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ABSTRACT

OPTIMIZATION STUDIES OF THERMAL BIMORPH CANTILEVERS,
ELECTROSTATIC TORSION ACTUATORS AND VARIABLE CAPACITORS

by
Wuyong Peng

In this dissertation, theoretical analyses and optimization studies are given for three kinds

of MEMS devices: thermal bimorph cantilevers, electrostatic torsion actuators, and

variable capacitors. Calculation, simulation, and experimental data are used to confirm

the device behavior and demonstrate the application of the design approaches.

For thermal bimorph cantilevers, an analytical model is presented which allows

theoretical analysis and quantitative optimization of the performance based on material

properties and device dimensions. Bimorph cantilevers are divided into two categories for

deflection optimization: either the total thickness is constant, or the cantilever has one

constant and one variable layer thickness. The optimum equations are then derived for

each case and can be used as design rules. The results show that substantial

improvements are possible over existing design approaches. Other parameters like static

temperature distribution, power consumption, and dynamic behavior are also discussed,

as are design tradeoffs such as feature size, application constraints, fabrication feasibility,

and cost.

The electrostatic torsion actuator studies are conducted for two device types:

round and rectangular. The first case describes an analytical study of the pull-in effect in

round, double-gimbaled, electrostatic torsion actuators with buried, variable length

electrodes, designed for optical cross-connect applications. It is found that the fractional

tilt at pull-in for the inner round plate in this system depends only on the ratio of the

length of the buried electrode to the radius of the plate. The fractional tilt at pull-in for the



outer support ring depends only on the ratio of the length of the buried electrode to the

outer radius of the ring and the ratio of the ring's inner and outer radii. Expressions for

the pull-in voltage are determined in both cases. General relationships are also derived

relating the applied voltage to the resulting tilt angle, both normalized by their pull-in

values. Calculated results are verified by comparison with finite element MEMCAD

simulations, with fractional difference smaller than 4% for torsion mode dominant

systems. For the second case, a fast, angle based design approach for rectangular

electrostatic torsion actuators based on several simple equations is developed. This

approach is significantly more straightforward than the usual full calculation or

simulation methods. The main results of the simplified approach are verified by

comparing them with analytical calculations and MEMCAD simulations with fractional

difference smaller than 3% for torsion mode dominant actuators. Also, good agreement is

found by comparison with the measured behavior of a micro-fabricated full-plate device.

In the last topic, ultra-thin silicon wafers, SU-8 bonding and deep reactive ion

etching technology have been combined for the fabrication of folded spring, dual

electrostatic drive, vertical plate variable capacitor devices with displacement limiting

bumpers. Due to the presence of the bumpers, the variable capacitor with parallel plate

drive electrodes has two tuning voltage regimes: first a parabolic region that achieves

roughly a 290% tuning range, then a linear region that achieves an additional 310%,

making the total tuning range about 600%. The variable capacitor with comb drive

electrodes has a parabolic region that achieves roughly a 205% tuning range, then a linear

region that achieves an additional 37%, making its total tuning range about 242%. The

variable capacitors have Q factors around 100 owing to the use of silicon electrodes other

than lower resistivity metal.
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CHAPTER 1

INTRODUCTION

For the last few decades, MEMS (Micro-Electro-Mechanical Systems) technology has

been used in many application areas such as optics, communications, sensors, fluids and

biology [1-15]. In optical areas devices like scanners, display units, projectors, micro

mirrors, optical switches, spectrometers, tunable filters, gas detectors, micro lens,

gratings, waveguides, photo diodes and other optoelectronic components are used to

deflect, switch, or modulate an optical beam. In RF and wireless communications,

MEMS has been used to make variable capacitors, inductors, transmitters and receivers.

MEMS pressure sensors, accelerometers, gyroscopes and humidity sensors are well

known in the sensors area. In microfluidic applications, MEMS has been used to make

printer heads, fluid meters, micro pumps and fuel cells. Furthermore, MEMS devices are

also used in medical areas for DNA analysis, disease diagnosis and even artificial retinas

for the blind.

The core technology of MEMS is derived from the planar lithographic

technologies of integrated circuits with additional processes that permit the fabrication of

mechanical, optical, magnetic, acoustic, electronic and other components to sense,

amplify, digitize, process signals and provide useful reaction output. The ultimate goal is

to integrate all necessary functions in one module and realize SOC (Systems on Chip).

The most noticeable benefit of MEMS devices compared to their classical macroscopic

counterparts is the size reduction: many rigid materials become flexible in micro

dimensions. And with the use of single-crystal material, fatigue phenomenon is less of a

1
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problem due to the absence of grain boundaries. Other advantages include increased

speed, lower power consumption, increased reliability, better performance, lower cost,

etc. This is a rich field of research and development in which some applications have

already reached the commercial level and other show a promising future.

The actuating mechanisms that have been used in MEMS devices include:

electrostatic, piezoelectric, magnetic, and thermal actuation [16-18] . The most common

actuation mechanism in MEMS is electrostatic because of its straightforward principle,

compatibility with CMOS processes and materials, and relatively low consumption of

power. Disadvantages include potentially high driving voltage and non-linear voltage

response. In piezoelectric actuation, the electrically induced strain is approximately

proportional to the applied electric field. Its advantages include large force, fast response

time, and potentially low operating voltage. Disadvantages include small dimensional

variations and a need for a sophisticated fabrication process. There are many advantages

of using magnetic actuation (electromagnetic or magnetostrictive). For example,

magnetic forces can be both attractive and repulsive. They are large in magnitude and

effective over a long range. The major disadvantage of magnetic actuation is the lack of

mature fabrication technology. This is mainly because it requires more complicated

components, such as coils and magnetic materials. Thermal actuation provides large force

and deflection. It has the advantages of low driving voltage and a nearly linear deflection-

versus-power relationship. Thermally actuated device processes are often based on fairly

straightforward fabrication steps and can be easily integrated with circuitry using, for

example, a standard CMOS process. Disadvantages include high power consumption and

comparatively long response time. Other actuation mechanisms include Shape Memory
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Alloy (SMA) actuation, chemical reaction actuation, or a combination of two or more of

any of the previously discussed mechanisms. Each may have a particular specialized

application area. In summary, there are many actuation mechanisms to choose from that

can be used in MEMS. None has dominance over the others: some are better in certain

areas, some are mature and some promise potential benefits. The choice is a balance

between many factors, such as design specifications, application constraints, process

compatibility and cost. Table 1.1 is a brief comparison of the different actuation

mechanisms.

Bimorph structures have long been studied and used for sensors and actuators

because of their sensitivity, fast response time and ease of integration with semiconductor

technology [19-21]. They can also provide important information about material

properties such as residual stress, elastic modulus, piezoresistivity and magnetostriction

[22-26]. Furthermore, bimorph structures have been found in almost all MEMS devices,
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whether it is desired or not. Thus, the study of bimorph structures is of great interest

either for better performance or to avoid unwanted effects. Traditionally, this is

approached by numerical, simulation, or experimental methods [27-31]. Despite their

wide use, the relationships between design parameters and device performance are still

not clear. Several studies, however, have already addressed theoretical optimization of

bimorph cantilevers [32-34], but theoretical solutions are only given for a specific case

and cannot applied to other situations. Thus, a complete analysis for general bimorph

cantilevers is needed. This study performs a thorough analysis of bimorph cantilevers

driven by thermal stimulus. An analytical model is introduced, which allows theoretical

analysis and quantitative optimization based on material properties and dimensions. The

optimum equations are derived, which can be used as design rules. Further analysis

shows that substantial improvements over existing design methods are possible with this

optimization approach.

In response to the demand for increased information capacity,

microelectromechanical systems (MEMS), including optical cross-connects, optical

switches, and electrically controlled variable attenuators, are being investigated for the

emerging all optical telecommunications network [63]. Electrostatic torsion actuators

have been implemented in many of these optical MEMS systems. An important property

of the actuators is their pull-in voltage, beyond which the electrostatic torque overcomes

the mechanical torque, and the movable plate snaps abruptly to the fixed electrode plane.

The aim of a typical design is to determine spring and electrode parameters for a chosen

working point near pull-in that corresponds to a desired maximum controllable tilt angle

at a given applied bias voltage. Numerous papers address rectangular torsion actuators
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and the related pull-in voltage [64-73]. Among them, Hornbeck [69] uses an analysis

based on the balance between the supporting beam torsion spring torque and the

distributed 2-D electrostatic torque on the plate, but this approach does not lead to a

straightforward expression for the pull-in voltage and the fractional deflection at the pull-

in. Osterberg [70] and Gupta [71] have used electrostatically actuated

microelectromechanical test structures for measurement of device and material properties,

including pull-in. With this approach, Osterberg derives a 1-D lumped model equation for

the spring constant of a rectangular torsion beam, and uses this expression in a pull-in

voltage equation. However, the fractional deflection is not derived. Degani, et al., [72]

have proposed polynomial algebraic equations for the pull-in voltage and angle in torsion

actuators. However, this calculation is relatively complicated and time consuming, and

must be repeated for every design variation. In this study, an angle based design approach

for rectangular, electrostatic torsion actuators are proposed based on several

straightforward equations. This approach makes the design optimization process much

easier and faster than the usual full analytical calculation or finite element simulation

methods. The results of the simplified approach are verified by comparing them with

analytical calculations and MEMCAD simulations with fractional difference smaller than

3% for torsion mode dominant actuators. Also, the predicted results are compared with

the measured behavior of a full-plate device, and found to be in good agreement.

