

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

EFFICIENT SIMILARITY SEARCH IN
HIGH-DIMENSIONAL DATA SPACES

by
Yue Li

Similarity search in high-dimensional data spaces is a popular paradigm for many

modern database applications, such as content based image retrieval, time series

analysis in financial and marketing databases, and data mining. Objects are repre-

sented as high-dimensional points or vectors based on their important features. Object

similarity is then measured by the distance between feature vectors and similarity

search is implemented via range queries or k-Nearest Neighbor (k-NN) queries.

Implementing k-NN queries via a sequential scan of large tables of feature

vectors is computationally expensive. Building multi-dimensional indexes on the

feature vectors for k-NN search also tends to be unsatisfactory when the dimen-

sionality is high. This is due to the poor index performance caused by the dimen-

sionality curse.

Dimensionality reduction using the Singular Value Decomposition method is the

approach adopted in this study to deal with high-dimensional data. Noting that for

many real-world datasets, data distribution tends to be heterogeneous, dimensionality

reduction on the entire dataset may cause a significant loss of information. More

efficient representation is sought by clustering the data into homogeneous subsets

of points, and applying dimensionality reduction to each cluster respectively, i.e.,

utilizing local rather than global dimensionality reduction.

The thesis deals with the improvement of the efficiency of query processing

associated with local dimensionality reduction methods, such as the Clustering and

Singular Value Decomposition (CSVD) and the Local Dimensionality Reduction (LDR)

methods. Variations in the implementation of CSVD are considered and the two

methods are compared from the viewpoint of the compression ratio, CPU time, and

retrieval efficiency.

An exact k-NN algorithm is presented for local dimensionality reduction methods

by extending an existing multi-step k-NN search algorithm, which is designed for

global dimensionality reduction. Experimental results show that the new method

requires less CPU time than the approximate method proposed original for CSVD at

a comparable level of accuracy.

Optimal subspace dimensionality reduction has the intent of minimizing total

query cost. The problem is complicated in that each cluster can retain a different

number of dimensions. A hybrid method is presented, combining the best features of

the CSVD and LDR methods, to find optimal subspace dimensionalities for clusters

generated by local dimensionality reduction methods. The experiments show that the

proposed method works well for both real-world datasets and synthetic datasets.

EFFICIENT SIMILARITY SEARCH IN
HIGH-DIMENSIONAL DATA SPACES

by
Yue Li

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2004

Copyright © 2004 by Yue Li

ALL RIGHTS RESERVED

APPROVAL PAGE

EFFICIENT SIMILARITY SEARCH IN
HIGH-DIMENSIONAL DATA SPACE

Yue Li

Dr. Alexander Thomasian, Dissertation Advisor 	 Date
Professor of Computer Science, NJIT

Dr. Joseph Leung, Committee Member 	 Date
istinguished Professor of Computer Science, NJIT

Dr. Wojciech Rytter, Committee Member 	 Date
Professor of Computer Science, NJIT

Dr. Vincent Oria, Committee Member 	 Date
Assistant Professor of Computer Science, NJIT

Dr.Jian Yang, Committee Member 	 Date
Assistant Professor of Industrial and Manufacturing Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Yue Li

Degree: 	 Doctor of Philosophy

Date: 	 May 2004

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2004

• Master of Science in Computer Science,
Shandong University, Jinan, P.R. China, 1999

• Bachelor of Science in Computer Science,
Shandong University, Jinan, P.R. China, 1993

Major: 	 Computer Science

Presentations and Publications:

Y. Li, A. Thomasian, and L. Zhang, "Finding Optimal Subspace Dimensionality for
k-NN Search in Clustered Datasets," 15th Int'l Conf. on Database and Expert
Systems Applications (DEXA'04) , submitted, 2004.

L. Zhang, A. Thomasian, and Y. Li, "A Persistent and Dynamic Ordered Partition
Index for k Nearest Neighbor Search," 15th Int'l Conf. on Database and Expert
Systems Applications (DEXA'04) , submitted, 2004.

Y. Li, A. Thomasian, and L. Zhang, "An Exact k-NN Search Algorithm for CSVD,"
IEEE Transactions on Knowledge and Data Engineering (TKDE) Journal, in
review, 2003.

iv

To the memory of my mother.

v

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Alexander Thomasian, who

not only served as my research advisor, providing valuable and countless resources,

insight, and intuition, but also constantly gave me support, encouragement, and

reassurance. Special thanks are given to Dr. Joseph Leung, Dr. Wojciech Rytter, Dr.

Dr. Vincent Oria and Dr. Jian Yang for actively participating in my committee.

I would like to thank Dr. Byoung-Kee Yi and Dr. Vittorio Castelli for their help

on my research. This work could not have been completed without their background

help. Special thanks are given to Lijuan Zhang, who worked with me for two years and

assisted me in implementing clustering and multi-dimensional indexing algorithms.

I would like to thank my other fellow PhD students in the Integrated Systems

Laboratory — Chunqi Han, Chang Liu and Gang Fu — for their friendship, support,

and assistance over years.

Finally, I would like to thank my husband, my father, my daughter, and my

in-laws for their love and support.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

	

1.1 	 Motivation 	 1

	

1.2 	 Challenges, Contributions and Outline 	 4

1.2.1 	 Dimensionality Reduction 	 4

1.2.2 	 Exact k-NN Search 	 5

1.2.3 	 Optimal Subspace Dimensionality 	 6

1.2.4 	 Outline 	 7

2 HIGH-DIMENSIONAL INDEXING 	 9

2.1 Similarity Queries 	 10

2.2 Distance Metrics 	 11

2.3 Multi-dimensional Index Structures 	 13

2.3.1 	 K-d-trees 	 14

2.3.2 	 The R-tree and Its Variations 	 15

2.4 Dimensionality Curse 	 17

2.5 Dimensionality Reduction 	 19

2.5.1 	 Lower Bounding Property 	 21

2.5.2 	 Normalized Mean Square Error 	 22

2.5.3 	 Singular Value Decomposition (SVD) 	 22

2.5.4 	 Discrete Fourier Transform (DFT) 	 24

2.5.5 	 Discrete Wavelet Transform (DWT) 	 25

2.5.6 	 Segmentation Mean Method (SMM) 	 26

2.6 Metric Based Index Structures 	 26

2.7 Summary 	 27

3 PERFORMANCE OF CSVD 	 29

3.1 	 Introduction 	 29

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.2 	 Related Work 	 33

3.2.1 	 Clustering 	 33

3.2.2 	 LDR 	 36

3.2.3 	 MMDR 	 37

3.3 The CSVD Method 	 39

3.3.1 	 CSVD Implementation Steps 	 39

3.3.2 	 Approximate k-NN Search Algorithm 	 43

3.4 Performance Study 	 46

3.4.1 	 Experimental Setup 	 46

3.4.2 	 Performance Metrics 	 47

3.4.3 	 Experiments 	 48

3.5 Conclusions 	 60

4 K-NEAREST NEIGHBOR SEARCH 	 62

4.1 Introduction 	 62

4.2 Related Work 	 63

4.3 Exact k-NN Search Algorithm for CSVD 	 65

4.4 Experiments 	 68

4.4.1 	 CPU Cost versus NMSE for the Exact Method 	 68

4.4.2 	 Exact Method versus Approximate Method 	 70

4.4.3 	 The Effect of Maintaining an Extra Dimension 	 71

4.5 Conclusion and Discussion 	 73

5 OPTIMAL SUBSPACE DIMENSIONALITY 	 75

5.1 Introduction 	 75

5.2 Related Work 	 79

5.3 The Hybrid Method for Clustered Datasets 	 81

5.3.1 	 Information Loss and Subspace Dimensionality 	 81

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.3.2 The Hybrid Method 	 85

5.3.3 Optimal Subspace Dimensionality 	 86

5.4 Experiments 	 87

5.4.1 NMSE and the Average Subspace Dimensionality 	 90

5.4.2 Query Costs and Subspace Dimensionality 	 91

5.5 Conclusion 	 93

6 CONCLUSION 	 95

APPENDIX A K-NN ALGORITHM OF LDR 	 97

APPENDIX B CPU COST OF REGULAR K-MEANS AND ELLIPTICAL
K-MEANS 	 99

APPENDIX C ANALYTIC K-NN QUERY COST MODEL 	 101

C.1 Fractal Dimensions 	 101

C.2 Faloutsos's Query Cost Models 	 104

C.3 Bohm's Query Cost models 	 105

C.4 The Revised Query Model for Range Queries 	 106

C.5 Experiments 	 107

REFERENCES 	 109

ix

LIST OF TABLES

Table Page

1.1 Symbol Table 	 8

3.1 Datasets 	 47

3.2 MMDR Parameters and Retained Dimensions Compared to CSVD 	 . . . 60

5.1 Algorithm 1 	 84

5.2 Algorithm 2 	 85

5.3 Datasets for the Experiments 	 88

5.4 Clustered Datasets (CD) Generated by LDR with Different Parameters . 89

A.1 k-NN Algorithm for LDR 	 98

C.1 Results of Equation vs. Experiments (M = 100, 000, E = 16, E = 0.1) . . 108

x

LIST OF FIGURES

Figure 	 Page

2.1 A 2-d example for (a) three types of distances (b) range query of radius E

under the three metrics. 	 12

2.2 Example of a k-d-b-tree on 2-d space. 	 15

2.3 Example of a 2-d R-tree. 	 16

2.4 A circle and its minimum bounding square in 2-d space. 	 18

2.5 Distances between data points and centers of the datasets: (a) COLH64 (b)
TXT55 (c) GABOR64 (d) SYHT64. 	 20

2.6 Segmentation mean method [79] 	 26

3.1 Example of SVD on a 2-d sample of points. 	 31

3.2 (a) SVD (b) CSVD on locally correlated data samples. 	 32

3.3 Searching nearest neighbors across multiple clusters. 	 44

3.4 Approximate distance function. 	 45

3.5 (a) The average number of dimensions retained by SVD and CSVD-GM1
for different number of clusters vs. NMSE. (b) Data volume of SVD
and CSVD-GM1 vs. NMSE. (c) Number of dimensions retained by the
three CSVD methods for 16 clusters vs. NMSE. (d) Same with 128
clusters. TXT55 was used in all cases. 50

3.6 (a) Number of dimensions retained for regular k-means and elliptical k-
means using GM2 as a function of NMSE. (b) Ratios of number of
dimensions retained by regular k-means to elliptical k-means for three
methods. 51

3.7 (a) The fraction of data points visited (k* = k, SYNT64). (b) Speedup
of CSVD and SVD vs. NMSE (k* = k, SYNT64). (c) The average
number of clusters touched during the search (R = 0.75, AERIAL56).
(d) Speedup of the three CSVD methods and SVD (32 clusters, R =
0.75, AERIAL56). CSVD-GM1 utilized in (a), (b) and (c). 52

3.8 Precision vs. NMSE for the three CSVD methods and SVD for (a) 16
clusters, AERIAL56, R = 0.75 and (b) 128 clusters, TXT55, R = 0.75. 53

3.9 Ratios of (a) CPU cost and (b) precision of deferred merging (dm) to
on-the-fly merging (om) vs. NMSE. CSVD-GM1 (R = 0.75, TXT55). 	 54

xi

LIST OF FIGURES
(Continued)

Figure 	 Page

3.1O (a) CPU cost and (b) precision vs. NMSE, parameterized by deferred-
merging-original distance (d-m-o), deferred-merging-approx. distance
(d-m-o) and on-the-fly-merging-approx. distance (o-m-a). AERIAL56,
recall = O.8, 64 clusters, GM1. 55

3.11 Results for CSVD(GM1) and LDR for SYNT64 (a) Average number of
dimensions retained (b) Precision vs. NMSE. (c) CPU cost vs. NMSE.
(d) Fraction of data points visited vs. NMSE. 56

3.12 Results for CSVD(GM1) and LDR for COLHIST64 (a) Average number of
dimensions retained (b) Precision vs. NMSE. (c) CPU cost vs. NMSE.
(d) Fraction of data points visited vs. NMSE. 57

3.13 Results for CSVD(GM1) vs. LDR for TXT55 (a) Average number of
dimensions retained (b) Precision (c) CPU cost (d) Fraction of data
points visited. 58

3.14 Results for CSVD (GM1) vs. LDR for AR56 (a) Average number of
dimensions retained (b) Precision (c) CPU cost (d) Fraction of data
points visited. 59

3.15 Comparison of CSVD and MMDR on (a) CPU cost (b) number of points
retrieved (c) fraction of points visited. SYTH64, 2O-NN 	 61

