs equations, associated parameters, and contaminant

concentrations. Each of these aspects has uncertainty and variability, which must be

included in the risk assessment. The objective of this dissertation is to identify sources of

uncertainty in ecological risk assessment and present and develop a method to address

uncertainty analysis. A thorough understanding of the principles and basics in uncertainty

1
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will lead to a comprehensive analytical approach and complete uncertainty identification

in the assessment process. Therefore, in this study, methods to account for both

uncertainty and variability will be presented. Initially, the types of uncertainty will be

discussed and will be followed by approaches to implement and assess their contribution

to exposure estimates.

Organization of this dissertation will include: Chapter l, an introduction defining

relevant terms and principles needed to perform uncertainty analysis; Chapter 2,

describing necessary tools; Chapter 3, approach for uncertainty analysis in ERA models;

Chapter 4, ERA model code modification; Chapter 5, model parameterization; Chapter 6,

parameter sensitivity analysis and model verification; Chapter 7, demonstration of risk

evaluation; and Chapter 8, conclusions and recommendations for future work.

1.1 Definition of Variability and Uncertainty

The U.S. EPA (1997e) has advised the risk assessor to distinguish between variability

and uncertainty. Uncertainty represents a lack of knowledge about factors affecting

exposure or risk, whereas variability arises from true heterogeneity across people, places

or time. In other words, uncertainty can lead to inaccurate or biased estimates, whereas

variability can affect the precision of the estimates and the degree to which they can be

generalized. The following discussion will provide more information on variability and

uncertainty.

Variability refers to observed differences attributable to true heterogeneity or

diversity in a population or exposure parameter (U.S. EPA, 1997e). Sources of variability

are the result of natural random processes and stem from environmental, lifestyle, and
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genetic differences among humans. Examples include receptor physiological variation

(e.g., natural variation in bodyweight, breathing rates, water intake rates), weather

variability, and variation in soil types in the environment. Variability is usually not

reducible by further measurement or study but it can be better characterized (Peterman

and Anderson, 1999).

Uncertainty refers to lack of knowledge about specific factors, parameters, or

models (Smith, 2002; U.S. EPA, 1997b). Uncertainties in exposure models can include

how well the exposure model or its mathematical expression approximates the true

relationships in the field as well as how realistic the exposure model assumptions are for

the situation at hand (U.S. EPA, 1993a). According to U.S. EPA (1998a), uncertainty

evaluation is a theme that should be addressed throughout the analysis methodology.

What is known and not known about exposure and effects in the system of interest should

always be taken into account. Uncertainty analyses increase the credibility of assessments

by explicitly describing the magnitude and direction of uncertainties, and by providing

the basis for efficient data collection or application of refined methods (Shakshuki et al.,

2002). The sources of uncertainty are relevant to the analysis of ecological exposure and

effects (U.S. EPA, 1998a; Vermeire et al., 2001).

Sources of uncertainty that are encountered when evaluating information include

unclear communication of the data or its manipulation and errors in the information itself.

These are usually characterized by critically examining the sources of information, and

documenting the decisions made when handling them. Sources of uncertainty that

primarily arise when estimating the value of a parameter include variability and

uncertainty about a quantity's true value (U.S. EPA, 1998a; 1999b). Sources of
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uncertainty that arise primarily during model development and application include

process model structure and the relationships between variables in empirical models

(U.S. EPA, 1998a). Uncertainty in process or empirical models can be quantitatively

evaluated by comparing model results to measurements taken in the system of interest or

by comparing the results of different models.

Methods for analyzing and describing uncertainty can range from simple to

complex (Smith, 2002; Hoffman et al., 1999). When little is known, a useful approach is

to estimate exposure and effects based on alternative sets of assumptions. Results can be

presented as a series of point estimates with different aspects of uncertainty reflected in

each. For models, sensitivity analysis can be used to evaluate how model output changes

with changes in input variables, and uncertainty propagation can be analyzed to examine

how uncertainty in individual parameters can affect the overall uncertainty in the results

(Bedford and Cooke, 2001; U.S. EPA, 1998a). The following section will provide more

details about sensitivity analysis.

1.2 Sensitivity Analysis

Sensitivity analysis is a powerful tool to identify the main sources of uncertainty (Jager et

al., 2001). Sensitivity analysis is the process of changing one variable while leaving the

others constant and determining the effect on the output. The procedure involves fixing

each uncertain quantity, one at a time, and then computing the outcomes for each

combination of values (Dubus and Brown, 2002). These results are useful in identifying

the variables that have the greatest effect on exposure and to help focus further

information gathering. The results do not provide any information about the probability
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of a quantity's value being at any level within the range; therefore, this approach is most

useful at the screening level when deciding about the need and direction of further

analyses. Sensitivity analysis is sometimes a by-product of a Monte Carlo uncertainty

analysis (Smith, 2002). For example, if interest is in the sensitivity of the response to

changes in variables, the values of the variables are selected using a probability method

and then run through the model. The result is a set of input and output quantities. The

importance of a variable is measured by the correlation or partial correlation between the

variable and the response. A variable with the greatest (positive or negative) correlation

indicates the variable with the greatest sensitivity (Smith, 2002).

1.3 Analytical Uncertainty Propagation

Uncertainty propagation involves examining how uncertainty in individual parameters

affects the overall uncertainty of the exposure assessment. Intuitively, it seems clear that

uncertainty in a specific parameter may propagate very differently through a model than

another variable having approximately the same uncertainty. Some parameters are more

important than others, and the model structure is designed to account for the relative

sensitivity. Thus, uncertainty propagation is a function of both the data and the model

structure (U.S. EPA, 1992; U.S. EPA, 1997e). Accordingly, both model sensitivity and

input variances are evaluated in this procedure. Application of this approach to exposure

assessment requires explicit mathematical expressions of exposure, estimates of the

variances for each of the variables of interest, and the ability either analytically or

numerically to obtain a mathematical derivative of the exposure equation. Probabilistic
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distribution is one of methods to perform an uncertainty propagation, which will be

discussed in the next section.

1.4 Probabilistic Uncertainty Analysis

Probabilistic analysis can be used to propagate uncertainties in model inputs and to

estimate uncertainties in model outputs. Unlike sensitivity analysis, probabilistic analysis

yields quantitative insight into both the possible range and the relative likelihood of

values for model output. The purpose of probabilistic analysis is to characterize

variability and uncertainty in model outputs. Another purpose is to identify key sources

of uncertainty and variability that can be the focus of future data collection, research, or

model development activity (Cullen and Frey, 1999).

Knowledge of the variability and uncertainty associated with the input

distributions has an impact on the output result. Variability is an inherent factor that must

be addressed in the exposure/risk assessment procedure while uncertainty can usually be

reduced only by additional data (Mitchell, 2002). Therefore, the appropriate tools to

handle uncertainty must be used. Probabilistic distributions have been used as a tool to

qualify uncertainty in predictions of risks to humans and ecological receptors (Frey and

Rhodes, 1998). The input variables are considered random, resulting in risk presented as

a probability distribution for the given exposure. The Monte Carlo analysis is a useful

method for propagating input data error in models (IJS.EPA, 1997b; Vardoulakis et al.,

2002). To apply Monte Carlo simulations, a distribution must be specified that

quantitatively expresses the state of knowledge about each parameter. The distributions

characterize the degree of belief that the true but unknown value of a parameter lies



7

within a specified range of values for that parameter (Warren-Hicks et al., 2002). A

distribution of predicted values will reflect the overall uncertainty in the inputs. More

details of probabilistic distribution and Monte Carlo simulation method will be discussed

in the next Chapter.



CHAPTER 2

TOOLS FOR PROBABILISTIC ANALYSIS

Two key tools for conducting probabilistic analysis in environmental risk assessments are

the use of probabilistic distributions to delineate the extent of uncertainty and the

application of the Monte Carlo simulation method to generate viable data sets. Together

they produce a coherent picture for the assessor to evaluate the impact of uncertainty on

environmental risk assessment results. Probabilistic distributions more clearly depict the

true nature of each input variable; this produces greater realism within an analysis model.

The Monte Carlo simulation method enables an evaluation of the output of the model by

random sampling from the distribution assigned to each one of the uncertain input

variables (NCRP, 1999). The advantage of Monte Carlo simulations is that deterministic

simulations are repeated in a manner that yields important insights into the sensitivity of

the model to variations in the input parameters, as well as into the likelihood of obtaining

any particular outcome (Sanga et al., 2001). The Monte Carlo method also allows the

user to use any type of probability distribution for which values can be generated on a

computer (Warren-Hicks et al., 2002). The following sections will provide a description

of the approaches for applying probabilistic distributions and the Monte Carlo method.

2.1 Probabilistic Distribution

A probabilistic distribution is a description of the probabilities of all possible values in a

sample space. A probability model is typically represented mathematically as a

probability distribution in the form of either a probability density function (PDF) or

8
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cumulative distribution function (Kelly and Campbell, 2000, Vining, 1998). By using the

probabilistic approach, we can employ a probability distribution to characterize

uncertainty and/or variability in some or all model inputs (Thompson, 2002, Thompson

and Graham, 1996). When input uncertainty is characterized by a probability distribution,

the predicted uncertainty is characterized by the induced prediction distribution (McKay

et al., 1999).

Probabilistic risk assessment is a general term for risk assessments that use

probability models to represent the likelihood of different risk levels in a population or to

characterize uncertainty in risk estimates (Thompson and Graham, 1996). For example, in

ecological risk assessments, probability distributions may reflect variability or

uncertainty in exposure or toxicity. In human health risk assessments, probability

distributions for risk reflect variability or uncertainty in exposure (Freyerweather et al.,

1999). A probabilistic approach also quantifies uncertainty. Its output can provide a

quantitative measure of the confidence in the risk estimate (Burmaster and Willson, 1998,

Thompson, 2002).

Probabilistic analysis techniques are statistical tools for analyzing variability and

uncertainty in risk assessments, which are supported by adequate data and credible

assumptions (U.S. EPA, 1997b). Probabilistic techniques can enhance risk estimates by

more fully incorporating available information concerning the range of possible values

that an input variable could take, and weighting these values by their probability of

occurrence (Havens et al., 2002,Carbone et al., 2002). This method also permits the risk

assessor to assess the range of exposures and their associated probabilities, which result

from combinations of the various residue levels and consumption patterns. The resulting
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output of a probabilistic determination is a distribution of risk values with probability

assigned to each estimated risk (Wenning, 2002, U.S. EPA, 1998c, NCRP, 1999).

In the past, risk assessment methods have focused on a single indicator of risk.

The single indicators of risk are useful as a screening tool that approximate remote,

although plausible, worse case scenarios for subpopulations of highly exposed

individuals (Rai et al., 2002). However, this approach does not consider the full range of

available information, nor does it explicitly account for important sources of uncertainty

in estimating risks (Yegnan et al., 2002, Lahkim and Garcia, 1999). In addition, point

estimates of risk may convey an unnecessary sense of accuracy and can lead to

inconsistencies in making comparisons among risks (Thompson and Graham, 1996).

Furthermore, relying on a single value estimate of risk for remedial typically results in an

over estimation of costs (Lahkim and Garcia, 1999,U.S. EPA, 1992).

On the other hand, probabilistic risk assessment differs from the point estimate

approach by allowing a value to be chosen from a distribution of plausible values for an

exposure variable. Variables that can assume different values for different people are

referred to as random variables. In probabilistic risk assessment, one or more (random)

variables in the risk equation are defined mathematically by probability distributions.

Similarly, the output of a probabilistic risk assessment is a range or distribution of risks

experienced by the various members of the population of concern (Warren-Hicks and

Moore, 1998). Regarding uncertainty analysis, the use of probabilistic methods to

propagate variability and uncertainty through risk models has advantages over point

estimate approaches. Specifically:
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1) Probabilistic methods can provide a more robust method of quantifying

confidence in risk estimates than the point estimate approach (Burmaster, 1998).

Monte Carlo simulation can be used to combine distributions of uncertainty for

multiple input variables in a single simulation. By contrast, point estimate

approaches combine point estimates of uncertainty in separate calculations, a

technique that can yield estimates of plausible bounds for risk, but cannot yield an

estimate of the upper and lower 95% confidence limits (NCRP, 1999, U.S. EPA,

1997d: 1999b).

2) The probabilistic method uses full information methods by including all the

information available about the variability and the uncertainty inherent in the

assessment (Carbone et al., 2002). In the point estimate approach, the risk

assessor discards most of the information about the variability and uncertainty in a

phenomenon to pick one point value (Rai et al., 2002).

3) Probabilistic methods are reliable since they incorporate the full range of values

that a variable may assume (Solomon and Sibley, 2002). On the other hand, a risk

assessor working in the deterministic method is required to use many high point

values to exaggerate a problem so the risk assessor can ignore the complexities

and cost-effectiveness of a remediation (U.S. EPA, 1999b).

4) Probabilistic methods estimate the population distribution of the output, therefore,

the probabilistic distributions of the model variables are good representations of

the population (Moschandreas and Karuchit, 2002).

5) Probabilistic methods save money. Full information risk assessments may cost

more than screening analyses using point values. But probabilistic assessments
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can be less stringent for fully protective cleanup targets at remediation sites

(U.S.EPA, 1999c). Since cleanup costs often rise asymptotically with decreasing

cleanup targets, probabilistic assessments protect people and have high internal

rates of return (U.S. EPA, 1999b, 1999c).

As discussed earlier, in the point estimate approach, parameter uncertainty is

addressed in a qualitative manner for most variables. In a probabilistic approach, a

probability distribution for risk will represent either variability or uncertainty, depending

on how the distributions for the input variables are characterized (Warren-Hicks and

Moore, 1998). If exposure variability is characterized using probability distributions, the

risk distribution represents variability. If input distributions represent uncertainty in

estimates of central tendency (e.g., arithmetic mean), the output distribution represents

uncertainty in the central tendency risk (U.S. EPA, 1999a, 1999b). By separately

characterizing variability and model uncertainty, the output from a probabilistic risk

assessment will be easier to understand and communicate (Thompson, 2002, Von

Stackkelberg et al., 2002).

Probabilistic distribution methods have been employed in human, ecological, and

technological risk assessments to qualify uncertainties in predictions of risks (Solomon

and Sibley, 2002, Frey and Rhodes, 1998). The following paragraphs present some

studies, which have used the probabilistic distribution approach.

Dabberdt and Miller (2000) used a probabilistic method for quantifying the

uncertainty related to model predictions for an accidental release application. An

ensemble set of 162 simulations was created by specifying a best estimate together with
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two additional values that bound the likely range of uncertainty in estimating four input

parameters. Vermeire et al. (2001) compared the results between the probabilistic risk

assessment and the deterministic risk assessment of dibutylphthalate (DBP) in humans.

According to the uncertainty analysis performed the probability is approximately 20%

that the total human dose is lower than the deterministic estimate of DBP exposure (93

µlig/kg-d). From their discussion, a probabilistic risk assessment covered both the

exposure and the effects assessments, also it allows determination of the range of

possible outcomes and their likelihood. It, therefore, better informs both risk assessors

and risk managers than the deterministic approach.

Lohman et al. (2000), in studying the impact of mercury on the ecological system

for Lake Mitchell, used probability distributions to characterize the uncertainties

associated with the model inputs and to calculate the resulting probability distribution for

the model output variables. They found that the large uncertainty sources were mercury

emission speciation, lake pH, and sediment burial rate. Hope (1999) applied the

probabilistic distribution method to estimate the risk from polychlorinated biphenyls at

former industrial landfills in Crab Orchard National Wildlife Refuge. As Hope

mentioned, a probabilistic approach gives a greater insight into the consequences of

uncertainty and variability inherent in data and risk analyses.

Jager et al. (2001) demonstrated either deterministic or probabilistic methods are

feasible to use as a tool to assess the risk for new and existing chemicals in the European

Union. From their case study, the deterministic risk quotients turned out to be worst cases

at generally higher than the 95 th percentile of the probability distributions. Mitchell and

Campbell (2001) also agreed that when there are adequate data, the probabilistic
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assessment is more appropriate to use as a tool to characterize input parameters in an

operator and residential exposure assessment. Wenning (2002) included a probability

analysis to derive the probability density functions describing the range of plausible

exposures associated with different pathways of risk assessment of polybrominated

diphenyl ether isomers in aquatic biota and human breast milk.

Sanga et al. (2001) evaluated uncertainties in dietary methyl mercury (MeHg)

exposure modeling which provided some insight into the utility of biomarkers of

exposure and dietary recall records for assessing MeHg exposure. From their work, a

probability distribution was assigned to describe the standard deviation demonstrating

uncertainty in the mean. Monte Carlo simulation was conducted for each input variable

by randomly sampling a single value from a normal distribution representing the lack of

knowledge in the mean. This developed a family of cumulative distribution functions

(CDFs) representing lack of knowledge about the true population heterogeneity

distribution.

Probabilistic analysis is also gaining more attention in the field of landslide

hazard assessment due to the possibility of taking into account estimation uncertainties

and spatial variability of geological, geotechnical, geomorphological and seismological

parameters (Refice and Capolongo, 2002). Duzgun et al. (2002) applied a probabilistic

method to perform an uncertainty analysis in the shear strength of rock discontinuities.

Different sources and types of uncertainties associated with the discontinuity shear

strength were identified and described with suitable probability distributions. As the

results, the uncertainty or correction factors were established.
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To perform a quantitative uncertainty analysis, probability distributions must be

assigned to each of the uncertain parameters. The distributions must be used to reflect the

degree of belief that the unknown value for a parameter lies within a specified range

(Hoffman and Hammonds, 1994). When dealing with several different distributions, it is

more efficient to use numerical methods (e.g., Monte Carlo analysis) to propagate

uncertainty through a risk assessment model than to use various analytical methods

(algebraic equations). The following section will provide more details on how to apply

Monte Carlo simulation to the probabilistic distribution method.

2.2 Monte Carlo Simulation

Uncertainty and variability in the risk assessment process are often handled in a

qualitative approach by tightening the acceptable risk level (Wong and Yeh, 2002). A

better approach is to include uncertainty and variability explicitly in the risk assessment

process by calculating the probabilistic distribution of the risk value (Mitchell and

Campbell, 2001). Because the factors in the risk assessment may have different

probability distributions and different degrees of certainty, the Monte Carlo simulation is

usually used to evaluate the joint probability distribution for the risk value (Wong and

Yeh, 2002).

Monte-Carlo techniques have been used since the 1940's when they were first

developed by physicists working on the Manhattan project (Warren-Hicks et al., 2002).

Recently, Monte-Carlo techniques are widely applied to health and ecological risk

assessments (Decisioneering, 2002). According to the U.S. EPA (1997e), interest in using

Monte Carlo analysis for risk assessment has increased. This method has the advantage of
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allowing the analyst to account for relationships between input variables and of providing

the flexibility to investigate the effects of different modeling assumptions. The U.S. EPA

(1998a) stated that such probabilistic analysis techniques as Monte Carlo analysis, given

adequate supporting data and credible assumptions, can be viable statistical tools for

analyzing variability and uncertainty in risk assessments.

The National Council on Radiation Protection and Measurements (NCRP)

recommends Monte Carlo simulation as a tool to overcome problems with variance

propagation equations for complex models (NCRP, 1996). Also, NCRP suggests that

Monte Carlo calculations are more useful than analytical approaches to uncertainty

analysis because analytical solutions based on variance propagation techniques provide

only approximate probability or confidence intervals and can become very complicated

and time- consuming for more involved risk analyses.

By using a Monte Carlo simulation in the probabilistic risk assessment, an

exposure dose calculation is repeated thousands of times using statistical techniques to

select random values for each exposure variable that is characterized by a probability

distribution (Moschandreas and Karuchit, 2002, U.S. EPA, 1997b). In addition,

information on the distribution (range and likelihood) of possible values for these

parameters is produced (Havens et al., 2002). The Monte Carlo technique has the

advantage of being generally applicable, with no inherent restrictions on input

distributions or input-output relationships, and of using relatively straightforward

computations (NCRP, 1999, U.S.EPA, 1999b). The resulting output distribution reflects

the range of exposure doses that may exist at the site for the population being considered

(Yegnan et al., 2002). This distribution of doses is then multiplied by the appropriate
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toxicity values to obtain a distribution of risks (Warren-Hicks et al., 2002). Also, Monte

Carlo results can be used statistically to describe uncertainty and to quantify the degree of

conservativeness used (Cullen and Frey, 1999). For better understanding, the Monte

Carlo simulation process is described as follows.

The first step in a Monte-Carlo simulation is the construction of a model that

accurately represents the problem. The makeup of the model usually entails a

mathematical combination (addition, multiplication, logarithms, etc.) of the model input

variables, which can be expressed as probability distributions (Cullen and Frey, 1999).

Monte Carlo analysis is usually performed using a random sampling process. In this

process, a random value is taken from the distribution specified for each uncertain model

parameter, and a single estimate of the desired endpoint is calculated. This process is

repeated for a specific number of samples or iterations. The result is an empirical

approximation to the probability distribution of the model output or assessment endpoint

(Havens et al., 2002).

The input required for Monte Carlo simulations are the probability distributions

for each parameter (Moschandreas and Karuchit, 2002). These distributions are obtained

by extensive review of available literature and site-specific data. The result or output

distribution of Monte Carlo simulation reflects the range and relative frequency of risks

that may exist at the site for the population and the exposure-related activities being

considered (U.S. EPA, 1997e). Thus, probabilistic risk assessment enables risk assessors

to use statistical and mathematical techniques to obtain quantitative measures of both

uncertainty and variability in risk estimates (Warren-Hicks et al., 2002).
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Specific values for the inputs are randomly assigned according to pre-selected

distributions. A model is run repeatedly by applying random inputs from the parameter

distribution (Cullen and Frey, 1999, Metzger et al., 1998). The values of each of the

uncertain input parameter are generated based on the probabilistic distribution for the

parameter. If there are two or more uncertain input parameters, one value from each is

sampled simultaneously for every repetition in the simulation. With many input variables,

one can envision the Monte Carlo simulation as providing a random sampling from a

space of m dimensions, where m is the number of random variables that are inputs to the

model. Over the course of the simulation, sample sets of 100, 1000, and 5000 can be

repeated for the evaluation. The result is a set of sample values for each of the model

output variables, which can be treated statistically as if they were an experimentally or

empirically observed set of data. These can be represented as a cumulative distribution

function (CDF) or a probability density function (PDF) and summarized using typical

statistics such as mean and variance. Also, the CDFs allow for quantitative insight

regarding the percentile of the distribution (NCRP, 1996, Shakshuki et al., 2002).

For better understanding, the process of a Monte Carlo simulation is illustrated in

Figure l.l. In its general form, the risk equation can be expressed as a function of

exposure and toxicity variables (Pi): Risk(R) = f (P1, P2, -PO. Solutions for equations

with PDFs are typically too complex for even an expert mathematician to calculate the

risk distribution analytically. However, computers can provide reasonably close

approximations of a risk distribution using numerical techniques (NCRP, 1996).



Figure 1.1 PDF Resulting from a Monte Carlo Simulation (NCRP, 1996).
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This is illustrated here for the simplified case in which the assessment variables

are statistically independent. In this case, the computer selects a value for each Pi at

random from a specified PDF and calculates the corresponding risk. This process is

repeated many times (e.g., 1000), each time saving the set of input values and

corresponding estimate of risk. For example, the first risk estimate might represent a

hypothetical individual who drinks 2 Lfday of water and weighs 65 kg, the second

estimate might represent someone who drinks 1 Lfday and weighs 72 kg, and so forth.

Each iteration of a Monte Carlo analysis represents a plausible combination of exposure

and toxicity variables.

A convenient aid to understanding the Monte Carlo approach for quantifying

variability is to visualize each iteration as representing a single individual and the

collection of all iterations as representing a population (U.S. EPA, 1997e). In general,

each iteration of a simulation should represent a plausible combination of input values,

which may require using bounded or truncated probability distributions. A simulation

yields a set of risk estimates that can be summarized with selected statistics (e.g.,

arithmetic mean, percentiles) and displayed graphically using the PDF and CDF for the

estimated risk distribution (McKay et al., 1999). This generates sets of product specific

input files. Monte-Carlo techniques similarly cannot predict exactly which exposures will

occur on any given day to any specific individual, but can predict the range of potential

exposures in a large population and each exposure's associated probability (Warren-

Hicks et al., 2002). The following paragraphs provide some examples of researchers that

applied a Monte Carlo simulation to their work.
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Van Horssen et al. (2002) applied a Monte Carlo simulation to assess the model

output error due to uncertainty in both regression coefficients and the explanatory

variables. From their study, correlation between errors in regression coefficients and

spatial auto-correlation in explanatory variables are accounted for in the Monte Carlo

analysis. Therefore, the patterns of the relative contributions of uncertainty to the model

uncertainty give information on the most effective way to reduce error, i.e. either by

reducing uncertainty in the regression coefficients or in the interpolated input patterns

(Van Horssen et al., 2002).

In physics, model simulations are the basis for predicting the evolution of large-

scale natural phenomena such the weather, ocean currents, and climate (Hanson, 1999). A

Monte Carlo method is presented for propagating uncertainties in underlying physics

models into uncertainties in simulation predictions. With the increasing reliance on

simulation methods, it is becoming critically important to determine how well they

predict actual physical phenomena. Uncertainty in simulation predictions has many

sources, including the lack of knowledge of the underlying physics models, the variability

of the initial geometry and materials, and the degree of variability in the physical

phenomenon itself (Hanson, 1999). In a probabilistic approach to uncertainty analysis,

uncertainties are expressed in terms of a probability density function (PDF) defined on

the parameters.

National Council on Radiation Protection and Measurements (NCRP) used Monte

Carlo simulation to calculate the doses from decay products (NCRP, 1999). To estimate

the likely distributions of doses to a member of a critical population group for various

nuclides and exposure pathways, a Monte Carlo analysis was carried out for each
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radionuclide considered. Separate calculations were carried out for adults and for children

for land-use scenarios where children might constitute the critical group. The Monte

Carlo simulations provided a distribution of possible doses to a member of the critical

group for each dose pathway as well as for the total dose from all pathways (McKone,

1994, Warrant-Hicks et al., 2002). The distributions of doses were generally quite broad

due to the large uncertainty in the average or central tendency of the various parameters

entering into the dose determination.

Sanga et al. (2001) used Monte Carlo simulation to evaluate the uncertainties in

methyl mercury (MeHg) concentrations found in blood and hair analyses as biomarkers

of dietary MeHg exposure. They compared biomarker-based exposure estimates against

those derived from dietary intake surveys based on data from populations in Bangladesh,

Brazil, Sweden, and the United Kingdom. Monte Carlo simulation was conducted for

each input variable by (l) randomly sampling a single value from a normal distribution

representing the lack of knowledge in the mean, and (2) using the mean to develop a

software-simulated distribution of 100 random values representing the population

heterogeneity. From their results, the mean MeHg exposure distribution represents the

best guess of the true mean cumulative distribution of population MeHg intake. Also, the

inter-individual variation in human behavior should be carefully evaluated when

estimating risk exposure.

Moore et al. (1999) estimated the risks of methylmercury and PCBs in mink and

belted kingfishers. They conducted the Monte Carlo simulations to estimate total daily

intakes of each contaminant and integrated the resulting distributions with their

respective dose-response curves to estimate risks. Chaloupka (2002) also used the Monte
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Carlo method to conduct uncertainty analysis and to estimate population growth given

demographic parameters subject to sampling error and environmental stochasticity of

green turtle population dynamics in the southern Great Barrier Reef, Australia. Based on

his study, fertility and adult survival were the most important high-level parameters

affecting population growth, where fertility is a function of fecundity and temporal

variability in breeding likelihood.

Sonnermann et al. (2003) used a Monte Carlo simulation as a tool to assess the

uncertainty in a life cycle inventory of electricity produced by a waste incinerator. A

proper probability distribution was assigned to relevant parameters. The final results give

the upper bound of possible errors, which a single estimate method could not provide.

Based on the literature review above, the probabilistic distribution method and the

Monte Carlo simulation method will be used as tools to perform uncertainty analysis in

ecological risk assessment models. Although the Monte Carlo process sounds simple, a

number of potential problems must be recognized. A very important one is the selection

of the distribution. This may involve extensive work on the part of the risk analyst

because the distribution describes the uncertainty about the parameter value. The

distribution is often based on the minimum, maximum, and mode of the expected

parameter value. It is impossible to specify the distribution exactly. However, what is

important is to choose distributions based on such properties, as whether the distribution

is skewed or symmetric, whether it should be truncated, and whether extreme values

should be allowed. Therefore, the criteria to select the distribution will be developed in a

later Chapter.
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2.3 Discussion

When performing uncertainty analysis with probabilistic distribution and Monte Carlo

simulation methods in ecological or human risk assessment, all work in the literature

review above used external software to perform their calculations. Widely used, currently

available software includes Crystal Ball ® (Decisioneering, 2002) and @Risk® (Palisade

Corporation, 2002). For example, Crystal Ball® was employed to a probabilistic analysis

of regional mercury impacts on wildlife (Lohman et al., 2000). Another software,

@Risk® was used to a screening level probabilistic assessment of mercury risks in

Florida everglades food webs (Duvall and Barron, 2000). Crystal Ball ® and @Risk® are

both spreadsheet-based programs. They were originally designed mainly for business

applications. Crystal Ball ® is a user-friendly, graphically oriented forecasting and risk

analysis program that takes into account the uncertainty of decision-making. Crystal

Ball® 2000 analyzes the risks and uncertainties with Excel spreadsheet models

(Decisioneering, 2002). @Risk ® is a software system, which allows the decision-maker

to explicitly include the uncertainty in estimate to generate results that show all possible

outcomes. @Risk® is the risk analysis and simulation add-in for Microsoft Excel® and

Lotus® l-2-3. As an add-in, @Risk® becomes seamlessly integrated via a new toolbar

and functions with a spreadsheet (Palisade Corporation, 2002).

However, these software are not specific for ecological risk assessment but can be

applied to assess a risk in other fields such financial consulting, cost estimate consulting,

market research, analyzing engineering projects, insurance etc. Therefore, when using

one of these software packages, the user needs to be aware of how to apply these

software functions to their work.
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Another drawback is that when using the stand-alone risk analysis software, users

need to re-create their model equations and their input parameter values in the software

spreadsheet. These procedures consume time and are redundant work. Furthermore, in

cases utilizing complex modeling, performing an uncertainty analysis in the spreadsheet

is not practical, as it needs to account for excessive amounts of data. For example, the

risk assessment in receptors according to contaminants in the trophic level of the food

web requires the input of many data points from the various levels of the food chain. It

becomes too time consuming to enter this data. Price also becomes a factor. The price of

software is quite expensive, it costs $1685 for Crystal Ball ® , $1395 for @Risk® software.

Therefore, in this study, combining the ecological risk assessment model (ERA)

with the probabilistic distribution/Monte Carlo simulation method will be initiated.

Model parameters and data are stored in the modifiable database management system

(DBMS). This combination will provide an easy and appropriate way to perform

uncertainty analysis in the ERA model utilizing the probabilistic distribution method.

As this Chapter provides tools that will be used to perform an uncertainty

analysis, the next Chapter presents the hypotheses for uncertainty analysis in ERA

models, which include problem formulation, approach, demonstration, areas of study, and

contaminants of interest. Also the following Chapter will provide the approach to link

parameter and model probabilistic distributions using Monte Carlo simulation method in

the ERA model codes.



CHAPTER 3

APPROACH FOR UNCERTAINTY ANALYSIS IN ERA MODELS

3.1 Problem Formulation

When ERA models are used to determine the risk to receptors, the users will need to

know the accuracy of their results. These models deal with parameter inputs from various

sources such as characteristics of contaminants, receptors, and the ecosystem, as well as

contaminant concentrations in the various media. The study will address the following

uncertainty:

1) Parameter inputs (variability and uncertainty) in the ERA models,

2) Risk algorithms (model uncertainty), and

3) Input concentrations.

3.2 Methods

The following approach will be applied in this study. The details of the methodology for

exposure model parameters will be discussed in the following section.

3.2.1 Variable Uncertainty

Due to the large number of parameters used in ERA models, it is advisable to identify

those with the largest impact on the model results. For this reason sensitivity analysis will

be carried out. Parameter sensitivity analysis is a tool that describes the significance of

each parameter in the model. To determine the sensitivity of parameters within the

26
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model, one parameter will be varied at random, while the remaining parameters are held

at fixed value. Parameters of concern in this study are shown in Table 3.l.

3.2.2 Model Uncertainty

Uncertainty analysis of models will be propagated with the error from each parameter in

parameter inputs. The probabilistic distributions will be used to demonstrate uncertainty

of model outputs (result) or estimated exposure. Probabilistic distribution analysis

emphasizes developing model input assumptions based on variable information and

knowledge. Also, probabilistic distributions are subjective evaluations of parameters

where the nominal value is considered as the most likely value. A Monte-Carlo

simulation is simply one of several mathematical techniques for performing probabilistic

risk assessments.

The Monte Carlo technique, as applied to exposure assessment, involves

combining the results of hundreds or thousands of random samplings of values from

input probability distributions in such a manner as to produce an output distribution,

which reflects the expected range and frequency of exposures (Cullen and Frey, 1999,

U.S. EPA, 1996b). Goodman (2002), Chaloupka (2002), and Shakshuki et al. (2002) also

recommend probabilistic distribution methods as tools in approaching uncertainty

analysis in ecological risk assessment. Thus, the probabilistic distribution method and the

Monte Carlo simulation method will be used to analyze uncertainty in ERA models.