Moreover, for round, double-gimbaled, electrostatic torsion actuators with buried,

variable length electrodes [63], the pull-in effect theory is still absent from the literature.

The results of this study will be useful for optimizing the design of such actuators without

the need for time-consuming finite element simulations.
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Electronically tunable capacitors are key elements in communications circuits

such as voltage-controlled oscillators and tunable capacitor filters. Numerous papers

address variable capacitors [76-91]. In an integrated circuit design, a variable capacitor is

usually realized with a reversed p-n junction, which can give a 335% tuning range [88].

However, the silicon p-n junction usually has large series resistance plus parasitic

capacitance to the substrate. The variable capacitors manufactured with micromachining

technology can accommodate large voltage swings so that the phase noise can be

improved by allowing a large voltage swing across an LC circuit. This is normally not

possible with p-n junction capacitors, where the designer must ensure that the junction

does not become forward-biased over the tuning voltage range. Additionally, micro-

mechanical capacitors are not expected to respond to microwave frequencies, which are

normally 10,000 times higher than their mechanical resonant frequencies. For

electrostatic drive variable capacitors fabricated using micromachining processes, Yao, et

al., [88] have reported a capacitor with a tuning range of 200% based on lateral comb

structures on an SOIL substrate with a Q value of 34 at 500MHz. Feng, et al., [91] have

used a thermal actuator in their variable capacitor and achieved a tuning range of 270%

with Q values up to 290 at 1GHz. Borwick, et al., [92] achieved a variable capacitor with

740% using comb drive electrodes with Q values in excess of 100 in the 200-400 MHz

range. In this study, ultra-thin silicon wafers, SU-8 bonding and deep reactive ion etching

technology have been combined for the fabrication of folded spring, dual electrostatic

drive, and vertical plate devices with displacement limiting bumpers. Both comb drive

and parallel plate drive electrode structures have been fabricated and tested. The parallel

plate driven devices exhibit a total tuning range of about 600%.



CHAPTER 2

THERMAL BIMORPH CANTILEVER

A bimorph cantilever is made up of two layers of materials with different physical

properties and dimensions. One end of the structure is fixed; the other one is free of

movement. A typical bimorph cantilever and its dimensions are defined in Figure 2.1.

Where w1, W2; t1, t2 are the width and thickness of each layer, respectively, L is the length.

At its initial temperature (To), the cantilever is in a relaxed state: there is no stress

within the cantilever and no deflection. When the temperature changes, the dimensions of

these two layers will change differently due to different Thermal Expansion Coefficient

(TEC). This small mismatch introduces a large stress in the interface. The stress is

compressive in one layer and tensile in the other. Compressively stressed films tend to

expand parallel to the substrate surface. Films in tensile stress, on the other hand, contract

7
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parallel to the substrate. To release the stress, the cantilever will bend out of plane and the

stress decreases with the deflection. On the other hand, part of the beam changes its stress

state when bending and generates a counter force that increases with the deflection. When

these two forces are balanced, the cantilever is in its equilibrium state again. The stress,

and with it the force that can be generated by thermal expansion, are large, whereas the

strain is small. Bimorph cantilevers can convert this small strain into relatively large out

of plane displacement, as shown in Figure 2.2. The end of the cantilever is assumed to be

a plane before and after deflection, which means that the linear stress distribution along

the thickness of the cantilever and the resulting deflection are within the elastic limits for

the materials.



2.1 Stress Analysis

2.1.1 Thermal Stress

For a free material layer, the strain created by thermal expansion can be expressed:

where e is the strain, a is the thermal expansion coefficient, and AT is the temperature

change.

For an unreleased materials layer, according to Hook's Law

thermal stress is:

where o- is the stress and E is the Young's modulus. This equation shows that the stress

generated by thermal expansion is independent of the dimensions of the device.

Therefore, the corresponding force scales with the area as far as the material withstands

the thermal stress.

Figure 2.3 represents the strain distribution within a thermal bimorph cantilever

before and after release, To indicates the initial state. When the temperature increases,

both layers will elongate accordingly. Assume layer 2 has a larger thermal expansion

coefficient than layer 1; it will try to expand more. Hence, layer 1 is in tensile stress and

layer 2 is in compressive stress. Before the cantilever is released, an equilibrium position

can be found by balancing the force:

where 61 and 62 are the stress of each layer, A l and A2 are the area.
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Figure 2.3 Strain distributions within a thermal bimorph cantilever before (a) and after
(b) release. Note the existence of neutral planes after release.

Once the beam is released, due to the fact that layer 1 is in tensile stress and tends

to shorten while layer 2 is in compressive stress and tends to elongate, the cantilever will

bend down. Layer 1 will be partially compressed arid tensed; the stress within it will

change progressively from tension to compression. Hence, there exists a neutral plane

where there is no stress. Similarly, the stress distribution in layer 2 changes from

compression to tension, and there exists another neutral plane. The equilibrium state of

the released cantilever is reached when the total force and the total bending moments are

equal to zero:
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From Equation 2.5 to 2.7, the curvature can be solved (Equation 2.8). Moreover,

the positions of the two neutral planes and the stress distribution within each layer can

also be derived. Of course, the neutral plane does not have to be within the layers. For

example, if layer 2 is very thin and soft compared to layer 1, then after release it may still

be compressed. In this case, the neutral plane moves out of the layer.

' are width, thickness and lateral Young's modulus of each

material, respectively, Aa is the TEC difference of these two materials, and AT is the

temperature change between the initial and working temperature. This model is based on

the following assumptions:

• The deformation is within the elastic region of the materials,

• There is a linear strain distribution through the thickness of the cantilever,

• Materials are considered to be isotropic and uniform,

• There is no stress along the thickness direction,

• The temperature distribution is uniform over the whole beam, and

• Material properties remain constant.



proportional to the thickness. The effects of width and Young's modulus are reduced to

relative values.

For future analysis, a bimorph cantilever driven by resistive heating is created in

Figure K.4. It is made up of Silicon and Aluminum, with a length of 500m. The width

and thickness of Silicon layer are 11011m and 51.1m, respectively. The line width and

spacing for the Aluminum resistor are each lOum, corresponding to a total width of

601.tm. The thickness is Kum.. Material properties of interest are listed in Table K.1.

Figure 2.4 A thermal bimorph cantilever created for further analysis.
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2.1.2 Residual Stress

A common situation with many bimorph cantilevers is non-zero tip deflection (or

curvature) at room temperature due to residual stress in the layers. Nearly all films are

found to be in a state of residual internal stress, regardless of the means by which they

have been produced. The stress may be compressive or tensile. Residual stresses are

composed of thermal stress, resulting from deposition temperature conditions, and

intrinsic stress, developed during the film nucleation. Intrinsic stresses are not yet

completely understood. Several stress-causing mechanisms have been proposed: lattice

mismatch between the substrate and the film, rapid film growth (which locks in defects),

recrystallization processes, phase transformations and incorporation of impurities into the

film [40, 41, 48]. Moreover, the stress values found in the literature should be considered

representative rather than precise. Published data is often inconsistent, even if the

investigators have employed similar measurement techniques. In general the intrinsic

stress in a film depends on thickness, deposition rate, deposition temperature, ambient
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pressure, method of film preparation, type of substrate used, type of machine used for

fabrication, and a number of other parameters.

G. Lammel et al. [20] analyzed initial stress within bimorph cantilevers and

showed that the curvature due to residual stress and the curvature due to thermal

contributions are additive. Thus, for example, a zero deflection state can be attained by

changing the temperature.

2.2 Deflection

The tip deflection of a thermal bimorph cantilever can be derived from Figure 2.5:

Besides a mixed effect of relative width, thickness, and Young's modulus, the tip

deflection varies linearly with Ad, AT, and L2, and is inversely proportional to the

Figure K.6, showing good agreement.
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Figure 2.6 Calculated (line) and simulated (dot) tip deflection of the thermal bimorph
cantilever of study.
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When used as a sensor, a thermal bimorph cantilever needs to generate a large tip

deflection for a given temperature change. According to Equation 2.11, it is clear that

deflection is proportional to Ad and L2, and inversely proportional to thickness.

Therefore, thin and long beams with large TEC difference will have large deflection. The

unknown effect is the mixed function of relative width, thickness, and Young's modulus,

and the cantilever is optimized when this function has its maximum value. For

optimization consideration, bimorph cantilevers are divided into two categories: either

the total thickness is a constant or it contains one constant and one variable layer

thickness.