4.1 Approximate distance in CSVD. 	 64

4.2 Indexing structure of CSVD. 	 66

4.3 CPU cost of the exact k-NN algorithm. 	 69

4.4 Comparison of CPU cost for the exact and approximate methods. . . 	 7O

4.5 Value of k* for the exact and the approximate algorithm. 	 72

4.6 The distances between 25O queries and their 2O nearest neighbors, NMSE
= O.2, TXT55. Note that each distance is the sum of squared-distances
of the 2O points to the query point. 73

4.7 (a) CPU cost and (b) number of points retrieval (k*) for d dimensions and
d + 1 dimensions. GABOR6O, 5 clusters. 	 74

5.1 Optimal subspace dimensionality with respect to minimal query cost. 	 78

5.2 Clustered dataset and Dimensionality reduced clustered dataset. 	 81

xii

LIST OF FIGURES
(Continued)

Figure 	 Page

5.3 Average subspace dimensionality vs. (a)LDR threshold ReconDist for the
clustered datasets of GABOR6O and SYNT64. (b)NMSE (by using
Algorithm 1) for the clustered datasets of all four datasets. 90

5.4 CPU costs of 20-NN queries vs. NMSE for (a) SYNT64 (b) GABOR60. 	 91

5.5 I/O costs of 20-NN queries vs. (a)NMSE and (b)subspace dimensions for
SYNT64 with SR-trees 	 92

5.6 I/O costs of 20-NN queries vs. (a)NMSE and (b)subspace dimensions for
TXT55 with SR-trees. 	 93

5.7 I/O costs of 20-NN queries vs. (a)NMSE and (b)subspace dimensions for
COLH64 with SR-trees 	 94

5.8 I/O costs of 20-NN queries vs. (a)NMSE and (b)subspace dimensions for
GABOR60 with SR-trees. 	 94

B.1 CPU cost versus NMSE of exact k-NN algorithm for the two k-means
algorithm for TXT55. (a): 4 clusters (b): 16 clusters. 	 99

C.1 (a) Sierpinski triangle; (b) Koch snowflake; (c) Mandeibrot set; (d) Fern 	 102

C.2 Five steps in generating Sierpinski triangles. 	 103

CHAPTER 1

INTRODUCTION

1.1 Motivation

High-dimensional data has always been a challenge in many application areas, such

as information retrieval, image processing, data mining, pattern recognition, and

decision support. Contemporary Database Management Systems (DBMS) have become

much more complicated than their predecessors and the term database does not only

mean the traditional databases, such as relational or object-oriented databases, but

also many other types of databases, such as

• Multimedia databases: Multimedia databases contain various types of data

like images, audio and video clips. Multimedia databases are applied in a wide

variety of fields [18] and among them, digital imagery plays a valuable role in

numerous human activities. There are many applications dealing with photo-

graphic images, satellite images (or remotely sensed images [64, 53]), medical

images (like 2-dimensional X-rays [62] and 3-dimensional MARI brain scans [6]),

geologic images and biometric identification images (like finger printing [38]). In

these applications, the goal is to find objects in the database that are similar to

some target object. Therefore, each image is transformed into feature vectors by

extracting features such as color, texture or shape with numeric values, and the

"similarity" is actually determined by the feature vectors and distance measures

between the vectors.

• Time series databases: Time series or time sequences data accounts for a

major fraction of all financial, medical, marketing and scientific data and is

usually used for analysis, data mining, and decision making. A time series is

often called a signal [27]. Time series databases convert time series segments into

1

2

multi-dimensional points using some transformation such as Discrete Fourier

Transform (DFT) [3] and Discrete Wavelet Transform [63]. Similarity search

for time series, which is usually performed on transformed data, is very popular

since people are interested in finding similar patterns in time series and the

results of matching are often used for the further analysis of market trends.

• DNA databases: Genetic material (DNA) stores complete instructions for

all the cellular functions of an organism. DNA is strings of a four-character

alphabet, known as the nucleotide bases, represented by A, C, G, and T [78].

DNA databases contain a large collection of such long strings. A new string

(e.g., an unknown disease) has to be matched against the old strings based on

a certain distance function to find the best candidates.

The various types of databases all have feature vectors that can be repre-

sented as high-dimensional data points or vectors with numeric values, therefore they

are referred to as high-dimensional datasets generally. Multi-dimensional databases

require "Similarity Based" queries or Content Based Retrieval (CBR), rather than

traditional queries which are based on keys. Searching for similar patterns in the

above databases is essential because it helps in predictions, decision making, computer-

aided medical diagnosis, hypothesis testing, and in data mining [27].

The similarity between two data objects is typically measured by the distance

between two vectors and searching for objects thus becomes a search for points in the

feature space. The choice of the distance metric is usually determined by the appli-

cation. For different data and applications, the ways of mapping data objects to high-

dimensional data points are different and so are the distance functions. Multimedia

objects are represented by low-level features, such as spatial, shape, color histogram,

and texture for images. Features are then transformed into high-dimensional points

(vectors). For example, some applications focus on color features. In this case

each object is represented by a 64-dimensional color histogram and the similarity

3

between two images is determined by the distance between the corresponding two

color histograms. Besides color, some applications extract shape [39] or textures

information [56], while others may require the mixture of color, texture, spatial and

shape information.

Time series data are numerical in nature, but usually a signal is very long, e.g.

the closing stock price for a whole year. The feature extraction methods for time series

aim at approximating the original signal with a shorter one via some transformation.

There are two types of matching: whole match and sub-pattern matching, where

whole matching assumes that the data and query series have the same length and

sub-pattern matching considers the more general case where the data and query

series have different lengths.

The most commonly used distance metric is the Euclidean distance, which is

also the default distance measure in this study. In Chapter 2, some of the other

distance metrics are introduced.

There are several types of similarity queries, such as range queries, k-Nearest

Neighbor (k-NN) queries, and spatial joins. The k-NN query is an important tool

in CBR. It retrieves the k closest data objects to the query object. For example, in

image databases, a typical query would be "find 20 photographs most similar to a

given photograph" , or "locate 10 persons who have fingerprints most similar to that

of the suspect" .

The traditional DBMS can hardly support such kind of queries because they

do not have efficient access methods for multi-dimensional data. The B-tree [9] (or

B+-tree) has been used as a classical indexing method for commercial databases,

while it is a one-dimensional indexing method which is only suitable for traditional

primary-key-search.

During the last twenty years, many multi-dimensional indexing structures have

appeared, such as R-trees [36], k-d-trees [32], and grid files [59]. Multi-dimensional

4

indexes provide an efficient way to selectively access some data points in a large

collection associatively. They work well in low-dimensional space. Unfortunately, as

a result of the dimensionality curse, the efficiency of indexing structures degrades

rapidly as the number of dimensions increases: almost all pages in an index have to

be visited and the query processing is even slower than a sequential scan on the entire

dataset [15]. In order to make existing multi-dimensional indexing methods suitable

for high-dimensional data, many variants of the R-tree have been proposed, such as

the R-tree [69], the R*tree [10], the SR-tree [42] and the X-tree [13]. The main idea

is to improve the space utilization and minimize overlaps. Other methods improve

the performance of multi-dimensional indexing methods by combining the advantages

of two or more existing structures (like the hybrid tree [21]). These improvements

could not solve the problem of the dimensionality curse when the dimensionality of a

dataset is very high.

1.2 Challenges, Contributions and Outline

1.2.1 Dimensionality Reduction

A well-known technique to break the dimensionality curse is to reduce the dimen-

sionality and then build a multi-dimensional index structure on the reduced dimen-

sionality space. The challenge is to achieve index space compression with limited loss

of information and in particular with little effect on information retrieval performance.

Dimensionality reduction methods are usually based on a linear or nonlinear

transformation followed by retaining a subset of features which are supposed to be

more important. Techniques based on linear transformations, such as the Karhunen-

Love Transform (KLT), the Singular Value Decomposition (SVD) and the Principal

Component Analysis (PCA) have been widely used for dimensionality reduction and

data compression. The SVD is shown to be very effective in compressing large tables

of numeric data. It relies on global information derived from all the vectors in a

5

dataset. Its applications are therefore more effective when the dataset consists of

homogeneously distributed vectors. However, high-dimensional datasets in the real

world are often not globally correlated. With heterogeneously distributed feature

vectors, using SVD to perform dimensionality reduction on the entire dataset may

cause a significant loss of information. In this case, data points are not globally

correlated, but rather there exist subsets of data points which are locally-correlated.

More efficient representation can be generated by dividing the dataset into clusters,

reducing dimensionality individually or recursively. The two categories of dimen-

sionality reduction techniques are classified as global methods and local methods.

Clustering and Singular Value Decomposition (CSVD) and Local Dimensionality

Reduction (LDR) are two such local methods. CSVD clusters datasets using an

off-the-shelf clustering method, rotates each cluster using SVD into an uncorrelated

coordinating space, and then reduces the dimensionality. LDR identifies local correlated

clusters with a special clustering technique and decide the subspace dimensionality

for each cluster according to the correlations.

In this thesis, three methods for selecting dimensions to be retained for CSVD

are presented and compared with each other, and then the best CSVD method is

compared to LDR from the viewpoints of compression ratio, CPU cost and retrieval

quality. Experiments are held on four datasets and the results show that CSVD

outperforms LDR.

1.2.2 Exact k -NN Search

Methods for k-NN search can be divided into two categories: exact methods and

approximate methods. Exact k-NN search returns the k closest points which are

the same as the results obtained from linearly searching the original dataset, while

approximate k-NN search returns approximate results and guarantees a certain accuracy

(ratio of the number of relevant nearest neighbors to the total number of retrieved

6

points).

An algorithm to find the k-nearest neighbors has been proposed especially for

CSVD. It is an approximate method since it violates the lower-bounding property

[271]. Although the low-bounding property was initially stated for range queries, it

also works for k-NN queries since a k-NN query can be transformed to a range query

with an estimated search radius.

In this thesis, an exact k-NN algorithm is presented for local dimensionality

reduction methods based on a multi-step k-NN search algorithm presented in [48].

Experiments with two datasets show that it costs less CPU time than the approximate

algorithm at a comparable level of accuracy.

1.2.3 Optimal Subspace Dimensionality

Since dimensionality reduction results in distance information loss, the number of

dimensions to be retained becomes a critical issue. Based on the lower-bounding

property, the total cost of a similarity query should be the sum of index query cost

and postprocessing cost, which is used to remove unqualified candidates. Reducing

too few dimensions does not solve the problem of dimensionality curse, while reducing

too many dimensions results in excessive distance information loss. There should be

an optimum interval of dimensionality in which the performance is the best, i.e.,

the query cost is minimized. An optimal subspace dimensionality corresponding to

the minimum query cost can be found for global dimensionality reduction through

experiments or modeling. Local dimensionality reduction methods partition a dataset

into multiple clusters, such that each of which has different subspace dimensionality.

It is difficult to find the optimal subspace dimensionality for each cluster with respect

to the total minimum query cost.

In this thesis a hybrid method is presented to discover the relationship among

query cost, ratio of total information loss, and subspace dimensionality of each cluster

7

so that optimal subspace dimensionality can be determined. The experiments show

that an optimal subspace dimensionality indeed exists and the proposed method works

well for both real-world datasets and synthetic datasets.

1.2.4 Outline

The rest of the thesis is organized as follows. Chapter 2 provides a background

on high-dimensional indexing techniques. Chapter 3 introduces the revised CSVD

method and compares it to the LDR method [73]. Chapter 4 proposes an exact k-NN

algorithm for local dimensionality reduction methods [51]. In Chapter 5, a hybrid

method for identifying optimal subspace dimensionality with respect to minimum

query cost is described in detail [52]. Finally, the conclusion is given in Chapter 6.

In addition, some useful techniques and results are described in Appendixes, where a

k-NN algorithm utilized in Chapter 5 is described in Appendix A, the CPU cost of

two types of k-means algorithms is compared in Appendix B, and some background

information about fractal dimensions as well as some experimental results related to

a query cost model are given in Appendix C. Table 1.1 explains some of the symbols

which are frequently used in this thesis.

8

CHAPTER 2

HIGH-DIMENSIONAL INDEXING

Over the last three decades, relational database management systems have been well

developed and are now prevalent. Most of the contemporary databases are too large

to fit in main memory and thus have to be stored on secondary storage — such as disks.

Storing data on disks is important also because disk is non-volatile and provides highly

reliable and durable storage. A major characteristic of the secondary storage is that

it is organized into blocks (or pages). Accessing data from disk involves mechanical

movement of the read/write heads of the disk, which is slow and expensive, therefore

every disk access results in a whole block of data being brought into main memory.

Thus, it makes a large performance difference if similar data are grouped into the

same disk blocks.

