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ABSTRACT

ON IP OVER WDM BURST-SWITCHED
LONG HAUL AND METROPOLITAN AREA NETWORKS

by
Jingxuan Liu

The IP over Wavelength Division Multiplexing (WDM) network is a natural evolution

ushered in by the phenomenal advances in networking technologies and technical

breakthroughs in optical communications, fueled by the increasing demand in the

reduction of operation costs and the network management complexity. The unprece-

dented bandwidth provisioning capability and the multi-service supportability of the

WDM technology, in synergy with the data-oriented internetworking mechanisms,

facilitates a common shared infrastructure for the Next Generation Internet (NGI).

While NGI targets to perform packet processing directly on the optical transport

layer, a smooth evolution is critical to success. Intense research has been conducted

to design the new generation optical networks that retain the advantages of packet-

oriented transport prototypes while rendering elastic network resource utilization and

graded levels of service.

This dissertation is focused on the control architecture, enabling technologies,

and performance analysis of the WDM burst-switched long haul and Metropolitan

Area Networks (MANs). Theoretical analysis and simulation results are reported to

demonstrate the system performance and efficiency of proposed algorithms.

A novel transmission mechanism, namely, the Forward Resource Reservation

(FRR) mechanism, is proposed to reduce the end-to-end delay for an Optical

Burst Switching (OBS)-based IP over WDM system. The FRR scheme adopts

a Linear Predictive Filter and an aggressive reservation strategy for data burst

length prediction and resource reservation, respectively, and is extended to facilitate

Quality of Service (QoS) differentiation at network edges. The FRR scheme improves



the real-time communication services for applications with time constraints without

deleterious system costs.

The aggressive strategy for channel holding time reservations is proposed.

Specifically, two algorithms, the success probability-driven (SPD) and the bandwidth

usage-driven (BUD) ones, are proposed for resource reservations in the FRR-

enabled scheme. These algorithms render explicit control on the latency reduction

improvement and bandwidth usage efficiency, respectively, both of which are

important figures of performance metrics.

The optimization issue for the FRR-enabled system is studied based on two

disciplines - addressing the static and dynamic models targeting different desired

objectives (in terms of algorithm efficiency and system performance), and developing

a "crank back" based signaling mechanism to provide bandwidth usage efficiency.

The proposed mechanisms enable the network nodes to make intelligent usage of the

bandwidth resources.

In addition, a new control architecture with enhanced address resolution

protocol (E-ARP), burst-based transmission, and hop-based wavelength allocation is

proposed for Ethernet-supported IP over WDM MANS. It is verified, via theoretical

analysis and simulation results, that the E-ARP significantly reduces the call setup

latency and the transmission requirements associated with the address probing

procedures; the burst-based transport mechanism improves the network throughput

and resource utilization; and the hop-based wavelength allocation algorithm provides

bandwidth multiplexing with fairness and high scalability. The enhancement of the

Ethernet services, in tandem with the innovative mechanisms in the WDM domain,

facilitates a flexible and efficient integration, thus making the new generation optical

MAN optimized for the scalable, survivable, and IP-dominated network at gigabit

speed possible.
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CHAPTER 1

INTRODUCTION

1.1 IP Over WDM

The IP over Wavelength Division Multiplexing (WDM) network is a natural evolution

ushered in by the phenomenal advances of networking technologies and technical

breakthroughs in optical communications, fueled by the increased demands for the

elimination of unnecessary network layers that will lead to a vast reduction in the

cost and complexity of the network [1, 2, 3]. A growing consensus about the network

evolution is that the Next Generation Internet (NGI) will be an IP-based WDM

network.

1.1.1 Wavelength Division Multiplexing Networks

WDM is an approach to unleash the potential fiber bandwidth. In a WDM system, the

optical transport spectrum is carved up into a number of non-overlapping wavelength

bands. Multiple wavelengths of light are transmitted simultaneously over a single

fiber optic line, with each wavelength supporting one or multiple communication

channels [4]. Each wavelength can be individually transported and routed through the

network, and independently recovered by wavelength-selective components. WDM

enables the utilization of a significant portion of the available fiber bandwidth, and

is expected to be one of the methods of choice for future ultra-high bandwidth multi-

channel systems.

Some technological breakthroughs enabling the reach of WDM systems include,

but not limited to:

• Special fibers with nonzero dispersion characteristics

• Erbium-doped fiber amplifier

1
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• The tunable laster diode operating around 1550nm

• In-fiber Bragg grating

These technological breakthroughs, in tandem with the emergence of optical

networking devices, such as Optical Add Drop Multiplexers (OADMs) and Optical

Cross-connects (0XCs), enable the WDM technology to inroad from a bandwidth

provider to a networking solution. Its multi-channel concurrent transport capability,

together with the accommodation for transparent traffic delivery, makes the WDM-

enabled network an ideal platform to deliver the traffic of mixed type applications.

While the existing optical communications technologies make a good start, the

WDM-enabled optical transport network is at the same time a great asset and a

great challenge as well. New architectures and protocols that fully exploit the optical

bandwidth capacity, coincide with the current and foregoing service requirements,

and retain the advantages of existing transmission mechanisms, are of the essence to

improve the overall value of optical networks.

1.1.2 The Evolution of IP Over WDM

In late 1990s, one of the characteristics of typical IP over optical networks is that

data payload is piggybacked over traditional Time Division Multiplexing (TDM)

based optical transport mechanism [5]. Such a network consist of four layers: the

IP layer for network interconnection, the ATM layer renders traffic engineering, the

SONET/SDH layer facilitates augmented transport and network survivability, and

the WDM layer provides transmission capacity.

The network evolution has been impacted by several driving forces, which can

be summarized into the following categories:

• Development of networking technologies and optical communications

• Dominating traffic trends in terms of traffic volume and traffic types
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• Internet economy and market requirements

First and foremost, some important development at the IP layer expedites the

evolution of network architectures. Faster and denser IP routers continue to evolve

and spread to network edges, enabling the trunk speed to match the aggregation

level of the optical transport layer. Meanwhile, Service Level Agreement (SLAB),

QoS, and legacy integration are being provisioned by routers with increasing function-

alities and protocols, such as the Multiprotocol Label Switching (MPLS) protocol.

MPLS enables the network to provide layer 2 features on a layer 3 network, therefore

providing engineers a solution that they need to guarantee the quality performance

and traffic engineering of the IP network without resorting to ATM and its inherent

complexity and scalability issues. Along with the integration of IP routing (intel-

ligent to forward datagrams) and the ATM switching (high speed and high capacity

connectivity), the ATM function of traffic engineering is being absorbed into the IP

layer.

At the same time, with the availability of fast-service provisioning and network

survivability mechanisms in the optical domain, and with the basic unit of transport

bandwidth shifting from time slot to optical channel, the WDM layer advances beyond

a bandwidth provider, absorbing the transport capacity of SONET/SDH in the optical

optical domain. In much the same way that Digital Cross-connects (DXCs) emerge

to manage network connectivity at the electrical layer, OXCs emerge to manage

connectivity at the optical layer. In addition, flexible and reconfigurable OADMs

have become an integral element of WDM networks to add and/or drop wavelengths

at the intermediate nodes.

Therefore, what has been four layers converges to the two-layer model, whereby

the IP network is built directly on the WDM optical infrastructure, while the inter-

mediate layers, including the ATM layer and the SONET layer, are bypassed (Figure

1.1).



Figure 1.1 The evolution of the IP over WDM integration.

Second, the evolution of the two-layer model is fueled by the growth of Internet

traffic. Besides the exponential growth of bandwidth demand due to internet and

intranet communications, the shift in the service mix from circuit traffic to data-

dominated traffic is well underway. As data traffic is increasing at a tremendous

rate, and this trend is likely to continue in the future, it has been widely recognized

that the new generation Internet should be optimized for data prototypes, and a true

full-service network will emerge [1, 2, 3].

The emergence of multi-type applications, such as data, voice, and video-

conferencing, requires more increased-capacity, data-aware infrastructures than found

in traditional multi-layer solutions. The IP over WDM infrastructure functions as a

new breed of flexible, scalable, multi-service delivery platforms that offers the cost-

effective insurance needed to exploit the increasing capabilities of WDM networks

and the mature data transport technologies, and to accommodate the realities of the

future network churn.

Third, besides the network technologies and the application requirements, the

Internet economy and commerce revenue have direct impact on the network evolution.

From the network Operation, Administration, Maintenance, and Provisioning

(DAMP) point of view, the multi-layer model involves more vendor integration,

multiple network management systems, and increased capital and operational cost.

From the data plane point of view, the advanced ATM features at the same time

introduce shortcomings, e.g., the cell tax on variable-length IP packet. In addition,

SONET, which is a voice-oriented transport solution rooted in telephony, demon-
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strates inefficiency and inflexibility as the packet-centered traffic pattern prevails.

The graded bandwidth provisioning and the Optic-Electric-Optic (OLEO) conversion

required by the ADMs and DXCs also make SONET costly.

The IP over WDM infrastructure combines gigabit and terabit IP routers with

WDM switching and transmission systems to create an optimized optical transport

network. Such integration features the advantages of reduced network management

overlay, maximized interoperability, and minimized number of service interfaces.

Based on the two-layer model, the IP over WDM integration can be viewed

as an underlying all-optical layer upon which either IPA routers lead to higher user-

oriented protocol layers, or OLEO intermediate nodes lead to the next island (Figure

1.2).

1.1.3 Architecture Model

The development of IPA over WDM integration is an evolutionary process, which is

generally classified into three generations [2]:

• IPA over point-to-point WDM

• IPA over re-configurable WDM

• IP over switched WDM
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In the IP over point-to-point WDM model, IP routers are directly connected

with each other using multi-wavelength fibers. The WDM links provide only trans-

mission capability, while the network OAMP functionalities and the traffic engineering

are typically performed in IP layers. The IP over point-to-point WDM architecture

is deemed as the first realization of optical networks based on multiple wavelengths.

The network topology is fixed, and the network configurations are all static. Such

an integration places new demand on the service layer for through-traffic networking

and survivability, on top of the already growing service layer requirement.

Beyond this point-to-point WDM framework, the next evolutionary step in

reliable, scalable transport networks will be full functionality optical networking,

whereby besides the transmission capability, the WDM layer also participates in

network control and management, and supports traffic engineering capability, such

as routing and switching, QoS, scaability, protection/restoration, etc.

In the IP over reconfigurable WDM architecture, the interfaces of the IP routers

are connected to the ports of OXCs, which are by themselves interconnected in a

mesh configuration with multi-wavelength fiber links. By appropriately configuring

the OXCs, a given router interface can be connected to any other interfaces of any

other router. As a result, the neighboring routers for a given router interface are

configurable.

The IP over reconfigurable WDM architecture establishes the future-ready

ubiquitous infrastructure for full-functionality optical transport networking. It

enables the migration from rigid and separately managed overlay networks to

streamlined architectures which enable the set-up and tear-down of optical connections.

By interconnecting the networks at the optical layer, the network OAMP complexity

and the associated costs are reduced or eliminated, and the service-layer scalability,

restoration and survivability are provisioned.
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In the IF over switched WDM network, the WDM layer directly supports the

on-demand traffic switching capability, as opposed to simply supporting ingress-to-

egress lightpaths. As such, it enables a much finer grain sharing than re-configurable

WDM system does, and addresses the requirements of the core network in a real-time

fashion, particularly in the areas of traffic engineering, QoS, connection management,

and restoration/protection.

The IF over switched WDM network is still evolving, with the focus on building

up the IF-based full-functionality Optical Transport Networks (OTN) (in that besides

the transmission capability, the WDM layer also provides multiplexing, supervision,

and survivability for a wide range of client signals). IF over switched WDM networks

are deemed as the natural choice for NGI owing to, from the networking perspective,

its essential advantages such as efficient and cost effective capacity expansion, flexible

optical-channel bandwidth management, and survivability mechanisms to support

improved reliability of data networks.

1.2 Switching Technologies for Next Generation OTNs

Optical switches are referred to as the fiber interconnection devices which integrate

a combination of algorithms, protocols and signaling mechanisms to support optical

channel provisioning, routing, and restoration. The intelligent and flexible IF

over WDM networks require bit-rate and protocol-independent optical switches.

The switching technologies for optical networks fall under three broad categories:

wavelength switching, optical packet switching, and optical burst switching.

1.2.1 Wavelength Switching

In the wavelength switching approach systems, lightpaths are set up between sources

(ingress nodes) and destinations (egress nodes) via nodes equipped with OXCs (or

wavelength routers). At each OXC, the output wavelength (at an output port) to
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which an incoming signals is routed at any given time is determined solely based on

the input wavelength (and input port) carrying the signal. Accordingly, wavelength

switching is a form of circuit switching. Under distributed signaling, two-way reser-

vation is needed, whereby a source node sends out a control packet to make a reser-

vation, and then waits for an acknowledgment to come back before transmitting

data [6, 7, 8].

The wavelength switching approach requires no optical buffer at the inter-

mediate nodes of the core network, and enables transport transparency in the

optical domain. It also features the advantages of simple implementation. However,

the wavelength switched network presents low bandwidth usage efficiency, coarse-

granularity traffic engineering, and limited flexibility for capacity expansion, surviv-

ability, and restoration. A lightpath takes up an entire wavelength on each link along

the source-destination path, resulting in low bandwidth utilization when carrying

bursty traffic streams (i.e., IF traffic). Meanwhile, when the number of wavelengths

is not enough to support the full mesh connectivity, load distribution in the network

may be uneven given that the traffic intensity varies over time.

1.2.2 Optical Packet Switching

In the Optical Facket Switching (OFS) approach, the switching unit at the inter-

mediate nodes of the core network supports the store-and-forward functionality, and

the network traffic is transmitted and switched in the form of optical packets. The

payload is transported along with its control header without setting up a lightpath

in advance [9, 10, 11, 12].

The OFS approach facilitates per-packet granularity traffic engineering, thus

rendering a finer degree of service flexibility for the IF over WDM integration (e.g.,

bandwidth sharing, traffic balance, restoration options, and contract duration).
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In the absence of photonic devices that perform signaling processing and

lightpath configuration in the optical domain, however, the OFS approach requires

0E0 conversions at the intermediate nodes. The tight coupling in time between the

payload and the header as well as the store-and-forward nature of packet switching

requires each optical packet to be buffered at every intermediate node, resulting in

the demand for a large amount of optical buffers (e.g., Fiber Delay Lines (FDL))

and the signal regeneration technique. Owing to the variations in the processing

time of the packet header at the intermediate nodes, optical packet switching also

requires stringent synchronization and the complicated control that goes with it.

Another problem inherent to the OFS approach is that the sizes of the data packets

are usually too small given the high bandwidth of optical channels, thus resulting in

relatively high control overhead.

The OFS technology is still evolving and it remains to see if it will mature in

the future to become commercially viable.

1.2.3 Optical Burst Switching

Optical Burst Switching (OBS) is a technology devised based on consideration of

the above technologies, taking into account of both the advantages and the potential

problems. In an OBS system, the transport and switching granularity is the individual

data burst, which may contain multiple IF packets. It is deemed as a sound and

promising mechanism for the IF over WDM infrastructure, with high wavelength

usage efficiency and low requirements for optical buffers [13, 14, 15, 16].

OBS Principles The basic ideas underlying an OBS system are twofold:

• Transport and switching of user traffic in the burst granularity

• Decoupling of the data payload and the corresponding Burst Header Facket

(BHF)
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First, multiple IF packets with the same destination and attributes (e.g.,

QoS requirements) may be transmitted and switched as an entity, namely, a

burst. Transporting and switching the traffic in a burst granularity is a solution

to compensate for the time constraint of directly switching individual IF packets

at optical routers induced by the mismatch between the transmission capability of

WDM fibers and the processing capability of the electronic control plane. Therefore,

the OBS approach reduces the control processing overhead, and enables much finer

traffic engineering than that in the wavelength switching method.

Second, each data burst is preceded by a control header, which is transmitted in

a different optical channel from those for data traffic. A BHF is processed at each and

every intermediate node in the core network to reserve resources and set up a switching

path, while the corresponding data payload is transported throughout the network

transparently, without the interpretation and examination of the data format or bit

rate at the intermediate nodes. Such physical decoupling between the data payload

and the control headers maintains the desirable property of optical transparency for

data bursts, and leads to a better synergy of both the mature electronic technologies

and advanced optical technologies.

Figure 1.3 An OBS transmission example.