2.2.1 Bimorph Cantilever with Constant Total Thickness

For a cantilever with constant total thickness, the deflection equation is:
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This is an interesting and important result: it shows that the factor containing

relative Young's modulus (c), thickness (x), and width (y) has a limit of 0.K5, and the

deflection of an optimized cantilever is independent of these parameters. A similar

conclusion was made in [3K] by a different approach. Equation K.14 is called the

optimum equation, which defines the relationships between c, x, and y to ensure a

maximum deflection. For example, for an arbitrary material combination (different c) if

the thickness of the second layer is selected, the corresponding width can be calculated

from Equation K.14 to optimize the cantilever deflection, and vice versa, as shown in

Figure K.8.

For this case, the TEC difference is the only material selection criterium. Of

course, larger deflection is still possible for longer and thinner beams according to the

deflection equation. Although Young's modulus does not change the maximum

deflection, it is better to choose a large value for a robust structure.
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Figure 2.8 Optimum curves of Equation 2.14 for different relative Young's modulus
values.

For the thermal bimorph cantilever of this study, if, for example, the width of the

top aluminum layer changes from 10ium to 1 1 Ow, the corresponding layer thickness can

be calculated from Equation K.14 to ensure the maximum deflection (Equation K.16).

Since the total thickness is constant (71.tm), the thickness of the silicon layer is

determined. Calculation and simulation results are summarized in Table 2.K, showing

good agreement. The tip deflection is 24.84jim and 54.911km before and after

optimization, respectively, for a temperature change of 100K.
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2.2.2 Bimorph Cantilever with One Constant and One Variable Layer Thickness

In thin film technologies, the total thickness of fabricated bimorph cantilevers is not

always constant. Most of the time only the substrate thickness is fixed, while the

deposited layer is variable. Finding the optimum condition for this case is needed. Similar

to the previous case, rearrange Equation 2.11 to:
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Unlike the previous case, here the optimum equations are different for the

derivatives with respect to x and y. This means that the selection of the optimum equation

is variable: if the relative width is constant, then Equation 2.19 should be used; if the

relative thickness is constant, then Equation 2.20 should be used. Furthermore, the

maximum value of function f2(x,y) is not a constant, as was the case in Figure 2.9. But

from Equation 2.21 and 2.22, it can be derived that when x --> 0 , f2 ( max ----> 1/4, and

when cy --> , f2(y)max 	 1/4 . So the limit is still valid, except this time it can only be

approached but never be achieved.

Figure 2.9 Function f2 (x,y) for a given c.
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Generally speaking, in order to approach for the limit, the second layer should be

thin, wide, and hard compare to the substrate. Function f2(x,y) for y =1 is plotted in

Figure 2.10. It is clear that when c increases, the maximum value off2(x,y) increases and

the relative thickness decreases. The bold line represents the maximum values for

different c. The material selection criteria for this case are given in the following steps:

The best material combination is the one with the largest F, which is generally the one

with the largest TEC difference, as in the previous case.
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In real applications, the thickness of the second layer is always to be determined

for optimization. Hence, the cubic Equation 2.19 needs to be solved. Since the constant in

the equation is negative, there is one and only one positive root, as shown in Figure 2.11.

This root is given by:

Note that the imaginary parts canceled out during the calculation, and Equation

2.24 provides a real positive value.



Figure 2.11 Curves of cubic Equation 2.19 with different negative constant terms,
showing one and only one real positive root.

To demonstrate the use of the optimization procedure and equation, the bimorph

cantilever of this study is optimized here: first, expand the line width of Al layer to

15gm, corresponding to a total width of 90um. Since y = 90/110 = 0.8182 , the relative

thickness (x) is 0.7757 from Equation 2.23, corresponding to a real Al layer thickness of

3.88um. The same result can be derived by calculation or simulation (Figure 2.12). The

deflection goes up with the thickness of the Al layer to a maximum value (36.99m), and

then drops. For comparison, optimization is also performed for the cantilever without

changing the width. This time, y = 60/110 = 0.5455 and x=0.9212, making the thickness

of Al layer to be 4.61gm. The deflection is less than the first case (33.62gm).



Figure 2.12 Calculated (lines) and simulated (dots) deflection for different Al layer
widths. The wider layer (solid line and round dot) gives a larger deflection. The optimum
Al layer thickness for each case is calculated directly from Equation 2.23 (AT =100K) .

2.3 Static Temperature Distribution

Ideally, the bimorph cantilever should have low power consumption. To reach an optimal

thermal efficiency, it is necessary to understand the different effects that can influence the

optimum behavior of the bimorph cantilever. For this, the whole structure must be taken

into consideration, which includes the device, the substrate and the surrounding air.

Several effects, like the temperature distribution and thermal losses to the substrate and

surrounding air are of great interest for optimization.

There are three heat transfer mechanisms: conduction, convection and radiation.

Conduction occurs in a solid structure due to temperature gradient. It can be expressed as:
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Convective heat transfer occurs between a fluid or air in motion and a bounding

surface when the two are at different temperatures. Newton's law of cooling states:

where aqconvection is the convective heat flux (W/m2) and is proportional to the difference

between the surface and ambient temperatures. The value a is known as the convection

heat transfer coefficient (W/m 2 ). Typical values are:

• Free convection gas: 2-25

• Free convection liquids: 50-1000

• Forced convection gas: 25-250

• Forced convection liquids: 50-20,000

Radiation heat transfer is the process by which thermal energy is exchanged

between two surfaces obeying the laws of electromagnetics. The rate of heat flow by

radiation is

and e is the emissivity of

the surface which is between zero and 1 (blackbody).

An analytical model for the static temperature distribution in a cantilever has been

developed [42]. The basic model considers a uniform internal heat source, and takes into

account the conduction in the cantilever and convection to the surrounding gas. The

radiation is neglected for simplification, since the maximum temperature of the cantilever

is assumed to be less than 500K. The problem is stationary, corresponding to a DC drive

of the cantilever. The temperature can be considered to be uniform throughout the

cantilever thickness since it's very thin. So the heat transfer in the z-direction is reduced
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to convection through the surface. Furthermore, the temperature throughout the cantilever

width is considered to be uniform (y-direction). Thus, the problem can be simplified to a

one-dimensional case, where the temperature is only a function of the position x along the

cantilever length (Fig. 2.13).

In the steady state, the energy conservation law implies that for any unit cell of

the cantilever, the heat generated inside the cell plus the heat flowing into the cell is equal

to the heat that flows out plus the heat lost by convection on both surfaces:

where, qj is the electric power dissipated by Joule effect per unit surface, t is the

cantilever thickness, X is the thermal conductivity, and a is the convection heat transfer

coefficient of the cantilever.

By inserting Equation 2.29 to 2.32 into Equation 2.28, it can be simplified to:



Figure 2.13 1D model of static temperature distribution in a thermal cantilever, consider
a uniform internal heat source.

The solution form of the differential Equation 2.33 is [42, 20]:

This is the static temperature distribution equation of the cantilever, where CI, C2,

C3 are constants, and can be determined by applying the following boundary conditions:

• By inserting Equation 2.34 into 2.33:

• At x=0, the temperature in the cantilever is the same as in the substrate:
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The study above is done for a stationary state of the system, thus the temperature

and device displacement are stable in time. It is considered that the cantilever is in a free

convection state when driven in a DC mode. If the cantilever is actuated at the resonance

frequency (AC mode) and the deflection oscillates, it is subjected to a forced convection.

However, when the cantilever is resonating above the thermal cut-off frequency, the

temperature variation over time is low. In this case, the cantilever is also considered to be

in a stationary state.
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For the thermal bimorph cantilever of this study, the resistance of the Al layer is

about 3.98g. For a driving voltage of 0.5V, the corresponding input power is about

62.8mW. The mean thermal conductivity X is determined by the contribution of each

layer (164W/m-K). The temperature distribution can be calculated from Equation 2.40 or

2.42. Figure 2.14 is the simulated temperature distribution and deflection for the

cantilever. The temperature increases with the length as expected, and is uniform in the

width and thickness, which confirms the assumptions made earlier. The tip deflection is

about 17.08m with a maximum temperature of 439K (the environment temperature is

300K).
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2.3.1 Power and Deflection

From Equations 2.40 and 2.42, it is clear that the temperature of a position along the

cantilever is linearly proportional to the heating power. Since deflection is proportional to

temperature, it implies a linear relationship between power and deflection. Although the

temperature distribution is not uniform, for any small segment along the length of the

cantilever, the temperature distribution can be treated as uniform. Thus, the deflection

equation is still valid within this area, and the total deflection is an integral along the

whole cantilever length. Figure 2.15 is the simulated results of deflection and power for

the thermal himnrnh cantilever of this ctudv A ()TIM linear relationship is attained
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2.3.2 Effect of Convection

The typical value of heat transfer coefficient a is 2-25W/rn2  for free convection, and

25-250W/rn2 for forced convection. The effect of a on the temperature distribution of the

thermal bimorph cantilever of this study is presented in Figure 2.16. Calculation data are

from Equations 2.40 and 2.42. Since the Al layer is narrower than the silicon layer, its

effective thickness is 
 60

 x 2 = 1.09um for the temperature distribution calculation. It is
110

clear that convection is not a dominant factor in this case for power dissipation. This is

because only a small part of the heat is lost by convection to the air, and most of the

generated heat is dissipated by conduction into the silicon substrate. As a matter of fact,

the heat lost by conduction can be calculated by integrating Equation 2.31 over the

contact area at x=0, which is 100% for a = 0(W /m 2 • K) , 99% for a = 25(W /m 2 • K) ,

and 95% for a= 250(W /m 2 • K) . The maximum temperature difference at the free end is

7.1K, and the deflection change is 0.6p.m for a total of 17im. The effect of radiation is

even smaller for this temperature range. In fact, the simulation results both with and

without considering radiation are almost the same.
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2.3.3 Effect of Thermal Conductivity

The influence of heat conduction in the beam is very important. According to Equation

2.40 and 2.42, decreasing X increases the temperature, since heat is less likely to be

transferred through the substrate. Therefore, less power is needed to achieve a certain

temperature. In order to reduce the power consumption, materials with low thermal

conductivity, such as Si02 , should be used.
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2.3.4 Effect of Dimension

Generally, a cantilever with less contact area with the substrate is less favorable for

conducting heat. Therefore, the power consumption is less for thin and narrow beams.

