

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

AN APPROXIMATE SEARCH ENGINE FOR STRUCTURE

by
Huiyuan Shan

As the size of structural databases grows, the need for efficiently searching these

databases arises. Thanks to previous and ongoing research, searching by attribute-

value and by text has become commonplace in these databases. However, searching

by topological or physical structure, especially for large databases and especially for

approximate matches, is still an art.

In this dissertation, efficient search techniques are presented for retrieving trees

from a database that are similar to a given query tree. Rooted ordered labeled trees,

rooted unordered labeled trees and free trees are considered. Ordered labeled trees are

trees in which each node has a label and the left-to-right order among siblings matters.

Unordered labeled trees are trees in which the parent-child relationship is significant,

but the order among siblings is unimportant. Free trees (unrooted unordered trees)

are acyclic graphs. These trees find many applications in bioinformatics, Web log

analysis, phyloinformatics, XML processing, etc.

Two types of similarity measures are investigated: (i) counting the mismatching

paths in the query tree and a data tree, and (ii) measuring the topological relationship

between the trees. The proposed approaches include storing the paths of trees in a

suffix array, employing hashing techniques to speed up retrieval, and counting the

number of up-down operations to move a token from one node to another node in a

tree. Various filters for accelerating a search, different strategies for parallelizing these

search algorithms and applications of these algorithms to XML and phylogenetic data

management are discussed.

The proposed techniques have been implemented into a phylogenetic search

engine which is fully operational and is available on the World Wide Web. Experimental

results on comparing the similarity measures with existing tree metrics and on evaluating

the efficiency of the search techniques demonstrate the effectiveness of the search

engine. Future work includes extending the techniques to other structural data, as

well as developing new filters and algorithms for speeding up searching and mining

in complex structures.

AN APPROXIMATE SEARCH ENGINE FOR STRUCTURE

by
Huiyuan Shan

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2004

Copyright © 2004 by Huiyuan Shan

ALL RIGHTS RESERVED

APPROVAL PAGE

AN APPROXIMATE SEARCH ENGINE FOR STRUCTURE

Huiyuan Shan

Dr.Jason T. L. Wang, Dissertation Advisor	 Date
Professor of Computer Science, NJIT

Dr. James A. McHugh,Committee Member	 Date
Professor of Computer Science, NJIT

Dr. Chengjun Liu, Committee Member 	 Date
Assistant Professor of Computer Science, NJIT

Dr. Qun Ma, Committee Member	 Date
Assistant Professor of Computer Science, NJIT

Dr.]in Tian, Committee Member	 Date
Assistant Professor of Biochemistry and Molecular Biology, UMDNJ

BIOGRAPHICAL SKETCH

Author: 	 Huiyuan Shan

Degree: 	 Doctor of Philosophy

Date: 	 May 2004

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computerl Science,
New Jersey Institute of Technology, Newark, NJ, 2004

• Master of Computer Science,
Northeastern University, China, 1996

• Bachelor of Computer Science,
Anshan University of Science and Technology, China, 1993

Major: 	 Computer Science

Presentations and Publications:

Huiyuan Shan and Jason T. L. Wang, "Approximate Searching in Trees: Algorithms
and Applications", submitted to Knowledge and Information Systems.

Jason T. L. Wang, Huiyuan Shan, Dennis Shasha and William H. Piel,
"Fast Structural Search in Phylogenetic Databases ", submitted to Applied
Bioinformatics.

Jason T. L. Wang, Huiyuan Shan, Dennis Shasha and William H. Pixel, "TreeRank: A
Similarity Measure for Nearest Neighbor Searching in Phylogenetic Databases" ,
In Proceedings of the 15th International Conference on Scientific and Statistical
Database Management, Cambridge, Massachusetts, July 2003, pp. 171-180.

Huiyuan Shan, Katherine G. Herbert, William H. Piel, Dennis Shasha and Jason
T. L. Wang, "A Structure-Based Search Engine for Phylogenetic Databases,"
In Proceedings of the 14th International Conference on Scientific and Statistical
Database Management , Edinburgh, Scotland, July 2002, pp. 7-10.

iv

Dennis Shasha, Jason T. L. Wang, Huiyuan Shan and Kaizhong Zhang, "ATreeGrep:
Approximate Searching in Unordered Trees," In Proceedings of the 14th
International Conference on Scientific and Statistical Database Management,
Edinburgh, Scotland, July 2002, pp. 89-98.

Katherine G. Herbert, Huiyuan Shan and Jason T.L Wang, "Approximate Searching
in Phylogenetic Databases", In Proceedings of the Atlantic Symposium on
Computational Biology and Genome Information Systems and Technology,
Durham, North Carolina, March 2001, pp. 140-143.

This dissertation is dedicated to my beloved family

vi

ACKNOWLEDGMENT

I am deeply grateful to my advisor, Dr. Jason T. L. Wang for his constant guidance

to my research, advice and encouragement that helped me through the way of Ph.D.

study, and the time spent on reviewing my papers and dissertation drafts. I would

like to thank Dr. William Pixel, the designer of TreeBASE, for his valuable feedback

and collaboration.

I want to express my appreciation to Dr. James A. McHugh, Dr. Chengjun

Liu, Dr. Qun Ma, Dr. Bin Tian, Dr. William H. Pixel and Dr. Wynne Hsu for serving

as members of the dissertation committee.

I am grateful for the financial support I received through my studies. This work

was supported in part by U.S. NSF grants IIS-9988636 and IIS-9988636.

Finally special thanks go to my family, especially my wonderful wife for her

understanding and encouragement.

vi '

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 BACKGROUND 	 3

2.1 Phylogenetic Tree 	 3

2.2 TreeBASE 	 4

3 ATREEGREP: APPROXIMATE SEARCHING IN TREES 	 6

3.1 Introduction 	 6

3.2 Basic Algorithms 	 8

3.2.1 Indexing Trees 	 8

3.2.2 Search on Rooted Unordered Trees 	 10

3.2.3 Search on Rooted Ordered Trees 	 12

3.2.4 Extensions to Free Trees 	 15

3.3 Advanced Algorithms 	 18

3.3.1 Filtering Trees 	 18

3.3.2 Query Trees with Don't Cares 	 18

3.4 Experiments and Results 	 21

3.4.1 Sequential Implementation 	 21

3.4.2 Parallel Implementation 	 25

3.5 Applications 	 28

4 TREERANK: A SIMILARITY MEASURE FOR NEAREST NEIGHBOR
SEARCH IN TREEBASE 	 31

4.1 Introduction 	 31

4.2 Phylogenetic Trees 	 32

4.3 UpDown Distance 	 33

4.3.1 Up and Down Operations 	 33

4.3.2 UpDown Matrix 	 34

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.3.3 TreeRank 	 39

4.4 Nearest Neighbor Searching 	 40

4.5 Extensions to Weighted and Unrooted Trees 	 42

4.6 A Filter 	 44

4.7 Implementation 	 47

4.8 Related Work 	 49

4.9 Results 	 51

4.10 Discussion 	 54

5 WEB-BASED SYSTEM AND PROTOTYPES 	 59

5.1 Screenshots 	 59

5.2 Input 	 62

5.3 View Query Tree and Search Results 	 63

6 CONCLUSIONS AND FUTURE WORK 	 66

APPENDIX PARTIAL PROGRAM LISTING 	 68

REFERENCES 	 110

ix

LIST OF TABLES

Table 	 Page

4.1 Comparison of the Five Studied Tree Metrics 	 55

x

LIST OF FIGURES

Figure 	 Page

3.1 Example rooted trees. 	 7

3.2 Build suffix array 	 9

3.3 A suffix array. 	 9

3.4 Basic unordered tree search 	 11

3.5 Illustration of matching a query tree with a ordered data tree within
distance of 1 	 13

3.6 Basic ordered tree search 	 14

3.7 Example uprooted trees 	 15

3.8 Illustration of matching a query tree with a free data tree within distance
of 1 	 16

3.9 Basic uprooted tree search 	 17

3.10 Illustration of matching a query tree having don't cares with a unordered
data tree 	 19

3.11 Advanced search 	 20

3.12 Illustration of matching a query tree having don't cares with a unordered
data tree 	 21

3.13 Running times of ATreeGrep on the 1000 synthetic trees with a label
dictionary size of 50. 	 22

3.14 Running times of ATreeGrep on the 1000 synthetic trees with a label
dictionary size of 1000. 	 22

3.15 Running times of ATreeGrep and Pathfix on the 1000 synthetic trees with
a label dictionary size of 1000. 	 23

3.16 Running times of ATreeGrep on rooted unordered trees, rooted ordered
trees and free trees on the 1000 synthetic trees with a label dictionary
size of 1000. 23

3.17 Running times of ATreeGrep and Pathfix on the 1548 phylogenetic trees
obtained from TreeBASE 	 26

3.18 Running times of serial ATreeGrep , PB-ATreeGrep and LB-ATreeGrep on
the 1000 synthetic trees with a label dictionary size of 1000 	 26

xi

LIST OF FIGURES
(Continued)

Figure 	 Page

3.19 An example query and search results in the structure-based search engine
for TreeBASE 	 27

3.20 An example query and search results on a movie document database in
XML QBE. 	 28

3.21 A pattern molecule P and a data molecule D and a path distance from
tree P to tree D. 	 30

4.1 An additive distance tree and its distance matrix 	 33

4.2 Illustration of up and down operations between two nodes in a tree. . . 	 34

4.3 A tree and its Up and Down matrices 	 35

4.4 Illustration of constructing a tree from an UpDown matrix. 	 39

4.5 Example trees. 	 40

4.6 Example showing how the data tree reduction technique works in nearest
neighbor searching. 	 41

4.7 Filter examples. 	 45

4.8 Running times of TreeRank and TreeRank with filter on the 1548 phylogenetic
trees obtained from TreeBASE. 	 46

4.9 The software architecture of the proposed search engine 	 46

4.10 An example query and search results displayed via the Web-based interface
of the proposed search engine. 	 48

4.11 Running times on 1,000 synthetic trees for search methods with and
without the filter. 	 52

4.12 Running times of the proposed search method on different sizes of databases. 52

4.13 An example NN query and search results displayed via the Web-based
interface of the proposed search engine. 	 54

4.14 Distribution of PAR metric values 	 56

4.15 Distribution of MAST metric values 	 57

4.16 Distribution of NNI metric values. 	 57

4.17 Distribution of QUA metric values 	 58

4.18 Distribution of Sim values. 	 58

xi i

LIST OF FIGURES
(Continued)

Figure Page

5.1 Main menu of the structural search engine on TreeBASE. 	 60

5.2 Query tree display 	 61

5.3 An example query tree. 	 62

5.4 Matching data tree display. 	 64

5.5 Neighboring trees display 	 65

CHAPTER 1

INTRODUCTION

Labeled trees represent data in many scientific and commercial disciplines. For

example, scientists model phylogenetic relations as unordered labeled trees and develop

methods for constructing these trees [2, 9, 33]. A recent workshop report from Yale

suggested that more research be undertaken to improve heuristic search strategies

using algorithms designed to meet the demands made by increasingly large tree

datasets [44]. Recent efforts in Web computing model an XML document as a

ordered tree, offering further motivation for the need for efficient tree searching

[3, 10]. Free tree searching is of considerable interest in many computer version

problems [49, 40]. The molecule is also described by a free tree structure representing

its major chemical building blocks and the way they are connected [51]. The free

tree representation of molecule is valuable for searching new drugs in the molecule

database. Other potential applications include information retrieval in linguistic,

taxonomic, and neuroanatomical databases, among others.