Figure 1.3 is a simplified example of the transmission mechanism of an OBS

system, where D 2 (i = 1, 2) represents the i-th data channel, and C represents the

control channel.
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OBS in IP Over WDM Integration Figure 1.4 presents the primary mechanisms

and functionalities of an OBS-embedded IF over WDM system. A variety of solutions

have been proposed in literature for some of the essential functionalities.

To transport and switch traffic in the burst granularity, one of the distinctive

procedure of the OBS system is a burst assembly process, whereby multiple IF packets

are assembled into an entity, namely, a data burst. Such an assembling process is

usually termed as the burstification procedure [13]. Burstification is performed at

the network ingress nodes, where a Burstification Control Unit (BCU) resides and

coordinates the assignment and transmission of data channels and control channels.

Several burst assembly mechanisms exist in literature [13, 17, 18]. Generally

speaking, there are two categories with respect to burst assembly: Limited Size burst

(LS-burst) and Non-Limited Size burst (NS-burst). These methods distinguish from

each other in the way new IF packets are treated when they arrive at an edge router

while a datum is already being transmitted. In the LS-burst approach, the new
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packets have to be queued and formulated into a new data burst, while in the NS-burst

method the new packets are considered as part of the current burst. With the LS-

burst method, the length of burst is known when the data transmission begins, and the

length value is proportional to the burst assembly time and the input bit rate. In the

NS-burst, the duration of the burst is not known when the data transmission begins,

since it is subjected to change while the current data burst is being transmitted.

Another important concept in the OBS system is the offset between the data

burst and the corresponding BHF. The offset-related problem concerns two facts—the

generation mechanism of the offset values, and the management of the offset values.

The major function of the offset value is to compensate the mismatch between the

electronic processing of the BHFs and the all-optical transport of the data burst

supported, and to reduce the contention between control headers. The offset value

should be at least enough for the BHF to set up an all-optical lightpath before the

data payload enters the intermediate node. Various offset determination algorithms

have been proposed [19, 20, 21].

Signaling protocols for OBS systems are based on two alternative schemes: Tell-

and-Wait (TAW) and Tell-and-Go (TAG) [22]. While the former features a two-way

reservation, the TAG scheme uses the one-way signaling, i.e., at the ingress node,

a control packet is sent out and after a fixed delay (offset time), without waiting

for confirmation from the network, its data burst is transmitted. Some popularly

discussed proposals of this category are the Just-In-Time protocol (JIT) and the

Just-Enough-Time (JET) one. Comparing with the TAW alternative, the TAG

mechanism holds the advantage of reduced end-to-end delay associated with the

round-trip signaling transmission for lightpath reservation in long-haul networks. For

more details on the TAG-based signaling protocol and the related work, interested

readers are referred to [21, 22, 23, 24] and references therein.
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Reservation schemes of OBS systems differentiate from each other depending

on how an intermediate switch node is made aware of the beginning and the ending

of a burst. Four main reservation schemes are discussed in literature [21]: I) Explicit

Setup and Explicit Release; II) Explicit Setup and Estimated Release; III) Estimated

Setup and Explicit Release; and IV) Estimated Setup and Estimated Release. These

variants result in different complexities of hardware requirements, and different

amount of time that the switching elements are reserved for an individual burst.

An improvement of reservation approach II is termed as Delayed Reservation

(DR) [25], i.e., the resources at intermediate nodes are reserved for the incoming

data payload from its arrival time, and are released (torn down or timed-out) at

its departure time, determined from the arrival time of the BHF and the burst

length. This approach enables a BHF to reserve resources for a more precise duration

that corresponds to the burst length, and delivers efficient bandwidth utilization and

high system throughput. A BHF in this scenario has the knowledge of its payload,

including ingress/egress node identification, and the data burst length.

Design Objectives The OBS approach outperforms OFS and wavelength switching

with less control overhead and better bandwidth utilization. Many OBS-specific

issues have to be addressed before this technology becomes practical and efficient

[26, 27, 28]. The interested issues include but not limited to:

• Burstification and offset management

• Transport mechanisms and signaling protocols

• Resource utilization and contention resolutions

• QoS provisioning and optimization.
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1.3 Ethernet-supported IP over WDM Metropolitan Area Networks

More bandwidth than ever before can now be used for long-haul transport and service

provisioning, as fiber installations and WDM equipment increase the capacity and

lower the cost per bit for these networks. The Metropolitan Area Network (MAN)

environment, however, has lagged behind in the availability of low-cost fast service

provisioning using WDM.

1.3.1 WDM in Metropolitan Area Network

A Metropolitan Area Network (MAN) is defined as the part of the network that

interfaces the end users and the backbone long-haul networks [29]. WDM technology,

which is easy to justify on engineering and economic grounds in long distance

networks, has been slower in development in metropolitan networks, although its

long-term prospects are not in dispute.

Historically, the metropolitan area service requirements have been dominated

by voice services, which have led to today's MANs based primarily on a ring topology

with hubbed traffic patterns and SONET transport equipment. The pervasiveness

of SONET networking in such network scenarios is undeniable. It offers rapid and

predictable reliability and network protection, as well as management and alarming

features. The increasing traffic demands in the metropolitan area have been satisfied

by increasing SONET channel bit-rate, or the number of fibers connecting the nodes.

The circuit-based transport solutions of SONET, however, do not quite match

the requirements of today's metropolitan area networks. On one hand, in pure

SONET access arcitectures, the ADMs map the full user bandwidth into a SONET

tributary wthout statistical aggregation in the access node. The SONET cross-

connect function in the access node does provide some level of aggregation, but

only at the discrete granularities that SONET supports [4]. On the other hand,

with the aforementioned trends of traffic growth, the new generation optical MAN
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demand for flexibility and efficiency. They must accommodate a wide variety of

protocols and interfaces in network applications which are becoming increasinly multi-

service in nature, and support more data-savvy integrated optical access solutions

that both meet the current and future network demand projections and offer the

required service-level flexibility and functionality with QoS. In addition, SONET

establishes the network connectivity relying on ADMs and DXCs, which require 0-

E-0 conversion, a costly technology.

Among the myriad of architecture choices, the compelling technological

and economic benefits of WDM are becoming attractive. The WDM technology

approaches the metro bottleneck problem with a clean slate. Its multi-channel

concurrent transport capability and the accommodation for transparent traffic

delivery make the WDM-enabled network an ideal platform to deliver the traffic

of mixed type applications. Meanwhile, the WDM layer further enhances the service

and bandwidth scalability of each of these strategies [30].

1.3.2 Ethernet Beyond Local Access Networks (LANs)

While the new generation WDM-enabled transport network is targeted for direct IF

packet processing to reduce the complexity of multiplayer architectures, a smooth

evolution is critical to success. Intermediate steps are necessary to support IF

datagrams onto optical channels. Alternative forms of intermediate steps have been

proposed for the metropolitan area environment, among which Ethernet holds great

promise as the connectivity solution enabling a graceful migration from the current

voice-oriented MAN prototype into a world optimized for packets [31, 32].

Ethernet has evolved over the past decade from a simple shared Medium Access

Control (MAC) to a full-duplex switched network. With more than 90 percent of

Internet traffic originating from Ethernet-based LANs, and with the emergence of

High-speed Gigabit Ethernet and 10 Gigabit Ethernet products, Ethernet is emerging
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as the protocol of choice for carrying IF traffic in the metropolitan and even long

haul networks. For both enterprise customers and carriers, it is advantageous to

preserve the native customer Ethernet data frame rather than to terminate it and

remap its payload into another layer 2 protocol (e.g., FFF) for transport. The

unprecedented bandwidth supportability of WDM technology, in tandem with the

packet-oriented Ethernet prototype, facilitates a common shared infrastructure, thus

making a new generation of optical MAN optimized for scalable, survivable, and

IF-dominated networks at gigabit speeds possible.

However, Ethernet, while a natural fit for data traffic, lacks the flexible MAC

mechanisms to manage the access across multiple users in the WDM prototype.

Native Ethernet protocols need extensions or support from other technologies in terms

of scalability, QoS, resiliency, DAMF, and so on. The above problems are broadly

referred to as metro Ethernet scability issues [33].

1.4 Out line

The foregoing challenges make it increasingly important to design the new generation

networks which retain the advantages of the data-oriented transport mechanisms

while rendering elastic network resource utilization and graded levels of services.

This dissertation is focused on the WDM burst-switched long haul and metropolitan

area networks, covering the control architecture, transport mechanisms, enabling

technologies, algorithm design, together with the performance analysis and system

optimization issues that arise therefrom. Theoretical analysis and simulations results

are reported to demonstrate the system performance and algorithm efficiency.

The rest of the dissertation is organized as follows. Chapter 2 investigates the

timer-based burst assembly algorithms and their impact on the system performance

at the network ingress nodes. Chapter 3 proposes an innovative transmission scheme,

namely the Forward Resource Reservation (FRR) scheme, for latency reduction in the
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OBS-based IF over WDM systems. Chapter 4 is focused on the aggressive resource

reservation strategies. System optimization mechanisms in terms of bandwidth usage

efficiency are discussed in Chapter 5. Chapter 6 presents on the Ethernet-supported

WDM burst-switched networks, proposing a novel control architecture with Enhanced

Address Resolution Frotocol (E-ARF), a burst-based transmission mechanism, and

a hop-based wavelength allocation algorithm. Concluding remarks and the focus of

future research are given in Chapter 7.



CHAPTER 2

THE IMPACT OF THE BURST ASSEMBLY INTERVAL ON THE

OBS INGRESS TRAFFIC CHARACTERISTICS

This chapter addresses the burstification interval scaling problem when the timer-

based LS-burst assembly methods, including the periodic and the non-periodic alter-

natives, are employed. We investigate the impact of the burstification interval on the

burst traffic characteristics in terms of the data burst inter-arrival time and the data

burst length, respectively. An analytical model and numerical results, which evaluate

the burst delay at the edge node of the OBS-enabled WDM backbone, are presented.

2.1 Motivation

The OBS paradigm holds great promise for the CIF over switched WDM networks

because 1) it supports the bandwidth multiplexing within the individual wavelength,

thus rendering finer granularity for traffic engineering in the optical domain, and 2)

it implements most of the intelligence of the network at the IF layer, with simple and

scalable control and management functionalities in the core routers, thus facilitating

the better synergy of the mature electronic technologies and the advanced optical

technologies, 20, 34].

One of the enabling technologies of the OBS-enabled system is the burst

assembly/disassembly procedure, namely, the burstification/de-burstification process

[13, 18], The burstification process is originally proposed to alleviate the optoelec-

tronic capacity required at the core routers for the BHF processing a potential

bottleneck owing to the bandwidth mismatch of the transport capability of the

optical channels and the electronic processing speed of the core routers. Transmitting

and switching the traffic in the data burst granularity proves to enhance the system

performance with reduced implementation complexity at the core routers [35].

18
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The introduction of the burstification process implies the importance to identify

the characteristics of the burst traffic forwarded into the core network, and to evaluate

the performance of the system with the burst traffic as the input. The burstification

mechanism, including the burstification interval determination, plays an important

role in unleashing the potential of the OBS-enabled WDM network, and is among the

critical issues in OBS networking that has received considerable attention.

This chapter investigates the burstification interval scaling problem when the

timer-based burstification mechanisms, including the periodic and the non-periodic

alternatives, are adopted. The burst traffic characteristics are studied in terms of

the burst inter-arrival time and the burst length. Meanwhile, an analytical model

is developped to evaluate the burst delay at the edge nodes of an WDM backbone,

followed by the numerical and simulation results to validate the analysis.

2.2 System Model

This section describes the system scenario upon which the subsequent discussion

is developed. Then, the investigation objectives addressed in this chapter will be

formulated.

2.2.1 System Architecture

Figure 2.1 highlights the functional components of the ingress node under investi-

gation, where each output port is associated with the individual burstification unit,

which consists of an electric-optic converter, a scheduler with a waiting queue, and a

group of assemblers.

The edge node implements the OBS MAC layer functionalities described in [20].

CIFpackets from the input port i (i = {1, ..., N}) are assembled and processed in the

function unit of the output port j (j = {1, M}) (which corresponds to the desti-

nation address j), and are launched into the WDM backbone via the data channels.



Figure 2.1 The functional components of the ingress node in
the OBS system.

The event that a data burst is formed triggers the BHF generation, followed by the

offset determination. The assembled data burst is either immediately assigned a data

channel, or is inserted in the waiting queue for scheduling, depending on the avail-

ability of the data channels of the associated destination address (i.e., the output

port).

The data burst is emitted into the core network when a data channel becomes

available, with the corresponding BHF being transmitted in advance by an offset

Ts . To is a system parameter to guarantee the transparent transmission of the data

burst throughout the core network, and can be determined by a variety of algorithms

[19, 21].

Figure 2.2 illustrates the intrinsic features of the timer-based burstification

mechanisms, including the periodic and the non-periodic alternatives. Both mechanisms

specify the burstification interval as a system parameter, denoted as rag. In the

periodic mechanism, the burst is assembled back-to-back. That is, the new

burstification process begins as soon as the previous data burst is assembled, and lasts

until the pre-determined interval of Tab elapses. A new data burst, however, is not

actually generated if no packet arrives during the whole burstification interval. In the
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non-periodic assembly mechanism, the next burstification process starts only when a

new IF packet arrives. Both assembly mechanisms shape the traffic and change the

traffic stream characteristics.

2.2.2 Objectives

The focus of this chapter is on the burstification interval scaling problem when either

of the timer-based mechanisms is adopted. The investigation will be conducted from

the following two perspectives:

• To identify the characteristics of the burst traffic which flows into the WDM

backbone after the burstification process. The interested performance figures

involve the burst inter-arrival time related ones and the burst length related

ones. The mean values and the squared coefficients of variation of both

categories are reported.

• To develop the analytical model for the evaluation of the delay that a data burst

experiences at the edge node with the burst traffic as the input.
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2.3 The Impact of the Burstification Interval

This section analyzes the impact of the burstification interval on the burst traffic

characteristics, and utilizes the acquired traffic parameters to evaluate the burst delay

at the ingress node.

2.3.1 Tab on the Burst Traffic Characteristics

The following notations are defined for description simplicity:

The packet arrival rate of the IF stream flowing into the individual burst

'leer.

The Frobability Density Function (FDF) of the burst inter-arrival time

he non-periodic mechanism is adopted.

The average data burst inter-arrival time.

The squared coefficient of variation of the data burst inter-arrival time.

The average data burst length (in time).

The squared coefficient of variation of the data burst length (in time).

For computational tractability, the IF packet stream feeding into the assembler

is assumed to be a Fossion process. Given that the burstification interval is equal to

Ta , the FDF of the data burst inter-arrival time can be expressed as
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Of more interest is the coefficient of variation of the burst inter-arrival time,

(where cry-, is the variance of the burst inter-arrival time). CI,

is the parameter for the traffic burstiness measurement, and has been increasingly

emphasized for the traffic characteristics description owing to its significant impact

on the delay and loss of the network [36, 37]. Lowering 0-, will be greatly beneficial

and important to improve the system performance.

In the predefined system scenario,

Equation 2.3 indicates that, under the timer-based burstification process, the

coefficient of variation of the data burst inter-arrival time is a function of the

burstification interval (ia ) and the input traffic density ('\ a ). Given 1a , q decays

exponentially with the burstification interval Ta in the periodic assembly mechanism,

while in the non-periodic mechanism, the decay is approximately proportional to the

reciprocal of AZ.

Equation 2.3 provides a guideline that, to limit the coefficient of variation of

the data burst inter-arrival time to be lower than a certain level € 1 , the burstification

interval should be constrained by

Also of interest are the parameters related to the burst size, which affects the

throughput and the opto electronic capacity requirement of the core routers [35].

Given the system scenario with the deterministic packet size, the average data

burst length is
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where L is the average packet size. The data burst size coefficient of variation is the

same as that for the burst inter-arrival time,

2.3.2 The Delay Model at the Edge Node

This subsection discusses the burst delay in the scheduling queue, taking into account

the burst traffic parameters obtained above. The analysis is based base on the

following assumptions:

• The edge node is a wavelength constrained system, wherein the assembled data

burst may need to be queued in the burstification unit for the next available

data channel.

• The burstification unit contains a large amount of electronic buffer, thus

rendering a lossless queuing system for the data burst to be scheduled.

• The maximum number of data channels which can simultaneously transport

data burst to the same output port is m, and the speed-up factor of the edge

node, i.e., the bandwidth ratio of the output data channel to the input one, is

Bo .