Moreover, when the beam length increases, the average temperature of the cantilever also

increases for a given power, which implies less power loss. Indeed, this has been reported

experimentally: shorter beams show higher power consumption than longer beams. Of

course, the beam length cannot be increased indefinitely due to considerations such as

sensitivity to vibrations, shocks, as well as mechanical resonance behavior. A

compromise has to be found between thermal efficiency and mechanical stability.

2.4 Dynamic Behavior

The effective response time of the thermal bimorph cantilever is of great interest in

applications, especially for a resonant driving mode. The thermal time constant (t) of a

cantilever is the characteristic time it takes for the cantilever to come to rest at a new

position after a sudden change of the supply power. For a given heating period, the time

constant is defined in:

And for a given cooling period, it defined in:

where d is the deflection after change, do is the original deflection, and t is the time.

The transitory behavior of the thermal bimorph cantilever of this study during

heating and cooling periods is plotted in Figure 2.17. From the fitting curve, it is easy to

extract the thermal time constant, which is about 1.1ms.
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Figure 2.17 Transitory behavior and fitting curves of the thermal bimorph cantilever of
this study during heating and cooling. The limit (17.081.im) is the static deflection for the
given power (62.8mW).

For a simple 1-D model, the time constant of the cantilever is derived [421:

where p is the mean mass density, c is the mean specific heat capacity, X, is mean thermal

conductivity, and L is the length.

This implies that in order to have a fast response time, materials with less density,

less heat capacity, and large thermal conductivity should be chosen. Also the beam

should be short, in conflict with the low power consumption requirement for a longer

beam. For the bimorph cantilever of this study, the calculated time constant is about

1.36ms, comparde to the value derived from Figure 2.17 (1.1ms).

When the cantilever is driven in th AC mode, the average power is half the

maximum power for a square wave, and the average deflection of the cantilever is half
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the maximum value since deflection is proportional to power. The cantilever can be

treated as being equivalent to vibrating around the half power deflection position, with

the maximum of full power deflection and the minimum of zero. When the frequency

increases, there is not enough time for the cantilever to achieve the maximum and

minimum values. Therefore, its vibrating amplitude decreases. Figure 2.18 demonstrates

this phenomenon: when the frequency is low, there is enough time for the cantilever to

achieve both the upper (17.081.1m) and lower (zero) limits. Its vibrating amplitude is

17.08jim (as in Figure 2.17). When the frequency increases to 125Hz, the vibration

amplitude drops to 15.9311m. When the frequency increases to 250Hz, the amplitude is

12um If the frequency is high enough, the amplitude will drop to zero and the cantilever

will stop at the half power position (8.54w).

Figure 2.18 The dependence of vibrating amplitude on frequency of the thermal bimorph
cantilever for this study.
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Since the amplitude of the cantilever is frequency dependent, a cut-off frequency

is introduced, which is defined as the frequency at which the vibrating amplitude drops to

a certain portion of the low frequency value. Based on the symmetry of the heating and

cooling period, the cut-off frequency can be derived:

where r is the time constant and p is the ratio between the set point and static value.

Since the cut-off frequency is inversely proportional to r, all the factors that are

good for giving a short time constant are also good for achieving a higher cut-off

frequency. For the cantilever of this study, its —3dB cut-off frequency is calculated as

208Hz (r=1.36ms) and 257Hz (i=1.1 ms), compared to the cut-off frequency derived

from Figure 2.19 (250Hz).

Figure 2.19 Simulated frequency response of the cantilever of this study.
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2.5 Summary

The purpose of this chapter was to study and understand the thermal bimorph cantilever

for better understanding of the relations between performance and design parameters.

Optimizations for deflection are performed for bimorph cantilevers with a) a constant

total thickness or b) one constant and one variable layer thickness. Optimum equations

are then derived for each case. A good agreement is found between calculation and

simulation results. Technological constraints must also be considered. It is found that in

the free convection mode, the losses by convection are not dominant. The largest part of

the generated heat is lost by conduction in the silicon. The thermal time constant

calculation gives the design rules that the thermal cut-off frequency goes down with the

square of the beam length. Faster response time requires high thermal diffusivity

constants, thus high thermal conductivities and short beams. This is in contrast with the

requirements for a low power consumption beam. Depending on the application, a

compromise has to be found between low power consumption and short response time.

For a given applied power on the beam, the average temperature increases as the beam

length increases and the beam thickness decreases. A compromise was found between

thermal efficiency and mechanical stability.



CHAPTER 3

ELECTROSTATIC TORSION ACTUATORS

3.1 Round Electrostatic Torsion Actuator

3.1.1 Theoretical Study

Figure 3.1 presents a schematic view of the round, double-gimbaled system, showing the

various relevant parameters. The inner round plate is made to rotate about the y-axis by

electrostatic actuation using either electrode Ei n1 or Ein1 under the round plate. The outer

ring rotates the full structure about the x-axis by electrostatic actuation using either

electrode Eoit1 or Eoit2 under the outer ring. The two inner springs along the y-axis

connect the inner round plate to the outer ring. The two outer springs along the x-axis

connect the outer ring to the fixed ring. The radius of the inner round plate is r. The inner

and outer radii of the outer ring are ribandr2,respectively. The distance from the center

of the inner springs to the end of electrode Erni or Ein2 is a. The distance from the center

of the outer springs to the end of electrode Eout2 or Eoit2 is b. The structure thickness is w.

The air gap depth is d. The length, height and thickness of each inner spring are lien, h, and

tin, respectively. The length, height and thickness of each outer spring are lout, h, and tout,

respectively. In this study, the spring height h equals the structure thickness w. The angle

between the inner round plate and the fixed electrode plane is defined as oci n by

electrostatic actuation using electrode Erni in the A-A' view. The angle between the outer

ring and the fixed electrode plane is defined as ()t out by electrostatic actuation using

electrode Eout2.

38
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Figure 3.1 A schematic view of the round, double-gimbaled system, showing the various
relevant parameters.



40

The inner round plate rotates about the y-axis by electrostatic actuation using

buried electrodes Eint or Ein2. The outer ring rotates the full structure about the x-axis by

electrostatic actuation using buried electrodes Eouti or Eouti. The two inner springs along

the y-axis connect the inner round plate to the outer ring. The two outer springs along the

x-axis connect the outer ring to the fixed ring. The radius of the inner round plate is r.

The inner and outer radii of the outer ring are r1 and r2, respectively. The distance from

the center of the inner springs to the end of electrode Ein1 or E„,2 is a. The distance from

the center of the outer springs to the end of either electrode Eoutl or Eoit2 is b. The

structure thickness is w. The length, height and thickness of each inner spring are 1,n, h,

and tin, respectively. The length, height and thickness of each outer spring are lout, h, and

tout, respectively. In this paper, the spring height equals w. The angle between the inner

round plate and the fixed electrode plane is am. The angle between the outer ring and the

fixed electrode plane is about.

For the inner round plate, if the applied voltage between the movable structure

and the electrode Erns is Vim the electrostatic torque, M e can be written as

where ai is the horizontal distance from the center of the inner springs to the nearest edge

of the electrode Eint. ai is generally much smaller than a and r and can be approximately

treated as 0. Pe is the electrostatic pressure, which can be written as
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where Ad is the displacement by the electrostatic force at an arbitrary point on the round

plate and Eon is the dielectric constant of the vacuum. At a small tilt angle am, Ad can be

written as

where Kar n is the linear mechanical spring constant of the inner spring. K3in is the

nonlinear mechanical spring constant. At small tilt angles, the contribution from the

nonlinear mechanical torque can be neglected. In addition, the theory and equations used

here have not considered the effects of either fringe fields or bending mode motion.

At the pull-in point, the mechanical spring constant IC (i.e., disdain ) is equal to

the electrostatic spring constant (i.e., dM e/da,n). Thus differentiating Equation 3.5 with

respect to am, multiplying by a m and subtracting Equation 3.5, yields
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where am, is the maximum tilt angle and approximately equals dir. r3 is the ratio of the

length of the buried electrode to the radius of the round plate.