Table 3.1 Exposure Model and Parameters

Receptors 	 EDposure pathway 	 Equations 	 Parameters

Terrestrial 	 Root uptake from root- 	 Cpr = ECrzs X Kpsl
	 Cpr = contaminant concentration in plant roots, mg/kg

plants 	 zone soil to roots 	 ECrzs = contaminant concentration in root-zone soil, mg/kg

Kps2= plant-soil partition coefficient for root-zone soil to

roots, mg/kg (soil)/mg/kg (roots)

Root uptake from root- 	 Cpr = EC, x RCF 	 EC, = contaminant concentration in surface water in contact
zone soil solution to roots 	 with roots, mg/L

RCF = root concentration factor, L/kg

Cpa = Contaminant concentration in above-ground plant parts,

mgfkg

Kips = Plant-soil partition coefficient for root-zone soil to above-

ground plant parts, mgfkg (soil)/mg/kg(above-ground

plant)

Br = Bioconcentration factor for nonvegetative plant parts,

mgfkg (soil)fmg/kg (vegetative plant)

By = Bioconcentration factor for vegetative plant parts,

mg/kg (soil)/mgfkg (nonvegetative plant)

Kpa = Plant-air partition coefficient for air to above-ground plant
parts, mg/kg

Root uptake from root-
zone soil to above-ground
plant parts

Cpa = ECrzs X (Kps2, Br, Be)

Foliar uptake (vapor)
	

Cpa = ECeap X Kpa



Table 3.1 Exposure Model and Parameters (continued)

Receptors EDposure pathway Equations Parameters

Terrestrial Direct absorption from ADDacs = [(SA x AF x Pc, x ADDd = absorbed daily dose from dermal contact, mg/kg
animals dermal exposure EC, x CFx ad) BW) x 0 x V Cd = contaminant body burden in receptor from dermal

contact, mg/kg

Cd = ADDd Lice EC, = contaminant concentration in soil, mg/kg
SA = surface area of ecological receptor, cm 2

AF = soil-to-skin adherence factor, mgf cm 2

Pc = fraction of receptor surface area in contact with soil per
day, c1-1

ad = contaminant-specific dermal absorption factor, mgfkg
(contaminant body burden) f mgfkg (absorbed daily dose)
Ice = contaminant-specific depuration rate, d -1

BW = body weight of receptor, kg

CF = conversion factor, lx 10 -6 kgfmg

0 = site use factor, (ratio of contaminant area to home
range)

= seasonality factor, (fraction of time per year receptor
occurs at site)



Table 3.1 Exposure Model and Parameters (continued)

Receptors EDposure pathway Equations Parameters

Terrestrial Inhalation of volatilized ADDie [(WC( ECva) /BW] X 0 x w ADD;,, = applied daily dose from inhalation of volatilized
animals contaminants x B t contaminants, mg/kg

C,v = ADDie x (ay/ Ice )
Cif = contaminant body burden in receptor from vapor
inhalation, mg/kg

IR, = inhalation rate, m3lday

B t = fraction of day spent in burrow, hrl24hr

ECvap = concentration of volatilized contaminant in air, mgl
m3

Dv= inhalation absorption factor, mg/kg (contaminant body
burden) f mg/kg (applied daily dose)

Inhalation of fugitive
dust

ADDie= [IRIS x ECeat)/BW] x 0 x w

C ie = ADDie  x (cc ke)

ADDiv = applied daily dose from inhalation of volatilized
contaminants, mglkg

ECpat = concentration of particulate-bound contaminant in
air, mg/ m3

Cif = contaminant body burden in receptor from particulate
inhalation, mg/kg

ap = particulate inhalation absorption factor, mglkg
(contaminant body burden) f mglkg (applied daily dose)



Table 3.1 Exposure Model and Parameters (continued)

Receptors 	 EDposure pathway 	 Equations 	 Parameters

Terrestrial 	 Incidental Ingestion of soil ADD S; = (EC, x FS x IRf ) / 	 ADDS; = applied daily dose from incidental ingestion of soil or
animals 	 or sediment 	 BWx 0 x w 	 sediment, mg/kg,

EC, = contaminant concentration in surficial soil or sediment,
mg/kg

FS = mass fraction of soil or sediment in the diet, as percentage
of diet on dry weight basis

IRf = food ingestion rate on dry-weight basis, kg/day

Ingestion of water 	 ADD = ECd  x (IRdw / BW ) x ADD W; = applied daily dose from drinking water, mg/L-day
0 x iv 	 ECdW = average contaminant concentration at drinking water

supply, mg/L

IRdw = ingestion rate of drinking water, mg/day

Ingestion of food m

ADD fi = 	 (Ck x FRfk x
k=1

IRf/BW) x 0 x w

ADD fi = applied daily dose from ingestion of contaminated
food, mg/kg

m = number of food items in the diet of the receptor species

Ck = contaminant concentration in the k ith food item, mg/kg

FRfk = wet weight fraction of the kth food item in receptor diet,
kg (food)/kg (diet)

Aquatic 	 Direct contact 	 Caq = EC, x BCF 	 Caq = contaminant body burden in aquatic receptor, mg/kg
species BCF = contaminant-specific bioconcentration factor, L/kg
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3.2.3 Distribution Selection Criteria

Criteria have been used to select the appropriate distribution for each input parameter in a

simulation. The following paragraphs will provide more details about the criteria for

selecting the distribution.

Moore et al. (1999) used the following criteria in their work: lognormal

distributions for variables with a right skewed distribution, a lower bound of zero, and no

upper bound (e.g., tissue concentration), beta distributions for variables bounded by zero

and one (e.g., proportion of a prey item in the diet), and, normal distributions for

variables that are symmetric and not bounded by one (e.g., gross energy of prey items).

Moreover, knowledge of the processes that give rise to variability can be used to select

parametric distributions for fitting to data sets. The processes, which give rise to normal

distribution, are suggested by the Central Limit Theorem. Also, the processes involving

addition of a large number of random variables, none of which contribute significantly to

the sum, would result in a normal distribution. An example of such a process is pollutant

dispersion as described by the Gaussian plume model. The lognormal distribution arises

from multiplicative processes, such as the dilution of pollutant concentrations.

To perform Monte Carlo procedures, probability distributions must be specified

that quantitatively express the state of knowledge about each parameter. The distributions

characterize the degree of belief that the true but unknown value of a parameter lies

within a specified range of values for that parameter (Warren-Hicks et al., 2002).

The determination of which form of distribution function should be assigned to

each parameter depends on site-specific data. Therefore, the distributions employed in

this study are assembled from site- specific data, data existing in the most current



33

literature. These were considered to be the most up to date parameter descriptions.

Therefore, the selected distribution criteria are based on the selection guideline of NCRP

(1996), U.S. EPA (1998a), Warren-Hicks et al. (2002) and Schumacher et al. (2001).

These criteria included,

1. The selected distribution should represent the actual site-specific uncertainty and

variation in that parameter.

2. The selected distribution must represent the range of the possible values of the

parameter at sites. The actual field measurements of the parameter should be used

to establish the distribution.

3. The selected distribution should be consistent between sites for specific

parameters. However, the parameters characterizing the distribution may change.

For example, if a normal distribution is chosen for a parameter at one site, then a

normal distribution should be used at all other sites. However, the mean and

variance of the normal distribution can be site specific

4. The form of the distribution should reflect the magnitude, range, and

interpretation of the parameter. For example, contaminant concentration cannot be

a negative value, therefore, the sampling distribution should reflect the restricted

range, with no chance of randomly drawing a negative value. In addition, this

criterion ensures that the expected site-specific range of a parameter is covered by

the selected distribution. For example, use of uniform distributions over a narrow

range may be appropriate when the probability of occurrence of any parameter

value is equal over the range.
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These criteria ensure consistency in the interpretation of the Monte Carlo outputs

between sites. It also provides a foundation for dealing with sparse data sets for specific

parameters at some sites. In many cases, as few as two or three observations of the

parameter are available at one site, with more data available at other sites, therefore, the

site with the most data can be used to determine the form of the distribution, with the

sufficient statistics calculated on a site-specific basis. In addition, a consistent

interpretation of the shape and range of the Monte Carlo outputs between sites requires a

consistent use of parameter-specific sampling distributions. The shape of the Monte Carlo

prediction distribution is generally a function of the input distributions. The use of

consistent input distribution forms allows the shape of the Monte Carlo output

distributions between sites to be compared. Thus, each distribution was tailored to reflect

the specifics of a given site with the underlying assumptions about the nature of the

distribution consistent between sites.

Therefore, the criteria above will be used to select the distribution for each

parameter. The parameter characterization is cited as a guideline to understand a

parameter's behavior. More details will be discussed in Chapter 5: model

parameterization.

3.2.4 Selecting an Iteration Size for Monte Carlo Simulations

In Monte Carlo simulation, a value is drawn at random from the distribution for each

input. The entire process is repeated m times producing m independent values with

corresponding output values. These m output values constitute a random iteration from

the probability distribution.
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The approach to select the iteration size is based upon developing a confidence

interval for a fractile level of most concern in the investigation (Morgan and Henrion,

1998). This analysis can be done for any distribution. For example, we may wish to

obtain a given confidence that the value of the path fractile will be bounded by the itchand

kill fractiles. In a Monte Carlo simulation, we can use the following relations to estimate

the required iteration size (Cullen and Frey, 1999):

The relation in equations 1 and 2 yield a confidence interval for the path fractile if

the iteration size is known, where c is the standard deviation of the standard normal

distribution associated with the confidence level of interest (Cullen and Frey, 1999). To

calculate the number of iterations required, the expressions above can be rearranged to

For example, the 95 th percentile will be enclosed by the values of the 93 th and 97 th

fractiles, where c would be 2.0, p would be 0.95, Ap would be 0.02, and m is 475. Some

of results based on the above equation are shown in Table 3.2. The m values from

equation 3 agree with Brush's work. Brush (1988) reported the minimum iteration sizes

for various values of Ap and the confidence levels of 80%, 90%, 95% and 99%.



Table 3.2 Number of Simulations (m) for 95 th Percentile Based on Ap Values
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For an example, 95 th percentile based on Ap values (0.02), Bush reported the minimum

iteration size (m) of 480, which is very close to m value, 475, from Table 3.2.

The Monte Carlo simulation is use to assess how the parameter varies statistically

from input variables. Iteration sizes of 30, 50, 100, 500, 1000, 1500, 2000, 3000, 5000,

10000, 20000, 30000 were selected. The iteration size of 30 represents the small iteration

size (McBean and Rovers, 1998), where the iteration sizes of 50 to 2000 represent the

confidence interval based on the Ap value in Table 3.2.

Iteration sizes of 1000 to 30000 represent large sets. As an example, a random

number is drawn from the standard normal distribution with a mean of 0 and standard

deviation of l, the resulting mean and standard deviation of the output distribution were

then calculated. Results are shown in Table 3.3.
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Table 3.3 Comparison of Mean and Standard Deviation for m Iterations of a Standard

Normal Distribution with Mean of 0 and Standard Deviation of 1
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Figure 3.l shows the distributions depending on the iteration sizes. Figure 3.2

shows the fluctuations between the random values and the iteration sizes. From Figure

3.3, all of the means of the random values based on the iteration sizes are falling in

between — 0.02 and + 0.02. For standard deviation (Figure 3.3b), the values trend to

stable or convergent statistics when the iteration size (m) is 500 and higher. The results

were in agreement with Tellinghusen (2000) and Havens et al. (2002) work regarding the

straight-line linear relationship between the variance and the iteration size (m -1) in

Figures 3.2c and the standard error (6lm05 , where a is a standard deviation) and the

iteration size (1/ma5) in Figure 3.3d.

The iteration size corresponds to the number of repetitions used in the Monte

Carlo simulation. The selection of iteration size is constrained by the limitation of

computer hardware and time (Cullen and Frey, 1999). As iteration size is increased,

computer runtime and memory use may become excessive. Therefore, it may be

important to use no more iterations than are actually needed for a particular application.

In an ERA model, the selected iteration size is based on the 95 th confidence level. Based

on Brush (1988), Cullen and Frey (1999), Havens et al. (2002) and the study above, the

iteration size of 500 is deemed sufficient to characterize the uncertainty for models.

However, the results of ERA modeling also need to represent the statistical data such as

the value of variance, skewness, etc. along with the histograms.

Therefore, in applying the Monte Carlo simulation, the iteration size of 1000 is

selected based on the results presented above. Other work using this iteration size

includes: Duffy and Schaffner (2002), Lahkim et a/.(1999), Sanga et al. (2001), Cullen
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and Frey (1999), Frey and Rhodes (1998), Frey and Burmaster (1999), Schumacher et al.

(2001), Tellinghusen (2000) and Linville et al. (2001).

3.2.5 Input Concentration Uncertainty

The distribution of pollutant concentrations measured in the environment often appears

"lognormal"(Ott, 1990, U.S. EPA, 1997c). Using the lognormal distribution has been

proposed for ambient air quality data, outdoor particulate matter exposure (Riley et al.,

2002), indoor radon measurements (NCRP, 1999), water quality data (Engle et al., 2001:

LoPez-Pila and Szewzyk, 2000), polycyclic musk fragrance in surface water (Schwartz et

al., 2000), exposure point concentrations in groundwater (U.S. EPA, 1991), phosphorus

in lakes, dissolved solids in groundwater (Ott, 1990), radionuclides in soil, hydraulic

conductivity and trace metals in human tissue, blood and feces (Wong and Yeh, 2002).

Concentration of pollutants tends to be a lognormal distribution, which has been

explained by the theory of successive random dilutions (Ott, 1990, 1995). After the

pollutants are emitted by the source, in the transport process before they reach the

receptor, they undergo successive mixing and diluting, resulting in a lognormal frequency

distribution. Ott explained this hypothesis by performing the contaminant dilution

experiment. In his study, he used a random number generator to simulate 1000 repeated

pouring of a beaker, which contained an initial contaminant concentration. The resulting

frequency distribution is similar to the right-skewed distributions commonly observed in

the environment. This study showed that a relatively simple physical process of diluting

could give rise naturally to distributions that are approximately lognormal under

successive dilutions.
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Lu (2002) confirmed Ott's work by studying the concentrations of air pollutants

in the Taiwan area. In this study, the data from three air-monitoring stations were chosen

for measuring the particulate matter (PM10) frequency distribution and estimating the

distribution parameters. The period of these data ranged from 1995 to 2000. The

distributions were estimated by the method of moments and maximum likelihood.

Comparing the results of three estimated distributions and the measured data of the

particulate matters (PM10) concentration from three stations, it is apparent that the

lognormal distribution fits the measured data.

According to NIOSH (1977), air pollution environmental data are described by a

lognormal distribution with the following reasons: the concentrations cover a wide range

of values, often several orders of magnitude, the concentrations lie close to a physical

limit (zero concentration), the variation of the measured concentration is of the order of

the size of the measured concentration. Therefore, NIOSH used a lognormal distribution

to describe the manner of the daily contaminant exposure averages (8 hour) in the

workplace.

Schorp and Leyden (2002) reported that lognormal distribution fits for Nicotine

concentration in the air based on the following criteria: (l) the variable may increase

without limit but cannot fall below zero, (2) the variable is positively skewed with most

of the values near the lower limit, and (3) the natural logarithm of the variable yields a

normal distribution. Schorp and Leyden summarized that a lognormal distribution

provides a reasonable means to predict a distribution of airborne nicotine concentrations

in hospitality facilities (restaurants, taverns, bars, coffee houses, etc.) and to compare

distributions between geographic regions.
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Cullen (2002) also studied air quality by measuring and predicting PCB

concentrations in New Bedford Harbor, Massachusetts. In his study, there were multiple

sources of variability and uncertainty to be considered. A set of measured values for

concentration of a chemical in air is assumed to represent random draws from an

underlying lognormal distribution since the dilution processes generate the concentration

in the air.

MacLeod et al. (2002) applied a lognormal distribution to propagate uncertainty

of PCB concentrations in both soil and water at Lake Ontario in chemical fate and

bioaccumulation. The results showed that the relationships between uncertainty in input

and output parameters are linear based on log plots, which suggested that a lognormal

distribution is an appropriate fit to the data set. Vermeire et al. (2001) applied the

lognormal distribution to the following parameters: dibutylphthalate (DBP) contaminant

concentrations in air, surface water, soil, groundwater and fish (bio-concentration factor)

in Europe. The results showed that the distribution of the total human dose of DBP, as

derived from the distribution inputs, trend is lognormal.

To demonstrate that a lognormal distribution is appropriate for contaminant

concentrations in the environment, the three data sets of New Jersey water quality

monitoring during 1995 to 2001 from USGS database will be used (U.S. Geological

Survey, 2002). The monitoring locations are Passaic River at Millington, at Two

Bridges, and at Little Falls. Dissolve Sulfate (SO4) will represent the contaminant

concentration in this study. The data set is shown in Table 3.4.

To determine whether the lognormal distribution is an adequate descriptor of the

data set, the Shapiro-Wilk statistical goodness of fit test is used as a test method.



Table 3.4 Dissolved Sulfate (SO4) Concentrations from the Rivers in New Jersey (USGS, 2002)

Location

No. of Samples

Passaic River at Two Bridges

Date	 SO4, mg/L

Passaic River at Little Falls

Date	 SO4, mgIL

Passaic River at Millington

Date	 SO4,mg/L

1 Aug-96 45 Jan-95 17 Jan-95 19

2 Aug-96 47 Feb-95 29 Mar-95 15

3 Sep-96 53 Mar-95 18 May-95 10

4 Sep-96 34 Apr-95 31 Jun-95 9.6

5 Sep-96 31 May-95 31 Oct-95 51

6 Oct-96 28 May-95 29 Jan-96 29

7 Oct-96 13 Jun-95 31 Mar-96 17

8 Nov-96 19 Jun-95 41 May-96 11

9 Dec-96 13 Jul-95 18 Jul-96 8.6

10 Jan-97 22 Aug-95 38 Oct-96 12

11 Jan-97 24 Sep-95 54 Jan-97 22

12 Feb-97 25 Sep-95 30 Mar-97 15

13 Mar-97 15 Oct-95 28 May-97 13.8

14 Apr-97 14 Nov-95 20 Jun-97 13.7



Table 3. 4 Dissolved Sulfate (S04) Concentrations from the Rivers in New Jersey (continued) (USGS, 2002)

Location

No. of Samples

Passaic River at Two Bridges

Date	 SO4,mg/L

Passaic River at Little Falls

Date	 SO4, mgIL

Passaic River at Millington

Date	 SO4,mgIL

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Apr-97

May-97

May-97

Jun-97

Jul-97

Jul-97

Aug-97

Sep-97

Oct-97

Nov-97

Nov-97

Nov-97

Dec-97

Jan-98

Jan-98

21.7

21.4

21.2

30.4

22.7

26.6

33.4

47.6

52.1

16.3

34.3

35.8

38.3

20.8

26

Jan-96

Feb-96

Mar-96

Apr-96

May-96

Jun-96

Jun-96

Jul-96

Aug-96

Sep-96

Sep-96

Nov-97

Mar-98

May-98

Sep-98

32

18

18

17

15

19

28

12

32

41

24

29.5

18.3

14.8

34.l

Jul-97

Jul-98

54.6

15.4



Table 3.4 Dissolved Sulfate (SO4) Concentrations from the Rivers in New Jersey (continued) (USGS, 2002)
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The Shapiro-Wilk test is a statistical goodness of fit test that performs well on small

sample sizes and tests the null hypothesis that the data values are random samples from a

normal distribution against an unspecified alternative distribution (McBean and Rovers,

1998). The test is considered one of the best numerical tests of normality and is

particularly useful for detecting departures from normality in the tails of a sample

distribution. It can be used in conjunction with a probability plot to measure how well the

plotted quintiles are following a straight line (i.e., how well the sample values are

correlated with normal quintiles.

The Shapiro-Wilk test is used to test the normality of the data (U.S. EPA, 1997c).

In this EPA report, the author illustrated which distributions are fit to data set. The higher

value of W-test, the more fit of that distribution Results indicate the lognormal

distribution provides a reasonable fit to the data. Kumagai et al. (1997) examined either

lognormality or normality of the data sets of cobalt exposure concentrations by using the

Shapiro Wilk W test.

The Shapiro-Wilk, W test values resulted in half of the data sets being rejected by

normality, but log-normality could not be rejected because the W value based on the

hypothesis of log-normality was larger than that of normality, so that the distribution was

closer to lognormal. Davis et al. (2001) examined which distribution fits to arsenic

contamination in soil of 50 samples from nine sites in California, USA. The distribution

analysis, using the Shapiro-Wilk goodness of fit test, indicated that the arsenic data best

fit a lognormal distribution.

To determine the distribution of sensitivities to toxic stress among an within field

populations of Dapnia magna, Barata et al. (2002) used a Shapiro-Wilk test as a tool to
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test whether the range of sensitivities within populations was normally distributed or not.

Clonal effect concentration (EC) values obtained within each of the studied population

and toxicant were tested by Shapiro-Wilk tests. The results from their study showed that

the clonal sensitivities followed a lognormal distribution. The steps in the calculation are:

1. Order the sample data

2. Compute a weighted sum (b) of the differences between the most extreme

observations.

3. Divide the weighted sum by a multiple of the standard deviation, and square the

result to get the Shapiro-Wilk statistic W:

where the numerator is computed as

where x(i) represents the smallest ordered value in the sample, and coefficient aildepend

on the sample size n. The coefficients can be found for any sample size from 3 to 50 in

Appendix B. The value of k can be found as the greatest integer less than or equal to n/2.

Normality of the data should be rejected if the Shapiro-Wilk statistic is too low

when compared to the critical values. The critical values are dependent on the sample

sizes. For example, at the significance level of 0.01, the critical values are 0.8 and 0.9 for

the sample size of 22 and 35, respectively (McBean and Rovers, 1998).

For significance level, traditionally, scientists have used either the 0.05 level or

the 0.01. The lower the significance level, the more the data must diverge from the null
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hypothesis to be significant. The advantage of using 0.01 levels is that it is less likely to

make a Type 1 error, a true null hypothesis can be incorrectly rejected. The other words,

in a Type I error, the conclusion is drawn that the null hypothesis is false when, in fact, it

is true (Vining, 1998). On the other hand, increasing significance level (e.g., from 0.01 to

0.05 or 0.10), increases the chances of making a Type I Error. Therefore, in this study,

the significance level of 0.01 will be used for a critical value.

The data from Table 3.4 were used to calculate the W values based on the above

procedure with results shown in Table 3.5. From the results, the estimated W values of

the lognormal distribution function are greater than the critical W values. 0n the other

hand, the estimated W values of the normal distributions are lower than the critical W

values. This indicates that the lognormal distribution is fit to describe the character of

contaminants in the environment. Moreover, when plotting the histogram of data sets

between the normal distribution function and the lognormal distribution function, the

histograms of normal distribution function show a right-skewed trend, and the histograms

of the lognormal distribution function show a bell curve trend (Figures 3.4 -3.6). These

results reveal that logarithms of the contaminant concentration data are approximately

normally distributed (Peretz et al., 1997, NIOSH, 1977). As discussed above, the

lognormal distribution describes random variables resulting from multiplicative

environmental processes. Also, the concentration of a contaminant in the environment is

often well described by a lognormal distribution because it results from dilution processes

in water or air (Ott, 1990: 1995, Klein, 1997, Cullen and Frey, 1999, Vermeire et al.,

2001, Lu, 2002, Cullen, 2002, Schorp and Leyden, 2002).
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Other reasons include that, in the environment, negative contaminant concentrations are

not plausible and the lognormal distribution precludes values less than zero, and the

distribution has no upper bound (McBean and Rovers, 1998). Due to these reasons, the

lognormal distribution has considerable potential to describe contaminant concentrations

in water, soil, and air.

3.3 Demonstration

Receptors and contaminants selected to demonstrate both sensitivity and uncertainty

analysis in these models are from Yuma Proving and Aberdeen Proving Grounds. The

receptors in both sites are listed in Table 3.6, and include:

• Terrestrial animal and plant exposure

• Aquatic animal and plant exposure

3.4 The Area of Study

Aberdeen Proving Ground (APG) and Yuma Proving Ground (YPG) are selected sites

for this study as they are the default ones within the ERA (Lu, 2001) software. Aberdeen

Proving Ground provides large areas of natural habitat for many species (Lu, 2001). The

post is composed of roughly 50% hardwood forest, 34% mowedIgrassy areas, 13% marsh

or marsh shrub, 2% bare earth, and l% shrub habitat. Forested regions represent a

transition zone between the oak-pine and oak-chestnut regions of the eastern U.S. APG

also contains large areas of wetland, which provide habitat for plant species such as the

slender blue flag, an endangered marsh plant. APG study area map is shown in Figure

3.7.
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YPG is characterized by a terrestrial ecosystem, which consists of desert plants,

wildlife, and habitats (U.S. Army YPG, 1999). There are also many typical desert

animals living around the proving ground. The most common types of wildlife include

game mammals (such as bighorn sheep and mule deer), desert birds, predatory and fur-

bearing mammals, and migratory and resident birds. Predatory and fur-bearing mammals

include the coyote, kit fox, gray fox, ringtail, badger, spotted skunk, striped skunk,

mountain lion, and bobcat (Lu, 2001). YPG study area map is shown in Figure 3.8.

Considering the large area of YPG and the great diversity of the APG ecosystem,

a large amount of wildlife species lives within the two sites. 0ne hundred and fourteen

species at APG and 30 species at YPG were identified for the study areas. Based on the

appropriate criteria for screening the study area species (PNNL, 1998, U.S. EPA, 1998a)

that include commercial or recreational importance and status under the Endangered

Species Act, the number of receptors is reduced to 24 for APG and 14 for YPG (Lu,

2001). The shortlist of representative receptors is shown in Table 3.6.

The effect of the food chainIfood web imbedded in the ERA software DBMS for

these receptors will be addressed as part of parameter input and model uncertainty.

3.5 Contaminants of Interest

Initial screening and validation will be accomplished with a comparative risk analysis of

chromium (VI), depleted uranium (DU), tantalum, and molybdenum. These contaminants

were selected because both tantalum and molybdenum are alternative coatings to replace

chromium. Depleted uranium is included because both Aberdeen and Yuma Proving

ground sites are contaminated by depleted uranium as both sites are a center for Army

material testing, laboratory research, and military training.



Figure 3.8 Map of YPG Study Areas (U.S. Army YPG, 1999).
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CHAPTER 4

ERA MODEL CODE MODIFICATION

One of the objectives of this dissertation is to develop computationally efficient methods

for uncertainty propagation. This objective includes: each methods computational

requirements, applicability of the methods to a wide range of models and the user

friendliness of the methods.

ERA2001 software was developed as a tool to implement an ecological risk

assessment to evaluate the impact of different chemicals on an ecosystem. It is part of

the Department of Defense "Sustainable Green Manufacturing" program. The developed

software consists of a dynamic exposure model and a DBMS. The exposure model was

developed based on the algorithms for evaluating different contaminant exposure

pathways (Lu, 2001). Microsoft Access was selected to construct the local database and

store all the related parameters, which will be used to run the exposure model. Based on

the specific case requirements, these stored data can be modified through a Windows

interface developed with Visual Basic 6.0. Using this software, one can implement a

comprehensive ecological risk assessment considering each exposure pathways with the

data provided by the local database (Lu, 2001).

The software (ERA2001 BetVersionl.2) includes a Windows based interface,

mathematical model, and a local database. To implement an Ecological Risk Assessment

case study, the user selects the appropriate chemicals and receptors involved, inputs the

chemical concentrations, runs the exposure model and analyzes the results. The user also
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can review the data stored in the database and insert his or her own data if it is not yet

included. The model is also linked to external databases, such as the U.S. EPA EC0T0X

(U.S. EPA, 2003). Therefore, if the user cannot find the required data in the local

database, external databases can be used to locate the data and apply them in the model.

As shown in Figure 4.l, the ERA2001 software package consists of three levels:

user, databases, and application program. The user sends commands through the YB

interface. Data are retrieved from the local Microsoft Access database. The retrieved

information will be applied to the mathematical model and the final results are calculated.

However, the current ERA model version does not include parameter and model

uncertainty analysis. Thus the model software needs to be modified. Probabilistic

distributions through Monte Carlo simulations will be applied to analyze uncertainty in

this model. The Monte Carlo simulation generates random numbers based on the selected

distribution. The additional codes for this task will be written using Visual Basic. Both

parameter and model uncertainty will be reported in terms of the frequency and the

cumulative distribution functions and their statistical data. A Microsoft Excel spreadsheet

will be used to maintain and present the results in the Visual Basic program. The details

will discuss in the following section.

4.1 ERA Model Code Modification Procedures

Modules for the application of probabilistic distribution- derived from Monte Carlo

simulation methods were developed as a part of this work. The Monte Carlo method

involves the following steps:



Figure 4.1 System 0rganization (Lu, 2001).
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(1) Obtaining random samples from the probability distributions of the inputs,

(2) Performing model simulations for the combination of the sampled inputs, and

(3) Statistically analyzing the model outputs.

The random numbers for sampling the input distributions were generated

depending on the parameter considered. VB interfaces were modified to accept the

uncertain parameter inputs from both input interfaces and a local database. Model

simulations were performed at the sampled values of the inputs. The outputs of the

simulations were analyzed by using the data analysis function from the Microsoft Excel

menu. These include descriptive statistic data, frequency and cumulative probability

density functions. Therefore, the user can easily save the final result under their file

names. The approach in this task involves the use of simulation and Monte Carlo

methods. These methods are used to provide distributions on estimated risks. The method

for assessing parameter and model uncertainty involves the following steps:

(1) Select a distribution to describe the parameter.

(2) Use Monte Carlo sampling to produce a distribution

(3) Calculate the exposure value

(4) Store the exposure value

(5) Generate the frequency and cumulative distribution functions of each exposure

(dependent on pathway)

(6) Generate the statistical data to present the uncertainty



62

Visual basic codes were written based on the above procedures. To better

understand the structure of the model see Figures 4.2 to 4.5, which present the model

organization concepts. Also, Figure 4.6 presents the Monte Carlo simulation framework.

Appendix C shows the modified ERA model and the format of that model. As a result,

users will find the ERA software friendlier than the previous software version.

4.2 Summary

From the approach, the codes were modified to develop a computationally efficient

method for uncertainty propagation. The Monte Carlo Sampling method is applicable to a

wide range of ecological risk assessment models associated with uncertainty propagation

as already discussed in Chapter 2. In the past, a computational model may not be feasible

due to computer capability and time limitations. Nowadays, the capacity of computers

can overcome these limitations. The ease in which a method can be used is an important

factor in model applicability. The use of Visual Basic offers an alternative technique to

develop a user-friendly probabilistic simulation tool. Microsoft Excel is also useful and

easily used to calculate the descriptive statistics and probabilistic distributions.

A set of interface tools was built to integrate Monte Carlo sampling and analysis

techniques with the ERA model. The software was written in Visual Basic and

supplemented with Microsoft Excel, which allows the user to store the outputs from

multiple-run modeling sets. Since much of the functionality of Microsoft Excel is

available in Excel's Visual Basic for Applications (VBA) programming environment,

VBA scripts were developed to set up and manage the Monte Carlo analysis. Figures C-l

to C-14 in Appendix C show the general flow of the interface system.
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Figure 4.3 Modified ERA2003 Software Architecture.
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Figure 4.6 Monte Carlo Simulation Procedures.
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To perform a simulation, the user first must select the inputs by following the

guidelines spelled out step by step in the interface. The appropriate distribution to

describe each receptor's behavior is already assigned in the VB codes. When a set of runs

is initiated via the VBA codes, the Monte Carlo routine generates samples from the

distributions to set the input values for the current simulation. The existing input files are

then saved in the same directory as the local database. The results are imported into

Microsoft Excel.

As discussed earlier in the previous Chapter, selecting an appropriate distribution

to describe the parameter is the critical step. The next Chapter will discuss how to

approach and select the distribution based on the characteristic and the behavior of that

parameter at the specific site.



CHAPTER 5

MODEL PARAMETERIZATION

The following sections discuss parameter characteristics used in the ERA model. Each

parameter has been studied with respect to specific receptors and contaminants.

Receptors include terrestrial and aquatic plants and animals. Contaminants include both

organic and inorganic compounds. Data have been gathered from a range of sources. The

study focuses on parameter characterization and parameter behavior. The first section

presents the parameters of terrestrial animal species, the second, default values, the third,

parameters of aquatic and plant species, the fourth, contaminant concentrations, and the

fifth, a summary.

5.1 Animal Species

Parameters of terrestrial animal species include the body weight, mass fraction of soil or

sediment in the diet, food and water ingestion rate, inhalation rate, soil-to-skin adherence

factor, surface area, weight fraction of food item in receptor diet, fraction of receptor

surface area in contact with soil per day, site use factor, contaminant-specific dermal

absorption factor, and seasonal factor. Details for each parameter are discussed in the

following sections.

5.1.1 Body Weight (BW)

Table 5.l contains the mean, minimum, maximum, range, minimum and maximum

values as percents of the mean, and standard deviation of receptor body weights for the
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YPG and APG sites (U.S. DOE, 1997, U.S. EPA, 1993a, U.S. Army YPG, 1998,

Dunning, 1993, Macdonald, 1984, Chapman and Feldhamer, 1982, Walker, 1968).

Since full data was unavailable, the standard deviation was calculated by using

the range of values method (Ponce, 1980). The results show that the range of body weight

for each receptor varied considerably. This variation is expected when considering

normal body weight variation in the growth process for a particular species.

Mammals showed the greatest range of variation particularly among the larger

animals such as mule deer and white tailed deer. The extreme cases showed some

animals with as little as 23% of the mean body weight and some with over twice the

mean body weight. Smaller animals showed similar variation relative to their smaller

mean values.

The most significant weight variation among birds was with the Bald Eagle, which

had a mean body weight over five times that of other birds. All the bird species fell

between 62% and 125% of their mean values with the exception of Barred Owls, which

had samples as large as 140% of the mean.

Reptiles and Amphibians also showed considerable variation averaging from as

low as 60% of the mean to as high as 140%. A notable exception was the Sonora

whipsnake, which ranged from 18% to 227% of it's mean. The large mean body weight

of the Eastern garter snake resulted in its significantly high standard deviation (0.70 kg)

when compared to other reptiles and amphibians (0.01 to 0 .06 kg).

Approach: Body weight data must be obtained individually for each receptor.

Physiological parameters such as body weight in terrestrial animals may vary seasonally,
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geographically, and by age. This parameter typically follows a Gaussian distribution

(Regan et al., 2002, U.S.EPA, 1993a, 1999b).

The normal distribution is commonly used to represent uncertainty resulting from

unbiased measurement errors (Morgan and Henries, 1998). Because the normally

distributed random variable takes on values over the entire range of real data, we have

provided the standard deviation as the measure of population variance. The normal

distribution describes the behavior of body weight (Cullen and Frey, 1999, Hope, 1999).

The propagation error for this parameter can be demonstrated in terms of a standard

deviation value. The normal probabilistic distribution formula is
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If a standard deviation (a) is unknown, the estimation method will be used. Ponce

(1980) provided the equation to estimate the variance of samples.

Where Range is from the smallest to the largest values.

Therefore, in performing an uncertainty analysis for the receptor's body weight, at

least the range of the body weight must be known. The sources of the data are shown in

Table 5.l. Equation (9) will be used when the standard deviation or variance is unknown.