• The EAC (Earliest Available Channel) algorithm is employed for data channel

scheduling, and the offset value is equal for the individual data bursts.

• The IF traffic flowing into the WDM backbone presents a high input density,

The edge node delay (De ) which a data burst experiences consists of three

components: the average burstification delay (2Ta ), the offset delay (To), and the

queuing delay for the next available data channel (W). In the assumed system

scenario,



25

Given that To, and To are system parameters pre-determined by the network

management according to different protocols, while W is a performance figure of merit

directly dependent on the burst traffic characteristics, this chapter merely targets on

the burst delay in the scheduling queue owing to the data channel unavailability, and

considers a preliminary system scenario, wherein the scheduling queue is associated

with the single assembler.

After the burstification process, the burst traffic feeding to the scheduling queue

resembles a general independent process, with the average burst arrival rate of A ge =

1/ET (see Equation 2.2). Meanwhile, the channel holding time required by each burst

(S) is proportional to the data burst length, leading to the equation of S = EL / Bo

(see Equation 2.5). This way, the assembler, the scheduler, and the associated queue

can be modeled as the GI/G/m system.

Based on our model, the waiting time Cumulative Distribution Function (CDF)

under heavy load traffic situation is [38]

Furthermore, based on the Allen-Cunneen formula, and taking into account of

our burst traffic parameters, the average data burst waiting time in the scheduling

queue can be approximated by
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where Pm is the probability that the data burst needs to be inserted into the scheduling

queue until the next data channel becomes available. Pm can be calculated by [38]

2.4 Numerical and Simulation Results

In this section, we present the numerical and simulation results to justify our analysis.

We focus on the impact of rag, and the sensitivity of such impact to 1 a . The data

channel utilization of the individual output port, defined by p = Aa - Sim, is set to

be 0.2 and 0.5, respectively. The burst assembly duration (Tab) and the queuing delay

(W) are normalized with respect to the time to transmit one IF packet of 1500 bytes.

The IF packets arrive at the input port according to a Foisson process.

Figure 2.3 presents the effect of the average data burst inter-arrival time

under the periodic and the non-periodic burstification mechanisms. Both simulation

and analytical results are presented. The non-periodic mechanism delivers longer

burst inter-arrival time than the periodic mechanism does, leading to the following

conclusion: to support the same network traffic, the non-periodic mechanism allows

the core router process the BHF with a lower processing capability requirement,

and better facilitates the benefits of the OBS-enabled WDM networks in terms of

alleviated BHF processing requirement at the core routers.

Figure 2.4 illustrates the coefficient of variation of the burst inter-arrival time

versus rag, indicating that in both burstification mechanisms, GI is reduced as Ta

increases, and that the effect of Ta on GI is more considerable for the periodic

mechanism than for the non-periodic mechanism. This is especially true when the

input traffic load is relatively large (represented by the larger p) , in which case the

periodic mechanism delivers the slightly lower GI than the non-periodic counterpart

does as Ta gets large enough.



Figure 2.4 The squared coefficient of variation of the data
burst inter-arrival time versus the burstification interval.
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The simulation results of the waiting delay because of the unavailability of

the output data channel are shown in Figure 2.5. It can be seen that the periodic

mechanism results in larger waiting delay than the non-periodic mechanism does for

both p values. Meanwhile, the average waiting delay goes downward as the

burstification interval increases, and the effect of ragon the waiting delay is more significant

when the traffic load increases.

Figure 2.5 The simulation results of the average waiting time
versus the burstification interval.

2.5 Summary

This chapter has studied the burstification interval scaling problem. The character-

istics of the traffic after the burstification process is identified, and the burst delay due

to the data channel unavailability is evaluated. Simulations results and the theoretical

analysis indicate the following conclusions: 1) Given that To, is large enough (e.g., a

few times 1/A,,,), the non-periodic mechanism yields the larger average data burst size

and the data burst inter-arrival time as compared with the periodic alternative, and
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thus lowering signaling overhead in the backbone; 2) In both mechanisms, the coeffi-

cients of variation of the data burst inter-arrival time decays as Tab, increases within a

reasonable range; 3) The lower average traffic delay is achievable by the non-periodic

mechanism. In other words, the non-periodic mechanism improves performance of

the OBS-enabled network with reduced buffer requirements at the ingress node.



CHAPTER 3

FORWARD RESOURCE RESERVATION FOR LATENCY

REDUCTION IN OBS NETWORKS

In this chapter, a novel Forward Resource Reservation (FRR) transmission scheme

is proposed for the OBS systems. The aim is to reduce end-to-end transport latency

for delay-sensitive applications, and to facilitate QoS provisioning for different

traffic classes. Following the motivations and system environments description, our

discussion will cover the FRR scheme principle, its implementation and feasibility,

the FRR extension for QoS provisioning, and the performance evaluation.

3.1 Motivations

Transporting and switching the traffic in the data burst granularity is one of the

important features that alleviate the OBS system from the heavy burden for lightpath

configuration. This advantage benefits from the particular burst assembly procedure

(i.e., the burstification process) at the ingress nodes of an OBS system. A side effect

imposed by such a burst-buildup process, however, is an artificial delay. The typical

end-to-end delay of a data burst thus mainly consists of three components:

• Burst assembly delay at edge routers

• Fath setup delay caused by control headers

• Fropagation delay in the core network

To date, it has been widely recognized that, the bandwidth is no longer the

transmission bottleneck in many core networks, but it is the latency that dominates

the transmission time and is becoming of paramount importance [23, 39, 40]. Latency

30
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reduction is an important consideration when building up any system for the next

generation optical network [11, 41, 40].

There have been numerous proposals in the literature focusing on the latency

reduction issue in OBS systems. For example, a typical OBS system features one-way

reservation that lowers the round-trip delay for signaling transmission [22]. The Just-

In-Time (JIT) protocol is proposed to reduce burst delay due to round-trip lightpath-

setup [21, 23]. Xiong et al. [13] discussed the optimal switching architectures of the

core routers to process control headers. All these strategies are focused on reducing

the latency in the core network.

It is observed that the bandwidth at the core network (0C192 and beyond) is

much higher than that in the edge network (0C3-0C48). The time for assembling

a burst, which usually consists of hundreds of IF packets and is at the time scale of

hundreds of microseconds, is comparable with the switching path setup time, which

is also presumed to be in the range of hundred of microseconds [41, 41]. The burst

delay at network edges is substantial and has a significant impact on the end-to-end

transmission latency. This influence is especially detrimental to the real-time traffic,

which has stringent delay constraints. Since the propagation time of a data burst,

which is intrinsic, cannot be reduced, reducing burst delay at network ingresses will

be greatly beneficial to latency reduction and QoS provisioning.

Therefore, an innovative transmission scheme, namely, the Forward Resource

Reservation (FRR) scheme, is proposed for latency reduction at the edges of an OBS

system. The FRR scheme is further extended for QoS differentiation on burst delay for

different classes of traffic. Theoretical analysis and simulation results show that the

proposed scheme substantially reduces the burst delay at the network edge without

introducing deleterious system costs.
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3.2 System Environment and Design Objective

This section describes the system environment in which the FRR scheme is applied.

The objective of the FRR-embedded OBS system design is presented.

3.2.1 System Model

Figure 3.1 highlights the architecture of an OBS network under investigation. The

timer-based LS-burst assembly mechanism is adopted for burstification. When a

predefined threshold is reached (e.g., a timer expires), a new burst is generated and

is ready to be sent into the core network.

Figure 3.1 The system environment.

The lightpath is setup and reserved for a burst according to the Explicit

Reservation Estimated Release approach [21], whereby a BHF requires the channel

holding duration that corresponds to its burst length. Such an approach has been

proved to deliver higher bandwidth utilization and lower burst loss probability at the

core network [21].

In this scenario, a BHF has the knowledge of its payload, including the burst

length. The BHF also specifies the offset time that its data payload lags behind. The

offset value can adopt a pre-existing protocol that is most convenient in the system,
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e.g., it may be the BHF processing time (end-to-end) in the core network [19], or it

may be determined according to the JIT protocol [21, 23].

The application streams in the WDM network are specified by two parameters.

One is the traffic load which characterizes the incoming traffic intensity. The other is

the delay allowance which indicates the time constraint. According to this parameter,

we partition the traffic into M QoS classes, with the class-k traffic being more delay-

sensitive than the class-k one when

considered in this chapter is the delay constraint.

3.2.2 Design Objectives

A brief summary of the FRR scheme design objective is as follows.

1. A BHF carries the information necessary for lightpath setup, including a reser-

vation duration, which corresponds to the length of its data payload;

2. While preserving the all-optical lightpath advantage for its payload, a BHF

should enable the data burst to be transmitted as early as possible, thus

minimizing the latency at edge nodes;

3. The system can behave differently for different classes of traffic to achieve service

differentiation in terms of the burst delay.

The proposed FRR scheme meets the first two requirements by a linear predictive

filter (LFF)-based method, and is extended to facilitate the QoS capability required

by the third one.

3.3 The FRR Scheme

In a typical DR mechanism, the transmission of a BHF depends on the burst assembly

process. To acquire the necessary information of its data payload, including the

data burst length, a BHF waits for the completion of the burst assembly before it is
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transmitted for signaling and resource reservation. To allow enough time for switching

nodes to process the BHF and to set up the switching matrix, the data payload should

be further delayed at the ingress node for an offset time before being launched into

the core network. The data burst delay at an edge node has to account for these two

factors, both considerable sources of delay.

The intuitive idea on this observation is that, rather than performing the above

two processes in sequence, the burst assembly procedure and the transmission of

a BHF should be processed in parallel, and minimizing their impact on the total

end-to-end burst delay.

3.3.1 The FRR Scheme Principle

The following notations are defined to simplify the description of the FRR scheme

(i=0, 1, ..., M — 1, where M is the number of traffic classes in the system):

The time when a new burst of class-i traffic begins to assemble,

The time when a class-i BHF is sent into the core network,

The time when a class-i data burst is sent into the core network,

The duration to assemble a burst of class-i traffic,

The offset between a class-i BHF and its data payload.

In the rest of this chapter, for notational simplicity, the referencing of the class

may be omitted when the behavior and performance of only the traffic class to which

the FRR scheme applies is concerned.

An FRR scheme involves a three-step procedure as follows:

Fhase 1: Frediction. As soon as the previous burstification is done and a new burst

assembly begins at T41, the BCU predicts the length of the next incoming
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data burst. This estimation is based on a linear prediction method, as will

be discussed in the next section.

Fhase 2: Fre-transmission. Instead of waiting for the burst assembly to complete, a

control header is constructed instantly upon the completion of the prediction.

The BCU enters into the BHF the information necessary for path setup,

including a resource reservation length which is determined with an aggressive

reservation algorithm. The BHF is then launched into the core network at time

Fhase 3: Examination. When the burst assembly is fully carried out, the actual burst

length is compared with the reservation length in the pre-transmitted BHF to

ensure the pre-reserved duration is enough for the actual burst length. There

are two cases of interest to consider (Figure 3.2):

• If the actual burst length is less than or equal to the pre-reserved length,

i.e., the BHF has reserved enough bandwidth for the data payload, the

BHF pre-transmission is deemed a success. In this case, the data burst is

sent into the core network at

• If the actual burst duration exceeds the reservation length, the BHF pre-

transmission is deemed a failure. The BHF has to be re-transmitted for

this burst at a later time of Ta + 4) , with the actual burst size, and the

data payload lags behind by the offset

Figure 3.3 presents the basic functional components of the FRR scheme. A

variety of solutions can be employed to implement different functionalities. Note that

the proposed FRR scheme does not introduce extra burst delay. A failed forward

reservation causes the same latency with a transmission not using the FRR scheme.



Figure 3.3 The basic functional components of the FRR
system.
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3.4 Basic Features of the FRR Scheme

The basic idea of the FRR scheme is to parallel the executions of multiple delay

sources, thus reducing the end-to-end data burst delay. The proposed FRR scheme

possesses the following salient features: the burst length prediction based on adaptive

filters, the aggressive strategy for resource reservation, and the ease for QoS provi-

sioning and QoS differentiation.

3.4.1 Traffic Prediction

The FRR scheme requires a priori knowledge of the burst length before it is fully

assembled. This is made possible with an N-order LFF [42, 43]. Let Ld (k) be the

length (in the time scale) of the k-th burst, then the length of the next incoming

burst is predicted according to the lengths of the previous N bursts by

where w(i), i E {1, N}, are the coefficients of the adaptive filter.

Two approaches are examined to obtain the predictive filter coefficients. One

is based on the Yule-Walker method, whereby the predictive filter coefficients can

be expressed as Rh = r, where R and r are the autocorrelation matrix and the

autocorrelation vector of the data burst lengths, respectively, and h is the coefficient

vector [44]. An alternative is the N-order normalized Least Mean Square (LMS)-

based recursive LFF. The predictive filter coefficients are updated using an efficient

algorithm [43], where the coefficients for the (k + 1)-th prediction are defined as
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with j being an adjustable parameter of the LFF, e(k) the residual between the

actual and the predicted length of the k-th data burst, and (L d ) k the vector of

It is verified by simulations (the results of which are partly reported in the

next section) that, the LMS-based method is more appropriate, within the context

of burst length prediction, to forecast the length of the next data burst when the

input IF traffic presents seif-semilarity. The LMS-based method achieves satisfactory

prediction performance without knowing the autocorrelation of the input traffic

stream in advance, and thus can be used as an on-line algorithm for bandwidth

forecast. Meanwhile, the LMS-based approach outperforms the other alternative in

terms of computational simplicity. Its time complexity for the coefficient calculation

is 0(N), which is much less than that of Yule-Walker equations

3.4.2 Aggressive Resource Reservation

A BHF makes an advance resource reservation according to the predicted value. The

forward reservation length, denoted as Lr (k + 1), if optimal, should be equal to the

actual burst length. Due to the imperfection of a predictor, however, an estimated

length may turn out to be smaller or larger than the actual burst duration. Suppose

the reservation length is set to be equal to the predicted length, a smaller prediction

will result in an insufficient

reservation of path holding time for the data burst. This requires the BHF to be

re-transmitted after the burst assembly finishes, thus degrading the FRR latency

reduction performance.

This problem is compensated by an aggressive reservation method. Instead of

we define the reservation length as

1) + 6 , where 6 is a small margin of correction. The value of 6 has a significant impact

on both the BHF pre-transmission success probability (and therefore the latency
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reduction capability of the FRR scheme), and the system costs (e.g., the resource

utilization and the signaling overhead). It should be carefully determined according

to the tradeoff between these two performance metrics.

Figure 3.4 The burst length prediction and the resource reser-
vation determination.

Figure 3.4 illustrates the principle of the burst length prediction and the

aggressive reservation strategy.

3.4.3 FRR-based QoS Provisioning

As discussed above, real-time traffic has a higher traffic class and a more stringent

constraint for burst delay. To achieve a flexible QoS differentiation for different classes

of applications, the FRR scheme is extended for QoS provisioning.

The FRR-enabled OBS system facilitates the QoS provisioning by assigning each

individual class-i traffic two system parameters: the interval ( Tp ) to control when to

launch the BHF into the core network prior to the burst assembly completion, and

the real value ail (defined in Figure 3.5) to achieve controllable BHF pre-transmission

success probability. It is precisely the flexibility of (4) and a il that enables us to

implement the scalable delay reduction and QoS differentiation degree [19, 25] between

classes.

Figure 3.5 presents the discipline of our QoS strategy by illustrating the

behaviors of BHFs belonging to two traffic classes (class-O: delay-sensitive; class-1:

delay-tolerant) when M = 2 . For simplicity, both classes are defined to have the

same burst assembly time and offset time, denoted by To, and rob, respectively, and



Accordingly, the average delay that the time-critical traffic

experiences at the ingress node can be decreased, taking into account of a ° > a 1 (as

will be analyzed in the next section).

For a burst of class-1 traffic (i.e., non-real-time traffic), a simple resource reser-

vation is executed, where a BHF is generated and is sent into the core network when

the burst is fully assembled. The BHF carries the actual burst length (Figure 3.5).

Figure 3.5 The FRR-based QoS provisioning. (a) For a delay-
tolerant data burst, the BHF is not transmitted until the bursti-
fication is completed; (b) For a delay-sensitive data burst, the
FRR scheme is adopted.

