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ABSTRACT

DEVELOPMENT OF DYNAMIC RECURSIVE MODELS FOR
FREEWAY TRAVEL TIME PREDICTION

by
Xiaobo Liu

Traffic congestion has been a major problem in metropolitan areas, which is caused by

either insufficient roadway capacity or unforeseeable incidents. In order to promote the

efficiency of the existing roadway networks and mitigate the impact of traffic congestion,

the development of a sound prediction model for travel times is desirable.

A comprehensive literature review about existing prediction models was conducted

by investigating the advantages, disadvantages, and limitations of each model. Based on the

features and properties of previous models, the base models including exponential

smoothing model (ESM), moving average model (MAM), and Kalman filtering model

(KFM) are developed to capture stochastic properties of traffic behavior for travel time

prediction.

By incorporating KFM into ESM and MAM, three dynamic recursive prediction

models including dynamic exponential smoothing model (DESM), improved dynamic

exponential smoothing model (IDESM), and dynamic moving average model (DMAM) are

developed, in which the time-varying weight parameters are optimized based on the most

recent observation. Model evaluation has been conducted to analyze prediction accuracy

under various traffic conditions (e.g., free-flow condition, recurrent and non-recurrent

congested traffic conditions). Results show that the IDESM in general outperforms other

models developed in this study in prediction accuracy and stability. In addition, the feature



and logic of the IDESM lead to its high transferability and adaptability, which could enable

the prediction model to perform well at multiple locations and deal with complicated traffic

conditions.

Besides the proficient capability, the IDESM is easy to implement in the real world

transportation network. Thus, the IDESM is proven an appealing approach for short-time

travel time prediction under various traffic conditions. The application scope of the IDESM

is identified, while the optimal prediction intervals are also suggested in this study.
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CHAPTER 1

INTRODUCTION

1.1 Background

Traffic congestion has been an escalating problem in many metropolitan areas for

decades. A study (Spasovic, et al., 2001) conducted by the National Center for

Transportation and Industrial Productivity (NCTIP) stated that the average annual cost of

congestion for New Jersey was $880 per licensed driver in 2000. According to an urban

mobility study conducted by TeFas Transportation Institute (TTI, 2002), every driver

wasted 51 hours sitting in traffic in 2001. The total cost based on eFcess travel time and

fuel consumption was up to $68 billion for 75 major areas in the United States. General

Motors (1991) estimated that highway congestion caused $96 billion in productivity

losses each year and $70 billion in traffic accident costs. It was estimated that Americans

spent over 1.6 billion hours in traffic jams each year. By the year 2005, the time lost to

congestion would rise to 8.1 billion hours (Zhu, 2000).

Traffic congestion is caused by either insufficient roadway capacity or

unforeseeable incidents, such as accidents. Transportation researchers have been

investigating the relationship between traffic demand and roadway capacity. For

eFample, a study conducted by the Center for Transportation Research Education (CTRE)

predicted that the US population would grow 20 percent to 360 million by the year 2025,

while the annual volume of weight will be doubled from 8 to 16.8 billion ton-miles. In

addition, siFteen percent of the bridge inventory will be functionally obsolete or

structurally deficient. Therefore, the financial, environmental, safety, and political

1



2

considerations made the policy-makers realize that eFpanding the size of the

transportation system is almost impossible (Sussman, 1996).

With the enactment of the Surface Transportation Assistance Act of 1987 and the

Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991, highway

infrastructure began to utilize information technology to alleviate the impact of traffic

congestion. The Federal Highway Administration (FHWA) placed a high priority on

collaborative partnerships to mitigate the congestion impact by eFpanding congestion

management systems and developing a regional Intelligent Transportation Systems (ITS)

architecture. The application of information technology (IT) may be a viable way to

improve the already congested transportation system and its safety through acquiring,

storing and distributing accurate and timely traffic information. Golob and Regan (2001)

eFplored the effects of IT applications in transportation and found that IT could greatly

advance traveler information systems.

Advanced Traveler Information System (ATIS) is one of the most important

components in ITS. Stathopoulos (2003) stated that "One of the most critical aspects of

ITS success is the provision of accurate real-time information and short-term predictions

of traffic parameters such as traffic volumes, travel speeds and occupancies." Based on

predicted information, efficient traffic control could be applied to the transportation

infrastructure, and then the negative impact of traffic congestion can be mitigated.

ATIS has been classified into three categories (Chestlow and Htcher, 1993): data

collection, data consolidation, and data communication. Firstly, the traffic information

should be collected by all technical means (e.g., loop detectors, probe vehicles and

cameras). Secondly, the collected data should be consolidated as suitable and useful
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information that can fit technical and practical requirements. Finally, the consolidated

data should be transmitted to traffic control centers and/or road users.

In recent years, technologies have been developed to advance ITS applications

and ease congestion, such as distributing real-time traffic information to travelers. Wahie

et al. (2001) developed a dynamic route guidance system based on real time traffic data.

Pattanamekar et al. (2003) employed predicted travel time in a dynamic shortest path

problem. Accurately predicted travel times could bring huge benefits for most ITS

applications, such as dynamic route-guidance systems (Fu and Rilett, 1998), congestion

management and incident detection systems (Hellinga and Knapp, 1999), and in-vehicle

information systems (Hellinga and Gudapati, 2000).

Since the availability of future traffic information is very important to the

application of ITS, many prediction models have been used for that purpose, such as the

BoF-Jenkins models (Ahmed and Cook, 1979; Nihan and Holmesland, 1980), regression

models (Frechette and Khan, 1998), nonparametric models (Smith and Demetsky, 1997),

Kalman Filtering models (Okutani and Stephanedes, 1984), and artificial neural networks

(McFadden and Durrans, 2001; Chien, et al., 2002). Though much progress has been

made on traffic information prediction, the short-term forecasting of traffic conditions has

had an active but somewhat unsatisfying research history.

1.2 Problem Statement

It is challenging to develop a reliable travel time prediction model because of two main

reasons: (1) stochastic traffic conditions and (2) limited historical and real-time traffic

information. Various factors affecting daily traffic operations were classified into internal
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and eFternal categories (Woodhull, 1987). Internal factors include time-varying traffic

demand and vehicle composition (e.g., percentage of cars, buses and trucks),

infrastructure (e.g., roadways, bridges, toll plaza), roadway geometric conditions (e.g.,

number of lanes, curvature, levels of terrains), and motorists' driving behavior. External

factors include uneFpected events (e.g., incidents), traffic control devices (e.g., signals,

ramp meters), and weather conditions (e.g., snow, ice, fog and sun glare).

The stochastic factors make it difficult to formulate the relationship among traffic

parameters (e.g., volume, speed, density) mathematically. Although the general

relationship has been wildly eFplored in traffic flow theory, it might not be valid under

saturated and very light traffic conditions (Hall and Persaud, 1989; Lin, 2002). Thus, the

estimated traffic data may be biased, and inaccurate traffic information generated from

the biased data will mislead motorists as well as worsen the already congested traffic

condition. If such a condition persists, the deployed ITS would not be effective because

of the lack of road users' confidence in it.

The compleFity of traffic flow characteristics can also be observed in forms of

various traffic conditions (e.g., free-flow and congested conditions), and prediction

models may have different performance under different traffic conditions. For eFample,

historic average models (Strobel, 1977) and the BoF-Jenkins models (Ahmed and Cook,

1979) have generated satisfactory predictions of travel times under free-flow traffic

conditions. However, those models cannot provide accurate results if the future traffic

condition is different from that in the historic profile. Different prediction models have

evolved to model various traffic conditions and locations (Kuchipudi and Chien, 2003).
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Another challenge in developing prediction models comes from the difficulty to

acquire a sufficient quantity and good quality of traffic data. Many models were

developed based on historical and/or real time traffic data to predict future traffic

information. For eFample, in Urban Transportation Control System (UTCS), Stephanedes

el al. (1981) predicted traffic volume based on historical data. Later, Okutani and

Stephanedes (1984) developed a Kalman Filter model to predict traffic volumes by

employing real time traffic information. Ishak and Alecsandru (2003) employed both

historical and real time traffic information to develop an Artificial Neural Network

(ANN) based prediction model. The availability of traffic information was the major

concern for the development of the prediction model.

Besides the availability of traffic data, the levels of detail of the data also affect

the accuracy of the prediction model. Lan and Miou (1998) found that traffic flow

distributions (e.g., normal, binomial distribution) under different aggregated levels (e.g.,

5-minute average, 10-minute average) affected the prediction accuracy. Zietsman and

Rile (2000) investigated travel time estimation with different aggregated levels of data

and found that modeling travel characteristics on a disaggregate level can improve the

accuracy and result in better estimates for travel time. Kuchipudi and Chien (2003)

analyzed the prediction interval impact on the accuracy of a prediction model by setting

various interval lengths, and choosing as best intervals that minimized error and acquired

a sufficient sample size. In addition, considering the stochastic traffic conditions and the

availability of traffic data, different prediction models with different strengths are desired

under different situations.
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1.3 Objective and Scope of Work

The objective of this study is to develop dynamic short-term travel time prediction

models by employing historical and real time data under various traffic conditions (e.g.,

free-flow and congested conditions).

To achieve the above objective, the advantage, disadvantage and limitation of

previous and eFisting prediction models was thoroughly reviewed. Then, a number of

prediction models were developed and tested under various traffic conditions. The

properties and logic of those models were investigated, and the suitable situation for

implementing each model was identified. The developed models were further enhanced

to adapt to various traffic patterns (e.g., free-flow vs. congested conditions) to

dynamically capture traffic changes and achieve the best prediction accuracy.

A microscopic simulation model (CORSIIM) was used to simulate traffic

operations under various conditions in a selected highway network in southern New

Jersey. The simulated information was calibrated with data collected from acoustic

sensors and used as actual traffic information for testing the developed prediction models.

The performance of the developed models was evaluated based on various statistical

measures (e.g., Mean Absolute Relative Error (MARE), Variance of Absolute Percentage

Error (VAPE), MaFimum Relative Error (MRE)) while considering the duration of the

prediction interval.
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1.4 Organization

This dissertation is organized into seven chapters. In this first chapter, the problem was

identified and the objective and scope of the study were addressed. In Chapter 2, a

thorough literature review summarizes findings from previous studies, including the

applications of travel time information in ATIS, estimation of traffic information, and

eFisting models developed for predicting travel times. A review of micro-, meso-, and

macroscopic simulation models is also presented. Chapter 3 contains the development of

the base prediction models. In Chapter 4, a study site is identified and a microscopic

simulation model is developed with TSIS CORSIM, while the calibration and validation

of the simulation model are addressed. Three traffic scenarios (e.g., free-flow condition,

recurrent and non-recurrent congested traffic conditions) are designed and applied to test

and evaluate the features and properties of the developed prediction models. In Chapter 5,

three dynamic recursive prediction models are developed to dynamically optimize the

weight parameters for improving prediction accuracy. In Chapter 6, the developed

models are thoroughly evaluated in different periods under various traffic conditions.

Results can be used to identify the application scope of each model and optimal

prediction interval under complicated traffic conditions. Finally, conclusions and

suggestions for future study are presented in Chapter 7.



CHAPTER 2

LITERATURE REVIEW

This chapter summarizes the review of previous models for short-term travel time

prediction, while the importance of travel times for ATIS is introduced. In addition, the

data applied for travel time prediction, including data collection and traffic parameters

estimation, are reviewed. The reviewed prediction models are classified into time series

models, regression models, and Artificial Neural Network (ANN) models and the

limitations of each model type are discussed. Finally, simulation models (e.g., micro-,

meso-, and macroscopic) are included, which can provide sufficient emulated traffic

information for prediction model development and evaluation.

2.1 Traffic Information in ATIS

According to a study titled "Advanced Traveler Information Systems" conducted by the

Intelligent Transportation Society of America (2002), congestion on the nation's streets

and highways is getting worst. Forty-two states predicted they would be falling behind in

their efforts to alleviate urban congestion on Interstates over the neFt decade. Advanced

Traveler Information Systems (ATIS) can provide a good opportunity to understand

traffic and transit conditions, present multi-modal options to travelers, and improve the

operation of transportation networks. In other words, the ATIS is about providing

citizens, businesses and commercial carriers with the right information at the right time to

improve the quality and convenience of their trips and the overall performance of the

transportation system. ATIS has played an important role with other ITS applications to

improve traffic operations.

8
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The core component within the ATIS is traffic information generated through a

three-step procedure: collecting data from a surveillance system (e.g., loop detectors,

probe vehicles, and cameras), consolidating the collected information (e.g., processing,

estimating, and predicting traffic information), and disseminating the information to

various agencies and the public. The ATIS can provide the location and severity of an

incident, weather and road condition, delay and travel time. Among those items travel

time is probably the most important because it is the most straightforward piece of

information needed by travelers to plan their journey and for transportation agencies to

optimize network performance.

Travel time information can be classified into three categories: historical, real-

time, and future information. Historical information describes the state of the

transportation system in previous periods (e.g., previous time interval, the same day of

previous week, the same week of previous month, etc.). Real-time information contains

the most up-to-date traffic conditions (e.g., the travel time at the current moment). Future

information (e.g., what will happen after 5 minutes) can be predicted based on historical

and real-time information.

Predicted travel time information can be classified into long-term and short-term.

The predicted long-term information is mainly used for transportation planning. The

short-term prediction often focuses on a short period in the future from a few minutes to a

couple of hours. It is more suitable to use it for managing traffic operations and control,

such as navigating vehicles, dynamic traffic assignment, and network wide traffic control.

Most of the eFisting traffic management systems provide real time traffic

information and determine appropriate traffic control plans based on historical and real-
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time traffic data, such as NAVIGATOR (Georgia DOT), TransGuide (TeFas DOT),

MONITOR (Wisconsin State DOT), SunGuide (Florida DOT), Compass (Ontario,

Canada), GuideStar (Minnesota DOT), LISB (GERMANY), AUTOGULDE (London),

511 system (Arizona DOT), FastracsTM, and the Advanced Driver and Vehicle Advisory

Navigation Concept (ADVANCE) (Illinois DOT). The disseminated traffic information

only contains current traffic information. Therefore, the performance of these systems is

constrained because of the lack of a predictive feature. Some traffic management systems

(e.g., Travel Time Prediction System (TIPS) in Ohio; TransGuide at San Antonio, TX;

the AC Transit in Almeda County, California; the City-University-Energysaver (CUE)

bus system in FairfaF, Virginia; the Vail Bus Service in Vail, Colorado; the Municipal

Railway System in San Francisco, California; the Trivet Transit Tracker System in

Portland, Oregon, etc.) were developed with predicted vehicle travel/arrival times. Thus,

future traffic information can be provided to travelers.

With accurately predicted traffic information, travelers can make a smarter

decision for selecting better departure times and routes to avoid traffic congestion and

reduce the travel time. The impact of the ATIS information has been eFplored in

numerous studies. Koutsopoulos et al. (1993) developed a simulation model to evaluate

travelers' responses to the disseminated traffic information and eFplored the benefits

travelers obtained. Daganzo and Lin (1994) found that the most useful information for

route choice was predicted travel time. Motorists making decisions in absence of either

predicted or real-time traffic information are implicitly based on historical information. If

the travel choice is based on instantaneous information, it may lead to inferior solutions

since conditions can damage while the traveler is on route. Therefore, accurate short-term
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prediction of traffic conditions (e.g., future travel time ranges between 5 minutes to a

couple of hours) is desirable for assisting trip planning.

Providing accurately predicted traffic information is critical for the successful

implementation of ITS, especially for In-vehicle Route Guidance Systems (RGS). As

soon as traffic conditions change, a more reliable routing plan can be dynamically

generated considering future, rather than instantaneous, traffic conditions. Many studies

have been conducted on RGS using real time and predicted information. Fu (2001)

developed an adaptive routing algorithm for RGS, in which real-time travel time

information was employed. The algorithm could predict the mean and variance of link

travel times before a vehicle entered the link. Sung et al. (2000) employed an efficient

labeling algorithm to determine the shortest path with time-dependent traffic speeds.

Chabini (2001) developed a model with an enhanced feature for the shortest path problem

with time-dependent link travel times under first-in-first-out (FIFO) conditions, which

was proved a computationally efficient approach for the dynamic shortest path problem.

Hall (1996) investigated the potential impact of real time traffic information in

route choice by increasing market penetration (e.g., percentage of drivers who subscribed

to receive the traffic information). It was found that when drivers responded to accurately

projected travel times, the system performance (e.g., delay time) could be improved with

increased market penetration. It was also found that predicted travel time is the most

useful information for traffic management rather than individual motorists.
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2.2 Traffic Data for Travel Time Prediction

To predict future travel times, historical and real-time travel time information has to be

collected, processed and analyzed in a systematic procedure. Though this study focuses

on the development of prediction models, technologies and methods used for collecting

data, estimating travel time and identifying traffic pattern are discussed in this section.

2.2.1 Data Collection

Travel time information, nowadays can be efficiently collected by using detectors

(Dailey, 1993; Petty et al. 1998), probe vehicles (Chen and Chien, 1999; Dailey, 2003),

and Global Positioning System (GPS) technology (You and Kim, 2000; Tsai, et al. 2003).

Methods that are used to collect travel times can be directly classified into four categories

(FHWA, 1998): test vehicle, license plate matching, ITS Probe Vehicle, and emerging

and non-traditional techniques. "Test vehicles" are dispatched specifically to collect

travel times along their trips. The "License Plate Matching" method compares license

plates passing consecutive checkpoints, while the times at the checkpoints are manually

or automatically recorded. Thus, the travel time between the checkpoints can be

estimated. "Probe vehicles" require remote sensing devices (e.g., GPS) to record a variety

of data used to calculate travel time. The sensing devices can collect the latitude and

longitude coordinates with a time stamp. With this information, one can determine how

long it took the vehicle to go from one place to another.
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2.2.2 Methods for Estimating Traffic Measures

Most traditional surveillance systems (e.g., loop detectors) cannot collect travel time

directly, but can collect point measurements such as flow, occupancy and spot speed. The

methodology used to derive travel time from point detection measurements are presented

in this section. It was important to realize that the variance of travel times (Sen, 1999;

Eisele and Rilett, 2002) and traffic patterns (e.g., stable, non-recurrent congestion or

recurrent congestion) are critical information for prediction model development

(Akahame, 1986; Shbaklo, et al. 1992), and this will be also discussed in this section.

(1) Point Detection Estimation

The single loop detector is one of the most commonly used devices for collecting

speeds. A number of models have been developed for single loop detectors (e.g., Hall and

Persaud, 1989, Dailey, 1993, Nam and Drew, 1996), while most of them are based on the

fundamental traffic flow theory to approFimate the speed from traffic variables (e.g.,

volume and occupancy). The three fundamental traffic variables, including flow, density,

and speed, are commonly used to describe temporal and spatial traffic characteristics.

The traffic volume can be directly detected with a single loop detector. However,

the density is often substituted by the occupancy that is the product of density and a mean

effective vehicle length (MEVL), which is roughly equivalent to the sum of vehicle

length and the length of the single-loop detector. Then, speed can be estimated (McShane

et al. 1998) using Equation 2.1:
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where i is time interval indeF; s (i) is space-mean speed; n (i) is number of vehicles per

interval (volume); o (i) is occupancy; T is the interval length; and / (i) is the MEVL for

the interval.

Athol (1965) treated the MEVL as a constant in different time intervals to

estimate speed for single loop data, as shown in Equation 2.2 where g is the reciprocal

value of the MEVL. This method is commonly adopted in practice because it does not

require complicated calibration.

Hall and Persaud (1989) tested the validity of Athol's model and found that

biased estimates of speeds may be happening when two major assumptions at traffic flow

theory are violated. The first one assumes that traffic flow is uniform, which is not true

under congested and very light traffic conditions. The second assumption is that the

occupancy and density of the traffic flow are linearly related (e.g., occupancy = c *

density, c is a constant by assuming that vehicle lengths are identical), which is not true

either.

Wang and Nihan (2000) developed a log-linear model to update "g" in Equation

2.2 periodically for different vehicle composition. The MEVL and "g" in different

periods can be estimated with improved accuracy. Considering the vehicle length

distribution in different traffic compositions, Wang and Nihan (2002) later employed a

filtering algorithm to make MEVL consistent with the actual vehicle composition across

intervals. They found that the estimation accuracy was significantly improved in
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comparison with the unfiltered data case under both free-flow and moderately congested

conditions.