Many algorithms have been developed for tree searching and matching [1, 26,

43, 59]. Most of these algorithms focus on comparing two trees based on various

distance metrics. Chawathe et al. [11, 12, 13] studied the tree matching problem in

the context of change detection for structured and semistructured data. There are

also efforts spent in the development of query languages [31, 39, 56, 57] and query

processing techniques [14] for trees, with applications to XML and object-oriented

database management.

In the study of phylogeny, the phylogenetic tree is essential for understanding

the relationship between the organisms, or taxa, involved within the study. Many of

the current techniques for searching phylogenetic repositories allow the user to search

1

2

using one of three ways: through a keyword-type search; through sequence alignment;

or through browsing a hierarchical list of taxa. The new search engine described in

this dissertation allows the user to present an example, or a query, tree and then

searches a phylogenetic database for trees that (approximately) contain the query

structure. The presented search engine is fully operational and is available on the

World Wide Web.

The rest of the dissertation is organized as follows. Chapter 2 discusses some

background knowledge for structural search on phylogenetic trees. Chapter 3 discusses

our proposed path based method. Chapter 4 describes our new similarity measure for

NN search on TreeBASE. Chapter 5 introduces the web-based system and prototypes.

Chapter 6 discusses future work and concludes the dissertation.

CHAPTER 2

BACKGROUND

2.1 Phylogenetic Tree

In this chapter, some background knowledge for structure search on phylogenetic trees

is discussed.

The phylogenetic tree models the evolutionary history of a set of taxa that

have a common ancestor. It is usually represented by a dendrogram. The internal

nodes within a particular tree represent older organisms from which their child nodes

descended. The children represent divergences in the genetic composition in the

parent organism. Since these divergences cause new organisms to evolve, these

organisms are shown as children of the previous organism.

Currently, in studying the phylogenetic data, most systems use search methods

that do not exploit the structure of the data. These systems usually adopt a keyword-

based search tool, a sequence alignment, or a manually operated browser. The

keyword-based tool allows the user to enter the name of a taxon or some identifying

quality such as an identification number to search the database. It then returns all

the data it has stored on that particular taxon. Some systems even allow the user

to search more than one taxon at a time, using the traditional "AND" and "OR"

operators to decide what set of data to return to the user. In sequence alignment, the

taxon uses the genetic code from the sequence to align it with similar sequences. If

the sequences are similar, most likely they have a common ancestor. A phylogenetic

tree can then be obtained from that clue. Once the taxa are selected that align with

the query taxon, links to other information about the returned taxa can be provided.

Finally, browsing a hierarchical list allows users to examine one taxon at a time,

learning only about that taxon.

3

4

Many of the systems that employ the search methods described above include

visualization techniques that allow the user to view an entire section of a phylogenetic

tree or the entire tree as well as interact with it. These interactions can include

visually inspecting the tree for relationships between taxa as well as linking to other

trees that contain a particular taxon or viewing isomorphism trees so that relationships

between the taxa can be better viewed.

However, none of the existing systems provides the user with the ability to

search a database for the structure of a phylogenetic tree or structures similar to a

query structure. Since the structure of a phylogenetic tree models very important

information about the taxa contained within the tree, structure search becomes a

very helpful as well as important tool for researchers studying phylogeny. While

visual inspection of the structure of a tree can help researches to learn a great

amount of information about the relationship between taxa, if the tree is large, visual

identification can become unwieldy at best and even impossible if the tree is large

enough. As mentioned, the phylogenetic tree models the relationships between taxa.

By being able to query based on a tree's structure, a user can query by the relationship

among taxa. This is extremely effective for a researcher who desires to learn more

about multiple taxa and where and how their evolutionary development diverges.

2.2 TreeBASE

TreeBASE, accessible at http://www.herbaria.harvard.edu/treebase, is a relational

database containing phylogenetic information from research papers submitted to the

Web site. The site then allows users to search the database freely according to various

keywords, and see visual representations of the trees. Moreover, it allows the user to

gain access to information concerning a tree as well as use comparison tools to learn

more about various taxa contained within the tree and their relationships with other

taxa within the database.

5

The dataset TreeBASE maintains consists of phylogenetic trees submitted to

TreeBASE by the authors of the papers that present the trees. The site accepts for

review any peer-reviewed and published paper that presents information on any type

of phylogenetic trees. For the paper to be contained within the database, it must

be submitted to the site. The paper then goes through a review process before it is

officially put within the database.

The schema and relational tables in TreeBASE contain various types of data

including the citations of the papers stored within the database, the abstracts from

the papers, the information about the authors, the algorithm used to obtain the

phylogenetic trees, the titles and types of the trees, the software used to perform the

relevant analysis, the association of the trees and matrices with the study through

which they were obtained, and the information about the taxa.

TreeBASE allows the user to search its database by various keywords, including

taxa, author, citation, study accession and matrix accession. Search results contain

the information about the study that an input keyword was found in. This information

includes the publishing date, the author, the title of the study in which the keyword

was found, and the periodical in which the study appeared. Also, accompanying the

study are analyses of the data presented within the study. These analyses can include

the matrix from which the phylogenetic trees are generated, a link to drawing the

tree in a frame within the Web site, a link to download the tree so that the user can

view it on his or her own viewer, and a link to "mark" a tree which allows the user

to store the tree for quick retrieval later. TreeBASE is also equipped with various

visualizations tools for drawing and displaying trees, and allows the user to "tree

surf' and download the matrix of a particular tree.

CHAPTER 3

ATREEGREP: APPROXIMATE SEARCHING IN TREES

3.1 Introduction

A new approach is proposed for approximate search among labeled trees. This

problem, denoted the approximate nearest neighbor search (ANN) problem for labeled

trees, is the following. Given an integer DIFF, a query tree Q and a database D of

trees, the ANN problem is to find all the data trees D in D where D approximately

contains Q within distance DIFF. That is, D contains a substructure D' and the

distance from Q to D' is at most DIFF. It is proved that this problem was NP

complete [68] for edit distance between unordered trees. So a different method is

adopt. The distance from Q to D' is measured by the total number of root-to-leaf

paths in Q that do not appear in D'; the nodes in D' that do not appear in Q can be

freely removed. No previous work has addressed the ANN problem for labeled trees.

To illustrate the distance measure, consider the rooted query tree Q in Figure

3.1, which has two paths. Unordered rooted trees are trees in which the parent-child

relationship is significant, the order among siblings is unimportant. For the ordered

rooted trees, the distance is subject to the order constraint. For the unordered cases,

the query tree will match data tree D 1 with distance of 0, and match data tree D2

with distance of 1. This happens because every path in Q matches a path of the

substructure D'1 in D 1 . (DC is enclosed by the dashed line in D 1 .) On the other hand,

there is one path 'a — e' in Q that cannot be found in D2. Counting mismatching

paths is important in, for example, inferring evolutionary history, since that shows

a deviation of ancestor-descendant relations. It is also a natural extension of path

expressions in XML queries.

This distance metric is used for two reasons, one semantic and one pragmatic:

6

7

Figure 3.1 Example rooted trees. _

1. In trees, the parent-child relationship is the most significant one. This is

reflected in paths. For example, each path in a phylogenetic tree stands for

the evolutionary history of a taxon. When several siblings may have the same

label, post-processing must determine whether two paths of the form a — b — c

and a' — b — c pertain to the same b or different bs.

2. The pragmatic reason is that there exist efficient algorithms for string searching.

By decomposing trees to paths and by transforming tree searching to string

searching, one can take advantage of the existing string searching algorithms

and perform structural search efficiently.

In practice, it's likely that some portion of a query tree is unknown, uninteresting

or unimportant. That portion is often represented by a don't care symbol. In general,

there are two types of don't care symbols: variable length don't cares (VLDCs)

[62, 67] and fixed length don't cares (FLDCs). In string matching, a VLDC, denoted

"*" , in the query string may substitute for zero or more characters in a data string.

For example, if "com*er" is the query string, then the "*" would substitute for the

substring "put" when matching with the data string "computer" . On the other hand,

a FLDC, denoted "?" , in the query string substitutes for exactly a single character

in a data string. For example, if "com?uter" is the query string, then the "?" would

substitute for the character "p" in the match with the data string "computer" .

8

In this chapter generalizations of don't cares to trees and algorithms for processing

them are discussed. In these cases, the labels on nodes can be "*" or "?"

3.2 Basic Algorithms

The new pathfix algorithm, consists of two phases. In the first phase, a suffix array

database SD is built for all the trees in the database D. D contains strings where

each string corresponds to a root-to-leaf path in a data tree. The paths (strings)

are encoded into a suffix array [41]. In the second phase, which is the on-line search

phase, The root-to-leaf paths of the query tree Q are compared with the paths in the

suffix array database SD to locate those substructures approximately matching the

query tree. In a later enhancement, a filter is constructed to determine which data

trees in D are possible matches.

3.2.1 Indexing Trees

The suffix array is a data structure designed for efficient searching in a large string

[41]. This data structure is simply an array containing the pointers to all the string's

suffixes sorted in lexicographical order. (A suffix is a substring starting at a certain

position in the string and ending at the end of the string.) Searching for a query

string can be performed by binary search using the suffix array.

In pathfix, a suffix array is constructed for all the paths in a data tree and put

it in a global set of suffix arrays for all the data trees. This global set is the database

SD. Figure 3.2 shows the algorithm.

As an example, consider again the data tree D 1 in Figure 3.1. D 1 has paths

`d — a — c' and 'd — a — e'. A suffix array SA 1 is created for the two paths, separated

by a delimiter #, as shown in Figure 3.3. In this figure, the parenthesized integer in

front of each suffix indicates the position at which the suffix begins in the paths set.

This integer, when stored in the suffix array, serves as a pointer to the corresponding

9

Figure 3.3 A suffix array.

suffix in the paths set. Likewise a suffix array SA 2 can be created for the paths of

the data tree D2 in Figure 3.1. The suffix array database SD contains SA 1 and SA2 .

For rooted trees, the paths of the rooted tree is all the paths from root to leaves.

In the unrooted case, the path of the uprooted tree is all the paths between any two

terminal nodes. The node with degree of 1 is a terminal node. If the path from

terminal node a to terminal node b is reversed, the path from terminal node b to

terminal node a can be got , and vice versa. So in the database of unrooted trees,

the path between a and b is kept only once.