Traditional access methods to handle query processing in databases are usually

based on primary keys, which is one-dimensional, such as hashing or B-trees. However,

this technique is not well suited to multimedia information retrieval, which is based

on content similarity. Many multi-dimensional indexes have been proposed to support

similarity search for multimedia and scientific databases [33]. When the dimen-

sionality is very high, e.g., higher than 60 or even in hundreds, most of the multi-

dimensional indexing methods have a poor performance because of the dimensionality

curse [15, 76, 18]. One of the solutions to solve the problem is to do dimensionality

reduction, then build an index on the dimensionality reduced data. Another solution

is to map the high-dimensional points into one dimension by some special techniques

and then build an index on the one-dimensional space. In the following sections,

firstly some preliminary background information is given, then some important multi-

dimensional techniques are described respectively.

9

10

2.1 Similarity Queries

Similarity queries can be classified as point queries, range queries, k-Nearest Neighbor

(k-NN) queries, and spatial joins.

Point query: Find a data point in a dataset. Example: given a query point, locate

it in the database.

Range query: Find all data points within a certain range (radius) E to the query

point. Example: find all images showing a tumor of size less than 0.5cm.

k-NN query: Among all data points, find the k points that are closest to the query

point. Example: find 20 images that are closest (or most similar) to the query

image.

Spatial join: Find all unique pairs of distinct data points, whose relative distance

is less than a given radius E. Example: find all pairs of images that are closest

(within distance 0.01) to each other.

Range query and k-NN query have gained much more attentions than the others

because, a point query can be described as a range query with € = 0, and spatial join

is just like "all-pair nearest neighbor search".

The thesis concentrates on nearest neighbor queries for the reason that they

play a central role in content-based retrieval from multimedia databases.

Based on the probability of the query distribution, there are two models for

similarity queries [61]:

Random model, which assumes that the query points are uniformly distributed in

the data space.

Biased model, which assumes that queries are more probable in high-density areas

of address space, i.e., the queries and the data has the same distribution. This

11

is usually true in many applications, e.g., in a transportation application with

a map of cities, one would expect few queries on deserts and bodies of water,

and more queries on highly populated areas.

In this thesis, the sample queries are always extracted from the dataset, therefore

they are biased queries.

It is easy to see that regardless of the type of query, the distance metric

is very important. Different distance metrics have different functions to calculate

distance between two points, and they make the meanings of "closest" or "range"

quite different.

2.2 Distance Metrics

For a specific application based on a certain feature extraction method, the first

important step is to provide a measure for the distance between two objects. In this

thesis, DO, q) is used to denote the distance of the two data points Hand 4'. There are

many kinds of distance functions in the literature. For similarity search, £p norms

and Quadratic distances are two categories that are most useful.

When P = 2, it is the Euclidean distance, which is the most popular distance

function. It is the default distance function (DO) in this thesis. L i norm is

also called Manhattan distance or city block distance, which is often used in GIS

applications. In the extreme case, when P = ooh, the above function becomes

Maximum distance and can be rewritten as:

Figure 2.1 A 2-d example for (a) three types of distances (b) range query of radius
E under the three metrics.

Quadratic distances are weighted distance measures which are superior in CBR of

multimedia objects, because they not only take account for the correspondence

between each dimension as other distance metrics, but also make use of infor-

mation across dimensions by capturing the correlation between dimensions

[70, 81]. The quadratic distance between two feature vectors /5 and q* is given

by:

13

dimension i and j. Mahalanobis distance is a special case of the quadratic

distance metric in which the transform matrix is given by the covariance matrix

obtained from a training set of feature vectors. The normalized Mahalanobis

distance between vectors Cy and q. is defined as [71]:

where C is the covariance matrix and ICI is the determinant of C. Actually it is

a weighted Euclidean distance. It gives more weight to dimension with smaller

variance and gives less weight to dimension with larger variance.

It depends on the application and feature extraction methods to select the

distance metric to be used. For example, in time series analysis areas, Euclidean

distance is often used. While in CBR, or image processing, Mahalanobis distance is

widely used [71, 8, 40]. In Chapter 3, a high-dimensional clustering method — the

elliptical k-means algorithm which utilizes Mahalanobis distance — is described.

2.3 Multi-dimensional Index Structures

Based on data types supported, multi-dimensional indexing methods can be classified

into two broad categories: Point Access Methods (PAM) and Spatial Access Methods

(SAM) [33]. PAM were primarily designed to perform spatial searches on point

databases, which store only multidimensional points that do not have spatial extension.

On the other hand SAM manage objects that, apart from their position in space,

have spatial characteristics (shape). Such objects are lines, polygons, or higher-

dimensional polyhedra. Since high-dimensional data are just points, and all SAMs

can function as PAMs, it is not necessary to distinguish them in this study. Based on

the partitioning of the data space, multi-dimensional index methods can be divided

into space-partitioning methods, like grid files, k-d-trees [32] and quad-trees, which

14

divide the data space along pre-determined hyper-planes regardless of data clusters,

and data-partitioning methods, like R-trees [36], X-tree [13], SR-tree [42], M-tree [24],

and TV-tree [54], which partition the data space according to the data distribution.

Another classification of multi-dimensional access methods, which has gained

more attention, is based on where the index resides: in main memory or on disk.

Memory-resident multi-dimensional indexes (such as the k-d-tree) appeared a decade

earlier than disk-resident methods (such as the R-tree). As the databases get larger

and larger, disk-resident methods become more popular. In recent years, the sizes of

main memories have increased rapidly and the prices have dropped rapidly, therefore

large indexes can be held and queried in main memories easily. Consequently, memory

resident indexes are popular again. For example, the ordered partition index [45]

utilized in [19] is a memory resident index and it demonstrates a significant improvement

over sequential scan.

The most popular indexing structures are discussed here and among them only

k-d-trees are memory-resident methods and the others are disk-resident methods.

2.3.1 K -d-trees

The k-d-tree can be considered as an extension of the binary tree. It is an space-

partitioning method which stores points in k-dimensional space. At each inner node,

the k-d-tree divides the k-dimensional space in two parts by a (k-1)-dimensional

hyperplane. The direction of the hyperplane alternates between the k possibilities

from one tree level to the next. The coordinate axis can be selected using a round-

robin criterion. Each splitting hyperplane contains at least one point, which is used

as the hyperplanes representation in the tree. Points are stored at leaves. Searching

and insertion of new nodes are straightforward. Deletion may cause re-organization

of the tree under the deleted node, thus it is more complicated than insertion.

Since the k-d-trees are main memory data structures and they do not account

15

for paged secondary memory, they are not considered to be suitable for large spatial

databases.

The k-d-B-tree [65] is a proposal to make the k-d-tree persistent. All nodes of

the tree correspond to disk pages. A leaf node stores the data points that are located

in the respective partition. Like the B-tree, the k-d-B-tree is perfectly balanced,

however, it cannot ensure storage utilization. Figure 2.2 shows an example of k-d-B-

tree in 2-dimensional space.

Figure 2.2 Example of a k-d-b-tree on 2-d space.

2.3.2 The R-tree and Its Variations

The R-tree is a hierarchical data structure with spatial extent. It is used to store not

the original space objects, but rather their Minimum Bounding Rectangles (MBRs)

which are defined as the minimum N-dimensional rectangle that contains the original

N-dimensional object. The R-tree is balanced. Each non-leaf node contains entries

with a form of (ptr, Rect), where ptr is the address of a child node and Rect is the

MBR of the child node. Leaf nodes contain entries of form (obj_id, Rect), where obj_id

points to a data object, and Rect is the MBR of that object. Figure 2.3 is an R-tree

of height 2 in 2-dimensional space. The rectangles with dotted lines are MBRs. It is

easy to see that this structure allows overlap among nodes.

16

Searching in an R-tree is done from the root node in a top-down manner. All

rectangles that intersect with the query object are visited. The R-tree does not

guarantee that traversing one path of the tree is enough when searching for an object,

since the MBRs may overlap one another. In the worst case, the search algorithm

may have to visit all index pages for a query.

Insertion operation includes inserting the MBR of an object to the leaf node of

the SR-tree along with a reference to that object. If the MBR of the object intersects

many entries of an intermediate node, the child whose MBR is enlarged least after

the insertion will be selected. If the insertion causes the leaf page to overflow, the

page splits in two. The split can be propagated to the ancestor nodes. If an insertion

causes enlargement of the leaf page's MBR, it is adjusted properly and the change is

propagated upwards.

Deletion in an R-tree requires an exact match query for the object. If the object

is found in a leaf, it is deleted. The deletion may cause the leaf page to underflow.

In this case the whole node is deleted, and all its entries are stored in a temporary

buffer, and are reinserted in the tree.

There are many variations of R-tree, such as R+-tree [69], which addresses the

problem of minimizing overlap and R*tree [10], which introduces deferred splitting

and re-inserting to improve the space utilization and minimize overlaps. Variations

of R*tree include SS-tree [77] and SR-tree. The SS-tree partitions search space

17

into hyper-spheres rather than hyper-rectangles. The advantage of the SS-tree is

that it requires much less storage compared to the R*tree because a hyper-sphere

is determined by the center and radius, while a hyper-rectangle is determined by

upper and lower bound of every dimension. However, the hyper-sphere occupies much

larger volume than the hyper-rectangle with high-dimensional data and this reduces

the search efficiency. The SR-tree utilizes both hyper-rectangles and hyper-spheres

and uses the intersection of a bounding rectangle with a bounding sphere as the

partitioning element. Compared to the R*tree and SS-tree, the SR-tree improves

performance by saving more CPU time and disk accesses because it takes advantage

of the good features of both methods above. Therefore in this study, the SR-tree is

used for most cases when multi-dimensional indexing is involved. The X-tree is also

an extension of R-tree, which introduces a more sophisticated split algorithm and

supernodes in order to reduce the overlap. However, it is not easy to keep the tree

balanced, also the large supernodes complicate the concurrency control mechanism.

The R-tree performs well for low-dimensional datasets since it is designed for

spatial datasets with 2 - 3 dimensions. Its variations improve performance by

reducing overlap and improve storage utilization, but still can not make it efficient for

high-dimensional datasets. In this study, high-dimensional datasets generally refer to

datasets that have dimensionality more than 30. When the dimensionality becomes

high, the performance of R-trees degrades because of the dimensionality curse and

almost all data blocks need to be accessed. A number of recent results have shown

the negative effects of increasing dimensionality on index structures [15, 76].

2.4 Dimensionality Curse

Dimensionality curse illustrates the problems caused by high-dimensionality. Human

intuition based on experience with 3-dimensional world they live leads them to believe

that numerous geometric properties hold in high-dimensional space, while in reality

18

they are not true in many cases.

Dimensionality curse affects multi-dimensional indexing and similarity search in

two ways. One problem is related to boundary effects. For example, in 2 dimensional

space, a circle with radius r is well approximated by the minimum bounding square

(see Figure 2.4). The ratio of the areas of the circle to that of the square is 5 =

7,-/4 ti 0.785. However, in 100-dimensional space, the ratio of volume of the hyper-

sphere to that of the minimum bounding hyper-cube becomes

In this case the minimum bounding hyper-cube is an very poor approximation of the

hyper-sphere since most of the volume of the hyper-cube is outside the hyper-sphere.

Figure 2.4 A circle and its minimum bounding square in 2-d space.

It is known that most of the multi-dimensional indexing structures partition

data space into hyper-cubes or hyper-rectangles, therefore another example related

to hyper-cubes is given here. Consider an 100-dimensional unit hyper-cube to be

the search space and 100,000 points. Do a two-way-partition on each dimension and

finally there are 2' units. Even the data points are evenly distributed, most of the

units (around 1025 units) are empty. It means for high dimensional data, the storage

utilization is quite poor if the index is based on partitioning of the search space.

High dimensionality results in high overlap and low fan-out and therefore increase

the number of page accesses for a query. When dimensionality is higher than a certain

value, sequential scan can outperform a multi-dimensional index.

The other problem is intrinsic in the geometry of high-dimensional space. One

19

of the characteristic of high-dimensional space is that points randomly sampled from

the same distribution appear uniformly from each other, and each point sees itself as

an outlier [15, 1]. This makes the meaning of nearest neighbors questionable because,

for each data point in a high-dimensional dataset, most of the other points have

similar distances to it and the difference between the nearest neighbor and farthest

neighbor is small. In Figure 2.5, the distances from each point to the centroid are

recorded for all four datasets. It is easy to see that the data distribution of most of

them follow normal distribution. The distances of most of the points to the centroid

are similar to the average distance, e.g., for TXT55 (Figure 2.5 (b)), around 60%

points are within a distance of 5 to the centroid while the average distance is 2.4. In

this case, the difference between the 20th nearest neighbor and 40th nearest neighbor

can be very small. In Figure Figure 2.5 (d), the nearest point from the centroid has

distance 3.33 and the maximum distance is just 5.9 and there is almost no points

within a range of 3 to the center. In this case, a range query becomes very sensitive

to the choice of query radius: with a radius of 3, no result is returned; while with a

radius of 4, 1/3 of points will be returned.