Single-loop detector measurements are commonly used in practice for their

simplicity and transferability. The estimated speed could be further used to estimate the

link travel time. However, the calibration of the estimated travel speed requires data

collected from other hardware such as from a video camera.

Dual-loop detectors have been used to monitor traffic volumes, occupancies and

speeds with lesser calibration efforts. There are a number of models used to estimate

travel times based on data collected from dual-loop detectors. Dailey (1993) used cross-

correlation of traffic flows collected from upstream and downstream detectors to estimate

the travel time between two detectors placed 0.5 miles apart. Later, Petty et al (1998)

applied the same method to estimate travel times, while the accuracy of estimated data

under different aggregated levels were eFplored. Nam and Drew (1999) developed a new

dynamic traffic flow model that can automatically estimate spatial variables, such as

travel times and space-mean speeds. The model was based on the conservation of flow-

density-speed relationship, and it performed well for both normal and congested traffic

conditions. With those models, the detected measures (e.g., speed, occupancy, etc.) could

be applied to estimate the travel time.

(2) Variance Estimation

Variability of travel times on links is an important measure of service quality for

travelers (Eisele and Rile, 2002). The variance of travel times could affect the reliability

of predicted travel time to determine the shortest path (Sen et al., 1999) and acts as an

effective indeF to identify the traffic condition (Rilett et al., 1999). However, stochastic
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traffic conditions and the lack of enough data collected by surveillance systems increases

the difficulty to estimate travel time variance. For eFample, the estimated variance of

travel time could be easily obsolete if the studied corridor length is long because the

travel time changes dynamically (Eisele and Rilett, 2002). Further, the wide variation of

travel times requires a large size of travel time data to determine the mean and variance

of travel time subject to specified accuracy (Chen and Chien, 2001).

Chen et al. (2002) studied the average travel time and its variability based on data

collected from a corridor in Los Angeles, CA. Results showed that both the travel time

and its variability could be used as performance indices for determining the level of

service. Rilett et al. (1999) developed a model to determine prediction intervals to

forecast corridor travel times. With the mean and variance of link travel times, the mean

and variance of the corridor travel time were approFimated using a Bootstrap method and

a Taylor series model.

Considering an estimated link travel time with high variance, Sen et al. (1999)

developed a model to compute the minimum travel time between an origin and

destination pair. Results showed that the variance of estimated travel times collected by

probe vehicles would remain large irrespective of sample size increase. Thus the

accuracy of predicted travel time was not necessarily improved by increasing the number

of probe vehicles.

Eisele and Rilett (2002) developed a method to calculate the variance of corridor

travel times based on link travel times. Based on the first- and second-order Taylor Series

approFimation, the variance and covariance of corridor travel times were computed

considering the correlation among travel times of vehicles on the link. Gajewski and
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Rile (2003) applied the Bayesian Smoothing method to estimate the correlation of link

travel times. A nonparametnc regression model was first used to model the mean travel

time of a link. Subsequently, a Bayesian-based method was developed for estimating the

distribution of the correlation of travel times between links along a corridor in Houston,

TeFas, which was instrumented with Automatic Vehicle Identification (AVI) systems.

Traditionally, the estimation of travel time and its variability was based on

aggregated data on different levels of detail (from a few minutes to a couple of weeks).

Zietsman and Rile (2000) analyzed travel times at a disaggregated level by using AVI

data. They found that the increased quality of traffic data provided by AVI can improve

the estimation accuracy.

Gerlough et al. (1971) found that the collected traffic data would eFhibit different

degrees of variability depending on traffic volume (volume-to-capacity ratio) and the

duration of time interval for aggregating data. They selected Variance-tovean ratio

(VIM) as an effective indicator for identifying the probabilistic distribution for model

errors. For eFample, the observed traffic flow would be binomially distributed if VIM is

less than 1. It was further suggested that typical situations associated with low VIM ratios

were flows under congestion. Lan and Miaou (1998) eFplored the probabilistic

distributions of traffic flows with different time interval duration and discussed the

corresponding prediction boundaries for predicted traffic flow. The prediction boundaries

were generated based on the estimated error distributions. The variance and probabilistic

distribution of traffic data are important input parameters in many applications of ITS

such as incident detection, traffic control, traffic route guidance, and traffic prediction.
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2.2.3 Traffic Pattern Identification

Traffic patterns have been used to classify different traffic conditions while developing

prediction models (Akahame, 1986, Shbaklo et al., 1992, Smith et al. 2002). Shbaklo et

al. (1992) conducted a review of short-term travel time prediction models and found that

it was an effective way to classify traffic conditions into different traffic patterns (e.g.,

free flow and congestion conditions). Traffic characteristics such as variation of travel

time may be very different under various traffic patterns. Akahame (1986) stated that the

traffic condition identification is a preliminary and important step for developing an

appropriate and effective prediction model.

The traffic condition can be either free flow (un-congested) or congested

conditions. Under a free flow condition, traffic moves smoothly without delay. Therefore,

the traffic variables (e.g., speed, volume and occupancy) can be estimated with using

traffic flow theory. Thus, the prediction of travel time under such a condition can be

performed fairly well by many methods including the historical average method (Jeffrey,

et al., 1987), ARIMA models (Okutani and Stephanedes, 1984), Kalman filter models

(Suzuki et al., 2000), and artificial neural networks (Smith and Demetsky, 1994).

The traffic condition worsens and may become jammed when demand approaches

road capacity. The congested traffic condition can be classified into recurrent congestion

such as heavy traffic regularly happened during peak hours, and non-recurrent congestion

due to reduced capacity caused by incidents (e.g., accidents, spilled truckloads,

maintenance activities, and stalled vehicles). Recurrent congestion can be determined

from historical data since peak demand occurs with predetermined period. The methods

used to identify non-recurrent congestion or incidents are introduced below.
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A number of incident detection methods were developed over the past several

decades. Most of them used congestion as an indeF to identify whether the congestion

was caused by an incident or a recurrent bottleneck condition (Gall and Hall, 1989).

Persaud and Hall (1989) analyzed traffic data (e.g., volume, occupancy, and speed)

collected near an accident on a freeway. The data were poorly eFplained by traffic flow

theory, but fit very well by a catastrophe theory model considering the transition to and

from the congested condition upstream of the incident. Thus, an outline of an alternative

logic, based on the catastrophe theory model of the flow-occupancy-speed pattern, was

suggested for freeway incident detection.

Gall and Hall (1989) developed a logic model to distinguish recurrent and non-

recurrent congestion. The method was able to monitor detector data at regulated time

intervals and to evaluate the characteristics of traffic operations under congested

condition. Thus, the reduced capacity caused by incidents can be detected for non-

recurrent congestion identification. Abbasi et al. (1999) developed a model to measure

variance of speeds on freeways under a recurrent congested condition. The results were

derived to measure congestion presence and severity as well as evaluate ATMS

implementation.

To reduce false alarm rate of incident detection, Stephanedes and Chassiakos

(1993) developed a filtering algorithm to detect freeway incidents. The algorithm

considered smoothing spatial occupancy differences between upstream and downstream

detectors. An incident would be detected when the difference increased significantly in a

short time period. The method provided an alternative way for incident identification.
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Artificial Neural Networks (ANNs) and fuzzy algorithms have been broadly used

for incident detection. Cheu (1996) developed a new incident detection model by using

an ANN to detect lane-blocking incidents on urban freeways. The study classified traffic

surveillance data obtained from inductive loop detectors, and then used them to detect

incidents. Dia and Rose (1997) developed a multi-layer feed-forward (MLF) ANN model

to detect incidents, which was evaluated using field data. Results confirmed that the ANN

model could provide fast and reliable incident detection on freeways.

Later, Hsiao (1997) developed a Fuzzy Logic Incident Patrol System (FLIPS) by

integrating a fuzzy logic system and the learning capabilities of ANN to automatically

detect freeway incidents. A Fuzzy Logic Adaptive Threshold System (FLATS) was

developed to convert the output of FLIPS, an incident detection indeF into a binary value

predicting the absence or presence of an incident. The evaluation results showed that the

integrated learning process and adaptive threshold technique can significantly improve

incident detection performance.

Jin et al. (2002) developed a constructive probabilistic neural network (CPNN) for

freeway incident detection. The CPNN was structured based on a Gaussian model and

trained by a dynamic decay adjustment algorithm. The results showed that CPNN has

three main advantages over a basic probabilistic neural network (BPNN): (1) CPNN has

clustering ability and therefore could achieve similarly good incident-detection

performance within a much smaller network size; (2) each Gaussian component in CPNN

has its own smoothing parameters that can be obtained by the dynamic decay adjustment

algorithm with a few epochs of training; and (3) the CPNN adaptation methods have the

ability to prune obsolete Gaussian components.
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Sheu (2002) presented a model based on the fuzzy clustering theory to identify

freeway incidents. The model was able to distinguish a congested traffic condition from

incident-free traffic states and characterize temporal and spatial changes of traffic

variables such as occupancy, density and speed related to the incident. Skabardonis et al.

(2003) developed a method to measure total delay on urban freeways under recurrent and

non-recurrent congested conditions, while the data collected by loop detectors were

analyzed to approFimate the average and the probability distribution of delay. The

method could be used to evaluate congestion impact on travel time and its variations.

Srinivasan et al. (2000) developed a hybrid ANN for detecting incidents on a

transportation network. The comparison between the hybrid ANN and four other

incident-detection algorithms (e.g., California algorithms, McMaster algorithms,

Minnesota algorithms, Artificial Intelligence (AI) models) was conducted. Results

demonstrated that the hybrid ANN had superior accuracy for incident detection.

2.3 Traffic Prediction Models

Many traffic prediction models have been developed based on available traffic

information including historical and real time traffic data. Some models only used

historical traffic data (Kreer, 1975 for UTCS-2; Ahmed and Cook, 1979; Hoffmann and

Jando, 1990; Khattak et al. 1992; and Smith, 1997), some rely on real-time traffic

information (Stephanedes et al. 1981 for UTCS-3; Lu, 1990; Suzuki, et al., 2000), and

others (Williams, et al. 1999; Kuchipudi and Chien, 2003; Shalaby and Farhan, 2003)

employed both historical and real-time data to predict future information. In this study,

prediction models are classified into time series models, regression models, and ANN
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models. The application, advantages, and disadvantages of each model class are

discussed neFt.

2.3.1 Time Series Models

Time Series is defined as an ordered sequence of values of a variable at equally spaced

time intervals (Croarkin, etc, 2001). Time series analysis is a statistical model (Smith and

Demetsky, 1994) that can catch and eFplain the system behavior based on a set of time

series data F(t) and thus use them to forecast future condition at time t+D, where D is the

prediction interval. The model can predict the F(t+D) based on a time series F(t), F(t-D),

F(t-2D), and so on. The time series technique has been wildly used in transportation

research (e.g., Ahmed et al., 1979, Okutani and Stephanedes, 1984, Terry et al., 1986,

Arem et al., 1997, Williams, 2001)

Time series models (Chatfield, 2002) can be classified into "univariate" and

"multivariate" types based on the dimension of the observation variables (e.g., scalar or

vector). However, multivariate time series models are not wildly used for traffic

forecasting due to their complicated formulation requirements and no further details

about them will be presented here. The two most popular and wildly used time series

models are discussed below.

(1) BoD-Jenkins Models

Enders (1996) defined the BoF-Jenkins model as "a methodology for identifying,

estimating, and forecasting" based on an autoregressive moving average (ARMA) that

was made up by autoregressive and moving-average components. As a well-known BoF-

Jenkins model, the Autoregressive Integrated Moving Average model (ARIIMA) was
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wildly used to predict future traffic flow and travel time. ANIMA models can be simply

defined (Williams, et al, 1999) as linear estimators regressed on past values of the

modeled time series (the autoregressive terms) and/or past prediction errors (the moving

average terms). ANIMA (p,d,q) represents a time series {Xt}, in which parameters p and

q represent the order of autoregressive and moving average, respectively, and d

represents the order of ordinary differencing (Smith, etc., 2002). It is assumed that travel

time prediction is a point process and that the observed data can be identified by

statistical techniques.

The fast computation times associated with the ANIMA model make it an

efficient prediction method for real-time traffic management. One shortcoming of

ANIMA is that the time series model relies on a consistent series of data. Once the data

series is interrupted, the missing data will decrease the accuracy of the predicted results.

For eFample, Okutani and Stephanedes (1984) applied the ANIMA model to UTCS. The

results showed unsatisfactory goodness of fit and high errors due to missing data. Under

such a condition, ANIMA models are not more accurate than a simple moving average

method. Terry et al., (1986) stated that time series models should "be used with caution

as the compleFity of the situation increases". Later, Williams et al. (1999) used a seasonal

ANIMA and an eFponential smoothing method to predict traffic flow. The single

eFponential smoothing was a simplification of seasonal ANIMA assuming no seasonality,

and the technique performed well in replacing the missed data and improving prediction

accuracy.

The moving average model is one type of the BoF-Jenkins models, and usually

uses an average of historical traffic data in previous time intervals to forecast the future
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condition. This method assumes that future traffic flow would follow the same pattern as

the past one, relying mainly on the cyclical nature of traffic conditions. However, the lack

of a dynamic reaction to the changing traffic will fail this method when the system

eFperiences uneFpected changes caused by incidents, such as adverse weather condition,

accidents, and other special events.

Another type of smoothing method is called eFponential smoothing. A single

eFponential smoothing method is actually a special case of ARIMA when (p,d,q) are set

to (0,1,1) (Brown, 1963; Noss, 1982). The eFponential smoothing model assigns time-

varying weights to the previous observations when the prediction results are updated

(Filliben, et al., 2002). Iwasaki and Saito (1996) developed a speed prediction model

based on a single eFponential smoothing method with historical data. The weight of the

historical speed value was selected by a trial and error approach. Nesults generated with

data collected from a traffic surveillance system on a rural motorway in Japan showed

that the prediction model could overcome the time lag while predicting traffic flow and

perform well in real practice.

Many researchers made various theoretical and empirical arguments for selecting

appropriate smoothing parameters such as a discussed here. Bowerman and O'Connell

(1979) stated that in practice smoothing constants between 0.01 to 0.3 usually worked

quite well for prediction. However, in a study conducted by Makridakis et al. (1982), a

values above 0.30 frequently yielded the best forecasts. The dependency of optimal a

may be captured by time series methods that can analyze the autocorrelation of data.

Gardner (1985) concluded that it was best to estimate an optimum a from the historical

and real time observations, rather than a guessing value.
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Newbold (1995) developed a method for selecting a smoothing constant. The

recommendation was to select a that minimizes the sum of squared prediction errors.

According to a study conducted by StatSoft Nesearch Team (2004), a can be chosen by

a grid search in the feasible region of the parameter space in practice; that is, different

values of a should be tried, for eFample, starting with a = 0.1 to a = 0.9 by increment of

0.1. Then, the a which produces the smallest absolute mean residual error is chosen.

The Urban Transportation Control System (UTCS) was developed based on a

BoF-Jenkins model, whose parameters were determined off-line using a data set collected

from the studied site (Kreer, 1975; Stephanedes et al., 1981) to predict traffic flow and

travel time. The UTCS-2 predictor employed both historical and current-day

measurements. Thus, it can reduce the prediction error resulting from the difference

between deviations from the historical data and current conditiosn. The UTCS-3 predictor

only employed real-time measurements to interpolate the most recent smoothed and

smoothed measurements on the current day as the predicted values. Under free flow

traffic conditions, the algorithm employing historical information (UTCS) as reference

provided better prediction than those using current-day measurements.

The AUTOGUIDE system (Jeffrey et al., 1987) was developed in London. It

utilized simply the storing at historical traffic data to predict travel time in different

periods of a day. Though the model is not able to reflect dynamic traffic changes, it

performed very well in practice when there is no available real-time traffic data. Kaysi et

al. (1993) developed the LISB system by applying a historical average model to predict

future traffic conditions based on historical and real-time data. A projection ratio of the

historical travel time on a specific link to the current travel time as reported by equipped
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vehicles was used to predict future link travel times. The weakness was to assume that the

projection ratio remained a constant.

Coifthan (1996) developed a basic signal processing theory to smooth freeway

loop detector data. After introducing fiFed-time averages, cumulative sums, and moving-

time averages, a nontraditional smoothing technique was developed. Nesults indicated

that good estimates could be achieved even under congested traffic conditions by

employing historical average methods.

The BoF-Jenkins model combined the moving average and the autoregressive

method, which can increase the prediction accuracy. Ahmed et al. (1979) and Nihan et al.

(1980) used the BoF-Jenkins method to forecast traffic volume on freeways. Arem et al.

(1997) developed a linear ANIMA model using data collected from inductive loop

detectors to predict travel times. The predicted and actual travel times under both

recurrent and non-recurrent congested conditions were compared. The difference was

very small under recurrent congestion, but it was large under non-recurrent congested

condition.

Vemuri and Pant (1998) developed a time series model for short-term forecasting

of traffic delays for highways with construction zones. Travel times were estimated from

two adjacent detectors and converted to a set of time series data. Thus, the problem of

short-term traffic delay forecasting could be formulated as a time series evolution

problem. A generic structure applied an on-line approFimation model to predict travel

time based on real time and historical data. Satisfactory performance was achieved.

Lee and Fambro (1999) developed a ANIMA model along with three time-series

models to predict traffic volume. Nesults showed that all time-series models performed
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well with reasonable accuracy for short-term forecasting tasks overall. On the average,

the eFponential smoothing model was better than time series models eFcept for the

ANIMA model. It was found that proper thodel identification couldn't be guaranteed

when data have an ANMA structure. Williams (2001) developed a multivariate ANIMA

model to predict downstreath traffic flow by using data collected by upstream sensors.

Nesults indicated that the multivariate ANIMA model outperformed a univariate model.

Kamarianakis and Prastacos (2003) developed two different univariate (historical

average and ANIMA) and two multivariate (vector autoregressive moving average, or

VANMA and single space-time ARIMA, or STANIMA) models to predict traffic flow.

Nesults showed that the historical average model cannot predict well during the transition

of changing traffic patterns. The STANIMA model could generate as accurate prediction

results as other models (ANIMA, VANMA and STANIMA model) with relatively simple

structure.

(2) Kalman Filtering Models

Static time series models, such as historic average and Ben-Jenkins models cannot

capture dynamic changes in traffic operations (Chatfield, 2003). The prediction accuracy

of these models depends on the similarity between the historical and future traffic

conditions. The Kalman filtering model is a dynamic linear prediction model consisting

of state and theasurement equations. The state equation describes how the state variables

change over time, while the measurement equation transfers the estimated state variables

into observed variables. Then, the prediction error (difference of the predicted and

observed variables) can be used to update the state variables in the neFt time interval.
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The Kalman filtering model was originally developed for signal processing. Then

it was applied in transportation research to predict traffic volume in an urban network

(Okutani and Stephanedes, 1984). Unlike the methods using only historical data for

prediction, the Kalthan filter model uses time-varying parameters that can fully respond

to dynamic conditions. The parameters are updated based on the most recent observation.

Thus, the prediction error between the predicted results and future traffic conditions

could be minimized.

Suzuki et al., (2000) applied a Kalthan filtering model to simultaneously predict

dynamic travel times and traffic flow on a freeway corridor in Bangkok, Thailand. The

state and measurement equations in the Kalman filtering (KF) model were integrated with

an ANN model, called Neural Kaman filter (NKF) model, to predict traffic states on the

freeway corridor. Numerical analysis showed that the use of the NKF model was fairly

accurate in predicting dynamic travel time and traffic flow.

Bhattacharjee et al., (2001) developed a Kalman filtering model to predict O-D

demand, where the effect of travel time inforthation on traffic diversion was formulated.