The above equation defines the fractional tilt of the inner round plate at pull-in,

Bpi. 00only depends on 13,. However, Equation 3.7 cannot be reduced to a simple

expression, it can only be solved by analytical iteration.

Substituting 	 intointo Equation 3.5, the pull-in voltage V 11 for the inner round plate

can be written as

Additional design generalizations can be made by normalizing the applied voltage

and resulting tilt angle by their respective pull-in values in Equations 3.5 and 3.8. Thus

Equation 3.10 is a general structural equation for electrostatic torsion actuators with

round plates. It predicts the displacement or tilt of the round actuator as a function of
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applied voltage. The equation shows that the relationship between the normalized applied

voltage and the normalized tilt angle only depends on the electrode length ratio

For the outer round ring, if the distance from the center of the outer springs to the

nearest edge of the electrode Eout2 or Eouti is much smaller than b, rib and r2, then the

electrostatic torque equals the mechanical torque, and can be written as

where 'Cow is the spring constant of the outer springs. \T out is the applied voltage between

the outer electrodes Eout1 or Eout2 and the movable plate. Knout is the nonlinear mechanical

spring constant. At small tilt angles, the contribution from the nonlinear mechanical

torque can be neglected.

With the same approach used for the inner round plate, the pull-in angle a do can

be written as

where Bpo is the outer electrode length ratio and equals bir 2, Opo is the fractional tilt and

equals apdaom, ocom is the maximum tilt angle and approximately equals dire, y=r l ire and

y=y/r2. Thus, the outer ring fractional tilt at pull in, Apo is only dependent on y and Ppo.
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Substituting Ap° into Equation 3.11, the pull-in voltage A po for the outer round

ring can be written as

Additional design generalizations can also be made by normalizing the applied

voltage and resulting tilt angle by their respective pull-in values in Equation 3.11 and

Equation 3.15 is a general structural equation for electrostatic torsion actuators

with ring plates. It predicts the displacement or tilt of the ring actuator as a function of

applied voltage. The equation shows that the relationship between the normalized applied

voltage and the normalized tilt angle only depends on the electrode length ratios 13„ and y.

3.1.2 Verification

To test the validity of the analytical expressions, comparisons are made between the

analytical predictions and the results of MEMCAD 4.8 finite element simulation for a

typical round, double-gimbaled device.
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Table 3.1 compares the fractional tilts at pull-in and the pull-in voltages for the

inner round plate at electrode length ratio p i=0.44, 0.6, 0.8 and 1.0, using both MEMCAD

simulations and the theoretical predictions of Equation 3.7 and 3.8. The actuator

dimensions are r=200jtm, lin=100pm, h=w=l0pm, tin=3pm and d=7pm. For full plate

electrodes (13,=1), it is found that the maximum travel range before pull-in is about 48%

deflection, while full travel without pull-in is obtained for electrode length ratios 130.44.

As shown in the table, the factional differences between the MEMCAD simulations and

the theoretical predictions are smaller than 4% both for the fractional tilts at pull-in and

the pull-in voltages.

Table 3.2 compares the fractional tilts at pull-in and the pull-in voltages for the

outer ring plate at electrode length ratio 13 0=0.44, 0.6, 0.8 and 1.0, using both MEMCAD

simulations and the theoretical predictions of Equation 3.13 and 3.14. The actuator

dimensions are r1=300pm, r1=300pm, lo„ 1=100µm, h=w=l0grn, t o„ 1=3µm and d=7pm. For

full plate electrodes (13,0, it is found that the maximum travel range before pull-in is

about 45% deflection, while full travel without pull-in is obtained for electrode length

ratios 13 15_0.44. As shown in the table, the fractional differences between the MEMCAD

simulations and the theoretical predictions are again smaller than 4% both for the

fractional tilts at pull-in and the pull-in voltages. It can be concluded that the

straightforward analytical approach provides a reasonable approximation to the more

complex and time-consuming finite element analysis simulation method.

In tables 3.1 and 3.2, the product of electrode length ratio and fractional tilt at

pull-in is also given. It is found that the value of this product ranges from 0.43 to 0.48 for

the inner round ring, while for the outer ring, the product ranges from 0.41 to 0.46. It
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should be noted that in both cases, the value of this product is close to 0.44, the value for

rectangular actuators [74]. The fractional tilts at pull-in are approximately equal to 1 (i.e.,

full actuator travel range) for both the inner round plate and the outer ring when electrode

length ratios are equal to 0.44. Finally, for completeness, the MEMCAD meshing

element, node number and the convergence parameters are listed in the tables.

As a further demonstration of the validity of the analytical approach compare the

predictions of Equation 3.10 and 3.15 to simulation results for actuator displacement as a

function of applied voltage. Consider the same actuator design used in Tables 3.1 and 3.2.

Figures 3.2 and 3.3 show curves of X versus Y, the normalized applied voltage

versus the normalized tilt angle, for the inner round and outer ring plates, respectively.

Data is presented for values of at 13=0.44, 0.6, 0.8 and 1.0. The analytical predictions are

in good agreement with the MEMCAD simulation results.

Finally, compare the results of Equation 3.10 for round plates with previously

published results for rectangular plates. Equation 3.16 gives the general structural

equation for electrostatic torsion actuators with rectangular plates [74].

Figure 3.2 shows that the curve of X versus Y for actuators with rectangular

plates is nearly indistinguishable from that for round plates.



Figure 3.2 Comparison of analytical (equation 10, lines) and MEMCAD simulation
(symbols) curves of Xi. versus Y in for an inner round plate actuator, with electrode
length ratios [3,=0.44, 0.6, 0.8 and 1.0.
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Table 3.1 Comparison of the fractional tilts at pull-in and the pull-in voltages at electrode
length ratios 13i=0.44, 0.6, 0.8 and 1.0, using both MEMCAD simulations and the
theoretical predictions of Equation 3.7 and 3.8. Actuator dimensions are: r=-200µm,
lin=1001.tm, h=w=l0gm, tif,=.31.tm and d=71.tm

r=200gm,1=100gm, h=w=10gm,t=311m and d=7gm

epi

13 i=0.44
1.0063 (equation 7)
0.9811 (MEMCAD)

13,=0.60
0.7442 (equation 7)
0.7232 (MEMCAD)

Fractional
difference of Op,

2.51% 2.82%

Vpi 114.78V (equation 8)
112.91V<Vp,<112.93V
(MEMCAD)

74.3591 (equation 8)
73 .38V<Vp,<73 .40V
(MEMCAD)

Fractional
difference of Vii
Meshing and
convergence
(MEMCAD)

1.63%

27 node element
node number: 9498
Convergence tolerance: 1x10 -3

1.32%

27 node element
node number: 12030
Convergence tolerance: 1x10 -3

13 i0p,

epi

0.4428 (equation 7)
0.4317 (MEMCAD)

13 i=0.80
0.5684(equation 7)
0.5674 (MEMCAD)

0.4465 (equation 7)
0.4339 (MEMCAD)

13 i=1 .0
0.4833(equation 7)
0.4761(MEMCAD)

Fractional
difference of O p,
Vpi 51.3936 (equation 8)

51.33V<Vp,<51.35V
(MEMCAD)

42.2250 (equation 8)
41.27V<Vp,<41.29V
(MEMCAD)

Fractional
difference of Vpi
Meshing and
convergence
(MEMCAD)

0.12%

27 node element
node number: 9522
Convergence tolerance: 1x10 -3

2.26%

27 node element
node number: 13728
Convergence tolerance: 1x10 -3

(3,0p, 0.4547 (equation 7)
0.4539 (MEMCAD)

0.4833 (equation 7)
0.4761(MEMCAD)
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3.1.3 Summary

This chapter presented a systematic study of actuation and pull-in for round, double-

gimbaled, electrostatic torsion actuators. It is found that for round plates, the fractional

tilt at pull-in is only dependent on the electrode length ratio. For outer ring plates, the

fractional deflection at pull-in is only dependent on the electrode length ratio and the ratio

of the inner radius to the outer radius. The fractional tilts at pull-in are approximately

equal to l (i.e., full actuator travel range) for both the inner round plate and the outer ring

when electrode length ratios are equal to 0.44. Calculated pull-in and actuation results are

verified by comparison with finite element MEMCAD simulations, with fractional

difference found to be smaller than 4% for torsion mode dominant systems. It is

concluded that the straightforward analytical approach provides a reasonable

approximation to the more complex and time-consuming finite element analysis

simulation method.

3.2 Rectangular Electrostatic Torsion Actuator

3.2.1 Theoretical Study

Figure 3.4 shows a schematic view of an electrostatic rectangular torsion actuator

consisting of two identical springs, a movable plate and a stationary electrode. The

horizontal distance from the center of the springs (i.e., the axis of rotation) to the nearest

edge of the fixed electrode is al. a2 and a 3 are the horizontal distances from the center of

the springs to the end of the electrode and to the end of the movable plate, respectively.