For a burst of class-0 traffic, however, an FRR-based process is triggered. A

BHF is launched into the core network prior to the burst assembly completion by

time Bp (Figure 3.5). The delay of the time-critical traffic at the ingress node is

thus decreased (TI? < . The advanced period Bp is a system parameter and can

be determined from a user or a system perspective. The user could specify the QoS

constraint. Alternatively, the network operator can adapt the Bp as a matter of policy,

varying with the differentiation degree requirement between classes. In Figure 3.5, Ta

> Bp
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3.5 Performance Analysis and Simulation Results

The system performance is evaluated via theoretical analysis and simulation results.

Interesting performance metrics include: 77 - the latency reduction improvement of

an FRR system, P, - the BHF pre-transmission success probability, and 'y - the

bandwidth overhead. Hereafter, when we conduct the performance evaluation for the

individual traffic class to which the FRR scheme applies, the referencing of traffic class

will be omitted for notational simplicity. Of more interested is the performance of the

FRR-based reservation scheme as compared with that of a simple reservation scheme

(called NFRR for None Forward Resource Reservation). We also investigate the

prediction performance of an LMS-based LFF under a variety of traffic parameters,

and justify the predictability of the self-similar traffic. The order of LFF is 4, if not

otherwise specified. To focus on the effect of the FRR scheme on latency reduction,

we do not consider the queuing delay due to the edge node scheduling. The following

notations will be used in the analysis:

Average burst delay in an NFRR system

Average burst delay in an FRR system

Burst delay when the BHF pre-transmission fails

Burst delay when the BHF pre-transmission succeeds

The BHF pre-transmission success probability

3.5.1 Latency Reduction Improvement

This subsection is focused on the burst delay at the network edge with the NFRR or

the FRR mode of transmission, and the latency improvement by the FRR scheme.

The delay of a data burst is defined as the average delay of all the packets composed

of this burst, due to the burst assembly and the basic offset time. Therefore, the

burst delay due to burst assembly is
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1. Burst delay in an NFRR system

In an NFRR system, the burst delay at an ingress node due to the burst

assembly and the basic offset time is

2. Burst delay in an FRR system

In a system with an FRR scheme, the burst delay at an ingress node differs

according to the success or failure of the pre-transmission of a BHF. If fails,

the delay is the same as Dr, (D1 = Drib). Otherwise, the delay

Suppose the forward resource

reservation succeeds with a probability of P s , the average burst delay of a class-0

burst is therefore

Now that the burst delay depends on both Ba and Bo , we assume Bo = [1 • Bad ,

where /I is a real value that represents the ratio of Bo over Bad . Hence, the latency

improvement (ii) of the FRR scheme over the NFRR scheme is given by

The systems performance improvement i depends on two parameters: the ratio

of Bo over Bad (p), and the probability that a forward reservation succeeds

Figure 3.6 presents the latency reduction percentage versus P,, when iii varies. It



Figure 3.6 The latency reduction improvement.

shows that ribincreases asToapproaches rag, and reaches its maximum gain when the

ratio is 1. Specifically, if the burst length can be predicted precisely such that the

pre-transmission of the BHF succeeds with a high probability (P, ---> 100%), our FRR

scheme can reduce the latency for the high-class traffic by 66% when r ag = To . This

observation can be further exploited when studying the design issues related to the

burst assembly time and the offset values.

3.5.2 BHP Pre-transmission Success Probability

Equation 3.6 indicates that the probability that a BHF pre-transmission succeeds

(P3 ) has an important impact on the latency improvement n. Since P, depends on,

among others, the difference between the pre-reserved duration and the actual burst

it is important to study the effect of the correction
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The theoretical value of Ps , together with the simulation results of P, under the

real IF traffic and the video traffic, is plotted in Figure 3.7. It is shown that the BHF

pre-transmission succeeds at a probability of more than 95%, if 8 > 2 • a, at which

point the latency improvement is more than 60% (when Tab = To , as shown in Figure

3.6).

Figure 3.8 presents the simulation results by tracing the probability density

function (FDF) of the number of bursts whose actual lengths differ with the pre-

reserved length by a small region of reservation correction. The simulation platform

is OFNET, with packets arriving according to a Foisson process.

For comparison, we also draw the FDF curve of a standard Gaussian distribution

function (the dotted line in Figure 3.8). It shows that the FDF of the simulation

results matches the theoretical curve very well. This also implies that controllable

successful BHF pre-transmission probabilities are achievable as a function of the extra

bandwidth reservation.



Figure 3.8 The FDF of burst numbers versus O.

45
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3.5.3 Bandwidth Overhead

The FRR strategy increases the BHF pre-transmission success probability and

improves the latency reduction performance for the delay-sensitive traffic by means

of an aggressive bandwidth reservation. For the class-i traffic to which the FRR

scheme applies, let yi represent the ratio of the average extra reservation length to

the average actual burst length. 7i can be referred to as the bandwidth overhead of

this traffic class. Now we consider the bandwidth overhead as a long-term system

performance, and omit the index of the burst sequence number. This way, an

advanced reservation length is simply denoted as 4, which is equal to Lid + 6i, where

Lid is the estimated burst length and 6 i the correction margin. The actual burst

length is referred to as L. Let Ai and represent the difference between

and that between Liar and Lid , respectively. Then, the following relationships hold:

The bandwidth overhead of the FRR scheme factors in both the successful and

the unsuccessful pre-transmission probabilities of a BHF. A BHF pre-transmission

succeeds when (i > 0, which implies Ei < 6i . The average Ei in this case, denoted as

where f (Ai) is the distribution function of ei  .

The bandwidth overhead caused by a successful forward resource reservation is

thus:
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Frovided that the distribution of the residuals of our LFF is a zero-mean

Gaussian function with variance a il , and that we have Si = ail • ail, the bandwidth

overhead of class-i traffic can thus be expressed as

Of more interest is the system bandwidth overhead, i.e., the bandwidth overhead

of the whole system where multiple traffic classes exist, defined as

where pi is the traffic load of class-i. For example, in a two-class QoS scenario where

the FRR and the NFRR schemes are applied to the class-0 traffic and the class-1

traffic, respectively; suppose the traffic load distribution of the real-time traffic and

the non-real-time traffic is 3 : 7, then the system bandwidth overhead is

Figure 3.9 illustrates Cy as a function of a°. Both theoretical values (Equation 3.12)

and simulation results are presented.

It is interesting to see that by properly choosing a small margin of correction in

addition to the predicted burst length, the aggressive resource reservation-enhanced

FRR system actually reduces the bandwidth overhead as compared to a system with

a zero-correction reservation algorithm. Frovided a° E [0, 3.0], the upper bound

of the bandwidth overhead corresponds to the one with a° = 0. The reason is

that the correction value, which is much smaller than the length of a data burst,

dramatically increases the BHF forward signaling success probability, and reduces

the wasted resource reservation due to insufficient burst length prediction, which will

otherwise contribute a greater bandwidth overhead. Correction values larger than

some threshold (e.g., 6 ° > 2 • 6° ), however, result in a slightly higher pre-transmission



Figure 3.9 The bandwidth overhead versus 6.

success probability at the cost of a larger system bandwidth overhead (see Figures

3.8 and 3.9).

The FRR scheme gains a significant latency reduction at the cost of a very

small system bandwidth overhead, as can be seen from Figures 3.6, 3.8 and 3.9, which

reinforce the aforementioned conclusion that the FRR scheme should be applied in

tandem with the aggressive reservation algorithm to achieve satisfactory performance

figures of merits with minor operation overhead.

Although the aggressive reservation method results in a higher probability of

successful BHF pre-transmissions at the cost of a bandwidth overhead, the benefit

is more considerable, because bandwidth is no longer a limiting factor in the core

network, and latency will be the major challenge to overcome in the future [45].
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3.5.4 LPF Performance and Traffic Predictability

The accuracy of an LMS-based LFF is assessed by two parameters:

which is the inverse of the Signal-to-Noise (SNR) ratio, and the autocorrelation of the

residuals after the forecast. Special attention has been paid to the self-similar traffic

scenario generated from the FFT-FGN model[46], if not otherwise specified.

The first set of simulations are conducted by tracing the dependence of SNR- 1

on the parameters of burst assembly duration r ag, Hurst parameter H (the traffic

bursty degree), and traffic load p, respectively (Figures 3.10, 3.11, and 3.12). The

performance of an LFF is influenced by all the three variables. Figure 3.10 shows the

effect of the burst assembly duration. While smaller SNR1  values are achieved when

the burst assembly time (T ab) is between 100 — l0001us, a shorter or longer assembly

time results in worse performance (i.e., larger SNR1 ). Meanwhile, it shows that

the optimal rag, i.e., the burstification interval that delivers smaller SNR1 , shifts
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as the H value varies. This can also be seen from Figure 3.11, which shows that

the prediction filter performance degrades slightly as the H value becomes larger.

However, the LMS-based LFF presents acceptable prediction throughout the range

from H = 0.5 to H = 0.9. For example, given that the mean value of the input

traffic flow is 2000 bytes/us and variance 105 , when the burst assembly time is 200ps,

the SNR1  is 0.22% and 0.37% for H of 0.7 and 0.8, respectively. Note that the

burstification interval changes the performance of an LFF on the self-similar traffic.

(i.e., no further assembly on the input trace), the prediction performance

is improved as H gets larger. This phenomenon is consistent with the conclusion given

in [47, 48]. However, the effect of H on the prediction performance diminishes as the

burst assembly interval grows. The traffic load also has substantial effect on the

prediction performance (Figure 3.12). Given the same traffic bursty degree and burst

assembly time, the performance of an LMS-based LFF increases dramatically as the

traffic load increases.

Figure 3.13 Autocorrelation of the input traffic flow and the
residuals of forecast under an LMS-based LFF. H = 0.8.
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Figure 3.13 shows the autocorrelation of the input traffic and the prediction

errors. Although the input trace presents the long-range dependence, the residuals of

the LMS-based forecast resemble white noise.

The simulation results on both performance metrics imply the following

conclusions. First, the LMS approach can deliver satisfactory prediction for the

self-similar traffic. The length of the next incoming burst can be forecasted very

well. Since the real Internet traffic can be best modeled by self-similar processes, our

conclusion strongly verifies the viability of our LFF-based FRR mechanism. Second,

the residuals of the LMS-based forecast are approximately Gaussian distributed,

justifying our previous derivations that are based on the white noise assumption.

Third, in an LFF-based FRR system, a dynamic burst assembly interval is important

to process the real-time traffic. The burst assembly time should be determined

on-line, adaptive to the statistics derived from the previous traffic streams, i.e.,

Tab=g(p, H).Meanwhile, we also propose that with the FRR mechanism, a burst

assembly time should be no less than the burst offset time To . The argument is that

even though a burst assembly finishes earlier than the expiration of its offset time,

the burst should wait for the end of the offset time and then be sent into the core

network afterward. Algorithms to determine the optimal burst assembly duration

T a, , combining other constraints such as the number of data channels and control

channels, are critically important and need further investigation.

3.6 Summary

In this chapter, a novel FRR scheme has been proposed and proved to be practical

in reducing the data burst delay at network ingresses of an OBS system. The FRR

scheme consists of three inherent features: a parallel execution of BHF signaling

and burstification, an LMS-based LFF for burst-length prediction, and an aggressive
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resource reservation. The FRR scheme has also been extended to facilitate QoS

differentiation at network edges.

Theoretical analysis and simulations exhibit encouraging results. The FRR

mechanism leads to a significant latency reduction based on simple algorithms and

mature techniques. QoS differentiation is facilitated at network edges. Furthermore,

it is shown that the FRR scheme, in tandem with the aggressive reservation strategy,

results in less signaling re-transmissions and bandwidth overhead as compared

to a zero-correction system. The LMS-based LFF delivers excellent forecasting

performance for the self-similar traffic which best models the Internet traffic.

Optimal performance of the LFF has been found to depend on a variety of traffic

parameters, including the traffic load, self-similar degree, and prediction interval.

Such dependence on prediction interval implies the importance to devise algorithms

that dynamically determine the burstification duration.

The FRR scheme presented in this chapter is a skeleton based on which a

variety of specific algorithms are possible to solve different practical problems. For

example, the aggressive reservation strategy can be implemented to facilitate different

determination algorithms of the correction values. Similarly, the LFF can be based

on recursive algorithms or on block algorithms. The way in which the edge nodes and

the intermediate nodes communicate to negotiate for parameter adjustments can also

vary. In the following chapters, algorithms and solutions to some of these aspects will

be proposed and investigated.



CHAPTER 4

AGGRESSIVE RESERVATION ALGORITHMS

One of the important features of our proposed FRR scheme is the aggressive reser-

vation strategy. That is, the pre-transmitted BHF attempts to reserve resources

at the intermediate nodes in an aggressive manner, rather than defining the reser-

vation length to be exactly equal to the predicted data burst length. This chapter

will investigate the aggressive reservation strategy for FRR-embedded OBS systems.

Specifically, two algorithms, the success probability-driven (SFD) algorithm and a

bandwidth usage-driven (BUD) algorithm, will be proposed to facilitate the FRR

transmission scheme.

4.1 Motivation

According to the proceeding discussion, the salient characteristic of the aggressive

reservation strategy can be expressed as

where 6 acts as the channel holding time adjustment to compensate for the imper-

fection of the underlying predictive filter. Aiming at increasing the forward reservation

success probability, the aggressive reservation strategy improves the latency reduction

capability of the FRR scheme.

Transmission latency and bandwidth utilization are two important performance

figures of merits to be addressed in the next generation network. The correction value

6 has a significant impact on both the BHF pre-transmission success probability (P3 )-

therefore the latency reduction capability, and the resource usage efficiency (denoted

as rib). It should be determined based on the tradeoff consideration of these two

54
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performance figures, whose relative importance to network management differs in

different network applications.

In addition to the system scenario described in the last chapter, out-of-band

signaling is assumed in this chapter, i.e., data payload and its control header are trans-

mitted in separate channels and at different time domains. Signaling messages (e.g.,

BHFs) are queued and electronically processed by each intermediate node. Signaling

channel is best effort link by link. Queuing losses are possible. However, signaling

channel is presumed to possess a low bit error rate (BER), e.g., from 10 -12 to 10'

[21]. Taking into account the low BER and the heavy burden of maintaining the

burst information, data burst re-transmission is not desirable in the WDM layer.

The underlying predictive filer is assumed to be an N-order LMS-based LFF.

4.2 Aggressive Reservation Algorithms

In this section, we explain the proposed aggressive reservation algorithms, and assesses

their performance in terms of the BHF pre-transmission success probability and the

bandwidth usage efficiency.

4.2.1 Success Probability-driven (SPD) Algorithm

The intuitive motivation of this algorithm is to achieve explicit control on the BHF

pre-transmission success probability (P8 ), and thus achieve a deterministic latency

reduction percentage (See Equation 3.6). For this purpose, the correction value 6 is

defined to be some multiple of the standard derivation (a) of the prediction residuals

resulted from the underlying LFF, i.e., 6 = a • a, where a > 0 is a real value. Given

that the prediction residuals are approximately Gaussian distributed with mean zero

and variance a2 , based on Equation 3.7 and the analysis in Chapter 3, we get
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This way, to achieve some desired P,, one can directly choose an a value that satisfies

The SFD algorithm features the advantage that Ps is deterministic to a

specified a , and is independent of the burstification scheme, the traffic load, and the

performance of the underlying LFF. This algorithm is more appropriate when the

forward reservation success probability (and the latency reduction capability) is of

essence to the network management.

From the implementation perspective, the correction value is defined to be

some multiple of the sample Root-Mean-Square (RMS) of the forecast residuals of

the underlying LFF, i.e.,

where e2 (i), i E 0...N —1 represents the N latest prediction residuals.

Given a specific data burst with length Ld, the probability distribution function

of the corresponding prediction length is

Therefore, the bandwidth usage efficiency of the SFD algorithm can be expressed as
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4.2.2 Bandwidth Usage-driven (BUD) Algorithm

An alternative algorithm is to define the compensation value from the bandwidth

utilization viewpoint. In a system that the explicit control on the bandwidth

usage efficiency is more concerned to the network management, the BUD algorithm

is adopted, whereby 6 is determined directly based on the bandwidth overhead

allowance, expressed as 6 = p • Ld, where p > 0 is a real-value constant. The pre-

Frovided that the BHF pre-reservation succeeds at a high probability (P s -+

100%), the bandwidth usage efficiency due to the introduction of p is

implying that the bandwidth usage efficiency caused by the BUD algorithm can be

easily derived as long as p is determined, and is independent of the performance of

the underlying LFF or the burst assembly scheme (e.g., the determination for Ta).