10

Lemma 3.1 Suppose each data tree has at most N nodes, and there are M

trees in the database D. The space complexity of the procedure Build_Suffix_Array in

Figure 3.2 is 0(M N 2). The time complexity is also 0(M N2).

Proof. Each rooted data tree has at most 0(N) paths if the tree is very bushy.

No path can be longer than 0(N). At most N2 pointers are needed to the suffixes of

the paths. The worst case for free tree is also 0(N 2). Thus each data tree requires

0(N2) space. There are totally M trees, so the space complexity is OO(MN2). The

expected time spent in constructing a suffix array for a string is linearly proportional

to the string size [41], so the database SD can be built in O(MN2) expected time.

In practice, a tree with N nodes either has few paths or short depth, so the above

upper bound is very pessimistic. In practice the complexity is linear, i.e. 0(MN).

There are two alternative implementations of the suffix arrays. One suffix array

can be constructed for all the trees or one suffix array can be constructed for each

tree (as in the current implementation). Choosing one or the other depends on the

effectiveness of filtering. If filtering yields very few candidate trees, then the current

implementation works well. If there are many similar trees in the database, then a

single suffix array for all trees is better.

3.2.2 Search on Rooted Unordered Trees

In the on-line search phase, the query tree Q is compared to each data tree allowing

a difference DIFF. When comparing Q with a data tree D, every root-to-leaf path

p in Q is taken and roots of that path in D are found. (As a cutoff optimization,

searching D is stop if more than DIFF paths of Q are not found in D.) Suppose

there are k root-to-leaf paths in Q. If a node n in D is the root of the k paths,

then the subtree D' rooted at n matches Q with distance 0, provided there are no

siblings having the same label. (If there are siblings having the same label, then

post-processing can verify the match. This technique will never miss a match.) If n

11

is the root of k — 1 paths, then D' matches Q with distance 1 and D approximately

contains Q with distance 1.

Figure 3.4 shows the algorithm. Note that this algorithm can easily be modified

to print out the subtree D' rooted at n that matches Q.

Procedure Basic_Unordered_Search
Input: the allowed distance threshold DIFF, the query tree
Q, the database D of unordered trees and the suffix array database

SD.
Output: the set R. of data trees that approximately contain

Q within distance DIFF.

1. R. := 0;
2. compute all the root-to-leaf paths of the query tree Q;
3. let k be the number of paths of Q;
4. for each data tree D in D (after filtering);

/* Suffix array search portion */
5. for each path p in Q from longest to shortest

6. find the root set Np in D such that for each n
in Bp there is a node n' and the path from n'
to n (ascending in D) is p;

7. exit the for loop if the root sets for more than
DIFF paths are empty;

8. end for;
/* Intersection portion */

9. for each n in Bp
10. count the total number of occurrences T(n)

of n in all root sets Bp 's for all paths p in Q;
11. if T(n) > k — DIFF then
12. 'R. := 'R, U {D};
13. end for;
14.end for;

Figure 3.4 Procedure for finding unordered data trees approximately containing
the query tree Q.

Lemma 3.2 Let q be the number of nodes in the query tree Q. Suppose that the

size of a suffix array is S. The time complexity of the suffix array search portion of

procedure Basic_Unordered_Search in Figure 3.4 for such a suffix array is 0(q2 log S).

12

Proof. q is an upper bound on the number of paths in Q; q is also an upper

bound on the lengths of the paths in Q. Searching for a path of length q takes time

0(q log S), and hence the result follows.

The time spent to count the number of occurrences of the entire tree depends

on the number of matches of the paths. In the worst case, this can be nearly every

node, but in practice is much smaller.

3.2.3 Search on Rooted Ordered Trees

Ordered tree makes distinction among the various children of a node, such as "first

child" or "last child". v 1 < v2 if v 1 is the left sibling of v 2 . Path precedence (<) is

defined as P1 < P2 if there exist v1 on P1 and v2 on P2 such that v1 < v2. Path

sequence, S(Tx) is the path precedence sequence of all paths starting from x, where

node x is in T. There exists a optimal alignment of two path sequence of query tree

and S(Tx). The distance between Q and D is the minimum number of paths in Q

that do not align with S(Tx), where x is in D. For the ordered cases in Figure 3.1,

the query tree will match data tree both D 1 and D2 with distance of 1.

The ordered tree search is base on unorder tree search. First the data trees

are filtered by searching ordered trees as unordered trees, then the path order among

those candidate trees is checked. A sequence alignment method is adapted to check

the path order.

To illustrate the search on ordered trees, a precedence relation among paths

starting from the same root needs to be defined. For any two paths P1 and P2 that

start from the same node c, there must be two siblings along the two paths, let them

be a in P1 and b in P2. If a precedes b, then P1 precedes P2, otherwise P1 succeeds

P2.

Figure 3.5 Illustration of matching a query tree with a ordered data tree within
distance of 1.

Lemma 3.3 Let D be one of the search result trees for the query tree Q within

distance threshold DIFF. D must satisfy: unordered_dist(Q, D) <= ordered_dist(Q,

D)

Proof. Ordered trees is a special kind of unordered trees. If a data tree satisfies

the threshold DIFF in an ordered way, it must satisfies the threshold DIFF in

an unordered way. If ordered trees are searched as unordered trees by procedure

Basic_Unordered_Search, all data trees satisfying the threshold DIFF in an unordered

way are returned, so additional ordered checking is needed to verify those candidate

trees.

After the paths are concatenated according to their precedences, the procedure

of order checking among those paths is the same as finding maximum alignment

among two sequences. Hence the maximum sequence alignment algorithm [28] is

adapted to verify those candidate trees. Figure 3.5 shows an example. A detailed

algorithm is shown in Figure 3.6

Lemma 3.4 Let q be the number of nodes in the query tree Q. n is the upper

bound of number of paths in the data tree that match the paths of the query tree.

Suppose that the size of a suffix array is S. The time complexity of the suffix array

14

15

Proof. From lemma 3.2, finding candidate trees as unordered trees is O(q2 log S).

The order checking is O (an), and a is also an upper bound of a, so the time for

order checking is O (an). The order checking takes a small portion of the total running

time. In practice,Basic_Ordered_Search runs as fast as Basic_Unordered_Search.

Figure 3.7 Example uprooted trees.

In free trees, the path from a node x to any terminal node is considered to be

path of x. A configuration of a free tree T is the rooted unordered tree of An where

root is n (n is in T). For uprooted free trees, the distance from query tree to data

tree is defined to be Min (dist(Q, Gn)), where An is a configuration of A and G,,, is

a configuration of G. For example in Figure 3.7, The distance from P to D is 1. For

the three paths starting from "X", two of them can find match in D, and the path

X-N can not be found in D.

In the database, only the path between one terminal node and another terminal

node is encoded in the suffix array. In addition, the path is stored only once. In

another word, the paths of uprooted trees in the database have no direction. In

the search phrase, the Free tree search algorithm scans the path in the database in

two direction. The goal of search on free trees is to minimize the total number of

Figure 3.8 Illustration of matching a query tree with a free data tree within distance
of 1.

mismatched paths and maximize the total length of all matched paths. A detailed

algorithm is shown in Figure 3.9 In practice, the searching results are ranked according

to their total length of their all matched paths. For example in Figure 3.8, by scanning

the paths of data tree D from two direction, paths P1, P2 and P3 can find a match,

while P4 can not find a match so the total distance from P to D is 1.

Lemma 3.5 Let q be the number of nodes in the query tree Q. n is the upper

bound of number of paths in the data tree that match the paths of the query tree.

Suppose that the size of a suffix array is S. The time complexity of the suffix array

search portion of procedure Basic_Unrooted_Search in Figure 3.9 for such a suffix array

is 0(q 3 log S) and the order checking portion is 0(qn).

Proof. From lemma 3.3, the procedure Basic_Unordered_Search takes O(q2 log S).

The procedure Basic_Unrooted_Search checked all nodes in the query tree, so the total

running time is 0 (q3 log S).

Figure 3.9 Procedure for finding uprooted data trees approximately containing the
query tree A.

18

3.3 Advanced Algorithms

3.3.1 Filtering Trees

The search process can be heuristically improved by using hashing technique that

works as follows on the non-wildcard portion of data and query trees. compute and

store all individual node labels and all parent-child label pairs in each data tree into

a hash table, associating each parent-child pair with the set of data trees that contain

the parent-child pair. Now suppose a query tree A is given with a certain distance

allowed in searching, DIFF. Take the multiset of labels from A and see which data

trees have a super-multiset of those possibly with DIFF missing labels. Take the

multiset of parent-child pairs from A and see which data trees have a super-multiset

of those parent-child pairs, again with DIFF missing pairs. This heuristic, referred

to as pathfilter, eliminates irrelevant trees from consideration in the beginning of a

search and yield a set of candidate trees to look for. For example in Figure 3.10,

DIFF is set to 0. Both T1 and A2 miss ac pair . so they will not be a solution and

hence can be eliminated from consideration.

3.3.2 Query Trees with Don't Cares

When generalizing don't cares to trees, the semantics of the don't cares is as follows.

The VLDC "*" in the query tree may substitute for a path of length zero or more in

a data tree. The FLDC "?" in the query tree may substitute for a single node in the

data tree. Figure 3.11 shows the algorithm for finding data trees exactly containing

the query tree A where the root of A is not a don't care.

In general, for a query tree A with don't cares, a node x in a data tree D is the

root of a subtree that matches A if all of the following hold:

1. The partition of A containing the root rail of A (call that the root partition of

A) matches D at x.

14

Figure 3.10 Illustration of matching a query tree having don't cares with a
unordered data tree.

2. Consider the path p from the root Tsub of a subtree in A to Tall. Suppose that

rsubmatchesDat possibly many nodes x1, x2, The path from at least one

such node in D, say xi , has the property that the ascending path from xi to x

matches (with "*" and "?") the path from Tsub to tallall.

To avoid testing the roots of subtrees unnecessarily, the matching makes use of

facts like the following: if A is to match the data tree D at x, then the only relevant

matches of a subtree of A rooted at rsub are nodes that are descendants of x.

Don't cares add to the time because each partition is much more likely to match

than the whole tree, so there are many possible combinations to test. The basic time

used for checking the suffix arrays, however, is less, since each tree is broken up into

smaller trees.

20

Procedure Advanced_Search
Input: the query tree Q with don't cares, the database D of
trees and the suffix array database SD.

Output: the set of data trees containing Q and for each
such data tree D, the substructure D' in D that matches Q.

1. partition Q into connected subtrees having no don't
cares;

2. match each of those subtrees with data trees in D by
invoking procedure Basic_Unordered_Search for Unordered

data trees, Basic_Ordered_Search for Ordered data
trees and Basic_Unrooted_Search for unrooted data
trees respectively;

3. For the matched substructures that belong to the same
data tree, say D, determine whether they combine,
forming D', to match Q based on the matching
semantics of the don't cares explained in the text,
and if so, return D and D';

Figure 3.11 Procedure for finding data trees containing the query tree A with don't
cares.