The electrode/plate width and vertical separation distance are b and d, respectively. The
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length, width and thickness of each spring are 1, w, and t, respectively. Before pull-in, the

mechanical torque, Mm equals the electrostatic torque M e [72], i.e.,

where a is the angle between the rectangular plate and the electrode, the maximum

constrained tilt angle a,n,ax=d/a3, the electrode length ratio I3=a2/a3 and the reduced

electrode edge location y=ai/a3. V, co and Ka are the applied voltage, the dielectric

constant of the vacuum, and the spring constant, respectively. In typical designs a l is

much smaller than a2 or a3 . Thus y can be approximated as 0. This reduces Equation 3.17

to

At the pull-in point, the mechanical spring constant Ka (i.e., dMmida) is equal to

the electrostatic spring constant (i.e., dMe/da). Thus differentiating Equation 3.18 with

respect to a, multiplying by a and subtracting Equation 3.18 yields

where 0 is the fractional deflection of the rectangular plate, alamax, and 	 isis the

fractional deflection at pull-in. Solving Equation 3.19 yields
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When the electrode length ratio 13=1, O pin-z-0.4404, which means that the full plate

electrode design gives about 44.04% travel range, a well-known result [64-68, 72]. When

For lower electrode length ratios and a uniform gap depth,

pull-in does not occur.

Figure 3.4 A schematic view of a rectangular electrostatic torsion actuator, consisting of
tow springs, a movable rectangular plate, and a stationary electrode. al  is the distance
between the axis of torsion to the nearest edge of the electrode plate, a2 is the distance to
the end of the plate, a3 is the distance to the end of the proof mass. d is the air gap depth
and b is the width of the rectangular plate.



54

As shown by Degani, et al., [72], the pull-in voltage Von can be obtained from

Equation 3.17:

For typical designs where y .0 (i.e., the nearest edge of the rectangular electrode is

close to the torsion spring) and (30pin---0.4404, the pull-in voltage expression in Equation

3.21 can be simplified as

where isis the pull-in angle. Based on this equation, if the pull-in angle and voltage are

set, there would be numerous combinations of Ka and b to satisfy the pull-in design. Note

that in Equation 3.22 Von is expressed in terms only of the spring constant, the

rectangular plate width and the specified pull-in angle. For completeness, note that aping

can be written as:

Additional design generalizations can be made by normalizing the applied voltage

and resulting tilt angle by their respective pull-in values in Equation 3.18 and 3.22. Thus

taking X=cdoco n and Y=ViVp in , the equations become to:
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Equation 3.25 is a general structural equation for electrostatic torsion actuators

with rectangular plates. It shows that the relationship between the normalized applied

voltage and the normalized tilt angle is independent of the spring parameters, the

rectangular plate width and length, the air gap depth and the electrode length and width if

the nearest edge of the electrode under the rectangular plate is close to the torsion spring.

In Equation 3.26, Voc,x is the required applied voltage for tilt angle a at working point X.

If a is fixed at a maximum desired value, designers can select different working points to

realize a particular actuation. For instance, X=0.9 can be used to avoid the bad

controllability at the pull-in point X=1.0. Then the voltage corresponding to a at X can be

obtained. Note that in equation (3.26) V,,,x is expressed in terms only of the spring

constant, the rectangular plate width, the specified angle, the normalized applied voltage

and the normalized tilt angle.

Based on Equation 3.20, 3.25 and 3.26, a straightforward design approach can be

developed in which only simple calculations are needed for the full design of a

rectangular electrostatic torsion actuator. Figure 3.5 shows a schematic view of the

approach. In this figure, Oa is the resonant frequency for the torsion mode. The resonant

frequency Oa is determined by
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where Ia is the mass moment of inertia about the rotation axis, which can be written as

where p is the material density. When t<w, the spring constant can be written as
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Referring to Figure 3.5, if the desired maximum controllable tilt angle a, the

working point X, and the required applied voltage V,,, x are set by the designer, the spring

constant can be obtained after choosing the rectangular plate width b. Then, the designer

can choose the spring length, width and thickness based on the spring constant equation,

the desired resonant frequency and practical fabrication considerations. With a and X,

the pull-in angle aping can be obtained. After choosing the fractional deflection at pull-in

Opinn, both the electrode length ratio13,and the maximum constrained tilt angleAmaxcan be

calculated. Specifying one of either the plate length an or electrode spacing d allows the

other to be determined. Using I3 and an, the electrode length a2 can be obtained. Finally,

by combining b, an and the spring constant, the torsion mode resonant frequency, O a, can

be calculated. If the value of Oa is acceptable, then the design procedure stops. Otherwise,

redesign is needed.

3.2.2 Verification

To verify the simplified approach to actuator design outlined in Figure 3.5, we compare

the results of the key calculations in Equation 3.20, 3.22, 3.25, and 3.26 individually with

results from both full analytical calculations and MEMCAD simulations using typical

design parameters. Four different devices are considered during the verification process.

Their dimensions are listed in the table 3.3.

Device 1 in Table 3.3 is used for the verification of Equation 3.20. For this device,

Table 3.4 shows the calculated fractional deflection at pull-in O pine, and the product of Spin

with the electrode length ratio 33 for three values of 13, 0.4404, 0.75 and 1. These results

have been determined using both the full analytical calculation (a) and MEMCAD
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version 4.8 simulation (M). As predicted in equation (3.20), 39pin is always approximately

equal to 0.44. The MEMCAD meshing and convergence parameters are listed in the

table.

Devices 1 (with (3=0.75) and 2 in Table 3.3 are used to verify the result from

Equation 3.22. The plate width and spring parameters of these two actuators are the same,

however, the plate length and gap depth are different. Table 3.5 confirms that pull-in

voltages are roughly the same at the same pull-in angle a ping for the two devices, as

predicted in Equation 3.22.
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Devices 2 and 3 in Table 3.3, with completely different design parameters, are

used to verify the relationship described in Equation 3.25. Figure 3.6 plots analytical and

MEMCAD solutions of X versus Y for devices 2 and 3 along with Equation 3.25. The

curves are nearly indistinguishable, thus confirming Equation 3.25.
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Table 3.5 Pull-in voltages and angles for devices 1 and 2, determined using full
analytical calculations (a) and MEMCAD simulations (M). The two devices have
different rectangular plate length, air gap depth and electrode length ratio, but they have
the same spring parameters and rectangular plate width. The pull-in voltages are almost
the same at the same cull-in angle.

Vpin(V) aping(°)
Device 1 (13.0.75) 99.18(a)

99.16V<Vp i n<99.18V(M)

Meshing and convergence (M):
• 27 node element
• node number: 13536
• Convergence tolerance: lx10-3

1.6830(a)

1.6418(M)

Device 2(I3=1.0) 99.18V(a)

100.66V<Von<100.68V(M)

Meshing and convergence (M):
• 27 node element
• node number: 12836
• Convergence tolerance:: lx10-3

1.6835(a)

1.6925(M)
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Devices 2 and 4 in Table 3.3 are used to verify the relationship in Equation 3.26.

Table 3.6 shows the calculation and simulation results for the two structures with

different rectangular plate length and air gap depth, but with the same plate width and

spring parameters. Device 4 is designed using the approach in Figure 3.5 to operate

identical to Device 2, at the same working point X=0.8, with the same maximum

controllable tilt angle a=1.3435° and the same applied voltage V a,x-a-97.5V. This

behavior is confirmed by the simulation and calculation results. By comparing the

analytical and MEMCAD simulation results, for example, the values of Pe pin in Table 3.4,
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the values of Spin and aping in Table 3.5, the values of Y(X) in Figure 3.6 or the values Spin

and aping in Table 3.6, the fractional difference is generally found to be smaller than 3%.

3.2.3 Example Application

As an example application, we wish to design an actuator that has a maximum

controllable tilt angle a=1° at working point X=0.95 and applied voltage S ocx=48S. For

this specific application, we choose a plate width b0.7mm, a plate length a30.7mm, and

a fractional deflection at pull-in Opined. Following the procedure of Figure 3.5, the
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required spring constant is found to be Ka=2.405x10 -7N•m. Practical fabrication

considerations and the desire for a very flat plate surface require the spring width to be

w=501.tm and spring thickness t=51.1m, thus the spring length 1=1185gm. A folded spring

can be used to achieve this length. The resulting resonant frequency fa is found to be

806Hz. The pull-in angle av1„-- 1.053°, the electrode length ratio I3a0.4404,

dE-12.9ium and a2-a--.3081.tm.

To compare the design results with a fabricated device, a full plate actuator with

I3=1 is also considered. A full plate actuator is easy to construct because the silicon

substrate can be used as the fixed electrode. Using the design approach of Figure 3.5, for

this device aping _- 0.464° and Spin=14.18S. At working point X=0.95, a

Sa,,x=14.16V. Figure 3.7 shows an optical profilometry image of this device biased at

pull-in. The image was measured using a VEECO NT 3300 system. Fabrication was

accomplished using deep reactive ion etching and ultra thin wafer bonding technology

[99]. The finished device differs slightly from the design, having a measured gap depth of

11.2 gm instead of 12.91.1m.