The mean and standard deviation will be propagated into the error of the exposure model

by Monte Carlo simulation method. Finally, probability distributions for terrestrial

animals from both APG and YPG sites are constructed from the normal distributions for

data presented as means and standard deviations. The result contains all possible

distributions given the available information (Figures 5.l and 5.2)

5.1.2 Ingestion and Inhalation Rates

The associated equations for food and water ingestion rates and inhalation rates are show

in Table 5.2. Also, Tables 5.2 to 5.5 contains the data for food and water ingestion rates

and inhalation rates of mammals and birds at the APG and YPG sites (U.S. Army YPG,

1998).

These parameters depend on the body weight of the receptor. In most cases, the

variation in all three parameters falls within 10% of each other. The exceptions are all

found within the water ingestion data where four mammals and one bird species exhibit

range differences of up to 33%. In general, as seen in Tables 5.3 to 5.5, body weight
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Figure 5.2 Body Weights of YPG Terrestrial Animals.
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Table 5.2 Food and Water Ingestion Rate, Inhalation Rate Equations (U.S. EPA, 1993a)



Table 5.3 Food Ingestion Rate
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Table 5.4 Water Ingestion Rate
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Table 5.5 Inhalation Rate
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and ingestion/inhalation rates are related. This relationship allows the use of a normal

distribution to describe the characteristics of these parameters. The mean and the standard

deviation are required to perform an uncertainty analysis.

Approach: The approach to perform an uncertainty analysis for the ingestion and

inhalation rates involves the same approach used in the case of the body weight

parameter, because both ingestion and inhalation rates are body weight dependent. They

are estimated with algometric equations and are expected to be Gaussian as well (U.S.

EPA, 1993a). The Monte Carlo simulation method will be applied using the mean and the

standard deviation to construct the distribution for each receptor, then randomly selecting

one value to calculate the exposure. Finally, probability distributions for terrestrial

animals from both the APG and YPG sites are constructed from the normal distributions

for data presented as means and standard deviations. The results contain all possible

distributions given the available information (Figures 5.3-5.8).

5.1.3 Surface Area

The degree to which an animal may absorb contaminants through direct contact with its

skin depends on many factors, including the surface area of the skin available for contact

(U.S. EPA, 1989a). The permeability of an animal's skin to contaminants depends on

characteristics of the contaminant. The U.S. EPA (1993a) provides the equations for

estimating skin surface area (SA):
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Figure 5.3 Water Ingestion Rates of APG Terrestrial Animals.
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Figure 5.4 Ingestion Rates of APG Terrestrial Animals.
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Figure 5.5 Food Ingestion Rates of YPG Terrestrial Animals.



Rd

Figure 5.6 Water Ingestion Rates YPG Terrestrial Animals.
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Figure 5.7 Inhalation Rates of APG Terrestrial Animals.



Figure 5.8 Inhalation rates of YPG terrestrial animals.
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For turtles, however, there is no equation to estimate surface areas (exclusive of

the shell and plastron). For snakes, the general formula for the surface area of a cylinder

can be used for approximation if the length and girth are known (U.S. EPA, 1993a). For

the trend of the standard deviation, because the surface area is a body weight dependent,

the results of each group in terms of the standard deviation show the same trend of the

standard deviation of the body weight and the ingestion/inhalation rates. Table 5.6

contains surface area of animals at the APG and YPG sites.

For example, the mule deer and the white tailed deer have among the highest

standard deviations for mammals and the bald eagle has the highest standard deviation

value for birds. Dermal absorption depends on surface area. Furthermore, this parameter

depends on body weight, therefore, the normal distribution is suitable for the surface area

behavior (Cullen and Frey, 1999, Hope, 1999). The mean and the standard deviation

values are required for normal distribution.

Approach: Similar to ingestion rate, surface area is a function of body weight, it is

estimated with allometric equations and is expected to be Gaussian as well (U.S. EPA,

1993a). Monte Carlo simulation method will be propagated into the mean and the

standard deviation to construct the distribution for each receptor and randomly the one

value to calculate the exposure. Therefore, probability distributions for terrestrial animals

from both APG and YPG sites are constructed from the normal distributions for data



* Standard deviation (SD) is calculated by using the equation (10)
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presented as means and standard deviations. The result contains all possible distributions

given the available information (Figures 5.9 — 5.10).

Uncertainty arises when only limited data is available or when there is inadequate

knowledge of a situation. Under these conditions, default values and chemical specific

values are used. In recent work, U.S. EPA used some parameters such as the soil to skin

adherence factor and the contaminant specific dermal absorption factor as default values

for studying the exposure of terrestrial animals to chemicals (U.S. EPA, 1989a, U.S.EPA,

1993a, U.S. EPA, 1999b, and U.S. EPA, 2000). Moreover, these values are applied from

human exposure values not from animal values (U.S. EPA, 1992b, U.S. EPA, 1989a).

Therefore, in this study, the parameters that relate to dermal contact including the soil to

skin adherence factor, the contaminant specific dermal absorption factor, the soil contact

fraction factor, the site use factor, and the seasonal factor are assigned as a default value

and a chemical specific value. The following section will discuss in detail these

parameters.

5.2 Default and Chemical Specific Values

In this study, a default value will be applied to the following parameters: soil to skin

adherence factor, contaminant specific dermal absorption factor, soil contact fraction, site

use factor, seasonal factor, mass fraction of soil or sediment in the diet, and weight

fraction of food item in the receptor diet. Details for each parameter are discussed in the

following sections.

A default value will be used for parameters that relate to dermal absorption in

wildlife. According to U.S. EPA (1993a), dermal estimates are usually expressed as an
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Figure 5.9 Surface Areas of APG Terrestrial Animals.
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absorbed dose resulting from skin contact with a contaminated medium. Dermal

exposures may also be a concern for wildlife that swim or burrow. Dermal absorption of

contaminants is a function of chemical properties of the contaminated medium, the

permeability of the animals' integument, the area of integument in contact with the

contaminated medium, and the duration and pattern of contact (U.S. EPA, 1993a).

However, the EPA's handbook is not concerned with this dermal absorption pathway.

Furthermore, dermal exposure is assumed to be negligible for birds and mammals on

most U.S. Department of Energy (DOE) hazardous waste sites (Sample et al., 1997) for

the following reason: Feathers of birds, fur on mammals, and scales on reptiles are

believed to reduce dermal exposure by limiting the contact of the skin surface with the

contaminated media. Moreover, studies assessing the toxicity of dermal exposures for

wildlife species are limited. Available studies generally report results for laboratory

rodents and are performed by shaving the fur and applying the contaminant directly to the

exposed skin (U.S. EPA, 1989a). This type of exposure rarely occurs in the environment.

Conditions under which dermal pathways may need to be considered on a site-specific

basis include:

1. Species with little or no fur or feathers

2. Species that spend a lot of time exposed to soil (i.e., in burrows)

3. Where the contaminants of concern may be significantly more toxic via the

dermal pathway compared to the oral pathway.

4. Where dermal exposures may be substantially higher compared to oral exposures

(i.e., pesticides applied directly to trees or soil surfaces).
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For birds and mammals, the U.S. EPA (2000) considers two potentially complete

exposure pathways: l) incidental ingestion of soils during feeding, grooming, and

preening, and 2) ingestion of food contaminated as a result of the uptake of soil

contaminants. Dermal contact was not considered because current information is

insufficient to evaluate dermal exposure in their work. Therefore, dermal exposure is

expected to be negligible relative to other routes (Sample et al., 1997).

While methods are available to quantitatively assess dermal exposure in humans

(U.S. EPA, 1989a), the data necessary to estimate dermal exposures for wildlife are

generally not available (U.S. EPA, 1993a, Sample et al., 1997). Dermal exposure may be

estimated using the model for terrestrial wildlife presented in the ERA model. The

parameters that relate to dermal contact include the soil to skin adherence factor, the

contaminant specific dermal absorption factor, the soil contact fraction factor, the site use

factor, and the seasonal factor. Details of each parameter are discussed in the following

sections.

5.2.1 Soil to Skin Adherence Factor (AF)

Soil adherence to the surface of the skin is a required parameter to calculate dermal dose

when the exposure scenario involves dermal contact with a chemical in soil. As discussed

in the U.S. EPA (1997a), specific situations have been selected to assess soil adherence to

skin of human beings. The studies are based on limited data with results from various

factors.
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• Soil properties influence adherence. Adherence increases with moisture content,

decreases with particle size, but is relatively unaffected by clay or organic carbon

content.

• Adherence levels vary considerably across different parts of the body (human).

The highest levels were found on common contact points such as hands, knees,

and elbows, the least was detected on the face.

• Adherence levels vary with activity. In general, the highest levels of soil

adherence were seen in outdoor workers such as farmers and irrigation system

installers, followed by people engaged in outdoor recreation, and people engaged

in gardening activities. Very high adherence levels were seen in individuals who

were in contact with wet soil that might occur during wading or other shore area

recreational activities.

For human health, the U.S. EPA (1989a) used the default values within the range

0.2 to 1 mgfcm2 based on age and activity. Similarly, Finley et al. (1994) provided the

average estimation value of this factor at 0.25 mgIcm 2 (adult). While data are available to

quantitatively assess dermal exposure in humans (U.S. EPA, 1989a, U.S. EPA, 1989b,

U.S. EPA, 2001), the data of this factor for wildlife are not available (U.S. EPA, 1993a).

For wildlife species, the U.S. EPA (2000) applied the upper end of values for naked

human skin to wildlife, which is l.0 mgIcm 2 . Based on the above reasons, the

conservative value, l.0 mgIcm2 (for human, adult) will be used as a default value for

terrestrial animals with dermal exposure. Thus, the uncertainty analysis will not include

this parameter, as there is insufficient data to perform an analysis.
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Approach: The default value of 1 mgfcm2 will be used for the soil to skin adherence

factor.

5.2.2 Contaminant-Specific Dermal Absorption Factor (ad)

This factor describes the fraction of a chemical absorbed by skin from direct contact with

soil (Hope, 1999). It depends on the exposed surface areas and soil to skin adherence

factor (U.S. Army Corps of Engineers, 1998). The values for human health risk

assessment may be applicable to mammals (U.S. EPA, 1989a). The exposed surface area

(adult) is based on exposure to the head, forearms, hands, and lower legs. These values

were calculated from the average of 50 th percentile male and female values obtained from

the U.S. EPA (1997a). For metals, even though information is limited on the rate and

extent of dermal absorption of metals in soil across the skin (U.S. EPA, 1993a), most

scientists consider this pathway to be minor in comparison to exposures resulting from

direct soil ingestion (Sample et al., 1997, U.S. EPA, 1993b). In addition, ionic species,

such as metals, have a relatively low tendency to cross the skin, even when contact does

occur (U.S. EPA, 2000). Along with a lack of data to allow reliable estimation of dermal

uptake of metals from soil, U.S. EPA Region VIII generally recommends that dermal

exposure to metals in soils not be evaluated quantitatively (U.S. EPA, 1998b). Therefore,

in this study, the chemical specific value for the dermal absorption factor for metals will

be used and there is no uncertainty analysis for this factor.

For organic compounds, especially pesticides, the U.S. Army Corp of Engineers

(1998) estimated the human dermal absorption factors for pesticides based on data from

the U.S. EPA (1997a). As a result, the value of 0.13 mgIkg-body burden / mgIkg-day will
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be applied as the dermal absorption factor for pesticides (U.S. EPA, 2000). No

uncertainty analysis will be included for this factor.

Approach: The default value for organic compounds (pesticides) is 0.13 mg/kg-body

burden fmgIkg-day.

5.2.3 Proportion of Total Surface Area in Contact With Soil Per Day (Pr)

From human studies, soil contact (dermal) exposure was expected to occur at the hands,

legs, arms, neck, and head with approximately 26% and 30% of the total surface area

exposed for adults and children, respectively (U.S.EPA, 1989a). Based on clothing that

prevents dermal contact and, subsequently, absorption of contaminants, U.S. EPA

(1989a) suggests that roughly 10% to 25% of the skin area may be exposed to soil. Thus,

applying 25% or 0.25 to the total body surface area results in defaults for adults (human).

For animal studies, Hope (1995) applied the value of 0.22 for the proportion of total

surface area in contact with soil for mammals, based on a Peromuscus mouse. The

CRCIA model (PNNL, 1998) also applied this value as a default (0.22) to estimate the

contaminant exposure for mammals. Hope (1999) suggests professional judgment to

adjust this proportion for other receptors, such as birds with brood patches or for

unfledged or hairless newborns. Therefore, the value of 0.22 per day will be set as a

default value for the proportion of total surface area in contact with soil in this study

because this value is derived from an animal (mouse) study. Therefore, uncertainty

analysis will not be performed for this parameter.
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Approach: The default value of 0.22 will be used for the fraction of surface area in

contact with soil per day.

5.2.4 Site Use Factor (0)

The site use factor is defined as the ratio of the contaminated area to foraging area for a

given receptor species, such that 0 0 1 (U.S. EPA, 1993a, Hope, 1999, Sample et al.,

1997). An animal whose total home or foraging range area is equal to or smaller than the

contaminated area will have a default value of l.0 (Hope, 1999, PNNL, 1998).

Approach: The default value of 1.0 will be used for the site use factor.

5.2.5 Seasonal Factor (N')

The seasonal factor is the fraction of the number of days per year a receptor spends at, or

is active on, the contaminated area. A seasonal factor is used to account for the effects of

migration, hibernation, or other behavior patterns on frequency of contact with

contaminated media or prey (Sample et al., 1997). Year-round, non-hibernating, non-

seasonal species will have a default value of 1.0 (= 365 days/year) (Hope, 1999, PNNL,

1998).

Approach : The default value as l.0 will be used for the seasonal factor.

5.2.6 Percent by Mass of Soil or Sediment in The Diet (FS)

Percent soil in the diet for some species is included in Table 5.7 (U.S. EPA, 1993a). The

sandpiper group, which feeds on mud-dwelling invertebrates, was found to have the
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highest rates of soilIsediment ingestion (30, 18, 17, and 7.3% of diet, respectively, for

semipalmated, western, stilt, and least sandpipers). Wood ducks also can ingest a high

proportion of sediment (24 %) with their food. Relatively high soil intakes were

estimated for the raccoon (9.4 %), an omnivore, and the woodcock (10.4 %), which feeds

extensively on earthworms. The Canadian goose, which browses on grasses, also

exhibited a high percentage of soil in its diet (8.2 %). Soil ingestion was lowest for the

white-footed mouse, meadow vole, fox, and box turtle (<2, 2.4, 2.8, and 4.5 %,

respectively). Therefore, the value used for this parameter is based upon the specific

receptor.

Approach: The specific value for each receptor will be used for the mass fraction of

soilIsediment in the diet (Table 5.7).

5.2.7 Weight Fraction of Food Item in Receptor Diet (FRS

Wildlife can be exposed to contaminants in one or more components of their diet, and the

different components can be contaminated at different levels (U.S. EPA, 1993a). FRk is a

function of the degree of overlap of the kith type of simplest case, for example, if the k th

component of an animal's diet were salmon, FRB for salmon would equal the fraction of

the salmon consumed that is contaminated at level of contaminant concentration in the k ith

type of food. Table 5.8 contains the fraction of food item in receptor diet from CRCIA

model (PNNL, 1998). The default value, similar to the percent by mass of soil or

sediment in the diet (FS), is based on the specific receptors.
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Approach: The specific value (Table 5.8) for each receptor will be used for the weight

fraction of food item in receptor diet.

5.2.8 Depuration Rate (lie)

The depuration or elimination rate is the rate at which an absorbed containment dose is

released from tissues and then excreted (U.S. EPA, 1996c). The depuration rate is

expressed as a first order rate constant in day1 .

Uptake and depuration rate constants have been evaluated using a simple first

order one-compartment model (Uno et al., 1997, Liao et al., 2002). The equation

describing the kinetic uptake and depuration can be written as

Where At  is the concentration in the receptor at time ( t), Aw is the concentration

in the water, and Du and Dd are the uptake and depuration rate constants, respectively.

When Am, is zero regarding depuration rates monitoring condition, then Equation 10

reduces to



For aquatic species, Blackmore and Wang (2002) studied the depuration rate of

Cd and Zn from mussel. The exposure ranged from high to low concentrations over 7-21

days. They reported that an initial rapid loss of both metal occurred during the first 4-5

days followed by a second slower loss for the remaining depuration period (5-32 days).

The Cd (0.007-0.012 day1 ) and the Zn (0.034-0.038 day 1 ) depuration rates were not

significantly affected by concentration.

Gomez-Ariza et al. (1999) studied the elimination of tributyltin (TBT) in clams,

V.decussata. The depuration rate was studied in a flow through system for a period of

100 days and they reported the depuration rate constants of 0.02day 1. Uno et al. (1997)

studied the uptake and depuration rate of pesticides in shellfish in Japan (Table 5.9). The

test pesticides used were p-nitrophenyl 2,4,6-trichlorophenyl ether (CNP) and

Thiobencarb. The results showed the bivalve depuration rate constants of CNP and

Thiobencarb were 0.045 and 0.06 day"1. For the river snail, depuration rate constants of

CNP and Thiobencarb were 0.10 and 0.14 day 1 , respectively. These results indicate that

the depuration rate depends on both the receptor and chemical.

Blanco et al. (2002) studied the depuration of amnesic shellfish poisoning (ASP)

by domoic acid in the king scallop Pecten maximus. The depuration of the domoic acid
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Table 5.9 Uptake and Depuration Rate of Shellfish in Japan (Uno et al., 1997)

Species of Shellfish Year Rate CNP Thiobencarb

Bivalve

(Corbicula leana)

1992 Uptake 626 99

Depuration 0.045 0.055

1993 Uptake 243 183

Depuration 0.045 0.06

Laboratory Uptake 338 140

Depuration 0.054 0.049

River snail

(Cipangopludina

chinenisis)

1992 Uptake 50 56

Depuration 0.10 0.14

Laboratory Uptake 66 28

Depuration 0.16 0.22

Unit: Uptake rate = Lig-day, Depuration rate = day1
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from fractions (digestive gland, adductor muscle, gonad and kidney and gills+mantle) of

scallop was studied over 295 days. Blanco et al. reported that overall domoic acid

depuration rates of Pecten maximus were very slow regardless of tissue (0.00664 day1 ).

Sericando et al. (1996) studied the accumulation and depuration of organic contaminants

by the American oyster (Crassostrea virginica) in Hanna Reef (as uncontaminated area)

and Ship Channel at Galveston Bay, Texas. In their study, they observed the polynuclear

aromatic hydrocarbon (PAH) concentration as a function of time. They reported that the

PAHs uptake leveled off at 48 days, and subsequently, the depuration occurred (Table

5.10)

The study confirmed that the depuration rate constant is both receptor and

chemical dependence. Furthermore, Marr et al. (1996) studied the Cu uptake by rainbow

trout at different concentrations. The study showed that the Cu concentration increased

between 0 and 40 days and appeared to reach steady state subsequently. The authors

described that the fish's effective accumulation capacity is increased by exposure

concentration and the Cu depuration rates were concentration dependent. However, in

this study, the authors only reported that the Cu depuration rate of rainbow trout was

observed to be slow but did not report or present the data.

From the literature review above, depuration rate has been used to estimate the

bio-concentration factor (BCF) of aquatic species, as BCF is the ratio between the uptake

rate and the depuration rate of contaminant. Deputation rate constants are directly applied

for the terrestrial animal exposure. Hope (1995) recommended that the constant may be

obtained from the literature or from the results of site-specific investigations. Few data

have been reported for depuration rates of terrestrial animals for metals. Hendriks (1995)



Table 5.10 Depuration Rate of Selected PAHs in Oysters (Sericano et al., 1996)
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reported the depuration of cadmium and mercury of mammal (rat) from which the

biological half-life time was estimated (Table 5.11).

Approach: In ERA model, the depuration rate is accounted for contaminant in the body

burden of terrestrial receptors. The data sources for the depuration of the terrestrial

animals are limited resulting in a potentially significant error. Therefore, to reduce an

error, specific depuration rates will be considered as a chemical specific value for each

metal (Table 5.11)

The next section will provide the parameters related to aquatic organisms,

specifically the bio-concentration factor (BCF). Both aquatic animals and plants can

accumulate contaminants from water to their bodies and BCF indicates the degree to

which a chemical may accumulate in aquatic organisms.

5.3 Aquatic and Plant Species

The following sections contain parameters for aquatic and plant species. The study

focuses on how to perform uncertainty analysis using these parameters when data are

coming from experimental values derived from literature review. The limitations of the

factors that cause an error from both data sources are discussed. Also, the sources of the

data used to derive the estimation equations are provided in this section. Parameters

include the bio-concentration factor (BCF), the soil to plant bio-concentration factor, the

root concentration factor, and the plant-air partition coefficients.
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5.3.1 Aquatic Species

5.3.1.1 Bio -Concentration Factor (BCF). The bio-concentration factor (BCF) is a ratio

of the chemical concentration in an aquatic organism to its concentration in water at

equilibrium where values were generated from field and/or laboratory data (US.EPA,

2003, PNNL, 1998, Sample et al., 1998).The associated distributions have been observed

as skewed, which has led to the use of the logarithmic transformation of the parameter to

obtain the lognormal distribution (Traas et al, 1996, Verhaar et al., 1999, Samsoe-

Petersen et al., 2002, and Liao et al., 2003).

The Ecotox database (U.S. EPA, 2003) is an updated source that reports peer-

reviewed BCF values. This database, which was created by the U.S. EPA, 0ffice of

Research and Development (0RD) and the National Health and Environmental Effects

Research Laboratory (NHEERL), Mid-Continent Ecology Division, is a source for

locating single chemical toxicity data for aquatic life, terrestrial plants, and wildlife. To

retrieve the data from the Ecotox database, at least some of the following information

should be known: scientific or common names of receptors and chemical names or

chemical CAS numbers. Table 5.12 shows the BCF data for some chemicals. The data

contain the scientific and common names of receptors, number of samples taken, the

range of data, the mean value, and the standard deviation.

Both the mean and the standard deviation were calculated by using the lognormal

distribution formula (U.S. EPA, 1999e). DDT, one of the halogenated hydrocarbon

insecticides, has been widely studied to determine its bio-concentration factor. There are

35 species of receptors that have been reported in the Ecotox database for this chemical.

Also, extensive use of the basket-tail dragonfly as a sample receptor has resulted in 33



Table 5.12 BCF Values (11kg) from the Ecotox Database (U.S. EPA, 2003)

109



Table 5.12 BCF Values (L/kg) from the Ecotox Database (continued)
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* Calculated by using the equation (18), ** Calculated by using the equation (20)
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separate studies in the data providing a wide range (200 to 2700 L/kg) of BCF values

with a standard deviation of 474.74 L/kg. Chlorobenzene, another example, has nine

receptors that have been studied, and seven of nine receptors showed only one BCF

value. Another organic compound is biphenyl, of which three receptors have been

studied. In the case of metals, BCF values for chromium, uranium, tantalum,

molybdenum and vanadium were needed. As shown in Table 5.12, in the case of

chromium, there are two receptors that have reported BCF values. Uranium has been

reported in the database only in the bis (nitro-o, o') dioxouranuim form. 0nly three

receptors for Uranium have been studied. There is no BCF data for tantalum,

molybdenum, and vanadium in the Ecotox database (2003). The lognormal distribution is

used to analyze uncertainty for this data. The formula of the lognormal distribution is as

follows (Benjamin and Cornell, 1970:Gilbert, 1987, U.S. EPA, 1997c).
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Approach: To perform an uncertainty analysis for BCF, Equations (17) through (19)

will be used to calculate the mean and standard deviation. The specific receptors and

associated laboratory data will be used as the input data for probabilistic distribution

analysis. 0ne of the most up-to-date data sources for BCF values is the Ecotox database,

therefore, the BCF input value in this study is based on this database. The approach

involves the following steps:

I. Retrieve the data from the Ecotox database by searching with either chemical

names or receptor names

2. Gather data, then transform the data into the natural log form

3. Calculate the geometric mean by using equation (17), and the standard deviation

by using equation (19)

In case there is one value, it can be assumed that the value is the mean and the

coefficient of variance (CV) is 1 (McKone, 1993, Currie et al., 1994). Because the

coefficient of variance is the ratio of the standard deviation to the mean value, in this

conservative case, the standard deviation will be equivalent to the mean. The standard

deviation will be propagated into the error of the exposure model. If there is no data

available in the Ecotox database, the estimation method will be used. The estimation

method for BCFs will be discussed in the following section.

5.3.1.2 Estimation Methods for theBio-Concentration Factor. The Ecotox database

is one of the sources where we can retrieve the BCF value for the receptors or

contaminants of interest. However, when data are not available, the estimation method

must be used. The following equation is used to estimate the BCF from water solubility
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(S) for both organic and inorganic compounds (Lyman et al., 1990, Kenaga and Goring,

1980, Sample et al., 1996)

Kenaga and Goring reported the order of magnitude or the 95% confidence limits

from the calculated value as ± l.99 (or ± 98 LIkg). The BCF estimation equation is

derived from laboratory experiments by a number of investigators studying a variety of

fish species (brook trout, rainbow trout, bluegill sunfish, fathead minnow, and carp) and

36 organic chemicals (Table 5.13). Therefore, when the estimated equation is used, the

error (± 98 LIkg of BCF) should be applied to the uncertainty analysis.

5.3.2 Plants Species

Plants can be target receptors for contaminants, as well as the first point where

contaminants gain access to a terrestrial food chain (U.S. DOE, 1998). Uptake of

contaminants by plants is a complex process, which is affected by contaminant

physiochemical properties, environmental conditions, and plant characteristics (Farago,

1994). Plant parameters include the soil to plant bio-concentration factor, root

concentration factor, and plant-air partition coefficients.



Table 5.13 Water Solubility (mgIL) and BCF Data (Kenaga and Goring, 1980)
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5.3.2.1 Soil to Plant Bio-Concentration Factors. The soil-to-plant bio-concentration

values represent the plant uptake of compounds from soil. In the ERA model, the K ph and

the B y represent the ratio of the contaminant concentration in plant parts to contaminant

concentration in soil for the organic and the inorganic compounds, respectively. The Kps2

represents the plant-soil coefficient for a root-zone soil to roots. The Kips expresses the

ratio of the contaminant concentration in the aboveground plant parts (mgIkg plant fresh

mass) to the contaminant concentration (mgIkg) in a dry root-zone soil. The Kpa

represents the ratio of the contaminant concentration in the aboveground plant parts

(mgIkg) to the contaminant concentration in the air gases and bound to the particles. The

bio-concentration factor for the inorganic contaminants present is B y , which is the ratio of

contaminant concentration in vegetative plant parts to contaminant concentration in soil.

U.S EPA (1999a, 1999b) identifies factors for both the organic and the inorganic

compounds. The B y and Kpa of some metals are provided in Table 5.14.

For inorganic compounds, experiments conducted for mercurie chloride and

methyl mercury included parameters studied with more than one datum. Analyzing the

data by using the Equations (18)-(20), the overall error, which represents the standard

deviation, is 1.68 x 10 -2 mgIkg plant per mgIkg soil for Kph. The organic contaminants

include dioxins and furans, polynuclear aromatic hydrocarbons, polychlorinated

biphenyls, nitro-aromatics, phthalate esters, volatile organic compounds, and pesticides.

By analyzing the data for each group and using Equations (17) - (19), the results reveal

the geometric means and standard deviations (Table 5.15). The standard deviation of K ph

for each group is varied regarding a wide range of the group data.
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Table 5.14 Soil to Plant Bio-Concentration Factors and Air to Plant Bio-Transfer Factor
for The Metals (U.S. EPA, 1999a)
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Table 5.15 Soil to Plant Bio-concentration Factors and Air to Plant Bio-Transfer Factor
for the Organic Compounds (U.S. EPA, 1999a)
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Table 5.15 Soil to Plant Bio-concentration Factors and Air to Plant Bio-transfer Factor
for the Organic Compounds (continued)
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Approach: Similar to the bio-concentration factor for aquatic species, the uncertainty

analysis of these parameters can be performed by using the lognormal distribution

method (Cullen and Frey, 1999, U.S. EPA, 1999d). The geometric mean and the standard

deviation are required for the analysis. Equations 18 and 20 will be used to calculate the

errors in terms of standard deviation. The data sources for the plant bio-concentration

factor are the Ecotox database (U.S. EPA, 2003) and the MEPAS database (Battelle

Memorial Institute, 1997).

1. Retrieve the data from the sources.

2. Gather and transform the data.

3. Calculate the geometric mean using Equation (17) and the standard deviation

using the Equation (19).

If there is only one value, this datum will represent the geometric mean where the

coefficient of variance (CV) is 1 (McKone, 1993, Currie et al., 1994).

Because the coefficient of variance is the ratio between the standard deviation to the

mean value, in this conservative case, the geometric standard deviation will be the same

value as the geometric mean. The standard deviation will be propagated into the error of

the exposure model. If there is no data available, the estimation method will be used. The

estimation methods will be discussed in the following section.

For example, consider mercuric chloride and methyl mercury, which have been

reported in laboratory data of the soil to plant bio-concentration factors (U.S. EPA,
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1999d). Based on their data, the geometric mean and the standard deviation have been

calculated by using the equations (17) and (19). The results are shown in Table 5.16.

5.3.2.2 Estimation Methods for Plant Bio-Concentration Factor. When laboratory

data are not available, estimation methods will be used for the soil to plant bio-

concentration factors. These methods are discussed in the following subsections.

5.3.2.2.1 Organic Compounds.

In the case of the plant-soil coefficient of root-zone soil to roots (Kps1), McKone (1993)

provides an estimation equation as:

For Kps2, the ratio of contaminant concentration in aboveground plant parts

(mgIkg plant fresh mass) to contaminant concentration (mg/kg) in dry root-zone soil,

McKone (1993) provides the following equation to estimate the value for 29 persistent

organochiorides. U.S. EPA (1993b, 1995) used this equation to calculate the bio-

concentration factor in aboveground vegetables for organic chemicals when experimental

data were not available.
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* Calculated by using the equation (17) 	 ** Calculated by using the equation (19)



where Kps = plant-soil bio-concentration factor, mg/kg (plant tissue)/mgIkg (soil)

For the root concentration factor (RCF), which used for root vegetables, is

representing the ratio of the concentration in roots to the concentration in water. A

relationship between RCF and K 0  derived by Briggs et al. (1982) based on the

experimental measurement of chemical uptake by roots is as follows:

where RCF = root concentration factor, mg/kg (plant tissue)/mgIL (soil water)

Other routes of exposure for vegetation include the direct deposition of particles

and the absorption of vapor by plant surfaces (U.S. EPA, 1994a, 1994b, 1995). The Kpa

represents the ratio of the contaminant concentration in the aboveground plant parts in

mgIkg to the contaminant concentration in the air gases and bound to the particles in

mgIm3
. Mckone (1993) developed a correlation of the leaf-air bio-concentration factors

with the octanol-water partition coefficient. The modified equation to estimate the plant-

air partition coefficient is the following:

where Kpa = Plant- air partition coefficient for air to above ground plant parts, m g/kg

R = universal gas constant, 8.314 Pa-m g/mol

T = temperature, K

H = contaminant-specific Henry's law constant, Pa-mg/mol
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Most estimation equations depend on the chemical properties and the

octanolIwater partitioning coefficient, therefore, the following section will discuss the

details of the definition and data sources for this parameter.

5.3.2.2.2 OctanolIWater Partitioning Coefficient .

The octanolIwater partitioning coefficient (K 0 ) is defined as the ratio of the solute

concentration in the water-saturated n-octanol phase to the solute concentration in the

water phase (Montgomery and Welkom, 1991). The octanolIwater partitioning coefficient

is a widely used parameter for correlating biological effects of organic substances (Lide,

1997). The K0  provides a measure of the lipophilic versus hydrophilic nature of a

compound, which is an important consideration in assessing the potential toxicity (Lide,

1997, Mackay et al., 2000). The Kow values were obtained from U.S. EPA (1999a),

Mackay et al. (2000), MEPAS database (Battelle Memorial Institute, 1997), Lyman et al.

(1990), Lide (1988), and Yaws (1999).

5.3.2.2.3 Inorganic Compounds ,

Bio-concentration factors for inorganic contaminants, By, represents the ratio of

contaminant concentration in above ground plant part to contaminant concentration in

soil. If data are not available, the estimation method developed by Hope (1995) will be



124

5.4 Contaminant Concentrations

In the ERA model, the contaminant concentrations represent the values based on their

media: soil, water, and air. The lognormal distribution is applicable to contaminant

concentrations from surface water, which was already discussed in Chapter 4. In addition,

this section will provide more details regarding the statistical goodness of fit test.

To demonstrate that a lognormal distribution fits to the contaminant

concentrations in the environment, the data sets of uranium and chromium concentrations

in soil from APG and YPG sites were used (Ebinger et al., 1996). The data sets are

shown in Tables 5.17 and 5.18.

To determine whether the lognormal distribution is an adequate descriptor of the

data set, statistical goodness of fit tests, the Shapiro-Wilk, W, test and the Anderson-

Darling, A, test were used as test methods. The Shapiro-Wilk, W, test is a statistical

goodness of fit test that performs well on small sample sizes (<50) and tests the null

hypothesis that the data values are random samples from a normal distribution against an

unspecified alternative distribution (McBean and Rovers, 1998). The test is considered

one of the best numerical tests of normality (Gilbert, 1987). Details of the Shapiro-Wilk

test were already discussed in Chapter 4

The Anderson-Darling, A, test is used to test if a sample of data came from a

population with a specific distribution. It is a modification of the Kolmogorov-Smirnov

(K-S) test and gives more weight to the tails than does the K-S test (Cullen and Frey,

1999). The Anderson-Darling test makes use of the specific distribution in calculating

critical values.
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Table 5.17 Uranium Concentrations in Soil at APG and YPG (Ebinger et al., 1996)

No. of Samples 	 Uranium concentration in soil (mg/kg)
APG 	 YPG

1 	 17.28 	 220.6
2 	 2.7 	 43.22
3 	 5.94 	 110.42
4 	 86.4 	 140.6
5 	 9.18 	 21.05
6 	 7.29 	 43.22
7 	 5.13 	 602.6
8 	 11.07 	 822.8
9 	 1.19 	 55.26
10 	 0.95 	 21.15
11 	 4.05 	 1205.6

12 	 0.84 	 1404.2
13 	 0.81 	 24.12
14 	 0.54 	 41.27
15 	 0.27 	 2.7
16 	 7.56 	 0.21
17 	 5.4 	 25.04
18 	 0.27 	 13.47
19 	 1.81 	 26.94
20 	 0.27 	 38.11
21 	 1 	 0.0025
22 	 0.19 	 100.44
23 	 l.11
24 	 0.3
25 	 2.19
26 	 0.49
27 	 0.54
28 	 0.27
29 	 2.7
30 	 0.38
31 	 l.4
32 	 0.65
33 	 0.43
34 	 0.35
35 	 2.19
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For evaluating the fit of a distribution, the Anderson-Darling test is performed as

follows: (a) arrange the data in ascending order, (b) calculate standardized values of the

data, (c) calculate the cumulative probability for the fitted distribution, (d) calculate the

Anderson-Darling statistics, (e) compute a modified statistic, A *, and (f) compare the

modified statistic to the critical value to decide whether to reject the hypothesis that the

data are described by the hypothesized distribution.