The inherent dynamic nature of traffic characteristics was captured. Changes in drivers'

perceptions as well as other randomness in the route diversion behavior have been

thodeled using an adaptive, aggregate, dynamic linear thodel where the model parameters

are updated on-line using the Bayesian updating approach. EFperimental results based on

a freeway corridor in northwest Indiana indicated that the developed dynamic linear

model (DLM) could significantly improve O-D demand prediction accounting for route

diversion behaviors.
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Jiang (2003) combined the Kalman filtering model and the AR MA model for

predicting freeway traffic. It was demonstrated that the integrated model predicted traffic

flow in a more accurate manner than either one of the two models. The traffic flow on a

freeway in the neFt time interval (e.g., 5 to 15 minutes later) can be predicted using

traffic data collected in the current and past time intervals. Dynamic traffic predictions

with the developed model can be performed for individual lanes as well as for all the

lanes of each travel direction. The study also demonstrated that, if the traffic capacity was

given, a dynamic prediction of traffic flow rate with this prediction model would also

constitute a dynamic prediction of traffic congestion.

Sheu (2003) developed an advanced method for predicting queue lengths based

on a stochastic system approach. A Kalman filtering model for predicting real-time queue

overflows was developed, in which a discrete-time stochastic system was specified for

modeling the queue length when traffic overflow occurred, while a random process was

used to predict traffic arrivals. Results indicated that the proposed method held promise

in real-time prediction of queue overflows.

Nanthawichit et al. (2003) developed a method to estimate and predict traffic

variables (e.g., travel time) with data collected by probe vehicles and detectors. The data

collected by probe vehicles were integrated into the measurement equation of the Kalman

filtering model. Estimated travel times were updated with information from both

stationary detectors and probe vehicles. The application of the developed method was

eFtended to the estimation and short-term prediction of travel time.

Kuchipudi and Chien (2003) developed dynamic recursive models to predict

travel time employing both real-time and historical data. Path-based and link-based
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Kalman filtering models were developed and tested, while their performance under

different traffic conditions was cothpared. The duration of the predicted time intervals

was analyzed to evaluate its impact on the accuracy of the prediction model. The

eFperimental results revealed that the predicted travel times with path-based model were

better than those predicted with the link-based model during peak hours.

Chen et al. (2003) developed a neuralIdynamic (NID) model by integrating a

Kalman filtering model and an ANN to predict bus arrival times under congested traffic

conditions. The predicted bus travel times from the ANN model was taken as input to the

Kalman filtering algorithm to recursively update the predicted data based on real time

inforthation collected by automatic passenger counters (APC). After a statistical analysis

of all trips, the NID model with a lower NMSE always performed better than the ANN

model. Thus, it provided a promising way for predicting bus travel times.

(3) Non-linear Time Series Models

The linear models, such as the BoF-Jenkins and Kalman filter models, are the

main time series models used for traffic forecasting. However, Chatfield (2002) found

that there was increasing interest in non-linear systems with eFciting potential when the

observed time series eFhibited features that cannot be eFplained by a linear system.

Al-Deek et al. (1998) developed a non-linear model to predict travel times, which

was tested with real world data collected under recurrent congestion. The maFithum

prediction errors of travel times were found when traffic was jammed. A minimum speed

threshold was set as a boundary of congestion. The improved results were achieved by

refining the prediction algorithm and smoothing the input data. Thus, the new approach

produced reasonable errors for short-term (5-thinute) travel time predictions.
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Angelo et al. (1999) developed a nonlinear time series model for travel time

prediction on a freeway network in Orlando, Florida. Both single-variable and

multivariable types of prediction models were developed with real world traffic data. In

single-variable prediction, speed time-series data are used to forecast travel times along

the freeway corridor. Multivariable prediction schemes are developed using speed,

occupancy, and volume data provided by inductive loop detectors on the study section.

Nesults demonstrated that the performance of the single-variable model was superior to

the multivariable model. It also proved that the developed nonlinear model has strong

potential for on-line implementation during changing traffic conditions.

Nair et al. (2000) investigated the applicability of a non-linear system for traffic

parameters (e.g., speed, volume, occupancy) thodeling and prediction. They modeled a

traffic time series as a deterministic system, implying eFistence of an underlying structure

in the system, and applied the phase space technique to the non-linear time series

analysis. The eFperiment was designed based on the data collected from loop detectors on

the San Antonio freeway. The nonlinear time series technique was then used to predict

average speed and demonstrated better prediction results than a neural network.

Ishak and Al-Deek (2003) investigated factors that had a significant impact on the

accuracy of predicted travel times by a nonlinear time series model. The goal was to

identify the operational settings and the anticipated predicting accuracy of the model

before it can be fully ithplemented. The study was conducted using an eFtensive amount

of real-time data collected from the 62.5 km corridor of 1-4 in Orlando, Florida. Various

scenarios were generated from a combination of model parameter settings and different

traffic conditions to test the performance of the model. Nelative travel time prediction
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errors were used as measures of performance. Analysis was conducted to identify the

impacts of parameters (e.g., prediction horizon, congestion indeF) on the model's

performance.

2.3.2 Regression Models

Negression analysis is a statistical procedure commonly applied in solving management,

business and engineering problems (Chatfield, 2002). Negression models could be

classified into parametric and non-parametric models, by which a single dependent

variable affected by one or more eFplanatory (independent) variables can be analyzed.

Therefore, the dependent variable could be estimated based on a set of independent

variables under different conditions.

(1) Parametric Regression Models

The parametric regression model includes linear least squares regression,

nonlinear least squares regression, weighted least squares regression, etc. The linear

regression model is developed with the "least squares" method to fit a line through a set

of observations, and is by far the most widely used modeling method (Croarkin, et al.,

2001). The applications of regression thodels in the area of traffic prediction are reviewed

and discussed below.

Abdelfattah and Khan (1998) developed linear and a non-linear regression models

to predict bus delays. The eFplanatory variables were chosen based on available data,

while their significance on the dependent variable was eFplored. The developed bus delay

prediction models were tested under northal and incident conditions. Nesults showed that
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the predicted bus delays were close to the field data, and were used to assist transit

operators updating bus schedules on a real time basis.

Frechette and Khan (1998) employed the Bayesian regression approach to predict

travel times for urban streets. Two disparate sources of inforthation were used: priori data

(what is known before an eFperiment) and eFperimental data (information derived from

an eFperiment). Nesults generated by NETSIM (a microscopic network simulation thodel

developed by Federal Highway Administration) were used as priori information, whereas

the eFperimental data were obtained from videotape records on the selected streets. A

Bayesian regression software was used to develop the prediction model for travel times

during peak periods in medium to large central business districts.

Zhang and Nice (2003) proposed a method to predict freeway travel times using a

linear regression model, in which the coefficients of eFplanatory variables varied with the

smooth weight functions of vehicle departure time. Thus, the travel time with closer

departure time to the prediction time played a larger role in determining the coefficients

of the regression model and obtained improved prediction accuracy. The effectiveness of

the method has demonstrated and tested with loop detector data. The method was

straightforward to implement, computationally efficient and applicable to widely

available sensor data collected on freeways.

Sun et al. (2003) developed a local linear regression model for short-terth traffic

prediction. Local linear regression is one type of local weighted regression methods,

which has been applied to artificial intelligence, dynamic system identification and data

mining. The perforthance of the thodel was compared with nonparametric approaches

(e.g., nearest neighborhood and kernel methods) by using traffic speed data collected on
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the Houston US-290 Northwest Freeway. Nesults indicated that the local linear model

outperformed the nonparametric models.

Cho and Nilett (2003) developed a modular ANN, a simple ANN model, and a

standard linear regression model to predict train arrival times. The average speed, squared

average speed, and estimated distance between the head of the train and the highway-

railroad grade crossings (HNGC) were selected as eFplanatory variables to develop the

regression thodel. It was found that a modular ANN architecture could produce superior

results. When the updated speed was refilled and trained in the models, the accuracy of

prediction was improved.

Shalaby and Farhan (2003) developed a linear regression model to predict bus

travel times with AVL data, in which speed, distance, dwell time and delay were selected

as eFplanatory variables. Historical average, Kalman filtering and ANN models were

developed, and the prediction accuracy was compared. The results showed that the

Kalman filtering model outperformed others methods for bus travel times in downtown

Toronto.

(2) Nonparametric Regression Models

The nonparametric regression thodel is a regression model that does not require a

functional relationship between the dependent and eFplanatory variables. Nonparametric

regression prediction model is founded on chaotic system theory, which is defined by

deterministic and non-linear state transitions. When there is no prior knowledge about the

model that can represent the system with a finite number of parameters, nonparathetric

regression can be used to eFplore the data.
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By applying historical observations in a specific area (neighborhood) close to the

current variables, the nonparametric regression model assigns a weighted average value

to predict the dependent variable. Sthith etc., (2002) found that the quality of the

database, particularly when storing historical data that represents all possible future

conditions, greatly affects the accuracy of nonparametric regression models.

Altman (1992) classified the nonparametric model approaches into kernel and

nearest neighbor based on the definition of past instances neighbor. A kernel

neighborhood was defined as having a constant bandwidth on the independent variable

space with the center on the current investigated state. A nearest neighborhood was

defined as having a constant nuthber of data points including those "nearest" to the

current system state. Therefore, a prediction result was always available from the nearest

neighbor approach, while it could be missing in a kernel neighborhood approach, because

any past similar instances could possibly fall out of the pre-defined bandwidth.

Davis and Nihan (1991) investigated the non-parametric regression method for

short-term traffic forecasting. They developed a K-nearest approach to overcome the

inherent problems in parametric forecasting thethods (e.g., nonlinear relationship between

input and output). An empirical study using real world data collected on a freeway in

Washington State was conducted, while a K-nearest model and a linear time-series model

were tested. Nesults showed that though the K-nearest model did not perform better than

the linear tithe-series model, the possible reasons were found, including a dataset that did

not contain enough instances of traffic flow transitions. However, a more promising

method was eFpected when more eFtensive data and K were provided to produce superior

forecasting.
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Smith and Demetsky (1996) developed a nonparametric regression model to

predict traffic flow applying multiple prediction intervals. The model could eFpand the

prediction horizon in intervals from 15 minutes up to 1-hour compared with the single-

interval forthulation of nonparametric regression models. The prediction performances

were comparable for both models. Later, Smith (1997) developed four forecasting models

(historical average, ANIMA, artificial neural network, and nonparametric regression) to

predict traffic flow for two sites on the Capital Beltway in Northern Virginia. The

comparison of results indicated that the nonparametric regression model outperformed

the others with single interval prediction. Based on its success with the single interval

forecasting, the nonparametric regression approach was used for multiple interval

prediction and performed well in this application.

Smith et al., (2002) did a study to compare parametric and nonparametric models

while forecasting traffic flow. Both ANIMA and nonparametric models were tested and

the short-term traffic flow on a single point at London Orbital Motorway, M25 was

predicted. They reported four fundamental challenges when applying nonparametric

regression: definition of an appropriate state space, definition of a distance metric to

determine nearness of historical observations to current conditions, selection of a forecast

generation method given a collection of nearest neighbors, and management of the

potential neighbors database. Nesults indicated that the heuristic method employing

different historical data significantly improved the performance of the nonparametric

regression model. It also demonstrated that using nonparametric regression was preferred

when the implementation of seasonal ANIMA models was restricted by some

requirements, such that missing data cannot be used in the model.
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2.3.3 Artificial Neural Network Models

Artificial Neural Networks (ANNs) have been broadly used in transportation research,

such as traffic flow estithation and prediction, traffic pattern identification, traffic control

and transportation planning. Meidrum (1995) conducted a study and found two ANN

inherent disadvantages inhibited in the ANN. One is that ANN sometimes requires long

time for training data and may generalize new data outside the training set. Another was

that a trial-and-error procedure was involved to find the optimum architecture and

training techniques.

The ANN function can be taken as "a sophisticated form of regression" (Smith

and Dethetsky, 1994) though it doesn't require the formulation of related traffic

measurements, which enables the ANN to handle nonlinear surfaces. The performance of

the predictive ANNs substantially depends on the input-output specification and the

quality of training samples. There is no robust theory to determine the best training

procedures.

Smith and Demetsky (1994) developed a back-propagation ANN model and a

time series thodel to forecast short-terth traffic flow. The comparison of the prediction

results showed that the back-propagation ANN model was more responsive to dynamic

traffic conditions than the time series model, and held considerable potential application

in real-time ITS applications.

Bae (1997) applied ANN to interpret auto travel time directly from bus travel

time. The regression model was used to identify the correlation between bus and auto

travel times on a link with dynamic traffic flow. Both dynamic and static field data,

which affected the travel time of bus and auto were collected and used to validate the



38

travel time prediction model. The ANN results outperformed the regression model when

dealing with a non-linear system.

McFadden and Durrans (2001) applied ANN to predict speeds on a two-lane rural

highway. They developed two back-propagation ANNs for speed predictions and

compared their prediction results with the regression models developed by Krammes et

al. (1995). Comparision results indicated that the eFplanatory performances of the ANN

models were comparable to the regression model, but ANNs were not limited by

distributional constraints inherent to regression. It demonstrated that ANNs were more

powerful for modeling different eFplanatory variables than regression models.

Chen and Grantvuller (2001) integrated ANNs with a sequential learning

process to develop a dynamic traffic flow forecasting system. An ANN was based on a

Nesource Allocating Network (NAN) that adapted to a sequential learning scheme under

which data points were presented to the network in sequence. Nesults showed that the

network performance could be improved by dynamically adding a new hidden unit. The

number of hidden units should correspond to the compleFity of the underlying function

that reflected the observed data.

Lint and Hoogendoorn (2002) developed an ANN for freeway travel time

prediction. The ANN was derived from a state-space forthulation and was tested by data

collected from a densely used highway in the Netherlands. Nesults indicated that the

model could accurately predict travel time and produce approFimately zero mean

normally distributed residuals.

Kisgyorgy and Nilett (2002) applied an ANN with two different approaches to

predict travel time for a freeway systeth in San Antonio, TeFas. The first approach used
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the ANN for speed prediction and then calculated the travel time, while the second one

predicted the travel times directly with the ANN. The best results were obtained, while

travel times were directly predicted by the ANN. However, this model cannot be applied

in practice due to the lack of new data.

Yin et al., (2002) integrated a fuzzy method with an ANN, called Fuzzy Neural

Method (FNM) to predict traffic flow for an urban network. The FNM consists of two

modules: a gate network (GN) and an eFpert network (EN). The GN classified the input

data into a number of clusters using a fuzzy approach, and the EN specified the input—

output relationship using an ANN. While the GN grouped traffic with similar traffic

patterns into clusters, the EN modeled the specific relationship within each cluster. Both

simulation and real world data were used and satisfactory prediction results were

obtained.

Ishak and Alecsandru (2003) used multiple ANN topologies for short-term traffic

prediction on freeways under different network and traffic conditions. Using a miF of

traditional and modern ANN topologies, the prediction performance was evaluated under

different settings (e.g., traffic situations, type of networks) and prediction horizons (e.g.,

from 5 to 20 minutes). Nesults showed that the developed ANN resulted in better

performance. The study implied that the identifying appropriate traffic situations, types of

networks, and traffic settings could improve the prediction accuracy.
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2.4 Simulation Models

2.4.1 CORSIM

Computer thodeling and simulating transportation networks have been widely and

increasingly implemented in traffic analysis and evaluation because of two reasons. One

is that the performance of traffic operations under different conditions and the traffic

impact of tentative modifications can be tested and evaluated before implementation in

the field. The other is that some measures of effectiveness (MOEs), such as travel time on

a particular OD pair, are difficult to measure in the field due to the lack of an appropriate

surveillance system. For eFample, Xie, et al., (2002) pointed out the difficulty of

collecting relevant field data to estimate certain performance measures (e.g., delay time)

in reality for conducting signalized intersection-related studies, such as gap acceptance

and capacity analysis.

Based on the representation of traffic flow or vehicle movement (Chu, 2002),

traffic simulation models can be classified into microscopic (CONSIM, TNANSIM,

MITSIM, PANAMICS, VISSIM, AIMSUN2, etc.), mesoscopic (FNEFLO, METANET,

AUTOS, VISUIM, etc.), and thacroscopic (DYNASMANT, DYNAMIT,

INTEGNATION, METNOPOLIS, etc.).

Microscopic models can identify a vehicle by different type (e.g., auto, truck and

bus), specify driver characteristics (e.g., aggressive or cautious), and emulate stochastic

driving properties (e.g., lane-change maneuver, car following logic and driver decision

process) of vehicles individually. Therefore, a microscopic model can describe dynamic

interactions among vehicles in a complicated traffic environment and generate vehicle

behavior with the highest degree of disaggregated level under various traffic
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circumstances. However, the most detailed geometric and traffic data are required for the

development and calibration of the simulated network.

Mesoscopic models can sithulate vehicles at a lower level of detail than the

thicroscopic models since mesoscopic models emulate vehicle behavior at a higher

aggregated thanner. For eFample, instead of detailed interactions (e.g., car following

logic) between vehicles, mesoscopic models determine vehicle and driving properties

(e.g., the lane change decision) based on their aggregated characteristics (e.g., speed,

density). Macroscopic models simulate vehicle and driving behavior at the highest

aggregated level, in which the traffic stream is represented by aggregated traffic flow,

density and speed. Therefore, there is no real driving behavior of vehicles (e.g., lane

change maneuver) emulated in macroscopic models.

In this study, short-term travel tithe will be predicted and evaluated for the

developed prediction models. A microscopic simulation mode is desirable to generate the

most detailed measures such as travel time in different time intervals. Thus, CONSIM is

an ideal simulator that can meet the study needs.

CONSIM (microscopic CONridor SIMulation) is the powerful core engine in the

TSIS (Traffic Software Integrated System) suite developed by the Federal Highway

Administration (FHWA). It integrates two microscopic simulation models: the arterial

network model NETSIM and the freeway model FNESIM and has been applied

eFtensively to a wide variety of areas by both practitioners and researchers. Through

simulating stochastic individual traffic vehicle operations, CONSIM can produce

sophisticated MOEs based on car-following and lane-changing models.
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2.4.2 Calibration and Validation

Simulation models should be properly calibrated before implementation. To fine tune the

CONSIGN simulation model to mimic real-world traffic conditions, its parameters need to

be calibrated. These parameters are related to driver behavior, vehicle performance and

roadway throughput capability, such as free flow speed, mean discharge headway, and

mean startup delay) (Xie, et al., 2002), car-following sensitivity parameter, vehicle length

(Cohen, 2002), yield value, time to complete the lane-changing maneuver, and lane

changing aggressiveness (Skabardonis, 2002).

There are generally two different approaches to calibrate microscopic traffic

simulation systems. The first approach is model calibration, which re-establishes the

input-output relation to obtain the desired system accuracy by changing the basic

thodules that describe the compleF relationship between the input and output at the

simulation systems. Since this approach required a good understanding of the particular

simulator modules and accessibility of the modules internal resources, only sithulator

developers can perforth such kind of calibration. The second approach is referred to as

parameter calibration, defined as re-establishing the input-output relation to obtain the

desired system accuracy by changing only those parameters that govern the input-output

relationship in the systems being thodeled (Lee, et al., 2001). Parameter calibration in a

simulation model may be regarded as an optimization problem in which a set of values

for operating parameters that satisfy an objective function are to be searched (Cheu, el at.

1998).

Considering the interdependent influence among different parameters on the

simulation results, the impact cannot be isolated when changing several parameters at a
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time. Therefore, the other parameters should be fiFed to test the impact of each parameter

on the simulation results. To identify the key parameters influencing the simulation

results, a sensitivity analysis for various parameters should be conducted, and the impacts

of changing those parameters be observed.

The calibration procedure can be made during different comparisons including

graphical, aggregate, and statistical. The graphical comparison is a subjective validation

approach, which is especially useful for testing the results generated by the simulation

model preliminarily. It makes the comparison easy and visible. Aggregate means and

standard deviations give general indication of system performances in the real world and

in simulation. However, they do not present an accurate trend or indication on how

variables perform over time, what patterns are created, or how much individual

measurements deviate. An aggregate comparison, along with the graphical comparisons

of scattered plots, reveals the similarities and discrepancies of the magnitude and

changing pattern of variables. A statistical analysis is crucial for validating the proposed

thodel based on real world and simulation sample data. It can be used for assessing the

accuracy of the model, testing various hypotheses, and determining degree of correlation

between real world and simulation. The following indices are used for statistical

comparisons.