There are many techniques aimed at solving the problem of dimensionality curse.

Dimensionality reduction is one of the most popular techniques, and also some new

index structures or the revised version of the existing indexes are designed especially

for high-dimensional applications. In addition, another category of indexing method

called Metric-Space Methods or it Metric Based Indexing tries to index the distance

between a data point and a query point rather than the data point itself.

2.5 Dimensionality Reduction

To reduce the dimensionality and then build a multi-dimensional index on dimen-

sionality reduced data is a common technique to overcome the dimensionality curse.

Usually for different applications, different dimensionality reduction techniques are

20

used. Singular Value Decomposition SVD or Karhunen-Loeve Transform (KLT), or

Principal Component Analysis (PCA) [41]) is a most commonly used linear transfor-

mation method. SVD transforms a dataset by rotating and eliminating the corre-

lations among dimensions. It can be used in many areas, especially image databases

and it is "optimal" because it minimizes the Normalized Mean Square Error (NMSE)

[27] (see Section 3 for details). There are some other techniques which are used for

time series databases, such as Discrete Fourier Transform (DFT), Discrete Cosine

Transform (DCT) [34], Discrete Wavelet Transform (DWT) [63] and Segment Mean

Method (SMM) [79]. DFT, DCT and DWT are also known as popular feature

21

extraction methods for image databases and signal processing [60].

The SVD, KLT and PCA reduce dimensions based on the global information

of the whole dataset and they involve matrix calculation, therefore for applications

which have large volume data and extremely high dimensionality, such as large time

series databases, the DFT, DCT, DWT and SMM are applicable.

In order to be used for indexing, a dimensionality reduction technique must

satisfy the Lower Bounding Property [27].

2.5.1 Lower Bounding Property

Dimensionality reduction results in distance information loss. There are two types

of errors caused by dimensionality reduction and distance metric selection: false

dismissals (or false negatives) and false alarms (or false positives). False dismissals

refers to those qualifying objects that are not included in the set of retrieved objects,

whereas false alarms refers to those non-qualifying objects that are included in the

set of retrieved objects. For similarity queries on dimensionality reduced data space,

in order to get correct answers, false dismissal should be avoided, otherwise it is

not known for sure how many points in the response set are correct and that makes

your answer meaningless. False alarms are acceptable since at least it guarantees all

correct points are in the answer set, and furthermore, false alarms can be removed

by post-processing as described in detail in Chapters 4 and 5.

Lemma 2.5.1 Lower Bounding Property (LBP) [27]: To guarantee no false

dismissals for searching in dimensionality reduced space (subspace), the distance between

data points in subspace D (n) () must lower bound the distance between points in original

space DAN) ().

If the distance function in subspace is just the Euclidean distance, the LBP

holds because subspace dimensionality n is always less than or equal to the original

dimensionality N. When a certain number of dimensions are removed, the difference

22

between D (n) 0 and DM() might be very large for some points. In order to have a

better approximation of original distance, some revised subspace distance functions

have been used like approximate distance in [19] and Newlmage() in [22]. Only those

that have the property of LBP can be used for exact k-NN search algorithms.

2.5.2 Normalized Mean Square Error

Before introducing any specific dimensionality reduction method, it is necessary to

introduce a metric to measure the information loss due to dimensionality reduction.

The Normalized Mean Squared Error (NMSE) is defined as the ratio of total distance

information loss after dimensionality reduction to the total distance information

before dimensionality reduction.

Given a matrix X (corresponding to dataset X) with size M and dimensionality

N, if the transformed data matrix is X' in the original space, the definition of NMSE

is as in Equation 2.2

where pi is the mean of j-th column.

2.5.3 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a popular technique that has been used in

numerous applications such as statistical analysis (as Principal Component Analysis),

text retrieval (as Latent Semantic Indexing) and pattern recognition (as Karhunen-

Loeve transform).

matrix. Without loss of generality, it is assumed

that the mean (average of each column) is zero. The SVD of X is the factorization

Principal Component Analysis (PCA) is based on the decomposition of the

covariance matrix C for X:

V corresponds to the matrix of eigenvectors (as before) and A is a diagonal matrix

which holds the eigenvalues of C. C is positive-semidefinite, hence its N eigenvectors

are orthonormal and its eigenvalues are nonnegative. The trace (sum of eigenvalues)

of C is invariant under rotation. Eigenvalues, similarly to the singular values, are in

decreasing order. The singular values are related to the eigenvalues by:

yields uncorrelated features. Retaining the first p dimensions of Y minimizes the

NMSE.

Since SVD is a linear transformation, it does not change the Euclidean distance

between two arbitrary points. The distance information loss of transformed dataset

is equal to that of the original dataset. Therefore after dimensionality reduction, the

NMSE can also be defined as in Equation 2.6, where yid is the i-th transformed data

point and n is the number of dimensions retained, and zero-mean precondition still

holds.

24

There is a simpler way to calculate NMSE. According to Equation 2.7, the

NMSE is equal to ratio of the sum of discarded eigenvalues to the sum of all

eigenvalues, where Ai is the j-th largest eigenvalue.

Proof of Equation 2.7: Equation 2.8 can be obtained from Equation 2.5:

Based on to Equation 2.4 and Equation 2.8,

By pre-multiplying and post-multiplying with VT and V

Therefore Equation 2.7 holds.

It follows that the PCA and SVD achieve the same goal. The PCA requires

MN2 multiplications to compute C and obtaining eigenvalues is an 0 (N 3) compu-

tation, while SVD is 0(MN2).

2.5.4 Discrete Fourier Transform (DFT)

Discrete Fourier Transform is one of the earliest techniques for reducing the dimensions

of time series [3]. The basic idea is that any signal can be represented by the super-

position of a finite number of sinusoidal waves, where each wave is represented by

a single complex number known as a Fourier coefficient. A time series represented

in this way is said to be in the frequency domain. There are many advantages to

25

representing a time series in the frequency domain, the most important of which is

dimensionality reduction. A signal can be decomposed into sine waves that can be

recombined into the original signal. However, the last few coefficients that contribute

little to the reconstructed signal can be discarded without much loss of information

thereby producing dimensionality reduction.

One of the useful properties of the DFT is that it preserves the energy (square

of the length) of the signal, and the other property is that the DFT also preserves

the Euclidean distance and therefore the lower bounding property is satisfied. These

good properties make the DFT a popular method for indexing and dimensionality

reduction.

2.5.5 Discrete Wavelet Transform (DWT)

Wavelets are mathematical functions that represent data in terms of the sum and

difference of a prototype function, called the basis function. Several DWT methods

have been proposed [50]. They are different from the DFT in several important

respects. One important difference is that wavelets are localized in time, i.e., each

wavelet coefficient of a signal contributes to the reconstruction of a small portion of

the object. This is in contrast to the DFT where each Fourier coefficient contributes

to the reconstruction of each and every data point of the time series. This property of

the DWT is useful for multi-resolution analysis of the data. The first few coefficients

contain an overall, coarse approximation of the data, while additional coefficients can

be imagined as zooming-in to areas of high detail.

The simplest DWT to describe and code is the Haar wavelets. It gives the sum

and the difference of the left and right part of a signal, then it focuses recursively

on each of the halves, and computes the difference of their two sub-halves, until it

reaches an interval with one only sample in it.

26

2.5.6 Segmentation Mean Method (SMM)

Segmentation mean method, which is also called Piecewise Aggregate Approximation

[44], refers to a group of feature extraction methods that divide each time sequence

into equal [79] or nonequal [20] sized segments and record the mean value of each

segment as a feature. See Figure 2.6 for an example of equal sized SMM. They can

be used for arbitrary Bp norms and it is very simple, therefore multiple similarity

models can be supported. Also it guarantees "no false dismissal" since the distance

in SMM space lower bounds the distance in the original space. However, this type of

dimensionality reduction method is usually only used on time series databases because

for time series "time" is the variable and the series reflects the change based on time,

therefore it is still meaningful if the time interval becomes larger. For other datasets,

like image databases, it may be meaningless to take the mean of shape information

and color information.

Figure 2.6 Segmentation mean method [79].

2.6 Metric Based Index Structures

Content-based retrieval of images, audio, video or other multimedia objects is usually

based on the similarity between two objects. The basic idea is to extract features

like shape, texture and color from multimedia objects and map them into high-

27

dimensional feature vectors. Then searching similar objects becomes searching feature

vectors with smallest distances. The distance function can be very complicated for

some application, while the most common one is the Euclidean distance (B 2). The

basic idea of metric based indexes is to take advantage of the properties of similarity

to build a tree, which can be used to prune branches in processing the queries.

The M-tree is a height-balanced tree that uses both features and distance infor-

mation for indexing [24]. It partitions multimedia objects on the basis of their relative

distances and stores features of objects in leaf nodes, whereas it stores the so-called

routing nodes as well as child node pointers in internal nodes. All objects in the

subtree are within a certain distance (stored as an entry of the routing node) of

the routing nodes. The routing nodes are mainly designed for pruning unnecessary

traversal and checking. The insertion and splitting process is conceptually similar to

the corresponding processes of the R-tree.

A more recently method called iDistance relies on partitioning the data and

defining a reference point for each point [80]. Then each point is indexed using a

single-dimensional value which is the distance to the reference point. iDistance is

designed especially for k-NN search and its effectiveness depends on how the data are

partitioned and how the reference points are selected.

Metric based indexing methods support fast similarity search and can solve

some problems due to high-dimensionality, but they do not support range queries

since data points are not indexed on individual attribute values.

2.7 Summary

In this chapter, some background information and techniques related to similarity

search in high-dimensional space are given.

Generally, when dimensionality is not so high, multi-dimensional index structures

can be used directly. If the dimensionality is very high, index structures might

28

be even less efficient than a sequential scan because of the dimensionality curse

described in the chapter. Dimensionality reduction, followed by creating indexes on

dimensionality-reduced datasets, can solve the problem. For datasets with hetero-

geneously distributed data, clustering should be performed before dimensionality

reduction in order to minimize information loss. CSVD is selected as the basic method

for dimensionality reduction in this study.

CHAPTER 3

PERFORMANCE OF CSVD

3.1 Introduction

Content Based Retrieval (CBR) or similarity search has been an area of intense

interest in multimedia applications and it was given additionally impetus by the QBIC

(Query By Image Content) project a decade ago [58]. Domain experts characterize

objects by their features and define similarity measures, which can be incorporated

into a similarity index [77]. CBR seeks to find objects in the database that are similar

to some target object. Feature vectors and similarity measures for color, texture, and

shape are discussed in Chapters 11, 12, 13 in [18], respectively. The objects are

segments of an image for which feature vectors have been computed. Efficient k-NN

search over feature vectors is concerned.

An object P is specified by its feature vector 15, which is a point or vector in

N-dimensional space. N may be in the hundreds, while the number of objects M

tends to be very large, e.g., in the millions. This information is summarized in a

dataset X, which is in fact an M x N matrix.

The default distance metric used in this chapter is L2, i.e., the Euclidean

distance. For two points P and Q,

The processing of k-NN queries can be quite costly for large values of N and

especially M, since it requires the scanning of the dataset to compute the distances

of all points with respect to the query point Q. Clustering is one method to deal with

this problem, see e.g., [30], since hopefully only the points in the appropriate cluster

need to be considered in the processing of the k-NN query, although it is known that

29

30

clustering does not work as well as one would expect in high dimensional spaces.

Clustering can be attained indirectly by building a multi-dimensional index [33]

to reduce the number of points to be checked. As reported in [77], as the dimen-

sionality increases by a factor of 5-10, the performance of k-NN queries degrades by

a factor of twenty for R-trees, as well as SS-trees described in [77].

Dimensionality reduction by rotating X to its principal components (Y = XV

as given in Chapter 2) and retaining p dimensions such that p < N can be attained by

applying a linear transformation commonly known as Singular Value Decomposition

(SVD), or Karhunen-Loeve Transform (KLT) and performing Principal Component

Analysis (PCA). PCA is the "best dimensionality reduction" method in that it

minimizes the Normalized Mean Square Error (NMSE) (see Chapter 2 for definition)

[27].