The Anderson-Darling statistic, A 2 is calculated from the following equation

(Linnet, 1988):

where

N = number of samples

z = the value of the cumulative probability function for the itch variable

The Anderson-Darling statistic is then modified based on the sample size for

comparison with the critical value:

The modified value, A', is then compared with a critical value. The critical value

depends on the desired significance level. The values of A * are 0.6, 0.8, 0.9, l.0, and 1.2

for the significance levels of 0.01, 0.05, 0.025, 0.01, and 0.005, respectively (Cullen and

Frey, 1999, Linnet, 1988, Stephens, 1974)

The results of the goodness of fit test are shown in Table 5.19. From the results,

the W value of the lognormal distribution function at the APG site is higher than the W



Table 5.19 Goodness of Fit Test Results
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a:reject the null hypothesis if an estimated value is lower than a critical value

(Gilbert, 1987)

b : reject the null hypothesis if an estimated value is greater than a critical value

(Cullen and Frey, 1999)

*( ) = critical value at significance level of 0.01
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critical value. This indicates that the lognormal distribution is fit to describe the character

of uranium contaminants at the APG site. The Anderson-Darling test results also showed

that the log-transformed data is well within the critical values of the statistic (Cullen and

Frey, 1999).

For YPG, both chromium and uranium concentrations in the soil are in agreement

regarding the Anderson-Darling-A goodness of fit test. With 102 values of chromium

concentrations (U.S. Army YPG, 1998), the estimated A - value for lognormal

distributions is 0.73. The critical value at the significance level of 0.01 is 1.2 (Linnet,

1988, Stephens, 1974). Therefore, the test result showed that a lognormal distribution is

reasonable to use since the test value is less than the critical value (Cullen and Frey,

1999). There is no Shapiro-Wilk, Attest for chromium since this method is limited to

sample sizes less than 50.

The goodness of fit test results (Shapiro-Wilk, W-test and Anderson-Darling, A

test) revealed that the estimated W-value of DU at YPG (0.8) is not lesser than the critical

value (0.8) at the significance level 0.01. With the Attest result, we cannot reject the

hypothesis that the data set of log-transformed data is not normally distributed (McBean

and Rovers, 1998). The result is consistent with the A test in which the estimated A value

was not greater than the A critical value. From the results of the goodness of fit tests for

both chromium (YPG) and DU concentrations (APG and YPG), the lognormal

distribution is reasonable to represent the contaminant concentration in media at both

sites.

According to NPRP (1996), one of the criteria for selecting a type of distribution

is that the form of the distribution should reflect the magnitude, range, and interpretation
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of the parameter. For example, a contaminant concentration cannot be a negative value,

therefore, the sampling distribution should reflect the restricted range, with no chance of

randomly drawing a negative value. The selected distribution must represent the range of

the possible values of the parameter at the specific sites. As Warren-Hicks et al. (2002)

mentioned, the selected distribution should be consistent between sites for specific

parameters. Since there is evidence from the results of the goodness of fit tests that a

lognormal distribution is appropriate to use for uranium concentrations in the APG site,

therefore this distribution should be assumed to describe the uranium concentration in the

YPG site as well. Furthermore, when plotting the histogram of data sets between the

normal distribution function and the lognormal distribution function, the histograms of

normal distribution function tend to be right-skewed, and the histograms of the lognormal

distribution function tend to be bell curved (Figure 5.11). These results reveal that

logarithms of chromium and uranium concentration data are approximately normally

distributed (Peretz et al., 1997, NIOSH, 1977).

Approach: Similar to the bio-concentration factor for aquatic species, the uncertainty

analysis of the contaminant concentration can be performed by using the lognormal

distribution (Cullen and Frey, 1999, U.S. EPA, 1999d). The geometric mean and the

standard deviation are required for an analysis. Equations (18) - (20) will be used to

calculate the errors in terms of standard deviation. Using laboratory data, the following

steps will be conducted in the uncertainty analysis of the contaminant concentration.



Figure 5.11 Normal and Lognormal Distributions at APG and YPG.
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1. Retrieve the data from the laboratory.

2. Gather and transform the data.

3. Calculate the geometric mean and standard deviation using the Equation (11) and

Equation (13), respectively.

When only one value exists, this will be used as the geometric mean and the

coefficient of variance (CV) is 1 (McKone, 1993, Currie et al., 1994). Because the

coefficient of variance is the ratio between the standard deviation to the mean value, in

this conservative case, the geometric standard deviation will be the same value as the

geometric mean. The standard deviation will be propagated into the error of the exposure

model.

5.5 Summary

The range of body weight is varied depending on the type of receptors. The mean value

represents the average weight of adults, but the range covers both juveniles and adults.

For this reason, the lower bound and upper bound are quite different for each receptor.

For ingestion rates (both food and water), inhalation rates, and surface area, all are

dependent on body weight (as their equation is a function of body weight). Therefore, the

range of these parameters is similar to the body weight range. The standard deviation of

these parameters represents the error. If standard deviation is unknown, the estimation

method may be applied which is based on knowing the range value. For the soil contact

fraction, the site use factor, and the seasonal factor, as there are limited data available, the

default values will be used for these parameters. The default value of 1 will be used for
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both site use factor and seasonal factor. For soil contact fraction, the value of 0.22 will be

used for terrestrial arthropods, mammals, and birds. The contaminant specific dermal

absorption factor for terrestrial animals, also has limited data. Therefore, the trend of this

factor cannot be described in terms of a parameter range. Similar to the mass fraction of

soilIsediment in the diet and the weight fraction of food item in receptor diet, the value of

this factor is more specific depending on receptors. The default values are used for these

parameters, too.

For the bio-concentration factors for aquatic species and terrestrial plants, the

geometric mean and the standard deviation of each aquatic animal and plant parameter

are required to perform an uncertainty analysis. The ECOTOX database is one of the

many important sources that provide peer reviewed data from various laboratories. The

estimation methods will be used when data are not available.

The contaminant concentration also has uncertainty, which will be addressed

using the lognormal distribution. Since the contaminant concentration in the environment

appears to follow a skewed probability, the lognormal distribution is an appropriate tool

to analyze the uncertainty of this parameter. Table 5.20 provides the final approach for

each parameter.

Model parameters were well characterized in this chapter. Next chapter will

focus on the parameter sensitivity analysis. Model verification and model validation are

also concerned in this study.



Table 5.20 Inputs for Animals, Plants and Aquatic Species Exposure Models



Table 5.20 Inputs for Animals, Plants and Aquatic Species Exposure Models (continued)



CHAPTER 6

PARAMETER SENSITIVITY ANALYSIS AND MODEL VERIFICATION

Based on the methods and approach discussed in Chapters 3 and 4, the code was

modified to develop a computationally efficient method for uncertainty propagation. The

Monte Carlo Sampling method is applicable to a wide range of ecological risk assessment

models associated with uncertainty propagation as already discussed in Chapter 2. In the

past, a computational model may not have been feasible due to computer capability and

time limitations. Nowadays, the capacity of computers can overcome these limitations.

The ease in which a method can be used is an important factor in model applicability.

The use of Visual Basic offers an alternative technique to develop a user-friendly

probabilistic simulation tool. Microsoft Excel is also useful and easily used to calculate

the descriptive statistics and probabilistic distributions. Therefore, to accomplish this

work, the parameter sensitivity analysis and model verification were studied.

6.1 Parameter Sensitivity Analysis

Due to the large amount of parameters used in ERA models, it is advisable to identify

those with the largest impact on the model results. For this reason sensitivity analysis is

carried out. Parameter sensitivity analysis is a tool that describes the significance of each

parameter in the model. To determine the sensitivity of parameters within the model, one

parameter will be varied at random, while the remaining parameters are held at fixed

values. Sensitivity analysis is the study of how the uncertainty in the output of a model

can be apportioned to different sources of uncertainty in the model output (Saltelli, 2002).
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Subsequently, sensitivity is calculated by computing correlation coefficients

between every assumption and every parameter. A correlation coefficient is a measure of

the degree of association or covariance between two random variables (Cullen and Frey,

1999). Correlation coefficients provide an estimate of the linear dependence of a model

output on a particular model input. Sample correlation coefficients are sensitive to two

factors: (l) the strength of a linear relationship between the input and output, and (2) the

range of variation of the output relative to the range of variation of the input. A positive

correlation coefficient means that as the values of one variable increase (or decrease) so

too does the value of the other variable. The stronger the relationship, the closer the value

is to 1 or 100 %.

Correlation coefficient is estimated based on the sample values of the inputs and

output, their respective means (Cullen and Frey, 1999).

e sample size (number of iterations in the simulation), x is an input, y is an

and yk are sample values of x and y. The value of the correlation, px, y , may

to l.

1 implies linear dependence, positive slope (y increases as x increases),

) implies no linear dependence, thus the value of x provides no useful

information about the value of y, and

-1 implies linear dependence, negative slope

(y decreases as x increases).
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Correlation greater than 0.5 indicate substantial dependence of the output the

input. Larger correlation coefficients indicate less dispersion of sample values from an

idealized linear relationship between an input and an output. Therefore, the correlation

coefficient has been investigated. Results from this study are shown in Tables E-l to E-4,

Appendix E.

A high sensitivity indicates a strong dependence on the parameter, a low sensitivity

indicates a weak dependence. The sensitivity of the results with respect to specified

parameters can finally be obtained in the term of correlation coefficients. For terrestrial

animal, especially ingestion pathways, four parameters strongly influence the EHQ or

risk estimate values, which include contaminant concentration, food ingestion rate, water

ingestion rate, body weight. For dermal exposure, contaminant concentration in soil and

the surface area is also sensitive to the EHQ value, which is in agreement with the model

hypothesis.

The capability of ERA to perform a sensitivity analysis is based on the design

characteristics of a computer program. Accurate sensitivity analysis results can then be

used to establish priorities for the input data collection.

6.2 Model Verification

Verification refers to the task or procedure by which a mathematical solution to an

arbitrarily complex problem is tested for internal mathematical consistency and accuracy.

ERA model calculation results were verified by hand calculations. These hand

calculations required the use of a computer spreadsheet (Microsoft Excel). Two receptors

were selected: white-tailed deer and American kestrel. A White-tailed deer represents a
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herbivore while an American kestrel represents a carnivore within the ecosystem.

Uranium was selected to represent the chemical contaminant to be analyzed. A range of

uranium concentrations in different media (l-1000 mgIL for surface water, l-1000 mg/kg

for soil, l-1000 mgIm g for air) was selected to assess exposure to terrestrial receptors.

Mallard, white-footed mouse, terrestrial arthropods, penphyton and rushes represented a

body burden concentration in the food web. Three pathways were considered: ingestion,

inhalation and dermal absorption.

Ingestion of contaminant is the most significant route of exposure in assessing

risks to terrestrial animals. In terms of both frequency and magnitude, for receptors above

the primary producer trophic level, ingestion can include both secondary exposure

(contaminated forage or prey is consumed), and primary exposure (contaminated water,

sediments, or soil are consumed). The associated equations are:
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BW = body weight of receptor (kg)

0 = site use factor

of = seasonality factor, percentage of time per year receptor dwells at site

For the total applied daily dose per terrestrial animal via ingestion exposure

pathways:

where ADDingestion = applied daily dose through all the concerned exposure

pathways (dermal absorption, ingestion and inhalation) (mg contaminantIkg of

receptor body weight)

Dermal exposure could be a significant exposure route for animals that are in

frequent contact with contaminated water, sediment, or soil. The following model is used

to estimate exposure based on an approximation of the mass of soil or sediment adhering

to an area of an animal's skin surface.

Where ADD1 = applied daily dose to the receptor through the itchexposure

pathway (mg contaminantIkg of receptor body weight)

SA = surface area of ecological receptor (cm2)

AF = soil-to-skin adherence factor (mgI cm2)

Pa = fraction of receptor surface area in contact with soil per day (d-1 )
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foci = contaminant-specific absorption factor (mgIkg contaminant body burden /

mgIkg absorbed daily dose)

CF = conversion factor (lx 10 -6 kgImg)

Exposure via inhalation of volatilized contaminants and fugitive dust is evaluated with

the following equation (U.S. EPA, 1993):

To apply a complex food web, the trophic levels are considered and evaluated

through the relational DBMS to express predator-prey food relationships in the model.

Summary input parameters are provided in Table 6.l. The results are provided in Table

6.2.

Ingestion, inhalation, and dermal absorption exposure pathways represent the

principal means by which terrestrial wildlife receptors are exposed to contamination.

These receptors may receive exposure through direct contact (primary pathway) with

abiotic media and/or consumption (secondary pathway) of contaminated food. Exposure

estimation for these species must, therefore, include consideration of contaminant body

burdens in the lower trophic level. Because using a food web model requires ecological

information with respect to historical data and site-specific feeding relationships, the

process introduces a crucial ecological perspective into what might otherwise be a purely

toxicological exercise (Hope, 1995).



Table 6.1 Parameter Inputs for Model Verification



Table 6.1 Parameter Inputs for Model Verification (Continued)



Table 6.2 Comparisons the ERA Model and Spreadsheet Results
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The ERA code is written in Visual Basic and integrated into the software by linking it

with a Windows-based interface and the DBMS. The developed ERA software was

subsequently verified. From the results for white-tailed deer and American kestrel, the

ERA model predicted ADD values in agreement with the spreadsheet calculated ADD

values. Moreover, the results demonstrated that as a contaminant concentration in an

ERA model predicted ADD values in agreement with the spreadsheet calculated ADD

values. Moreover, the results demonstrated that as a contaminant concentration in a

medium increases, the body burden or applied daily dose increases. Therefore, as the

media concentration increases, the risk on the ecosystem rises as would be expected

given the associated algorithms.

6.3 Summary

Parameter sensitivity analysis can be obtained in the term of correlation coefficients.

Results revealed that four parameters strongly influence the EHQ or risk estimate values

for terrestrial animal, especially ingestion pathways, which include contaminant

concentration, food ingestion rate, water ingestion rate, body weight. Therefore,

sensitivity analysis results can then be used to establish priorities for the input data

collection.

Model verification is a tested for internal mathematical consistency and accuracy.

ERA model calculation results were verified by hand calculations. These hand

calculations required the use of a computer spreadsheet (Microsoft Excel). From the

results for white-tailed deer and American kestrel, the ERA model predicted ADD values

in agreement with the spreadsheet calculated ADD values. Moreover, the results
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demonstrated that as a contaminant concentration in a medium increases, the body burden

or applied daily dose increases. Therefore, as the media concentration increases, the risk

on the ecosystem rises as would be expected given the associated algorithms.

Results from model verification revealed the accuracy and precision of the ERA

model prediction, therefore, the case study was performed to access the risk estimates at

APG and YPG. More details will be discussed in the next chapter.



CHAPTER 7

DEMONSTRATION OF RISK EVALUATION

Yuma and Aberdeen Proving Grounds were selected as baseline ecosystems for the case

study representing an arid desert system and a coastal environment, respectively.

Terrestrial and aquatic plant and animal receptors and site characteristics were assembled

based on guidelines for conducting an ecological risk assessment (U.S. EPA, 1998a). The

most important routes of exposure at YPG are root uptake for terrestrial plants and

ingestion, inhalation, and dermal absorption for the terrestrial animals. All potential

routes of exposure are considered for terrestrial and aquatic species at APG, which

includes root uptake for terrestrial plants, ingestion, inhalation, and dermal absorption for

terrestrial animals, and direct contact for aquatic species. Two case studies are presented.

The first on depleted uranium (DU) is of importance because DU penetrators are

employed at both firing ranges. In the second case study of evaluating the effect on

replacing chromium electroplated gun barrels with sputtered tantalum, hexavalent

chromium and tantalum concentrations in the media must be defined based on use,

release, storage, and transport of the processed gun barrels. Other than tantalum,

molybdenum is also another alternative coating to replace chromium and is evaluated in

this study.

In this Chapter, the case studies are implemented with the software. The input

data are discussed, which includes the rationale for selected contaminant concentrations.

Risk characterization is conducted for the case study examining the two ecosystems, and

results are analyzed.
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7.1 Risk Assessment for DU

Depleted uranium is a by-product from processing natural uranium to produce the

enriched form used as fuel for nuclear reactors or military applications (Hartmann et al.,

2000). Health risk of exposure to DU is a complex issue. Because of the low specific

radioactivity and the dominance of a-radiation, no acute risk is likely from external

exposure (Bleise et al., 2003). However, internalized DU has a greater potential for

adverse impacts on body than that from externalized exposure, such as mutagenesis from

radiological effects where risks are a function of the particle characteristics. Chemical

impacts, renal, reproductive, and developmental, are a function of the route of exposure,

duration of exposure, and speciation (Fulco et al., 2000). McClain et al. (2001) studied

the primary transport route of DU through wounds and confirmed mutagenic behavior of

DU, which transformed human osteoblast cells to a tumorigenic phenotype. The non-

radioactive (or chemical effect) associated with exposure to uranium and its compounds

involves renal toxicity, detected by the presence of protein and cell casts in the urine.

Additionally, the chemical and radiological impacts of uranium can act synergistically to

cause tissue damage. Therefore, it cannot be assumed that cancer is due solely to the

radiological effects of uranium or that organ damage is exclusively due to its heavy-metal

properties (Fulco et al., 2000).

Since the 1950s, DU has been used as a penetrator in munitions and testing

programs at APG, which is located in the western shore of Chesapeake Bay, a productive

and complex ecosystem. The facility provides design and testing of ordnance material in

close proximity to the nation's industrial and shipping centers. As a result of the program,

DU has been deposited on over 1500 acres. Most penetrator impacts occur within about
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500 m of the firing axis after the DU munitions pass through soft targets used to check

accuracy and performance. Penetrators strike the ground, trees, and wetlands after hitting

soft targets and eventually come to rest in the impact area (Ebinger et al., 1996). A

second-highly used test area is located at YPG near the Arizona-California border and in

the vicinity of the Colorado River, Squaw Lake, and Mittry Lake. YPG began testing DU

munitions against soft targets in the 1980s, and the test area comprises 12,000 acres

(0xenberg, 1997). Ebinger et al. (1996) reported that redistribution in the arid

environment at YPG was mainly due to erosion of DU fragments and redeposition in

washes that drain the area. Ingestion of DU by wildlife is likely from consuming DU-

contaminated soil accumulated on vegetation or pelts.

Concerns have been raised at these two sites about the risk posed to associated

ecosystems due to potential exposure to DU. In this study, the ERA simulation tool was

employed to assess risk associated with exposure to depleted uranium (DU) at two U.S.

Army sites, APG and YPG.

7.1.1 Risk Characterization

Once the ecosystem and site characteristics are fully understood, the applied daily dose

(ADD) or body burden can be estimated for an individual receptor. An ecological hazard

quotient (EHQ) is then calculated by dividing the ADDpathway (or body burden) by the

reference value:

The reference value recommended in this model is the no observed adverse effect level

(NOAEL) or no observed adverse effect concentration (NOAEC) for terrestrial and
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aquatic species, respectively. The NOAEL and NOAEC are derived from experiments

conducted on laboratory species, and represent the highest dose or contaminant

concentration applied that did not result in a measurable adverse effect in the 95% of

potential population (Cockerham and Shane, 1994, Sample et al., 1998, Weiss, 1999).

For example, uranium reference values for terrestrial animals represent doses that did not

adversely affect the receptor's reproductive system, for terrestrial plants the exceedance

of benchmark represents potential reduction in the plant's root weight at a 20% level of

effects. The reference values for aquatic species are the highest doses that did not

increase mortality at a 20% level of effects (Sample et al., 1998).

Based on the selected reference values, the EHQ represents varying levels of risk or

measures of levels of concern (Tannenbaum et al., 2003). Although risk categories are

outlined here, receptor risk should be evaluated individually based on the endpoint. An

EHQ less than 1 suggests the toxicological effects are potentially unlikely to occur and

hence the possibility for unacceptable risk is minimal (Tannenbaum et al., 2003). A

N0AEL-based EHQ greater than 1 but less than the LOAEL (lowest observed adverse

effect level) may indicate that effects are possible but uncertain. Finally a L0AEL-based

EHQ>l indicates that effects are probable and exposure exceeded the lowest dose

associated with effects. The EHQ value provides a potential indication of the level of risk

to a receptor.

In the risk assessment, as discussed previously, uncertainties are an inherent part

because the data and understanding of an ecosystem may be limited. Therefore,

probability density functions were sampled using Monte Carlo simulations. By applying

the simulation, distribution characteristics were studied and convergence revealed a
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minimum iteration of 500 based on the 95 th confidence level, which is in agreement with

Tellinghuisen (2000). However, in this study, the selected iteration is based on a 99th

confidence level, as we are interested in the lower probability outcomes at the tails of the

distributions. In this case, 1000 iterations were selected (Frey and Rhodes, 1998).

Probabilistic distributions have been used as a tool to qualify uncertainty in

prediction of risks to humans and ecological receptors (Frey and Rhodes, 1998). The

distributions characterize the degree of belief that the true but unknown value of a

parameter lies within a specified range of values for that parameter (Warren-Hicks et al.,

2002). Criteria for selecting a distribution are based on National Council on Radiation

Protection and Measurements (NCRP, 1996) and U.S. EPA (1998) guidelines and are

further discussed in Chapter 3. The distribution should represent site-specific uncertainty

and variation in that parameter (Schumacher et al., 2001). Also, the distribution must

represent the range of values for that parameter in a given system. The selected

distribution should be consistent between sites for specific parameters (Warren-Hicks et

al., 2002). Moreover, the form of the distribution should reflect the magnitude, range, and

interpretation of the parameter (NCRP, 1996). For example, contaminant concentration

cannot be negative, therefore, the sampling distribution should reflect the restricted

range. The probabilistic distributions of the exposure parameters were gathered from a

number of studies and are summarized in Table 5.20. As the lognormal distribution has a

longer tail than other distributions, it is widely used in environmental analysis to

represent positively valued data exhibiting positive skewness (NCRP, 1999, Cullen and

Frey, 1999). Pollutant concentration tends to be lognormal distributed, which has been

explained by the theory of successive random dilutions (Ott, 1990). After the pollutants
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are emitted by the source, they undergo successive mixing and dilution, resulting in a

lognormal frequency distribution. Furthermore, a goodness of fit test was conducted to

assess the appropriateness of the lognormal distribution for sampling data at both APG

and YPG sites. By using a non-parametric Anderson-Darling (A) test, the lognormal

distribution was found to be the most appropriate for example for the DU data. Therefore,

in this study, the lognormal distribution is selected to represent the distribution form for

concentrations in the media. Both aquatic species bio-concentration factors and soil to

plant uptake factors are defined as the ratio of contaminant concentration at equilibrium

in tissues to that in the water or soil where values were generated from field and/or

laboratory data (Jorgensen et al., 1991, PNNL, 1998, Sample et al., 1998). The

associated distributions have been observed as skewed, which has led to the use of the

logarithmic transformation of the parameter to obtain the lognormal distribution (Traas et

al, 1996, Verhaar et al., 1999, Samsoe-Petersen et al., 2002, Liao et al., 2003).

Physiological parameters such as body weight, surface area, and ingestion and

inhalation rates in terrestrial animals may vary seasonally, geographically, and by age.

These parameters typically follow a Gaussian distribution (U.S. EPA, 1993a and 1997b).

The normal distribution is commonly used to represent uncertainty resulting from

unbiased measurement errors (Morgan and Henrion, 1998). Because the normally

distributed random variable takes on values over the entire range of real data, we focus

upon the variatoin by calculation the standard deviation. Surface area, ingestion, and

inhalation rates are a function of the body weight and are often estimated using allometric

equations (U.S. EPA, 1993a).
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With limited field or laboratory data, single values are recommended (Hope, 1995

and 1999), the U.S. EPA applied such an approach for soil to skin adherence factors and

the contaminant specific dermal absorption factor (U.S. EPA, 1989, U.S. EPA, 1993a,

U.S. EPA, 2001). Moreover, because of limited data, these values were based on

exposure for humans not terrestrial animals to which they were applied (U.S. EPA, 1989,

Hope, 1995). Therefore, in this study, a similar approach was used for parameters related

to dermal contact: soil to skin adherence factor, contaminant specific dermal absorption

factor, soil contact fraction factor, and site use factor.

7.2 DU Risk Assessment

0nce an ecosystem is defined along with the food web, the process for conducting the

DU risk assessment included selecting reference values, obtaining concentrations in

media, identifying exposure parameters, and validating model results. Among them,

exposure parameters have been discussed previously (Chapter 5), in the following,

reference value selection, DU concentrations in media, and model and validation results

are presented.

7.2.1 Reference Values

The relevant NOAEL and NOAEC data were identified from multiple sources for the

terrestrial and aquatic receptors for the two sites (Sample et al., 1996, Efroymson et al.,

1997, U.S. EPA, 2003). In instances where toxicological data for receptors were

unavailable, surrogate species were selected based on taxonomy, life style, and/or

toxicological response similarity. Surrogate application requires applying a conversion
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method based on test species and the receptor's body weights. Wildlife NOAELs can be

estimated for an untested species by the following equation (Sample and Arenal, 1999):

Where the NOAELwildlife represents the ecosystem receptor of concern, the NOAELtest is

the surrogate test species for which the NOAEL is available, bw represents their

respective body weights, and b is an allometric scaling factor. From Sample and Adrenal

(1999), scaling factors of l.2 and 0.94 should be used for birds and mammals,

respectively. NOAEL data on test species, mouse and black duck were used to calculate

other untested species N0AEL values based on Equation (36). Toxicological data are

presented in Tables 7.1-7.3.

7.2.2 DU Concentrations in Media

As discussed previously, the lognormal distribution was applied to describe DU

concentrations in both water and soil for APG and YPG. Sampling data on uranium

concentrations in surface water, groundwater, and soils from APG and YPG were

collected by Ebinger et al. (1996) and stored in a database developed and maintained by

Los Alamos National Laboratory (Ebinger, 2002). At APG, uranium concentrations in

surface and ground water samples were analyzed based on nine samples near the western

shore of Chesapeake Bay. Potentially impacted soils were sampled mainly in conjunction

with well water sampling and were collected over l,500 acres, a total of 35 samples were

collected representing an extremely limited data set (Table 7.4). The sampling areas are

shown in Figures 7.l-7.2.
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Table 7.3 Uranium Toxicological Data for Aquatic Species

Analyte Forma Species Test
NOAECb

Aquatic
species

(mg/L)

U02(NO3)2 UO2CO3(AQ)U02(0H Periphyton 2 Aquatic
plants'

U02(NO3)2 U02CO3(AQ) Phytoplankton 2
U02(01-)+

U02(NO3)2 UO2CO3(AQ) Water milfoil 2

U02(01)+

U02(NO3)2 UO2CO3(AQ)U02(0H)
+

Mountain whitefish 0.021 Aquatic
animalsd

UO2(NO3)2 UO2CO3(AQ) Pacific lamprey 0.021
U02(01

UO2(NO3)2 UO2CO3(AQ) Rainbow trout 0.021

U02(01)+ (adults)

Rainbow trout (edds)
Rainbow trout
(larvae)

U02(NO3)2 U02C03(AQ ) White sturgeon 0.021

U02(01)+

a pH 6-7„ the percent of UO2CO3(AQ) : UO2(OH is 45:55
b Ecological Toxicity Database (U.S EPA,2003).

Surrogate aquatic plants are Chlorella vulgarise and Green algae.
d Surrogate aquatic animals are Fathead minnow.
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Figure 7.1 DU Sampling Areas, APG, Maryland (Adapted from Donnelly et al., 1998).
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Figure 7.2 DU Sampling Areas, YPG, Arizona (Adapted from Entech Engineers, 1988).
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YPG is characterized as a typical desert ecosystem, therefore field studies were

conducted, for the most part, on soil samples. Ebinger et al. (1996) established sample

plots on two firing ranges at YPG. Plots were distributed nonrandomly along the area of

12,000 acres, where first penetrator impacts were closely clustered and had been

identified as exhibiting elevated levels of DU contamination (Price, 1991, Ebinger et al.,

1996, 0xenberg, 1997). These areas were situated along the axis of the firing line and

could be identified by impact craters, recently displaced soils, and DU fragments.

Locations for sample plots varied along the firing line and from observable impact craters

and according to Ebinger et al. (1996) were assumed to cover a range of contaminant

levels for each firing line. According to U.S. EPA's soil sampling protocol (U.S. EPA,

1992c), when a plume is suspected and the orientation of the plume can be estimated, the

sampling grid should be oriented in such a manner that the extending axis of the grid is

parallel to the suspected plume center line, however, this is not necessary and a square or

rectangular grid is one of the most useful for reconnaissance. DU concentrations in soil

were based on 22 samples, again a very limited data set for the impacted area.

7.2.3 Risks Results

Based on speciation, U02COAAQ) and U02(01 are the two dominant and mobile

species at pH 6-7 and pE 5-15 that may adversely affect receptors from exposure. For

YPG terrestrial plants (Figure 7.3), because of high DU concentrations in soil, the overall

distributions for DU uptake for the creosote bush, foothill paloverde trees, and saguaro

cactus suggest a 90% likelihood in reduction in root weight. For most terrestrial animals

at YPG, given DU concentrations in soil, the dose is less than that resulting in a decrease
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in offspring. 1owever, for the lesser long-nosed bat, reproduction effects are expected to

occur through the reduction in size and weight of offspring.

To indicate which input parameters most strongly influence the final exposure

estimate, a sensitivity analysis is performed with the lesser longnosed bat. The ingestion

pathway is the most critical (Figure 7.4) where four parameters strongly influence the risk

distribution: contaminant concentration, food ingestion rate, water ingestion rate, and

body weight. For dermal exposure, contaminant concentration in soil and the surface area

exposed also affect the risk distribution.

Among the different exposure pathways for the bat, including ingestion, inhalation,

and dermal absorption, the dominant pathway is through insect ingestion, which accounts

for 97% of its diet. Furthermore, insect exposure includes all the concerned ingestion

pathways -- soil, water, and food (plants) as well as dermal and inhalation exposure.

Based on terrestrial animals' characteristics and their responses to DU exposure, the bat

is more vulnerable than other terrestrial species. The positive skewness of risk

distribution for the bat exemplifies this sensitivity (Figure 7.5).

From field studies (Ebinger et al., 1996), pocket mice, kangaroo rat, and white-

throated woodrat samples were analyzed for uranium concentrations to estimate risk

levels at YPG (Figure 7.6). Samples of carcasses, kidneys, and livers from these animals

were collected for identifying uranium concentrations. For pocket mice, the greatest

uranium concentration was found in carcass samples, 115.4 mg kg 1 , for the kangaroo rat,

the worst case was observed in kidney samples 4.3 mg kg1 , and for the white-throated

woodrat, the greatest concentration of uranium was 76.7 mg kg"1 in carcass samples.
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Parameter	 Definition

Ecs Contaminant concentration in
soilIsediment

Ecdw Contaminant concentration in
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Figure 7.4 Parameter Sensitivity Analysis, Lesser Longnosed Bat, YPG.
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Based on our risk assessment, a receptor from the same family, Murid cactus mouse,

exhibited a uranium concentration of 2.46 to 224.6 mg kg 1 . Sampling data from

Murid receptors, pocket mice, kangaroo rat, and white-throated woodrat, fall into the

distribution predicted in the ERA tool

At APG, again based on limited DU data, exposure potentially poses little risk

for terrestrial animals (Figure 7.7), representing the likelihood that there is no

observable impact on receptor's reproduction or development. Ebinger et al. (1996)

collected deer samples to evaluate potential DU uptake and transfer to humans who

consume deer. They analyzed kidney, livers, muscle, and bone samples, and found

that the greatest uranium concentration among those samples was 0.0051 mg kg "1 ,

which falls in the distribution observed in this stimulation of 0.0042 to 7.3 mg.kg 1 for

white-tailed deer. For APG terrestrial plants, modeling results of risk showed that for

rushes, slender blue flag, and fern, there is a 90 % likelihood of a reduction in root

weight.

Compared with terrestrial plants at APG, uranium potentially poses lower

risks to aquatic plants and again this is based on a very limited set of data (Figure

7.7). Considering DU exposure to aquatic animals at APG, uranium uptake is

potentially not expected to increase mortality. For the aquatic plant, milfoil, two

samples were collected (Ebinger et al., 1996) from field studies, where 2.l and 0.8

mg kg1 of uranium were observed. Our modeling results show that the uranium

concentration in milfoil ranged from 6.4x 10 -g to 18.6 mg kg1 , and are consistent

with field data (Figure 7.6). Ebinger et al. (1996) also observed DU penetrator

impacts through isotopic ratios measured in cattail and pickerel weed, representing



Figure 7.7 EHQ Distributions for APG Receptors.
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uptake, attachment, or adsorption of DU from water or sediments where these aquatic

organisms grow.

7.2.4 Summary

Risks from exposure to DU at two U.S Army sites, APG and YPG, were characterized

based on the data available. Exposure pathways for terrestrial and aquatic plants and

animals were applied in software developed using Visual Basic 6.0 with associated

parameters stored in the Microsoft Access DBMS. To characterize risk and address

uncertainty, the model employs Monte Carlo simulations for assessing parameter and

risks as probabilistic distributions. Results from the ERA model suggest that at YPG, a

reduction in plant root weight is considered likely to occur from exposure to uranium. For

most terrestrial animals at YPG, the predicted DU dose is less than that resulting in a

decrease in offspring. However, for the lesser long-nosed bat, reproductive effects are

expected to occur in the reduction in size and weight of offspring. At APG, uranium

uptake may not likely affect survival of aquatic plants and animals.

However, data were limited reflecting the risk observed and further field

investigations at both sites are recommended. Through model validation, the results from

the ERA model are consistent with sampling data from field studies of Ebinger et al.

(1996).