Figure 3.12 illustrates how to match a query tree A having don't cares with a

data tree D. A is first partitioned into three subtrees at its don't cares "*" and "?"

The subtrees of A match three subtrees in D, which are then glued. In the figure,

nodes in D that are not touched by a dashed line are to be removed at no cost. The

don't care "?" is instantiated into node o in D and the don't care "*" is instantiated

into nodes h, j in D at no cost. The distance between A and D is 0.

When a distance DIFF is allowed in matching a query tree A with a data tree,

for each don't care free subtree A' of A, by invoking procedure Basic_Unordered_Search

for Unordered data trees and Basic_Ordered_Search for Ordered data trees respectively,

all subtrees of data trees are found, that are within distance DIFF of A'. The gluing

process involves a testing of whether the glued tree as a whole is indeed within distance

DIFF of the entire query tree A.

Figure 3.12 Illustration of matching a query tree having don't cares with a
unordered data tree.

3.4 Experiments and Results

3.4.1 Sequential Implementation

A series of experiments have been conducted to evaluate the performance of the

algorithms pathfix and pathfilter, collectively referred to as ATreeGrep (reminiscent of

AGrep [66] for approximate string searching and SGrep [30] for structure grep). In this

section, discussion is first focused on the performance of ATreeGrep one processor. The

programs were written in C and run under Solaris on a Sun Blade 1000 workstation.

One thousand trees were randomly generated, each tree having 100 nodes. The

number of branches on internal nodes ranges from 1 to 8 and the average length of

paths in each trees ranges from 5 to 9. The string labels of nodes were randomly

chosen from a dictionary. In each run, a tree was selected and modified into the

query tree (with or without don't cares) and the other trees were used as data trees.

Ten runs were tested and the average was plotted. Figure 3.13 and Figure 3.14 show

the times spent in running ATreeGrep on the synthetic trees where the dictionary size

is 50 and 1000, respectively.

Figure 3.13 Running times of ATreeGrep on the 1000 synthetic trees with a label
dictionary size of 50.

Figure 3.14 Running times of ATreeGrep on the 1000 synthetic trees with a label
dictionary size of 1000.

Figure 3.15 Running times of ATreeGrep and Pathfix on the 1000 synthetic trees
with a label dictionary size of 1000.

Figure 3.16 Running times of ATreeGrep on rooted unordered trees, rooted ordered
trees and free trees on the 1000 synthetic trees with a label dictionary size of 1000.

24

It can be seen from Figure 3.13 and 3.14 that the dictionary size has a significant

impact on the running times of ATreeGrep. When both the dictionary size and

query tree are small, pathfilter finds many candidate trees, requiring much time for

checking. When the query tree is large, however, the parent-child pairs combined

with their counts produce a selective filter and hence there are few trees to look for.

Consequently, the total running time decreases.

On the other hand, when the dictionary size is large, very few parent-child

pairs are the same regardless of the query tree size. As a consequence, many trees

are eliminated by pathfilter.

Figure 3.15 compares ATreeGrep and pathfix for varying query tree sizes, where

the dictionary size was fixed at 1000. The figure shows that pathfilter speeds up

ATreeGrep considerably. It can be seen that the running time of pathfix is proportional

to the size of a query tree (actually the total number of paths of the query tree). It

was also observed that the running time of pathfix is proportional to the number of

matches in the database.

Figure 3.16 compares ATreeGrep on rooted unordered trees, rooted ordered trees

and free trees for varying query tree sizes, where the dictionary size was fixed at 1000.

It can be seen that the running time on rooted ordered trees is slightly more than

that on rooted unordered trees. While search on free trees requires to check many

configurations of the data trees, it take much more time to get the results.

The algorithms is tested on the phylogenetic trees obtained from TreeBASE

maintained at Harvard University Herbaria (http: //www . herbaria . harvard . edu/

treehase). Phylogenetic trees are structures used in biology to study the evolution

of various life forms as well as the relationship of a particular life form with other life

forms. 1548 phylogenetic trees in TreeBASE are considered. Most non-leaf nodes in

these trees have two children. The number of nodes of a tree ranges from 50 to 200,

and the dictionary size of node labels is 18870. All the leaf-nodes and some non-leaf

25

nodes have labels. For each non-leaf node without a label, "U" is used as its label.

Figure 3.17 shows the results. The results are promising and consistent with those

for the synthetic data.

3.4.2 Parallel Implementation

The Pathfilter is used to speed up the sequential version on one computer. To

scale beyond the capabilities of the serial implementation, the parallel approaches

are exploited. With the developments in parallel and distributed computing, a

number of parallel approaches have been developed to improve the performance of

search algorithms[36, 22]. In the following discussion of parallelizing ATreeGrep, two

approaches are focused on because of the specific characteristics of the tree search

algorithms.

The main idea behind Partition Based Parallel ATreeGrep (PB-ATreeGrep) is to

divide the search space among processors. First the data trees are partitioned into n

partitions among n processors evenly. Each processor runs the serial ATreeGrep on

it local partition, and broadcasts its results to a master processor, which collects the

evaluate the result trees.

Although PB-ATreeGrep improves the performance over the serial ATreeGrep

in almost all cases, because each processor runs both pathfilter and pathfix, some

processors may filter out all trees in its space, and find out that it need not bother to

run pathfix on its partition. It is highly possible that one processor finish searching

its space far ahead another processor, so LB-ATreeGrep is designed and implemented

to reduce the idle time.

The filter process takes only a small portion of the whole search. The pathfix is

the most time consuming part in ATreeGrep. Load Balancing Parallel ATreeGrep(LB-

ATreeGrep) offers a balanced division of work between all processors to reduce idle

time and minimize the redundant work. Each processor stores the entire database in

26

Figure 3.17 Running times of ATreeGrep and Pathfix on the 1548 phylogenetic trees
obtained from TreeBASE.

Figure 3.18 Running times of serial ATreeGrep , PB-ATreeGrep and LB-ATreeGrep
on the 1000 synthetic trees with a label dictionary size of 1000.

Figure 3.19 An example query and search results in the structure-based search
engine for TreeBASE.

its local memory. First the master processor filter all the data trees. The candidate

trees are kept in a global queue structure.

The master processor keep track of the global candidate queue. Each time it

allocates a new piece of work to an idle processor until the global candidate queue

is empty. As shown in Figure 3.18, LB-ATreeGrep outperforms both ATreeGrep

and PB-ATreeGrep. The running time of ATreeGrep on one processor, Partition-

Based ATreeGrep on 4 processors and Load Balancing ATreeGrep on 4 processors are

compared . Figure 3.18 shows that both PB-ATreeGrep and LB-ATreeGrep improve

the performance when more resources are available. The LB-ATreeGrep by taking

advantage of the idle time among all processors, runs faster than PB-ATreeGrep.

28

3.5 Applications

ATreeGrep has been incorporated into two Web-based systems. The first one is a

structure-based search engine [53] , accessible at http : //aria. nj it . edu/r-ibi ot o old/,

and now incorporated into TreeBASE's keyword-based search engine, accessible at

http : //www . treebase . org/treebase/console . html. This structure -based search

engine is visited a few hundred times a month. Figure 3.19 shows its querying interface

(in the left window), a query tree (in the right, top window) and a data tree (in

the right, bottom window). In the figure, the query tree matches the data tree

with distance 0, "?" matches "Myriapoda" and "*" matches a path of the data tree.

This query finds all the phylogenetic trees in TreeBASE containing the query tree.

Basically this structural search allows one to specify the relationship between taxa.

29

Allowing don't care symbols further enhances the power of the query language, and

offers more flexibility to the structural search. The string notation employed in the

input box of the left windows give a description of the topology. The graphical

representation is shown in the the right, top window. For example, the query tree A

in figure 3.12 can be represented as a string "((e)?,((c)b)*)a" .

The second system that has been implemented, called XML Query by Example

(or XML QBE), allows the user to input an example XML fragment (query tree)

and then finds those XMLs in an XML database that approximately contain the

query tree. For example, the query in Figure 3.20 is to find all the XML documents

describing movies in which Robert Redford is the director, Brad Pitt is an actor, and

the movies are made in California, U.S.A. Shown in the figure are (counterclockwise,

starting from upper left) the main menu, the querying window, the example XML

(query) displayed via a Microsoft TIE browser, a matching XML containing the query

displayed via the TIE browser, the query tree displayed via Java tree show applets, and

the matching XML tree displayed via Java tree show applets. The matched portions

in the matching XML tree are highlighted and marked with a bullet.

In general, when interacting with XML QBE, the user is able to type in his own

query, load the query from a file, or use and modify a sample query provided by the

system. The user is also able to browse the underlying database and read the XML

documents in the database.

Molecular similarity is one of the major concepts in the design of new drugs.

The molecule can be described by a free tree structure representing its major chemical

building blocks and the way they are connected [51]. The 2D representation of

chemical molecules, as described in such as the Merck Index,comprises cycles (e.g.

benzene rings) and atoms. In applying the free tree search algorithm to do substructure

search, the feature tree's representation of molecules is adapted. Figure 3.21 shows a

pattern molecule P, a data moleculeD.

30

Figure 3.21 A pattern molecule P and a data molecule D and a path distance from
tree P to tree D.

In figure 3.21, D approximately contains P with distance 1. In general, a

pattern can be a base structure comprising one or two functional groups. ATreeGrep

is applied to search a database of molecules to find those approximately containing

the pattern. The result is a collection of molecules with the desired property, which

can be used for further chemical analysis or drug design.

CHAPTER 4

TREERANK: A SIMILARITY MEASURE FOR NEAREST

NEIGHBOR SEARCH IN TREEBASE

4.1 Introduction

Scientists model phylogenetic relations using unordered labeled trees and develop

methods for constructing these trees [2, 8, 32, 33]. 1 Different theories concerning

the phylogenetic relationship of the same set of species often result in different

phylogenetic trees. Even the same phylogenetic theory may yield different trees

for different orthologous genes. With the unprecedented number of phylogenetic

trees constructed based on these various theories, the need to analyze the trees and

manage phylogenetic databases is urgent and great [44]. One important problem in

this domain is to be able to compare the trees, thus possibly determining how much

two theories have in common [6, 18, 23, 34]. The common portion of two trees may

represent the actual phylogenetic relationship of the corresponding species.

The motivation for studying the tree matching problem comes from the design

of tools for analyzing the phylogenetic data. One particular tool developed is a system

for searching phylogenetic trees. Given a query or pattern tree P and a set of data

trees D, this search engine is able to find and rank nearest neighbors of P in D. The

importance of nearest neighbor searching for trees, particularly in phyloinformatics,

has been addressed in the literature [53, 54, 55, 62]. Central to the search engine is

an algorithm for computing the similarity score from P to each data tree D in D.