One of the earliest papers that utilize SVD in database area is [46]. It uses SVD

to compress a large dataset into a format that supports ad hoc querying, provided

that a small error can be tolerated when the data is uncompressed.

Ad hoc queries require access to data records, either individually or in the

aggregate. Some of the typical queries are on specific cells of the data matrix like

"what was the amount of sales of ABC Inc. on December 2003', others are aggregate

queries on selected rows and columns like "find the total sales of ABC Inc. for 2003".

To support such queries, one has to maintain "random access" , i.e., fast reconstruction

of any desired cell of the matrix. Thus the algorithm consists of 2-pass computation of

SVD to get the eigenvectors (matrix V), eigenvalues (matrix A) (Equation 2.4), matrix

U (Equation 2.3), and reconstruction matrix X', where xi is the reconstructed value

of any desired cell x i, and

and p is the number of dimensions retained.

31

Some data points may be approximated poorly. For those cells for which SVD

reconstruction shows the highest error, a set of triplets of the form (row, column,

delta) is maintained, where delta is the difference between the actual value and recon-

structed value of that cell. With this structure, one can adjust the query results to

make them more accurate.

The intuition behind SVD can be illustrated in 2-dimensional space. Figure 3.1

gives an 2-d example to illustrate the rotation of axis that SVD implies. SVD

transforms a sample of points to a best coordinate space along which the properties

of the sample are most clearly exhibited. It can be seen that if only one dimension is

retained, the "best" axis to project is x'.

Figure 3.1 Example of SVD on a 2-d sample of points.

The SVD has been shown to be an efficient method for compressing large

tables of numeric data. It relies on global information derived from the dataset,

its application is therefore more effective when the dataset consists of homogeneously

distributed vectors. In other words, SVD works well for a dataset whose distribution

is well captured by the centroid and the covariance matrix [19]. For datasets with

heterogeneously distributed vectors, however, performing dimensionality reduction

using SVD on the entire dataset may cause a significant loss of information, as illus-

trated by Figure 3.2(a). In this case, data are not globally correlated, but rather

subsets of data are locally-correlated.

32

Figure 3.2 (a) SVD (b) CSVD on locally correlated data samples.

High-dimensional datasets in the real world are often not globally correlated

and therefore a method that can capture the local correlations in a dataset is needed.

The solution is to partition the large dataset into clusters, and do dimensionality

reduction separately on each cluster (Figure 3.2(b)).

The Clustered Singular Value Decomposition (CSVD) method captures this

local correlation by applying clustering first followed by SVD, although SVD can

be optionally applied before clustering, which is an instance of Recursive SVD -

RCSVD [72], [19]. This study is motivated by the Spire project at IBM Research,

which applied CBR to texture feature vectors extracted from satellite images.

The Local Dimensionality Reduction (LDR) method [22] combines the dimen-

sionality reduction step with clustering to seek clusters yielding a higher dimen-

sionality reduction (or so called "SVD-friendly" clusters [72]). Another method called

Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) [40] tries to cluster

a high dimensional dataset using the low-dimensional subspace based on Mahalanobis

distance instead of Euclidean distance. The CSVD method is compared with LDR in

[19], but additional results with new datasets are reported in this chapter.

Three variations for implementing CSVD are considered and compared against

33

each other, and also the SVD and LDR methods from the viewpoint of the compression

ratio, CPU time, and retrieval efficiency. The comparisons are carried out using three

real-world and one synthetic dataset [22]. Also an elliptical k-means algorithm based

on Mahalanobis distance is implemented and compared with the regular k-means

method from the viewpoint of compression ratio.

Two variations in merging query results obtained from different clusters are

also evaluated, referred to as on-the-fly and deferred merging. In on-the-fly merging,

the points retrieved from various clusters are merged based on their approximate

distance, In deferred merging, each cluster yields k nearest neighbors, with projected

or approximate distances, which can be merged using original distances.

The roadmap to this chapter is as follows. Section 3.2 provides a description on

the related work, especially LDR method and MMDR method. Section 3.3 describes

the steps required for implementing CSVD and Section 3.3.2 specifies the approximate

algorithm for k-NN search. Section 3.4 summarizes experimental results for CSVD

and LDR with and without indexing structures. Conclusions and areas for future

research are given in Section 3.5.

3.2 Related Work

There are several methods in the literature that capitalize on the observation of doing

dimensionality reduction based on clustering. Consequently, before those techniques

are described, a brief introduction of clustering is needed.

3.2.1 Clustering

Clustering is the process of grouping a set of the objects into clusters where similar

objects are aggregated into the same cluster and dissimilar objects into different

clusters. Clustering is an unsupervised learning process, since it does not require any

predefined training classes. As a branch of statistics, clustering plays an outstanding

34

role in information retrieval, machine learning and data mining applications such

as scientific data exploration, text mining, spatial database applications, marketing,

medical diagnostics, computational biology, and many other fields [57, 14].

Clustering algorithms can be classified into four categories: Partitioning methods

(such as k-means [30] and EM algorithm [25]), Hierarchical methods (such as CURE

[35] and BIRCH [82]), Density-Based methods (such as DBSCAN [26]) and Grid-based

methods (such as STING [75]).

k-means is a commonly used partitioning clustering method. A regular k-means

algorithm has the following steps:

1. Randomly select k points from the dataset to serve as centroids.

2. Assign each point to the closest centroid to form k clusters.

3. Recompute the centroid for each cluster.

4. Go back to Step 2 until there is no new assignment.

The k-means method is utilized for CSVD because it is the simplest clustering

method that works well for CSVD. Since the quality of the clusters varies significantly

from run to run, the clustering procedure is repeated for 10 times and the result

yielding the smallest sum of squares (SSQ) distance (Ch denotes the set of points in

the huh cluster) is selected.

The choice of clustering algorithm is often determined by applications. The

regular k-means method tends to discover clusters with spherical shapes. In appli-

cations like image processing and pattern recognition, it is often desirable to find

natural clusters. Data points that are locally correlated should be grouped into

one cluster. Therefore another clustering method that discover elliptical shaped

35

clusters is also utilized, which is called elliptical k-means algorithm [71]. It is based

on an adaptively changing normalized Mahalanobis distance metric as shown in

Equation 2.1.

The outline of the algorithm is as follows [71]:

1. Utilize Euclidean-based k-means algorithm to obtain k clusters.

2. Compute the covariance matrix for each cluster.

3. Reassign points to the closest clusters based on the normalized Mahalanobis

distances obtained with current k centroids and their covariance matrices.

4. If there is new assignment, recompute the k centroids and go back to step 3.

Otherwise, go to step 5.

5. If the number of outer-loops (step 2 to 5) has not exceeded MaxOutLoop, go to

step 2, otherwise return the current k clusters and their centroids.

The elliptical k-means algorithm differs from the regular k-means algorithm

in that it iteratively refines and recovers the cluster shapes by recomputing the

covariance matrix. Therefore, it ends up with the elliptical shaped clusters. However,

there is a tradeoff for these advantage. The covariance matrix needs to be recal-

culated many times and the CPU cost grows quadratically rather than linearly with

the number of dimensions.

Some new clustering methods are designed for high-dimensional datasets, such

as the BIRCH [82], the CLARANS [2], the CURE and the CLIQUE [4] method. The

BIRCH method uses a hierarchical data structure called CF-tree to incrementally

build clusters. The CURE method uses more than one representative point for each

cluster and it adjusts well to different shapes of clusters. The CLARANS method

uses a restricted search space to improve the efficiency, while the CLIQUE method

tends to discover clusters in all subspaces of the original data space. These clustering

36

methods are much more complicated than the k-means methods. However, like a

regular k-means method, they do not help to identify locally correlated clusters along

arbitrary directions.

3.2.2 LDR

A technique called Local Dimensionality Reduction(LDR) is proposed in [22]. It

tries to find local correlations in a dataset and performs dimensionality reduction

on the locally correlated clusters individually. The partitioning of the data and the

dimensionality reduction are carried out simultaneously.

MaxReconDist is a parameter specified by users to restrict the amount of infor-

mation loss within cluster. A point P in a cluster must satisfy ReconDist(P, S) <

MaxReconDist where ReconDist(P, S) of a point P from a cluster S measures the

distance between the originally dimensional representation of P and its approximate

representation in the reduced-dimensional subspace S. The higher the error, the more

the distance information lost. The LDR method also restricts the maximum number

of dimensions (M ax Dim) and minimum number of points in a cluster for indexing

issue.

The clustering algorithm starts with spherical clusters. Then PCA is performed

on each cluster individually. Finally, points are "reclustered" based on the correlation

information to obtain the correlated clusters. A point is reassigned to a cluster that

requires the minimum subspace dimensionality to satisfy the reconstruction distance

bound ReconDist(P, S) < MaxReconDist, i.e., for each point, for each cluster, the

minimum number of dimensions required to approximate the point (with error at

most equal to MaxReconDist) is determined. And the cluster requiring the minimum

number of dimensions Nmin is determined. If Armin, < M axDim, the point is added

to that cluster, and the required number of dimensions is recorded. If there is no such

cluster, the point is added to the outlier set.

37

The quantities M, threshold, e, MaxReconDist, MaxDim, Frac0utliers, and

MinSize must be provided by the user.

An index structure to support point, range and k-NN queries is created on entire

dataset. Clusters are indexed separately by an existing multi-dimensional indexing

structure like the hybrid tree [21] and a single root node then connects them together.

The index of each cluster is built on the di + 1-dimensional space, while d i denotes

the dimensionality of subspace in a cluster and the d i+1-th dimension is the value of

ReconDist(P, S).

Algorithms for range search and k-NN search are also provided for similarity

search on a LDR index. For k-NN search, it maintains a priority queue and performs

breadth-first search throughout the trees until k-nearest neighbors are found. The

distance between a query point and an inner node is computed in the reduced-

dimensional space and the distance between the query point and a data point is

computed in the original-dimensional space. Since the reduced-dimensional distances

are lower bound the original-dimensional distance, the results should be the exactly

k-nearest neighbors. Since this algorithm is utilized in this this study, it is described

in Appendix A in more detail.

3.2.3 MMDR

Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) was proposed in [40].

MMDR can be considered as an extension of LDR. The features that are different

from LDR are: first, it argues that the locally correlated clusters are elliptical-shaped

instead of spherical shaped, which can be explored by the Mahalanobis distance

instead of the Euclidean distance. Second, it states that certain level of lower dimen-

sional subspaces may contain sufficient information for correlated cluster discovery in

the high-dimensional space.

An algorithm that discovers elliptical clusters using the low-dimensional subspace

38

is provided. MPE is the average representation error (like the reconstruction error

ReconDist in LDR) of all points when they are mapped from the original space to the

eliminated subspace. MaxMPE is specified by users as the maxinum MPE allowed.

The algorithm consists of two major steps. The first step Generate Ellipsoid is as

following:

1. Project data into its first s principal components (s should be very small).

2. Cluster on s-dimensional space using elliptical k-means algorithm.

3. For each cluster, project data into its local first s principal components, increase

s to 2s and recursively call this procedure until MPE > MaxMPE or original

dimensionality is reached, then the cluster qualifies for the next procedure.

The above procedure produces possible ellipsoids in their s-dimensional space,

and the dimensionality of each cluster can be further reduced by calling the second

step: Dimensionality Optimization, which keeps decreasing the dimensionality by 1

until the change of MPE is less than a pre-set threshold. Another threshold value 0

is employed to determine whether a point belongs to a cluster. If the projection error

is greater than 0, the point is considered an outlier.

The MMDR use an index structure that represent high-dimensional data in a

single dimensional space and index them with a Bk-tree. A detailed description of

this method called iDistance can be found in [80].

The process of k-NN querying is as follows: Given a query point Q, finding k

nearest neighbors begins with a query sphere defined by a relatively small radius r

centered at Q. Q is projected into each cluster and then, step by step, the radius r

is enlarged and at last when the distance of the k-th nearest neighbor is less than r

the search stops. It describes some cases needed to consider for each step when r is

enlarged, but does not give a clear description on how the k-NN search is going on

and how to decide r according to k.

39

The LDR method uses individual error reconDist of each point as the criterion

for dimensionality reduction, while the MMDR uses the average error of all points

MPE. The two criteria are actually similar to the NMSE described in the previous

section, but they are not as good as the NMSE for addressing the information loss

due to dimensionality reduction, because they are absolute values, which are data-

dependent, while the NMSE is an ratio, which is data-independent.

3.3 The CSVD Method

The CSVD is a local dimensionality reduction method that applies clustering first,

followed by performing SVD for each cluster, and then do dimensionality reduction in

a global manner [19]. In this section, three variations for implementing dimensionality

reduction step are considered and the approximate k-NN algorithm for CSVD is

described in detail.