The Mean Absolute Percent Error (MAPLE) measures the percentage error

between simulation results and field data, and can be given by Equation 2.3:

1 n IS. —01
MAPLE = 	 *100%

n 	 0:
(2.3)

where n, Si and Oil are sample size, observation i of simulation output, and observation i

of field measurement, respectively.
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The Noot Mean Square Error (NMSE) denotes the error between simulation

results and field data, and can be computed by:

where n, S i and Oil are the same as in Equation 2.3.

Once satisfactory values for the calibration parameters of the model have been

obtained, the model should be checked (Jayakrishnan, et al., 2002) by comparing

measures of effectiveness (MOEs) observed in the field against comparable measures of

effectiveness calculated by the model (Cohoe, 2002). Verifying a calibrated model in this

manner is commonly called validation. The validation process establishes the credibility

of the model by demonstrating its ability to replicate actual network and traffic patterns

(Jayakrishnan, et al., 2002). Validation should only be perforthed after the model has

been properly calibrated.

2.5 Summary

Models developed for predicting traffic data (e.g., flow, speed, travel time) have been

classified into time series, regression, and ANN models. Each model has demonstrated

good perforthance for traffic prediction under situation suitable for it. Their advantages

and disadvantages are summarized in Table 2.1. To fulfill the objective, creditable

models should be developed to predict traffic information by employing real-time and

historical travel times.

The regression thethod is not suitable for this study because of two reasons. The

first reason is that the regression model predicts based on the relationship between the



Table 2.1 Summaries of Prediction Models.
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dependent variable (e.g., travel time) and a number of eFplanatory variables (e.g., speed,

departure tithe, link length, etc.). However, both input and output of the prediction model

in this study is travel time, which does not fit the requirement of the regression model.

The second reason is that the coefficients of the eFplanatory variables in the regression

model are derived based on historical data. Even though the new data could be entered

into model to update the coefficients, the correlation between travel times on consecutive

intervals cannot be determined in this model. Thus, the dynamic changes in the traffic

system cannot be accurately captured.

The ANN is a powerful thodeling approach especially when the relationship

between the predicted variable and eFplanatory variables is hard to formulate

mathematically. This feature enables the ANN to handle nonlinear systems well.

However, as "a sophisticated form of regression" (Smith and Dethetsky, 1994), the ANN

training process is still based on the historical data without considering the correlation

between travel times on consecutive intervals. Besides that, the long time required for

training the ANN and lack of a standard procedure to find the optimum architecture

(Meidrum, 1995) further restricted its applicability to this study.

A stationary time series can be decothposed into a deterministic series and a

stochastic series. Furthermore, the stochastic series can be represented as an infinite

thoving average time series (Smith, etc., 2002). By considering the stochastic nature of

traffic flow and available travel times in successive intervals, it is suggested to propose a

time series approach for travel time prediction in this study. The correlation between

travel times in consecutive intervals could be formulated in a time series model when the
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travel time theasurements collected during the past intervals are taken as states variable in

a time series problem.

One type of time series model is the moving average model, which can generate

the future travel time by averaging the travel times collected in previous intervals.

Different weights are allocated to travel times collected in different intervals.

Conventionally, it is assumed that the previous observations closer to the current interval

should have a higher weight and play a more important role for predicting traffic data in

the neFt interval. Another type of a time series model is the eFponential smoothing thodel,

which can apply both historical and real-time traffic data to predict future information. It

can formulate the deterthinistic and stochastic components by adding different weights to

the historical and real-time data. This model is anticipated to perform well under

complicated traffic conditions by allocating the appropriate weights to historical and real-

time traffic data.



CHAPTER 3

DEVELOPMENT OF BASE MODELS

The development of three base travel time prediction models, including the eFponential

smoothing model (ESM), the moving average model (MAM), and the Kalman filtering

model (KFM) are discussed in this chapter. The properties, logic and features of the base

models are eFplored, tested, and evaluated through a simulated transportation network,

which will be discussed in Chapter 4.

3.1 System Configuration

The configuration for developing the three base prediction models is shown in Figure 3.1,

which is cothprised by four major components, including network modeling, eFperiment

design, model development, and system evaluation. Based on the field data collected by a

number of acoustic sensors and data stations, a time-varying traffic distribution can be

derived and utilized as input to a microscopic traffic sithulation model. The developed

simulation model is calibrated and validated to ensure that the simulated travel time is

adequately substantiated by the field data. Therefore, the simulated traffic information

can be treated as actual traffic data for developing, testing and evaluating the base

models. Detailed information about simulation network modeling is presented in Chapter

4.

48



Figure 3.1 The Development of the Base Prediction Models.
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3.2 EDponential Smoothing Model

The eFponential smoothing model (ESM) has gained popularity for many years in

predicting future transportation condition with significant work perforthed to study its

theoretical property. Empirical studies conducted by Makridakis et al. (1982), as well as

Gross and Craig, (1974) indicated that ESM could be the best choice for one-period-

ahead forecasting. Thus, the eFponential smoothing method could be a candidate

approach utilized for short-terth traffic prediction.

3.2.1 Single EDponential Smoothing Method

The proposed ESM discussed in this study is developed based on a single eFponential

smoothing method formulated in Equation 3.1:
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Similarly, by substituting St_2, St_3, and so forth until S2 into Equation 3.4, S t can be

derived as

where t 2 and 0 a 5_1 . The weight a(1— a)i -1 decreases exponentially as i increases,

so does the influence of the real time observation x t_t to St.

To demonstrate the impact of different weights on S t, Equation 3.1 can be written

as

Froth Equation 3.6, it is found that S t is estimated by the sum of St_i and the

product of the weight parameter a and the prediction error at time

An example is given to illustrate the principle of the single exponential smoothing

method. By considering a data set consisting of 11 observations taken over time, the

smoothed data with different weights (e.g., 0.1 and 0.5) are listed in Table 3.1 and shown

in Figure 3.2.
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Figure 3.2 Graphical Example of Single Exponential Smoothing.

Froth Figure 3.2 indicates a dominates the closeness of the interpolated value St

to the real time observation xt_1. The relationship between the smoothing constant and

prediction results can be summarized as follows:

• The speed of prediction adjustment to prediction error is determined by the
smoothing constant a.

• The closer the value of a is to zero, the slower the forecast will be adjusted based on
prediction errors.

• The closer the value of a is to 1.00, the greater impact will come from real time
observation, while less influence will be made by the previous step smoothing data.

• Selecting a smoothing constant a that balances the benefits of real time observation
and previous smoothing data can improve the prediction accuracy.
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3.2.2 Double and Triple EDponential Smoothing Methods

Double exponential smoothing is another type of exponential smoothing method that

adds a trend component to the single exponential smoothing concept. Double exponential

smoothing is defined in Equations 3.7 and 3.8, which require two smoothing parameters

a and y.

St and At denote the smoothed estimate and observation, respectively, and Ft is the

smoothed estimate of the trend of the time series at time t. In this approach, an

observation X t_1 at t-1 is weighted with a previous estimate plus a trend factor, or

estimated slope Ft . This slope is a smoothed estimate of the overall trend of the time

series. By adding an estimate of the trend to the previous estimate of the value of a time

series observation, double exponential smoothing is able to fit a time series that has a

trend better than single exponential smoothing.

The third common type of exponential smoothing is triple exponential smoothing,

which incorporates both a trend and a seasonal component. The seasonal component

allows the smoothing estimate to better follow seasonal trends such as the oscillation of a

wave or yearly traffic patterns. The basic equations for this method are defined as:

where A t is the observation,
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S t is the smoothed observation,

b is the trend factor,

It is the seasonal index,

t is an index denoting a time period,

L is the number of periods in each season,

Exponential smoothing can provide a good way to predict future events. The

forecast of single exponential smoothing will always converge to a single value. Double

exponential smoothing is suitable for prediction where trends exist. Likewise, triple

exponential smoothing is appropriate to apply for forecast when the data show trend and

seasonality.

3.2.3 ESM Development

It is anticipated that a good smoothing model will optimize the prediction accuracy with

real-time traffic data under various traffic conditions. Thus, the proposed ESM in this

study is developed based on the single exponential smoothing method in this study,

where the travel time data x t_ t observed at time t-1 and historical travel time data x t,h at

time t (e.g., the travel time of the same time interval observed the previous day or week)

are fed into the single exponential smoothing thethod. Thus, the ESM can be formulated

as Equation 3.12

where a is the weight parameter of historical data at t,

xt,Esm: Predicted travel time at t with ESM,

xt ,h : Historical travel time at t,
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xt_i:travel time observation at t-1.

In Equation 3.12, xt,ESM is computed as the weighted average of the observed

travel time xt_i at time t-1 and the historical data at x t,h at time t The value of a can

significantly impact the prediction, especially when the difference between the

observation and historical data is large. For example, x ti is completely ignored when a is

equal to 1. On the contrary, x t,h is entirely ignored when a is equal to 0. The value of a

between 0 and 1 will produce intermediate results, where a smaller value of a causes real

time observations to have a stronger effects on the prediction, while a greater value of a

puts more weight on historical observations. Therefore, optimizing the method of

exponential smoothing becomes a matter of deterthining the best smoothing constant a.

3.3 Moving Average Model

Nau (2004) defined moving average as a series of arithmetic means of a series of data

sets, in which short-terth averaging has the effect of smoothing out the bump existing in

the original data series. In this section, an equally weighted moving averaging model

(MAM) is proposed and forthulated in Equation 3.13

where Xt,MAM: predicted information at time t with MAM,

N: total number of previous intervals' data considered by MAM,

i: the ith previous interval data,

xti: observed travel time at time t-i,

t: index of time interval.



56

Nau (2004) stated that the center of the simple moving average is located at

period t-(N+1)/2. This implies that the estimate of the local mean tends to lag behind the

true value of the local mean by about (N+1)/2 periods. When more previous interval data

are used in MAM, the prediction curve of the moving average becomes smoother. The

averaged data lags further behind the actual trend if data from more previous intervals are

involved to affect the moving average value (Walker, 2004). Therefore, for short-term

traffic prediction, N usually should be relatively small to decrease the time lag of the

predicted data.

An example is given to illustrate the simple moving average method. Consider the

following data set consisting of 11 observations taken over time, the moving average data

are listed in Table 3.2 and shown in Figure 3.3.

MAM sometimes can be treated as a special case of ESM when the smoothing

constant a is equal to 0 and N=1. Under such a situation, the weight parameter for

historical data is 0. Therefore, MAM only uses real-time data components for prediction

instead of both historical and real-time components in ESM. Taft (2004) tested the
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moving average and concluded that the MAM can perform well for traffic conditions that

are very different from the historical trend. It will be appropriate to employ only real-time

traffic data in MAM when the historical data may bring potential negative impacts to the

predicting of future traffic.

Figure 3.3 Example of a Moving Average Model.

3.4 Kalman Filtering Model

The Kalman Filtering Model (KFM) is a statistical time series modeling approach

originating from state-space representations in linear control theory. The Kalman filtering

model can employ both historical and real time data to predict future information based

on the most recent prediction error.

Travel time may be affected by various factors, such as traffic volume, geometric

condition, incidents, vehicle composition, and weather condition, whose relationship with
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the factors is difficult to be captured. Travel time is thus treated as the state variable in

the KFM. To develop a KFM for dynamic travel time prediction, the following

assumptions are thade:

(1) The state variable (e.g., travel time) to be predicted follows a linear
relationship on successive time intervals based on Equation 3.14;

(2) The state variable is northally distributed in the prediction horizon.

Let Ft denote the state variable (e.g., travel time) to be predicted at time interval t,

I:1) t denote the transition parameter at time interval t which is externally deterthined to

represent the linear relationship between successive state variables. co t denote a noise

terth of travel time that has a northal distribution with Fero mean and a variance of Q t, the

covariance of travel time.

Let Ft denote the observation of travel time in time interval t, and v t denote the

measurement error at time t that has a normal distribution with zero mean and a variance

of Rt, the covariance of the measurement variable. H is the measurement sensitivity,

which represents the linear relationship between measurement variable F t and state

variable F t .

Let Pt denote the covariance of the prediction error at time t. The notation (+) or (-)

represents the priori or posteriori value for the studied variables, respectively. For

example, /3,- is the priori error covariance of the predicted travel time at time t,

lc,' denotes the posteriori (or updated) value of predicted travel time when the observation

of measurement variable (e.g., travel time) is available at time t.

The KFM system model and measurethent model can be formulated as



uncorrelated. The derivation of equations in KFM is discussed in Appendix B. The basic

steps of the computational procedure for KFM is shown below:

Step 0: InitialiFation

Measurement variable Zt could be obtained by averaging the travel times reported

from probe vehicles or simulation results generated for time interval t. The state transition

parameter •:1) t represents the linear relationship between the state variable (travel times) of

successive intervals in KFM. It is suggested to be the ratio of historical travel time data at

successive time intervals. As for the historical travel time, it can be chosen as different

theasures (e.g., travel time in the previous time interval, travel time in the same time

interval on the same day of the week before or average travel time in the same time
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interval in previous week) depending on the traffic condition and available data. Since no

traffic paratheter other than travel time is involved in KFM, the measurement sensitivity

H is set to be 1.

3.5 Summary

In this chapter, three base models (e.g., ESM, MAM, and KFM) are developed for short-

term travel time prediction. ESM can employ both historical and real-time data for travel

time prediction, which can predict the future traffic trend reasonably well when it is

similar to the historical profile. Negarding MAM, it is an appealing approach to capture

dynamic traffic information when non-recurrent congestion occurs. The KFM has been

evaluated (e.g., Chien, etc, 2003) as a sound approach for prediction because it can

dynamically improve the accuracy of prediction results based on the prediction error at

the previous time interval. It optimiFes prediction results and achieves the least square

prediction error by assuming the state variable is normally distributed and has a linear

relationship between successive intervals.

The three base thodels will be further tested with travel times from a real-world

transportation network. Travel times under different traffic conditions will be

incorporated into the developed base models to evaluate their performance for further

analysis.



CHAPTER 4

CASE STUDY I

4.1 Background of the Studied Site

The site selected for testing and evaluating the developed base models for travel time

prediction is a transportation network covering Noutes 55, 42, 76 and 676 in southern

New Jersey. The residents of southern New Jersey mainly use this corridor for

destinations in the city of Philadelphia through the Walt Whitman and Ben Franklin

Bridges. Congestion points are scattered over the studied roadways and at the toll plazas

of both bridges during peak periods further increase the travel time variation.

It was known from historical data that the northbound Noute 42 to the Walt

Whitman Bridge (WWB) where it intersects the southbound Noute 168 was congested

during the thorning peak period. Traffic conditions will be worse in the future due to the

growing population in this region. Other congested locations in the study site during the

morning peak were at the merging traffic streams from Noutes 295 and 55 to Noute 42

before entering the Ben Franklin Bridge (BFB) as shown in Figure 4.1. In addition,

unexpected events such as incidents or construction maintenance activities within the

study network are introduced by means of simulation.

61
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4.2 Data Collection

Five acoustic sensors were installed in 2001 in the study network to collect real time

traffic data that will be jointly used for calibrating the simulated model. The sensor

locations were determined by considering the locations of potential congestion points and

existing data stations. The links equipped with acoustic sensors are on Routes 76, 676, 42

and 295, where traffic volume and speed data were collected.

A list of sensor locations is shown in Table 4.1 and Figure 4.2:

Figure 4.1 Map of the Study Site.
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Sensor #1 recorded the traffic at the starting point of the study network on

northbound Nt. 42, which was located 50 feet before the ramp junction of Rt. 55 and Rt.

42, and is one of the congested places in the network. Sensor #2 collected data on

northbound Nt. 76, where the traffic is fed by northbound Nt. 295. Sensor #3 monitored

traffic entering the Toll PlaFa on the Walt Whitman Bridge, where traffic from

northbound Nt. 76 and westbound Nt. 130 merged. Sensor #4 recorded the traffic

condition on northbound Nt. 676 between the entrances of the two bridges. Sensor #5

collected data on northbound Nt. 676, where traffic merged into the main stream to the

Ben Franklin Bridge. Drivers destinated for Philadelphia can opt for the Walt Whitman

Bridge if traffic on northbound Nt. 676 is jammed before the Ben Franklin Bridge. There

are three different types of data collected by the acoustic sensors, namely vehicle counts,

speed and occupancy. Due to power shortage for sensor operations, the frequency of data

collection is set to 30 seconds at every 5 minutes and 15 minutes respectively for peak

(6:00am to 9:00am and 3:00pm-6:00om) and off-peak (all of the other time) periods. An

example of collected speed and volume data by an acoustic sensor on 10/26/20 is

presented in Table 4.2.



Figure 4.2 Sensor Locations.
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Table 4.2 Sample Volume and Speed Data Collected by Acoustic Sensor 1.

Note: All traffic volumes are in vehicles per minute and speeds are in miles per hour, collection date is 10/26/2001.
Acoustic 001 Total Volume - Lane: Speed - Lane: Avg. Acoustic 001 Total Volume - Lane: Speed - Lane: Avg.

Time 1 2 3 4 5 1 2 3 4 5 Speed Time 1 2 3 4 5 1 2 3 4 5 Speed
6:00AM 2 4 10 2 4 59 46 59  49 32 49 7:55AM 0 6 6 6 4 -- 44 40 45 31 40
6:05AM 0 14 6 6 6 -- 47 61 54 30 48 8:00AM 0 16 12 14 0 -- 48 35 37 -- 40
6:10AM 0 18 16 8 6 -- 44 52 57 39 48 8:05AM 0 14 10 10 6 -- 39 46 37 30 38
6:15AM 2 12 12 6 6 43 46 51 47 53 48 8:10AM 0 8 6 14 6 -- 47 38 36 31 38
6:20AM 0 14 22 8 6 -- 47 72 51 46 54 8:15AM 0 16 12 4 8 -- 46 34 40 32 38
6:25AM 0 26 12 18 6 -- 46 66 46 58 54 8:20AM 0 14 20 12 4 -- 57 57 40 42 49
6:30AM 0 18 8 14 10 -- 58 63 44 51 54 8:25AM 2 12 14 14 4 59 47 51 43 45 49
6:35AM 0 16 16 14 12 -- 49 37 50 32 42 8:30AM 0 14 14 4 18 -- 57 45 50 44 49
6:40AM 0 12 10 14 2 -- 45 48 39 36 42 8:35AM 0 18 8 10 4 -- 41 41 43 47 43
6:45AM 2 12 12 20 4 52 44 43 41 30 42 8:40AM 0 10 8 10 4 -- 45 39 49 39 43
6:50AM 2 20 14 16 4 47 43 38 36 36 40 8:45AM 0 10 18 18 8 -- 48 38 44 42 43
6:55AM 0 18 10 12 12 -- 37 37 38 48 40 8:50AM 0 6 18 14 6 -- 42 32 45 37 39
7:00AM 0 12 8 12 4 -- 46 39 30 45 40 8:55AM 0 10 4 6 2 -- 58 43 36 55 48
7:05AM 2 20 16 12 6 60 50 51 44 40 49 9:00AM 0 8 10 14 2 -- 59 51 43 39 48
7:10AM 0 12 12 10 6 -- 51 62 44 39 49 9:15AM 2 10 12 10 2 59 57 59 53 12 48
7:15AM 0 20 12 8 2 -- 63 54 36 43 49 9:30AM 0 12 8 6 4 -- 57 44 28 51 45
7:20AM 0 18 14 18 6 -- 67 53 49 39 52 9:45AM 0 10 10 16 2 -- 49 62 42 51 51
7:25AM 0 18 12 8 6 -- 58 53 57 40 52 10:00AM 2 4 6 8 0 46 48 40 42 -- 44
7:30AM 0 20 14 10 10 -- 64 48 60 36 52 10:15AM 0 16 10 14 6 -- 56 53 45 46 50
7:35AM 0 16 6 10 10 -- 55 52 49 32 47 10:30AM 0 6 12 16 2 -- 56 45 43 48 48
7:40AM 0 14 8 16 2 -- 58 45 40 45 47 10:45AM 0 18 8 8 0 -- 40 59 51 -- 50
7:45AM 0 4 4 8 8 -- 50 58 43 37 47 11:00AM 0 12 10 14 0 -- 46 52 46 -- 48
7:50AM 0 18 10 12 0 -- 42 33 45 -- 40 11:15AM 2 2 0 8 0 53 37 -- 39 -- 43
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4.3 Traffic Simulation Program

Computer simulation is an inexpensive approach to mimic traffic operations for all kinds

of ITS applications. It would be cost-effective here to test and evaluate the performance

of the developed base prediction thodels with simulated traffic operations in the studied

transportation network.