The data consists of the phylogenetic trees stored in the widely used phylogenetic

information system TreeBASE [50, 52], accessible at http : //www . treebase . org. 2

These trees could be rooted ones, or could be uprooted ones, i.e. free trees. This chapter
focuses on rooted, unordered phylogenetic trees.
2TreeBASE is a joint research effort developed at Harvard, UC Davis, Leiden University
and the University at Buffalo.

31

32

Existing algorithms are mainly concerned with constructing the phylogenetic trees

and finding the consensus of two trees, as opposed to information retrieval and

ranking. By taking advantage of the properties of the phylogenetic trees and by

utilizing the additive distance matrix [7] widely adopted in phylogenetic analysis, a

new similarity measure, called TreeRank, is proposed for comparing the trees and for

retrieving and ranking these trees while performing nearest neighbor searches in the

phylogenetic database.

4.2 Phylogenetic Trees

In general, phylogenetic trees are structures used in biology to model the evolution

of various life forms and thereby the relationship of a particular life form with other

life forms. The currently existing life forms or organisms usually appear as leaf nodes

in these trees. 3 Each internal node of one such tree represents an inferred ancestor

organism of the organisms represented by its child nodes. There can be multiple levels

of ancestors, with multiple organisms sharing the same ancestors.

For the phylogenetic trees in TreeBASE (and for those generated by any of the

modern programs), the following properties hold:

• each leaf node has a label and that label appears only once in the tree, though

it may appear in other trees;

• each non-leaf node either has a label that appears nowhere else in the tree or

has no label;

• each unlabeled internal node has at least two children. An unlabeled internal

node stands for an extinct species from which new species branched out.

Additive distance[2, 7, 21] is widely used in phylogeny analysis. Given a two-

dimensional additive distance matrix M in which each entry M[u, v] is an integer, a

3 More precisely, an organism (species or taxon) name appears as a label of a leaf node in a
tree.

33

Figure 4.1 An additive distance tree and its distance matrix.

free tree A is called an additive distance tree with respect to M if, for every pair of

labeled nodes (u, v) in T, the path connecting node u and node v has exactly M[u, 7)]

edges.' Figure 4.1 shows an additive distance matrix and its corresponding additive

distance tree. In the figure, for example, M[a, d] = M[d, a] = 4 meaning that there

are four edges in the path connecting nodes a and d. 5 In general, each edge in an

additive distance tree may be associated with a weight. In that case, M[u, 7)] equals

the sum of weights of the edges in the path connecting u and v. Given an additive

distance matrix, many programs available on the Web can be used to reconstruct its

phylogenetic tree [58].

In the following section by modifying the additive distance matrix, an UpDown

matrix and a new distance measure, called UpDown distance, is proposed for comparing

two rooted unordered phylogenetic trees.

4.3 UpDown Distance

4.3.1 Up and Down Operations

As stated above, rooted unordered phylogenetic trees satisfying the three properties

described in Section 2 are discussed here, and these trees are simply referred to as

4A free tree is an uprooted unordered tree, which is also known as an undirected acyclic
graph [60, 69].
51n this chapter, a node is often referred to by the label of that node and vice versa when
the context is clear.

34

trees when the context is clear. two types of operations, up and down, between any

two nodes in a tree are considered . These operations are intended to capture the

hierarchical structure in the tree (reminiscent of the "up" and "down" operations

used to define the partial order on pairs of nodes in [35]). If v is a child node of u,

v t u is used to represent an up operation from v to u, and use u 1, v to represent a

down operation from u to v. Then, for any pair of nodes a, n in the tree A, one can

count the number of up and down operations to move, say a token, from a to n.

Figure 4.2 Illustration of up and down operations between two nodes in a tree.

For example, consider the tree in Figure 4.2 and the two nodes "fox" and

"rabbit" in the tree. It takes two up operations ("fox t carnivore" and "carnivore t

mammal") and one down operation ("mammal 1, rabbit") to go from "fox" to "rabbit"

in the tree. As another example, it takes one up operation ("dog l' carnivore") and

one down operation ("carnivore ,j, fox") to go from "dog" to "fox" in the tree.

4.3.2 UpDown Matrix

Given a tree T, two matrices, referred to as the Up matrix U and the Down matrix U

can be built , of integer values where U[u, v] represents the number of up operations

from node u to node v in T and U[u, v] represents the number of down operations

from u to v in the shortest path. Obviously U[u, u] = U[u, u] = 0 for any node u in

T.

35

Figure 4.3 shows a tree and its Up and Down matrices. Notice that one of the

internal nodes, namely the parent of b and c, does not have a label. The unlabeled

node does not appear in the matrices. Comparing the Up and Down matrices with

an additive distance matrix, cf. Figure 1, The main difference is that the additive

distance matrix M is built for an unrooted unordered tree, i.e. a free tree. Each entry

M[u, v] represents the number of the undirected edges on the path connecting u and

v. Thus, M is symmetric and M[u, v] = M[v, u]. By contrast, the Up and Down

matrices are built with respect to a rooted tree and take into account the up and

down operations along the directed edges between two nodes. Consider, for example,

the nodes d and b in the tree A in Figure 4. If this tree were treated as an unrooted

free tree, the number of edges between d and b would be 4. However, U[d, = 1

Figure 4.3 A tree and its Up and Down matrices.

The following are some facts that can be observed directly from the above

definitions.

36

Hence, matrix U can be obtained from matrix U, and vice versa. therefore only

matrix U is used throughout the chapter and refer to it as the UpDown matrix. The

UpDown matrix describes the structure of A.

37

'AR

Given an a x a UpDown matrix U consisting of only the labeled nodes, by applying

Fact 4.4, an UpDown matrix U' consisting of all nodes can be obtained. Given an n x n

UpDown matrix U', its corresponding tree A can be reconstructed. Suppose there are

k internal nodes that are unlabeled in T. these nodes are associated with A l , , Aka

where A i , 1 < i < k, is not in the label alphabet. There are two observations, cf.

Figure 3:

• There must exist a row in U' that contains all zeros. This row corresponds to

the root of A.

• For each node v E A where v is not the root, its row in U must have one and

only one column, say u, where P[v, u] = 1 and U' [u, v] = 0. In fact, this node

u is the parent of v in T.

Thus, the tree reconstruction algorithm works by scanning the matrix U', from top to

bottom, and constructing the parent-child pairs, which are then glued into A. Since

the nodes in T are uniquely labeled and the unlabeled nodes are associated with a

distinct A i , the algorithm produces a unique tree A. The time complexity of this

algorithm is O(n2) where n is the number of nodes of the tree.

lemma 4.1 Two trees are the same if and only if their UpDown matrices are

the same.

Figure 4.4 illustrates how to reconstruct a tree from its UpDown matrix, using

the UpDonw matrix U in Figure 4(ii) as a running example. Since the row for a

contains all zeros, a is identified as the root of the tree. Then for the A in the second

row of U, since U[A, = 1 and U[a, A] = 0, the parent-child pair a-A is created as

shown in Figure 4.4(i). By continuing scanning the remaining rows, the tree can be

reconstructed shown in Figure 4.4(iv), which is the same as the tree in Figure 4.3(i).

39

Figure 4.4 Illustration of constructing a tree from an UpDown matrix.

4.3.3 TreeRank

In general, when using a search engine, if the user inputs a query tree with three nodes

"fox" , "dog" and "tiger" plus their parent node "mammal" , the user often expects to

see data trees in search results containing these nodes. If the user doesn't want to see

a search result containing, for example, a node "tiger" , he or she can simply input a

query tree having "fox" , "dog" and "mammal" only.

This implies that in designing a search engine and similarity measure, the

following two criteria should be considered together:

1. whether all, or at least most of, the labeled nodes of the query tree P occur in

a data tree U;

2. to which extent the query tree P is similar to the data tree U in structure.

These criteria should be considered when seeking nodes in U that match nodes

in P when comparing P with U. Specifically, let Vp be the set of labeled nodes in P

and let VD be the set of labeled nodes in U. Let Up represent the UpDown matrix

of P and let Up represent the UpDown matrix of U. Let Intersect(P, U) denote the

40

distance is defined from P to U, denoted UpUown_dist(P, U), as

The TreeRank score from P to U, denoted AreeRank(P, U) or U Sia(P, U), is

calculated by

Th TrraPrank Score from P fn 	 is a measure of fh tnnnincriral rolatinnehine in

4.4 Nearest Neighbor Searching

Figure 4.5 shows a query tree P and a data tree U that satisfy the three

properties described in Section 2. In the biological sense, when comparing P with U,

41

their distance should be 0. To solve distance of this kind of trees, a data tree reduction

technique is incorporated into the nearest neighbor searching algorithm, which works

as follows.

Consider a query tree P and a data tree U and their UpDown matrices. Find the

column and row indexes of the nodes in the intersection of Vp and VD. Mark those

matching nodes in U with asterisks. If two distinct nodes of U are marked, then

their least common ancestor is also marked. The reduced data tree U' of U contains

only the marked nodes. Equivalently, unmarked nodes having only one neighbor

(this must preserve connectedness) are remove. The above removal might yield

additional unmarked nodes with one neighbor, which themselves will be removed.

If an unmarked node 72 is connected to two other nodes a l and a 2 , then remove n

and link a 1 and a2 . This too preserves connectedness. Continue doing these two

operations until neither can be done. The node removal operation is similar to the

"degree-2 delete" operation defined in [69] where a node can be deleted when the

node's degree is less than or equal to 2. Notice that after reduction, the UpDown

matrices will change, and the new matrices is used to calculate the similarity score of

P and U.

Figure 4.6 Example showing how the data tree reduction technique works in nearest
neighbor searching.

Figure 4.6 presents an example. In the figure, (i) shows a query tree, (ii) shows

a data tree in which some nodes are marked, and (iii) shows the reduced tree of the

42

data tree in (ii). In performing nearest neighbor searches, the algorithm first applies

the tree reduction technique to a data tree U, and then calculates the TreeRank score

from the given query tree P to the reduced tree of U using the formula described

in Section 4.3. The resulting score is then presented as the similarity score from P

to U. 6 For example, in Figure 4.6, since the TreeRank score from the query tree in

(i) to the reduced data tree in (iii) is 100%, The algorithm displays the data tree in

(ii) with a 100% similarity score to the query tree. This matching technique yields a

similar effect as tree matching with variable length don't cares [54, 55], though the

proposed approach does not require the user to explicitly specify the don't cares in

the query tree.

4.5 Extensions to Weighted and Unrooted Trees

Some tree reconstruction methods provide information to build a weighted tree where

the weight on an edge represents the estimated evolutionary distance between the two

nodes connected by the edge [48]. In extending the above approach for weighted trees,

each up and down operation is associated with a weight that equals the weight of the

corresponding edge. Instead of having U[u, v] represent the number of up operations

from node u to node v, U[u, v] is used to represent the sum of weights associated

with the up operations from u to v. Likewise, U[u, v] is used to represent the sum

of weights associated with the down operations from u to v. It can be shown that

two weighted trees are identical if and only if their weighted Updown matrices are

the same. The similarity score between two weighted trees is then calculated in the

same way as in Equation (4.2).