3.3.1 CSVD Implementation Steps

The CSVD proceeds according to the following steps:

1. Studentization

Usually, a dataset should be preprocessed before clustering by appropriately scaling

the numerical values of the indexed feature to equalize their relative importance for

k-NN queries with the Euclidean distance [19]. It might be unnecessary for a synthetic

dataset where the selected features have the same scale.

and standard deviation of the j th column.

2. Selecting Dimensionality Reduction Targets

Dimensionality reduction can be carried out based on a target compression ratio,

defined as the ratio of the "volume" of the original dataset

dimensionality reduced dataset plus the metadata:

The first two terms are due to the metadata: the space required for the centroids

and eigenvectors B for all clusters. The last summation is the volume of all clusters,

where mG (resp. 1Ah)) is the number of points (resp. number of dimensions) retained

in cluster h or CG.

The user can specify the compression ratio and compute the NMSE, but very

aggressive data compression might result in a very high NMSE and unacceptable

recall and precision. Since for a given compression ratio the NMSE varies widely

over datasets, the preferred method is to specify a target NMSE - TNMSE, which is

selected to be small enough to ensure a satisfactory precision and recall.

3. Clustering the Dataset

Partition X into H clusters X Ah) ,h = 1, H with mG points for cluster CG by using

the k-means method described on Section 3.2.

For each cluster CG store the centroid 1AG) and the radius RAG), which is defined

as the distance between the centroid and the farthest point belonging to the cluster

from the centroid.

The choice of an appropriate number of clusters H for clustering remains an

open problem. For a given compression ratio increasing H results in a reduction in

NMSE, but a point of diminishing returns is reached after a certain H [721.

4. Apply the SVD or PCA to Each Cluster

Compute the eigenvectors BAG) and the eigenvalues

Vectors of X (G) are rotated onto 17(G) according to

41

in a cluster (less than a small multiple of N), the original dimensionality is kept. The

code for SVD is from the Numerical Recipes package [63].

Three methods are considered to perform dimensionality reduction on the clusters

of a dataset:

Local Method (LM): According to Equation 3.4, LM removes dimensions, starting

with the smallest eigenvalue, until NMSE AG) ti TNMSE and NMSE AG) < TNMSE.

Global Method 2 (GM2): Similar to GM1 but replace the third element of the

triple with Ae(63 • mA 03). The intuition behind GM2 is that clusters with more

points should retain more dimensions, since they will be queried more frequently.

The LM retains more dimensions than necessary in comparison with global

methods, as shown in the experiments. This is due to a bin-packing effect, which

42

allows a larger number of dimensions with smaller eigenvalues to be discarded in

the latter cases. The global methods solve the problem by sorting all eigenvalues,

although they come from different clusters, and removing dimensions according to

one TNMSE. By using global methods, local NMSEs may not be the same, some

may be larger than TNMSE and others may be smaller, while the global NMSE is

guaranteed to be equal to TNMSE.

The global methods should be better than the local method. Although CSVD

captures the local structures of a dataset by clustering, there do exist some relationship

among those clusters. Doing dimensionality reduction separately and independently

cluster by cluster ignores the global relationship among the clusters. Furthermore,

global methods result in the least error accumulation since they round to the upper

bound of the retained dimensions only once.

The experiments show that Global Method 2 is not as good as Global Method

1. A possible explanation could be: In equation 3.4, when the global NMSE is

calculated, mh can be considered as a weight, if sort the eigenvalue times mh instead

of the eigenvalue itself, mh is considered twice.

Global methods may result in some clusters having no dimension left. In this

case no index is built for the specific clusters and instead, the original data are

scanned to find the k nearest neighbors. Conversely, if all the N dimensions are

retained, building an index might in fact degrade performance. Rather than imposing

a restriction such as MaxDim in [22], a high dimensionality index is built and its

performance is measured, although from a practical viewpoint a sequential scan would

have been more efficient.

6. Constructing the Within-Cluster Indices

Due to the clustering and dimensionality reduction, the size and dimensionality of

each cluster are much smaller than the original dataset. Therefore they are much

more amenable to efficient indexing than the entire dataset. For the experiments

43

sequential scan is used to show the performance improvement obtained purely by

CSVD. In an earlier study the authors considered the ordered partition index [45],

which is main memory resident.

3.3.2 Approximate k-NN Search Algorithm

CSVD supports approximate k-NN queries, which can yield false alarms and false

dismissals [27]. The distance metric used in this section is Euclidean distance. In

order to achieve a certain accuracy k* > k points are retrieved.

The following steps are followed:

1. Preprocess the Query Vector: Studentize the query point Q as the other

points in the dataset.

2. Identify the Primary Cluster: The primary cluster is the cluster to which

Q belongs. In the case of k-means clustering method it is simply the cluster

with the closest centroid to Q. Otherwise the cluster encoding method is used

to determine the primary cluster.

3. Compute Distance from Clusters: The distance of a query point Q from a

cluster Ch is defined as its distance from the centroid of the cluster (p Ah)) minus

its radius. This distance is zero if the point is within the radius of Ch.

Clusters are sorted in increasing order of distance, with the primary cluster in

first position.

4. Search the Primary Cluster: This step produces a list of k* points sorted

in increasing order of distance. Let Amax be the distance of the farthest point

from the query point Q in the list.

44

Figure 3.3 Searching nearest neighbors across multiple clusters.

5. Search the Other Clusters: Search the other clusters in the order obtained

by Section 3. A cluster Ch is to be searched if D(Q, Ch) < Tmax or if the number

of results is less than k*, otherwise the search terminates (Figure 3.3). Since

Tmaxis updated after a cluster is searched, the potential number of clusters to

be visited is trimmed as going along.

6. Merge the Search Results: Distinguish between two approaches for merging

k-NN results obtained from the different clusters:

On-the-fly merging: While searching clusters, if points closer than the farthest

neighbor from the query point are found, they are inserted into the list of

current results dynamically, and rn,„, is updated.

In this approach, it is needed to compare the distances among multiple

clusters. Since each cluster has different number of retained dimensions,

care must be taken when performing the within-cluster search. Since the

data points stored in a cluster are in reduced-dimensional space, one has

to use the reduced distances between the projections of Q and points in a

cluster instead of original-dimensional distances. Simple geometry shows

45

Figure 3.4 Approximate distance function.

that two points that are arbitrarily far apart in the original space can have

arbitrarily close projections. The search algorithm must therefore account

for this approximation by relying on geometric properties of the space

and of the index construction method. As shown in Figure 3.4, CSVD

approximates the squared distance D(Q, P) between Q and data points P

with D(Q, P'), where P' is the projection of P onto the cluster subspace.

D(Q, P') approximate distance is called and the distance between P' and

Q' is denoted as projected distance. Hence

Deferred-merging: A separately sorted list of k* NNs is kept for each cluster

and merge them into one list with k* element by n-way merge sort. Here

there are two choices for the distance functions:

• Use the approximate distance (D(Q, P')) described in Figure 3.5,

• Use the projected distance (D(P' ,Q')) for within-cluster search.

In case the distances are based on projected distances (D(Q', P')), in order

to reconcile the distance of Q with respect to different clusters the original

dataset is accessed to obtain the original coordinates for P and compute

46

D(Q, P) before merging. Approximate distances (D(Q, P')) can be alter-

natively used for merging.

0n-the-fly merging is fast and straightforward and is best suited for sequential

scans of main memory resident datasets. Deferred merging is appropriate

when processing k-NN queries on indexing structures, which yield the k-

nearest neighbors in a batch.

7. Post-processing: The distance between the query point Q and the k* resulting

points are computed in the original space and the closest k results are returned.

This may already have been accomplished in Step 6.

3.4 Performance Study

3.4.1 Experimental Setup

As summarized in Table 3.1, three real-world datasets (TXT55, AERIAL56, and

C0LH64) and one synthetic dataset (SYNT64) are used in the experiments. SYNT64

and C0LH64 are also the datasets used to investigate the performance of the LDR

method. TXT55 and AERIAL56 are studentized but C0LH64 and SYNT64 are not,

since the values in different dimension have the same scale.

For the elliptical k-means algorithm, the clusters created by regular k-means is

used as the input. Instead of S SQ in Equation 3.2, MaxOutLoop is specified by users

to control the number of the iterations in which covariance matrices are recalculated.

MaxOutLoop is set to 10 in this experiment.

The CPU costs and precisions plotted in each figure are summation over one

thousand biased k-NN queries with k = 20. Biased means that the query points were

randomly selected from the original dataset.

The experiments were carried out on a Dell Workstation (Intel Pentium 4 CPU,

2.0 GHz, and 512 MB RAM) with Windows 2000 Professional.

47

3.4.2 Performance Metrics

The performance comparisons are carried out from the following viewpoints:

Compression Ratio is the space required by the original dataset X divided by the

space required by the dimensionality reduced dataset (without or with the space

required for metadata as in Equation 3.3 in Section 3).

Recall and Precision are two metrics used to estimate retrieval efficiency, since

SVD is a lossy compression method. In k-NN search, to account for the approx-

imation, k* > k is retrieved, k' are among the k desired nearest neighbors. It

is easy to see that k' < k < k*. Recall, a measure of retrieval accuracy, is

defined as 'R, = k' I k. Precision, a measure of retrieval efficiency, is defined as

P = le I k* . For a target R, k* starts at k* = k and is increased until this target

is met and measure P at this point. When a fixed k* is used (or k* = k) then

AZ = P =k' Mk.

48

Retrieval Speedup is the ratio of the CPU time in processing k-NN queries in two

different ways, which correspond to a sequential scan of the original dataset

versus

(0 querying CSVD generated data using sequential scan;

(ii) querying the indexing structure described in [45].

There is a three-fold speedup because:

(a) only a subset of the clusters are searched;

(b) the dimensionality is reduced;

(c) only a subset of points in each cluster are searched due to indexing.

Possible optimizations uses the squared distance in comparisons and stops the

iteration for summation when the squared distance exceeds the distance from

the query point to the farthest nearest neighbor (7-7,„x).

With the first two terms pre-computed, the inner product in

+ I 4'112 —2/54 can be computed very efficiently using IBM's ESSL package for

PowerPC [19], but not on an X86 processor.

3.4.3 Experiments

In this chapter, the optimized sequential scan, which bypasses any unnecessary distance

calculations, is used for within-cluster search instead of any multi-dimensional indexing

structures. Thus the relative performance of SVD, CSVD, LDR and MMDR can be

studied.

The first experiment is to compare the performance of CSVD with that of the

global SVD, the second experiment is to compare CSVD with LDR, and the third

one is to compare CSVD with MMDR.

49

I. Comparison of CSVD and SVD

The following experiments are carried out to illustrate the different facets of

CSVD.

Compression Ratio: First compare SVD with CSVD to determine the improvement

in the compression ratio. TXT55 is partitioned into varying number of clusters

and the average number of dimensions retained and data volume (Equation

3.3) are shown in Figure 3.5. It is clear that CSVD reduces more dimensions

than SVD for a given NMSE. Furthermore, it follows from Figure 3.5(a) that

CSVD reduces more dimensions as the number of clusters increases. However,

a point of diminishing returns is soon reached and for a very large number of

clusters, e.g., 128 clusters in Figure 3.5(b), the index volume exceeds that of 32

and 64 clusters. This is due to the increased space required for metadata (see

Equation(3.3) in Section 3.3). According to this experiment, 32 or 64 clusters

can be the final choice for H.

The effect of the different options of CSVD is studied as discussed in Section

3. LM is outperformed by GM1 and GM2 (Figures 3.5(c) and 3.5(d)). It

follows from Equation 3.4, which takes into account the number of points in

each cluster, that using ma il) in GM2 is an overkill. Consequently, for all

datasets in this paper GM1 outperforms GM2.

Also the compression ratio of the regular k-means and the elliptical k-means

is compared using GM1 on the TXT55 dataset which creates 16 clusters. The

results are shown in Figure 3.6. From 3.6 (a) it is easy to see that with same

level of the NMSE, the elliptical k-means is always able to retain less dimensions

than the regular k-means. Figure 3.6 (b) shows that as the NMSE increases,

the advantage of the elliptical k-means over the regular k-means becomes more

significant.

Retrieval Speedup: 0ne reason for the speedup is that data clustering and the

approximate k-NN querying reduce the number of data points visited as well

as number of dimensions checked during query processing. CSVD prunes the

search space by visiting a small number of clusters (Figure 3.7(c)), so that only

a small fraction of points is visited (Figure 3.7(a)).