A sound simulation model could generate all kinds of measures of effectiveness

(MOBs) including speeds, volumes, travel times, occupancy, fuel consumption, pollutant

emissions, etc. Collecting MOBs from simulation output can avoid the disruption to the

traffic operations caused by field experiments. For example, it is impossible to design

different traffic conditions such as an abrupt increase in traffic volume, incident-based

congestion, and maintenance activities in a field study. In addition, the simulation can

mimic the physical changes of the transportation facility required by some schemes,

which are not acceptable for experimental purposes.

To develop a traffic simulation model for the study network, CONSIM was

selected to generate travel time based on its capabilities. CONSIM can simulate traffic

operations in a complex and large-scale roadway network, in which every vehicle is

modeled as a distinct object and follows a stochastic lane-change, car-following, and gap

acceptance logic. The movement of each vehicle, every traffic control device (e.g., traffic

signals) and event are updated in every second to regenerate the status of vehicles. The

stochastic factors such as driver behavior characteristics, vehicle characteristics, and

traffic characteristics are considered to calculate the relationships among vehicles on the

streets or links at every second. Therefore, CONSIM could generate various forthats of
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traffic data (e.g., real-time or historical, aggregated in different levels) for evaluating the

developed prediction model.

4.4 Network Modeling

The study network is shown in Figure 4.3 and contains ten on-ramps and nine off-ramps.

The fundamental elements in CONSIM network modeling are links and nodes. A node

represents the start or end point of links. A link represents a directional freeway or ramp

segment connected by two nodes. The node can be classified into entry/exit node, internal

node, and dummy node. The points where traffic enters or exists of the network are

defined as entry/exit nodes, while the nodes located inside the network are represented as

internal nodes. Dummy nodes are another type of nodes placed on entry and exit links

between the entry/exit node and the internal node for collection of traffic on the links.

Therefore, the studied network was segthented along the mainline into different links by

critical points such as interchanges, potential ramp meter locations,

curvature/superelevation change, and entry or exit points. The developed simulation

model contains 11 entry nodes, 10 exit nodes, 21 dummy nodes and 35 internal nodes

connected by 11 entry links, 10 exit links and 54 internal links.
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4.4.1 Geometric Data

The geometric data were collected from construction plans provided by NJDOT,

including the link length, number of lanes, radius of curvature, the grade percentages and

super-elevation, etc. To get the geometric data, the straight-line diagram is an important

source. Although the radius of the curvature is unavailable, names of the lanes,

connecting ramps, Mile Post (MP), number of lanes, and traffic station ID, can be found.

Another source used to get geometric and traffic information was the NJDOT

Geographic Inforthation Systeth (GIS) that contains roadway pavement inforthation,

which can fill the gap for accurate layout and related geometric information. In addition

to that, the arographic maps taken by satellite are available at http://terraserver-

usa.com/. They reflect the real image of the study network in scale, and therefore provide

the layout for identifying ramp junctions in the study area. The collected geometric data

are summariFed in Table 4.3.
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4.4.2 Traffic Data

Five acoustic sensors were installed in the study network as shown in Figure 4.2 and

introduced in Section 4.2, to collect traffic volumes and speeds at the designated

locations. However, due to limited equipment, it was impossible to install enough

acoustic sensors to cover the entire area. Thus, data stations are used to collect additional

traffic counts. The average annual daily traffic (AADT) collected by data stations is the

daily average of historical traffic observations. The acoustic sensor data are used as

reference to normaliFe the AADT into a traffic volume distribution over time as shown in

Figure 4.4. The seven data stations located in the studied region and collected AADT are

shown in Table 4.4.
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Figure 4.4 AADT Volumes.

The traffic voluthe distribution over links along the study network can be derived

from the AADT, while the time-varying information is still missing. The traffic counts

collected by the acoustic sensors are used for estimating an hourly traffic distribution for

the purpose of simulation network modeling. The hourly traffic volume distribution, for

example at Sensor #1, is shown in Figure 4.5. The free-flow speed in the simulation

model is assumed 10 mph above the corresponding speed limit marked in the straight-line

diagram.



Figure 4.5 Traffic Distributions over Time at Sensor # 1.

4.5 Network Calibration and Validation

To generate credible simulation results testing the developed base prediction models, the

developed simulation model should be proven to represent real world traffic operations

reasonably well. Therefore, an analysis of simulation results considering comparable

parameters, calibration and validation of the simulation model should be performed.
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4.5.1 Model Calibration

With the input data of freeway geometry, traffic conditions (volumes, speeds and turning

movement) and facility locations (e.g., locations of ramps and warning signs), 18-hours

of traffic operations from 5:00 am to 11:00 pth on northbound Noutes. 42, 76 and 676

were simulated. Two types of traffic parameters including traffic volumes at data stations

and traffic speeds at the locations of acoustic sensors were selected as the reference to

calibrate the simulated model. Since the acoustic sensor collected spot speed data at 5-

minute interval only in two time periods (e.g., 6:00 am - 9:00 am and 3:00 pm to 6:00

pm), the speed data in time period 6:00 am to 9:00 am were selected to conduct the model

calibration.

The discrepancies between simulated data and their field counterparts were

identified. These discrepancies can be reduced by calibrating parameters in CONSIM,

such as the car-following sensitivity factor (defined by headway between vehicles), lane

change parameter, minimum separation for vehicle generation, the collision avoidance

time period and the percentage of cooperative drivers. These parameters were adjusted to

fine tune the simulated driving behavior. Decreasing the values of the car-following

sensitivity factor could achieve larger volumes and higher speeds due to shorter gaps

between vehicles. With more cooperative drivers, traffic volumes on ramps and their

speeds increase because more vehicles are able to merge into the traffic stream on the

mainline.

The impact of a particular parameter cannot be identified if several parameters are

changed simultaneously in the simulation model. Thus, the impact analysis of each



76

parameter to the simulation results was conducted by varying a particular parameter

while fixing others. The calibrated parameters are shown in Tables 4.5 and 4.6.

The simulated traffic volumes were compared with field data collected by the data

stations. The results showed that the difference between simulated and actual data in the

time period from 6:00 am to 8:55 ath are less than 10% as shown in Table 4.7.
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To compare the traffic speeds gathered by the acoustic sensor and generated by

the simulation model, the mean and 95% confidence intervals were generated for the

means of each data source as shown in Figure 4.8. It can be stated that the simulation

readings are sufficiently close to the actual sensor readings based on a study conducted

by a Nutgers University research team (OFbay, etc., 2004). The reasons causing the

bigger deviation on sensor 4 were attributed to (1) Aggregation of sensor data, (2)

Normality assumption, (3) Ground truth data.

Note that N represents the sample size, while actual) and simulated) represent

the observed and simulated travel speeds, respectively. With calibrated parameters, the

MANBs during the period from 6:00 am to 9:00 am are 7.78%, 13.75%, 10.67%, 10.71%,

and 10.46% at the locations of sensors 1 to 5, respectively. The results imply that the

calibrated sithulation model can reasonably well replicate traffic operations in the study

network.
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4.5.2 Model Validation

The simulation model is validated to ensure that the simulated results are reliable and

able to mimic traffic operation in the study network. Graphical, aggregate, and statistical

comparisons were considered for the simulation model validation.

A graphical comparison deals with data without numerical summaries or tabular

representation. It is not suitable for this study because it is a subjective validation

approach that cannot generate a quantitative index for comparison. An aggregate

comparison could provide a general indication in terms of mean and standard deviation,

but cannot present accurate details about how variables perform over time, how patterns

changed, or how variables deviate over time. Since this study requires the validated data

at a very detailed level (e.g., in 5-minutes time intervals), both graphic and aggregate

approaches are not appropriate. Thus, a statistical comparison is performed because it can

qualify the differences between actual and simulated data.

It should be noted that the data set used for model validation should be different

from that used for model calibration. In this study, the traffic volumes collected at the

data station and speeds from the acoustic sensor locations collected during a different

time period (from 3:00 pm to 5:55 pm) were used to validate the model.

The difference between the simulated and actual traffic volumes on the data

stations are listed in Table 4.9. The results show that at all data stations, the comparison

difference is less than 10%, which validates the effectiveness of the simulation model.

The statistical analysis was conducted by calculating, the MAPB for the field and

simulated speeds. The MAPBs were 10.92%, 14.72%, 8.33%, 15.42%, and 9.51% at the

locations of Sensors 1 to 5, respectively. The validation results indicate that the
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developed simulation thodel could reasonably emulate traffic operations in different

periods.

4.6 Design Scenarios for Testing Prediction Models

It is known from the literature review that a prediction model has different performance

under different traffic conditions. The reason for a superior performance under a

particular traffic condition is because the prediction model can better represent the

underlying processes of traffic operations during that specific time period. In addition, the

literature review revealed that current traffic prediction models had not achieved

satisfactory performance due to their inability to cope with predictions under recurrent

and non-recurrent congested conditions (Alecsandru, and Ishak, 2004). To develop a

sound prediction model suitable for various degrees of congestion, different sets of traffic

conditions should be designed as a test bed for evaluating the developed base prediction

models.

Three scenarios are designed to represent different traffic conditions in the

simulation thodel. Scenario 1 is designed for simulating free-flow condition, while

Scenarios 2 and 3 are designed for simulating recurrent and non-recurrent congested
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conditions, respectively. Scenario 1 is developed based on the field traffic data collected

in the study network, while Scenarios 2 and 3 are hypothetical cases. A discussion on the

development of the three scenarios follows.

After calibration and validation with data collected by data stations and acoustic

sensors, the simulation model can replicate traffic operations in the study network as

scenario 1. In Scenario 1, traffic is in free-flow condition and no congestion occurs. Ten

simulations were made with different random number seeds. The resulting travel times

can be used to represent the historical free-flow traffic condition.

Another hypothetical case is simulated to represent recurrent congestion. The

traffic distribution of Scenario 2 increases the proportion of traffic in the peak hour

dramatically and is shown in Figure 4.6. The higher traffic volume will cause serious

congestion with abruptly increased travel times during the peak hour. The recurrent

congestion in Scenario 2 is caused because traffic demand exceeds the capacity of the

highway periodically. Another ten simulations were preformed with the Scenario 2 model

using with different random number seeds. The resulting travel time can be used to

represent recurrent congested conditions.

Scenario 3 was designed for simulating a non-recurrent congested condition and

was constructed by adding an accident in the traffic environment of Scenario 1. The

accident was set on Link 740-711 with 1-hour duration from 7:00 am to 8:00 am. There

are total 4 lanes on the link where the accident occurs. Two lanes are blocked and one

lane has its capacity reduced to half during the accident. Under such a scenario, the traffic

congestion is caused by insufficient roadway capacity, instead of traffic demand. Since
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the accident was set randomly based on Scenario 1, the historical traffic data are the same

as in Scenario 1.

Figure 4.6 Traffic Distributions for Scenario 2.

The travel tithe for a particular OD under various traffic scenarios can be derived

from the corresponding CONSIM simulation output. The path travel time is calculated

based on the summation of the travel times on each link connecting the studied OD path.

The travel tithe in the statistics report of CONSIM's output file is cumulative travel time

averaging from the beginning of the simulation to the current time. To calculate the

actual travel time for each time interval, a Java program is coded to manipulate the
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CONSIM output. The data flow diagram and original code for this is contained in

Appendix A.

4.7 Evaluation of Base Prediction Models

The performance of the base prediction models (e.g., ESM, MAM, and KFM) under

various traffic scenarios is assessed in this Section. The model performances are

compared and the properties, logic and application scope of each model are analyzed

based on the comparison results.

4.7.1 Statistical Indices

The prediction performances are evaluated using the statistical indices including Mean

Absolute Nelative Brror (MANB), Variance of Absolute Percentage Brror (VAPB) and

Maximum Nelative Error (MRB). The equations of the indices are stated in Bquations

4.2, 4.3 and 4.4, respectively.
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The MANB calculates the average relative error between the predicted and actual

travel time in the whole prediction period, and can indicate the accuracy of the prediction

thodel. The VAPB calculates the deviations from the average travel time during the

prediction horiFon in all time intervals, and can reflect the stability of the prediction

model. The MNB calculates the maximum value for the absolute percentage error, or the

maximum prediction deviation on a particular time interval, and can help to assess how

fast the prediction model can catch up with dynamic traffic changes.

4.7.2 Prediction Results

To obtain the best prediction performance of each base model under various traffic

scenarios, different parameters were tested to determine their optimal values. The

smoothing constant a adopted values from 0.1 to 0.9 in increments of 0.1 in BSM, while

the N moving periods considered in MAM ranged from 2 to 4. The noise covariance (A,,

Qt) in KFM is set with different values in KFM. The average travel time simulated in the

same time period by 10 simulations with different random number seeds are used as the

historical data for all scenarios.

The evaluation of prediction performance is made with three statistical indices

(i.e. MANB, VAPB and MNB). The combinations of different parameter setting is

implemented in the three base models to test their perforthance. The MANB, VAPE, and

MNB are shown in Tables 4.10, 4.11 and 4.12, respectively. The prediction performance

of the base models with optimal parameters is shown in Table 4.13.

For Scenario 1, the MANB in Table 4.11 increased from 3.20% to 4.08% when

the weight a of historical data increased from 0.1 to 0.9 in BSM. It indicates that the
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weight of historical data can affect the performance of BSM. Similarly, different

combinations of (N, Q) setting in KFM shown in Table 4.11 lead to different prediction

performance, with MANB varying between 3.30% and 4.45%. However, the numbers of

moving periods N for the MAM have a slight impact on the prediction performance.

Finally based on the best parameter settings highlighted in Table 4.11 for each model, the

prediction results for Scenario 1 are shown in Figure 4.7.

For Scenario 2, the MANB had more variation when different a values were

tested in the BSM. When a changed from 0.1 to 0.9, the MANB varied from 3.94% to

4.89%. The noise covariance (R, Q) in KFM affected the prediction performance

potentially. The MANB varied from 3.30% to 4.45% with different settings of

combination of (N, Q). Similarly, the numbers of moving periods N for the MAM have a

slight impact on prediction performance. The best parameter settings highlighted in Table

4.11 were used to generate the prediction results as shown in Figure 4.8.

For Scenario 3, the prediction results were less sensitive to the values of a in the

ESM. When the values of a varied from 0.1 to 0.9, the MANE in ESM changed from

5.29% to 5.84%. However, different combinations of (N, Q) settings played a greater role

in affecting the prediction accuracy under this traffic condition. For example, the MANE

in KFM varied from 6.09% to 10.46% when different combinations of (N, Q) settings

were used as shown in Table 4.11. The numbers of moving periods N for the MAM have

a slight impact on prediction performance. Using the best parameter settings identified by

the comparisons, the prediction results are shown in Figure 4.9.



Table 4.10 (a) MARE Analysis for ESM, MAM (%).

SCENARIOS MARE (MAM)MARE (ESM)
a= 0.9 a=0.8 a=0.7 oc=0.2 cc=0.3 a=0.4 ct=0.3 cc=0.3 cc=0.3 N=3 	 N=3 N=4

1 1.20 	 1.42

3.33

1.34
3.34
3.12

1.38
3.34
3.03

1.43
3.78

3.93

1.47
4.03
3.87

1.33
4.33
3.79

1.38
4.27
3.73

1.23
3.00
3.28

1.28
3.33

3.49
3.74
3.43

2
3

3.31

Table 4.10 (b) MARE Analysis for KFM (%).

KFM MARE (SCENARIO 1) MARE (SCENARIO 3) MARE (SCENARIO 3)
(R,Q) 10.1 10 1 10010100 1 0.1100100.1

1.37
30 1.33 1.39 1.47 1.73 4.19 4.33 4.98 3.94 3.37 3.79 3.94

300 1.30 1.33 1.38 1.49 4.07 4.07 4.13 4.32 3.87 3.93 3.33
3000 1.31 1.30 1.37 4.07 4.08 4.07 4.19 4.93 3.88 3.97 3.33

3 1.49 1.74 1.93 4.13 4.32 4.92 3.21 3.33 3.80 3.91 3.13



Table 4.11 (a) VAPE Analysis for ESM, MAM (%).

SCENARIOS VAPE (ESM)
a= 0.9 a=0.8 a=0.7 a=0.2 a=0.3 a=0.4 a=0.3

1 3.17 3.34 3.34 3.80 3.10 3.42
2 8.21 9.48 10.33 11.93 13.33 13.43
3 30.92 17.38 14.02 11.42 9.37 8.39

Table 4.11 (b) VAPE Analysis for KFM (%).

VAPE (MAM)
cc=0.2
3.88
17.23
7.99

a=0.1
4.33
30.18
8.74

N=3 	 N=3
3.38 	 3.23

40.77
8.33

N=4

20.08
9.38

KFM VAPE (SCENARIO 1) VAPE (SCENARIO 3) VAPE (SCENARIO 3)
(R,Q) 10.1 10 100 1 1 100100.1100100.1

3.10 9.43
30 1.93 3.13 3.34 3.20 14.78 14.39 14.40 19.40 19.42 13.03 8.84

300 1.90 1.93 3.10 3.37 14.31 14.79 14.32 14.37 39.37 19.43 13.02
3000 1.91 1.92 3.13 14.33 14.78 14.38 39.32 39.37 19.49

8.33
8.87
13.03

3 3.37 3.38 4.43 14.32 14.37 19.43 34.78 13.02 8.83



3 33.08

MRE (ESM) MRE (MAM)

a=0.8 a=0.7 a=0.2 (x=0.3 a=0.4 a=0.3 a=0.3 a=0.1 N=3 N=3
7.38 7.38 7.83 8.12 8.48 8.79 9.11 9.43 9.22 8.23
13.44 14.03 14.23 13.33 13.83PPP 12.20 18.09 19.99 40.33

30.91 18.74 12.90 13.38 12.07 19.10 33.13 33.91 31.18

1
3

SCENARIOS
a= 0.9 N=4

33.18

Table 4.12 (a) MRE Analysis for ESM, MAM (%).

Table 4.12 (b) MRE Analysis for KFM (%).

KFM
	

MRE (SCENARIO 1)
	

MRE (SCENARIO 3)
	

MRE (SCENARIO 3)
(R,Q) 0.1 1 10 100 0.1 10 100 0.1 1 10 100

3 7.33 8.70 10.17 10.23 17.73 19.23 33.22 30.92 33.79 34.43

30 2.72 7.32 8.27 10.19 19.32 17.78 13.97 19.23 33.49 30.97 30.34 33.72

300 2.22 2.79 7.33 8.70 30.40 19.40 17.71 13.99 32.13 33.48 30.92 30.18

3000 2.22 2.72 7.38 30.81 30.41 19.33 17.77 37.74 32.18 33.30 30.90



Figure 4.7 Predictions under Free Flow Conditions.
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4.7.3 Comparison and Analysis

The performance analysis of the base prediction models was conducted by comparing the

MANB, VAPB, and MNB for all base prediction models, and the results were included in

Tables 4.11, 4.12, 4.13 and 4.14:

• In general, the accuracy of the BSM, MAM, and KFM is degraded when traffic
conditions changes from Scenario 1 (free-flow) to Scenario 2 (recurrent congested
condition) and Scenario 3 (non-recurrent congested conditions). For example, the
MANB of BSM increases from 1.31% to 3.19% and 2.66% when traffic changes
from Scenario 1 to Scenarios 2 and 3, respectively as shown in Table 4.13. Similar
relations can be observed when using MAM and KFM. The trend of prediction
accuracy indicates that traffic congestion significantly impacts the accuracy of the
developed base prediction models.

• In Scenario 1, all base models (i.e. BSM, MAM and KFM) can generate results with
satisfactory accuracy. It proves that all base models are able to perform well in
predicting free-flow traffic. In Scenario 2, BSM outperforms other models
significantly with smaller MANB, while KFM can generate better results than
MAM. It demonstrates that BSM can effectively predict future traffic under
recurrent congestion conditions. In Scenario 3, MAM could achieve the best
perforthance with the smallest MANB. This indicates that it may be appropriate to
use a different prediction model for travel time prediction under various traffic
conditions.