Some phylogenetic tree reconstruction methods such as MP [27] and ML [25]

may produce uprooted unordered trees, or free trees. An uprooted tree is one

that specifies only kinship relationships among taxa without specifying ancestry

6A data tree D is considered to be a neighbor of P if P and D share at least one common
leaf label. Otherwise D is not a neighbor of P and is not displayed as a search result.

43

relationships. The common ancestor of all taxa is unknown. Each edge in an uprooted

tree can be weighted or unweighted. Let A be an unrooted unordered tree. The

Additive matrix A is defined for A where each entry A[u, v] is the sum of the edge

weights on the shortest path connecting u and v in T. If T is not weighted, then

A[u, v] is simply the number of edges on the shortest path connecting u and v in A

(reminiscent of the additive distance for an uprooted tree described in [2, 7, 64]).

Now let Ap represent the Additive matrix of the query tree P and let AD

represent the Additive matrix of a data tree U. Let Bp be the set of labeled nodes

in P and let BD be the set of labeled nodes in U. Let I be the intersection of Bp and

BD; let J denote Bp — BD. The Additive distance from P to U is defined, denoted

Add_dist(P, U), as follows:

The similarity score from P to U, denoted ASia(P, U), is calculated by

The time complexity of the algorithm for computing ASia(P, U) is O(M2+N)

where M is the number of nodes in P, and N is the number of nodes in U. It can be

shown that for two unrooted trees P and U, whether they are weighted or unweighted,

P and U are identical if and only if the similarity score from P to U is 100%. This

property holds for rooted trees as well.

44

4.6 A Filter

Given a query or pattern tree P and a database of phylogenies D, the goal is to find

near neighbors of P in D where the similarity scores between the near neighbors and

P are greater than or equal to a user-specified threshold 6. A filter is developed to

speed up the search, which works as follows. For the database of trees, a hash table

keyed by pair of node labels and each hash bin contains tree identification numbers

is created. The pair can be in alphabetical order because U[u, v] = U[v, u] for any

pair of node labels (u, v). Now given the query tree P, each pair of node labels in P

is considered. Which trees of the database the pair is in is checked. (This requires

time independent of the size of the database.) Sort the data trees by the number of

hits.

By evaluating a data tree U, a lower bound on the Updown distance from P to

U can be got by looking at U[u, v] where Up is the Updown matrix of P and (u, v)

is a pair in P that is missing from U. The lower bound, denoted Low, is computed

by summing up U[u, 7)] for all pairs of (u, v) of P that are missing from U. From

the lower bound, an upper bound, denoted Upp, can be calculated on the similarity

score from P to U, where

and Be is the set of labeled nodes in P.

If the upper bound is already smaller than the user-specified value 6, U can

be eliminated from consideration without calculating the similarity score from P

to U. For example in Figure 4.7, f is set to 5. The sums of the missing pairs

in T1 and T2 are 6 and 8 respectively, so tree T 1 and T2 are discarded for further

consideration.Furthermore, if a data tree U has a set S of k hits and it is decided U

doesn't qualify to be a solution after calculating the similarity score from P to U,

45

Figure 4.7 Filter examples.

then any data tree U' that only has S' of k' hits, where k' < k and S' is a subset

of S, will not be a solution and hence can be eliminated from consideration. As the

experimental results show later, this filtering technique works well in practice.

1548 phylogenetic trees in TreeBASE are considered. Most non-leaf nodes in

these trees have two children. The number of nodes of a tree ranges from 50 to 200,

and the dictionary size of node labels is 18870. Figure 4.8 compares TreeRank and

TreeRank with filter for varying query tree sizes. The figure shows that filter speeds

up TreeRank considerably. This filter helps to eliminate, on average, more than 95%

of data trees in performing nearest neighbor searches in TreeBASE.

Figure 4.9 The software architecture of the proposed search engine.

47

4.7 Implementation

The nearest neighbor searching algorithm proposed here has been incorporated into a

Web-based system. The search engine is implemented using Java, HTML, Pearl CGI,

and C. It is fully operational and is accessible at http : //aria .njit

treerank.html. Figure 4.9 shows the software architecture of the search engine.

The system is comprised of four components: Web-based Interface, Query Processor,

Structure Viewer and Performance Log. From Web-based Interface, the user is able to

type in his/her own query (an example tree), upload the query tree from a file, or

use and modify a sample query provided by the system. Query Processor searches

TreeBASE for phylogenetic trees that are nearest neighbors of the query tree using

the algorithm described in Section 4.4. Structure Viewer displays the trees using either

a parenthesized string notation or a dendrogram format, which are presented to the

user via Web-based Interface. User queries and their time-stamps are maintained in

Performance Log, which helps to analyze user needs and better tune the system for

working more effectively. The search engine is connected to TreeBASE on the Web

and therefore it uses the visualization tools available in TreeBASE for displaying trees

graphically.

Figure 4.10 shows the system's main screen and query interface (the upper left

window), a query tree (the lower left window), and the query tree's nearest neighbor

in TreeBASE (the right window). In the main screen, the query tree is expressed in

the parenthesized string notation; in the other two windows this same query tree and

the nearest neighboring tree are viewed in the dendrogram format. In general, to view

a tree in the dendrogram format, the user would need to click the icon with the pencil

overlaid upon the phylogenetic tree in the main screen. To view the parenthesized

string notation, the user would need to click on the "Text" link in the main screen.

Figure 4.10 shows that Treel411 is ranked highest, which is the nearest neighbor

of the query tree with a 100% similarity score. Other similar trees are also displayed

48

Figure 4.10 An example query and search results displayed via the Web-based
interface of the proposed search engine.

49

and ranked, from top to bottom, based on their similarity scores. For each displayed

data tree U, when clicking on the icon in its "Neighboring Trees" column, the system

will initiate a new search using U as the query tree, and rank and display U's nearest

neighbors in TreeBASE. The "Taxa Overlap" column shows the number of leaves

(taxa) U has that also appear in the query tree. The system only displays similar

trees whose "Taxa Overlap" column has a number greater than 0. 7 Notice that even

though the top five ranked data trees all have the same "Taxa Overlap" value, namely

4, only Tree1411 has a similarity score of 100%. The other four trees only have a

similarity score of 83%.

Referring to the right window in Figure 4.10, the entire Treel411 is drawn and

the user can use scroll bars to view portions of the tree. Named clades (labeled internal

nodes) are indicated by a red dot. Each leaf node (taxon, species, or organism) has a

number next to its label. This number represents the number of studies in TreeBASE

the taxon is found within. If the user clicks on this number, he or she is linked to

TreeBASE so that he or she can search on that taxon about those studies. The specific

taxa specified within the query tree are highlighted in Treel411 using underscored

red font with a green circle next to the taxon's name. It should be pointed out that

after applying the tree reduction technique to Tree1411, the reduced tree is exactly

the same as the query tree. Consequently the similarity score for Tree1411 is 100%.

4.8 Related Work

In the past, a number of similarity and distance measures for phylogenetic trees have

been proposed. Various algorithms for tree matching [l, 43, 62, 68] and for tree

reconstruction [2, 17, 35, 65] have been studied. Different theories, when applied

71f a data tree does not share any common taxon with the query tree, the algorithm filters
out the data tree immediately without applying tree reduction to it and calculating its
TreeRank score. This filter works well in practice. The benchmark result shows that for
many query trees, the proposed system can perform a search on a set of approximately 1500
trees in about one second on a SUN Ultra 20 workstation.

50

to finding the phylogenetic relationship of the same set of species, often result in

different phylogenetic trees. To determine how much two theories have in common is

a fundamental problem in computational biology and in phyloinformatics.

The most comprehensive algorithmic and software tool in this field is perhaps

the COMPONENT package (http: //taxonomy .zoology . gla . ac .uk/rod/cpw.html)

developed by Page at University of Glasgow. It provides several ways of finding the

consensus of two phylogenetic trees. The first is to see whether they have similar

"quartets" which are based on adjacency relationships among all possible subsets of

four leaf species. The similarity is then computed as the proportion of quartets that

are shared in the two trees [5, 6, 20].

Partition distance treats each phylogenetic tree as uprooted and analyzes the

partitions of species resulting from removing one edge at a time. By removing an

edge in a tree, one is able to partition that tree. The difference between two trees

is defined as the number of edges for which there is no equivalent (in the sense of

creating the same partitions) edge in the other tree [19].

The maximum agreement subtree between two phylogenetic trees A1 and A2 is

a substructure of the two trees on which the two trees are the same [15, 16, 24, 37,

35, 38]. Commonly such a subtree will have fewer leaves than either T1 or A2 . By

contrast, a consensus tree has the same number of leaves as the original trees A 1 and

A2, assuming those trees have the same set of species. Consensus trees should be

used gingerly, however, because a consensus tree is not a phylogeny unless the two

trees are isomorphic. Instead, consensus trees are a convenient way to summarize the

agreement between two or more trees. Consensus trees can be formed from cluster

methods (strict, majority rule, semi-strict, or Nelson) or by intersection methods

(Adams); see [19, 42, 45] for more details.

The last dissimilarity measure implemented in COMPONENT is the nearest

neighbor interchange (NNI) distance. Given two unrooted unordered trees A1 and

51

A2 with the same set of labeled leaves, their NNI distance is the number of NNI

operations needed to transform A1 to A2. Finding the NNI distance between two

trees is NP-hard. Brown and Day [4] developed several approximation algorithms to

calculate the distance, which are implemented in COMPONENT.

In contrast to the above distance and similarity measures, which are developed

for comparing two trees, possibly with some constraints (e.g. the two trees must have

the same set of leaves), TreeRank is mainly designed for nearest neighbor searching

in phylogenetic databases. In [55], an approach called ATreeGrep is presented, which

measures the distance between two general rooted unordered trees by counting the

mismatching paths in the two trees. By utilizing a suffix array index structure,

ATreeGrep focuses on fast retrieval in a database of general rooted unordered trees.

The tool has been applied to processing XMLs [54] and phylogenies [53]. It allows

the user to add variable length don't cares to a query tree when a certain portion of a

data tree is unimportant or unknown in matching with the query tree. By contrast,

TreeRank is specially designed for rooted phylogenetic trees that satisfy the three

properties described in Section 2. It captures the structural difference of a data tree

with respect to the query tree by considering the up and down operations in the two

trees. The nearest neighbor searching algorithm proposed here employs the data tree

reduction technique described in Section 4.4, without asking the user to explicitly

specify variable length don't cares in the query tree.

4.9 Results

The filter technique has been tested on synthetic data. One thousand unweighted

rooted trees were randomly generated, each tree having 100 nodes. The string labels

of nodes were randomly chosen from a dictionary of size 500 . The threshold value

6 was set to 60%. In each run, a tree was selected and modified into the query tree

and the other trees were used as data trees. l,000 runs were tested and the average

Figure 4.11 Running times on l,000 synthetic trees for search methods with and
without the filter.