Figure 3.7(b) provides the speedup, obtained by SVD and CSVD methods versus

NMSE with different degrees of clustering, with respect to sequential scan for

SYNT64. It is observed that over a 30-fold speedup is obtained for H = 10 for

smaller NMSEs.

Figure 3.7(d) shows the speedup obtained by SVD and variants of CSVD, while

maintaining 1?, = 0.75, for AERIAL56. It is observed that CSVD variations

provide a higher speedup than SVD and that GM1 is the best.

The CPU cost of regular k-means and elliptical k-means can be found in Appendix

B.

Quality of Retrieval: Figure 3.8 shows the precision versus the NMSE for the three

CSVD methods and SVD with 7Z, = 0.75. For both datasets, the results of

CSVD are better than SVD and among the three CSVD methods, GM1 is the

best.

On-the-fly versus deferred merging: Figure 3.9 compares on-the-fly merging with

deferred merging from the viewpoint of CPU cost and precision. In Figure 3.9(a)

for 128 clusters, when NMSE = 0.4, the CPU cost of deferred merging is twice

as high as that of on-the-fly merging. This is because deferred merging requires

access to the original dataset residing in the main memory. On the other hand,

52

deferred merging outperforms on-the-fly merging in precision (Figure 3.9(b)).

This is due to the fact that deferred merging visits the original dataset and

obtains the original distances between points.

Accessing or Not Accessing Database: Two conditions under different distance

functions are considered. Accessing database: Within-cluster-search uses

projected distance to find k candidates for each cluster, then locates them in

the database and calculate the original distance between the candidates and

53

query points before merging them to a final list of k points. Since k and H

(the number of clusters) are both small constants, this will not increase the I/0

cost much. Not-accessing database: Within-cluster-search uses approximate

distance to find k candidates for each cluster and uses the same distance to

merge.

Figure 3.10 illustrates the curves of CPU cost (3.10(a)) and precision (3.10(b))

for deferred-merging using the original distance and approximate distance, as

well as on-the-fly-merging using approximate distance. It turns out that they

have similar precisions, while deferred-merging using approximate distance is a

compromise between the other two cases.

II. Comparison of CSVD and LDR

For CSVD, the best of the three proposed methods, which is GM1, is used. For

LDR, even for the same set of parameters, the results differ from one instantiation to

another because of the randomized choice of centroids for spatial clusters. Therefore

for each set of parameters LDR is run over 10 times and the best configuration which

results in the smallest value of NMSE, is selected.

Many parameters need to be specified for LDR. In order to simplify the problem,

the MaxDim (maximum subspace dimensionality of a cluster) is set to the original

dimensionality, and MaxReconDist (maximum reconstruction distance that a point in

a cluster can have) as well as FracOutliers (permissible fraction of outliers) are varied

to obtain different levels of approximation. NMSE, the control variable used in CSVD,

is a better criterion for comparison, because it reflects the fraction of dataset variance

lost and is independent of dataset characteristics.

Experiments with the Synthetic Dataset. Data points are generated using the

synthetic dataset generator which was presented with the LDR method [22]

to form groups that are separated from each other and with different intrinsic

dimensionality. Therefore, both LDR and CSVD can generate good clusters

with little overlap. This can be seen from the fraction of data points which has

to be visited during query processing (Figure 3.11(d)). It can be seen that CSVD

has a better compression ratio than LDR on the average (Figure 3.11(a)), and

the precision of k-NN queries for LDR and CSVD are similar (Figure 3.11(b)).

Furthermore, CSVD has a lower CPU cost (Figure 3.11(c)), since it visits a

smaller fraction of data points.

55

Experiments with real-world Datasets. For high-dimensional real-world datasets

considered in the experiments, both LDR and CSVD generate clusters overlap

heavily, therefore a large fraction of clusters needs to be visited during k-NN

querying.

From Figures 3.12, there is no significant difference between the compression

ratios of LDR and CSVD for C0LHIST64. CSVD outperforms LDR in precision

when NMSE < 0.20. According to Figure 3.13 and 3.14, for TXT55 and

AERIAL56, CSVD has higher precision and lower CPU cost than LDR.

56

Summary of the Comparison. Neither method outperforms the other in all cases.

The two methods yield similar compression ratios. Since CSVD partitions

datasets by a regular k-means method and reduces the dimensionality in a global

manner, the whole process is conceptually much simpler than LDR. CSVD is

a more adaptive method because clustering and dimensionality reduction are

carried out independently. In most cases CSVD outperforms LDR as far as

retrieval efficiency and CPU cost are concerned.

0n the other hand, LDR has the potential to better identify more "SVD

friendly" clusters [72] and hence outperforms CSVD in other cases, e.g., when a

dataset has very clear local correlation. It might yield a better compression ratio

and retrieval efficiency if its parameters are chosen carefully after an exploratory

analysis of the dataset. In the experiments LDR did not capture the local data

structure well for studentized datasets. For a high dimensional dataset, after

studentization, it is even more difficult to form good clusters, since data points

are brought closer to each other. In this condition, local correlation becomes

unclear. This is the reason that LDR performs not as well as CSVD for TXT55

and AERIAL56.

58

Due to space limitations not all results are included in this paper. The reader

is referred to [73] for additional experimental results.

In conclusion, CSVD seems to be the preferred method for high dimensional

dimensionality reduction. It is more flexible in that it can use any clustering

method according to the application and datasets.

II. Comparison of CSVD and MMDR

Experiment on the MMDR is held on only the synthetic dataset SYNT64.

Firstly, several clustered datasets of the MMDR were generated by varying MaxMPE.

Then NMSEs were calculated while CSVD clustered datasets with same values of

59

NMSEs were generated so that the CSVD and the MMDR can be compared based

on the same values of NMSEs.

From Table 3.2, it is easy to see that as the MaxMPE increases, NMSE increases

as well. And like LDR, when parameters change, the number of clusters might change

as well. For a same value of NMSE, CSVD retains a slightly fewer dimensions than

MMDR, which means the compression ratio of CSVD is higher.

As for query cost, from Figure 3.15 (a), MMDR has a slightly lower CPU cost

compared to CSVD at all NMSEs. This is because CSVD retrieved a slightly more

points so that the fraction of total points visited are higher than that of MMDR.

According to the above results, CSVD is a simpler method which does not

60

perform worse than the much more complicated MMDR method.

3.5 Conclusions

In this chapter, first some variations of CSVD that were not explored in [19] are

specified and investigated. The LM dimensionality reduction, which is tantamount

to applying SVD with a target NMSE (TNMSE) to individual clusters, and GM2

method, are outperformed by the GM1 method, which selects the principal components

to be retained on a global basis. Also, the tradeoff in utilizing approximate distances

against the original distance is investigated in processing k-NN queries.

The CSVD is compared with LDR with three real-world datasets and one

synthetic dataset from the viewpoint of the compression ratio, retrieval efficiency

for k-NN queries, and CPU cost for sequential scan. CSVD compares favorably or

outperforms LDR in most cases.

An advantage of CSVD with respect to LDR is its flexibility in that the clustering

phase is decoupled from dimensionality reduction. Very large datasets can be clustered

using clustering methods applicable to disk resident data, coupled with PCA applied

to the covariance matrix C (C can be computed in a single dataset scan [46J]). This

remains an area of future investigation.

61

CHAPTER 4

K-NEAREST NEIGHBOR SEARCH

4.1 Introduction

In recent years, the k-NN query has become an important tool in content-based

retrieval or similarity search in multimedia databases containing images, audio and

video clips, etc..

k-NN queries retrieve k closest objects to the query object. Multimedia objects

are usually represented by features, such as color, shape and texture. Features are

then transformed into high-dimensional points (vectors). Similarity queries, especially

k-NN queries based on a sequential scan of large files or tables of feature vectors

is computationally expensive and result in a long response time. Multi-dimensional

indexing methods fail to work efficiently in high-dimensional space due to the problem

of the dimensionality curse.

A well-known technique is to reduce the dimensionality of feature vectors and

then build a multi-dimensional index structure on the dimensionality reduced space.

Techniques based on linear transformations, like the SVD, have been widely used for

this purpose.

Clustering and Singular Value Decomposition (CSVD) is proposed in [19] to

solve the problem by clustering the dataset, reducing the dimensionality and building

index in the dimensionality reduced space for each cluster. It has been shown to

outperform global SVD when the data are locally correlated.

An algorithm to find k nearest neighbors has been proposed especially for CSVD

(See Section 3). It is an approximate method since it violates the lower-bounding

property [27]. The lower-bounding property which is initially defined for range queries

also works for k-NN queries, since a k-NN query can be transferred to a range query

62

63

with an estimated search radius [48].

In this chapter, an exact k-NN algorithm is presented for CSVD based on a

multi-step k-NN search algorithm presented in [48] which is designed for global dimen-

sionality reduction methods. Experiments with two datasets show that it requires less

CPU time than the approximate algorithm at a comparable level of accuracy.

The rest of the chapter is organized as follows: Section 4.2 gives the related

work. Section 4.3 describes the new algorithm in details. The experimental results

are given in Section 4.4 and the conclusion appears in Section 4.5.

4.2 Related Work

There are two categories of nearest neighbor search methods: exact methods ([66,

37, 48, 68]) and approximate methods ([31, 7, 19]). Exact k-NN algorithms retrieve

the k points which are exactly the same as those obtained from original space using

sequential scan. For datasets with extremely large number of points and very high

dimensionalities, it is expensive to obtain exact results. Furthermore, the meaning of

"exact" has been questioned [15] because using feature vectors and a distance function

to address similarity of multimedia object itself is just a heuristic [1]. In this case,

approximate methods may be more efficient at the cost of a lower accuracy for k-NN

queries.

For querying indexes built on dimensionality reduced space, if the distance

between any two projected points, i.e., dimensionality reduced points, lower bounds

the distance between the corresponding original points, then it is possible to have

an exact k-NN algorithm. The k-NN search algorithm for CSVD in [19] is an

approximate method because it uses approximate distance between two projected

points. Approximate distance neither lower bounds nor upper bounds the original

distance. Figure 4.1 shows an example in 2-dimensional space. For a data point P

64

Figure 4.1 Approximate distance in CSVD.

In order to obtain a certain accuracy, k* (> k) points has to be retrieved, where

the precision can not be probabilistically controlled, i.e., k* can not be predefined as a

function of recall. On the other hand, the good point of this method is that it doesn't

need to access the original database. Exact methods, when working on dimensionality

reduced indexes, have to access the original databases for post-processing.

Many algorithms for exact k-NN queries have been reported in the literature.

The earliest k-NN method for multi-dimensional indexes [66] is designed for R-tree.

It uses MINDIST and MINMAXDIST to prune branches. There is no dimensionality

reduction involved in this basic algorithm.

The state-of-the-art of multi-step exact k-NN algorithm which can be applied

on dimensionality reduced datasets or indexes appears in [48]. It has three steps:

65

1. Find the k nearest neighbors to the query point Q in the subspace (dimen-

sionality reduced data space);

2. Find the actual distances of these k points to Q and especially the farthest

distance (Amax);

3. Issue a range query on the subspace with radius dmax and obtain their original

distances to Q, then pick the closest k points as output.

The above method is independent of index structures and it can be plugged in

to any existing multi-dimensional index and even sequential scan.

Another popular method called Ranking method [37] finds k nearest neighbors

by using a priority queue and in that case k is not necessary to be a fixed number.

The method introduced in [68] extends the ranking method to dimensionality reduced

data and presents an exact algorithm that results in less false alarms. The algorithm

for Local Dimensionality Reduction (LDR) [22] is also based on ranking. It uses a

priority queue to navigate the index for all clusters and explores only those objects

that are within the range of k-th nearest neighbor 1 . All these few methods are

designed for multi-dimensional indexes and they are index-dependent.

4.3 Exact k-NN Search Algorithm for CSVD

The index structure after performing CSVD is shown in Figure 4.2. The root node

contain basic data information (size, dimensionality, centroid and radius — the

farthest points to the centroid) of the whole dataset — and the number of clusters

as well as the address of each clusters. For each cluster, besides the basic data

information, a pointer to the local index is provided. Any multidimensional index

can be used as local index.

1 This k-NN algorithm, which is also applied in Chapter 5, is described in detail in Appendix
A

66

Figure 4.2 Indexing structure of CSVD.

In this chapter, to make life simple, "approximate method" just refers to the

approximate k-NN algorithm for CSVD in [191, and "exact method" only denotes the

newly proposed method.

Given a set of clusters C1 , C2 , ..., CH and their centroids and radius, the exact

k-NN algorithm proceeds as follows, noting that the idea for pruning unnecessary

clusters is actually similar to the approximate algorithm:

1. Find the primary cluster Cp, which is the cluster with the closest centroid to

query Q. 0rder other clusters based on their distances to Q, which is defined

where ph is the centroid of Ch and Rh

is the radius of Ch.