7.3 Comparative Analysis of Risk for Chromium, Tantalum, and Molybdenum

In this section, the ERA model implementation for chromium, tantalum, and

molybdenum assessment at APG and YPG is discussed. The modeling is based on work

of Lu (2001), Fan et al. (2001), and the U.S. Army YPG (1999). Potential exposure of the
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ecosystem to gun coatings such as chromium can have a significant adverse impact on the

receptors. Tantalum and molybdenum are other alternative coating being considered to

replace chromium. Therefore, the potential risks associated with chromium, tantalum, and

molybdenum for APG and YPG were studied.

The contaminant concentrations for chromium are based on soil and air sampling

data conducted at the YPG site (U.S. Army YPG, 1999). Equivalent concentrations of the

alternative metal coatings Ta and Mo have been applied based on the assumption that test

firing continues at the same rate and the loss of a replacement metal is equivalent to that

of the chromium. For APG, no data were available. 1owever, as YPG has a greater gun

barrel testing capability and longer testing history than APG, and considering a worst-

case scenario, the concentrations observed at YPG have been applied to the APG site.

The contaminant concentration in surface water at APG was estimated using soil-water

distribution coefficients based on the contaminant concentration in the soil at YPG (Lu,

2001).

Reference value selection was consistent with that discussed in Section 7.2.l. The

relative NOAEL and NOAEC data were identified from multiple sources for the

terrestrial and aquatic receptors of the case study (ECOTOX, 2003, Efroymson et al.,

1997, PNNL, 1998, Sample et al., 1996). Again, where data for a particular receptor were

unavailable, surrogates were selected based on taxonomy, life style, and/or toxicological

response similarity. The surrogates selected in the case study are shown in Table 7.5. The

reference values for the case study are shown in Tables 7.6 to 7.8. Likewise, when

chemical information is lacking, other surrogates are used.



Table 73 Surrogates and Receptors for APG and YPG
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Table 7.6 Terrestrial Plant Receptors and NOAELs
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Table 7.7 Terrestrial Animal Receptors and NOAELs
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Table 7.8 Aquatic Animal and Plant Receptors and NOAECs a

174



175

A literature survey revealed that neither NOAELs nor LOAELs have been established for

any tantalum compounds. However, because vanadium and tantalum are within the same

group on the Periodic Table, they possess similar physiochemical properties (Clements et

al., 1993). Therefore, vanadium data were used in place of tantalum in addressing any

modeling endpoint gaps (Lu, 2001).

7.3.1 Chromium, Tantalum, and Molybdenum Concentrations in Media

The data source for contaminant concentrations as shown in Table 7.9 is U.S. Army YPG

(1999). For chromium, sediment samples were collected from different areas at YPG.

Sampling locations are shown in Appendix D (Figures D-l to D-8). Two of the sampling

locations (B 1 and B3) represent reference or background sites, as both sites are located

upstream of YPG area. The other four sites represent the impact areas.

The range of chromium concentrations for background was between 5.6 mgIkg

and 12 mgIkg. For the impact areas, the range of chromium concentrations was between

2.8 mgIkg and 13.0 mgIkg, the average concentration was 7.07 mgIkg. At YPG, air

sampling was conducted for seven consecutive days at firing point 24 -500 Jammer on

Kofa Range (U.S. Army YPG, 1999). The primary purpose of ambient air monitoring

was to quantify air pollutant concentrations, which may have been emitted during the

firing activities. Also, the YPG range workers located at or near this position during the

daily operations were considered receptors of concern for the health risk assessment.

Therefore, in this study, air data are used to assess the ERA. The range of chromium

concentration in the air is between 3.00x 10 -6 mgImg and 3.70x 10-6 mgImg , the average

concentration is 3.19x 10 -6 mgImg.



Table 7.9 Summary Contaminant Concentrations in Media at APG and YPG Sites
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As mentioned earlier, equivalent concentrations have been used for the alternative

metal coatings tantalum and molybdenum by assuming that the test firing continues at the

same rate and the loss of a replacement metal is equivalent to that of the chromium. For

APG, no soilIsediment data were available. However, as YPG has a greater gun barrel

testing capability and longer testing history than APG and considering a worst-case

scenario, the concentrations observed at YPG have been applied to APG.

Based on the contaminant concentration in soil, the concentration in surface water

at APG was estimated using distribution coefficients, which are a function of the type of

soil as well as solution conditions. The distribution coefficient represents the partitioning

behavior of the solute between the soil and bulk aqueous phase, assuming equilibrium.

This coefficient can range over several orders of magnitude under varying conditions

such as soil type, pH, redox potential, presence of other ions, and soil organic content

(Yu et al., 1993). Table 7.9 contains the chromium, molybdenum, and tantalum

concentrations in media for both the APG and YPG sites.

7.3.2 Risks Results

Comparing the risk distributions for the three metals (Figures 7.8 and 7.9), molybdenum

poses the greatest risk for terrestrial animals at YPG site. The blacktailed-jackrabbits,

lesser long-nosed bats, mule deer, and cactus mice are expected to experience (99%

likelihood) reproductive impairment, which occurs through the reduction in size and

weight of offspring. Additional effects from molybdenum exposure include reduced food

intake and growth rate, liver and kidney damage, and depigmented hair. For terrestrial

plants, there is 99% likelihood that growth retardation is likely for the creosote bush,
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Molydenum

Figure 7.8 EHQ Distributions for Animal and Plant Receptors at YPG.
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Figure 7.9 EHQ Distributions for Terrestrial Animal and Plant Receptors at APG
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foothill paloverde trees, and saguaro cactus, as molybdenum would cause a reduction in

their root weights. For chromium and tantalum, terrestrial animal exposure suggests no

observable impact on a receptor's reproduction system is expected. Also for terrestrial

plants, chromium and tantalum uptake is not expected to cause a decrease in root weight.

For APG, molybdenum again poses the greatest risk among the three metals

where vulnerable receptors include white-footed mice, white-tailed deer, and cottontail

rabbits. A 99% likelihood exists for these terrestrial animals that they would potentially

experience a reduced food intake and growth rate, liver and kidney damage, depigmented

hair, and reproductive impairment. For terrestrial plants, the probability distributions

(Figure 7.9) suggest that growth retardation is likely due to a reduction in root weight.

Based on a sensitivity analysis (Figure 7.10), contaminant concentration, food ingestion

rate, water ingestion rate, and body weight are among the most influent parameters.

On the other hand, the probability distributions suggest that chromium and

tantalum potentially pose little risk to terrestrial animals in that no observable impact on a

receptor's reproduction or development is likely. 1owever, the following receptors are

potentially more vulnerable to chromium and tantalum exposure than other animals:

white-footed mice, white tailed deer, and woodhouse toads. These three receptors may

experience (0.3% likelihood) reproduction effects through the reduction in size and

weight of offspring. Lastly, aquatic species exposure to molybdenum, chromium, and

tantalum may potentially result in no observable impact on the receptor's survival,

growth, and mortality.



Figure 7.10 Parameter Sensitivity Analysis, White Tailed Deer, APG.
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In a field study, the U. S. Army Center for 1ealth Promotion and Preventive

Medicine (USACHPPM) (U.S. YPG, 1999) collected ten rodents from the immediate

down gradient of the gun position (approximately 12-13 km., downrange) on the Kofa

Range area. Chromium was detected in the samples at 0.49-l.7 mgIkg. Six vegetation

samples were analyzed from the sample site. Types of vegetation included creosote

bushes, ocotillo, and paloverde. Chromium concentrations were detected in the range of

0.77-l.3 mgIkg. Compared to field data (Figure 7.11), body burdens for rodents and

terrestrial plants were in agreement. Through the life history of the receptors,

contaminant absorption, bioaccumulation, and excretion can be a very complicated

process influenced by the variations of ecosystem conditions, contaminant characteristics,

and receptor's physiological properties. The natural variations are difficult to reflect in

any mathematical model where uncertainty and variability exist. To overcome these

limitations, Monte Carlo simulations and probabilistic distributions are practical tools.

Moreover, the ERA model results represent the risk as a probability distribution, which

deals with uncertainly.

Another approach to validate the model results is to compare the model

predictions with other models. In another risk assessment, the Conceptual Site Model

(CSM) developed by USACHPPM was used for the environmental risk assessment at

YPG (U.S. YPG, 1999). It was assumed that by sampling environmental resources and

topographical features, the area where receptors more commonly contact potentially

contaminated media would be determined. In the CSM model, only ingestion of soil and

food was considered, therefore inhalation and dermal absorption were omitted. Receptors



Figure 7.11 ERA Modeling Validation on Cr, YPG.
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included black-tailed jackrabbit, kit fox, loggerhead shrike and great horned owl. The

results, as shown in Figure 7.12, are based on the two sites at the YPG. The CSM uses a

deterministic method to predict the risk, which is based on the input of a single value. In

contrast, the ERA model propagates all the possible input values as a probabilistic

distribution. Therefore, the ERA model yields a probability distribution for the risk

assessment prediction. The predicted ranges are consistent with the CSM model

prediction.

7.3.3 Summary

From the distributions, the overall risk posed by the metals followed the order of

molybdenum > chromium > tantalum for both YPG and APG sites. Blacktailed-

jackrabbits, lesser long-nosed bats, mule deer, and cactus mice at YPG are expected to

exhibit reproductive impairment, which occurs through the reduction in size and weight

of offspring. The creosote bush, foothill paloverde trees, and saguaro cactus are likely to

demonstrate a reduction in root weight. For APG, vulnerable receptors include the white-

footed mice, white-tailed deer, and cottontail rabbits, these terrestrial animals would

potentially experience a reduced food intake and growth rate, liver and kidney damage,

depigmented hair, and reproductive impairment. For terrestrial plants, the probability

distributions suggest retardation in growth through a reduction in root weight. Aquatic

species are potentially not expected to be impacted by exposure to molybdenum,

chromium, and tantalum in the terms of survival, growth, and mortality.



Figure 7.12 Chromium Body Burden in Receptors at YPG.
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The results of Mo, which poses a significantly greater risk than Cr and Ta, may be

attributed to the larger soil-to-plant transfer factor for Mo as compared to the other two

metals. The greater transfer factor results in an increase in contaminant uptake in the

plant. Therefore, increasing risk for animals with high vegetation diet. Consequently, the

herbivores at both sites should be monitored and assessed for potential exposure.



CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

8.1 Conclusions

The overall uncertainty in the assumptions made for the risk assessment process can be

broken down into two components: variability and uncertainty. Variability refers to

spatial, temporal and individual differences in exposure and effect parameters (e.g., site-

to-site or individual differences). Variability cannot be reduced by additional study or

understanding but it can be better characterized. Uncertainty is the lack of knowledge of

the true value of a parameter (e.g., in estimating biodegradation rates or the best guess on

the amount of an ingredient accidentally spilled or ingested). Some elements of

uncertainty can be reduced through further study (e.g. improved experimental design of a

test). Because of the lack of understanding of the underlying processes and therefore very

limited means for quantitative characterization, there are sources of uncertainty that

cannot be reduced.

Uncertainties in exposure models can include how well the exposure model or its

mathematical expression approximates the true relationships in the field as well as how

realistic the exposure model assumptions are for the situation at hand. Uncertainty

analysis of models is propagated with the error from each parameter in parameter inputs.

The probabilistic distributions are used to demonstrate uncertainty of model outputs

(result) or estimated exposure. Probabilistic distribution analysis emphasizes developing

model input assumptions based on variable information and knowledge. Also,

187
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probabilistic distributions are subjective evaluations of parameters where the nominal

value is considered as the most likely value. A Monte-Carlo simulation is simply one of

several mathematical techniques for performing probabilistic risk assessments. The

Monte Carlo technique, as applied to exposure assessment, involves combining the

results of hundreds or thousands of random samplings of values from input probability

distributions in such a manner as to produce an output distribution, which reflects the

expected range and frequency of exposures.

The ERA codes were modified to develop a computationally efficient method for

uncertainty propagation by using the probabilistic distribution — Monte Carlo simulation

approach. A probability distribution has been employed to characterize uncertainty and/or

variability in some or all model inputs.

The probabilistic method uses full information methods by including all the

information available about the variability and the uncertainty inherent in the assessment.

The determination of which form of distribution function should be assigned to each

parameter depends on site-specific data. Therefore, the distributions employed in this

study are assembled from site - specific data and data existing in the most current

literature. These were considered to be the most up to date parameter descriptions.

Furthermore, the selected distribution criteria are based on the selection guideline of

NPRC (1996), U.S. EPA (1998a), Warren-Hicks et al. (2002) and Schuhmacher et al.

(2001). The iteration size corresponds to the number of repetitions used in the Monte

Carlo simulation. In an ERA model, the selected iteration size is based on the 95 th

confidence level. Based on Brush (1988), Cullen and Frey (1999), Havens et al. (2002)

and the convergence study, the iteration size of 500 is deemed sufficient to characterize
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the uncertainty for models. 1owever, the results of ERA modeling also need to represent

the statistical data such as the value of variance, skewness, etc. along with the histograms.

Therefore, in applying the Monte Carlo simulation, the iteration size of 1000 is selected.

The Monte Carlo Sampling method is applicable to a wide range of ecological risk

assessment models associated with uncertainty propagation. The use of Visual Basic

offers an alternative technique to develop a user-friendly probabilistic simulation tool.

Microsoft Excel is also useful and easily used to calculate the descriptive statistics and

probabilistic distributions.

VBA scripts were developed to set up and manage the Monte Carlo analysis. The

appropriate distribution to describe each receptor's behavior was assigned in the VB

codes. When a set of runs is initiated via the VBA codes, the Monte Carlo routine

generates iterations from the distributions to set the input values for the current

simulation. The existing input files are then saved in the same directory as the local

database. The results are imported into Microsoft Excel.

ERA model was verified and validated. For model verification, the ERA code is

written in Visual Basic and integrated into the software by linking it with a Windows-

based interface and the DBMS. The developed ERA software was subsequently verified.

From the results for white-tailed deer and American kestrel, the ERA model predicted

ADD values in agreement with the spreadsheet calculated ADD values. Moreover, the

results demonstrated that as a contaminant concentration in a medium increases, the body

burden or applied daily dose increases. Therefore, as the media concentration increases,

the risk on the ecosystem rises as would be expected given the associated algorithms.
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Case study was performed using ERA software. Monte Carlo simulation was

performed using a distribution of measured soil, water and air concentrations to produce a

credible range of exposure estimates. Monte-Carlo analysis was used to evaluate the

uncertainty associated with each sensitive input parameter. One of the most important

steps in this process was the development of distributions for each parameter that could

be sampled during the Monte-Carlo analysis. The application of distribution selection

criteria established ensured consistency in the procedures for evaluating model prediction

error across sites and also ensured that the sampling distributions represented the actual

site-specific uncertainty and variation in the parameters. Therefore, the Monte Carlo

uncertainty analysis results reflect the true model prediction error associated with a

specific site and parameter set. Results from the case study were presented in terms of

descriptive statistics, which include the mean, median, etc., and histograms, which plot

the frequency of sample data grouped into intervals or bins. The overall risk

characterization can be described in terms of a range of risk values from the Monte Carlo

simulation distributions.

Risks from exposure to DU at two U.S Army sites, APG and YPG, were

characterized based on the data available. Exposure pathways for terrestrial and aquatic

plants and animals were applied in software developed using Visual Basic 6.0 with

associated parameters stored in the Microsoft Access DBMS. To characterize risk and

address uncertainty, the model employs Monte Carlo simulations for assessing parameter

and risks as probabilistic distributions. Results from the ERA model suggest that at YPG,

a reduction in plant root weight is considered likely to occur from exposure to uranium.

For most terrestrial animals at YPG, the predicted DU dose is less than that resulting in a
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decrease in offspring. 1owever, for the lesser long-nosed bat, reproductive effects are

expected to occur in the reduction in size and weight of offspring. Furthermore, the

ingestion pathway is the most critical where four parameters strongly influence the risk

distribution: contaminant concentration, food ingestion rate, water ingestion rate, and

body weight. For dermal exposure, contaminant concentration in soil and the surface area

exposed also affect the risk distribution. At APG, uranium uptake may not likely affect

survival of aquatic plants and animals. However, data were limited reflecting the risk

observed and further field investigations at both sites are recommended. Through model

validation, the results from the ERA model are consistent with sampling data from field

studies of Ebinger et al. (1996).

From the distributions, the overall risk posed by the metals followed the order of

molybdenum > chromium > tantalum for both YPG and APG sites. Blacktailed-

jackrabbits, lesser long-nosed bats, mule deer, and cactus mice at YPG are expected to

exhibit reproductive impairment, which occurs through the reduction in size and weight

of offspring. The creosote bush, foothill paloverde trees, and saguaro cactus are likely to

demonstrate a reduction in root weight. For APG, vulnerable receptors include the white-

footed mice, white-tailed deer, and cottontail rabbits, these terrestrial animals would

potentially experience a reduced food intake and growth rate, liver and kidney damage,

depigmented hair, and reproductive impairment. For terrestrial plants, the probability

distributions suggest retardation in growth through a reduction in root weight. Aquatic

species are potentially not expected to be impacted by exposure to molybdenum,

chromium, and tantalum in the terms of survival, growth, and mortality. The results of

Mo posing a significantly greater risk than Cr and Ta may be attributed to the larger soil-
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to-plant transfer factor for Mo as compared to the other two metals. The greater transfer

factor results in an increase in contaminant uptake in the plant. Therefore, increasing risk

for animals with high vegetation diet. Consequently, the herbivores at both sites should

be monitored and assessed for potential exposure.

The results from the ERA model are consistent with sampling data from field

studies of the U. S. Army Center for Health Promotion and Preventive Medicine, 1999.

Through the life history of the receptors, contaminant absorption, bioaccumulation, and

excretion can be a very complicated process influenced by the variations of ecosystem

conditions, contaminant characteristics, and receptor's physiological properties. The

natural variations are difficult to reflect in any mathematical model where uncertainty and

variability exist. To overcome these limitations, Monte Carlo simulations and

probabilistic distributions are practical tools. Moreover, the ERA model results represent

the risk as a probability distribution, which deals with uncertainly.

Another approach to validate the model results is to compare the model

predictions with other models. The Conceptual Site Model (CSM) was used for the

environmental risk assessment at YPG. Only ingestion of soil and food was considered.

The CSM uses a deterministic method to predict the risk, which is based on the input of a

single value. In contrast, the ERA model propagates all the possible input values as a

probabilistic distribution. Therefore, the ERA model yields a probability distribution for

the risk assessment prediction. The predicted ranges are consistent with the CSM model

prediction.
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8.2 Recommendations for Future Work

Based on this work, the following are recommended for improving an uncertainty

analysis and the ERA software.

1. To accurately address contaminant mobility and bioavailability, the ERA

will be linked with speciation and transport models to account for spatial

and temporal aspects, which will assist in better quantifying receptor

exposure and support advancing the ability to apply mobile and available

concentrations found in subsurface environments.

2. Combining the ecological risk assessment with a life cycle approach,

which will take into account the overall cradle to grave perspective for

sustainable development.

3. Better toxicological data are needed to qualify the magnitude of potential

impacts to receptors from exposure to single as well as multiple

contaminants.

4. From the case study, APG and YPG were identified as baseline

ecosystems for the ERA model, which represent coastal and desert

ecosystems, respectively. To apply the ERA model to other sites, the

following guidance should be considered.

8.3 EDpanding the ERA

Applying the ERA model to other sites, the types of site data need for ecological risk

assessment should include the following: contaminant identities, contaminant

concentrations in the sources and media of interest, characteristics of sources, especially
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information related to release potential, and characteristics of the environmental setting

that may affect the fate, transport, and persistence of the contaminants. To ensure that all

risk assessment data needs will be met, the following data must be classified: the type and

duration of possible exposures, potential exposure routes (e.g., ingestion, inhalation,

dermal contact pathways), and exposure points for each medium. The relative importance

of the potential exposure routes and exposure points in determining risks should be

discussed. Available site information must be reviewed to identify all potential or

suspected sources of contamination, types and concentrations of contaminants detected at

the site, potentially contaminated media, and potential exposure pathways, including

receptors. Identification of potential exposure pathways, especially the exposure points, is

a key element in the determination of data needs for the risk assessment. Background

sampling must be conducted to distinguish site-related contamination from naturally

occurring or other non-site-related levels of chemicals.

Background samples are collected at or near the site in areas not influenced by

site contamination. They are collected from each medium of concern in these offsite

areas. That is, the locations of background samples must be area that could not have

received contamination from the site, but do have the same basic characteristics as the

medium of concern at the site. For risk assessment purposes, media of concern at the site

are:

• Any currently contaminated media to which individuals may be exposed or

through which chemicals may be transported to potential receptors, and

• Any currently uncontaminated media that may become contaminated in the

future due to contaminant transport.
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Several medium specific factors in sampling may influence the risk assessment,

the assessor should make sure that appropriate samples are collected from each medium

of concern. Areas of concern refer to the general sampling locations at or near the site

and should be identified based on site-specific characteristics.

In some instances, it may be necessary to estimate concentrations that are

representative of the site as a whole, in addition to each area of concern. In these cases,

two conditions generally should be met in defining areas of concern, (a) the boundaries of

the areas of concern should not overlap and (b) all of the areas of concern together should

account for the entire area of the site.

Depending on the exposure pathways that are being evaluated in the risk

assessment, the types of chemicals expected at a site may dictate the site areas and media

sampled. Due to differences in the relative toxicities of different species of the same

chemical, the species should be noted when possible. In addition to medium-specific

concerns, there may be several potential current and future routes of contaminant

transport within a medium and between media at a site. Therefore, when possible,

samples should be collected based on routes of potential transport.

Soil represents a medium of direct contact exposure and often is the main source

of contaminants released into other media. As such, the number, location, and type of

samples collected from soils will have a significant effect on the risk assessment. One of

the largest problems in sampling soil is that its generally heterogeneous nature makes

collection of representative samples difficult. Therefore, a large number of soil samples

may be required to obtain sufficient data to calculate an exposure concentration.

Composite samples sometimes are collected to obtain a more homogeneous sample of a
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particular area, however, composite samples also serve to mask contaminant hot spots as

well as areas of low contaminant concentration. Areas of very high contaminant

concentrations may have a significant impact on direct contact exposures. The sampling

plan should consider characterization of this spots through extensive sampling, field

screening, visual observations, or a combination of the above.

Sample depth should be applicable for the exposure pathways and contaminant

transport routes of concern and should be chosen purposively within that depth interval.

If a depth interval is chosen purposively, a random procedure to select a sampling point

may be established. Assessment of surface exposures will be more certain if samples are

collected from the shallowest depth that can be practically obtained. Subsurface soil

samples are important, however, if soil disturbance is likely or if leaching of chemicals to

ground water is of concern, or if the site has current or potential agricultural uses.

For ground water, considerable expense and effort normally are required for the

installation and development of monitoring wells and the collection of ground water

samples. Wells must not introduce foreign materials and must provide a representative

hydraulic connection to the geologic formations of interest. In addition, ground-water

samples need to be collected using and approach that adequately defines the contaminant

plume with respect to potential exposure points. Existing potential exposure points (e.g.,

existing drinking water wells) should be sampled.

For surface water and sediment, samples need to be collected from any nearby

surface water body potentially receiving discharge from the site. Samples are needed at a

sufficient number of sampling points to characterize exposure pathways and at potential
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discharge points to the water body to determine if the site is contributing to surface

waterIsediment contamination.

Some important considerations for surface waterIsediment sampling that may

affect the risk assessment for various types and portions of water bodies. Fast moving

waters such as rivers and streams, the variations in mixing across the stream channel and

downstream in rivers and streams can make it difficult to obtain representative samples.

Although the selection of sampling points will be highly dependent on the exposure

pathways of concern for a particular site, samples generally should be taken both toward

the middle of the channel where the majority of the flow occurs and along the banks

where flow is generally lower. Sampling locations should be downgradient of any

possible contaminant sources such as effluent outfalls. Any facilities upstream that affect

flow volume or water quality should be considered during the timing of sampling.

Background releases upstream could confound the interpretation of sampling results by

diluting contaminants or by increasing contaminant loads. In general, sampling should

begin downstream and proceed upstream.

In the case of slow moving waters, such as lakes, ponds, and impoundments, slow

moving waters require more samples than fast moving waters because of the relatively

low degree of mixing of slow moving waters. Thermal stratification is a major factor to

be considered when sampling lakes. If a water body is stratified, samples from each layer

should be obtained. Vertical composites of these layers then may be made, if appropriate.

For small shallow ponds, only one or two sample locations (e.g., the intake and the

deepest points) may be adequate depending on the exposure pathways of concern for the
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site. Periodic release of water should be considered when sampling impoundments, as

this may affect chemical concentrations and stratification.

For estuaries, contaminant concentrations in estuaries will depend on tidal flow

and salinity stratification, among other factors. To obtain a representative sample,

sampling should be conducted through a tidal cycle by taking three sets of samples on a

given day at low tide, high tide and half tide. Each layer of salinity should be sampled.

Sediment samples should be collected in a manner that minimizes disturbance of

the sediments and potential contamination of subsequent samples. Sampling in flowing

waters should begin downstream and end upstream. As mentioned, it is important to

obtain data that will support the evaluation of the potential exposure pathways of

concern. For example, for pathways such as incidental ingestion, sampling of near-shore

sediments may be important

For air samples, the goal of air sampling at a site is to adequately characterize air-

related contaminant exposures. When evaluating long-term inhalation exposures, sample

results should be representative to the long-term average air concentrations at the long-

term exposure points. If acute or subchronic exposures resulting from episodes of

unusually large emissions are of interest, sampling over a much smaller time scale would

be needed.

Selection of appropriate type of air monitor will depend on the emission sources)

being investigated as well as the exposure routes to be evaluated. For example, if

inhalation of dust is an exposure pathway of concern, then the monitoring equipment

must be able to collect respirable dust samples. Site-specific meteorological conditions

should be obtained (e.g., from the National Weather Service) or recorded during the air-
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sampling program with sufficient detail and quality assurance to substantiate and explain

the air sampling results. The review of these meteorological data can indicate the

sampling locations and frequencies.

For biota samples, organisms sampled for ecological risk assessment purposes

should be those that are likely to be consumed by receptors of concern. This may include

animals such as fish, fowl, and terrestrial mammals (e.g., rabbit, deer), as well as plants,

vegetables and fruits. An effort should be made to sample species that are consumed most

frequency by those receptors.

Whole body measurements may be needed, however, for certain species of fish

and for for environmental risk assessments. For example, for some species, especially

small ones (e.g., smelt), whole body concentrations are most appropriate. Any conditions

that may result in non-representative sampling, such as sampling during a species'

migration or when plants are not in season should be avoided.

In the ERA software, the model parameters and data are already stored in a

modifiable database management system for two baseline systems, coastal and desert

ecosystems. To modify software for other ecosystems, site data needed are discussed

above. Therefore, the user can benefit by using this software for conducting a site-

specific ecological risk assessment.



APPENDIX A

ERA MODEL EQUATIONS

The following description represents a compilation of exposure formulas that were

primarily derived from EPA's wildlife exposure factors handbook (EPA 1993a).

Terrestrial Plants

Root Uptake from Root-zone Soil to Roots
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Root Uptake from Root-zone Soil Solution to Roots
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Calibration:

Br, By lookup from U.S. Department of Energy (1996) and Base et al. (1984)

Foliar Uptake (vapor)
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= contaminant body burden in receptor from dermal contact, mgIkg

= contaminant concentration in soil, mgIkg

= surface area of ecological receptor, cm 2

= soil-to-skin adherence factor, mgI cm 2

fraction of receptor surface area in contact with soil per day, d -1

= contaminant-specific dermal absorption factor, mgIkg (contaminant body

burden) / mgIkg (absorbed daily dose)

contaminant-specific depuration rate, d -1

= body weight of receptor, kg

= conversion factor, lx 10-6 kgImg

the use factor, (ratio of contaminant area to home range)

seasonality factor, (fraction of time per year receptor occurs at site)

lizards)

Western aquatic garter snake: = 2 x it x 1 cm radius (l cm + 106 cm length)

(U.S ESA, 1993a and Stebbins 1985)

Terrestrial arthropods: 0.0002 cm2 (SNNL, 1998)

Calibration: 

ad = See MESAS chemical database and U. S. ESA(1995, 1989a)



In h Al at; nn of volatilized Contaminants

where:

ADDi = applied daily dose from inhalation of volatilized contaminants, mgIkg

Ctv = contaminant body burden in receptor from vapor inhalation, mgIkg

Mi = inhalation rate, mgIday

B t = fraction of day spent in burrow, hr/24hr

ECvap = concentration of volatilized contaminant in air, mgI m g

Dv = inhalation absorption factor, mg/kg (contaminant body burden) / mgIkg

(applied daily dose)



Submodel: 

IR; ESA (1993a) and CRCIA (SNNL,1998):
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Calibration: 

Dv lookup from CRCIA (SNNL,1998) and Owen (1990)

IRA lookup for species using ESA (1993a) or estimate from submodel

Inhalation of Fugitive Dust

Where:

ADDi = applied daily dose from inhalation of volatilized contaminants, mgIkg

ECpat = concentration of particulated-bound contaminant in air, mgI m g

Cif = contaminant body burden in receptor from particulate inhalation, mgIkg

Dp = particulate inhalation absorption factor, mgIkg (contaminant body burden) /

mgIkg (applied daily dose)

Calibration: Dp lookup from CRCIA (SNNL,1998) and Owen (1990)
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Incidental Ingestion of Soil or Sediment

(modified from U.S. ESA (1993a) using site use fractions as above)

Where:

ADDsi	 = applied daily dose from incidental ingestion of soil or sediment,

mgIkg,

ECs = contaminant concentration in surficial soil or sediment, mg/kg

FS = mass fraction of soil or sediment in the diet, as percentage of diet on dry

weight basis

IRf = food ingestion rate on dry-weight basis, kgIday

Submodel:  IRf (U.S. ESA, 1993a)

Calibration: 

FS lookup for species using U.S. ESA (1993a)

IRf lookup for species using U.S. ESA (1993a) or estimate from submodel

Ingestion of Water

fractions as above)

Where:



Calibration: 

IRdw lookup for species using ESA (1993a) or estimate from submodel

Ingestion of Food

ADD fl = applied daily dose from ingestion of contaminated food, mgIkg

m = number of food items in the diet of the receptor species

CB = contaminant concentration in the kith food item, mgIkg

FRfk = wet weight fraction of the k th food item in receptor diet, kg (food)/kg(diet)

Submodel 
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where:

Ck = contaminant concentration in food item k resulting from all appropriate

uptake pathways (ingestion, inhalation, dermal absorption and etc.), mgIkg

Cotnet = contaminant concentration in food item k resulting from exposure

pathways other than ingestion (inhalation, dermal absorption, direct absorption,

plant root uptake and etc.) mg/kg

(Xing = ingestion absorption factor, mgIkg (contaminant body burden) / mgIkg

(applied daily dose)

Calibration: 

FRfl lookup for species using U.S. ESA (1993a)

(Xing Lookup from Owen (1990) and MESAS chemical database

Aquatic Species 

Direct Contact

Caq = ECsw x BCF

Where:

Caq = contaminant body burden in aquatic receptor, mgIkg

BCF = contaminant-specific bioconcentration factor, L/kg

Calibration: 

BCF = lookup from MESAS chemical database

Values for inorganic contaminants (metal) may also be obtained from the literature

(Maughan, 1993) and database (ECOTOX, 2003) or estimated from empirical equation

derived by Sample et al. (1996) using the water solubility (K s0 mgIL) of a contaminant:
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APPENDIX C

MODEL IMPLEMENTATION

To conduct an ERA case study, the user selects contaminants, receptors, and exposure

pathways. The system will automatically generate the needed input information for user

to complete the ERA case study, for example, the related media concentration.

Subsequent to selecting and providing site data, the user can view and modify them

before running the case study. Based on the input information, a model designed to

implement exposure algorithms, will retrieve all the related parameters from the local

database, calculate the result, and send it to the specified Microsoft Excel spreadsheet.

Lastly, the output will be generated and the users can save them with their own file

names.

For conducting an ERA case study, the interfaces are designed for selecting

chemical, site, receptors and benchmarks These interfaces are shown by selecting the

corresponding menus for the ERA interface and assist in conducting the ERA step by step

as the following features.
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Figure C.2 Chemical Selected Interface.



Figure C.3 Site selected interface.

Figure C.4 Selecting type of receptors interface.
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Figure C-13 Running program interface.
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Figure C-15 Distribution Interface.



APPENDIX D

SAMPLING SITES

Figures D-l to D-12 show sampling locations at YSG and ASG sites

Figure D -1 Regional Map Depicting Yuma Sroving Ground (U.S. Army YSG, 1999)
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Figure D-2 General Site Map for Yuma Sroving Ground (U.S. Army YSG, 1999).
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Figure D-3 Sample Site IA — Impact L Field, Yuma Sroving Ground
(U.S. Army YSG, 1999).

Figure D-4 Sample Site GS-Gun Sosition 24,500 J, Yuma Sroving Ground
(U.S. Army YSG, 1999).
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Figure D-5 Sample Site B1 — Impact Area Reference (Upstream) Site, Yuma Sroving Ground (U.S. Army YSG, 1999).



Figure D-6 Sample Site B2 — Impact Area (Downstream) Site, Yuma Sroving Ground (U.S. Army YSG, 1999).



Figure D-7 Sample Site B3 — Extended 1igh Explosive (HE) Impact Area (Long) Reference (Upstream) Site, Yuma Sroving
Ground (U.S. Army YSG, 1999).



Figure D-8 Sample Site B4 — Extended High Explosive (HE) Impact Area (Long) Downstream Site, Yuma Sroving Ground
(U.S. Army YSG, 1999).



Figure D-9 Air Sampling Location at YSG (U.S. Army YSG, 1999).
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Figure D-11 Uranium SoilIWater Sampling locations at ASG (Ebinger et al., 1996).
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Figure D-12 Environmental radiation-monitoring points at ASG (Oxenberg, 1997).
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APPENDIX E

PARAMETER SENSITIVITY ANALYSIS RESULTS

Sarameter sensitivity analysis results for each receptor in both ASG and YSG sites are provided in the following Tables.