Figure 4.12 Running times of the proposed search method on different sizes of
databases.

53

was plotted. Figure 4.11 shows the results for varying query tree sizes. It can be

seen from the figure that the proposed filter speeds up searches considerably. It was

also observed that the running time drops as the user-specified threshold value 6

increases. This happens because fewer data trees survive the filter when 6 becomes

larger. Figure 4.12 shows that the proposed search method scales up well its running

time increases linearly with increasing number of trees. These results are consistent

with those for real phylogenetic trees.

The proposed search method for unweighted rooted trees has been implemented

into a Web-based system connected with TreeBASE. Figure 4.13 shows the system's

main screen and query interface (the upper left window), a query tree (the lower left

window), and the query tree's nearest neighbor in TreeBASE (the right window).

In the main screen, the query tree is expressed in the parenthesized string notation;

in the other two windows this same query tree and the nearest neighboring tree

are viewed in the dendrogram format. Figure 4.10 displays data trees in TreeBASE

where the similarity score, USia, of each data tree to the query tree is greater than or

equal to the user-specified threshold, 60%. Among the data trees, Treel411 is ranked

highest, which is the nearest neighbor of the query tree with a 100% similarity score.

It should be pointed out that after applying the tree reduction technique to Tree1411,

the reduced tree is exactly the same as the query tree. (The matched taxa between

the query tree and Tree1411 are highlighted with a bullet and underscored in the

figure.) Consequently the similarity score for Treel411 is 100%.

This structural search engine is implemented using Java, HTML, Pearl, CGI, and

C. It is fully operational and is accessible at http://aria.njit.edu/ -,biotool/n

nsearch.html. As of December 2003, about 500 users worldwide have accessed the

search engine over 7,000 times totally. Most submitted query trees are small trees with

20 or fewer nodes. With these query trees, a moderate similarity score (e.g. 60%),

Figure 4.13 An example NN query and search results displayed via the Web-based
interface of the proposed search engine.

and the approximately l,600 unweighted rooted trees in TreeBASE, the system can

perform a search in about one second on a SUN Ultra 20 workstation.

4.10 Discussion

Unlike many existing metrics [5, 4, 15, 19, 29, 35, 37, 38, 45, 47], designed for

comparing two trees possibly with some constraints (e.g. the two trees must have the

same set of leaves), the similarity scores described in the chapter are mainly developed

for near neighbor searching in phylogenetic databases. The similarity scores are not

symmetric, i.e. USia(X, Y) USia(Y, X), ASim(X,Y) ASia(Y, X), for any

two trees X and Y. The non-symmetry property is good in query-driven phylogenetic

information retrieval; it distinguishes between the situation in which X is a query and

Y is a data tree and the situation in which Y is a query and X is a data tree.

55

To evaluate the quality of the proposed similarity measures, USia is compared

with four widely used tree metrics implemented in the COMPONENT tool [46]. These

tree metrics include partition metric (PAR), nearest neighbor interchange metric

(NNI), quartet metric (QUA) and maximum agreement subtree metric (MAST).

Specifically, the distribution of the metric values on 945 unweighted rooted trees

generated by the COMPONENT tool is compared. The query tree was generated

randomly; the 945 data trees covered the entire tree space of unweighted rooted trees

with 6 labels. The query tree is compared with each data tree to obtain a metric

or (dissimilarity value. For MAST, the metric value equals the number of leaves

removed to obtain a maximum agreement subtree of the query tree and the data tree.

The results are summarized in Figures 4.14, 4.15, 4.16, 4.17 and 4.18. In each figure,

the X-axis shows different metric values. For each specified value on the X-axis,

the figure shows the number of data trees whose metric/(dis)similarity value from

the query tree equals the specified value. An in-depth comparison between the four

widely used tree metrics and the proposed similarity measures USia and ASia,

collectively referred to as WSSP, is summarized in Table l.

Figure 4.14 Distribution of PAR metric values.

It can see from Figures 4.14, 4.15, 4.16, 4.17 and 4.18 that WSSP gives a good

distribution of values, unlike partition metric (PAR) and maximum agreement subtree

metric (MAST). From Table lit can be seen that the running time of WSSP is better

than MAST and NNI (nearest neighbor interchange metric). WSSP can be applied to

weighted trees and unweighted trees where trees can be fully resolved or unresolved.

It can be used to compare two trees whose internal nodes have labels and whose leaves

have different taxa as shown in Table l. The bottom line is that WSSP could be a

useful metric in addition to the other excellent ones available.

In summary, a new approach to near neighbor searching for phylogenetic trees

has been presented . Given a query or pattern tree P and a database of trees D,

the proposed approach finds data trees U where the similarity score of P to U is

greater than or equal to a user-specified threshold value. Similarity measures are

developed for comparing rooted and unrooted trees where the trees can be weighted

or unweighted. The proposed algorithms have been used for analyzing the structures

of phylogenetic trees and for performing structure-based searches in TreeBASE.

Figure 4.16 Distribution of NNI metric values.

Figure 4.17 Distribution of QUA metric values.

Figure 4.18 Distribution of USia values.

CHAPTER 5

WEB-BASED SYSTEM AND PROTOTYPES

TreeSearch is a research project conducted in New Jersey Institute of Technology,

New York University and University of Western Ontario, Canada.

The project aims to produce algorithms, data structures, and tools that allow

rapid and approximate search across phylogenetic trees. Currently the phylogenetic

trees used are taken from TreeBASE. The underlying algorithms are based on Pathfix,

Pathfilter and TreeRank.

This system allows users to perform various types of structure-based queries on

TreeBASE. Users can click on the "Search" button in the menu to try this system.

The "Instructions" button provides guidelines of using the system.

5.1 Screenshots

The main menu of TreeSearch is shown in Figure 5.l. The graphic representation of

a query tree is shown in Figure 5.2.

59

Figure 5.1 Main menu of the structural search engine on TreeBASE.

60

Figure 5.2 Query tree display.

61

5.2 Input

There are two ways to submit the query:

(A) type input query tree to the text area, then press the "Submit" button.

(B) choose the query tree file, then press the "Upload" button.

The followings are valid input format samples:

The valid input format for the query tree in Figure 5.3 is ((Frenulata,Vesti

mentifera), (Sabellariidae,(Sabellidae,Serpulidae))). The valid input format for a

query tree with only one node: the taxon name, such as "Galidia elegans".

63

5.3 View Query Tree and Search Results

The query tree and matching trees can be viewed graphically or in text format. Users

can click the [Text] to view the text representation of a tree. By clicking the tree

icon, users can view the graphic representation of a tree. The matching nodes are

shown in bold font and with a green dot. This search engine can guide the users to

navigate the neighboring trees of query tree as shown in Figure 5.5.

Figure 5.4 Matching data tree display.

64

Figure 5.5 Neighboring trees display.

65

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Labeled trees find many applications in computer and natural sciences. a new

approach, called ATreeGrep, has been presented for searching among these trees.

Experimental results show that ATreeG rep is fast, particularly when the dictionary

size of node labels is large. This algorithm has been implemented into two Web-based

search engines for phylogenetic databases and XML repositories.

A new approach to nearest neighbor searching among phylogenetic trees is also

presented. Given a query or pattern tree P and a database of trees D, the proposed

approach finds and ranks data trees U where U is similar to P, and U shares at least

one common leaf label with P. If U doesn't share any common leaf label with P, U

will be eliminated without computing the similarity score from P to U.

In practice, another interesting search function is to find data trees in D that

are within UpDown distance E of the query tree P. A filter has been implemented to

speed up this type of retrieval, which works as follows. For the database of trees, a

hash table keyed by pair of node labels and each hash bin contains tree identification

numbers is created. The pair can be in alphabetical order because U[u, = U[v, u]

for any pair of node labels (u, v) (cf. Fact 1 in Section 3). Now given the query tree

P, each pair of node labels in P is considered to see which trees of the database the

pair is in. (This requires time independent of the size of the database). Sort the data

trees by the number of hits.

By evaluating a data tree U, a lower bound on the distance from P to U can be

got by looking at Up[u, v], where Up is the UpDown matrix of P and (u, v) is a pair in

P that is missing from U. The lower bound is computed by summing up Up[u, v] for

all pairs of (u, v) of P that are missing from U. If the lower bound is already greater

66

67

than c, U can be eliminated from consideration without calculating the distance of

P and U. Furthermore, if a data tree U has a set S of k hits and it is decided U

doesn't qualify to be a solution after calculating the distance of P and U, then any

data tree U' that only has S' or less than k hits where S' is a subset of S will not be

a solution and hence can be eliminated from consideration. Experimentally this filter

helps to eliminate, on average, more than 95% of data trees while performing nearest

neighbor searches in TreeBASE.

The proposed algorithms have been used for performing structure-based retrieval

and for analyzing the structures of phylogenetic trees in TreeBASE. Future work

includes extending the discussed algorithms for searching other types of scientific

databases, and for finding patterns in these databases [61, 63].

APPENDIX

PARTIAL PROGRAM LISTING

The proposed algorithms and the Web-based systems are implemented using Java,

Pearl and C. This appendix includes the partial source code for the structural search

engine.

68

69

70

71

72

73

74

75

Ii■

78

79

80

81

82

Cl ..1 I

84

85

86

87

88

,• ,••

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

REFERENCES

[1] E. N. Adams. Consensus techniques and the comparison of taxonomic trees.
Systematic Zoology, 21:390-397, 1972.

[2] V. Berry and D. Bryant. Faster reliable phylogenetic analysis. In Proceedings of the
3rd Annual International Conference on Computational Molecular Biology, pp.
59-68, 1999.

[3] P. Buneman, S. B. Davidson, M. F. Fernandez, and D. Suciu. Adding structure
to unstructured data. In Proceedings of the 6th International Conference on
Database Theory, pp. 336-350, 1997.

[4] E. K. Brown and W. H. E. Day. A computationally efficient approximation to the
nearest neighbor interchange metric. Journal of Classification, l:93-124, 1984.

[5] G. S. Brodal, R. Fagerberg, and C. N. S. Pedersen. Computing the quartet distance
between evolutionary trees in time 0(nlog2n). In Proceedings of the 12th Annual
International Symposium on Algorithms and Computation, pp. 731-742. Lecture
Notes of Computer Science, Vol. 2223, Springer Verlag, Berlin, 2001.

[6] D. Bryant, J. Tsang, P. Kearney, and M. Li. Computing the quartet distance between
evolutionary trees. In Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms, San Francisco, CA, 2000.

[7] P. Buneman. The recovery of trees from measures of dissimilarity. In Mathematics in
Archaeological and Historical Sciences, pp. 387-395. Edinburgh University Press,
1971.

[8] J. H. Camin and R. R. Sokal. A method for deducing branching sequences in
phylogeny. Evolution, 19:311-326, 1965.

[9] J. H. Camin and R. R. Sokal. A method for deducing branching sequences in
phylogeny. Evolution, 19:311-326, 1965.