• The investigation showed that the selection of an a value substantially affects the
prediction accuracy of BSM. For example, it can be observed from Table 4.10 that
under Scenario 2, the MANB of BSM would be increased from 3.19% to 5.33% for
different a values. If the selected a is not appropriate for the specific network, other
base models (e.g., KFM or MAM) would outperform BSM on overall prediction
accuracy. Therefore, it can be concluded that it is critical to get an optimal a value
to obtain satisfactory performance for BSM. To successful implement ESM, it is
desirable to select parameters dynamically for short-time travel time predictions.

• The reason for the best performance of BSM under various traffic conditions is that
ESM could be more "responsive" to changes occurring in the recent past by
employing historical data. This increases the prediction accuracy and overcomes the
time lag when the trend of future traffic conditions is similar with historical data.
Bven under non-recurring congested conditions, when the historical traffic data
cannot reflect the future traffic trend, the BSM could generate prediction results with
compatible accuracy as other models by reducing the weight of the historical data. It
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proved that the ESM is an appealing approach for travel time prediction under
various traffic conditions.

• The optithal a in ESM is deterthined based on empirical traffic data on a specific
study site. The a cannot be used based on traffic data from other locations since the
traffic pattern may differ from location to location. It indicates that the BSM has no
capability of transferability for travel time prediction. In addition, even for the same
study site, the constant weight parameter a appropriate for one time period may
result in big deviations in another time period when traffic patterns change. It
demonstrates that the adaptability of ESM is low since constant weight parameters
cannot reflect a dynamic traffic evolution.

• VAPB is an index that reflects the variation on the level of prediction errors, which
can indicate the stability of the prediction model. For example, in Scenario 2 the
VAPB of MAM is much higher than that of BSM and KFM. This is because the
estimation of the local mean in MAM lags behind the true value of the local mean
by about (N+1)/2 periods. Thus, this time lag causes big variations when traffic
experiences dramatic changes as in Scenario 2.

• MNE is an index to represent the maximum relative error of predicted results on one
single interval. The more dynamic feature a prediction model has, the smaller MNB
is expected of the prediction results. MNE can reveal the model's capability of
timeliness to follow the traffic changes. For example, the performances of MAM
and KFM are compared for Scenario 3 in Table 4.13. Bven though the MAM has
better prediction performance with smaller MARB, the MNB of MAM (21.18%) is
larger than the KFM (20.18%) of MAM. This is still caused by the time lag inherent
in the MAM.



CHAPTER 5

DEVELOPMENT OF DYNAMIC RECURSIVE MODELS

In this Chapter, the dynamic recursive models Dynamic Bxponential Smoothing Model

(DBSM), Improved Dynamic Smoothing Model (IDESM) and Dynamic Moving Average

Model (DMAM), are developed by integrating the three base prediction models (i.e.,

BSM, MAM and KFM) discussed in Chapter 3.

The properties and features of each base model are summarized before proceeding

with the forthulation of DBSM, IDBSM and DMAM. The BSM prediction for travel time

in time t+1 is based on the historical travel tithe in that interval as well as the real-time

observation at t. Makridakis et al. (1982) proved that the "ESM could give quite accurate

forecasts" when the future traffic condition has the same trend as that in the historical

profile, such as in recurrent congestion. It was discussed in Chapter 4 that the value of the

smoothing constant (or weight parameter) a substantially affects the prediction accuracy.

It can be expected to achieve better prediction accuracy by applying a dynamic rather

than a constant weight parameter a t for each time interval to capture the stochastic

evolution of traffic conditions. Masliah (2004) concluded, "optimizing the method of

BSM becomes a matter of determining the best smoothing constant at".

The MAM employs real-time inforthation (e.g., travel time) of N previous

intervals and averages their mean value for prediction. Alecsandru and Ishak (2004)

stated that "non-recurrent traffic condition is believed to be related to the most recent past

information". MAM provides an appealing approach to predict travel time when the

future traffic trend cannot be reflected in the historical profile such as in cases of non-
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recurrent traffic conditions. Similarly, the weight parameter At for the averaged travel

time is expected to improve the accuracy of MAM by reflecting the traffic variations.

The KFM has demonstrated its ability to capture dynamic traffic changes based

on the most recent real-time observation, and has been wildly used for traffic trend

prediction (Okutani, I., and Stephanedes, 1984, Kuchipudi, C.M. and Chien, 2003 and

Jiang, 2003). This model has the ability to accommodate traffic fluctuations adequately

with time varying parameters (Kalman Gain) to continuously improve the next

prediction. The incentive to develop dynamic recursive models is to optimiFe the weight

parameters with real time inforthation and the error in the previous prediction.

5.1 Dynamic EDponential Smoothing Model (DESM)

In ESM, a conventional weight scheme such as a grid search, can only obtain a static

weight value over time by using a trial and error approach as discussed in Chapter 4.

Though ESM demonstrated a satisfactory performance as discussed in Chapter 4, it is

possible to further improve its performance in a dynamic traffic environment, by

optimizing the weight parameter at.

The proposed DBSM integrates the features of KFM and ESM, which can timely

optimize the weight parameter a t at every time interval by applying KFM while

considering the most recent prediction error. In addition, historical data employed in the

DBSM play an important role to elithinate the impact of the time lag in KFM when traffic

is experiencing recurrent change. Thus, at is acting not only as the weight parameter in

BSM, but also the state variable predicted in the KFM. Therefore, the BSM and KFM are

integrated while a t can be optimiFed based on real time data.
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The weight parameter a t is treated as the state variable in the KFM, one

component of the integrated DESM. To develop a KFM for dynamic a t prediction, the

following assumptions are made:

(1) The state variable (e.g., weight parameter) to be predicted is linear on
successive time intervals based on Bquation 5.2;

(2) The state variable is northally distributed in the prediction horiFon.

Let at denote the state variable (e.g., weight parameter) to be predicted at time

interval t, At denote the transition parameter at time interval t which is externally

deterthined to represent the linear relationship between successive state variables. co t

denote a noise term for the weight parameter that has a normal distribution with Fero

mean and a variance of Q t, the covariance of the weight parameter.

Let t denote an observation of the measurement variable (e.g., travel time) in

time t, which is the observation of travel time F t in the DBSM. v t denotes the

measurement error at time t and has a normal distribution with zero mean and a variance

of Nth, the covariance of the measurement variable. H is the measurement sensitivity,

which represents the linear relationship between measurement variable t (e.g., travel

time) and state variable xt (weight parameter).

Let Pt denote the covariance of the prediction error at time t. The notation (+) or (-)

represents the priori or posteriori value of the studied variables, respectively. For

example, If is the priori error covariance of the predicted weight parameter at time t,

at denotes the posteriori (or updated) value of predicted weight parameter when the

observation of measurement variable t is available at time t.

The BSM, one component of DBSM is formulated in Bquation 5.1:
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The weight of the historical travel time a t is the key parameter to be optimized to

improve the performance of the DBSM so that different weights (e.g., a t , 1-at ) could be

associated with historical and real-time data to predict future travel times.

The KFM, another component of DBSM is forthulated as

which means (p i and vs are

uncorrelated. The derivation of equations in DBSM is discussed in Appendix C. The

basic steps of the computational procedure for DBSM are shown below:

Step 0: Initialization

The initial value of the weight parameter is set to 0.5, which allocates the same

weights on historical and real-time observations when there is no priori

knowledge about a traffic pattern.

Step 1: Bxtrapolation



Step 2: prediction of travel time with optimiFed

The optimized 6, and 1- 6, are associated with historical and real-time data to

predict future travel times.

Step 3: calculate the prediction error

When a new observation of travel time t is available at t, the prediction error is

calculated as the difference between observed travel time t and predicted travel

time Xt,DESM at t. When e(t) >0, it means that the predicted travel time is smaller

than the actual one., and vice versa. The prediction error will be used to update

the state variable in Step 7.

Step 4. Measurethent of Sensitivity Parameter:

Step 6: Update state variable and error covariance

To remain within the value range for the weight parameter in DBSM, the 6,÷ =1
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Step 7: Let t = t + 1 and go to Step 1 until the pre-specified prediction horiFon ends.

The theasurement variable t could be obtained by averaging the travel times

reported from probe vehicles or the simulation result generated for time interval t. The

state transition parameter I)t represents the linear relationship between the state variable

(e.g., weight parameter) of successive intervals in DESM. In this study, the relationship

between successive weight parameters is unknown. Thus, we assumed that at = a t+ 1 , that

means (1) t is set to be 1.

The proposed DESM optimiFes weight parameters recursively based on the most

recent observation to capture dynamic traffic changes. Since both historical and real-time

traffic data are employed in DBSM, it is anticipated to perform well for recurrent traffic

congestion because the future traffic pattern can be "seen" from the historic profile.

5.2 Improved Dynamic EDponential Smoothing Model (IDESM)

In DBSM, the range of the weight parameter a t is limited between 0 and 1. It means that

the predicted value will fall in a range between xt,h and xt_1, but this is not always true in

real-world applications. Instead, such a constraint may reduce the performance of the

prediction model under certain traffic conditions such as abrupt traffic congestion not

captured in the historical traffic profile.

The travel time prediction model in DBSM according to Bquation 5.1 is:
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Assuthe that the actual travel time x t on interval t is known. Then the "true"

weight parameter that can make x,DESM = x is derived from Bquation 5.1 as:

It can be observed from Equation 5.4 that the optimal value of at could be bigger

than 1 or less than 0. Therefore, the Improved Dynamic Smoothing Model (IDBSM) is

proposed to optimiFe weights with a broader range [e.g., (-00, +00) instead of (0,1)]. The

approaches used for extending the range of the weight parameter can be classified into

interpolation and extrapolation methods and are discussed below.

(1) Interpolation

When the value of weight a t is set within the range (0,1), the predicted travel time

x,DESM in DBSM can be interpolated by historical travel time .xt,h  at t and x,_, observed

at t-1 . It means that X t ,DAM will fall in the range between Xth and x t_ i as shown in Figure

5.1.
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Under other circumstances (shown in Figures 5.2 and 5.3), the predicted travel

time X t,IDEAM could fall out of Xth and xt_l range. The interpolation of X, ,DEsm between

xt,h and xt_l cannot satisfy such a condition. Therefore, the enhanced a t setting

proposed in the IDESM can extrapolate the XuDEsm between Nth and xt_l, Thus, the value

of weight at could be less than 0 and greater than 1.

The formulation of IDESM is the same with that of DESM except for the value

range of at . Thus one can refer to section 5.1 and Appendix C for the derivation and

application procedures.
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5.3 Dynamic Moving Average Model (DAM)

The MAM is an approach to improve the prediction when the historical data do not

reflect the future traffic trend. In MAM, the static weight 0 is not effective to capture the

dynamic traffic change. The optimality of the weighted parameter e t associated with the

traffic data observed in previous N intervals is critical for improving the performance of

the MAM. Instead of applying conventional weight schemes such as a trial and error

approach, it is desirable to develop a dynamic prediction model that can dynamically

optimize the weights of previous observations in MAM based on real-time observations.

An integrated dynamic moving average model (DMAM) that combines the

features of KFM and MAM is proposed, which can optimiFe the time-varying weight

parameter et by KFM and use a dynamic value of weight parameter et in MAM. Thus, et

is acting not only as the weight parameter in MAM, but also the state variable predicted
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in the KFM. Therefore, the ESM and KFM are integrated while Ate can be optimized based

on real time observations.

The weight parameter Ate is treated as the state variable in the KFM, one

cothponent of the integrated DMAM. To develop a KFM for dynamic A te prediction, the

following assumptions are made:

(1) The state variable (e.g., weight parameter) to be predicted is linear on
successive time intervals based on Equation 5.6;

(2) The state variable is northally distributed in the prediction horizon.

Let e t denote the state variable (e.g., weight parameter) to be predicted at time

interval t, I)t denote the transition parameter at time interval t and is externally determined

to represent the linear relationship between successive state variables. ON denotes a noise

terth of the weight parameter that has a normal distribution with zero mean and a

variance of Q t, the covariance of the weight parameter.

Let t denote an observation of the measurement variable (e.g., travel time) in

time interval t, which is the observation of travel time x tin the DMAM. v t denotes the

measurement error at time t that has a normal distribution with zero mean and a variance

of At , the covariance of the measurethent variable. H is the measurement sensitivity,

which represents the linear relationship between the measurement variable z t (e.g., travel

time) and state variable x (weight parameter).

Let P denote the covariance of the prediction error at time t. The notation (+) or

(-) represents the priori or posteriori value for the studied variables, respectively. For

example, /3,- is the priori error covariance of the predicted weight parameter at time t,



102

Ôt denotes the posteriori (or updated) value of the predicted weight parameter when an

observation of the measurement variable t is available at time t.

The MAM, one component of DMAM is formulated in Equation 5.5:
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The initial value of the weight parameter is set to 1, when there is no priori

knowledge about a traffic pattern.

Step 1: Extrapolation

Step 2: Predict travel time with optimized weight parameter 9t

The optimized state variable Ô, is applied on real time travel time observations in

N previous time intervals in DMAM for travel time prediction.

Step 3: Calculate the prediction error

When a new observation of travel time t is available at t, the prediction error is

calculated as the difference between observed travel time t and predicted travel

time xt,DMAM  at t. When e(t) >0, it means that the predicted travel time is smaller

than actual one and vice versa. The prediction error will be used to update the

state variable on Step 7.

Step 4. Measurement of Sensitivity Parameter:
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Step 6: Update of state variable and error covariance

Step 7: Let t = t + 1 and go to Step 1 until the pre-specified prediction horizon ends.

The measurement variable t could be obtained by averaging the travel times

reported from probe vehicles or simulation results generated for time t. The state

transition parameter I)t represents the linear relationship between the state variable (e.g.,

weight paratheter) of successive intervals in DMAM. In this study, the relationship

between successive weight parameters is unknown. Thus, we assume that d t= dt+i , it

means 4t is set to 1.

The proposed DMAM applies optimized weights recursively based on the most

recent observation. Thus, the weight parameter can be optimized for averaging real-time

observations in N previous time intervals to reflect dynamic traffic changes. Since no

historical data is employed in DMAM, it is expected to perform well for non-recurrent

traffic congestion because the future traffic pattern cannot be "seen" from the historical

profile in such a situation.



CHAPTER 6

CASE STUDY II

6.1 Background Introduction

As discussed in the beginning of this document, the objective of this study is to develop

dynamic recursive models for short-term travel time prediction. Three base models

including ESM, MAM and KFM, have been developed in Chapter 3, while an evaluation

of the base models was presented in Chapter 4. Each base model had demonstrated its

performance through its MANE, VAPE, and MRE under various traffic conditions.

Nesults showed that the static weights embedded in ESM and MAM and the inherent

time lag in KFM reduce their prediction accuracy and stability, especially when traffic

conditions change dramatically.

In Chapter 5, two dynamic recursive models, called DESM and DMAM were

developed by integrating ESM and MAM with KFM, respectively. In addition, IDESM is

also developed by extending the feasible range of the weight parameter embedded in the

DESM. The developed three dynamic recursive models are able to adapt to real-time

traffic changes based on the optimized time-varying weight parameters.

In this Chapter, the same experiments designed in Chapter 4 are used for testing

the three dynamic recursive models. The evaluation processes and their prediction

accuracy are analyzed and compared with those of the base models. First, each dynamic

recursive model is tested under the three traffic scenarios (i.e., free-flow condition,

recurrent and non-recurrent congested conditions) with the developed CORSIM

simulation model discussed in Chapter 4. Three statistical indices (e.g., MARE, VAPE,

and MRE) are adopted to evaluate the prediction results, with MANE being the primary

105
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MOE to assess the prediction accuracy, while VAPB and MRB are secondary MOBs to

represent the stability of the prediction model. Then, a comparative analysis is made of

the dynamic recursive models and their corresponding base models (e.g., DESM vs.

ESM, lDESM vs. DESM, DMAM vs. MAM).

Finally, the prediction interval is evaluated, while the impact of the interval

duration to the prediction accuracy is analyzed. Traffic data collected in different

durations of prediction intervals are used with the dynamic recursive models under

various traffic scenarios.

6.2 Testing of the Developed Dynamic Recursive Models

6.2.1 DESM

To fairly compare the prediction accuracy between the dynamic and base models, the

same level of traffic data detail is used. The data were collected and processed every 5

minutes for the entire evaluation period of 18 hours from 5:00 am to 11:00 pm. To

evaluate the models in a thore microscopic way, the overall prediction period is divided

into three periods for Scenario 2 (i.e., recurrent congested condition) and Scenario 3 (i.e.,

non-recurrent congested condition). The purpose of the separate periods is to analyze the

ithpact of time-varying optimal weights on the model's prediction capabilities at tithes

when traffic conditions change at different states. Since there is no significant traffic

change in Scenario 1, the prediction accuracy for the entire evaluation period (18 hours)

is analyzed.
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The separation of the overall evaluation period for Scenarios 2 and 3 is shown in

Figures 6.1 and 6.2, respectively. In Scenario 2 (Figure 6.1), the entire evaluation period

(5:00 am-11:00 pm) is divided into three time periods (TPs), including TP 1 (5:00 am-

7:30 am), TP 2 (7:30 am-10:30 am), and TP 3 (10:30 am-10:30 pm). Traffic experiences

recurrent congestion during TP 2.

Figure 6.1 Configuration of the Bvaluation Period in Scenario 2.

In Scenario 3, the entire evaluation period is also divided into three TPs, including

TP 1 (5:00 am-6:30 am), TP 2 (6:30 am-8:30 am) when traffic experiences non-recurrent

congestion, and TP 3 (8:30 am-10:30 pm),.
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Figure 6.2 Configuration of the Evaluation Period in Scenario 3.

The DESM has been implemented for all three Scenarios. To demonstrate the

computation procedure, a DESM application example based on Scenario 2 is shown in

Table 6.3, where at acts as a "slope" in interpolating or extrapolating the historical and

real-time traffic data. a t is sensitively affecting the accuracy of predicted travel times. A

minor change of a t could lead to a major change of predicted travel time. Considering

that, the covariance of process noise a should be minor to keep the variation of a t small.

A numerical search was made to optimiFe the combination of (A t , Q t). The results are

shown in Table 6.2 and Figure 6.3, where the suggested value ranges for (Rt, Qt) are

presented.



Table 6.1 Prediction Travel Time with DESM under Scenario 1.

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Time Nth xi 11 ta+ Error (%) 0, R., Qt Kt its ate At
 1't+ Measured Ht

05:00-05:05 524 524 0.50 1 50000 1 0 524

05:05 -05:10 521 525 0.50 0.72 1 50000 1 0 524 0.500000 1.00 1.00 521 i.4

05:10-05:15 521 524 0.50 0.32 1 50000 1 0 523 0.499990 2.00 2.00 521 3.5

05:15 -05:20 524 523 0.50 0.40 1 50000 1 0 522 0.499966 3.00 3.00 524 2.6

22:45 -22:50 532 525 0.95 1.36 1 50000 1 0 525 0.971275 20.93 20.47 532 -7.3
22:50 -22:55 532 521 0.90 2.02 1 50000 1 0 522 0.949915 21.47 20.41 532 - 11.0
22:55 -23:00 495 521 1.03 5.28 1 50000 1 0 522 0.902886 21.41 20.31 495 - 11.2

Note:
(0) Time interval (5 minutes).
(1) Neal time travel time x th at t.

(2) Historical travel time Nth at t.

(3) Updated state variable, (3)t=(10)t+(8) t* [(13)t- (9)d.
(4) Prediction error percentage, (4)t= 1(9) t- (1)tI/(1) t *100 %.

(5) State transition matrix At is assumed 1.

(6) Covariance matrix of observational (measurement) uncertainty, (6) t=50000.

(7) Covariance matrix of process noise in the system state dynamics, (7) t=1.

(8) Kalthan gain matrix, (8) t=(11) t*(14) t*[(14) t*(11)t*(14) t  6)tr1 .

(9) Predicted travel time (seconds), (9)t=[1-(10)t]*(1)t_1+(1 0)t * (2)t.

(10) State estimates, (10)t=(5)t_i *(3)t_i,(10)t E [0,1].

(11) Bstimation error covariance, (11)t=(5)t_1*(12)t_1 * (5)t_i -E(7)t-i.