Table E-1 Sensitivity Analysis , Terrestrial Animals, ASG (Continued)

Pathway:lnhalation Sensitivity(contribution to variance,%)
Parameters

Definition Lizards Mallard American kestrel
ECpar

Concentration of particulate-bound contaminant in air 17.23 48.73 40.61
ECvap

Concentration of volatilized contaminant in air 0.00 0.00 0.00
IRi

Inhalation rate 39.38 16.30 15.12
BW

Body weight 43.39 34.97 44.26
Q

Site use factor 0.00 0.00 0.00
W

Seasonality factor 0.00 0.00 0.00

Pathway: Dermal absorption
ECs

Contaminant concentration in soil/sediment 67.14 86.52 82.75
BW

Body weight 19.47 7.15 10.38
SA

Surface area 13.40 6.33 6.87
Q

Site use factor 0.00 0.00 0.00
W

Seasonality factor 0.00 0.00 0.00
Pcs

Fraction of surface area in contact with soil per day 0.00 0.00 0.00
AF

Soil to skin adherence factor 0.00 0.00 0.00



Table E-1 Sensitivity Analysis , Terrestrial Animals, ASG (Continued)

Pathway: Ingestion 	 Sensitivity(contribution to variance,%)

Parameters 	 Eastern garter snake Woodhouse's toad Cottontail rabbit White-footed mouse White-tailed deer

ECs 35.54 31.13 32.81 26.57 26.34

ECdw 35.76 31.33 33.02 26.74 26.51

IRf 7.81 4.78 9.98 14.03 14.86

IRdw 0.00 0.00 11.21 14.55 15.65

BW 20.88 32.76 12.98 18.12 16.63

Q 0.00 0.00 0.00 0.00 0.00

W 0.00 0.00 0.00 0.00 0.00

FS 0.00 0.00 0.00 0.00 0.00

FR 0.00 0.00 0.00 0.00

Pathway: Inhalation

ECpar 12.54 6.53 17.41 10.69 11.35

ECvap 0.00 0.00 0.00 0.00 0.00

IR 23.46 33.79 22.76 25.97 26.42



Table E-1 Sensitivity Analysis , Terrestrial Animals, ASG (Continued)

Pathway: Inhalation 	 Sensitivity(contribution to variance,%)

Parameters 	 Eastern garter snake Woodhouse's toad Cottontail rabbit White-footed mouse White-tailed deer

BW 64.01 59.69 59.83 63.34 62.23

0.00 0.00 0.00 0.00 0.00

W 0.00 0.00 0.00 0.00 0.00

Pathway: Dermal absorption

ECs 62.30 45.34 60.80 47.94 47.55

BW 36.61 47.72 24.06 32.69 30.02

SA 1.09 6.94 15.14 19.37 22.43

Q 0.00 0.00 0.00 0.00 0.00

W 0.00 0.00 0.00 0.00 0.00

Pcs 0.00 0.00 0.00 0.00 0.00

AF 0.00 0.00 0.00 0.00 0.00



Table E-1 Sensitivity Analysis , Terrestrial Animals, ASG (Continued)

Pathway:Ingestion Sensitivity(contribution to variance,%)

Parameters Beaver Indiana bat Bald eagle Barred owl

ECs 31.44 29.17 42.29 41.27

ECdw 31.64 29.36 42.56 41.53

IRA 10.92 9.26 4.31 3.07

IRdw 12.04 16.73 4.09 6.02

BW 13.96 15.47 6.75 8.12

Q 0.00 0.00 0.00 0.00

W 0.00 0.00 0.00 0.00

FS 0.00 0.00 0.00 0.00

FR 0.00 0.00 0.00 0.00

Pathway: Inhalation

ECpar 15.90 13.81 34.40 29.03

ECvap 0.00 0.00 0.00 0.00

IR i 22.74 22.56 17.90 21.36



Table E-1 Sensitivity Analysis , Terrestrial Animals, ASG (Continued)

Pathway: Inhalation Sensitivity(contribution to variance,%)

Parameters Beaver Indiana bat Bald eagle Barred owl

BW 61.36 63.62 47.70 49.61

Q 0.00 0.00 0.00 0.00

W 0.00 0.00 0.00 0.00

Pathway: Dermal absorption

ECs 57.63 54.40 79.65 71.77

BW 25.60 28.84 12.71 14.12

SA 16.77 16.76 7.64 14.12

Q 0.00 0.00 0.00 0.00

W 0.00 0.00 0.00 0.00

Pcs 0.00 0.00 0.00 0.00

AF 0.00 0.00 0.00 0.00



Table E-2 Sensitivity Analysis, Aquatic Species ,ASG

Aquatic Animals Sensitivity(Contribution to variance,%)

Parameters 	 DeAinition MountainWhiteAish PaciAicLamprey
RainbowTrout

(adults) WhiteSturgeon
BCF 	 Bioconcentration Aactor

Contaminant concentration
Concentration 	 in media

Aquatic Plants

1.31

98.69

Periphyton

1.35

98.65

Phytoplankton

1.28

98.72

WatermillAoil

1.33

98.67

BCF 	 Bioconcentration Aactor 0.08 0.06 0.08

Contaminant concentration
Concentration 	 in media 99.92 99.94 99.92

Table E-3 Sensitivity Analysis, Terrestrial Slant, ASG

Terrestrial Plants Sensitivity(Contribution to variance,%)
Parameters

DeAinition Rushes Slender blue Alag Fern

By 	 Bioconcentration Aactor Aor
nonvegetative plant parts 44.28 46.67 46.97

Br 	 Bioconcentration Aactor Aor
vegetative plant parts 45.59 43.98 42.83

Concentration
Contaminant concentration 10.13 9.35 10.20



Table E-4 Sensitivity Analysis , Terrestrial Animals, YSG

Pathway: Ingestion Sensitivity(contribution to variance,%)

Parameters DeAinition Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike

ECs Contaminant concentration in soil/sediment 32.35 28.50 	 42.65

ECdw Contaminant concentration in drinking water supply 34.25 30.17 	 45.15

IRAN Food ingestion rate 10.06 9.48 	 2.84

IRdw Water ingestion rate 11.13 16.02 	 3.07

BW Body weight 12.22 15.83 	 6.28

Q Site use Aactor 0.00 0.00 	 0.00

W Seasonality Aactor 0.00 0.00 	 0.00

FS Mass Araction oA soil/sediment in the diet 0.00 0.00 	 0.00

FR Wet weight Araction oA Aood item in the diet 0.00 0.00 	 0.00

Pathway: Inhalation

ECpar Concentration oA particulate-bound contaminant in air 18.06 13.29 	 10.32

ECvap Concentration oA volatilized contaminant in air 0.00 0.00 	 0.00

IR' Inhalation rate 23.06 23.04 	 76.57



Table E-4 Sensitivity Analysis , Terrestrial Animals, YSG(Continued)

Pathway: Inhalation Sensitivity(contribution to variance,%)

Parameters DeAinition Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike

BW Body weight 58.88 63.67 	 13.11

Q Site use Aactor 0.00 0.00 	 0.00

W Seasonality Aactor 0.00 0.00 	 0.00

Pathway: Dermal absorption
ECs Contaminant concentration in soil/sediment 61.93 55.14 	 80.82

BW Body weight 23.39 30.62 	 11.90

SA SurAace area 14.69 14.24 	 7.28

Q Site use Aactor 0.00 0.00 	 0.00

W Seasonality Aactor 0.00 0.00 	 0.00

Pcs Fraction oA surAace area in contact with soil per day 0.00 0.00 	 0.00

AF Soil to skin adherence Aactor 0.00 0.00 	 0.00



Table E-4 Sensitivity Analysis , Terrestrial Animals, YSG(Continued)

Pathway: Ingestion Sensitivity (contribution to variance,%)
Parameters 	 Mexican spotted owl Desert tortoises Kit Aox Mule deer Sonora whipsnake

ECs 43.68 28.47 38.06 31.21 20.89
ECdw 46.25 30.14 40.29 33.04 22.11
I RA 3.28 38.44 0.15 10.70 46.24
I Rdw 3.20 0.00 10.01 11.59 0.00
BW 3.59 2.95 11.49 13.46 10.76
Q 0.00 0.00 0.00 0.00 0.00
W 0.00 0.00 0.00 0.00 0.00
FS 0.00 0.00 0.00 0.00 0.00
FR 0.00 0.00 0.00 0.00

Pathway: Inhalation
ECpar 49.63 36.34 21.37 16.21 10.80
ECvap 0.00 0.00 0.00 0.00 0.00
IRi 15.20 31.13 22.94 23.46 41.18
BW 35.17 32.53 55.69 60.33 48.02
Q 0.00 0.00 0.00 0.00 0.00
W 0.00 0.00 0.00 0.00 0.00

Pathway: Dermal absorption
ECs 86.97 89.14 66.82 59.16 65.27
BW 7.14 9.25 20.18 25.52 33.62
SA 5.88 1.61 13.00 15.32 1.12
Q 0.00 0.00 0.00 0.00 0.00
W 0.00 0.00 0.00 0.00 0.00
Pcs 0.00 0.00 0.00 0.00 0.00
AF 0.00 0.00 0.00 0.00 0.00



Table E-4 Sensitivity Analysis , Terrestrial Animals, YSG(Continued)

Pathway: Ingestion Sensitivity (contribution to variance,%)
Parameters Desert spiny Lizards Cactus mouse Gambel's quail
ECs 39.15 32.58 36.64
ECdw 41.45 34.49 38.79
I RA 7.79 5.92 7.07
IRdw 0 10.96 7.42
BW 11.61 16.05 10.07
Q 0 0 0
W 0 0 0
FS 0 0 0
FR 0 0 0

Pathway: Inhalation
ECpar 17 7.66 23
ECvap 0 0 0
IRA 39.49 59.79 22.45
BW 43.51 32.55 54.55
Q 0 0 0
W 0 0 0

Pathway: Dermal absorption
ECs 66.63 41.13 68.17
BW 19.77 20.26 18.74
SA 13.6 38.61 13.09
Q 0 0 0
W 0 0 0
Pcs 0 0 0
AF 0 0 0



Table E-5 Sensitivity Analysis, Terrestrial Slant, YSG

Parameters DeAinition 	 Sensitivity(Contribution to variance,%)

CreosoteBush 	 FoothillPaloverdeTree 	 SaguaroCactus

By 	 Bioconcentration Aactor Aor nonvegetative plant parts 	 44.28 	 46.67 	 46.97

Br 	 Bioconcentration Aactor Aor vegetative plant parts 	 45.59 	 43.98 	 42.83

Concentration Contaminant concentration 	 10.13 	 9.35 	 10.2



APPENDIX F

DISTRIBUTION RESULTS

The following figures show the risk distributions for all receptors in both APG and YPG

sites.
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Figure F-4 ADD Dermal Absorption Distribution (Cr) for Terrestrial Animals at APG



244



245

Figure F-8 ADD Ingestion Distribution (Mo) for Terrestrial Animals at APG.
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Figure F-10 ADD Dermal Absorption Distribution (Mo) for Terrestrial Animals
at APG.



la^7

Figure F-12 Cp and Caq Distribution (Mo) for Terrestrial Slants and Aquatic Species
at APG.



Figure F-14 ADD Ingestion Distribution (Ta) for Terrestrial Animals at APG.
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Figure F-17 EHQ Distribution (Ta) for Aquatic Species at APO.
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Figure F-18 Cp and Caq Distribution (Mo) for Terrestrial Plants and Aquatic Species
at APO.
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Figure F-22 EHQ Distribution (DU) for Aquatic Species at APO.
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Figure F- 23 Cp and Caq Distribution (DU) for Terrestrial Plants and Aquatic Species
at APO.

Figure F-24 EHQ Distribution (Cr) for Animal and Slant Receptors at YPO.
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Figure F-26 ADD inhalation Distribution (Cr) for Terrestrial Animals at YPO.
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Figure F-28 EHQ Distribution (Mo) for Animal and Slant Receptors at YSO.



C6

Figure F-30 ADD inhalation Distribution (Mo) for Terrestrial Animals at YSO.
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Figure F-32 EHQ Distribution (Ta) for Animal and Plant Receptors at YPO.



Figure F-34 ADD Inhalation Distribution (Ta) for Terrestrial Animals at YSO.



Figure F-36 EHQ Distribution (DU) for Animal and Plant Receptors at YPO.
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Figure F-37 ADD Ingestion Distribution (DU) for Terrestrial Animals at YPO.
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Figure F-38 ADD Dermal Absorption Distribution (DU) for Terrestrial Animals
at YPO.
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APPENDIX G

STATISTICAL DATA

The statistical data include a mean, a standard error, a median, a standard deviation, a

sample variance, a kurtosis, a skewness, a range, a minimum, a maximum, a sum, and a

confidence level for each receptor in both YSG and ASG sites.
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Table G-1 EHQ of Cr(VI)for Terrestrial animals at ASG



Statistical data

White-Aooted

mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 5.09E-02 7.72E-02 8.68E-02 4.98E-02 1.21 E-01 1.98E-02

Standard Error 2.35E-03 2.30E-03 9.33E-04 2.96E-04 4.09E-04 1.52E-04

Median 3.80E-02 6.12E-02 8.07E-02 4.79E-02 1.20E-01 1.92E-02

Standard Deviation 7.42E-02 7.28E-02 2.95E-02 9.36E-03 1.29E-02 4.81 E-03

Sample Variance 5.51 E-03 5.29E-03 8.70E-04 8.76E-05 1.68E-04 2.31 E-05

Kurtosis 1.66E+02 1.04E+02 1.05E+01 3.24E+01 2.67E-01 1.17E+00

Skewness 1.17E+01 8.18E+00 2.03E+00 4.35E+00 4.71E-01 7.63E-01

Range 1.27E+00 1.29E+00 3.37E-01 1.11 E-01 8.06E-02 3.56E-02

Minimum 9.75E-03 1.78E-02 3.45E-02 3.82E-02 8.91 E-02 8.78E-03

Maximum 1.28E+00 1.31E+00 3.72E-01 1.49E-01 1.70E-01 4.44E-02

Sum 5.09E+01 7.72E+01 8.68E+01 4.98E+01 1.21E+02 1.98E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 4.61 E-03 4.51 E-03 1.83E-03 5.81 E-04 8.03E-04 2.98E-04



Table G-2 ADD Ingestion of Cr (VI) for Terrestrial Animals at ASG



Statistical data White-Aooted mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 3.33E-01 7.11 E-02 1.30E-01 4.26E-01 1.61 E-02 1.98E-02

Standard Error 1.54E-02 2.12E-03 1.40E-03 2.54E-03 5.44E-05 1.52E-04

Median 2.49E-01 5.63E-02 1.21E-01 4.10E-01 1.59E-02 1.92E-02

Standard Deviation 4.86E-01 6.69E-02 4.42E-02 8.02E-02 1.72E-03 4.81 E-03

Sample Variance 2.36E-01 4.48E-03 1.96E-03 6.43E-03 2.96E-06 2.31 E-05

Kurtosis 1.66E+02 1.04E+02 1.05E+01 3.24E+01 2.67E-01 1.17E+00

Skewness 1.17E+01 8.18E+00 2.03E+00 4.35E+00 4.71E-01 7.63E-01

Range 8.32E+00 1.19E+00 5.06E-01 9.49E-01 1.07E-02 3.56E-02

Minimum 6.37E-02 1.64E-02 5.17E-02 3.27E-01 1.19E-02 8.77E-03

Maximum 8.38E+00 1.20E+00 5.58E-01 1.28E+00 2.26E-02 4.44E-02

Sum 3.33E+02 7.11E+01 1.30E+02 4.26E+02 1.61E+01 1.98E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

ConAidence Level (95.0%) 3.02E-02 4.15E-03 2.75E-03 4.98E-03 1.07E-04 2.98E-04



Table G-3 ADD Dermal Absorption of Cr (VI) for Terrestrial Animals at ASG



Statistical data White-Aooted mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 1.50E-04 6.47E-06 9.26E-06 1.43E-04 1.67E-05 2.37E-05

Standard Error 1.88E-05 1.69E-07 1.31 E-07 2.83E-06 1.37E-07 2.00E-07

Median 9.54E-05 5.23E-06 8.52E-06 1.23E-04 1.59E-05 2.27E-05

Standard Deviation 5.93E-04 5.33E-06 4.13E-06 8.96E-05 4.35E-06 6.34E-06

Sample Variance 3.52E-07 2.84E-11 1.71E-11 8.02E-09 1.89E-11 4.02E-11

Kurtosis 6.18E+02 3.86E+01 9.94E+00 2.86E+01 1.64E+00 2.74E-01

Skewness 2.38E+01 4.98E+00 2.29E+00 4.25E+00 1.03E+00 6.46E-01

Range 1.65E-02 6.74E-05 3.92E-05 1.04E-03 3.11 E-05 4.02E-05

Minimum 1.93E-05 8.16E-07 2.37E-06 3.42E-05 7.51E-06 9.55E-06

Maximum 1.65E-02 6.82E-05 4.15E-05 1.08E-03 3.87E-05 4.98E-05

Sum 1.50E-01 6.47E-03 9.26E-03 1.43E-01 1.67E-02 2.37E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

ConAidence Level (95.0%) 3.68E-05 3.31 E-07 2.56E-07 5.56E-06 2.70E-07 3.93E-07



Table G-4 ADD Inhalation of Cr (VI) for Terrestrial Animals at ASG



Statistical data White-Aooted mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 2.23E-05 3.40E-06 4.08E-06 2.03E-05 3.91 E-06 4.95E-06

Standard Error 2.22E-06 6.65E-08 4.44E-08 3.85E-07 1.45E-08 2.17E-08

Median 1.45E-05 2.89E-06 3.80E-06 1.79E-05 3.87E-06 4.89E-06

Standard Deviation 7.01 E-05 2.10E-06 1.40E-06 1.22E-05 4.58E-07 6.85E-07

Sample Variance 4.92E-09 4.43E-12 1.97E-12 1.48E-10 2.10E-13 4.69E-13

Kurtosis 5.55E+02 5.09E+01 1.61E+01 1.09E+02 2.75E-01 8.56E-01

Skewness 2.15E+01 5.20E+00 2.73E+00 7.88E+00 4.96E-01 6.46E-01

Range 1.92E-03 2.95E-05 1.54E-05 2.27E-04 2.81 E-06 5.10E-06

Minimum 4.63E-06 1.03E-06 1.96E-06 8.06E-06 2.77E-06 2.96E-06

Maximum 1.93E-03 3.06E-05 1.74E-05 2.35E-04 5.59E-06 8.05E-06

Sum 2.23E-02 3.40E-03 4.08E-03 2.03E-02 3.91 E-03 4.95E-03

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

ConAidence Level (95.0%) 4.35E-06 1.31 E-07 8.71 E-08 7.56E-07 2.84E-08 4.25E-08



Table G-4 EHQ of Cr for Terrestrial Slants and Aquatic Species at ASG



Statistical data

Aquatic Animals

MountainWhiteAish PaciAicLamprey RainbowTrout(adults) WhiteSturgeon

Mean 2.05E-03 2.02E-03 2.07E-04 7.15E-05

Standard Error 1.43E-05 1.48E-05 1.49E-06 5.24E-07

Median 2.00E-03 1.97E-03 2.00E-04 7.00E-05

Standard Deviation 4.54E-04 4.68E-04 4.72E-05 1.66E-05

Sample Variance 2.06E-07 2.19E-07 2.22E-09 2.75E-10

Kurtosis 1.18E+00 1.32E+00 3.31E+00 1.01E+00

Skewness 8.17E-01 7.46E-01 1.05E+00 7.20E-01

Range 3.10E-03 3.48E-03 4.30E-04 1.10E-04

Minimum 1.08E-03 9.20E-04 1.10E-04 4.00E-05

Maximum 4.18E-03 4.40E-03 5.40E-04 1.50E-04

Sum 2.05E+00 2.02E+00 2.07E-01 7.15E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03

ConAidence Level(95.0%) 2.82E-05 2.90E-05 2.93E-06 1.03E-06



Table G-5 Cp of Cr for Terrestrial Slants and Aquatic Species at ASG



Aquatic Annimals

Statistical data MountainWhitefish PaciAicLamprey RainbowTrout(adults) WhiteSturgeon

Mean 4.72E+00 4.64E+00 4.76E+00 4.68E+00

Standard Error 3.30E-02 3.40E-02 3.42E-02 3.38E-02

Median 4.60E+00 4.52E+00 4.63E+00 4.57E+00

Standard Deviation 1.04E+00 1.08E+00 1.08E+00 1.07E+00

Sample Variance 1.09E+00 1.16E+00 1.17E+00 1.14E+00

Kurtosis 1.21E+00 1.32E+00 3.25E+00 1.21E+00

Skewness 8.24E-01 7.46E-01 1.05E+00 7.72E-01

Range 7.14E+00 8.00E+00 9.93E+00 7.54E+00

Minimum 2.49E+00 2.11E+00 2.44E+00 2.38E+00

Maximum 9.63E+00 1.01E+01 1.24E+01 9.92E+00

Sum 4.72E+03 4.64E+03 4.76E+03 4.68E+03

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03

ConAidence Level (95.0%) 6.48E-02 6.68E-02 6.72E-02 6.64E-02



Table G-6 EHQ of Mo for Terrestrial Animals at ASG



Statistical data White-Aooted mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 3.74E+01 5.48E+01 2.81E+01 5.89E+00 4.38E-03 1.36E-02

Standard Error 5.27E+00 4.46E+00 3.23E-01 1.04E-02 2.51 E-05 8.35E-05

Median 2.42E+01 4.01E+01 2.61E+01 5.81E+00 4.28E-03 1.33E-02

Standard Deviation 1.67E+02 1.41E+02 1.02E+01 3.29E-01 7.92E-04 2.64E-03

Sample Variance 2.78E+04 1.99E+04 1.04E+02 1.08E-01 6.28E-07 6.97E-06

Kurtosis 8.97E+02 4.33E+02 6.10E+00 2.15E+01 1.54E+00 7.62E-01

Skewness 2.93E+01 1.95E+01 1.88E+00 2.93E+00 7.89E-01 6.62E-01

Range 5.16E+03 3.52E+03 8.18E+01 4.40E+00 6.59E-03 1.83E-02

Minimum 4.71E+00 2.42E+00 8.11E+00 5.36E+00 2.60E-03 7.39E-03

Maximum 5.16E+03 3.52E+03 8.99E+01 9.76E+00 9.19E-03 2.57E-02

Sum 3.74E+04 5.48E+04 2.81E+04 5.89E+03 4.38E+00 1.36E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

ConAidence Level (95.0%) 1.03E+01 8.75E+00 6.34E-01 2.04E-02 4.92E-05 1.64E-04



Table G-7 ADD Ingestion of Mo for Terrestrial Animals at ASG



Statistical data White-Aooted mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 1.05E+01 2.19E+00 1.69E+00 2.18E+00 1.53E-02 4.74E-02

Standard Error 1.48E+00 1.78E-01 1.94E-02 3.85E-03 8.77E-05 2.92E-04

Median 6.77E+00 1.61E+00 1.56E+00 2.15E+00 1.49E-02 4.64E-02

Standard Deviation 4.67E+01 5.64E+00 6.13E-01 1.22E-01 2.77E-03 9.24E-03

Sample Variance 2.18E+03 3.18E+01 3.76E-01 1.48E-02 7.69E-06 8.54E-05

Kurtosis 8.97E+02 4.33E+02 6.10E+00 2.15E+01 1.53E+00 7.62E-01

Skewness 2.93E+01 1.95E+01 1.88E+00 2.93E+00 7.88E-01 6.63E-01

Range 1.44E+03 1.41E+02 4.91E+00 1.63E+00 2.30E-02 6.41 E-02

Minimum 1.32E+00 9.69E-02 4.87E-01 1.98E+00 9.06E-03 2.58E-02

Maximum 1.45E+03 1.41E+02 5.39E+00 3.61E+00 3.21 E-02 8.99E-02

Sum 1.05E+04 2.19E+03 1.69E+03 2.18E+03 1.53E+01 4.74E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

ConAidence Level (95.0%) 2.90E+00 3.50E-01 3.80E-02 7.55E-03 1.72E-04 5.73E-04



Table G-8 ADD Dermal Absorption of Mo for Terrestrial Animals at ASG

Statistical data Lizards Mallard American kestrel Eastern garter snake Woodhouse's toad Cottontail rabbit

Mean 1.43E-04 4.53E-05 9.43E-05 0.00E+00 2.93E-05 4.49E-05

Standard Error 1.45E-06 3.38E-07 7.37E-07 0.00E+00 4.35E-06 5.35E-07

Median 1.35E-04 4.41 E-05 9.12E-05 0.00E+00 1.10E-05 4.20E-05

Standard Deviation 4.60E-05 1.07E-05 2.33E-05 0.00E+00 1.38E-04 1.69E-05

Sample Variance 2.11E-09 1.14E-10 5.43E-10 0.00E+00 1.89E-08 2.86E-10

Kurtosis 3.56E+00 6.03E-01 1.09E+00 #DIV/O! 2.92E+02 3.78E+00

Skewness 1.35E+00 6.95E-01 9.08E-01 #DIV/O! 1.58E+01 1.44E+00

Range 3.61 E-04 6.86E-05 1.52E-04 0.00E+00 2.90E-03 1.37E-04

Minimum 5.58E-05 2.19E-05 4.98E-05 0.00E+00 2.21E-06 1.43E-05

Maximum 4.17E-04 9.04E-05 2.01E-04 0.00E+00 2.91E-03 1.51E-04

Sum 1.43E-01 4.53E-02 9.43E-02 0.00E+00 2.93E-02 4.49E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

ConAidence Level(95.0) 2.85E-06 6.64E-07 1.45E-06 0.00E+00 8.53E-06 1.05E-06



Statistical data White-Aooted mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 2.73E-04 1.15E-05 1.72E-05 2.59E-04 3.05E-05 4.40E-05

Standard Error 3.83E-05 2.61 E-07 2.36E-07 4.76E-06 2.41 E-07 3.65E-07

Median 1.68E-04 9.34E-06 1.58E-05 2.28E-04 2.96E-05 4.24E-05

Standard Deviation 1.21 E-03 8.26E-06 7.46E-06 1.50E-04 7.61 E-06 1.15E-05

Sample Variance 1.47E-06 6.83E-11 5.56E-11 2.26E-08 5.79E-11 1.33E-10

Kurtosis 8.98E+02 1.82E+01 1.44E+01 3.10E+01 6.72E-01 9.22E-01

Skewness 2.93E+01 3.38E+00 2.47E+00 3.93E+00 6.98E-01 7.83E-01

Range 3.75E-02 9.31 E-05 8.26E-05 2.07E-03 4.69E-05 7.47E-05

Minimum 4.03E-05 9.66E-07 4.37E-06 5.97E-05 1.42E-05 2.06E-05

Maximum 3.75E-02 9.41 E-05 8.70E-05 2.13E-03 6.11E-05 9.54E-05

Sum 2.73E-01 1.15E-02 1.72E-02 2.59E-01 3.05E-02 4.40E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

ConAidence Level(95.0%) 7.51 E-05 5.13E-07 4.63E-07 9.33E-06 4.72E-07 7.16E-07



Table G-9 ADD Inhalation of Mo for Terrestrial Animals at ASG



Statistical data White-Aooted mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 3.43E-05 6.74E-06 7.49E-06 3.79E-05 7.18E-06 9.11 E-06

Standard Error 1.18E-06 2.79E-07 7.85E-08 1.26E-06 2.61 E-08 4.13E-08

Median 2.69E-05 5.33E-06 7.00E-06 3.20E-05 7.09E-06 8.96E-06

Standard Deviation 3.72E-05 8.81 E-06 2.48E-06 3.97E-05 8.25E-07 1.31 E-06

Sample Variance 1.38E-09 7.77E-11 6.16E-12 1.58E-09 6.80E-13 1.71E-12

Kurtosis 1.12E+02 2.87E+02 8.42E+00 3.56E+02 3.47E-01 7.52E-01

Skewness 8.98E+00 1.45E+01 2.13E+00 1.68E+01 4.86E-01 6.23E-01

Range 6.18E-04 2.05E-04 2.37E-05 9.65E-04 6.33E-06 8.48E-06

Minimum 7.38E-06 2.03E-06 3.42E-06 1.37E-05 4.99E-06 5.96E-06

Maximum 6.26E-04 2.07E-04 2.72E-05 9.78E-04 1.13E-05 1.44E-05

Sum 3.43E-02 6.74E-03 7.49E-03 3.79E-02 7.18E-03 9.11E-03

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 2.31 E-06 5.47E-07 1.54E-07 2.46E-06 5.12E-08 8.10E-08



Table G-10 EHQ of Mo for Terrestrial Slants and Aquatic Species at ASG



Aquatic Animals

Statistical data MountainWhiteAish PaciAicLamprey RainbowTrout(adults) WhiteSturgeon

Mean 3.46E-05 3.45E-05 2.98E-02 3.46E-05

Standard Error 2.60E-07 2.56E-07 2.18E-04 2.59E-07

Median 3.00E-05 3.00E-05 2.90E-02 3.00E-05

Standard Deviation 8.21 E-06 8.10E-06 6.89E-03 8.18E-06

Sample Variance 6.75E-11 6.56E-11 4.75E-05 6.69E-11

Kurtosis 4.71 E-01 7.77E-01 6.45E-01 1.35E+00

Skewness 4.80E-01 6.34E-01 7.06E-01 6.93E-01

Range 5.00E-05 5.00E-05 4.45E-02 7.00E-05

Minimum 2.00E-05 2.00E-05 1.42E-02 1.00E-05

Maximum 7.00E-05 7.00E-05 5.87E-02 8.00E-05

Sum 3.46E-02 3.45E-02 2.98E+01 3.46E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 5.10E-07 5.03E-07 4.28E-04 5.08E-07



Table G-11 Cp of Mo for Terrestrial Slants and Aquatic Species at ASG

Statistical data

Terrestrial Plants Aquatic Plants

Rushes Slender blue flag Fern Periphyton Phytoplankton Watermillfoil

Mean 3.44E+00 3.52E+00 3.54E+00 2.93E+03 2.88E+03 2.89E+03

Standard Error 9.75E-02 1.14E-01 1.19E-01 2.11E+01 2.08E+01 2.10E+01

Median 2.57E+00 2.60E+00 2.58E+00 2.85E+03 2.81E+03 2.80E+03

Standard Deviation 3.08E+00 3.59E+00 3.78E+00 6.66E+02 6.58E+02 6.63E+02

Sample Variance 9.51E+00 1.29E+01 1.43E+01 4.44E+05 4.32E+05 4.40E+05

Kurtosis 1.44E+01 4.05E+01 7.66E+01 3.27E+00 1.22E+00 4.59E-01

Skewness 3.05E+00 4.92E+00 6.16E+00 1.05E+00 7.71 E-01 6.97E-01

Range 2.85E+01 4.65E+01 6.48E+01 6.11E+03 4.62E+03 4.06E+03

Minimum 1.68E-01 2.01 E-01 2.27E-01 1.50E+03 1.47E+03 1.37E+03

Maximum 2.87E+01 4.67E+01 6.50E+01 7.61E+03 6.09E+03 5.43E+03

Sum 3.44E+03 3.52E+03 3.54E+03 2.93E+06 2.88E+06 2.89E+06

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

ConAidence Level (95.0%) 1.91 E-01 2.23E-01 2.34E-01 4.13E+01 4.08E+01 4.11E+01



Statistical data

Aquatic Animals

MountainWhitefish PacificLamprey RainbowTrout(adults) WhiteSturgeon

Mean 1.44E+00 1.44E+00 1.45E+00 1.44E+00

Standard Error 1.62E-02 1.79E-02 1.70E-02 1.74E-02

Median 1.37E+00 1.35E+00 1.35E+00 1.34E+00

Standard Deviation 5.13E-01 5.66E-01 5.38E-01 5.51 E-01

Sample Variance 2.63E-01 3.21 E-01 2.90E-01 3.04E-01

Kurtosis 1.06E+00 4.73E+00 1.29E+00 2.02E+00

Skewness 8.81E-01 1.52E+00 1.02E+00 1.12E+00

Range 3.20E+00 4.89E+00 3.40E+00 3.99E+00

Minimum 3.72E-01 4.60E-01 4.58E-01 4.36E-01

Maximum 3.57E+00 5.35E+00 3.86E+00 4.42E+00

Sum 1.44E+03 1.44E+03 1.45E+03 1.44E+03

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 3.18E-02 3.51 E-02 3.34E-02 3.42E-02



Table G-12 EHQ of Ta for Terrestrial Animals at ASG



Statistical data White-footed mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 7.17E-01 1.03E+00 2.36E+00 6.34E-01 1.02E-03 3.58E-03

Standard Error 5.09E-02 3.58E-02 3.02E-02 1.17E-02 8.15E-06 2.77E-05

Median 5.21E-01 8.37E-01 2.18E+00 5.61E-01 9.79E-04 3.49E-03

Standard Deviation 1.61E+00 1.13E+00 9.56E-01 3.69E-01 2.58E-04 8.76E-04

Sample Variance 2.59E+00 1.28E+00 9.13E-01 1.36E-01 6.64E-08 7.67E-07

Kurtosis 3.33E+02 3.04E+02 4.17E+00 1.68E+02 6.82E-01 5.91E-01

Skewness 1.72E+01 1.45E+01 1.56E+00 9.42E+00 7.49E-01 6.92E-01

Range 3.45E+01 2.71E+01 7.34E+00 7.83E+00 1.65E-03 5.97E-03

Minimum 1.24E-01 2.14E-01 4.32E-01 2.27E-01 3.84E-04 1.36E-03

Maximum 3.46E+01 2.73E+01 7.78E+00 8.06E+00 2.03E-03 7.33E-03

Sum 7.17E+02 1.03E+03 2.36E+03 6.34E+02 1.02E+00 3.58E+00

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 9.98E-02 7.02E-02 5.93E-02 2.29E-02 1.60E-05 5.43E-05



Table G-13 ADD Ingestion of Ta for Terrestrial Animals at ASG



Statistical data White-footed mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 2.79E-01 5.65E-02 2.10E-01 3.23E-01 1.16E-02 4.07E-02

Standard Error 1.98E-02 1.97E-03 2.69E-03 5.95E-03 9.29E-05 3.16E-04

Median 2.02E-01 4.60E-02 1.94E-01 2.86E-01 1.11 E-02 3.97E-02

Standard Deviation 6.26E-01 6.22E-02 8.51 E-02 1.88E-01 2.94E-03 9.98E-03

Sample Variance 3.92E-01 3.87E-03 7.23E-03 3.54E-02 8.63E-06 9.97E-05

Kurtosis 3.33E+02 3.04E+02 4.17E+00 1.68E+02 6.84E-01 5.91E-01

Skewness 1.72E+01 1.45E+01 1.56E+00 9.42E+00 7.49E-01 6.92E-01

Range 1.34E+01 1.49E+00 6.54E-01 3.99E+00 1.88E-02 6.80E-02

Minimum 4.74E-02 1.17E-02 3.85E-02 1.16E-01 4.33E-03 1.54E-02

Maximum 1.35E+01 1.50E+00 6.92E-01 4.11E+00 2.31E-02 8.35E-02

Sum 2.79E+02 5.65E+01 2.10E+02 3.23E+02 1.16E+01 4.07E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 3.88E-02 3.86E-03 5.28E-03 1.17E-02 1.82E-04 620E-04