[10] G. Chang, M. J. Healey, J. A. M. McHugh, and J. T. L. Wang. Mining the World Wide
Web: An Information Search Approach. Kluwer Academic Publishers, Norwell,
Massachusetts, 2001.

[11] S. S. Chawathe, S. Abiteboul, and J. Widom. Representing and querying changes
in semistructured data. In Proceedings of the IEEE International Conference on
Data Engineering, pp. 4-13, 1998.

[12] S. S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured
data. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 26-37, 1997.

110

111

[13] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change detection
in hierarchically structured information. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 493-504, 1996.

[14] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R. T. Ng, and
D. Srivastava. Counting twig matches in a tree. In Proceedings of the IEEE
International Conference on Data Engineering, pp. 595-604, 2001.

[15] R. Cole, M. Farach-Colton, R. Hariharan, T. M. Przytycka, and M. Thorup. An 0(n
log n) algorithm for the maximum agreement subtree problem for binary trees.
SIAM J. Comput., 30(5):1385-1404, 2000.

[16] R. Cole and R. Hariharan. An 0(n log n) algorithm for the maximum agreement
subtree problem for binary trees. In Proceedings of the 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 323-332, 1996.

[17] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On distances between
phylogenetic trees. In Proceedings of the 8th ACM-SIAM Symposium on Discrete
Algorithms, pp. 427-436, 1997.

[18] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, L. Wang, and L. Zhang. Computing
distances between evolutionary trees. In D. Z. Du and P. M. Pardalos (eds.)
Handbook of Combinatorial Optimization, Kluwer Academic Publishers, Volume
2, 1998, pp. 35-76.

[19] W. H. E. Day. Optimal algorithms for comparing trees with labeled leaves. Journal
of Classification, 2:7-28, 1985.

[20] C. R. Douchette. An efficient algorithm to compute quartet dissimilarity measures.
Unpubl. BSc (Hons) Dissertation, Memorial Univ. Newfoundland, 1985.

[21] A. Dress and M. Kruger. Parsimonious phylogenetic trees in metric spaces and
simulated annealing. Advances in Applied Mathematics, 8:8-37, 1987.

[22] M. P. Evett, J. A. Hendler, A. Mahanti, D. S. Nau. PRA*: Massively Parallel
Heuristic Search. Journal of Parallel and Distributed Computing, 25(2): 133- 143,
(1995.)

[23] M. Farach and M. Thorup. Fast comparison of evolutionary trees. In Proceedings of
the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, 1994.

[24] M. Farach and M. Thorup. Optimal evolutionary tree comparison by sparse dynamic
programming (extended abstract). In Proceedings of the 35th Annual IEEE
Symposium on Foundations of Computer Science, pp. 770-779, 1994.

[25] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood
approach. Journal of Molecular Evolution, 17:368-376, 1981.

112

[26] A. Ferro, G. Gallo, R. Giugno, and A. Pulvirenti. Best-match retrieval for structured
images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(7):707-718, 2001.

[27] W. Fitch. Toward the defining the course of evolution: Minimum change for a specific
tree topology. Systematic Zoology, 20:406-416, 1971.

[28] 0. Gotoh. An Improved Algorithm for Matching Biological Sequences. J. Mol. Biol.,
162, pp. 705-708, 1982.

[29] J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing
evolutionary trees. Discrete Applied Mathematics, 71:153-169, 1996.

[30] J. Jaakkola and P. Kilpelainen. 	 Using sgrep for querying structured text
files. University of Helsinki, Department of Computer Science, Report C-
1996-83, November 1996; available at http : //www . cs . helsinki . fi/u/j jaakk
ol/sgrep . html.

[31] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and K. Thompson. TAX: A
tree algebra for XML. In Proceedings of the 8th Workshop on Data Bases and
Programming Languages, 2001.

[32] D. E. Joyce. Phylogeny and reconstructing phylogenetic trees. http://aleph0.
clarku.edu/r-djoyce/java/, 2000.

[33] S. Kannan, E. Lawler, and T. Warnow. Determining the evolutionary tree. In
Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 475-484, 1990.

[34] S. Kannan, T. Warnow, and S. Yooseph. Computing the local consensus of trees. In
Proceedings of the 6th Annual ACM -SIAM Symposium on Discrete Algorithms,
1995.

[35] M. Kao, T. Lam, T. M. Przytycka, W. Sung, and H. Ting. General techniques for
comparing uprooted evolutionary trees. In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pp. 54-65, 1997.

[36] G. Karypis and V. Kumar. Multilevel k -way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing, 48:96- 129, 1998.

[37] E. Kubicka, G. Kubicki, and F. R. McMorris. An algorithm to find agreement
subtrees. Journal of Classification, 12(l):91-99, 1995.

[38] T. W. Lam, W. K. Sung, and H. F. Ting. Computing the unrooted maximum
agreement subtree in subquadratic time. In Proceedings of the 5th Scandinavian
Workshop on Algorithm Theory, pp. 124-135, 1996.

[39] T. W. Leung, G. Mitchell, B. Subramanian, B. Vance, S. L. Vandenberg, and S. B.
Zdonik. The AQUA data model and algebra. In Proceedings of the 4th Workshop
on Data Bases and Programming Languages, pp. 157-175, 1993.

113

[40] T.-L. Liu and D. Geiger. Approximate Tree Matching and Shape Similarity. In
Proceedings of IEEE International Conference on Computer Vision vol. l, pp.
456-462, 1999.

[41] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. In
Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 319-327, 1990.

[42] G. Nelson. Cladistic analysis and synthesis: Principles and definitions, with a
historical note on Adanson's Famille Des Plantes (1763-1764). Syst. Zoology,
28:l-21, 1979.

[43] A. S. Wetzel and S. M. Selkow. An analysis of the general tree-editing problem.
In D. Sankoff and J. B. Kruskal, editors, Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Seauence Comparison, pp. 237-252.
Addison-Wesley, Reading, MA, 1983.

[44] NSF Workshop Report at Yale University. Assembling the tree of life: Research needs
in phylogenetics and phyloinformatics, July 2000.

[45] R. D. M. Page. Comments on component-compatibility in historical biogeography.
Cladistics, 5:167-182, 1989.

[46] R. D. M. Page. COMPONENT. http://taxonomy.zoology.gla.ac.uk/rod/ cpw.html,
2003.

[47] R. D. M. Page and M. A. Charleston. Trees within trees: Phylogeny and historical
associations. Trends in Ecology and Evolution, 13:356-359, 1998.

[48] R. D. M. Page and E. C. Holmes. Molecular Evolution: A Phylogenetic Approach,
Blackwell Science,1998.

[49] M. Pelillo. Matching free trees, maximal cliques, and monotone game dynamics. In the
IEEE Transactions on Pattern Analysis and Machine Intelligence. 24(11):1535-
1541, 2002.

[50] W. H. Pixel, M. J. Donoghue, and M. J. Sanderson. TreeBASE: A database of
phylogenetics information. In Proceedings of the 2nd International Workshop of
Species 2000, 2000.

[51] M. Rarey and J. S. Dixon. Feature Trees: A new molecular similarity measure based
on tree matching. Journal of Computer-Aided Molecular Design 12, pp. 471-490,
1998.

[52] M. J. Sanderson, M. J. Donoghue, W. H. Pixel, and T. Eriksson. TreeBASE: A
prototype database of phylogenetic analyses and an interactive tool for browsing
the phylogeny of life. American Journal of Botany, 81(4183, 1994.

114

[53] H. Shan, K. G. Herbert, W. H. Pixel, D. Shasha, and J. T. L. Wang. A structure-based
search engine for phylogenetic databases. In Proceedings of the 14th International
Conference on Scientific and Statistical Database Management, pp. 7-10, 2002.

[54] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of tree and
graph searching. In Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pp. 39-52, 2002.

[55] D. Shasha, J. T. L. Wang, H. Shan, and K. Zhang. ATreeGrep: Approximate
searching in unordered trees. In Proceedings of the 14th International Conference
on Scientific and Statistical Database Management, pp. 89-98, 2002.

[56] B. Subramanian, T. W. Leung, S. L. Vandenberg, and S. B. Zdonik. The AQUA
approach to querying lists and trees in object-oriented databases. In Proceedings
of the IEEE International Conference on Data Engineering, pp. 80-89, 1995.

[57] B. Subramanian, S. B. Zdonik, T. W. Leung, and S. L. Vandenberg. Ordered types in
the AQUA data model. In Proceedings of the 4th Workshop on Data Bases and
Programming Languages, pp. 115-135, 1993.

[58] TreeGen: Tree generation from distance data. Computational Biochemistry Research
Group, ETH Zurich. Retrieved from http://cbrg.inf .ethz.ch/Server/
subsection3_1_6.html, May, 2004.

[59] J. T. L. Wang, B. A. Shapiro, D. Shasha, K. Zhang, and K. M. Currey. An algorithm
for finding the largest approximately common substructures of two trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8):889-895, 1998.

[60] J. T. L. Wang, K. Zhang, G. Chang, and D. Shasha. Finding approximate patterns
in undirected acyclic graphs. Pattern Recognition, 35(2):473-483, 2002.

[61] J. T. L. Wang, G.-W. Chirn, T. G. Marr, B. A. Shapiro, D. Shasha, and K. Zhang.
Combinatorial pattern discovery for scientific data: Some preliminary results. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 115-125, 1994.

[62] J. T. L. Wang, K. Zhang, K. Jeong, and D. Shasha. A system for approximate tree
matching. IEEE Transactions on Knowledge and Data Engineering, 6(4):559-
571, 1994.

[63] J. T. L. Wang, B. A. Shapiro, and D. Shasha (eds). Pattern Discovery in Biomolecular
Data: Tools, Techniaues and Applications. Oxford University Press, New York,
1999.

[64] L. Wang and D. Gusfield. Constructing Additive Trees When the Error Is Small.
Journal of Computational Biology 5(l): 137-134, 1998.

[65] L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with recombination.
In Proceedings of the ACM Symposium on Applied Computing, pp. 46-50, 2001.

115

[66] S. Wu and U. Manber. Fast text searching allowing errors. Communications of the
ACM, 35(10):83-91, 1992.

[67] K. Zhang, D. Shasha, and J. T. L. Wang. Approximate tree matching in the presence
of variable length don't cares. Journal of Algorithms, 16(l):33-66, 1994.

[68] K. Zhang, R. Statman, and D. Shasha. On the editing distance between unordered
labeled trees. Information Processing Letters, 42:133-139, 1992.

[69] K. Zhang, J. T. L. Wang, and D. Shasha. On the editing distance between undirected
acyclic graphs. International Journal of Foundations of Computer Science,
7(l):43-57, 1996.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Atreegrep: Approximate Searching in Trees
	Chapter 4: Treerank: A Similarity Measure for Nearest Neighbor Search in Treebase
	Chapter 5: Web-based System and Prototypes
	Chapter 6: Conclusions and Future Work
	Appendix
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