Equation 4.12 indicates that the BHF pre-transmission success probability of

the BUD algorithm factors in not only the parameter of p, but also the standard

derivation of the forecast residuals, and the average burst length which is affected by

the average traffic load and the burst assembly time.

In both the SFD and the BUD algorithms, the channel holding time contained

in a pre-transmitted BHP (L 7.) is determined by both the predicted data burst length

Ld and the correction value 6. Hereafter, we define the compensation ratio to be the

ratio of 8 to Ld, and denote it as 0. The value of 0 indicates the fraction of the

aggressively reserved extra resource as compared to the actual burst length. Given

a system with determined underlying LFF and the input traffic load, 0 and rag, are

two parameters that the network management should specify to obtain the desired

system performance.

4.3 Simulation Results and Observations

In this section, the two proposed algorithms are compared via simulations. Interesting

performance metrics include the BHF pre-reservation success probability (P,) and the

bandwidth usage efficiency (w), with an emphasis on their dependence on the compen-

sation ratio (0) and the burst assembly time (e ra), given a determined underlying LFF

and the input traffic load. It is expected that the SFD algorithm outperforms the

BUD algorithm when the explicit control on Ps is of the essence, while the opposite
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effect takes place if the control on w is more important. In the following discussion,

Ta will be normalized with respect to the average time to transmit one IF packet of

1500 bytes, and will be referred to as T.

Simulations are conducted based on the self-similarity traffic process, which

best represents the traffic characteristic of the current Ethernet [49, 50]. The packet

stream flowing into the edge node is produced by the FFT-FGN model [46], with the

Hurst parameter of H = 0.75 and an average packet size of 2000 bytes. A 12-order

LMS-based LFF is adopted for burst length prediction.

4.3.1 Performance of the BHP Pre-transmission Success Probability (Ps )

Figure 4.1 shows the relationship between P s and 0. It can be seen that for the same

compensation ratio, both algorithms present similar BHF pre-reservation success

probability, and consequently similar latency reduction capability (see Equation 3.6).

A high Ps is obtainable with small compensation ratio values. For example, when

0 = 0.1, both algorithms achieve P s > 95% (for Tab = 100). Meanwhile, a larger

compensation ratio contributes higher Ps . Since the latency reduction performance

of an FRR scheme increases as P, approaches to 1, the larger compensation ratio will

deliver higher latency reduction improvement. In addition, the impact of 0 on Ps is

affected by the burst assembly time. A T value larger than a single time unit leads

to a more significant improvement on P s .

Figure 4.2 demonstrates the advantage of the SFD algorithm, showing that with

this algorithm, one can achieve explicit control on Ps by properly choosing a, and the

resulted Ps is basically independent of T . This is consistent with Equation 4.2, which

indicates that P, is only a function of a, and therefore it should remain constant as

long as a is determined.

The independence of P, to T does not hold for the BUD algorithm, where P,

is considerably influenced by T, and the behavior of P, versus T differs as 0 changes.



Figure 4.2 BHF pre-transmission success probability versus
the burstification duration.
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Equation 4.12 explains this phenomenon. Given that the average burst length is a

function of both the average traffic load and the burst assembly interval, and that

the average traffic load remains the same, a different T yields a different P3 .

4.3.2 Performance of the Bandwidth Usage Efficiency (w)

Figure 4.3 plots w versus 0 for several values of T. As expected, given the determined

burst assembly time, the two algorithms deliver similar bandwidth usage efficiency

for the same compensation ratio. Meanwhile, it is shown that increasing the compen-

sation ratio initially results in an improvement on w, i.e., the aggressive reservation

strategy actually improves the bandwidth utilization of an FRR system. This is

because the correction value 6 acts as a channel holding time adjustment that

substantially increases the pre-reservation success probability. Since an unsuccessful

forward resource reservation (due to the insufficient reservation duration) incurs the

bandwidth wastage of roughly comparable to the burst size, the reduction of the

unsuccessful BHF pre-transmission owing to the marginal reservation compensation

will eventually result in less bandwidth overhead, consequently better bandwidth

usage efficiency.

Another important implication of Figure 4.3 is that, for any given 7- , there

exists some optimal compensation ratio, i.e., a compensation ratio threshold that

results in the highest bandwidth usage efficiency. Compensation ratios that exceed

such a threshold will cause the bandwidth usage efficiency to degrade. This is because

as 0 gets larger, the bandwidth overhead due to the correction values becomes more

significant, and consequently, the bandwidth utilization drops.

The impact of the compensation ratio on w is also affected by T. On one hand,

for the same compensation ratio, a system with longer burst assembly time delivers

better bandwidth utilization. On the other hand, the optimal compensation ratio
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Figure 4.3 The bandwidth usage efficiency versus the compen-
sation ratio.

becomes smaller as the burstification interval increases, while still resulting in better

bandwidth usage efficiency.

Figure 4.4 exhibits the advantage of the BUD algorithm, in terms of the more

stable and explicit control on the bandwidth usage efficiency as long as the compen-

sation ratio is specified. As T changes, the w of the BUD algorithm remains constant.

This is especially true for larger 'r (e.g., T > 10 and accordingly log ? > 1), or larger

of both algorithms succeed at a high probability (i.e., P s -+ 100%). Likewise, this

conclusion is consistent with our expectation based on Equation 4.8 and Equation

4.10.

4.3.3 Ps Versus w

The discussion in the previous sections leads to a conclusion that, the explicit control

on P, and w, both important performance figures of an FRR system, can be achieved



Figure 4.4 The bandwidth usage efficiency versus the bursti-
fication duration.

by selecting different implementation algorithms and deciding the respective system

parameter (e.g., the compensation ratio). Since the FRR scheme employing the

aggressive reservation strategy improves the latency reduction performance at the

expense of the bandwidth overhead, an intuitive criterion to assess the quality of

the system configuration is to decide how much the bandwidth usage efficiency is

achieved for a determined Ps , or vice versa. An optimal system design should take into

consideration of both performance figures, therefore balancing between the latency

reduction capability (which is linear to Ps ) and the bandwidth overhead.

The relationship between w and P, is directly plotted in Figure 4.5. As expected,

both algorithms possess a similar relationship between these two performance figures.

When Ps is low, w grows as P, increases, indicating that the compensation ratio within

this range improves both w and Ps . In this situation, increasing the compensation

ratio will further benefit the system performance while still lowering the system cost.

When P, approaches a point (whereby the optimal compensation ratio is reached
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or exceeded), w goes downward. This reinforces the aforementioned conclusion that

the compensation ratio larger than some threshold will result in reduced bandwidth

utilization with limited improvement on P. In this case, the correction value should

back off to reduce its negative impact on the system performance.

Figure 4.5 The bandwidth usage efficiency versus the BHF
pre-transmission success probability.

4.4 Summary

This chapter has investigated the aggressive reservation strategy for an FRR-

embedded OBS system. Two aggressive reservation algorithms, each of which is

focused on the explicit control on the BHF pre-transmission success probability and

the bandwidth usage efficiency, respectively, have been proposed. Theoretical analysis

and simulation results demonstrated the respective advantages of the proposed

algorithms.

The following observations can be concluded from the analysis and simulation

results: 1) Given the same compensation ratio, both the SFD and the BUD algorithms
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deliver similar performance in terms of the bandwidth usage efficiency and BHF

pre-transmission success probability—therefore the latency reduction percentage of

the FRR-embedded OBS system. 2) The SFD algorithm facilitates direct control

on the BHF pre-transmission success probability. Deterministic latency reduction

requirement can thus be achieved by directly selecting the compensation ratio. 3)

In contrast, the BUD algorithm enables explicit control on the bandwidth usage

efficiency, and is more appropriate when the bandwidth utilization is of more concern

to the system management.

The analysis and simulation results presented in this chapter also imply that

several issues remain to be addressed to further improve the performance of the FRR

scheme. For example, in the BUD algorithm, w diverges from the expected value

defined in Equation 4.9 when the burstification duration is small (e.g., 'r < 10).

Such performance discrepancy is primarily due to the inherent mechanism of the

FRR scheme. That is, when the pre-reserved resource is insufficient to transport

the data burst, the BHF is re-transmitted with a new reservation length equal to

the actual burst length, and the pre-reserved resources are simply left unused. If

the BHF pre-transmission fails at a high probability, the bandwidth usage efficiency

degrades significantly. Therefore, innovative control schemes that can further reduce

the bandwidth overhead caused by this source are highly desired.



CHAPTER 5

PERFORMANCE IMPROVEMENT FOR THE FRR SCHEME

This chapter is focused on the optimization issues of the FRR scheme. The aim is

to enhance the performance of the FRR scheme by improving the bandwidth usage

efficiency when the BHF pre-transmission fails or succeeds.

5.1 Motivation

The discussion in the previous chapters demonstrates that the bandwidth usage

efficiency of the FRR scheme is affected by two factors: the compensation ratio 0

which is introduced by the aggressive reservation strategy, and the bandwidth wastage

due to insufficient forward resource reservations.

Accordingly, there are two disciplines to improve the bandwidth utilization of

the FRR-embedded OBS network. The first one is a proper planning mechanism for

the correction value 6, which serves as a channel holding time adjustment. A too

large correction value (e.g., the compensation ratio is larger than the compensation

threshold) induces considerable negative impact on the bandwidth utilization with

only marginal improvement on the latency reduction. This problem can be overcomed

by properly budgeting 6 in order to balance the performance gains (e.g., the latency

reduction capability) and the operation cost (e.g., the bandwidth overhead).

The other discipline is a control mechanism which reduces the bandwidth

wastage due to unsuccessful forward resource reservations. In the FRR scheme,

nothing is done to the pre-reserved resource which is insufficient to support the

transmission of the actual data burst. This results in the bandwidth utilization

discrepancy, especially when the BHF pre-transmission fails with a high probability.

Mechanisms that make intelligent usage of such resources are highly desired.
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In this chapter, the FRR scheme optimization issues will be investigated based

on these two disciplines. First, the channel holding time adjustment is determined

to optimize the system performance in terms of the minimum reservation overhead

and the maximum net performance gain, respectively, thus providing a guideline for

the network designer to configure the system parameters according to the desired

performance figures of merits. Second, a bandwidth enhancement mechanism is

explored to make better usage of the network resources. The aim is to render

the bandwidth enhancement capability for the FRR scheme, thus improving the

bandwidth utilization of the FRR-embedded OBS systems. Hereafter, for simplicity,

an FRR scheme which adopts the proposed bandwidth enhancement mechanism will

be referred to as the BEFRR (Bandwidth Enhanced FRR) scheme, and that without

the bandwidth enhancement mechanism as the basic FRR scheme.

5.2 Determining the Channel Holding Time Adjustment

The channel holding time adjustment has a significant impact on the important

performance figures of the FRR-enabled OBS networks. With a too small adjustment

value (e.g., 6 -4 0), the potential benefits of the aggressive reservation strategy (in

terms of the improved n and Ps , and the reduced 'y) are not fully exploited, while

a too large adjustment value induces adverse impact on the reservation overhead

with only marginal improvement on the latency reduction. The intuitive criteria to

justify the usage of a specific 6 value are to assess how much the latency reduction

it can contribute, how much the associated reservation overhead is, and how much

the performance improvement outweighs the system cost, which is referred to in this

chapter as the net performance gain.

In this section, the FRR-enabled system performance is improved by deter-

mining the channel holding time adjustment when the performance optimization

criteria change.



68

5.2.1 Design Objectives and Assumptions

In this chapter, the system performance is optimized in terms of the following two

perspectives:

• To minimize the reservation overhead 'y. That is, to find the adjustment

threshold (5* which yields the minimum reservation overhead 7*.

• To maximize the system net performance gain 0, which is formulated as

In Equation 5.1, E I represents the total performance improvement enabled by

the aggressive reservation strategy, and > C is the associated operation cost.

k is the loss/gain ratio representing the relative importance of the system cost

to that of the performance gain. The network management should specify its

actual value according to the specific network conditions. 0 is thus a system

characteristic to justify the optimality of the adjustment value.

Note that the interesting performance figures involved in both components of

Equation 5.1 are optional. For example, the signaling message overhead may also be

considered as a factor of the system cost in addition to the reservation overhead. In

this chapter, however, a preliminary system optimization problem is considered, i.e.,

the system performance gain is merely targeted to be the latency reduction capability,

and the reservation overhead the system cost.

The following assumptions are made for deriving the optimal channel holding

time adjustment to meet different system optimization objectives.

The burstification interval (Tab ) is equal to the offset value between a BHF and

the data payload (To ). This way, in Equation

Without loss of generality, the network situation is assumed to be k = 1, i.e.,

the bandwidth wastage and the latency improvement capability are of equal essence
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to the network management. The proposed solution can be easily extended for other

network scenarios with different loss/gain ratios.

The Success Frobability Driven (SFD) algorithm is adopted to implement the

aggressive strategy, wherein the channel holding time adjustment is set to be some

multiple of the standard derivation of the prediction residuals,

a is a real-value. This way, finding the optimal adjustment value can be simplified

to determining the value of a, since a is independent of the choice of the a value for

the given underlying adaptive filter and the WDM network.

5.2.2 Optimize the Reservation Overhead 7

Based on the previous discussions, both 7, and y1 are functions of 6, and can be

expressed as

respectively, where Ld is the average data burst length. Combining Equation 5.2 and

Equation 5.3,

To achieve the optimal system performance in terms of the minimum reservation

overhead, the a value should satisfy

Therefore,
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Both a and Ld are independent of the choice of the a value, and are a parameter of

the burstification interval Ta . Denote Pi-, as qt . The channel holding time adjustment

which delivers the minimum reservation overhead is thus

respectively, wherein the Q(•) is the Q— function [44]. Similarly, the minimum reser-

vation overhead 7* is

5.2.3 Optimize the Net Performance Gain

In this subsection, the optimal adjustment is determinated according to its effect on

the system net performance gain , as defined in Equation 5.1. Based on the previous

discussions, the parameter V) becomes

The a value which achieves the maximum value for b is thus

Therefore, the optimal adjustment value which optimizes the system in terms of the

maximum IPA is
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Similarly, the latency reduction capability, the reservation overhead, and the system

net performance gain in this situation can be expressed as

5.2.4 Numerical and Simulation Results

Simulations are conducted to justify the above adjustment value determination for

different optimization objectives as the burstification interval changes. A 12-order

LFF is utilized for data burst length prediction. The traffic flowing into the ingress

node is assumed to be a self-similarity process, generated based on the FFT-FGN

model [46], with the Hurst parameter of H = 0.75 and the average packet size of 2000

bytes. The burst assembly duration (ia ) is normalized with respect to the time to

transmit one IF packet of 1500 bytes.

Before verifying the optimality of the preferred a value for different design

objectives, the effect of the burstification interval on q t is first illustrated (Figure

5.1), as qt is an important parameter of the optimal adjustment value. This figure,

together with Equation 5.6 and Equation 5.12, implies that the optimal adjustment

value should change dynamically as the burstification interval varies, so as to optimize

the network resource utilization and the system performance.

Figure 5.2 represents the effect of the channel holding time adjustment on

different performance figures of merits when the burstification interval is set to be

1000 and k (i.e., the loss/gain coefficient) is equal to 1. It can be seen that different

optimal adjustment values exist for different system performance measurements.



Figure 5.2 The system performance parameter versus the
channel holding time adjustment.
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Based on Equation 5.6, the a values which deliver the minimum Ay and the

respectively. The simulation results

match very well with the analytical solutions.

It is also observed that both the reservation overhead and the net performance

gain are improved when the a value initially grows larger than 0, and that their

performance gets degraded when the a value grows larger than 3. This implies that

the optimal adjustment value should be in between.

Figure 5.3 presents the performance of the reservation overhead delivered by

different channel holding time adjustments as the burstification interval changes.

It can be seen that the a value determined by Equation 5.6 always yields the

minimum reservation overhead as the burstification interval changes. This justifies

the optimality of the above adjustment value determination.

Figure 5.3 The reservation overhead versus the burstification
interval.

When the system optimization objective is to maximize the net performance

gain IPA, the a value concludes to be determined by Equation 5.12. Figure 5.4 reinforces



5.3 Bandwidth Enhanced FRR Scheme

This section describes the system environment and the design objective of the BEFRR

scheme, illustrates the BEFRR scheme principle, and assesses its performance in terms

of the bandwidth savings and the signaling overhead.

5.3.1 System Model and Assumptions

The design for the BEFRR scheme is based on the same system environment as

described in Chapter 3. Several functionalities of the edge nodes that are critical to

our current study are described.