Table G-14 ADD dermal Absorption of Ta for Terrestrial Animals at ASG



Statistical data White-footed mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 2.55E-04 1.37E-05 2.14E-05 3.04E-04 3.48E-05 4.88E-05

Standard Error 1.34E-05 3.89E-07 1.47E-06 6.09E-06 2.84E-07 4.29E-07

Median 1.93E-04 1.11 E-05 1.83E-05 2.57E-04 3.37E-05 4.70E-05

Standard Deviation 4.25E-04 1.23E-05 4.65E-05 1.93E-04 8.97E-06 1.36E-05

Sample Variance 1.80E-07 1.51E-10 2.16E-09 3.71E-08 8.05E-11 1.84E-10

Kurtosis 4.21E+02 1.17E+02 9.26E+02 4.75E+01 1.62E+00 7.11E+00

Skewness 1.83E+01 8.32E+00 2.99E+01 4.96E+00 1.00E+00 1.59E+00

Range 1.08E-02 2.31 E-04 1.46E-03 2.87E-03 6.54E-05 1.45E-04

Minimum 2.66E-05 1.45E-06 5.62E-06 7.38E-05 1.53E-05 2.22E-05

Maximum 1.09E-02 2.32E-04 1.46E-03 2.94E-03 8.07E-05 1.67E-04

Sum 2.55E-01 1.37E-02 2.14E-02 3.04E-01 3.48E-02 4.88E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 2.64E-05 7.64E-07 2.89E-06 1.20E-05 5.57E-07 8.43E-07



Table G-15 ADD Inhalation of Ta for Terrestrial Animals at ASG

Statistical data Lizards Mallard American kestrel Eastern garter snake Woodhouse's toad Cottontail rabbit

Mean 3.16E-06 1.07E-05 1.77E-05 2.48E-06 1.50E-07 1.45E-05

Standard Error 2.60E-08 3.73E-08 7.04E-08 6.59E-08 2.73E-08 1.41 E-07

Median 3.05E-06 1.06E-05 1.76E-05 2.06E-06 6.51 E-08 1.37E-05

Standard Deviation 8.22E-07 1.18E-06 2.23E-06 2.09E-06 8.62E-07 4.45E-06

Sample Variance 6.75E-13 1.39E-12 4.96E-12 4.35E-12 7.44E-13 1.98E-11

Kurtosis 1.90E+00 -4.53E-04 8.86E-02 1.86E+02 7.64E+02 8.50E+00

Skewness 9.92E-01 2.51E-01 3.16E-01 1.10E+01 2.63E+01 1.94E+00

Range 5.61 E-06 7.28E-06 1.53E-05 4.40E-05 2.56E-05 4.72E-05

Minimum 1.53E-06 7.66E-06 1.13E-05 6.66E-07 2.52E-09 5.44E-06

Maximum 7.15E-06 1.49E-05 2.66E-05 4.46E-05 2.56E-05 5.26E-05

Sum 3.16E-03 1.07E-02 1.77E-02 2.48E-03 1.50E-04 1.45E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 5.10E-08 7.32E-08 1.38E-07 1.29E-07 5.35E-08 2.76E-07



Statistical data White-footed mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owl

Mean 4.38E-05 7.65E-06 8.51E-06 4.22E-05 8.14E-06 1.04E-05

Standard Error 2.29E-06 4.07E-07 8.58E-08 1.38E-06 3.69E-08 5.48E-08

Median 3.17E-05 5.89E-06 8.00E-06 3.65E-05 8.04E-06 1.02E-05

Standard Deviation 7.24E-05 1.29E-05 2.71 E-06 4.36E-05 1.17E-06 1.73E-06

Sample Variance 5.24E-09 1.65E-10 7.36E-12 1.90E-09 1.36E-12 3.01E-12

Kurtosis 1.61E+02 5.04E+02 4.12E+00 6.76E+02 4.67E-02 8.42E-01

Skewness 1.13E+01 2.01E+01 1.51E+00 2.38E+01 4.94E-01 7.13E-01

Range 1.37E-03 3.47E-04 2.09E-05 1.28E-03 6.94E-06 1.26E-05

Minimum 1.03E-05 1.67E-06 3.22E-06 1.57E-05 5.34E-06 5.96E-06

Maximum 1.38E-03 3.48E-04 2.42E-05 1.29E-03 1.23E-05 1.86E-05

Sum 4.38E-02 7.65E-03 8.51 E-03 4.22E-02 8.14E-03 1.04E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 4.49E-06 7.98E-07 1.68E-07 2.71 E-06 7.25E-08 1.08E-07



Table G-15 EHQ of Ta for Terrestrial Slants and Aquatic Species at ASG

Statistical data

Terrestrial Plants Aquatic Plants

Rushes Slender blue flag Fern Periphyton Phytoplankton Watermilifoil

Mean 2.95E-01 2.90E-01 2.83E-01 1.02E-03 1.02E-03 1.03E-03

Standard Error 5.38E-02 3.40E-02 3.80E-02 7.26E-06 7.08E-06 7.52E-06

Median 1.34E-01 1.36E-01 1.23E-01 9.90E-04 1.00E-03 1.00E-03

Standard Deviation 1.70E+00 1.07E+00 1.20E+00 2.30E-04 2.24E-04 2.38E-04

Sample Variance 2.90E+00 1.15E+00 1.45E+00 5.28E-08 5.02E-08 5.65E-08

Kurtosis 8.79E+02 5.56E+02 6.71E+02 5.07E-01 8.16E-01 6.45E-01

Skewness 2.88E+01 2.14E+01 2.42E+01 5.88E-01 7.45E-01 7.06E-01

Range 5.23E+01 2.95E+01 3.46E+01 1.54E-03 1.59E-03 1.53E-03

Minimum 6.00E-03 4.00E-03 3.00E-03 5.10E-04 5.40E-04 4.90E-04

Maximum 5.23E+01 2.95E+01 3.46E+01 2.05E-03 2.13E-03 2.02E-03

Sum 2.95E+02 2.90E+02 2.83E+02 1.02E+00 1.02E+00 1.03E+00

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level(95.0%) 1.06E-01 6.66E-02 7.46E-02 1.43E-05 1.39E-05 1.48E-05



Aquatic Animals

Statistical data MountainWhitefish PacificLamprey RainbowTrout(adults) WhiteSturgeon

Mean 1.08E-02 1.09E-02 1.15E-02 1.09E-02

Standard Error 7.71 E-05 7.52E-05 8.43E-05 7.73E-05

Median 1.05E-02 1.06E-02 1.12E-02 1.06E-02

Standard Deviation 2.44E-03 2.38E-03 2.67E-03 2.44E-03

Sample Variance 5.95E-06 5.66E-06 7.11 E-06 5.97E-06

Kurtosis 5.04E-01 8.21 E-01 6.47E-01 1.20E+00

Skewness 5.88E-01 7.46E-01 7.07E-01 7.67E-01

Range 1.63E-02 1.70E-02 1.72E-02 2.02E-02

Minimum 5.40E-03 5.69E-03 5.48E-03 4.54E-03

Maximum 2.17E-02 2.27E-02 2.27E-02 2.47E-02

Sum 1.08E+01 1.09E+01 1.15E+01 1.09E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level(95.0%) 1.51 E-04 1.48E-04 1.65E-04 1.52E-04



Table G-16 Cp of Ta for Terrestrial Slants and Aquatic Species at ASG

Statistical data

Terrestrial Plants Aquatic Plants

Rushes Slender blue flag Fern Periphyton Phytoplankton Watermillfoil

Mean 2.95E-01 2.90E-01 2.83E-01 7.60E+00 7.61E+00 7.64E+00

Standard Error 5.38E-02 3.40E-02 3.80E-02 5.40E-02 5.27E-02 5.59E-02

Median 1.34E-01 1.36E-01 1.23E-01 7.35E+00 7.41E+00 7.44E+00

Standard Deviation 1.70E+00 1.07E+00 1.20E+00 1.71E+00 1.67E+00 1.77E+00

Sample Variance 2.90E+00 1.15E+00 1.45E+00 2.91E+00 2.78E+00 3.13E+00

Kurtosis 8.79E+02 5.56E+02 6.71E+02 4.79E-01 7.99E-01 6.41 E-01

Skewness 2.88E+01 2.14E+01 2.42E+01 5.79E-01 7.48E-01 7.04E-01

Range 5.23E+01 2.95E+01 3.46E+01 1.14E+01 1.18E+01 1.15E+01

Minimum 6.00E-03 4.00E-03 3.00E-03 3.80E+00 3.99E+00 3.64E+00

Maximum 5.23E+01 2.95E+01 3.46E+01 1.52E+01 1.58E+01 1.51E+01

Sum 2.95E+02 2.90E+02 2.83E+02 7.60E+03 7.61E+03 7.64E+03

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.06E-01 6.66E-02 7.46E-02 1.06E-01 1.04E-01 1.10E-01



Aquatic Animals

Statistical data MountainWhitefish PacificLamprey Rainbowlrout(adults) WhiteSturgeon

Mean 1.08E-02 1.09E-02 1.15E-02 1.09E-02

Standard Error 7.71 E-05 7.52E-05 8.43E-05 7.73E-05

Median 1.05E-02 1.06E-02 1.12E-02 1.06E-02

Standard Deviation 2.44E-03 2.38E-03 2.67E-03 2.44E-03

Sample Variance 5.95E-06 5.66E-06 7.11 E-06 5.97E-06

Kurtosis 5.04E-01 8.21 E-01 6.47E-01 1.20E+00

Skewness 5.88E-01 7.46E-01 7.07E-01 7.67E-01

Range 1.63E-02 1.70E-02 1.72E-02 2.02E-02

Minimum 5.40E-03 5.69E-03 5.48E-03 4.54E-03

Maximum 2.17E-02 2.27E-02 2.27E-02 2.47E-02

Sum 1.08E+01 1.09E+01 1.15E+01 1.09E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.51 E-04 1.48E-04 1.65E-04 1.52E-04



Table G-18 EHQ of DU for Terrestrial Animals at ASG

Statistical data Lizards Mallard American kestrel Eastern garter snake Woodhouse's toad Cottontail rabbit

Mean 1.05E-02 8.75E-06 1.07E-03 1.85E-03 4.35E-03 1.74E-02

Standard Error 8.60E-05 4.21 E-07 6.67E-05 2.39E-04 6.33E-04 1.14E-03

Median 9.58E-03 4.53E-06 4.40E-04 6.92E-04 1.97E-03 7.70E-03

Standard Deviation 2.72E-03 1.33E-05 2.11 E-03 7.54E-03 2.00E-02 3.61 E-02

Sample Variance 7.40E-06 1.77E-10 4.45E-06 5.69E-05 4.01 E-04 1.31 E-03

Kurtosis 4.41E+01 3.09E+01 6.49E+01 3.13E+02 6.47E+02 7.21E+01

Skewness 5.66E+00 4.77E+00 6.81E+00 1.66E+01 2.38E+01 7.36E+00

Range 3.55E-02 1.48E-04 2.88E-02 1.61E-01 5.69E-01 5.16E-01

Minimum 9.30E-03 1.69E-07 1.20E-04 2.39E-04 1.40E-03 1.88E-03

Maximum 4.48E-02 1.48E-04 2.89E-02 1.62E-01 5.70E-01 5.18E-01

Sum 1.05E+01 8.75E-03 1.07E+00 1.85E+00 4.35E+00 1.74E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.69E-04 8.27E-07 1.31 E-04 4.68E-04 1.24E-03 2.24E-03



Statistical data White-footed mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owi

Mean 2.79E-02 1.12E-02 3.47E-02 7.23E-02 2.28E-04 1.07E-03

Standard Error 2.42E-03 1.47E-03 2.98E-03 2.54E-03 1.48E-05 8.37E-05

Median 1.17E-02 4.20E-03 1.19E-02 5.43E-02 9.00E-05 4.24E-04

Standard Deviation 7.66E-02 4.65E-02 9.42E-02 8.03E-02 4.67E-04 2.65E-03

Sample Variance 5.87E-03 2.16E-03 8.88E-03 6.45E-03 2.18E-07 7.00E-06

Kurtosis 2.23E+02 4.29E+02 1.38E+02 3.72E+02 6.73E+01 9.93E+01

Skewness 1.32E+01 1.90E+01 1.01E+01 1.62E+01 6.83E+00 8.74E+00

Range 1.51E+00 1.17E+00 1.70E+00 2.00E+00 6.53E-03 4.05E-02

Minimum 2.37E-03 6.83E-04 9.11 E-04 4.57E-02 5.44E-06 9.38E-05

Maximum 1.51E+00 1.17E+00 1.70E+00 2.05E+00 6.53E-03 4.06E-02

Sum 2.79E+01 1.12E+01 3.47E+01 7.23E+01 2.28E-01 1.07E+00

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 4.75E-03 2.88E-03 5.85E-03 4.98E-03 2.90E-05 1.64E-04



Table G-19 ADD Ingestion of DU for Terrestrial Animals at ASG

Statistical data Lizards Mallard American kestrel Eastern garter snake Woodhouse's toad Cottontail rabbit

Mean 9.35E-03 1.07E-04 1.52E-02 1.67E-03 3.91 E-03 4.26E-02

Standard Error 7.71 E-05 5.92E-06 9.55E-04 2.15E-04 5.70E-04 2.80E-03

Median 8.57E-03 4.66E-05 6.27E-03 6.23E-04 1.76E-03 1.89E-02

Standard Deviation 2.44E-03 1.87E-04 3.02E-02 6.79E-03 1.80E-02 8.85E-02

Sample Variance 5.94E-06 3.50E-08 9.12E-04 4.61 E-05 3.25E-04 7.84E-03

Kurtosis 4.50E+01 3.32E+01 6.50E+01 3.13E+02 6.47E+02 7.21E+01

Skewness 5.73E+00 5.02E+00 6.82E+00 1.66E+01 2.38E+01 7.36E+00

Range 3.20E-02 2.07E-03 4.12E-01 1.45E-01 5.12E-01 1.26E+00

Minimum 8.37E-03 1.64E-06 1.71E-03 2.15E-04 1.26E-03 4.59E-03

Maximum 4.04E-02 2.07E-03 4.14E-01 1.45E-01 5.13E-01 1.27E+00

Sum 9.35E+00 1.07E-01 1.52E+01 1.67E+00 3.91E+00 4.26E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.51 E-04 1.16E-05 1.87E-03 4.21 E-04 1.12E-03 5.49E-03



Statistical data White-footed mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owi

Mean 2.24E-03 2.18E-02 7.58E-02 2.40E-01 3.25E-03 1.53E-02

Standard Error 3.08E-04 2.86E-03 6.52E-03 8.44E-03 2.12E-04 1.20E-03

Median 7.81E-04 8.17E-03 2.59E-02 1.80E-01 1.28E-03 6.06E-03

Standard Deviation 9.73E-03 9.04E-02 2.06E-01 2.67E-01 6.69E-03 3.79E-02

Sample Variance 9.46E-05 8.18E-03 4.25E-02 7.12E-02 4.48E-05 1.43E-03

Kurtosis 2.21E+02 4.29E+02 1.38E+02 3.72E+02 6.72E+01 9.93E+01

Skewness 1.34E+01 1.90E+01 1.01E+01 1.62E+01 6.83E+00 8.74E+00

Range 2.02E-01 2.28E+00 3.71E+00 6.66E+00 9.35E-02 5.79E-01

Minimum 1.08E-04 1.32E-03 1.99E-03 1.52E-01 7.63E-05 1.34E-03

Maximum 2.02E-01 2.28E+00 3.71E+00 6.81E+00 9.35E-02 5.81 E-01

Sum 2.24E+00 2.18E+01 7.58E+01 2.40E+02 3.25E+00 1.53E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 6.04E-04 5.61 E-03 1.28E-02 1.66E-02 4.15E-04 2.35E-03



Table G-20 ADD Dermal Absorption of DU for Terrestrial Animals at ASG



Statistical data White-footed mouse White-tailed deer Beaver Indiana bat Bald eagle Barred owi

Mean 2.31 E-04 4.87E-06 6.50E-06 8.96E-05 1.30E-05 1.65E-05

Standard Error 1.37E-04 4.86E-07 4.38E-07 7.95E-06 7.64E-07 1.06E-06

Median 2.40E-05 1.35E-06 2.20E-06 3.06E-05 4.54E-06 5.68E-06

Standard Deviation 4.33E-03 1.54E-05 1.39E-05 2.51 E-04 2.42E-05 3.34E-05

Sample Variance 1.87E-05 2.36E-10 1.92E-10 6.31 E-08 5.84E-10 1.12E-09

Kurtosis 9.82E+02 1.03E+02 8.45E+01 3.00E+02 2.13E+01 5.06E+01

Skewness 3.12E+01 9.19E+00 7.36E+00 1.46E+01 4.08E+00 5.81E+00

Range 1.36E-01 2.22E-04 2.24E-04 5.85E-03 2.26E-04 4.56E-04

Minimum 2.38E-07 1.42E-08 3.01 E-08 4.70E-08 5.09E-08 2.39E-08

Maximum 1.36E-01 2.22E-04 2.24E-04 5.85E-03 2.26E-04 4.56E-04

Sum 2.31 E-01 4.87E-03 6.50E-03 8.96E-02 1.30E-02 1.65E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 2.69E-04 9.54E-07 8.60E-07 1.56E-05 1.50E-06 2.07E-06



Table G-21 EHQ of DU for Terrestrial Slants and Aquatic Species at ASG

Statistical data

Terrestrial Plants Aquatic Plants

Rushes Slender blue flag Fern Periphyton Phytoplankton Watermillfoil

Mean 3.34E-02 2.68E-02 3.41 E-02 8.07E-04 8.10E-04 8.72E-04

Standard Error 3.34E-03 1.81 E-03 3.00E-03 4.36E-05 4.64E-05 4.95E-05

Median 8.00E-03 9.00E-03 8.00E-03 3.60E-04 3.90E-04 3.90E-04

Standard Deviation 1.06E-01 5.73E-02 9.47E-02 1.38E-03 1.47E-03 1.57E-03

Sample Variance 1.12E-02 3.28E-03 8.97E-03 1.90E-06 2.15E-06 2.45E-06

Kurtosis 1.54E+02 4.20E+01 8.78E+01 6.50E+01 1.10E+02 4.49E+01

Skewness 1.06E+01 5.58E+00 7.93E+00 6.31E+00 7.91E+00 5.58E+00

Range 1.99E+00 6.43E-01 1.52E+00 2.13E-02 2.69E-02 2.01E-02

Minimum 0.00E+00 0.00E+00 0.00E+00 1.00E-05 1.00E-05 1.00E-05

Maximum 1.99E+00 6.43E-01 1.52E+00 2.13E-02 2.69E-02 2.01E-02

Sum 3.34E+01 2.68E+01 3.41E+01 8.07E-01 8.10E-01 8.72E-01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level(95.0%) 6.56E-03 3.55E-03 5.88E-03 8.56E-05 9.10E-05 9.72E-05



Aquatic Animals

Statistical data MountainWhitefish PacificLamprey Rainbowlrout(adults) WhiteSturgeon

Mean 7.69E-02 7.72E-02 8.31 E-02 7.35E-02

Standard Error 4.15E-03 4.42E-03 4.72E-03 3.82E-03

Median 3.50E-02 3.70E-02 3.70E-02 3.70E-02

Standard Deviation 1.31 E-01 1.40E-01 1.49E-01 1.21 E-01

Sample Variance 1.73E-02 1.95E-02 2.23E-02 1.46E-02

Kurtosis 6.50E+01 1.10E+02 4.49E+01 4.03E+01

Skewness 6.31E+00 7.91E+00 5.58E+00 5.21E+00

Range 2.03E+00 2.56E+00 1.91E+00 1.48E+00

Minimum 1.00E-03 1.00E-03 1.00E-03 1.00E-03

Maximum 2.03E+00 2.56E+00 1.91E+00 1.48E+00

Sum 7.69E+01 7.72E+01 8.31E+01 7.35E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 8.15E-03 8.67E-03 9.26E-03 7.50E-03



Table G-22 Cp of DU for Terrestrial Slants and Aquatic Species at ASG

lerrestrial Plants Aquatic Plants

Statistical data Rushes Slender blue flag Fern Periphyton Phytoplankton Watermilifoil

Mean 1.67E-02 1.34E-02 1.70E-02 7.42E-01 7.46E-01 8.02E-01

Standard Error 1.67E-03 9.05E-04 1.50E-03 4.00E-02 4.26E-02 4.56E-02

Median 4.00E-03 4.00E-03 4.00E-03 3.34E-01 3.53E-01 3.57E-01

Standard Deviation 5.29E-02 2.86E-02 4.74E-02 1.27E+00 1.35E+00 1.44E+00

Sample Variance 2.80E-03 8.20E-04 2.24E-03 1.60E+00 1.81E+00 2.08E+00

Kurtosis 1.54E+02 4.19E+01 8.77E+01 6.48E+01 1.08E+02 4.54E+01

Skewness 1.06E+01 5.57E+00 7.92E+00 6.29E+00 7.84E+00 5.60E+00

Range 9.95E-01 3.21 E-01 7.58E-01 1.95E+01 2.46E+01 1.86E+01

Minimum 0.00E+00 0.00E+00 0.00E+00 8.10E-03 1.08E-02 6.40E-03

Maximum 9.95E-01 3.21 E-01 7.58E-01 1.95E+01 2.46E+01 1.86E+01

Sum 1.67E+01 1.34E+01 1.70E+01 7.42E+02 7.46E+02 8.02E+02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 3.28E-03 1.78E-03 2.94E-03 7.85E-02 8.36E-02 8.94E-02



Aquatic Animals

Statistical data MountainWhitefish PacificLamprey Rainbowlrout(adults) WhiteSturgeon

Mean 6.07E-02 1.62E-02 5.09E-03 1.48E-02

Standard Error 3.20E-03 8.96E-04 3.69E-04 7.32E-04

Median 2.75E-02 6.90E-03 1.70E-03 7.15E-03

Standard Deviation 1.01E-01 2.83E-02 1.17E-02 2.31E-02

Sample Variance 1.02E-02 8.03E-04 1.36E-04 5.35E-04

Kurtosis 6.13E+01 4.32E+01 1.48E+02 2.00E+01

Skewness 6.06E+00 5.30E+00 9.40E+00 3.90E+00

Range 1.55E+00 3.84E-01 2.30E-01 2.26E-01

Minimum 7.00E-04 2.00E-04 0.00E+00 2.00E-04

Maximum 1.55E+00 3.84E-01 2.30E-01 2.26E-01

Sum 6.07E+01 1.62E+01 5.09E+00 1.48E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 6.28E-03 1.76E-03 7.24E-04 1.44E-03



Table G-23 EHQ of Cr (VI) for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owl Desert tortoises Kit fox

Mean 5.52E-02 5.63E-02 6.28E-01 1.86E-01 3.37E-02 3.85E-02

Standard Error 3.83E-04 4.50E-04 1.64E-03 1.07E-03 6.13E-04 2.48E-04

Median 5.35E-02 5.43E-02 6.25E-01 1.82E-01 2.98E-02 3.74E-02

Standard Deviation 1.21 E-02 1.42E-02 5.18E-02 3.40E-02 1.94E-02 7.84E-03

Sample Variance 1.47E-04 2.03E-04 2.68E-03 1.15E-03 3.76E-04 6.15E-05

Kurtosis 1.25E+00 5.17E+02 2.37E-01 2.80E-01 2.04E+00 7.32E-01

Skewness 9.01 E-01 1.96E+01 4.68E-01 5.44E-01 1.28E+00 8.07E-01

Range 8.01E-02 3.94E-01 3.11E-01 2.21E-01 1.20E-01 5.17E-02

Minimum 2.86E-02 4.34E-02 5.00E-01 9.36E-02 6.35E-04 2.25E-02

Maximum 1.09E-01 4.38E-01 8.12E-01 3.15E-01 1.21E-01 7.41E-02

Sum 5.52E+01 5.63E+01 6.28E+02 1.86E+02 3.37E+01 3.85E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level(95.0%) 7.51 E-04 8.83E-04 3.21 E-03 2.11 E-03 1.20E-03 4.87E-04



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 7.01E-02 1.51E-01 3.51E-02 4.19E-02 5.00E-01

Standard Error 6.49E-04 2.63E-03 1.76E-04 4.08E-04 2.33E-03

Median 6.69E-02 1.12E-01 3.43E-02 3.92E-02 4.91E-01

Standard Deviation 2.05E-02 8.30E-02 5.56E-03 1.29E-02 7.38E-02

Sample Variance 4.21 E-04 6.90E-03 3.09E-05 1.67E-04 5.44E-03

Kurtosis 7.27E+01 1.25E+01 1.82E+00 2.24E+01 8.46E-01

Skewness 5.11E+00 2.86E+00 9.68E-01 3.21E+00 6.48E-01

Range 3.75E-01 7.66E-01 4.49E-02 1.65E-01 4.77E-01

Minimum 3.21E-02 9.12E-02 2.27E-02 2.05E-02 3.18E-01

Maximum 4.07E-01 8.57E-01 6.76E-02 1.85E-01 7.95E-01

Sum 7.01E+01 1.51E+02 3.51E+01 4.19E+01 5.00E+02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level(95.0%) 1.27E-03 5.15E-03 3.45E-04 8.01 E-04 4.58E-03



Table G-24 ADD Ingestion of Cr(VI) for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owi Desert tortoises Kit fox

Mean 1.33E-01 4.82E-01 8.36E-02 2.48E-02 4.48E-03 6.67E-02

Standard Error 9.23E-04 3.86E-03 2.18E-04 1.43E-04 8.16E-05 4.29E-04

Median 1.29E-01 4.65E-01 8.31 E-02 2.43E-02 3.96E-03 6.46E-02

Standard Deviation 2.92E-02 1.22E-01 6.88E-03 4.52E-03 2.58E-03 1.36E-02

Sample Variance 8.51 E-04 1.49E-02 4.74E-05 2.04E-05 6.65E-06 1.84E-04

Kurtosis 1.25E+00 5.16E+02 2.37E-01 2.80E-01 2.04E+00 7.32E-01

Skewness 9.01 E-01 1.96E+01 4.68E-01 5.44E-01 1.28E+00 8.07E-01

Range 1.93E-01 3.38E+00 4.14E-02 2.95E-02 1.60E-02 8.94E-02

Minimum 6.88E-02 3.71 E-01 6.65E-02 1.24E-02 8.45E-05 3.89E-02

Maximum 2.62E-01 3.75E+00 1.08E-01 4.19E-02 1.61E-02 1.28E-01

Sum 1.33E+02 4.82E+02 8.36E+01 2.48E+01 4.48E+00 6.67E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.81 E-03 7.57E-03 4.27E-04 2.80E-04 1.60E-04 8.42E-04



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 6.45E-02 2.01 E-02 4.67E-03 2.74E-01 6.65E-02

Standard Error 5.97E-04 3.49E-04 2.34E-05 2.67E-03 3.10E-04

Median 6.16E-02 1.48E-02 4.56E-03 2.57E-01 6.53E-02

Standard Deviation 1.89E-02 1.10E-02 7.40E-04 8.46E-02 9.81 E-03

Sample Variance 3.56E-04 1.22E-04 5.47E-07 7.15E-03 9.63E-05

Kurtosis 7.27E+01 1.25E+01 1.82E+00 2.24E+01 8.46E-01

Skewness 5.11E+00 2.86E+00 9.68E-01 3.21E+00 6.48E-01

Range 3.45E-01 1.02E-01 5.97E-03 1.08E+00 6.34E-02

Minimum 2.95E-02 1.21 E-02 3.01 E-03 1.34E-01 4.23E-02

Maximum 3.74E-01 1.14E-01 8.99E-03 1.21E+00 1.06E-01

Sum 6.45E+01 2.01E+01 4.67E+00 2.74E+02 6.65E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.17E-03 6.85E-04 4.59E-05 5.25E-03 6.09E-04



Table G-25 ADD Dermal Absorption of Cr (VI) for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owl Desert tortoises Kit fox

Mean 2.03E-05 1.43E-04 7.15E-05 2.33E-05 0.00E+00 1.92E-05

Standard Error 2.27E-07 3.91 E-06 5.69E-07 1.68E-07 0.00E+00 1.95E-07

Median 1.90E-05 1.22E-04 6.91 E-05 2.28E-05 0.00E+00 1.81 E-05

Standard Deviation 7.17E-06 1.24E-04 1.80E-05 5.30E-06 0.00E+00 6.15E-06

Sample Variance 5.15E-11 1.53E-08 3.23E-10 2.81 E-11 0.00E+00 3.79E-11

Kurtosis 6.61E+00 2.26E+02 1.02E+00 8.25E-01 #DIV/O! 2.50E+00

Skewness 1.65E+00 1.24E+01 8.20E-01 6.46E-01 #DIV/O! 1.18E+00

Range 6.82E-05 2.67E-03 1.17E-04 3.68E-05 0.00E+00 4.49E-05

Minimum 5.78E-06 4.09E-05 3.13E-05 1.12E-05 0.00E+00 6.37E-06

Maximum 7.40E-05 2.71 E-03 1.48E-04 4.80E-05 0.00E+00 5.13E-05

Sum 2.03E-02 1.43E-01 7.15E-02 2.33E-02 0.00E+00 1.92E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 4.45E-07 7.67E-06 1.12E-06 3.29E-07 0.00E+00 3.82E-07



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 6.69E-06 0.00E+00 7.90E-05 1.08E-04 4.74E-05

Standard Error 2.79E-07 0.00E+00 7.69E-07 2.72E-06 4.45E-07

Median 5.88E-06 0.00E+00 7.52E-05 9.59E-05 4.56E-05

Standard Deviation 8.81 E-06 0.00E+00 2.43E-05 8.61 E-05 1.41 E-05

Sample Variance 7.77E-11 0.00E+00 5.92E-10 7.42E-09 1.98E-10

Kurtosis 8.19E+02 #DIV/O! 2.92E+00 3.56E+01 1.88E+00

Skewness 2.73E+01 #DIV/O! 1.17E+00 3.75E+00 9.79E-01

Range 2.69E-04 0.00E+00 1.97E-04 1.26E-03 1.14E-04

Minimum 2.15E-06 0.00E+00 2.66E-05 1.45E-07 1.68E-05

Maximum 2.72E-04 0.00E+00 2.23E-04 1.26E-03 1.30E-04

Sum 6.69E-03 0.00E+00 7.90E-02 1.08E-01 4.74E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 5.47E-07 0.00E+00 1.51 E-06 5.35E-06 8.73E-07



Table G-26 ADD Inhalation of Cr (VI) for Terrestrial Animals at YSG
411

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owi Desert tortoises Kit fox

Mean 6.23E-06 2.00E-05 1.12E-05 4.87E-06 8.75E-07 6.08E-06

Standard Error 5.51 E-08 3.58E-07 1.77E-07 1.15E-08 2.80E-09 4.20E-08

Median 5.88E-06 1.78E-05 1.09E-05 4.86E-06 8.70E-07 5.87E-06

Standard Deviation 1.74E-06 1.13E-05 5.60E-06 3.65E-07 8.86E-08 1.33E-06

Sample Variance 3.04E-12 1.28E-10 3.14E-11 1.33E-13 7.85E-15 1.76E-12

Kurtosis 6.31E+00 6.63E+01 4.24E-01 1.49E-01 4.59E-01 3.50E+00

Skewness 1.79E+00 6.35E+00 5.61 E-01 1.52E-01 3.66E-01 1.35E+00

Range 1.52E-05 1.73E-04 3.54E-05 2.48E-06 6.78E-07 1.05E-05

Minimum 3.07E-06 8.25E-06 7.50E-09 3.88E-06 6.20E-07 3.33E-06

Maximum 1.83E-05 1.81 E-04 3.54E-05 6.36E-06 1.30E-06 1.39E-05

Sum 6.23E-03 2.00E-02 1.12E-02 4.87E-03 8.75E-04 6.08E-03

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level(95.0%) 1.08E-07 7.03E-07 3.48E-07 2.26E-08 5.50E-09 8.24E-08



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 3.13E-06 1.10E-06 1.51 E-06 1.76E-05 8.07E-06

Standard Error 3.75E-08 1.64E-08 1.18E-08 3.64E-07 4.93E-08

Median 2.87E-06 9.91 E-07 1.47E-06 1.55E-05 7.90E-06

Standard Deviation 1.19E-06 5.18E-07 3.73E-07 1.15E-05 1.56E-06

Sample Variance 1.41 E-12 2.68E-13 1.39E-13 1.33E-10 2.43E-12

Kurtosis 5.21E+01 1.21E+01 1.83E+00 6.83E+00 1.12E+00

Skewness 4.64E+00 2.39E+00 9.62E-01 1.79E+00 8.43E-01

Range 1.92E-05 5.56E-06 2.57E-06 1.02E-04 1.04E-05

Minimum 1.56E-06 2.48E-07 7.08E-07 7.72E-08 4.75E-06

Maximum 2.08E-05 5.81 E-06 3.28E-06 1.02E-04 1.51 E-05

Sum 3.13E-03 1.10E-03 1.51E-03 1.76E-02 8.07E-03

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 7.37E-08 3.22E-08 2.32E-08 7.15E-07 9.67E-08



Table G-27 EHQ of Cr (VI) for Terrestrial Slants at YSG

Statistical data CreosoteBush FoothiliPaloverde lree SaguaroCactus

Mean 1.52E-01 5.43E-02 8.15E-02

Standard Error 4.03E-03 1.56E-03 2.40E-03

Median 1.15E-01 4.20E-02 5.80E-02

Standard Deviation 1.28E-01 4.94E-02 7.59E-02

Sample Variance 1.63E-02 2.44E-03 5.76E-03

Kurtosis 1.10E+01 2.62E+01 3.47E+01

Skewness 2.68E+00 3.89E+00 4.14E+00

Range 1.12E+00 5.80E-01 1.07E+00

Minimum 1.00E-02 3.00E-03 8.00E-03

Maximum 1.13E+00 5.83E-01 1.07E+00

Sum 1.52E+02 5.43E+01 8.15E+01

Count 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 7.92E-03 3.06E-03 4.71 E-03