Figure 3.8 shows the actuated angle and fractional deflection versus applied

voltage, as measured using the profilometer. The fractional deflection near pull-in is

43.75% at V=11.75V which is very close to the theoretical value of 44.04% at a

calculated pull-in voltage of 11.47V for d=11.2gm. Note that a(0V)=0.0463°, which is

the result of the gravity force. This value is very close to the theoretical prediction of

0.0466°.



Figure 3.8 Measured tilt angle a and fractional deflection versus applied voltage for the
actuator in Figure 3.7.
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3.2.4 Limitations of the Theory

The theory and the equations used in this chapter have not considered 1) spring stiffening,

2) fringing fields, and 3) the effect of bending mode actuator movement. Also, in the

calculation, the angle a is approximately treated as tan(a). This will give rise to less than

1% error even at 10°. 0f the limitations, the bending mode effect will most strongly

affect the application range of the theory.

In order to get a large tilt angle at a reasonably low applied voltage, the springs

need to be as long and thin as possible for a given plate thickness. However, if the springs

are too long, the resulting electrostatic force induced bending mode movement will

decrease the effective gap depth between the electrodes, decreasing both the pull-in angle

and voltage.

For a double clamped structure, the spring constant of the bending mode IC can

be written as

where E is the Young's modulus in the direction of bending mode. In this paper, E is

1.31x10 11 13a for (100) silicon [75] . IC decreases with F3 , whereas Keg, decreases with 1 - '.

The resonant frequency of the bending mode f, can be written as

where m is the mass of the suspended structure.

To illustrate the effects of spring length on bending mode movement, and its

impact on the simplified design approach of the paper, we have designed three devices A,

B, and C, with target pull-in angles of 2.98, 3.90 and 4.38 degrees, respectively, at 100 V.
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Only the spring length and gap depth vary. Table 3.7 shows the pull-in angle and the pull-

in voltage for these three devices determined using both the design approach of the paper

and MEMCAD simulations. Notice that the MEMCAD results predict serious decreases

in the pull-in angle and voltage for the longer springs of Devices B and C.
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A measure of the importance of the bending mode compared to the torsion mode

can be obtained by calculating the resonant frequencies for each mode. Table 3.8 shows

fa, Az, falfz and fractional differences in pull-in angle and voltage using MEMCAD and

the theory in this study for devices

fractional differences in pull-in angle and pull-in voltage are generally small (<3%) when

the ratio of the resonant frequency of the torsion mode to that of the bending mode, fa/ Az,

is small (<0.1). For devices A, B and C, with longer springs that are more prone to

bending, the fractional differences and the value of fa/ Az become large. The fractional

differences for device C exceed 20%. From the simulation results in Tables 3.7 and 3.8, it

is concluded that a pull-in angle of 4° would be difficult to obtain with w=101.tm, t=2pm,

a3=200jtm, and b=300j1m In general, the design approach of this study is useful only for

actuators in which the torsion mode is dominant. For the designs that are considered, it is

found that for fa/fz<0.1, the fractional difference between analytical calculations and

MEMCAD simulations is <3%.
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3.2.5 Summary

This chapter has presented several basic equations to describe rectangular electrostatic

torsion actuators, which may give designers a better understanding of their performance.

Based on these equations, a straightforward, angle based design approach has been

proposed, which can avoid time consuming simulations. The results have been verified

by comparing them with analytical calculations and MEMCAD simulations with

fractional difference smaller than 3% for torsion mode dominant actuators. Also, good

agreement is found by comparison with the measured behavior of a microfabricated full-

plate device.



CHAPTER 4

VARIABLE CAPACITOR

4.1 Design and Theory

4.1.1 Variable Capacitor with Parallel Plate Drive Electrodes

Figure 4.1 shows a simplified electricalimechanical schematic of a variable capacitor and

LC drive circuit. The device consists of sets of fixed and movable vertical plates, forming

separate drive and sense capacitors. The drive capacitor can consist of either parallel plate

or comb drive electrodes, with each approach having attending benefits. The parallel

plate drive electrode approach is straightforward and reliable. The comb drive electrode

approach may have lower drive voltage and better linearity. In the parallel plate drive

devices, Cd, the drive capacitor, has an electrode spacing that is three times that of C„ the

sense capacitor. Figure 4.2 shows several microscope images of the fabricated parallel

plate drive device. In Figure 4.2a, two separate drive capacitors are placed symmetrically

on the ends of the structure, and the sense capacitor occupies the center region. The sense

and drive capacitors share a common electrode B p , which is connected through four

folded springs to a movable support beam with attached fingers. A portion of a folded

spring is shown in Figure 4.2b. As shown in Figure 4.2c and 4.2d, Cd and C s actually

consist of wide and narrow air gap capacitances. In both cases, the net capacitance is

strongly dominated by the narrow gap capacitor. The narrow drive gap spacing is

designed to be three times that of the narrow sense gap so that a maximum sense

electrode displacement can be achieved at the lowest possible applied voltage without

causing drive electrode pull-in. The 2.81.1m long bumpers in Figure 4.2c, which are

69
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always at the same potential, limit the maximum displacement to less than the full 3um

sense gap distance. Before the electrode Ep contacts the bumpers, the capacitance

increases parabolically with increasing applied voltage. After contact, the capacitance

increases approximately linearly. This is similar to a previous report in [93] where curved

electrode actuators were used to extend the travel range.
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Figure 4.2 Microscope images of the fabricated parallel capacitor drive device. (a) Top
view of fabricated device. The drive voltage is applied between the common electrode B p

and the drive electrodes Bath and Edz. The capacitance is sensed between Bs (shorted E s t
and Est) and the common electrode B p . The movable fingers are mounted to a center
support beam and connected to the B p electrodes by 4 p, m wide, 730 jib m long, 29.5 m
thick springs. (b) Close up image showing a portion of the folded spring. (c) Close up
image of drive capacitor showing placement of movable fingers with smallest
asymmetric electrode spacing 3d=9 t m and bumper spacing nominally 0.93d=2.8 m.
The bumpers are always at the same potential. (d) Close up image of sense capacitor
showing smallest electrode spacing d=3.0p,m.
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The voltage for transition from parabolic to linear behavior can be estimated

analytically by calculating the drive electrode pull-in voltage, Vpine. Balancing the

electrostatic and mechanical forces before pull-in gives

where N is the wide to narrow gap spacing ratio for the drive electrode, (N.B., N>1) and

M is the displacement. A, co, V and k are the capacitor area, permittivity of free space,

applied voltage and spring constant, respectively. An expression for the fractional

displacement at pull-in, x=Adonido, is found by maximizing Bquation 4.1. Thus

differentiating it with respect to displacement, multiplying by Ad, and subtracting it,

gives

As discussed in the fabrication and results section, the analytical results can be

compared with simulation results obtained using MBMCAD (now COVENTOR) finite
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element analysis software. Using this tool, the spring constant and resonant frequency for

the system is estimated to be about 13 Aim and 3.01KHz, respectively.

Figure 4.3 Fractional displacement at pull-in, p in , versus drive electrode wide to narrow
gap spacing ratio, A>1, for parallel plate capacitor drive.
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4.1.2 Variable Capacitor with Comb Drive Electrodes

Figure 4.4 shows a schematic drawing of a lateral comb-drive structure. The

displacement of this structure is parallel to the substrate (in the x-y plane). When a

voltage difference V is applied between the two comb electrodes, the electrostatic force

Fe pulls the electrodes toward each other.

To calculate the electrostatic force, it is assumed that the ground-plane under the

structure is floating and that the electrode overlap lc is large compared to the electrode

spacing dc , width we and height Mc . In this case fringe fields at the electrode ends do not

change significantly with l c and give a negligible contribution to the electrostatic force.

Under these assumptions, the capacitance consists of two simple plane-plate capacitors

and a capacitor resulting from the fringe fields, which can be calculated using conformal

mapping [94], and can be approximated by [95, 96].

where A denotes the number of the movable electrodes, and go is the permittivity of free

space.

Thus the lateral electrostatic force Fe in response to an applied voltage V can be

written as



where by design, the comb drive spring constant is about 13A/m, the same as that for the

parallel plate drive device discussed above.

Figure 4.4 A schematic drawing of a lateral comb-drive structure with finger length 4,
overlap distance 1,, finger width w, and electrode spacing d,. The movable electrode
spring constant is k, and the electrode moves a lateral distance Al, in response to an
applied electrostatic force F e . Aot shown in the figure, the electrodes extend a depth h, in
the z direction.
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Figures 4.5(a), (b), (c), and (d) show several microscope images of the fabricated

device with comb capacitor drive. 0ther than using comb drive electrodes, the device is

the same as the parallel plate drive device in Figure 4.2. The design parameters for the

comb drive device are: 1c=5tim, w c=31.1m, dc=3pm, and the comb finger length and height

are lf=11jtm and h c=30tim, respectively. The designed travel response is 2im with 14V

applied on the two drive electrodes, which would be expected to give a 200% capacitance

change. The designed resonant frequency is 3.0KHz.