Both the ingresses and the intermediate nodes are equipped with timers to

make sure an action is carried out within specific time constraints. For example,

Timer A at the ingress node is set to be the burstification duration. A time-out on
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Timer A indicates that the burstification is completed. Meanwhile, Timer B at the

intermediate node is set to be the estimated amount of time that a data burst lags

behind the receipt of the corresponding BHF. A time-out on Timer B indicates the

transmission failure of a data burst. Likewise, a Timer C at the intermediate node

monitors the channel holding time reserved for a data burst. In the assumed system

scenario, the Switching Control Unit (SCU) at the intermediate node is responsible

to release—when necessary—the bandwidth which has been reserved for a data burst.

The bandwidth release operation is triggered by either a time-out event from Timer

C, or a particular message which explicitly requires such an operation.

The OBS system under consideration adopts a void-filling (VF) strategy for data

channel scheduling [51]. The basic principle of the VF strategy is that the interval

between two previously scheduled periods of resources can be used to transmit the

traffic which arrives later, thus filling the void. The void-filling method facilitates

flexible utilization of the network resources.

Furthermore, each intermediate node of the core network is identified by an

index i, where i = 1, ... , n, and ii represents the total number of the intermediate

nodes in the core network.

The following notations will be utilized in the BEFRR description (i = 1, . . . , n):

• Ta : The time when a new burst traffic begins to assemble at the ingress node,

• Th (i) : The time when a BHF is received at the i-th intermediate node. Th (0)

represents the time when the BHF is transmitted into the the core network at

the ingress node,

• T(i): The time when the i-th intermediate node receives a signaling message

requiring the release of the pre-reserved resources. T h(0) represents the time

when the actually assembled data burst length exceeds the reservation value

contained in a pre-transmitted BHF.
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• 19(0): The time interval for the SCU of the 0-th intermediate node to process a

BHF. It is assumed that 19(0) =19 for all 0 E {1 	 n},

• 0(0): The time interval for the switching matrix configuration at the 0-th inter-

mediate node to become stable. It is assumed that 0(i) = 8 for all i E {1 . . . n},

• ro(0):The offset between a BHF and its data payload at the output port of the

0-th intermediate node. Tro(0) represents the initial offset between a BHF and

its data payload at the ingress node.

• Ts(i): The starting time when the resource at the 0-th intermediate node is

reserved for a data burst

• Te (0): The ending time when the resource at the 0-th intermediate node is

reserved for a data burst

The design of the BEFRR scheme is guided by the following considerations:

1. The bandwidth wastage of an FRR system, especially that due to the unsuc-

cessful forward resource reservations, is minimized;

2. No extra end-to-end burst delay is induced;

3. The operation cost of the intermediate node, such as that for the lightpath

tear-down and setup, and that for the switching matrix re-configurations, is

maintained as low as possible.

The essence of the proposed bandwidth enhancement mechanism is to adopt a

crank-back procedure at the intermediate nodes to release the pre-reserved resources

which are insufficient to support the corresponding data burst. In order to maintain

the BHF pre-transmission success probability, thus satisfying the latency reduction

requirement, the BEFRR scheme still employs the aggressive strategy for resource

reservation as the basic FRR scheme does. Likewise, the delayed-reservation is utilized

to improve the network throughput.
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5.3.2 The BEFRR Scheme Principle

The proposed bandwidth enhancement mechanism involves both the edge node

behavior and the intermediate node behavior. To emphasize the bandwidth

enhancement functionality, we present the BEFRR principle by describing its

distinctive characteristics as compared to the basic FRR scheme:

1. Instead of comparing the data burst length with the reservation length carried

in a pre-transmitted BHF until the burst assembly is completed, the BCU in

the BEFRR scheme begins to monitor the actually assembled burst amount

immediately after the BHF is sent out at Th (0).

If by the time To, + r a , the actual burst length does not exceed the reservation

value contained in the pre-transmitted BHF, the forward resource reservation

succeeds and the data burst is transmitted without additional action to be

taken.

Otherwise, the following steps should be executed.

2. As soon as the actual burst length exceeds the pre-reservation length at some

time Tc(0), where Th(0) < TA) < Ta + r a , the BCU issues a signaling message,

namely, a CLEANUF message, to nullify the pre-reservation requirement (i.e.,

the pre-transmitted BHF). The CLEANUF message carries the identifier of the

BHF which it attempts to invalidate.

3. At the 0-th intermediate node, upon the reception of the CLEANUF message

at Tc(0, the SCU promptly triggers a crank-back procedure. That is, the

SCU releases the pre-reserved resources for the corresponding data burst, and

makes this period available to other burst transmissions. Simultaneously, the

CLEANUF message is forwarded to the next intermediate node, until all nodes

that have reserved resources for the corresponding data burst are notified.

If by the time MO, the switching matrix has been configured for the corre-



78

the switching matrix should

be released immediately.

Figure 5.5 illustrates the difference between the basic FRR scheme and the

BEFRR scheme at the i-th intermediate node. For simplicity, only the circumstance

when a BHF pre-transmission fails and the crank-back procedure occurs is presented.

Figure 5.5 The comparison between the basic FRR scheme
and the BEFRR scheme (a) in the basic FRR scheme, nothing
is done with the insufficient pre-reserved resources; (b) in the
BEFRR scheme, a crank-back procedure is employed at the
intermediate node to release the pre-reserved resources.

Reservation clean-up is an essential feature of the BEFRR scheme to reduce

the potential bandwidth wastage due to the insufficient pre-reserved resources. This

procedure, in tandem with the VF-scheduling method, enables the intermediate node

to make intelligent usage of the available network resources, and improves the system

throughput.

Another important feature of the BEFRR scheme is that the delayed-reservation

is adopted and the switching matrix is configured in a just-in-time manner, i.e., the

lightpath at the intermediate node is not configured for a reservation until T.,(i) — O.

This characteristic enables the CLEANUF message, which satisfies
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T8 (i) — 0, to not only reduce the bandwidth wastage, but also avoid the unnecessary

operations for lightpath set-up and tear-down.

The benefits of the BEFRR scheme is facilitated by the message dialog between

the ingress nodes and the intermediate nodes. The particular message, i.e., the

CLEANUF message, is thus employed to make the intermediate nodes aware of the

invalidity of the pre-transmitted reservation requirement.

Comparing with the basic FRR scheme, the system cost of the BEFRR scheme

is induced by the extra signaling transmissions, and is equal to 0(m) , where m is

the number of the CLEANUF messages to be transmitted. Taking into account of

the reduced switching matrix operation and the improved bandwidth usage efficiency,

together with the fact that the BHF pre-transmission failure probability is typically

small (e.g., less than 5% in a steady system), the benefits of the BEFRR scheme are

more considerable.

5.3.3 Theoretical Analysis

The objective of the bandwidth enhancement mechanism is to reduce the potential

bandwidth wastage caused by insufficient forward resource reservations in the basic

FRR scheme. Therefore, the interesting performance figure of merit is the bandwidth

savings for a given burst length Ad, and the associated signaling overhead, which is

defined as the possibility to transmit the CLEANUF message. For simplicity, the

effect of 0 is considered to be negligible as compared to the length of the data burst.

The BEFRR scheme provides bandwidth savings when the pre-reserved

resources are insufficient to support the actually assembled data burst. As empir-

ically demonstrated in the previous chapters, the prediction residuals delivered by the

underlying LFF is approximately Gaussian distributed with mean Ad and variance a2 ,

and the probability distribution function of the prediction value (Ad ) corresponding

to a given Ad is expressed by Equation 4.4. Consequently, for a given burst length
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Ld, the average bandwidth saving (L8 ) is

As a CLEANUF message is transmitted as soon as the actual burst length

exceeds the reservation value contained in the pre-transmitted BHF, the associated

signaling overhead, denoted as So , can be expressed as the probability that the forward

resource reservation fails, i.e.,

Equation 5.17 and Equation 5.18 represent the upper bounds of the bandwidth savings

and the signaling overhead associated with the BEFRR scheme, respectively.

Tighter bounds with respect to L, and So are derivable for the BEFRR scheme,

if a more practical and stricter situation is considered that the reservation requirement

carried by a pre-transmitted BHF should be no less than 0. In this case, the average

bandwidth wastage corresponding to a given data burst of length Ld is



5.3.4 Simulation Results and Discussion

Simulations are conducted to examine the advantages of the BEFRR scheme as

compared to the basic FRR scheme. Similar to the last section, a 12-order LFF

is utilized for data burst length prediction, and the traffic flowing into the ingress

node is assumed to be a self-similarity process, generated based on the FFT-FGN

model, with the Hurst parameter of H = 0.75 and the average packet size of 2000

bytes. In the rest of the chapter, the burst assembly time (era) will be normalized

with respect to the average time to transmit one IF packet of 1500 bytes, and will

simply be referred to as T.

The proposed BEFRR scheme improves the bandwidth usage efficiency (w) as

compared to the basic FRR scheme, and the improvement is especially significant

when the correction value (6) is small, whereby the BHF pre-transmission fails at

a higher probability (Figure 5.6). It is interesting to see that for any given burst

assembly duration T, the BEFRR scheme delivers similar bandwidth usage efficiency

as that in the basic FRR scheme after the optimal correction value (i.e., the correction

threshold that delivers the maximum w for the basic FRR scheme) is reached. This

implies that when 6 is large, only a small fraction of the total bandwidth overhead

is caused by the insufficient forward resource reservation, while the major part is

induced by the aggressive reservation strategy. Therefore, the improvement of the

BEFRR scheme is not significant in this case.

The above conclusions also hold in Figure 5.7, which plots the relationship

between the bandwidth usage efficiency and the BHF pre-transmission success proba-

bility (P8 ) . As expected, both BEFRR scheme and the basic FRR scheme yield similar

w as P, approaches 100%. Note that although Figure 5.6 and Figure 5.7 present only

the simulation results where the BUD-based algorithm is utilized as the underlying
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Figure 5.6 The bandwidth usage efficiency versus the
correction value.

aggressive reservation strategy, the same conclusions hold for the system which adopts

the BUD-based algorithm.

Another advantage of the BEFRR scheme is that it enables the aggressive

strategy to perform more straightforward control on the bandwidth usage efficiency

(Figure 5.8 and Figure 5.9). Figure 5.8 presents the bandwidth usage efficiency

versus the burst assembly time when the BUD algorithm is utilized to implement

the aggressive reservation strategy. As observed, as long as p (p = 0) is specified, the

BEFRR scheme achieves almost constant bandwidth usage efficiency as the expected

value (w = 1 — p). That is, the BEFRR scheme enables the BUD algorithm to be

more independent of B. Such benefit is more significant for smaller p, with which the

BHF pre-transmission fails at a higher probability. Although the independence of the

bandwidth usage efficiency to the burst assembly time does not hold for the

BUD-based aggressive reservation algorithm, the BEFRR scheme also benefits the SFD

algorithm by making w to be more proportional to the correction value S (Figure
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5.9). For example, in the basic FRR scheme, when T = 100, the bandwidth usage

efficiency delivered by a = 2 is higher than that both by a = 1.5 and a = 3 (Note that

On the contrary, in the BEFRR scheme, a larger a value (i.e., the larger

correction value 6) results in the higher w value. The curves in both figures reinforce

Figure 5.9 The bandwidth usage efficiency versus the bursti-
fication duration.

the aforementioned conclusion that the bandwidth enhancement capability of the

BEFRR scheme is reduced as 6 increases, and that the BEFRR scheme presents only

marginal bandwidth enhancement capability when the compensation ratio is large

enough, Therefore, when the correction value is relatively large, a proper planning

mechanism for 6 plays the more important role in the system bandwidth utilization.

5.4 Summary

This chapter studies the performance improvement issues of the FRR-enabled OBS

system. Two solutions have been proposed, based on the channel holding time

adjustment and bandwidth enhancement mechanism, respectively. Theoretical
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analysis and simulations results demonstrate the advantages of the proposed solutions,

and provide a guideline for the network designer to build up a network with the desired

performance measurements.

The following conclusions can be drawn:

1. By adapting the channel holding time adjustment according to the changes

of the burstification interval, the aggressive strategy-based FRR scheme can

achieve the optimal performance of different objectives. Meanwhile, the effect

of the channel holding time adjustment on the network performance is also

influenced by the input traffic parameters.

2. By allowing a CLEANUF message to nullify the pre-reservation requirement

and performing the switching matrix configuration just-in-time, the proposed

BEFRR scheme yields better system performance. The BEFRR scheme reduces

the bandwidth wastage due to the insufficient forward reservations at a low cost

of signaling overhead, and enables the correction value to perform more straight-

forward control on the bandwidth usage efficiency. The benefit of the bandwidth

enhancement mechanism is more significant when the correction value is small

(whereby the BHF pre-transmission fails with a higher probability)

The performance improvement issue for the basic FRR scheme is an on-going

research. There are still some work to be carried on to improve validate and implement

the proposed algorithms and signaling scheme.



CHAPTER 6

CONTROL ARCHITECTURE AND ENABLING TECHNOLOGIES

FOR ETHERNET-SUPPORTER IP OVER WDM MANS

This chapter is focused on the control architecture and the enabling technologies

for Ethernet-supported IF-over-WDM metropolitan area networks. The general

architecture of an access node in such networks will be presented, and solutions

to facilitate the essential system functionalities will be proposed. The aim is to

render the flexible and high capacity metropolitan network which provides service

provisioning improvement and resource utilization efficiency for the data-dominated

traffic. Specifically, an enhanced address resolution protocol is proposed to reduce

the call setup latency and the signaling overhead associated with the address probing

procedure; a burst-based transmission mechanism is adopted to improve the network

throughput and resource utilization efficiency; and a hop-based wavelength allocation

algorithm is investigated to provide flexible bandwidth multiplexing with fairness

and high scalability.

6.1 Motivation

As stated in Chapter 1, the Ethernet-supported IF-over-WDM ring paradigm

provides a feasible solution for the new generation metropolitan optical network,

enabling a graceful migration from the current voice-oriented MAN prototype into

a world optimized for packets. The unprecedented bandwidth supportability of

WDM technology, in tandem with the packet-oriented Ethernet prototype, facilitates

a common shared infrastructure, thus making a new generation of optical MAN

optimized for scalable, survivable, and IF-dominated networks at gigabit speeds

possible.

86
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To unleash the potential of the packet-based WDM metropolitan ring network,

efficient Media Access Control (MAC) protocols are needed to coordinate the system

resources, in addition to the system infrastructure considerations. This is especially

true when the data packet processing in the optical domain is still not yet mature.

Ethernet, while a natural fit for data traffic, has evolved to support full duplex-

switched infrastructures but lacks the flexible MAC mechanisms to manage the access

across multiple users in the WDM ring prototype. The foregoing challenges require

innovative protocols and algorithms in the metropolitan environment that retain

all the advantages of the packet-based transport mechanism while rendering elastic

bandwidth allocation and graded levels of services.

Intensive research endeavors have been devoted in the design and implemen-

tation of the metropolitan optical network ([30, 31, 52, 53, 54, 55, 56, 57, 58] and

references therein). The efforts have been focused on either the network architectures

and configurations, or the MAC protocols and the service provisioning mechanisms.

For example, E. Hernandez- Valencia [31] presented a hybrid architecture consisting of

Ethernet/TDM service solutions to enable storage networking and Ethernet transport

over SONET/SDH networks. N. Madamopoulos et al. [53] investigated the impact

of different add-drop modules implementations on the system performance. J. Cai et

al. [55] proposed the MultiToken Interarrival Time (MTIT) protocol to provide the

efficient bandwidth multiplexing for the WDM ring architecture. Alternative MAC

protocols focusing on the fairness, scalability, and various service provisioning have

also been reported.

This chapter designs the access nodes of the Ethernet-supported IF-over-WDM

metropolitan network, and devises the enabling technologies combining the space,

time, and channel domains to systematically facilitate the new network infras-

tructure. Specifically, a set of mechanisms comprised of the address resolution,

the traffic engineering, and the wavelength allocation has been proposed to render
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packet-optimized optical MAN with the transport performance betterment (e.g.,

reduced transport delay), the resource utilization efficiency (e.g., improved network

throughput), and fairness and scalability for the network resource access control.

6.2 System Environment and Problem Statement

This section details the network environment upon which our investigation will be

conducted. The general control architecture of an access node will be presented,

followed by the design objectives of our proposed technologies and algorithms.