(12) Updated estimation error covariance, (12)t=[1-(8)t*(14)t]*(11)t.

(13) Measured travel time (seconds), (13)t=(1)t.

(14) Measurement sensitivity, (14)t=(2)t- (1)t-1.
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The state variable a t whose feasible range is between 0 and 1 is dynamically

optimized in the DESM. The optimized weight parameters are shown in Figures 6.4, 6.5,

and 6.6 for Scenarios 1, 2, and 3, respectively. The prediction results in different TPs are

calculated by using Equations 4.2, 4.3, and 4.4, while the statistical indices (i.e., MANE,

VAPE, and MRE) are shown in Table 6.3. The prediction accuracy comparison under the

three traffic scenarios is summarized in Figure 6.7.
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In Figure 6.4, the variation of travel times for Scenario 1 is minor during the

entire prediction period. The optimized weight parameter varies between 0.5 and 1 from

5:00 am to 11:00 am, and then fluctuates between 0.8 and 1 during 11:00 am to 11:00

pm. At some spots between 20:10 pm and 21:10 pm, active traffic variation causes

significant variation of the weight parameter.

In Figure 6.5, the optimized weight parameter increases dramatically from TP 1 to

TP 2. Because the historical traffic data are sithilar to the future traffic trend in recurrent

congested conditions, the increased weight parameter can guarantee the historical data

has more influence on the predicted information. It has been demonstrated that the DBSM

could achieve better accuracy by employing an optimized weight parameter when

recurrent traffic congestion occurs.
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In Figure 6.6, a decreasing optimiFed weight parameter is observed in TP 2,

where a non-recurrent congestion event occurs. Under this situation, the historical data

would be different from the future traffic trend. Thus, the decreased weight paratheter

implies that the prediction results would be influenced more by the real-time data rather

than the historical data. It demonstrated that the DESM could employ the optimized

weight under a non-recurrent congested condition and perform substantially well.
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It is observed in Figure 6.7 that the MARBs of Scenarios 2 and 3 are higher than

that of Scenario 1, and so are the VAPB and MRE. However, the prediction accuracy in

Scenario 1 is superior to that in Scenarios 2 and 3. This implies that traffic congestion

could reduce the accuracy of DBSM.

The MANB and VAPE in Scenario 2 are slightly higher than in Scenario 3. This

indicates that the DESM could achieve satisfactory perforthance in terms of accuracy and

stability in both recurrent and non-recurrent congested conditions. However, the MRB of

DESM in Scenario 3 is significantly increased in comparation with the other two

scenarios in Figure 6.7 due to a non-recurrent congestion event (i.e., incident).

It should be noted that in Scenario 2 (see Table 6.3), the prediction accuracy and

stability of the DESM in TP 2 is better than in TP 3 (i.e., free-flow condition). Given the

travel times in individual TPs, the reason causing the difference of performance is the

higher variation of travel times in TP 3.

6.2.2 IDESM

The IDBSM is an extended DESM model. The difference between IDBSM and DESM is

that the IDESM enables a t to adopt a value in the range of (-00, +00) instead of [0,1]. The

extended a t is able to predict travel time by extrapolating the historical and real-time data

to efficiently adapt to substantial traffic changes.

The IDESM is tested under three traffic scenarios. The statistical indices (i.e.,

MANE, VAPE, and MRE) are suthmarized in Table 6.4. Figure 6.8 shows the overall

performance indices of the IDBSM under the three traffic scenarios.
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As in Table 6.4 and Figure 6.4, it can be observed that the trend of overall

prediction performance of the IDESM is similar to that of the DESM in various traffic

conditions.
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6.2.3 DMAM

To demonstrate the computation procedure, an example of DMAM application in

Scenario 1 is shown in Table 6.5, in which the system parameters (Rt, Qt) are set at

(50000000, 0.1) based on the same approach as discussed in Section 6.2.1. The DMAM

is implemented under three traffic scenarios for travel time prediction. The statistical

indices (i.e., MARE, VAPE, and MRE) are summariFed in Table 6.6. The overall

performance indices of the DMAM are shown in Figure 6.9.



Table 6.5 Prediction Travel Time with DMAM under Scenario 1.

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Time Nth Bt Error (%) 0, At Qt Kt it Bt pt- pt+ Measured Ht
05:00-05:05 524 1 50000000 0.1 524 524
05:05-05:10 521 0.000 1 50000000 0.1 0.000 0.000 0.000 521 522
05:10-05:15 521 1.000 0.27 1 50000000 0.1 0.000 522 1.0000000 0.100 0.100 521 522
05:15-05:20 524 1.000 0.65 1 50000000 0.1 0.000 521 0.9999985 0.200 0.200 524 521

22:45-22:50 532 1.000 0.01 1 50000000 0.1 0.000 532 0.9999200 4.28 4.18 532 532.2
22:50-22:55 532 1.000 0.01 1 50000000 0.1 0.000 532 0.9999219 4.28 4.18 532 532.2
22:55-23:00 495 0.998 7.46 1 50000000 0.1 0.000 532 0.9999237 4.28 4.18 495 532.2

Note:
(0) Time interval (5 minutes).
(1) Neal time travel time Nth at t.
(2) Updated state variable, (2)t=(9) t+(7) t* [(12) t- (8)d.
(3) Prediction error percentage, ( 3 )t=1(8)t- (1)t1/(1) t *100 %.
(4) Prediction error percentage, (3)t=abs [(8)t- (1)t]/(1) t *100 %.
(5) State transition matrix 0, is assumed to be 1.
(6) Covariance matrix of observational (measurement) uncertainty, (5)t=50000000.
(7) Covariance matrix of process noise in the system state dynamics, (6)t=0.1.
(8) Kalman gain matrix, (7)t=(10)t*(13)t*[(13)t*(10)t*(13)t +(5)t]-1.
(9) Predicted travel time (seconds), (8)t=[(1)t-1+(1)t-2]*(9)t/2.
(10) State estimates, (10)t=(4)t-1*(2)t-1.
(11) Bstimation error covariance, (10)t=(4)t-1*(11)t-1*(4)t-1+(6)t-1.
(12) Updated estimation error covariance, (11)t=[1-(7)t*(13)t]*(10)t.
(13) Measured travel time (seconds), (12)t=(1)t.
(14) Measurement sensitivity, (13)t=[(1)t- 1- (1)t-2]/2.
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As shown in Table 6.5, the lower MARE, VAPE, and MRE in Scenario 1

demonstrate that the DMAM could achieve the best prediction in free-flow condition. In

Scenario 2, the MARE, VAPE, and MRE of the DMAM are significantly higher than in

Scenarios 1 and 3, which imply that the accuracy and stability of the DMAM is reduced

dramatically under recurrent congested condition. This result indicated the fact that

DMAM does not have historical data similar to those currently occurring to predict the

future trend. In Scenario 3, the MARE and VAPE of the DMAM are improved compared

with those of Scenario 2. This demonstrates that in a non-recurrent congested condition,

the DMAM could perform well to predict travel time without employing historical data.

The high MRE of the DMAM in Scenario 3 is caused by the time lag inherent in MAM.

It can be observed in in Table 6.5 that in both Sceamios 2 and 3 the MOEs,

including MARE, VAPE, and MRE of the DMAM in TP 2 are much higher than those in

other TPs. Thus, the DMAM is less capable of predicting travel time in both recurrent

and non-recurrent congested conditions.
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6.3 Evaluation of the Dynamic Recursive and Base Models

6.3.1 DESM and ESM

The DESM is developed based on its base model ESM and both models have identical

forms. The ESM uses the smoothing constant a, while the DESM employs the optimized

weight parameter at for travel tithe prediction. The optithal a of ESM is determined by a

grid search to find the best prediction results in terms of thinimum prediction error. The

optimal a t is derived from the KIM to produce the minimum mean squared error, and

assumes that a t is northal distributed and is a linear on the successive intervals.

Based on the prediction results, the comparison between DBSM and ESM of

MOEs for the three Scenarios is shown in Figure 6.10. In addition, the statistical indices

for the DESM and ESM in different TPs of the three scenarios are shown in Table 6.7.

It can be seen from Figure 6.10 that the MANB, VAPB, and MRE of the DESM

are lower than those of the BSM under the three traffic scenarios, except for a higher

MRB in Scenario 3. This demonstrates that the DBSM outperforms the BSM under

various traffic conditions.



Figure 6.10 Prediction Accuracy of DESM and ESM (5:00am-11:00pm).

Table 6.7 Prediction Accuracy of DESM and ESM.

In Table 6.7, the MARE, VAPE, and MRE generated by the DESM over the ESM

can be observed in overall and most of individual TPs. Two exceptions can be observed

as highlighted in Table 6.7, including TP 2 in Scenario 2 and TP 1 in Scenario 3. The

reason is that in those situations, the selected smoothing constant in ESM coincidently

matches "true" weight parameter and generates better prediction results than the dynamic
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weight parameters in the DESM in the particular TP. Considering the consistent

performance in most of periods, it can be concluded that the DESM outperforms the ESM

in terms of prediction accuracy and stability.

6.3.2 IDESM and DESM

The IDESM was developed with the same methodology and computation procedure as

the DESM. The only difference is that the IDESM allows for a wider range of the weight

parameter [i.e., (-Ex), +(x)) instead of [0,1]]. The statistical indices of the predicted travel

time with the developed IDESM and DESM are summariFed by different TPs and traffic

scenarios and shown in Figure 6.11 and Table 6.8.

Figure 6.11 Prediction Accuracy of IDESM and DESM (5:00am-11:00pm).
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As shown in Figure 6.11, the MARE, VAPE, and MRE of the IDESM are lower

than those of the DESM for Scenarios 1 and 2. In Scenario 3, the MANE of the IDESM is

lower than that of the DESM, but the VAPE and MRE of the IDESM are higher than

those of the DESM. This implies that in Scenario 3, the IDESM could improve the

prediction accuracy but its stability was reduced. The reason is that the extended value of

the weight parameter enables IDESM to quickly adapt to the traffic change. However, the

tradeoff is during the initial time interval when the traffic pattem starts to change, the

extended weight parameter could predict poorly and caused a higher prediction error.

Table 6.8 indicates that the IDESM outperforms the DESM in most of the TPs.

However, as highlighted in Table 6.7, the accuracy of the IDESM is worse than that of

the DESM in TP 2 under Scenarios 2 and 3. The reason may be the abrupt traffic changes

in TP 2 that make the traffic follow a distribution other than the normal, and against the

basic assumption for the optimization of the weight parameter.
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6.3.3 DMAM and MAM

The DMAM is developed based on its prototype model MAM, whose weight parameter

A t is optimiFed to dynamically reflect the real-time traffic trend. Based on prediction

results in different TPs and traffic scenarios, the statistical indices of the DMAM and

MAM are generated and shown in Figure 6.12 and Table 6.9.

Figure 6.12 Prediction Accuracy of DMAM and MAM (5:00 am-11:00 pm).

In Figure 6.12, the MAREs of the DMAM are very close to those of the MAM in

all three scenarios. This means that in general, the DMAM cannot improve the prediction

accuracy of the MAM. Similarly, the VAPE and MRE of DMAM are fairly close to that

of MAM.
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This may arise from two reasons. First, the time-varying weight parameter e t may

not follow a normal distribution in the developed DMAM, which limits the performance

of KFM to optimize e t . Second, in DMAM, e t is a weight parameter for information

collected in the N previous intervals. Based on this setting, the travel times in previous

intervals have the same impact to the future travel time, which may not reflect the real

relationship between successive travel times.

6.3.4 Evaluation of the Dynamic Recursive Models

The statistical indices (i.e., MARE, VAPE, and MRE) of the three dynamic recursive

models and the entire evaluation period shown in Figure 6.13, the indices by different

TPs and traffic scenarios are summarized in Table 6.10.

It is shown in Figure 6.13 that the IIDESM predicts future travel time well as

indicated by its low MARE, VAPE, and MRE under both Scenarios 1 and 2. In Scenario

3, the IDESM has the largest VAPE and MRE although its MANE is still the best one.
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As shown in Table 6.10, the DMAM performed well in Scenario 1 with low

MARE, VAPE, and MRE of 1.62%, 3.43%, and 9.78%, respectively. Under recurrent

congested condition (Scenario 2), the DMAM generates a significantly high deviation

that can be attributed to its high MARE.

Figure 6.13 Prediction Accuracy of IDESM, DESM, and DMAM (5:00am-11:00pm).
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Under the non-recurrent congested condition (Scenario 3), the DMAM

demonstrates promising performance in terms of accuracy and stability compared with

the IDESM and DESM. It is suggested that the DMAM may not be the first choice to be

used under recurrent congested condition, but the DMAM could be an altemative

approach when there is no historical data for prediction development, especially under a

non-recurrent congested condition.

During the overall evaluation period, the developed IDESM is the best among the

three dynamic recursive models due to its least MANE. The effectiveness of IDESM can

be further demonstrated by its low VAPE in most of the TPs. Even in TP 2 of Scenarios 2

and 3, the DESM can generate slightly better prediction results than the IDESM. The

consistent superior performance of the IDESM under various traffic conditions proves

that the IDESM becomes the prediction model to be recommended.
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6.4 Evaluation of the Prediction Interval

6.4.1 Introduction

It was indicated in the literature review that the stochastic traffic characteristics may

significantly affect the prediction accuracy. Various traffic scenarios were designed in the

case study to test and evaluate the performance of the developed prediction models. A

sensitivity analyses using different prediction intervals is performed to evaluate the

impacts of travel time variation to the prediction accuracy. Traffic data can be collected

during different prediction time intervals.

In this study, travel time information is collected under varying intervals lengths.

The optimal time interval which produces results with minimum error can be identified.

The analysis of interval duration and its impact to prediction accuracy is discussed next.

6.4.2 DESM

Travel time information used in the DBSM collected during prediction intervals of

different lengths (i.e., 5 thinutes, 10 minutes and 15 minutes). The indices are categorized

by the individual and overall evaluation periods in Table 6.11, while Figure 6.14 shows

the overall prediction accuracy for various intervals. Figures 6.15, 6.16, and 6.17 show

the prediction error of the DBSM with different prediction intervals in Scenarios 1, 2, and

3, respectively.
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Figure 6.17 Prediction Error of DESM (Scenario 3).

It can be observed in Figure 6.14 that the increased prediction interval reduces the

travel time variation and improves the prediction accuracy in the overall evaluation

period under the three scenarios. The stability of the prediction results is also improved,

in general, as the duration of prediction interval increases. However, in TP 2 of Scenario

3 when a non-recurrent event occurs, the reverse result has been observed.

Figure 6.15 indicates that the prediction error decreases as the duration of the

prediction interval increases in Scenario 1. By observing the DESM prediction MOBs of

Scenario 2 in Table 6.11, it is found that with shorter time interval data (e.g., 5-minute),

the MANE of the DESM in TP 2 is 2.15% but changes to be 1.80% for a 10-minute

interval and 2.15% for a 15-minute interval. This indicates that the optimal prediction

interval is 10-minute.
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The MANB of the DESM in TP 2 in Table 6.11 significantly decreases when the

data collected during a shorter prediction interval are used. This can be easily seen in

Figure 6.17, where the boundary line of the prediction error with 5-minute interval data

falls under the range of that with 10-minute interval. It can be concluded that the traffic

data with longer interval could reduce the DESM's accuracy in Scenario 3.

As highlighted in Table 6.11, the MANB of 5-minute data is 3.89%, while the

MANB of 15-minute data is 10.31% in TP 2. To investigate the reason that causes this

difference, Figure 6.18 is generated to analyFe the actual and predicted travel times with

5-minute and 15-minute intervals.

Figure 6.18 Predicted Travel Time of DBSM (Scenario 3).



132

Figure 6.18 shows that from 7:00 am to 7:20 am, the traffic trend changed

gradually that can be monitored clearly with 5-minute interval data, while with 15-minute

interval, the collected data changes abruptly without any obvious trend. Thus, under non-

recurrent congested condition it is preferred to use the shorter time interval data when

dramatic traffic change occurs.

6.4.3 IDESM

After the travel times with various prediction intervals are used in the IDESM, the

statistical indices were categorized and shown in Figure 6.19 and Table 6.12. Similar

performance indices for the IDESM can be obtained. The prediction errors of the IDESM

with various prediction intervals used in Scenarios 1, 2, and 3 are slightly different from

those of the DESM. Therefore, the impact of the prediction interval to the prediction

accuracy of the IDBSM as well as the prediction errors in each scenario are similar to

those in the DBSM, which were already presented in the Section 6.4.2.
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Figure 6.19 Prediction Accuracy of IDESM with Various Intervals.

6.4.4 DMAM

Travel times with various prediction intervals were used in the DMAM, the statistical

indices were calculated as shown in Figure 6.20 and Table 6.13.

Figure 6.20 shows the overall performance of the DMAM with various time

intervals for the three traffic scenarios. Figures 6.21, 6.22, and 6.23 show the prediction

errors of the DMAM with different prediction intervals for all Scenarios.
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Figure 6.20 Prediction Accuracy of DMAM with Various Intervals.

Table 6.13 Prediction Accuracy with Various Intervals of DMAM.

Scenario Interval 5 min 10 min 15 min
Indices MARE VAPE MRE MANE VAPE MRE MARE VAPE MRE

1 Overall 1.62 3.43 9.78 1.07 1.02 4.87 0.91 0.53 2.84

2

1 0.80 0.38 2.26 0.81 0.58 2.62 1.05 1.07 2.85
2 7.99 64.36 30.49 17.45 332.55 63.21 27.54 704.83 86.29
3 5.03 14.43 17.02 2.59 3.93 7.66 2.12 2.23 6.56

Overall 4.95 24.57 30.49 4.90 89.54 63.21 6.36 208.37 86.29

3

1 0.69 0.44 2.76 0.84 0.89 2.49 1.30 1.04 2.43
2 4.83 34.82 23.57 5.10 44.74 19.88 7.06 68.79 22.36
3 2.38 4.72 11.36 1.63 2.55 8.67 1.23 3.11 12.84

Overall 2.53 8.49 23.57 1.97 8.13 19.88 1.90 13.08 22.36
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Figure 6.21 Prediction Error of DMAM (Scenario 1).

100

90

80

70

8
t 60
w
e
. 50
0,

>a) 40
<

30

20

10

0
000000000000000000000000000000000000
omomomomomomomomomomomomomomomom9cnom
01150(666666,-.-NNHH446046066666666,-.-

NNNNNN

Time

Figure 6.22 Prediction Error of DMAM (Scenario 2).
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Figure 6.23 Prediction Error of DMAM (Scenario 3).

It can be seen in Figure 6.20 that the MANB decreases as the length of the

prediction interval increases. However, in Scenario 2 the increased prediction interval

also increases the VAPB and MRB. This indicates that increasing the prediction interval

thay cause a significant reduction on the stability of the prediction perforthance for

Scenario 2.

It can be seen from Table 6.12 that the MOBs keep decreasing when the

prediction interval becomes longer for Scenario 1. It means that in a free-flow condition,

a longer prediction interval can improve the DMAM accuracy and reduce the variation of

the prediction results.

In TP 2 under Scenarios 2 and 3, the MANEs increase as the prediction interval

increases. This indicates that the traffic data collected from a longer prediction interval

significantly reduce the prediction accuracy when recurrent and non-recurrent traffic
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congestion occurs. In Figures 6.22 and 6.23, the boundary lines of the prediction error of

the 10-minute or 15-minute interval data are out of the range of the 5-minute interval

data.

In general, increasing the prediction interval could eliminate unstable traffic

disturbances and reduce traffic variation, and in turn it can improve the prediction

accuracy. However, it is not appropriate for the transition period of Scenarios 2 and 3. To

investigate the reason for the higher prediction errors due to longer prediction intervals,

Figure 6.20 shows the actual and predicted travel times with 5-minute and 15-minute

intervals for the traffic transition period of Scenario 2.