Figure 4.5 Microscope images of the fabricated device with comb capacitor drive. (a)
Top view of fabricated device. (b) Close up image showing a portion of the folded spring,
comb drive capacitor, parallel sense capacitor, and the bumper. (c) Close up image
showing a portion of the comb drive capacitor. (d) Close up image showing a portion of
the parallel sense capacitor.
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4.2 Fabrication and Results

Figure 4.6 shows the main fabrication steps. The process starts with SU-8

photolithography on an oxidized silicon wafer to form a cavity. The realized cavity depth

is about 2211m at 3000 rpm. An ultra thin silicon wafer [97] was bonded to the silicon

substrate by SU-8 bonding [98] at 105°C, using an BVI 501 universal bonding system.

Aluminum was then sputtered onto the bonded wafer stack, and patterned by HP 304

etching at 40° after photolithography. The devices were released by deep reactive ion

etching (DRIE) using the B0SCH process in a UnaxisiPlasma-Therm inductively

coupled plasma system. Finally, the photoresist was removed using oxygen plasma

etching. The aluminum on the structure, besides allowing good external electrical contact,

also decreases the device series resistance, improving its Q factor.

Figure 4.6 Two-mask processes schematic for micromachined variable capacitor.
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Figure 4.7 shows the capacitor sidewall image using a VBEC0 AT3300 optical

profilometer. It shows that the ultra-thin silicon wafer is approximately 29.5jtm thick. In

addition, the image reveals the capacitor surface microroughness induced by the Bosch

etching process. The RMS roughness is about 71nm.

Figure 4.8 shows sense capacitor photos at 0V, 20V, 40V and 57.5V when

voltage was applied on only one parallel capacitor drive electrode. As expected, the

capacitor electrodes move closer when the voltage increases.



Figure 4.8 A portion of the sense capacitor at various-drive voltages with parallel
capacitor drive.

Figure 4.9 shows the measured sense capacitance value C s 1 between one sense

electrode Est , and the common electrode, Ep, with parallel plate capacitor drive. The

figure also shows the percentage change in capacitance. The capacitance is measured

using an HP 4284A precision LCR meter. The amplitude and frequency of the testing



80

signal were 5mV and 1MHz, respectively. When voltage is applied on both drive

electrodes, the capacitance parabolically increases from 0.945pF at 70V to 3.657pF at 26V,

and then increases nearly linearly to 6.57pF at 70V. This corresponds to tuning ranges of

287% at 26V and 595% at 70V. When voltage is applied on one drive electrode, the

capacitance increases parabolically from 0.945pF at 70V to 3.696pF at 37.1V, and then

nearly linearly to 5.55pF at 75.1V. This corresponds to tuning ranges of 290% at 37.1V

and 497.5% at 75.1S. For each measurement, the results are reproducible and without

discernable DC hysteresis. In addition, the final displacement appears only to be limited

by dielectric breakdown, which exceeds 80V for these devices in air. Comparing the

measured capacitance with the designed sense capacitance of 1.36pF at 70V, the

experimental value of 0.945pF at 70V is smaller. This result is attributed to wider than

expected air gaps formed using the fabricated process. Because of the use of thick SU-8

photoresist, the parasitic capacitance is negligible.

Table 4.1 provides a comparison of the measured transition voltages to analytical

and COVBAT0R 2001 pull-in simulation results for parallel plate capacitor drive. For

completeness, COVBAT0R simulation parameters are also given in the table. Good

agreement is found for the two cases, when voltage is applied either to only one or to

both drive electrodes. Aote that the measured transition voltage is slightly higher than the

analytical and simulation results, but this can easily be attributed to non-parallel

electrodes or other effects neglected in the theory. The possibility of non-parallel

electrodes (i.e., a few degree DRIBS sidewall slope) is suggested by the observation that

the drive electrodes never seem to make full contact at the top surface of the device.

While a wide tuning range is achieved in these capacitors, the measured Q factor is
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smaller than 100 at 1MHz even with the addition of aluminum. This is attributed to the

use of relatively high resistivity, 1-10 acme, ultra-thin silicon wafers. Even using more

heavily doped ultra-thin silicon wafers, with resistivity of 0.01-0.02 0.cm, the Q factor is

still only — 120. Improvements are expected for these devices if they are made using

completely metallized electrodes for high Q, and with softer springs and improved drive

electrodes to lower the drive voltage.

Figure 4.9 The measured sense capacitance C s 1, for a parallel plate drive device,
measured between Es1 and Bp  (left axis) and the related percentage change in capacitance
(right axis) versus voltage.



Table 4.1 Comparison of measured transition voltage to analytical and COVBATOR
simulation results
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Figure 4.10 shows the measured sense capacitance value C s1c between one sense

electrode B st , and the common electrode, BP , using the comb capacitor drive device. The

figure also shows the percentage change in capacitance. The amplitude and frequency of

the testing signal were 5mV and 1MHz, respectively. In this measurement, the drive

voltage is applied on both sets of comb drive electrodes. In the figure, the capacitance

initially increases parabolically from 0.98pF at DV to 2.99pF at 22.6V, and then it

increases nearly linearly to 3.35pF at 24.8V. Aote that the voltage required to achieve

roughly a 200% capacitance change, 22.6V, is larger than the design value of 14S. This

discrepancy can be attributed to over-etched comb drive features formed during

fabrication. In Figure 4.5 notice that while the gap spacing and finger width are designed

to be equal to each other, cl e=wc=3[1m, the measured values are dc----41.1m and wc,---2µm.

Actually, this level of agreement with theory is not bad considering the fact that Bquation
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4.4 is expected to be valid for l c>> dc , wc , Mc, which is not the case in this device. The

designed comb drive capacitance is 1.68pF, which compares favorably to the measured

value of about 2pF. Similar to the parallel plate drive, the Q factor for the comb drive

device is smaller than 100 at 1MHz

Figure 4.10 The measured sense capacitance C s1c for a comb drive device, measured
between Bst and Ep , (left axis) and the related percentage change in capacitance (right
axis) versus voltage.
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4.3 Summary

In summary, combining ultra-thin silicon wafers, SU-8 bonding and DRIED, a

micromachined variable capacitor with parallel plate capacitor drive have been designed

and fabricated, which exhibits two tuning regimes: parabolic and linear, and has achieved

roughly a 600% tuning range. In addition, a variable capacitor with comb capacitor drive

that shows similar performance and has achieved roughly 240% tuning range has been

demonstrated.



CHAPTER 5

CONCLUSIONS

First, this thesis has presented a detailed study and analysis of thermal bimorph

cantilevers for better understanding of the relationships between performance and design

parameters. Optimization for deflection is performed for two bimorph cantilever types: a)

with a constant total thickness or b) with one constant and one variable layer thickness.

0ptimum deflection equations are derived for each case. A good agreement is found

between calculation and simulation results. Technological constraints must also be

considered. It is found that in the free convection mode, the losses by convection are not

dominant. The largest part of the generated heat is lost by conduction in the silicon. The

thermal time constant calculation gives the result that the thermal cut-off frequency goes

down with the square of the beam length. Faster response time requires higher thermal

diffusivity constants, thus high thermal conductivities and short beams. This is in contrast

with the requirements for a low power consumption beam. Depending on the application,

a compromise has to be found between low power consumption and short response time.

For a given applied power on the beam, the average temperature increases as the beam

length increases and the beam thickness decreases. A compromise was found between

thermal efficiency and mechanical stability.

For the electrostatic actuators study, this thesis presented a systematic

investigation of actuation and pull-in for round, double-gimbaled, electrostatic torsion

actuators. It is found that for round plates, the fractional tilt at pull-in is only dependent

on the electrode length ratio. For outer ring plates, the fractional deflection at pull-in is
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only dependent on the electrode length ratio and the ratio of the inner radius to the outer

radius. The fractional tilts at pull-in are approximately equal to 1 (i.e., full actuator travel

range) for both the inner round plate and the outer ring when electrode length ratios are

equal to D.44. Calculated pull-in and actuation results are verified by comparison with

finite element MEMCAD simulations, with fractional difference found to be smaller than

4% for torsion mode dominant systems. It concludes that the straightforward analytical

approach provides a reasonable approximation to the more complex and time-consuming

finite element analysis simulation method.

This thesis presented several basic equations to describe rectangular electrostatic

torsion actuators, which may give designers a better understanding of their performance.

Based on these equations, a straightforward, angle based design approach has been

proposed, which can avoid time consuming simulations. The results have been verified

by comparing them with analytical calculations and MEMCAD simulations, with

fractional difference smaller than 3% for torsion mode dominant actuators. Also, good

agreement is found by comparison with the measured behavior of a microfabricated full-

plate device.

By combining ultra-thin silicon wafers, SU-8 bonding and DRIE, a

micromachined variable capacitor with parallel plate capacitor drive has been designed

and fabricated, which exhibits two tuning regimes: parabolic and linear, and has achieved

roughly a 600% tuning range. In addition, a variable capacitor with comb capacitor drive

that shows similar performance and has achieved roughly 240% tuning range has been

demonstrated.
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