6.2.1 System Environment

In this chapter, a ring-shaped metropolitan network is considered, where N access

nodes (ANs) are interconnected via counter-rotating dual fibers (i.e., the feeder

ring) [59]. The fiber ring consists of the inner ringlet and the outer ringlet, each of

which makes use of the full bandwidth of the fiber, i.e., the individual wavelength

can be transported concurrently in both ringlets, assuming that each access node

has adequate receiver capabilities (see Figure 6.1). Each fiber supports W + 1

wavelengths as parallel channels, of which W wavelengths (A i , ..., )w ) are for data

channels and one for the control channel (AO. If necessary, the network capacity

can be gradually updated by parallel fibers. The aggregated bandwidth can scale to

multi-terabits/second.

Vast research efforts have been focused on the bandwidth multiplexing and

channel access control issues for the packet-supported WDM networks. The majority

of the approaches centers on the WDM layer. The implementation complexity, cost,

and performance have impact on the network design. Interested readers are referred to

[54, 55, 56, 57, 58] for detailed discussions and to [13] for an overview. In this chapter,

the efficient bandwidth sharing of the optical fiber is achieved from the perspectives

of the signaling transmission and the space reuse of wavelengths.
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Figure 6.1 The prototype of a ring-based metropolitan optical
network. (a) The dual-fiber ring; (b) The access node connecting
the feeder ring and the LAN.

Access to the network resources (e.g., the data transmission channel) is typically

based on two alternative schemes: pre-allocation based protocols and reservation

based protocols. While the former technique assigns transmission rights to different

nodes in a static and pre-determined manner, the reservation-based technique

arbitrates the bandwidth access to the traffic demand in a real-time fashion, i.e.,

the resource reservation request is delivered throughout the ring layout when a data

transmission is required. In the assumed system scenario, the reservation-based

method is adopted, as it yields flexible bandwidth utilization and is a natural fit for

the dynamic data traffic. The data payload is launched into the network after the

corresponding reservation request is confirmed success.

Two or more data transmissions on the same wavelength along the same

section of the fiber result in a collision. Depending on the approach the network

resource contention is addressed, signaling protocols discussed in the literature can be

classified into two main categories: 1) collision-free strategies, and 2) collision-and-

retry strategies. These variants result in different complexity of network hardware

requirements, and different optical bandwidth multiplexing efficiency. In this chapter,
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the control packet transmission is decoupled from that of the data payload. While

a control packet reserves the resources according to the collision-and-retry strategy,

the data payload is guaranteed with a single-hop transmission without any delay or

loss in the feeder ring.

In addition, the destination-stripping method is employed to extract the data

traffic from the ring network. This method, together with the wavelength reuse of the

data transmission (owing to the wavelength allocation algorithm as described in the

next section), enables the concurrent data channel usage in disjoint source-destination

pairs, yielding an improved degree of bandwidth multiplexing and resource utilization

efficiency within the ring.

One or more Gigabit Ethernet (GbE) Local Area Network (LAN) is connected

to the feeder ring via the access nodes. The LAN is typically composed of enterprises

or high-speed end users. Hereafter, the k — th router in the LAN attached to the

access node A i (i E { 0, N — 1 }) will be referred to as A iRi , assuming that

where M is the total number of routers in the attached LANs.

Besides the connectivity functionality, the AN also provides MAC solutions which are

necessary to render efficient packet-oriented traffic processing and transmission at the

WDM layer. The detailed architecture and functionality of the access node will be

described in the next subsection. Throughout this chapter, the traffic flowing from

an LAN to the metropolitan ring will be referred to as the upstream traffic, while

that from the metropolitan ring to the LAN as the downstream traffic.

6.2.2 Access Node Architecture

Each access node has two interfaces: The gigabit Ethernet interface which is used for

the packet processing and the interaction with the associated local access networks,

and the optical link interface to access the WDM ring in the optical domain.
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Figure 6.2 illustrates the functional architecture of an access node, which mainly

consists of the transmitter logic, the receiver logic, and the control logic.

Figure 6.2 The functional architecture of an access node.

The main function of the transmitter logic is to adapt the low bit-rate tributaries

(up to 0C-12) of the local network to the transmission granularity suitable for WDM

transport media, and to forward the traffic to the destination node. In the proposed

system, the transmitter logic assembles the upstream data packets into the larger

granularity, namely, a data burst. The traffic assembly mechanism is similar to that

proposed for the backbone [15, 13], and is tailored for the Ethernet-supported WDM

ring topology, as will be discussed in the next Section.

The transmitters emit the assembled traffic into the metropolitan network. A

transmitter may be either fully tunable to all data channels, or it may be partially

tunable to more than one but fewer than W wavelengths [57], depending on the

preference of the network management. In the proposed system, the number of

tunable transmitters is impacted by the wavelength allocation algorithm (as will be

discussed in the next section). Multiple transmitters of an access node can transmit

on different wavelengths concurrently with negligible tuning latency [60, 61], enabling

the better exploit of the parallel transmission capability of the WDM technology. The
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transmitter queues are provided to accommodate the traffic waiting for the access to

the data channels.

The receiver logic is similar to the transmitter logic. Each node is equipped

with tunable receivers, which can be fully tunable or partially tunable just like the

transmitters. The downstream traffic is disassembled into packets before being trans-

ported to the individual host in the LAN. The receiver queue is provided to order the

processing of the traffic according to their Class of Service (CoS).

The control logic coordinates the traffic transmission and processing, and facil-

itates the traffic engineering functionalities. Of particular interests in this chapter are

the ARF module, the burst assembly control module, and the wavelength allocation

module.

The ARF module is designed to support the address probing mechanism

proposed in this paper. Each access node is embodied with two tables: the local

address mapping (LAM) table registering the <protocol type,protocol address,

physical address> triplet of all the routers in the subordinated LANs, and the remote

address mapping (RAM) table recording the address translation results obtained

from the executed address inquiry procedures.

The traffic assembly module controls the traffic assembly/disassembly procedure.

To enable the connectivity services with graded levels of performance, the CoS

mapping function should be incorporated in this module to map the incoming traffic

flow into a specific transport class.

The wavelength allocation module, in conjunction with the scheduling module

and the traffic selection module, enables the coordination between the control packet

and the data payload, as well as resolves resource contentions. The implementation

of such control functionalities requires the Management Information Base (MIB) and

other functional components to keep track of the network status, such as the data
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channels availability (full or empty) and the configuration status of the data channel

connections.

Figure 6.2 also highlights some functional modules which are necessary for

the multi-facet network infrastructure. For example, the node discoverer module

maintains the topology information of all the nodes in the ring, and monitors the

fiber cut or node failure events by periodically sending sub-wavelength signals to its

neighboring nodes, both of which are essential to deploy the protection/restoration

strategies. However, the implementation of such components is beyond the scope of

this chapter.

The designed access node architecture has the following properties.

• It facilitates the Ethernet-supported IF-over-WDM integration to support the

dynamic data traffic, thus overcoming the inefficiency and inflexibility of the

current SONET-dominated infrastructure and its circuit-based provisioning

model.

• It allows the deployment of mechanisms in both the Ethernet and WDM

perspectives, thus enabling the better synergy of both mature electronic

protocols and advanced optical technologies.

• It is flexible and cost effective. The individual functional component is a

skeleton based on which a variety of algorithms and devices can be adopted and

developed according to the preference of the network management. Meanwhile,

the service provisioning requires no SONET overhead bytes and synchronization

among access nodes, nor the dedicated protection bandwidth.

Theoretical analysis and simulation results will demonstrate that such an access

node architecture, in tandem with the proposed enabling technologies, yields improved

network performance with reduced system cost.
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6.2.3 Problem Statement

Based on the aforementioned service requirements and network architecture, the

design objectives of the proposed algorithms and technologies can be summarized

as follows.

• Improve the service provisioning for the application streams in terms of the

transport latency, including both the call setup delay and the transmission

delay in the metropolitan network.

• Improve the system efficiency in terms of the resource utilization, the network

throughput, and the signaling transmission requirements.

• Frovide fairness and scalability control among the traffic between the access

nodes, as well as differentiated classes of services for the multi-type applications.

In the proposed system, these requirements are implemented with mechanisms

developed at both the data link layer and the medium layer, based on the presented

architecture.

6.3 The Enabling Technologies

This section speculates the proposed enabling technologies and algorithms, and

discusses their impacts on the Ethernet-supported IF-over-WDM metropolitan

network. Notations are defined in Table 6.1 to simplify our description.

6.3.1 The Enhanced Address Resolution Protocol (E-ARP)

Typically, an Ethernet-supported network employs the address resolution protocol

(ARF) [62] to translate the network layer address (i.e., the IF protocol address) into

the link layer one (i.e., the hardware address). While very simple and well-suited to

the LAN-hardened Ethernet (which is broadcast in nature), the original ARF cripples

the address probing procedures in the metropolitan optical network.



Explanation

Protocol type of the data packet.

Hardware address of the target of this packet.

Protocol address of the target of this packet.

Hardware address of the sender of this packet.

Protocol address of the sender of this packet.

The time when a data burst begins to assembly at the access node.

The time when an upstream data burst is sent into the metropolitan
network.

The time when a control packet is sent into the metropolitan network
for the / — th reservation attempt.

The time when an access node receives a control packet.

The random time when a control packet is delayed at the source access
node after the 1 — th reservation attempt fails.

The burst assembly duration.

The data burst delay owing to signaling transmissions.

The round-trip time for a control packet to be processed in the MAN.

The maximum number of resource reservation attempts before a data
burst is dropped.

The time the specific data channel will be available at the destination
access node.

The maximum number of hops a data burst is transported in the ring.

The total number of hops to support concurrent transmissions between
any pair of access nodes.

The number of hops for a transmission to propagate from the source to
the destination node.

The number of data channels required to support the concurrent
transport between any pair of access nodes.

The total number of data channels available in the system.

The k — th data channel subset shared by the traffic which traverses k
hops.

The number of data channels in the data channel subset Sk.

The j — th data channel in the subset Ski.

The most preferred data channel for node Ai to transport the traffic
requiring k hops.
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Consider routers A1R2 and A1R2i, both of which need to communicate to

router A2R2 . Using a conventional ARF, both senders execute individual call setup

procedures on the overlapped route from A l to A2, and A2 to A2 R2 (see Figure 6.3),

resulting in the longer call setup delay and the higher consumption of network

resources. A savvy address inquiry function is highly desirable for the new network

scenario.

Figure 6.3 Facket flow in the ARF mechanism.

This chapter proposes an enhanced ARF, called E-ARF, to reduce the call setup

latency and the gratuitous ARF packet transmissions. The basic idea is two-folded:

the address translation is rendered as early as possible, and the address mapping

obtained from previous ARF transmissions is retrievable for the subsequent inquiries.

The distinctive characteristics of the E-ARF as compared to the conventional ARF

can be described as follows:

• The access nodes incorporate the address translation function with the packet

forwarding function. Upon the reception of an upstream ARF request (i.e., an

ARF packet destined for a router in a remote LAN), the access node either

directly replies it, or broadcasts it in the MAN, depending on whether or not

the access node can find the required address mapping information in the RAM
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table. Meanwhile, the access node updates - when necessary - the hardwire

address field of the sender's entry in the LAM table with the information in

the packet, or adds a new entry if the sender does not exist in the LAM. A

downstream ARF request (i.e., an ARF packet broadcasted in the metropolitan

ring) is received by all access nodes, and is replied only by the access node which

connects the destination router to the MAN (i.e., the access node whose LAM

table has the entry indexed by the destination protocol address).

• The access node re-edits the upstream ARF request before broadcasting it into

the metropolitan ring, replacing the sender hardware address (sha) field with

its own hardware address. The access node is also responsible to generate the

uni-cast ARF reply packet. Note that the traffic is exchanged in the MAN ring

according to the hardware address of the access node.

• The address mapping information obtained from the ARF reply packet is

registered in the RAM table of the access node, and is retrievable by the

subsequent address translation requests which are sent by other local routers.

The redundant ARF transport on the metropolitan ring is thus avoided until

the RAM table ages out the entry corresponding to the remote router.

Figure 6.4 depicts the ARF packet flow when the E-ARF is adopted, given the

same address resolution requests as that in Figure 6.3. The detailed E-ARF procedure

is shown in Figure 6.5. Note that the enhanced ARF functionality at access nodes

also supports the basic address information management [62], e.g., the address update

and address age-out. Such functionalities are omitted in Figure 6.5 for simplicity.

The proposed E-ARF mechanism features several advantages. First, the RAM

table in the access node facilitates the information reuse of address inquiries, thus

prompting the call setup procedure and reducing the unnecessary ARF packet trans-

missions in the metropolitan optical network. Second, the LAM table provides the
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access node with the address information of its local routers. Therefore, an access

node can reply an ARF request without going further into the LAN. Third, the E-ARF

maps the protocol address of a router to the hardware address of its associated access

node. This way, data packets are transported in the MAN according to the hardware

address of the access node, and are delivered to the ultimate routers by the local access

node. This solution ushers in the decoupling of the traffic transmission in the WDM

domain from that in the Ethernet domain, which is consistent with the line of thought

to operating in the individual network independently. Meanwhile, addressing the

traffic according to the access node also benefits our system with reduced complexity

for traffic management and traffic engineering (e.g., the traffic assembly procedure

which will be explained in the next subsection). Another significant merit of our

E-ARF is the performance improvement achieved without requiring new protocols.

The address resolution enhancement is implemented by simply equipping the access

node with the RAM and the LAM tables.

6.3.2 The Burst-based Transmission Mechanism

After the address translation procedure, the subsequent data traffic can be trans-

ported according to the obtained hardware address. The traffic transmission

mechanism plays an important role in architecting the efficient WDM-enabled

integration. Motivated by the mismatch between the transmission capacity of WDM

fibers and the fine traffic granularity of data packets, the proposed system adopts a

modified burst-based transmission mechanism to improve the system throughput and

reduce the signaling overhead. The transmission mechanism is described in terms of

the traffic assembly procedure, the signaling scheme, and the burstbased transmission

benefits.

The burst assembly procedure is based on the one proposed in [13, 18], which

has proved to be an efficient paradigm in the long-haul network. Different from their
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proposal, however, in the proposed system, data packets are assembled at the access

node according to the Ethernet address of the destination access node, a mechanism

enabled by the proposed E-ARF. The individual access node is equipped with N —

1 assembly units, each corresponding to one destination access node on the ring

topology. To enable differentiated services for the incoming traffic, each unit has one

or more assembly buckets corresponding to different CoS requirements. Broadcast

service can be easily supported by the burst assembly mechanism in alternative ways:

either add one specific assembly unit at each access node to assemble the broadcast

packets so that a single copy of each packet is sent throughout the metropolitan

network, or N — 1 copies of the individual broadcast packet is replicated, each inserted

in one of the N — 1 assembly buckets.

The burst assembly interval (C a,) is subject to the constraints imposed by the

round-trip time of the control packet (i.e., the cycle latency for a control packet

to travel throughout the WDM ring, denoted as C c ) and that by a pre-determined

maximum burst length. In the metropolitan network adopting the reservation-based

channel access mechanism, T abshould be no less thanC,to upperbound the traffic

generation rate by the traffic processing rate. By limiting the maximum burst length

with a certain threshold, a simple fairness control is rendered to avoid one transmission

occupying a certain channel for an excessive long time and potentially starving the

other transmission requirements competing for the same channel or destination node.

The signaling protocol in the proposed burst-based transmission mechanism

distinguishes from its counterpart in the backbone in the two-way signaling scheme.

When the data burst is fully assembled, the associated control packet is generated

and transported into the network. After being processed at each access node and

attempting to reserve resources at the destination node, the control packet returns

to the source node with a reservation acknowledgement. Depending on whether the

corresponding reservation succeeds or fails, the data payload is either emitted into
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the ring network, or is delayed at the transmission queue. Fadding may be required if

a minimum burst length is imposed [13]. The unsuccessful control packet will be re-

transmitted after a random time at the source access node until the maximum retrans-

mission attempts (R) is performed, or the reservation succeeds, with the random

delay between two consecutive re-transmissions uniformly distributed from 0 to T c .

A data burst is discarded when its control packet fails to reserve the resource after

R attempts. R should be properly engineered based on the tradeoff consideration

between the traffic drop probability and the delay allowance.

When the fast service provisioning is of essence to the network management, our

signaling protocol incorporates the parallel execution of the burst assembly procedure

and the resource reservation, whereby the control packet transmission is triggered

as soon as a burst begins assembling. The concurrent execution of both delay

contributors reduces the inherent artificial delay of data traffic at the access node.