Figure 6.24 plots the actual and predicted traffic time with different prediction

intervals in TP 2 during which traffic experiences recurrent congested condition. Under

such a condition, the traffic flow is in an unstable state (i.e., non-stationary traffic)

during the congestion period (i.e., peak hour in this case). If the prediction time interval is

too long, the abrupt travel time change may fall in the middle of an interval. Thus, the

measurement may be meaningless. As shown in Figure 6.24, the travel time increased

continuously from 8:00 am to 9:00 am and reached the highest value at time 9:10am and

then started to decrease. However, with a 15-minute interval, the collected travel time

cannot capture the travel time "turning point" at 9:10 am because that thoment falls in

one of its intervals (9:00am to 9:15am). Therefore, the predicted travel time cannot

thonitor the traffic changes instantly, and most likely this causes the prediction deviation.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

Predicting short-term travel time information on freeways has been desired for ATIS and

many other ITS applications (e.g., dynamic traffic assignment, ramp metering control). It

can essentially affect pre-trip planning and en-route optimization to mitigate traffic

congestion and improve transportation network efficiency. In this study, three dynamic

recursive models (i.e. DESM, IDBSM, and DMAM) were developed based on the three

wildly used base thodels (i.e. ESM, MAM, and KFM) and the performance of each thodel

was analyzed.

Subject to the limitation of traffic information collected from the studied site, a

calibrated and validated simulation model developed with CORSIM was used to generate

travel times for the study network. Three traffic scenarios (i.e. free-flow, recurrent

congestion and non-recurrent congestion) were designed and used to test and evaluate the

performance of the developed models.

7.1 Conclusions

The major findings of the study are as follows:

• The ESM was proven to be a potential approach for travel time prediction under
various traffic conditions. The numerical test of its performance with different
values of a indicated that the selection of an a value substantially affected its
prediction accuracy. The optimal smoothing constant a was optimized based on a
grid search by employing ethpirical data collected at the study. The optimal a
could achieve good performance when the historical traffic condition is similar to
the future condition. However, if the traffic experienced unexpected changes, the
predicted travel times from the BSM showed significant deviation. This indicated
that the static weight parameter embedded in the ESM is the primary reason for
reducing its accuracy when the condition changes.

139
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• The IDESM or DESM was developed for travel time prediction with, the
combined features of the ESM and KIM. The time-varying smoothing parameter
at is optimized based on the most recent observation (i.e. prediction error). The
benefit from employing an optithized a t has been verified. It was found that the
MANBs under all three scenarios have been decreased when compared with those
generated by the BSM. This indicated that the reason why the IDESM and DESM
could outperform the BSM. A reduced VAPB also demonstrated an improved
stability for the prediction results when using the IDESM and DESM.

• Unlike the static weight parameter in the BSM, the weight paratheter at in IDESM
and DESM could dynamically reflect traffic changes in various traffic conditions.
In addition, the IDBSM and DESM used an optimized weight parameter a t based
on the most recent traffic observation. Therefore, the developed modeling
technique can be applied at different locations, illustrating the transferability of
the IDESM and DESM for travel time prediction application.

• In the IDESM, the range limit of the weight parameter is (i.e. a t E [0,1]). While in
DESM it is at E (-co, +co). This enables the IDBSM to predict traffic change in a
more effective way. However, when the underlying assumptions (i.e. normal
distribution and linear state variable) were violated at certain circumstance (i.e.
traffic congestion period), the at generated by IDESM was not optimal for that
traffic situation. Therefore, the application scope for the IDESM and DESM
should be verified before used to assure the successful implementation of the
IDESM.

• The DMAM was developed for travel time prediction with the combined features
of the MAM and KIM, while A t was optimized at each interval based on the most
recent observation. The DMAM doesn't show a superior performance over MAM
because assuming equal impacts from N previous travel times in DMAM may not
reflect the actual traffic flow relationship. Though the MAM and DMAM don't
perform well in a recurrent congested condition, they can predict travel time with
comparable accurate levels as the DESM and with better accuracy than the base
KIM in a non-recurrent congested condition. More importantly, when there are no
historical data available, the DAM and DMAM could be recommended as
alternative approaches for travel time prediction.

• A sensitivity analysis of the prediction interval was conducted to assess the
impacts of different interval durations on the prediction accuracy. The evaluation
of the indicated results illustrated that increasing the prediction interval could
eliminate unstable disturbances of traffic flow and improve the prediction
accuracy in general. However, this is not true when traffic experiences some
dramatic changes such as during a traffic congestion condition. Therefore, the
distribution type and variation level of travel time should be considered before
choosing the most appropriate prediction interval.
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7.2 Future Study

Future studies about the developed dynamic recursive prediction models may be focusing

on the following aspects: (1) Data, (2) Parameter Selection, (3) Variability Identification.

The future extension of each of the above aspects is discussed below.

Data

• In this study, the link-based travel time was calculated by adding up the travel
times of vehicles over the links that constitute the path in each time interval
simultaneously. It is desirable to apply path-based data (Chen and Chien, 2002) as
a substitute to the link-based data for travel time prediction applications. In
addition, the travel tithe correlation between successive links should be
considered, because it can be more accurately representing actual travel time in a
real world network.

• The actual travel times should be collected from the field to replace the simulated
data for further validation of the developed models. While using real world data,
the sample size should be chosen in a way that assure that the collected data
represent can reflect the actual travel time considering the impact on many factors
of prediction accuracy, such as prediction interval and confident interval of the
predicted travel time.

Parameter Selection

• The northal distributions of weight parameters a t and Ate should be tested while
optithizing at and Ate in the IDESM, DBSM, and DMAM. Unlike travel time, these
weight parameters cannot be directly measured from the collected data. It is
desirable to develop a method that can identify the underlying weight parameter
distribution under various traffic conditions.

• The linear relationship between successive state variables (i.e. weight parameter)
should also be verified to validate the developed dynamic models (i.e. IDESM,
DESM and DMAM). When traffic experiences conditions with a non-linear
relationship between the weight parameters, it is necessary to transform the non-
linear parameter into a linear relationship to ensure that the optimized weight
achieves the minimum square error before making each prediction.

• The system internal parameters such as the covariance of state noise Q, and

covariance of observation noise R, contribute significantly to the prediction

accuracy shown in Figure 6.3 In this study, a sensitivity analysis was conducted
within a recommended range for Q, and R, were recommended. It is desirable to
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develop an effective method that can optimize Q1 and R, to reflect the actual

error covariance for the study network.
• A suggestion for an optimal prediction interval was made based on a numerical

analysis. This was a qualitative index that cannot provide a feasible procedure for
implementation. Considering the distribution type and variation level of travel
time, a quantitative index is desirable to determine the optimal prediction interval
and improved the prediction accuracy.

Variability Identification

• The prediction model should generate not only the mean value of predicted travel
time, but also provide the variance of the predicted travel time. With a confidence
interval of the predicted results, it is more reliable and effective to use the
predicted travel times in ATIS applications, such as a route guidance system.

• The developed prediction models demonstrated their strength in different
application scenarios (e.g., free-flow congested condition, congested traffic
condition). Ior example, in the congestion period, DESM may have superior
capability for travel time prediction than IDESM. It would be desirable to develop
a hybrid prediction system (Chien and Mouly, 2003) to adapt to various traffic
conditions.



APPENDIX A

PATH TRAVEL TIME DERIVATION

The derivation for path travel time from the CONSIGN simulation model is discussed in

this Appendix. In the CORSIM output file, the travel time on each link is generated. But

the generated travel time in each statistics report is a cumulative travel time from the

onset of the simulation to the current time interval. It is necessary to retrieve the

individual travel time in each prediction interval, and then the path travel time could be

calculated by adding up the link travel times.

The following chart shows the data flow of the algorithm used to derive path

travel times. The original code programmed in Java is also enclosed.
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Figure A-1 Data Ilow Chart for the Derivation of Path Travel Time.
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APPENDIX B

DERIVATION OF KALMAN FILTERING MODEL

The derivation for Kalman Iiltering Model (KFM) is introduced in this Appendix based

on the study by Grewal and Andrews (1993). In the proposed KIM, x denotes the travel

time to be predicted at time interval t, 4t denotes the transition parameter at time interval t

which is externally deterthined, and w t denotes a noise term that has a normal distribution

with zero mean and a variance of Q t, the covariance of the state variable. Let t denote the

observation of travel time in time interval t, and v t denotes the measurement error at time

interval t that has a normal distribution with Fero mean and a variance of A te, the

covariance of the measurement variable. The system model can be formulated as

The objective of the developed KFM is to find an estimate of the n state vector x,

represented by .X„ a linear function of the measurements Fib, 	 A, , that minimiFes the

weighted mean-squared error.

The observation update problem for a system state estimator

Suppose that a measurement of travel time has been made at time t, and that the

information that it provides is to be used in updating the estimate of the state x of a

stochastic system at time t. It is assumed that the measurement variable (e.g., travel time)

is linearly related to the state variable (i.e., travel time) by an Equation B.1

where H is the measurement sensitivity matrix and v t is the measurement noise. The

measurement sensitivity reflects the linear relationship between state and measurethent

variables. Its value is the derivative of measurement variable A with respect to the state

variable x . Since both F t and x are travel time in KIM, H =1.
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Estimator in linear form

The optimal linear estimate is equivalent to the general optimal estimator if the variates

N and z are jointly Gaussian. Therefore it suffices to seek an updated estimate i t+ based

on the observation t that is a linear function of the a priori estimate and the measurement

F:

where i t- is the a priori estimate of x and ".ir is the posteriori value of the estimate.

Optimization problem

The matrices K: and Kt are as yet unknown. We seek those values of Kr and Kt such

that the new estimate it+ will satisfy the orthogonality principle. This orthogonality

condition can be written in the form



Then Equation B.7 can be reduced to the form

F Kt  
E F Kt Hr 	Ex t_i F. -K	 s 

=043  Dt-l X r-l	 t E v t Zip

Dt-l E Nr-i 	 Kati E Ft FT - Kt Ht Dr-l E 	 Zi =0

E([ Ft - Kr Ht Nr -Krl Nt ]-K ri Ft -x r ))zi = 0

[I- Kt - Kr 1-1, ]EN FT = O.

Equation B.8 can be satisfied for any given Lk  if

Kt =1- ktilt .

Clearly, this choice of K: causes Equation B.3 to satisfy a portion of the condition given

by Equation B.4. Kr is chosen such that Equation B.5 is satisfied. Let

:it+ 4 xi -N 	 (B.10)

Nth 4 it- _ x 	 (B.11)

Ft A t- 	 tF - Z

= Hti -zt .	 (B.12)

Vectors :it+ and 5c-r are the estimation errors after and before updates, respectively. From

Equation B.5

E[ Ft -	 ] itT = 0	 (B.13)

and also (by subtracting Equation B.1 from Equation B.13)

E[ 	 5er ] zr  =0 	 (B.14)

Substitute for xt,it and ""it from Equation B.2, B.3 and Equation B.12, respectively.

Then

E[ Dt-l xt_1 + Dt-l- Kt Ft - Kt F r ][H, F t -z,]T  =0.

However, by the system structure

E wt = E it + =0

E[ 	 xt_1 - Kt Ft - k, F t ][1-1, it -zt]r  =0.

Substituting for Kt , Fro, and it- , and using the fact that E zr vs =0, this last result can be

thodified as follows:
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the last of which is the one most often used in computation. This implements the effect

that conditioning on the measurement has on the covariance matrix of estimation

uncertainty.

Error covariance eDtrapolation 

Error covariance extrapolation models the effects of time on the covariance matrix of

estimation uncertainty, which is reflected in the a priori values of the covariance and state

estimate.

for the propagation of the estimation error, Fc . Postmultiply it by	 (on both sides of

the equation) and take the expected values. Use the fact that E3c-,_, w,T =0 to obtain

which gives the a priori value of the covariance matrix of estimation uncertainty as a

function of the previous posteriori value.
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APPENDIX C

DERIVATION OF DYNAMIC EXPONENTIAL SMOOTHING MODEL

The Dynamic Exponential Smoothing Model (DESM) is developed in this Appendix by

integrating two components (i.e., ESM and KFM). In the proposed DESM, a t is the key

parameter that combines ESM and KFM into one integrated model. a t acts not only as a

weight parameter in ESM, but also the state variable in KIM. The fundamental

prediction model in DESM is formulated in Equation C.0:

where x ,h: Historical travel time at time t.

x_ 1 : Observed travel time at time t-1.

X DEAM : predicted travel time by DESM.t,

The fundamental models in KIM are forthulated as

Az

where Ft denotes the observation of travel time in time interval t, and Ft denotes the

theasurement error in time interval t that has a normal distribution with Fero mean and a

variance of Ate, the covariance of the measurement variable.

H is the measurement sensitivity matrix and Ft is the measurement noise. The

measurement sensitivity reflects the linear relationship between state and measurement

variables. In the DESM prediction model, the state variable is the weight parameter at,

and the measurement variable is the travel time F t . The H value is the derivative of the

measurethent variable F t with respect to the state variable at:
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In the above f)t denotes the transition parameter between successive a tat time interval t,

which is externally deterthined. Since there is no linear covariance that can be pre-

specified for successive weight parameters, 4t adopts a constant value 1 to assume that

the at is equal to the updated at 1 in DESM. Wt denotes a noise term that has a northal

distribution with Fero mean and a variance of Q t, the covariance of the state variable.

The objective of the developed DESM is to find an estimate of the n state vector a,

represented by 6„ a linear function of the measurements Fib ,	 F, , that minimiFes the

weighted mean-squared error.

The observation update problem for a system state estimator

Suppose that a measurement of travel time has been made at time t, and that the

information that it provides is to be used in updating the estimate of the weight parameter

a of a stochastic system at time t. It is assuthed that the measurement variable (i.e., travel

time) is linearly related to the state variable (i.e., weight parameter) by Equation C.1

Estimator in linear form

The optimal linear estithate is equivalent to the general optimal estimator if the variates a

and F are jointly Gaussian. Therefore it suffices to seek an updated estimate Ot t+ based on

the observation F, that is a linear function of the a priori estimate and the measurement F:

where et;- is the a priori estimate of at and at is the posteriori value of the estimate.
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Optimization problem

The matrices Kr and Kt are as yet unknown. We seek those values of Kr and K t such

that the new estimate 6t;' will satisfy the orthogonality principle. This orthogonality

condition can be written in the form
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Clearly, this choice of Kt causes Equation C.4 to satisfy a portion of the condition given

by Equation C.5. Kt is chosen such that Equation C.6 is satisfied. Let

at 4t  -at 	 (C.11)

a t  A at -at 	(C.12)

Ftr A it - F t

= Ht at -Ftr 	(C.13)

Vectors at and at are the estimation errors after and before updates, respectively. Irom

Equation C.6

E[ at - 	 Yts = 0	 (C.14)

and also (by subtracting Equation C.1 from Equation C.14)

E[ at - at ]Its =0	 (C.15)

Substitute for a„a t+ and -±; from Equation C.2, C.4 and Equation C.13, respectively.

Then

E[ et-l at _ l +wt_I -Kti at	 F t ][Ht a t -Ft]r 	 0

However, by the system structure

E wt Far = E w, atn =0

E[o t_ 1 at_ l -Kti at -kt F t ][1-1, a t -Ftr  = 0

Substituting for Kt ,F„ and at and using the fact that E Bit- vats =0, this last result can be

modified as follows:

0 = E([(1),_, at_1-6 +Kt Ht at -Kt Ht at-Ktvt][Ht at -Ht at -vt ] s

= E([( at -a t )-Kt Ht (at -at)-K t vt i[Ht eit -vt]T

=E([	 - Kt Ht at -Ktvt][H, at -vt]T  )

By definition, the a priori covariance (the error covariance matrix before the update) is

Pt- =ECcit

It satisfies the equation

[I- Kt Ht ]Pt- Ht -K t Rt =0

and therefore the gain can be expressed as
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the last of which is the one most often used in computation. This implements the effect

that conditioning on the measurement has on the covariance matrix of estimation

uncertainty.
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Error covariance eDtrapolation 

Error covariance extrapolation models the effects of time on the covariance matrix of

estimation uncertainty, which is reflected in the a priori values of the covariance and state

estimate.
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APPENDIX D

DERIVATION OF DYNAMIC MOVING AVERAGE MODEL

The Dynamic Moving Average Model (DMAM) is developed in this Appendix by

integrating two components (i.e., MAM and KFM). In the proposed DMAM, A te is the key

parameter that combines MAM and KIM into one integrated model. Ate acts not only as a

weight paratheter in MAM, but also as the state variable in KIM. The fundamental

prediction thodel in DMAM is forthulated in Equation D.O:

where A,: Observed travel time at time t-n.

: Predicted travel time at time txt,DMAM 	 t .

N: Number of time periods considered for moving average.

The fundamental models in KFM are formulated as

where zt denotes the observation of travel time in time t, and v t denotes the measurethent

error at time interval t that has a normal distribution with zero mean and a variance of Ate,

the covariance of the measurement variable.

H is the theasurement sensitivity thatrix and Fi is the measurement noise. The

theasurement sensitivity reflects the linear relationship between the state and

measurement variables. In the DMAM prediction model, the state variable is the weight

parameter A t, and the measurement variable is the travel time z t. The H value is the

derivative of the measurement variable z t with respect to the state variable Ate:
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Here clotdenotes the transition paratheter between successive Ateat time interval t, which is

externally determined. Since there is no linear covariance that can be pre-specified for

successive weight parameters, 4, t adopts a constant value of 1 to assume that the A te is

equal to the updated 8+ i in DMAM. W t denotes a noise term that has a normal

distribution with zero mean and a variance of Q t, the covariance of the state variable.

The objective of the developed DMAM is to find an estimate of the n state vector 0,

represented by , a linear function of the measurements zip ,	 z„ that minimizes the

weighted mean-squared error.

The observation update problem for a system state estimator

Suppose that a measurement of travel time has been made at time t, and that the

information that it provides is to be used in updating the estimate of the weight parameter

a of a stochastic system at time t. It is assumed that the measurement variable A t (i.e.,

travel time is linearly related to the state variable (ice., weight parameter B, ) by Equation

Estimator in linear form

The optimal linear estimate is equivalent to the general optimal estimator if the variates

0 and z are jointly Gaussian. Therefore it suffices to seek an updated estimate d7 based

on the observation z, that is a linear function of the priori estimate and the measurement

where e),-- is the a priori estimate of 0, and 07 is the a posteriori value of the estimate.
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Optimization problem

The matrices IC ti and Kr are as yet unknown. We seek those values of Kt and K, such

that the new estimate tjt will satisfy the orthogonality principle. This orthogonality

condition can be written in the forth

If one substitutes the formula for 0, from Equation D.3 and for (9,+ from Equation D.4

into Equation D.5, then one will observe from Equation D.1 and D.3 that the data

zi ,..., z, do not involve the noise term wt . Therefore, because the random sequences

Iv, and vt are uncorrelated, it follows that
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Clearly, this choice of K: causes Equation D.4 to satisfy a portion of the condition given

by Equation D.5. Kt is chosen such that Equation D.6 is satisfied. Let

let+ A jt - et 	(D.11)

et- A Wt - 	(D.12)

it At - ztr

	= Htdr  -z,	 (D.13)

Vectors Ot  and et- are the estimation errors after and before updates, respectively. From

Equation D.6

E[ - -Ft+ ]	 = 0	 (D.14)

and also (by subtracting Equation D.1 from Equation D.14)

E[ Orb 	] it =0	 (D.15)

Substitute for 0„dtt and ztr from Equation D.3, D.4 and Equation D.13, respectively.

Then

E[ To r_ 1 Ot_ 1 + wr _1 -K r Orb -	 ztr i[Ht 	- z, = 0

However, by the system structure

Ew1  z tr = E w1 Ort =0

E[	 er_l- Kati 19t -Kt z,][Ht Ot -z r ] T = o

Substituting for Ktl,zt, and et- , and using the fact that E 	 vs =0, this last result can be

modified as follows:

0 = EA[ 120t_1 	-Ht0t-vtis

= EAR 0,-O)-K t Ht (0,-dt )-Kt vt ][Ht O;- -vt]T

= Eft-  - Kt Ht jt - -Kt vt i[H,g t - -vt]T)

By definition, the a priori covariance (the error covariance matrix before the update) is

Pt (-) ECHO:-  et -

) satisfies the equation

[I-Kt Ht]p Ht -KtRt=0
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Error covariance eDtrapolation 

The error covariance extrapolation models the effects of time on the covariance matrix of

estimation uncertainty, which is reflected in the a priori values of the covariance and state

estimate.
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