Table G-28 Cp of Cr (VI) for Terrestrial Slants at YSG

Statistical data CreosoteBush FoothillPaloverde lree SaguaroCactus

Mean 1.67E-01 1.68E-01 1.71 E-01

Standard Error 4.44E-03 4.84E-03 5.04E-03

Median 1.26E-01 1.32E-01 1.23E-01

Standard Deviation 1.40E-01 1.53E-01 1.59E-01

Sample Variance 1.97E-02 2.34E-02 2.54E-02

Kurtosis 1.10E+01 2.62E+01 3.47E+01

Skewness 2.68E+00 3.90E+00 4.14E+00

Range 1.23E+00 1.80E+00 2.24E+00

Minimum 1.10E-02 9.00E-03 1.60E-02

Maximum 1.24E+00 1.81E+00 2.25E+00

Sum 1.67E+02 1.68E+02 1.71E+02

Count 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 8.71 E-03 9.50E-03 9.89E-03



Table G- 29 EHQ of Mo for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owi Desert tortoises

Mean 3.31E+01 1.05E+01 1.80E-01 3.10E-02 2.68E-02

Standard Error 3.19E-01 7.30E-02 5.06E-04 1.60E-04 6.32E-04

Median 3.16E+01 1.02E+01 1.78E-01 3.06E-02 1.69E-02

Standard Deviation 1.01E+01 2.31E+00 1.60E-02 5.06E-03 2.00E-02

Sample Variance 1.02E+02 5.33E+00 2.56E-04 2.56E-05 4.00E-04

Kurtosis 6.31E+00 3.81E+02 1.01E+00 6.16E-01 2.49E+00

Skewness 1.71E+00 1.82E+01 7.89E-01 5.36E-01 1.53E+00

Range 9.39E+01 5.55E+01 1.13E-01 3.47E-02 1.30E-01

Minimum 1.37E+01 9.32E+00 1.46E-01 1.86E-02 5.19E-04

Maximum 1.08E+02 6.48E+01 2.59E-01 5.33E-02 1.30E-01

Sum 3.31E+04 1.05E+04 1.80E+02 3.10E+01 2.68E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 6.26E-01 1.43E-01 9.92E-04 3.14E-04 1.24E-03



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 4.54E+01 6.44E-03 7.16E-03 2.73E+01 5.06E-01

Standard Error 4.91 E-01 2.40E-04 1.21 E-05 4.26E-01 2.98E-03

Median 4.25E+01 3.66E-03 7.10E-03 2.48E+01 4.96E-01

Standard Deviation 1.55E+01 7.59E-03 3.84E-04 1.35E+01 9.43E-02

Sample Variance 2.41E+02 5.76E-05 1.48E-07 1.82E+02 8.89E-03

Kurtosis 5.89E+00 1.11E+02 1.30E+00 2.61E+02 1.66E+00

Skewness 1.72E+00 8.01E+00 9.33E-01 1.23E+01 7.89E-01

Range 1.36E+02 1.37E-01 2.77E-03 3.18E+02 7.36E-01

Minimum 1.62E+01 1.89E-03 6.35E-03 1.35E+01 2.83E-01

Maximum 1.52E+02 1.39E-01 9.12E-03 3.31E+02 1.02E+00

Sum 4.54E+04 6.44E+00 7.16E+00 2.73E+04 5.06E+02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 9.64E-01 4.71 E-04 2.38E-05 8.36E-01 5.85E-03



Table G-30 ADD Ingestion of Mo for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owi Desert tortoises Kit fox

Mean 3.31E+00 3.88E+00 6.29E-01 1.09E-01 9.38E-02 3.14E-01

Standard Error 3.19E-02 2.70E-02 1.77E-03 5.60E-04 2.21 E-03 1.54E-03

Median 3.16E+00 3.78E+00 6.23E-01 1.07E-01 5.90E-02 3.08E-01

Standard Deviation 1.01E+00 8.54E-01 5.60E-02 1.77E-02 7.00E-02 4.86E-02

Sample Variance 1.02E+00 7.30E-01 3.13E-03 3.14E-04 4.90E-03 2.37E-03

Kurtosis 6.31E+00 3.81E+02 1.01E+00 6.16E-01 2.49E+00 2.02E+00

Skewness 1.71E+00 1.82E+01 7.90E-01 5.36E-01 1.53E+00 9.81E-01

Range 9.39E+00 2.05E+01 3.96E-01 1.22E-01 4.54E-01 3.85E-01

Minimum 1.37E+00 3.45E+00 5.09E-01 6.49E-02 1.82E-03 2.09E-01

Maximum 1.08E+01 2.40E+01 9.05E-01 1.87E-01 4.56E-01 5.94E-01

Sum 3.31E+03 3.88E+03 6.29E+02 1.09E+02 9.38E+01 3.14E+02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 6.26E-02 5.30E-02 3.47E-03 1.10E-03 4.34E-03 3.02E-03



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 1.82E+00 2.26E-02 2.49E-02 7.64E+00 1.77E+00

Standard Error 1.97E-02 8.40E-04 4.26E-05 1.19E-01 1.04E-02

Median 1.70E+00 1.28E-02 2.47E-02 6.94E+00 1.74E+00

Standard Deviation 6.22E-01 2.66E-02 1.35E-03 3.77E+00 3.30E-01

Sample Variance 3.86E-01 7.05E-04 1.81 E-06 1.42E+01 1.09E-01

Kurtosis 5.89E+00 1.11E+02 1.31E+00 2.61E+02 1.66E+00

Skewness 1.72E+00 8.01E+00 9.36E-01 1.23E+01 7.89E-01

Range 5.45E+00 4.80E-01 9.71 E-03 8.90E+01 2.57E+00

Minimum 6.47E-01 6.62E-03 2.20E-02 3.79E+00 9.90E-01

Maximum 6.10E+00 4.87E-01 3.17E-02 9.28E+01 3.56E+00

Sum 1.82E+03 2.26E+01 2.49E+01 7.64E+03 1.77E+03

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 3.86E-02 1.65E-03 8.36E-05 2.34E-01 2.05E-02



Table G-31 ADD Dermal Absorption of Mo for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owi Desert tortoises Kit fox

Mean 3.70E-05 2.63E-04 1.30E-04 4.31 E-05 0.00E+00 3.50E-05

Standard Error 4.20E-07 7.95E-06 9.90E-07 3.16E-07 0.00E+00 3.48E-07

Median 3.45E-05 2.23E-04 1.27E-04 4.21 E-05 0.00E+00 3.34E-05

Standard Deviation 1.33E-05 2.51 E-04 3.13E-05 1.00E-05 0.00E+00 1.10E-05

Sample Variance 1.77E-10 6.31 E-08 9.81 E-10 1.00E-10 0.00E+00 1.21 E-10

Kurtosis 5.90E+00 3.38E+02 3.17E-01 1.99E-01 #DIV/O! 1.79E+00

Skewness 1.67E+00 1.55E+01 5.79E-01 5.01 E-01 #DIV/0! 9.93E-01

Range 1.26E-04 6.19E-03 1.99E-04 6.34E-05 0.00E+00 8.24E-05

Minimum 1.10E-05 7.33E-05 5.57E-05 2.05E-05 0.00E+00 1.40E-05

Maximum 1.37E-04 6.26E-03 2.55E-04 8.39E-05 0.00E+00 9.65E-05

Sum 3.70E-02 2.63E-01 1.30E-01 4.31 E-02 0.00E+00 3.50E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 8.25E-07 1.56E-05 1.94E-06 6.21 E-07 0.00E+00 6.82E-07



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 1.19E-05 0.00E+00 1.46E-04 2.11E-04 8.82E-05

Standard Error 2.15E-07 0.00E+00 1.52E-06 4.87E-06 8.87E-07

Median 1.09E-05 0.00E+00 1.40E-04 1.81 E-04 8.38E-05

Standard Deviation 6.79E-06 0.00E+00 4.81 E-05 1.54E-04 2.81 E-05

Sample Variance 4.61 E-11 0.00E+00 2.31 E-09 2.37E-08 7.87E-10

Kurtosis 2.70E+02 #DIV/O! 7.97E+00 5.54E+00 3.25E+00

Skewness 1.23E+01 #DIV/O! 1.74E+00 1.76E+00 1.35E+00

Range 1.64E-04 0.00E+00 5.22E-04 1.36E-03 2.05E-04

Minimum 2.97E-06 0.00E+00 5.09E-05 4.50E-08 3.75E-05

Maximum 1.67E-04 0.00E+00 5.73E-04 1.36E-03 2.43E-04

Sum 1.19E-02 0.00E+00 1.46E-01 2.11E-01 8.82E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 4.22E-07 0.00E+00 2.99E-06 9.55E-06 1.74E-06



Table G-32 ADD Inhalation of Mo for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owl Desert tortoises Kit fox

Mean 1.17E-05 3.70E-05 2.04E-05 9.02E-06 1.61E-06 1.11E-05

Standard Error 1.03E-07 1.13E-06 3.17E-07 2.26E-08 5.35E-09 7.27E-08

Median 1.11 E-05 323E-05 1.95E-05 8.99E-06 1.59E-06 1.08E-05

Standard Deviation 3.27E-06 3.56E-05 1.00E-05 7.14E-07 1.69E-07 2.30E-06

Sample Variance 1.07E-11 1.27E-09 1.01E-10 5.10E-13 2.87E-14 5.29E-12

Kurtosis 5.10E+00 6.56E+02 1.98E-01 -6.00E-02 7.52E-02 2.29E+00

Skewness 1.66E+00 2.33E+01 4.47E-01 2.41 E-01 3.76E-01 1.05E+00

Range 2.56E-05 1.04E-03 6.14E-05 4.49E-06 1.08E-06 1.91 E-05

Minimum 5.92E-06 1.43E-05 2.90E-08 6.68E-06 1.19E-06 5.39E-06

Maximum 3.15E-05 1.05E-03 6.14E-05 1.12E-05 2.27E-06 2.44E-05

Sum 1.17E-02 3.70E-02 2.04E-02 9.02E-03 1.61 E-03 1.11 E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 2.03E-07 2.21 E-06 6.23E-07 4.43E-08 1.05E-08 1.43E-07



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 5.75E-06 2.07E-06 2.74E-06 3.17E-05 1.50E-05

Standard Error 6.11 E-08 7.06E-08 2.09E-08 6.51 E-07 9.23E-08

Median 5.40E-06 1.78E-06 2.67E-06 2.86E-05 1.46E-05

Standard Deviation 1.93E-06 2.23E-06 6.59E-07 2.06E-05 2.92E-06

Sample Variance 3.73E-12 4.99E-12 4.35E-13 4.24E-10 8.52E-12

Kurtosis 7.98E+00 5.38E+02 1.12E+00 4.36E+00 1.81E+00

Skewness 2.13E+00 2.04E+01 7.71E-01 1.36E+00 1.01E+00

Range 1.69E-05 6.23E-05 4.67E-06 1.89E-04 1.89E-05

Minimum 2.61E-06 2.08E-07 1.11E-06 6.56E-08 9.14E-06

Maximum 1.95E-05 6.25E-05 5.78E-06 1.89E-04 2.81 E-05

Sum 5.75E-03 2.07E-03 2.74E-03 3.17E-02 1.50E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.20E-07 1.39E-07 4.09E-08 1.28E-06 1.81 E-07



Table G-33 EHQ of Mo for Terrestrial Slants at YSG



Table G-34 Cp of Mo for Terrestrial Slants at YSG

Statistical data CreosoteBush FoothiliPaloverde lree SaguaroCactus

Mean 3.44E+00 3.52E+00 3.54E+00

Standard Error 9.75E-02 1.14E-01 1.19E-01

Median 2.57E+00 2.60E+00 2.58E+00

Standard Deviation 3.08E+00 3.59E+00 3.78E+00

Sample Variance 9.51E+00 1.29E+01 1.43E+01

Kurtosis 1.44E+01 4.05E+01 7.66E+01

Skewness 3.05E+00 4.92E+00 6.16E+00

Range 2.85E+01 4.65E+01 6.48E+01

Minimum 1.68E-01 2.01 E-01 2.27E-01

Maximum 2.87E+01 4.67E+01 6.50E+01

Sum 3.44E+03 3.52E+03 3.54E+03

Count 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.91 E-01 2.23E-01 2.34E-01



Table G-35 EHQ of Ta for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owl Desert tortoises Kit fox

Mean 9.00E-01 6.02E-01 6.04E-03 3.74E-03 4.75E-04 9.88E-01

Standard Error 8.59E-03 1.03E-02 3.48E-05 2.45E-05 1.08E-05 8.13E-03

Median 8.55E-01 5.42E-01 5.87E-03 3.67E-03 3.59E-04 9.57E-01

Standard Deviation 2.72E-01 3.25E-01 1.10E-03 7.74E-04 3.40E-04 2.57E-01

Sample Variance 7.37E-02 1.06E-01 1.21 E-06 5.99E-07 1.16E-07 6.60E-02

Kurtosis 5.63E+00 1.40E+02 7.14E-01 7.48E-01 5.80E+00 6.28E-01

Skewness 1.43E+00 8.19E+00 7.15E-01 5.93E-01 1.89E+00 7.78E-01

Range 2.89E+00 6.67E+00 6.76E-03 5.20E-03 3.09E-03 1.61E+00

Minimum 3.36E-01 2.03E-01 3.50E-03 1.82E-03 5.56E-06 4.96E-01

Maximum 3.22E+00 6.87E+00 1.03E-02 7.02E-03 3.10E-03 2.11E+00

Sum 9.00E+02 6.02E+02 6.04E+00 3.74E+00 4.75E-01 9.88E+02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.69E-02 2.02E-02 6.83E-05 4.80E-05 2.11 E-05 1.59E-02



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 9.49E-01 1.65E-03 4.91 E-04 5.57E-01 4.64E-03

Standard Error 9.83E-03 6.89E-05 4.48E-06 6.48E-03 2.97E-05

Median 8.96E-01 6.09E-04 4.69E-04 5.19E-01 4.52E-03

Standard Deviation 3.11E-01 2.18E-03 1.42E-04 2.05E-01 9.39E-04

Sample Variance 9.66E-02 4.75E-06 2.01 E-08 4.20E-02 8.82E-07

Kurtosis 2.82E+01 9.61E+00 5.64E+00 7.62E+01 1.51E+00

Skewness 3.19E+00 2.60E+00 1.47E+00 5.44E+00 8.27E-01

Range 4.46E+00 1.89E-02 1.41 E-03 3.67E+00 7.13E-03

Minimum 3.84E-01 2.42E-05 1.79E-04 2.79E-01 2.42E-03

Maximum 4.84E+00 1.90E-02 1.59E-03 3.95E+00 9.56E-03

Sum 9.49E+02 1.65E+00 4.91 E-01 5.57E+02 4.64E+00

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.93E-02 1.35E-04 8.79E-06 1.27E-02 5.83E-05



Table G-36 ADD Ingestion of Ta Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owi Desert tortoises Kit fox

Mean 1.29E-01 3.07E-01 6.87E-02 4.26E-02 5.41 E-03 1.02E-01

Standard Error 1.23E-03 5.25E-03 3.96E-04 2.79E-04 1.23E-04 8.37E-04

Median 1.22E-01 2.76E-01 6.67E-02 4.18E-02 4.09E-03 9.85E-02

Standard Deviation 3.88E-02 1.66E-01 1.25E-02 8.83E-03 3.88E-03 2.65E-02

Sample Variance 1.51 E-03 2.76E-02 1.57E-04 7.79E-05 1.51 E-05 7.00E-04

Kurtosis 5.63E+00 1.40E+02 7.14E-01 7.48E-01 5.80E+00 6.28E-01

Skewness 1.43E+00 8.19E+00 7.15E-01 5.93E-01 1.89E+00 7.78E-01

Range 4.13E-01 3.40E+00 7.71E-02 5.92E-02 3.52E-02 1.66E-01

Minimum 4.80E-02 1.03E-01 3.97E-02 2.07E-02 6.17E-05 5.11 E-02

Maximum 4.61E-01 3.50E+00 1.17E-01 8.00E-02 3.53E-02 2.17E-01

Sum 1.29E+02 3.07E+02 6.87E+01 4.26E+01 5.41E+00 1.02E+02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level(95.0%) 2.41 E-03 1.03E-02 7.78E-04 5.48E-04 2.41 E-04 1.64E-03



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 5.22E-02 1.88E-02 5.43E-03 2.16E-01 5.28E-02

Standard Error 5.41 E-04 7.85E-04 5.10E-05 2.52E-03 3.39E-04

Median 4.92E-02 6.94E-03 5.18E-03 2.02E-01 5.14E-02

Standard Deviation 1.71 E-02 2.48E-02 1.61 E-03 7.97E-02 1.07E-02

Sample Variance 2.92E-04 6.17E-04 2.60E-06 6.35E-03 1.15E-04

Kurtosis 2.82E+01 9.61E+00 5.69E+00 7.62E+01 1.50E+00

Skewness 3.19E+00 2.60E+00 1.47E+00 5.44E+00 8.27E-01

Range 2.45E-01 2.16E-01 1.60E-02 1.43E+00 8.13E-02

Minimum 2.11 E-02 2.74E-04 1.91 E-03 1.08E-01 2.75E-02

Maximum 2.66E-01 2.16E-01 1.80E-02 1.54E+00 1.09E-01

Sum 5.22E+01 1.88E+01 5.43E+00 2.16E+02 5.28E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level(95.0%) 1.06E-03 1.54E-03 1.00E-04 4.95E-03 6.65E-04



Table G-37 ADD Dermal Absorption of Ta for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owi Desert tortoises Kit fox

Mean 4.27E-05 2.88E-04 1.48E-04 4.87E-05 0.00E+00 4.05E-05

Standard Error 5.09E-07 5.11E-06 1.16E-06 3.63E-07 0.00E+00 4.19E-07

Median 3.93E-05 2.55E-04 1.44E-04 4.75E-05 0.00E+00 3.89E-05

Standard Deviation 1.61 E-05 1.62E-04 3.68E-05 1.15E-05 0.00E+00 1.32E-05

Sample Variance 2.59E-10 2.61 E-08 1.35E-09 1.32E-10 0.00E+00 1.75E-10

Kurtosis 3.57E+00 4.98E+01 4.47E-01 8.01 E-01 #DIV/0! 8.03E+00

Skewness 1.41E+00 4.73E+00 6.25E-01 7.05E-01 #DIV/0! 1.74E+00

Range 1.23E-04 2.55E-03 2.40E-04 7.84E-05 0.00E+00 1.44E-04

Minimum 1.28E-05 9.13E-05 7.18E-05 2.23E-05 0.00E+00 1.43E-05

Maximum 1.36E-04 2.64E-03 3.11E-04 1.01E-04 0.00E+00 1.58E-04

Sum 4.27E-02 2.88E-01 1.48E-01 4.87E-02 0.00E+00 4.05E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.00E-06 1.00E-05 2.28E-06 7.13E-07 0.00E+00 8.21 E-07



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambels quail

Mean 1.39E-05 0.00E+00 1.63E-04 2.33E-04 1.00E-04

Standard Error 1.91 E-07 0.00E+00 1.70E-06 5.33E-06 9.82E-07

Median 1.25E-05 0.00E+00 1.52E-04 2.02E-04 9.49E-05

Standard Deviation 6.06E-06 0.00E+00 5.36E-05 1.69E-04 3.11 E-05

Sample Variance 3.67E-11 0.00E+00 2.88E-09 2.84E-08 9.65E-10

Kurtosis 5.74E+00 #DIV/O! 7.26E+00 7.02E+00 3.93E+00

Skewness 1.79E+00 #DIV/O! 1.82E+00 1.84E+00 1.34E+00

Range 5.23E-05 0.00E+00 5.16E-04 1.58E-03 2.73E-04

Minimum 4.14E-06 0.00E+00 6.20E-05 2.69E-06 3.81E-05

Maximum 5.64E-05 0.00E+00 5.78E-04 1.58E-03 3.11 E-04

Sum 1.39E-02 0.00E+00 1.63E-01 2.33E-01 1.00E-01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 3.76E-07 0.00E+00 3.33E-06 1.05E-05 1.93E-06



Table G-38 ADD Inhalation of Ta for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owl Desert tortoises Kit fox

Mean 1.33E-05 4.15E-05 2.17E-05 1.02E-05 1.82E-06 1.27E-05

Standard Error 1.25E-07 7.96E-07 3.61 E-07 3.57E-08 7.67E-09 8.60E-08

Median 1.26E-05 3.60E-05 2.13E-05 1.02E-05 1.80E-06 1.23E-05

Standard Deviation 3.95E-06 2.52E-05 1.14E-05 1.13E-06 2.43E-07 2.72E-06

Sample Variance 1.56E-11 6.34E-10 1.30E-10 1.28E-12 5.89E-14 7.40E-12

Kurtosis 1.54E+01 1.12E+02 6.95E-02 8.01E-02 8.00E-01 1.24E+00

Skewness 2.49E+00 7.86E+00 4.37E-01 2.67E-01 5.74E-01 8.49E-01

Range 4.61 E-05 4.73E-04 6.38E-05 7.73E-06 1.63E-06 1.84E-05

Minimum 5.27E-06 1.61 E-05 5.61 E-09 6.81 E-06 1.26E-06 6.00E-06

Maximum 5.14E-05 4.89E-04 6.38E-05 1.45E-05 2.89E-06 2.43E-05

Sum 1.33E-02 4.15E-02 2.17E-02 1.02E-02 1.82E-03 1.27E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 2.45E-07 1.56E-06 7.08E-07 1.51 E-08 1.69E-07



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 6.52E-06 2.33E-06 3.20E-06 3.49E-05 1.69E-05

Standard Error 7.14E-08 4.10E-08 2.77E-08 7.09E-07 1.10E-07

Median 6.03E-06 2.08E-06 3.07E-06 3.15E-05 1.64E-05

Standard Deviation 2.26E-06 1.30E-06 8.77E-07 2.24E-05 3.47E-06

Sample Variance 5.10E-12 1.68E-12 7.70E-13 5.03E-10 1.21 E-11

Kurtosis 1.58E+01 3.09E+01 3.15E+00 2.81E+00 1.77E+00

Skewness 2.48E+00 4.12E+00 1.18E+00 1.24E+00 9.05E-01

Range 2.75E-05 1.56E-05 7.08E-06 1.65E-04 2.72E-05

Minimum 2.87E-06 2.33E-07 1.36E-06 6.07E-08 8.29E-06

Maximum 3.04E-05 1.58E-05 8.44E-06 1.65E-04 3.55E-05

Sum 6.52E-03 2.33E-03 3.20E-03 3.49E-02 1.69E-02

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.40E-07 8.06E-08 5.44E-08 1.39E-06 2.16E-07



Table G-39 EHQ of Ta for Terrestrial Slants at YSG

Statistical data CreosoteBush FoothillPaloverde Tree SaguaroCactus

Mean 2.95E-01 2.90E-01 2.83E-01

Standard Error 5.38E-02 3.40E-02 3.80E-02

Median 1.34E-01 1.36E-01 1.23E-01

Standard Deviation 1.70E+00 1.07E+00 1.20E+00

Sample Variance 2.90E+00 1.15E+00 1.45E+00

Kurtosis 8.79E+02 5.56E+02 6.71E+02

Skewness 2.88E+01 2.14E+01 2.42E+01

Range 5.23E+01 2.95E+01 3.46E+01

Minimum 6.00E-03 4.00E-03 3.00E-03

Maximum 5.23E+01 2.95E+01 3.46E+01

Sum 2.95E+02 2.90E+02 2.83E+02

Count 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.06E-01 6.66E-02 7.46E-02



Table G-40 Cp of Ta for Terrestrial Slants at YSG

Statistical data CreosoteBush FoothiliPaloverde lree SaguaroCactus

Mean 7.38E-02 7.26E-02 7.08E-02

Standard Error 1.35E-02 8.49E-03 9.51 E-03

Median 3.30E-02 3.40E-02 3.10E-02

Standard Deviation 4.25E-01 2.68E-01 3.01 E-01

Sample Variance 1.81 E-01 7.21 E-02 9.04E-02

Kurtosis 8.79E+02 5.56E+02 6.71E+02

Skewness 2.88E+01 2.14E+01 2.42E+01

Range 1.31E+01 7.37E+00 8.64E+00

Minimum 1.00E-03 1.00E-03 1.00E-03

Maximum 1.31E+01 7.38E+00 8.65E+00

Sum 7.38E+01 7.26E+01 7.08E+01

Count 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 2.64E-02 1.67E-02 1.87E-02



Table G-41 EHQ of DU for Terrestrial animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owi Desert tortoises Kit fox

Mean 1.00E+00 3.86E+00 2.07E-01 7.05E-02 8.94E-02 1.12E+00

Standard Error 3.31 E-02 1.08E-01 4.32E-03 2.62E-03 5.64E-03 3.61 E-02

Median 6.33E-01 3.05E+00 1.62E-01 4.69E-02 4.00E-02 7.82E-01

Standard Deviation 1.05E+00 3.41E+00 1.37E-01 8.27E-02 1.78E-01 1.14E+00

Sample Variance 1.09E+00 1.16E+01 1.87E-02 6.84E-03 3.18E-02 1.31E+00

Kurtosis 1.41E+01 1.68E+02 1.02E+01 7.03E+01 1.52E+02 4.07E+01

Skewness 3.20E+00 1.07E+01 2.78E+00 6.33E+00 9.63E+00 4.94E+00

Range 8.63E+00 6.77E+01 1.10E+00 1.33E+00 3.54E+00 1.58E+01

Minimum 1.21E-01 2.18E+00 8.46E-02 8.01E-03 8.63E-04 2.67E-01

Maximum 8.75E+00 6.99E+01 1.18E+00 1.34E+00 3.54E+00 1.60E+01

Sum 1.00E+03 3.86E+03 2.07E+02 7.05E+01 8.94E+01 1.12E+03

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 6.49E-02 2.11 E-01 8.48E-03 5.13E-03 1.11 E-02 7.09E-02



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 5.87E-01 3.04E-01 1.47E-01 1.40E+00 9.99E-02

Standard Error 2.03E-02 2.09E-02 4.82E-03 5.08E-02 4.37E-03

Median 3.91E-01 1.11E-01 1.04E-01 8.96E-01 6.26E-02

Standard Deviation 6.43E-01 6.61 E-01 1.53E-01 1.61E+00 1.38E-01

Sample Variance 4.13E-01 4.37E-01 2.33E-02 2.58E+00 1.91 E-02

Kurtosis 3.06E+01 1.24E+02 8.14E+01 4.28E+01 1.41E+02

Skewness 4.50E+00 8.68E+00 7.15E+00 5.09E+00 9.13E+00

Range 7.30E+00 1.24E+01 2.49E+00 2.23E+01 2.70E+00

Minimum 6.83E-02 3.12E-02 6.10E-02 2.49E-01 1.29E-02

Maximum 7.37E+00 1.24E+01 2.55E+00 2.25E+01 2.71E+00

Sum 5.87E+02 3.04E+02 1.47E+02 1.40E+03 9.99E+01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 3.99E-02 4.10E-02 9.47E-03 9.96E-02 8.58E-03



Table G-42 ADD Ingestion of DU for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owl Desert tortoises Kit fox

Mean 2.46E+00 1.28E+01 2.96E+00 1.01E+00 8.04E-02 2.53E+00

Standard Error 8.10E-02 3.58E-01 6.19E-02 3.75E-02 5.07E-03 8.18E-02

Median 1.55E+00 1.01E+01 2.32E+00 6.72E-01 3.60E-02 1.77E+00

Standard Deviation 2.56E+00 1.13E+01 1.96E+00 1.18E+00 1.60E-01 2.59E+00

Sample Variance 6.57E+00 1.28E+02 3.83E+00 1.40E+00 2.57E-02 6.69E+00

Kurtosis 1.41E+01 1.68E+02 1.02E+01 7.02E+01 1.52E+02 4.07E+01

Skewness 3.20E+00 1.07E+01 2.78E+00 6.33E+00 9.63E+00 4.94E+00

Range 2.11E+01 2.25E+02 1.57E+01 1.90E+01 3.19E+00 3.57E+01

Minimum 2.97E-01 7.26E+00 1.21E+00 1.14E-01 7.76E-04 6.04E-01

Maximum 2.14E+01 2.32E+02 1.69E+01 1.91E+01 3.19E+00 3.63E+01

Sum 2.46E+03 1.28E+04 2.96E+03 1.01E+03 8.04E+01 2.53E+03

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.59E-01 7.02E-01 1.21 E-01 7.35E-02 9.96E-03 1.60E-01



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 1.14E+00 2.74E-01 1.30E-01 4.36E+00 1.43E+00

Standard Error 3.95E-02 1.88E-02 4.34E-03 1.58E-01 6.26E-02

Median 7.61 E-01 9.98E-02 9.07E-02 2.79E+00 8.96E-01

Standard Deviation 1.25E+00 5.95E-01 1.37E-01 5.00E+00 1.98E+00

Sample Variance 1.56E+00 3.54E-01 1.88E-02 2.50E+01 3.92E+00

Kurtosis 3.06E+01 1.24E+02 8.17E+01 4.28E+01 1.41E+02

Skewness 4.50E+00 8.68E+00 7.17E+00 5.09E+00 9.13E+00

Range 1.42E+01 1.11E+01 2.24E+00 6.94E+01 3.86E+01

Minimum 1.33E-01 2.81 E-02 5.45E-02 7.68E-01 1.85E-01

Maximum 1.43E+01 1.12E+01 2.29E+00 7.02E+01 3.88E+01

Sum 1.14E+03 2.74E+02 1.30E+02 4.36E+03 1.43E+03

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 7.76E-02 3.69E-02 8.51 E-03 3.10E-01 1.23E-01



Table G-43 ADD Dermal Absorption of DU for Terrestrial Animals at YSG

Statistical data Black-tailed jackrabbit Lesser long-nosed bat Loggerhead shrike Mexican spotted owl Desert tortoises Kit fox

Mean 6.39E-04 4.57E-03 2.31 E-03 7.53E-04 0.00E+00 5.46E-04

Standard Error 4.25E-05 2.58E-04 1.11 E-04 3.66E-05 0.00E+00 2.59E-05

Median 3.06E-04 1.90E-03 1.17E-03 3.59E-04 0.00E+00 2.89E-04

Standard Deviation 1.34E-03 8.16E-03 3.52E-03 1.16E-03 0.00E+00 8.18E-04

Sample Variance 1.80E-06 6.67E-05 1.24E-05 1.34E-06 0.00E+00 6.70E-07

Kurtosis 1.13E+02 2.76E+01 2.62E+01 2.73E+01 #DIV/O! 5.85E+01

Skewness 9.03E+00 4.52E+00 4.30E+00 4.31E+00 #DIV/O! 5.80E+00

Range 2.13E-02 8.52E-02 3.59E-02 1.22E-02 0.00E+00 1.25E-02

Minimum 3.26E-06 4.52E-05 2.35E-05 4.62E-06 0.00E+00 2.54E-06

Maximum 2.13E-02 8.52E-02 3.59E-02 1.22E-02 0.00E+00 1.25E-02

Sum 6.39E-01 4.57E+00 2.31E+00 7.53E-01 0.00E+00 5.46E-01

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 8.33E-05 5.07E-04 2.18E-04 7.18E-05 0.00E+00 5.08E-05



Statistical data Mule deer Sonora whipsnake Desert spiny Lizards Cactus mouse Gambel's quail

Mean 2.11E-04 0.00E+00 2.69E-03 3.71E-03 1.51E-03

Standard Error 1.42E-05 0.00E+00 1.59E-04 2.66E-04 9.69E-05

Median 9.42E-05 0.00E+00 1.20E-03 1.35E-03 7.66E-04

Standard Deviation 4.47E-04 0.00E+00 5.04E-03 8.42E-03 3.06E-03

Sample Variance 2.00E-07 0.00E+00 2.54E-05 7.08E-05 9.39E-06

Kurtosis 2.21E+02 #DIV/O! 6.43E+01 8.09E+01 1.77E+02

Skewness 1.17E+01 #DIV/O! 6.63E+00 7.39E+00 1.10E+01

Range 9.83E-03 0.00E+00 6.70E-02 1.33E-01 6.09E-02

Minimum 2.46E-06 0.00E+00 3.58E-05 3.95E-06 8.92E-06

Maximum 9.83E-03 0.00E+00 6.70E-02 1.33E-01 6.09E-02

Sum 2.11E-01 0.00E+00 2.69E+00 3.71E+00 1.51E+00

Count 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 2.78E-05 0.00E+00 3.13E-04 5.22E-04 1.90E-04



Table G-44 EHQ of DU for Terrestrial Slants at YSG

Statistical data CreosoteBush FoothiliPaloverde Tree Sag uaroCactus

Mean 1.35E+00 1.37E+00 1.47E+00

Standard Error 1.11 E-01 9.94E-02 1.54E-01

Median 5.11 E-01 5.39E-01 4.95E-01

Standard Deviation 3.51E+00 3.14E+00 4.87E+00

Sample Variance 1.23E+01 9.88E+00 2.37E+01

Kurtosis 2.72E+02 1.39E+02 5.38E+02

Skewness 1.33E+01 9.64E+00 2.05E+01

Range 8.10E+01 5.73E+01 1.33E+02

Minimum 3.00E-03 7.00E-03 5.00E-03

Maximum 8.10E+01 5.73E+01 1.33E+02

Sum 1.35E+03 1.37E+03 1.47E+03

Count 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 2.18E-01 1.95E-01 3.02E-01



Table G-45 Cp of DU for Terrestrial Slants at YSG

Statistical data CreosoteBush FoothiliPaloverde lree Sag uaroCactus

Mean 6.74E-01 6.84E-01 7.36E-01

Standard Error 5.55E-02 4.97E-02 7.70E-02

Median 2.56E-01 2.69E-01 2.48E-01

Standard Deviation 1.75E+00 1.57E+00 2.43E+00

Sample Variance 3.08E+00 2.47E+00 5.92E+00

Kurtosis 2.72E+02 1.39E+02 5.38E+02

Skewness 1.33E+01 9.64E+00 2.05E+01

Range 4.05E+01 2.86E+01 6.65E+01

Minimum 1.00E-03 4.00E-03 3.00E-03

Maximum 4.05E+01 2.87E+01 6.65E+01

Sum 6.74E+02 6.84E+02 7.36E+02

Count 1.00E+03 1.00E+03 1.00E+03

Confidence Level (95.0%) 1.09E-01 9.75E-02 1.51 E-01
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