Maintaining the advantages of the typical burst-based transmission mechanism,

the aforementioned two-way signaling protocol avoids the data traffic re-transmissions

in the WDM domain. Once a data payload is launched into the ring topology, it is

guaranteed to deliver without further delay or loss caused by resource contentions.

Meanwhile, the signaling scheme accommodates the data payload with a single-hop

transmission, which provides security and privacy transport services, and is convenient

for CoS guarantees. Data payloads are propagated to the destination access node on

the ringlet with the shorter hops. This way, the maximum number of hops a data

burst is transported in the ring is Amax = N2 1 1. Moreover, the reservation acknowl-

edgement also carries the information of the network status which can be exploited

for dynamic adjustment of the system parameters (e.g., the burst assembly interval

Tab, the delay period between consecutive signaling re-transmissions, and maximum

resource reservation attempts R), thus enhancing the traffic engineering capability.
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The proposed burst-based transmission mechanism is simple and efficient in

that no complex determination for the offset time is involved, and that the value-

added Delayed Reservation (DR) [25] mechanism can be easily implemented at the

destination access node. Both system parameters (the offset time and the delayed

reservation interval) are inherently equal to the cycle latency of the control packet.

Such simplification is benefited from the ring topology of the metropolitan network.

Meanwhile, the burst-based transmission mechanism enables us to engineering the

data traffic at the access node according to the Ethernet address of the access node,

the CoS requirements, and the multicast service. This solution complies with the

de facto trend that only simple and straightforward processing is performed in the

WDM layer, while most of the intelligence of the network is provided in the electronic

domain. In other words, the burst-based transmission and the Ethernet-supported

WDM metropolitan network are dual-benefited mechanisms.

6.3.3 Wavelength Allocation Algorithm

Besides the service provisioning and traffic engineering functionalities, the proposed

network also features a hop-based wavelength allocation algorithm for efficient

bandwidth utilization and contention resolution. The basic idea is to partition

the bandwidth capacity of W data wavelengths into the disjoint subsets Sk (k =

1, ..., hmax), each containing a group of data channels, and being shared among the

transmission demand with the same hop numbers. For example, the traffic sourced

from access node A i E {0, N — 1}) and destined for Ai+1 (k < hmax) share the

same subset of data channels with that sourced from access node A+1 and destined

for Aj+k+1. Herein, the data channel consists of one wavelength or a portion of a

wavelength. Assembling the data burst based on the hardware address of the desti-

nation access node enables the source access node to easily determine the number of

hops that the traffic needs to be propagated.



Therefore, the minimum number of data channels required to support concurrent

transmissions between all pairs of access nodes is At = H. The proposed wavelength

allocation principle features the following characteristics:

1. The number of data channels allocated to the subset Sk is determined based on

the associated transport distance (in hops) and the total available data channels,

defined by

The contention-free wavelength allocation is theoretically achievable if

2. The data channel assignment can also take into consideration the reservation

contention tolerance, the transport latency constraints, and the estimated traffic

demand of the individual node, in order to facilitate the service differentiation.

3. Among the data channels of the subset Sk, the one chosen for the access node A i

to communicate with Ai+k can be determined via a variety of algorithms. For

example, it can be selected randomly with a probability of ISk r i . Alternatively,

the data channel can be determined in a cyclic fashion. The most preferred

channel for A i to transport traffic requiring the hop number k is determined by

(see Figure 6.6)
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Figure 6.6 The channel selection algorithm at the source
access node.

The proposed algorithm provides a fair and scalable MAC mechanism. The

transport demands requiring the same number of hops of propagation equally share

the same group of data channels, regardless of the index of the source or the desti-

nation access nodes. Meanwhile, our subset-based wavelength allocation is advan-

tageous in terms of computational simplicity. Its time complexity for data channel

selection is

6.4 Preformance Analysis

The system performance is evaluated via theoretical analysis and simulation results.

Interesting performance metrics include the network throughput, the resource reser-

vation blocking probability, the burst drop probability, and the transport latency.

Theoretical analysis and simulations have been conducted to investigate their

dependency on the number of access nodes, the maximum burst size, and the

traffic intensity.

Simulations are based on the uniform traffic scenario, whereby the upstream

traffic at each access node is destined for the other nodes with equal probabilities.

The inter-arrival time of the data packets flowing into the access nodes are exponen-

tially distributed. The metropolitan network consists of a regional size ring with
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a circumference of 200km. The cycle latency of a control packet is approximately

1000jis. Table 6.2 summarizes the notations which will be used in the analysis.

6.4.1 Network Throughput

Among many others, the property and efficiency of a system design are characterized

by the network throughput, which is defined as the average data traffic (in bits)

successfully transmitted by all the access nodes in a unit time. Of more interest are
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the impact of the burst-based transmission mechanism and the hop-based wavelength

allocation on the network throughput. In the presence of the balanced network traffic

scenario, the transport request of different hop numbers is uniformly distributed.

Theoretically, the proposed system enables a throughput of

actually achievable network throughout is impacted by two factors: the number of

the concurrently transported data burst limited by the signaling mechanism, and

the signaling/data transmission ratio. The network throughput imposed by these

constraints can be derived to be

where 01 and /2 represent the ratio of the average reservation length (L) over the

cycle latency of the control packet on the ring (C,), and that of the transported data

bursts over the total reservation attempts, respectively. In a system with W = Ht,

the network throughput normalized to the transport capacity of an MAN adopting

SONET with the same configuration can be expressed as

provided the total number of sessions in the network is I

for even and odd integer of N, respectively.

Figure 6.7 shows the achievable network throughput versus the number of access

nodes when the maximum burst size varies. The theoretical values are obtained based

on Equation 6.6, assuming an ideal implementation (i.e., the resource reservation

succeeds at the first signaling attempt). Simulations are based on two scenarios
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whereby the data bursts are transported based on the loss-free fashion with the

maximum burst size (Lmax ) being 2.5Mb and the loss-subjective fashion with Lmax =

1.5Mb, respectively. It appears that increasing the maximum burst size improves

the achievable network throughput (e.g., for N = 15, X0 = 1.13 and 1.73 when

Lmax = 1.5Mb and 2.5Mb, respectively), and that while the experimental X0 matches

the theoretical values very well in the loss-subjective transport scenario, the two

curves slightly diverge from each other in the loss-free alternative, revealing the impact

of reservation blockings.

The simulation results in both scenarios imply the following conclusions. First,

the proposed system delivers high throughput despite the large size of the ring

or the large number of access nodes, indicating the efficient resource utilization

capacity and high traffic volume supportability. Second, while incurring no burst

loss by re-transmitting the control packets until the reservation succeeds, too many

re-reservation attempts result in the large signaling response time at the access node
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as well as the head of line (HOL) delay to the subsequent data bursts, both of which

contribute to the lower network throughput. Dimensioning the maximum resource

re-reservation attempts entails a tradeoff between the burst loss probability and the

network throughput. Third, assembling the input packets into the larger transport

granularity improves the throughput capacity with reduced signaling transmission

requirement. This is consistent with the conclusion that the larger burst size within

a certain range, the higher network throughput [63]. When the burst size keeps

growing, however, the performance improvement slows down because the negative

impact of the resource contention increases. This is also demonstrated in Figure 6.8,

which illustrates the impact of Lomax on the network throughput and the signaling

reduction factor (i.e., the ratio of the signaling transmission requirements and the

control packet processing complexity in a system without the assembly procedure

over those in the proposed system), given that the maximum number of attempts

for signaling re-transmission is limited. Figure 6.8 reinforces our previous conclusion

that the network throughput is improved when Lmax increases within a reasonable

range.

6.4.2 Reservation Blocking Probability

The reservation blocking occurs when the data channel carried by a control packet

is not available at the intermediate nodes between the source and destination access

nodes. Assuming that the Probability Density Function (PDF) for the inter-arrival

time of the reservation requests received at the access node is 1 (t), and that the data

channel is randomly selected from each subset with equal probability, the reservation
Lblocking probability at an intermediate node is P c = fo max f(t)dt. Therefore, the

resource reservation for a data burst propagating for k hops is blocked with the

probability of
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6.4.3 Transport Latency

The transport latency involves the delay experienced by the call setup procedure, and

that by the data traffic at the source access node. To focus on the effect of the E-ARC

and the burst-based transmission mechanism, the following analysis does not consider

the delay due to the control packet generation and data channel determination.

The Call Setup Latency To analyze the latency reduction capability of the E-

ARC, it is assumed that the LAN has a binary tree topology, wherein the root is

the access node connecting the tree to the MAN and the leaf is typically a router

from a corporate or campus network. Assuming MM > Ali and the distance (in hops)



Without loss of generality, we assume each LAN has the same depth (d i = di )

and that the ARP packet propagation on one link in LAN is equal to that on one

link in the ring (i.e., ti = Om ). The average latency reduction delivered by E-ARP for

node Ai to communicate with all other nodes is approximately

The proposed E-ARP yields significant latency reduction for the call setup

procedures as compared to the conventional ARP (see Figure 6.9). This is especially

true when N is large, or when M is relatively small. By making the address mapping

information retrievable for the subsequent inquiries at the access nodes, E-ARP

obtains the larger ail as N increases, and reduces the signaling overhead for address

translations (i.e., the transmission requirements (in hops) of the call setup packets) at

the WDM feeder ring by 114-1 , as implied in Equation 6.10 and 6.11. In the assumed

system scenario, the latency reduction percentage decreases as the size of the LAN

gets larger, when Mid N, ail

Data Burst Latency The proposed network architecture introduces two main

sources that will cause the data burst delay at the access node: the delay caused

the burst assembly procedure, which is given by Da = a • rag, and the potential delay
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because of unsuccessful resource reservations. Since the j — th control packet re-

transmission induces a burst delay of (C, -I- tr(j)), the average signaling delay for a

transmission requirement of k hops is

for a system wherein the control packet and the burst assembly procedure are executed

; 11 enn11 cm rag a n rib
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Given that in the sequential signaling scheme, the total signaling response time

should also account for the cycle latency of the control packet which is approxi-

mately 1000jiss, the parallel signaling scheme is more favored for applications with the

stringent time constraint. Figure 6.10 presents the burst delay performance respect

to the input traffic intensity when the parallel transmission of the control packet and

the data burst is examined. The reservation length is fixed to be the burst length.

The proposed system yields satisfactory transport delay for today's voice and video
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interactive applications with a stringent end-to-end latency bound requirement of a

few hundred milliseconds. Besides the data burst latency at the access node, Figure

6.10 also presents the other performance metrics interested in this chapter.

6.5 Summary

This chapter addressed the control architecture and enabling technologies for the

Ethernet-support IF-over- WDM metropolitan network. A set of mechanisms have

been proposed by jointly considering both the Ethernet layer and the WDM layer

that provide network service improvement to the real-time variable-length traffic.

Theoretical analysis and simulations exhibit encouraging results. The E-ARP

protocol significantly reduces the transport latency and the transmission requirements

for the call setup procedures. The burst-based traffic transmission is proved to be a

feasible and effective paradigm for the metropolitan optical network. In addition, the

novel hop-based wavelength allocation algorithm fairly arbitrates the channel access

among all the access nodes. The enhancement of the Ethernet services, in tandem

with the innovative mechanism in the WDM domain, facilitates a flexible and efficient

prototype for the new generation metropolitan optical network dominated by the

data-dominated traffic.



CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

This dissertation research has been focused on the control architecture, enabling

technologies, algorithm degisn, and performance analysis of the WDM burst-switched

long haul and metropolitan area networks. Architectural frameworks for the IP

over WDM networks that retain the advantages of the packet-oriented transmission

mechanism while rendering elastic network resource utilization and graded levels of

services have been proposed and investigated.

First and foremost, the burst-based transport mechanism has been inves-

tigated, with focus on the ingress traffic characteristics and its impact on the system

performance. Theoretical analysis and simulation results show that, transmitting

the traffic in the data burst granularity alleviates the signaling overhead at the

intermediate nodes of IP over WDM networks, and is a feasible solution for the new

generation Internet. Meanwhile, the coefficients of variation for the traffic inter-

arrival time can be reduced as the traffic assembly interval increases at a reasonable

range.

An innovative transport mechanism, namely, the Forward Resource Reservation

(FRR) mechanism, has been proposed to reduce the end-to-end traffic delay for the

burst-switched IP over WDM systems. The FRR mechanism explicitly adopts a

linear predictive filter and incorporates an aggressive reservation strategy for data

burst length prediction and resource reservation, respectively, and is subsequently

extended for QoS differentiation at the network edges. The FRR scheme improves

the realtime communication services for applications with time constraints without

deleterious system costs.

One of the important enabling technologies of the proposed FRR-based WDM

system is the aggressive strategy for the channel holding time reservation. It was

114
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verified, via theoretical analysis and simulation results, that by properly choosing a

small margin of correction for the resource reservation in addition to the predicted

burst length, the proposed aggressive strategy-enhanced FRR scheme actually

reduces the system overhead (in terms of operation cost and resource utilization) as

compared to a system with zero-correction reservation algorithm. Specifically, two

algorithms, the Success Probability-driven (BUD) and the Bandwidth Usage-driven

(BUD) algorithms, were developed to facilitate the aggressive reservation strategy.

These algorithms render explicit control on the latency reduction improvement and

bandwidth usage efficiency, respectively, both of which are important figures of

performance metrics.

The performance improvement issues for the FRR-enabled WDM system

has been studied. Specifically, static and dynamic models targeting different

desired system performance objectives (in terms of algorithm efficiency and system

performance) have been created. Meanwhile, a "crank-back" based signaling scheme,

termed as the Bandwidth Enhanced FRR (BEFRR) scheme, was devised to provide

the bandwidth enhancement capability for the FRR-enabled WDM system. This

mechanism, in tandem with a void-filling scheduling method, enables the intelligent

usage of the network resources, and enhances the aggressive reservation algorithms

with direct bandwidth utilization control.

The third major theme of the dissertation relates to the Ethernet-supported IP

over WDM Metropolitan Area Network (MAN). The aim is to facilitate a common

shared infrastructure enabling a graceful migration from the current voice-centralized

infrastructure into a network dominated by data packets, thus making the new

generation MAN optimized for scalable, survivable, and IF-dominated network at

gigabit speed possible. An Enhanced Address Resolution Protocol (E-ARP) has been

proposed to reduce the call setup latency and the signaling overhead associated with

the address probing procedure. By re-using the retrievable information at the access
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nodes, the proposed protocol decouples the traffic transport in the Ethernet domain

from that in the WDM domain, and facilitates independent control operation in

the individual network layers, thus benefiting the system with reduced management

complexity and improved traffic engineering efficiency.

Meanwhile, the burst-based transmission mechanism, including traffic assembly

mechanisms and signaling protocols, has been architected in the Ethernet-supported

WDM infrastructure. It was pointed out, through a variety of concrete simulations,

that the burst-based transmission mechanism addresses the traffic granularity

problem in the MAN with a clean state, and that it complies with the de facto

trend that only simple and straightforward control and management should be done

in the WDM layer, while most of the intelligence of the network, such as traffic

engineering and QoS provisioning, should be implemented at the edge nodes.

In addition, this dissertation studies the fair and scalable MAC protocol for

network resource coordination and contention resolution. At the current stage,

these problems are addressed by developing a novel hop-based wavelength allocation

algorithm, whereby the data channels are grouped into subsets, each of which is

shared by the transport demands requiring the same number of hops. The proposed

algorithm is a skeleton based on which a variety of algorithms are possible for channel

dedication and selection, with or without considerations of the traffic priorities.

7.2 Future Work

The directions of the future research efforts will be on two categories:

• Extention of the proposed architecture framework.

• Exploration of novel topics in other broadband networks.

First, as a natural outgrowth and maturity of the current research, efforts will be

devoted to the applicability of the proposed protocols and techniques. For example,

it will be interesting to examine the applicability and the impacts of the proposed
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protocols and techniques (e.g., the FRR mechanism and the enhanced ARP) in the

heterogeneous networks, such as IP Telephony and wireless IP further. Also of interest

are the interoperability and contention resolution issues for the Ethernet-supported

IP over WDM MAN.

Second, the future research will go beyond the current topics. It is important

to apply the achieved experience and insight in an integrated and cohesive manner

to the state of the art in other broadband networks. Specifically, such studies will

cover i) performance evaluation and improvement, ii) the framework for end-to-end

QoS provisioning, and iii) network reliability and protection/restoration.
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