2. Project Q onto Cp and obtain k closest points with dimensionality reduced

(projected) distance.

3. Compute the original distances of the above k points to Q and return the

maximum distance Amax .

4. Perform a range query centered at Q and with radius dmax in the projected

space.

67

5. Compute the original distance of each retrieved point and insert it into the

sorted list of k nearest neighbors and replace dmax with the distance of current

k-th nearest point.

6. For the next candidate cluster Ch, If dma > di st(Q , , then go to step 4 to

search that cluster, otherwise stop and return the current k points in the sorted

list.

Lemma 4.3.1 The above algorithm guarantees no false dismissal for k-NN queries.

Proof: According to Lemma 4 in [48], since the projected distance lower-bounds the

original distance, Step 2, 3, 4 and 5 do not generate any false dismissal because it

is just the algorithm in [48] applied to one cluster. It is necessary to prove that for

clustered datasets, the same conclusion can be drawn. Consequently, Step 6 has to

be proved to not generate any false dismissals.

The proof is by contradiction. Suppose dist(Q, = d > dmax , but there

is a point P' in Ch which should be one of the k-nearest neighbors. Since dmax is

the current k th nearest neighbor, D(Q, P') < dmax < d. However, according to the

definition of dist(Q, Ch), for all points inside d is the smallest possible distance to

Q, therefore D(Q, P') > d, which contradicts D(Q, P') < d. Therefore, Step 6 does

not generate any false dismissal. QED.

This exact method not only guarantee 100% accuracy but also has shown exper-

imentally to have lower CPU cost than the approximate one at a comparable level of

accuracy. This is due to the following reasons:

1. In order to obtain a desired recall, the approximate method needs to estimate

a value k* > k for k-NN queries, which can not be obtained without iteration.

For the exact method, only k points needs to be retrieved.

2. For indexes which reside in main memory, on-the-fly merging policy [73] is

utilized for collecting results of all clusters. In that case, approximate method

68

requires more CPU time to maintain the sorting list for the final results which

could be much longer than that of the exact method.

3. For multi-dimensional indexes which resides in disks, deferred merging policy

[73] has to be utilized for merging results of multi-clusters. Therefore, for

approximate method, a k*NN query, which is known to be more complex than

range query, is issued for each cluster. In the exact algorithm, on the other

hand, k-NN query is issued only once and from then on only range queries are

involved, which tend to be more efficient.

4.4 Experiments

The experiments are carried out with two datasets: TXT55 (real-world dataset with

size 79,814 and dimensionality 55) and SYNT64 (synthetic dataset with size 99,972

and dimensionality 64). 0ne thousand points are randomly selected as query points.

For within-cluster search, optimized linear scan which bypasses unnecessary calcu-

lations instead of multidimensional indexes is used. The NMSE was used in [19] to

illustrate the ratio of total information loss caused by dimensionality reduction. It

is proportional to the index size. Here it is also used as a parameter to show the

relationship between CPU cost and compression ratio of indexing.

Recall (R) and CPU cost are used to quantify the accuracy and efficiency of

retrieval. Let A(4) denote the k nearest points to a query point. To account for the

approximation, one may retrieve a result set B(0 containing k* > k elements. Let

C(q) = AIR) n B(1). Then, R =1C(0110(01.

4.4.1 CPU Cost versus NMSE for the Exact Method

First the relationship between CPU cost of the exact k-NN algorithm for different

approximation level of CSVD indexing is explored, qualified by the NMSE.

In Figure 4.3, the CPU cost of k-NN queries is given versus the NMSE, for

69

Figure 4.3 CPU cost of the exact k-NN algorithm.

different number of clusters. It can be seen that the exact method has much lower

CPU cost than linear scanning the original dataset. Furthermore, as the number

of clusters increases, more CPU time is saved because fewer points are visited. An

interesting point is, as the NMSE becomes larger, the CPU costs exhibits a (global)

minimum. This is because with fewer dimensions the index query cost decreases,

while there is an increase in post-processing due to an increase of false alarms.

70

4.4.2 Exact Method versus Approximate Method

The next experiment is to compare the approximate k-NN algorithm with the exact

algorithm at comparable recall values — for exact method, R = 1.0 for sure, but for

approximate method

In order to obtain a given recall, approximate k-NN needs to estimate k*. It

is not easy to find the k* without iterations, but the CPU time for finding k* is not

considered in this comparison. Here the number of clusters are chosen to be 128 for

TXT55 and 6 clusters for SYNT64.

Figure 4.4 Comparison of CPU cost for the exact and approximate methods.

71

Figure 4.4 shows the CPU costs of the exact algorithm and the approximate

algorithm, with different NMSEs. It can be seen that the exact method has much

lower CPU cost than the approximate method in most cases and only under the

condition that NMSE is very small (< 0.003 for SYNT64), the approximate method

outperforms the exact method. It should be noticed that for the approximate method

when R approaches 1.0 (e.g., R > 0.9999 for SYNT64), k* is an unacceptable large

value.

The values of k* are given in Figure 4.5. The approximate method incurs much

more CPU time when the NMSE is larger because it has to retrieve a very large

number of candidates to guarantee a high recall.

4.4.3 The Effect of Maintaining an Extra Dimension

To minimize the difference between the original distance and projected distance, the

method proposed in LDR paper [22] is adopted. For a given NMSE, cluster Ch keeps

d dimensions after dimensionality reduction. Previously the index would be built on

the d-dimensional space, here instead, d + 1 dimensions will be kept for each data

while the extra one dimension is the ReconDist, defined

wally the lost distance information for an individual point

due to dimensionality reduction. Then the Euclidean distance is computed in d + 1-

dimensional. The LDR projected distance is closer to the original distance and it is

guaranteed to lower bound the original distance [22].

Figure 4.6 illustrates the relationship among the original distance, the LDR

distance and the approximate distance described in Chapter 3. Note that each value

of the distance with respect to a query is the sum of squared-distances of the 20

nearest neighbors to the query point. It is easy to see that roughly the approximate

distance and LDR distance provide a similar level of approximation to the original

distance. However, the LDR distance always lower bounds The original distance and

72

Figure 4.5 Value of k* for the exact and the approximate algorithm.

on the other hand, the approximate distance does not has this property.

However, since an extra dimension is stored for each point, the CPU time for

calculation increases. It can be seen in Figure 4.7, as the NMSE changes from 0.01

to 0.3, although k* is much smaller, the total CPU cost is higher when using d + 1

dimensions than when using d + 1 dimensions. This is only true when sequential

scan is used for within-cluster search, when multi-dimensional indexes are used for

within-cluster search, the curves of query costs are different. The results with SR-tree

can be found in Chapter 5.

4.5 Conclusion and Discussion

In this chapter, an algorithm for exact k-NN search on CSVD generated datasets is

developed. The exact method ensures a 100% recall, while the approximate method

described for the same purpose in [19] can not guarantee an acceptable minimum

recall. Furthermore, experimental results show that the exact method has a lower

CPU cost than the approximate method, unless the NMSE is very small.

Figure 4.7 (a) CPU cost and (b) number of points retrieval (k*) for d dimensions
and d + 1 dimensions. GABOR60, 5 clusters.

CHAPTER 5

OPTIMAL SUBSPACE DIMENSIONALITY

5.1 Introduction

The k-NN queries have been used in a wide variety of applications, such as Content-

Based Retrieval (CBR) from multimedia database and data mining, to find the k most

similar objects to the query object. The common ground of these varied applications

is that the objects can be described as multi-dimensional points with fixed number

of dimensions and the "similarity" of two objects is determined by a distance metric,

such as the Euclidean distance, between the two corresponding points.

In order to facilitate fast query processing on large multi-dimensional datasets,

multi-dimensional indexing structures are used instead of sequential scan. However,

as dimensionality increases, multi-dimensional indexing structures degrade rapidly

because of the dimensionality curse [18]. The problem can be solved by reducing

dimensions without losing much information before building an index.

There are many dimensionality reduction methods based on different appli-

cations and techniques. One popular method is to utilize linear transformation like

Singular Value Decomposition (SVD) or Karhunen-Loeve Transform (KLT) to do

Principal Components Analysis (PCA) [41] and rotate and project data points into

a lower dimensional space. According to the ways of utilizing SVD or PCA, they can

be divided into two categories: Global methods and Local methods.

Global methods perform SVD or PCA on an entire dataset. Given a dataset

X with size M and dimensionality N, one can use SVD to get eigenvalues A l >

A2 , ..., > AN (without loss of generality, they are assumed in a decreasing order) and

the corresponding eigenvectors matrix B = (V i , 112 , ..., AN) of the covariance matrix of

X [19]. Then transform the whole dataset into Y = XB. The eigenvectors are also

75

76

called the principal components of X. Since they are ordered in a way that the first

n dimensions of Y keep most of the variation or energy, the last N — n dimensions

can be reduced without losing much information.

Global methods rely on global information derived from the dataset, therefore it

is more effective when the dataset is globally correlated. In other words, it works well

for a dataset whose distribution is well captured by the centroid and the covariance

matrix. When the dataset is not globally correlated , i.e., the data points distribution

is "heterogeneous" in the dataset — this is often the case for real-world datasets,

performing dimensionality reduction using SVD on the entire dataset may cause a

significant loss of information, as illustrated by Figure 3.2(a). In this case, there are

subsets of the dataset which exhibit local correlation. Local method partitions the

large dataset into clusters, and do dimensionality reduction using SVD respectively

for each cluster (Figure 3.2(b)).

Local dimensionality reduction methods are usually associated with clustering.

CSVD (Clustering and Singular Value Decomposition) [72, 19] partitions a dataset

into clusters using LBG [55] first and then perform dimensionality reduction in a

global manner for all clusters. LDR (Local Dimensionality Reduction) [22] starts from

spatial clusters and rebuilds clusters by assigning each point to a cluster requiring

minimum dimensionality to hold it with an error ReconDist below MaxReconDist.

Another method called MMDR [40] tries to cluster a high-dimensional dataset using

the low-dimensional subspace using elliptical k-means clustering based on Mahalanobis

distance instead of regular k-means clustering which is based on Euclidean distance.

The clusters generated by LDR and MMDR should be "SVD friendly" [72] because

clusterings are obtained based on error thresholds after projecting points into subspaces.

Range queries and k-NN queries are the two most popular query types for

similarity search. k-NN queries retrieve k closest data objects to the query object and

range queries return all the data objects within a distance E to the query object. k-NN

77

search methods can be divided into two categories: exact methods ([66, 37, 48, 68])

and approximate methods ([31, 7, 19]). Exact k-NN search returns the exact k closest

points which appear the same as the results of linear searching on the original dataset,

while approximate k-NN search returns approximate results and guarantees a certain

accuracy.

No matter which k-NN search method is considered, it is a critical issue to decide

the number of dimensions to be retained. Few of the multi-dimensional indexing

structures perform well when dimensionality exceed 30. On the other hand, too

much dimensionality reduction results in too much distance information loss. The

challenge here is to find a tradeoff between dimensionality reduction and information

loss. Nothing that in this chapter, only exact k-NN method is considered.

It has been observed that when the index is created on dimensionality reduced

data, the cost of a query (Costq) is composed of two parts: the cost of querying the

index (Cost2) and the cost of post-processing (Cost), i.e., the cost of removing false

alarms, which are non-qualified points. Therefore,

Cost, decreases as more dimensions are moved, but at the same time, Cost

increases because of more distance information lost. There must be a point or an

interval of dimensions in which the minimum Cost is reached, e.g., point A and

interval [B, C] in Figure 5.1.

The query cost has been studied through modeling for specific indexing structures.

However, the previous work has the following limitations:

• Only considered the cost for index querying.

• Only can be used for global dimensionality reduction methods.

78

Figure 5.1 Optimal subspace dimensionality with respect to minimal query cost.

• Failed to consider all side effects when dimensionality gets higher.

Local dimensionality reduction methods generate multiple clusters so that each

of them may have different subspace dimensionality respectively, thus to find optimal

subspace dimensionality with respect to minimum query cost becomes much more

difficult.

In this chapter, a hybrid method is presented which takes advantage of the

clustering algorithm of existing local dimensionality reduction methods and removes

dimensions from each cluster according to the ratio of information loss. Through

this method, the relationships among query cost, ratio of total information loss, and

subspace dimensionality of each cluster is discovered so that not only optimal subspace

dimensionality can be determined, but also users can have more freedom to make

tradeoff between query cost and index size. The new method is based on experiments,

i.e., perform off-line experiments before real applications.

The rest of the paper is organized as follows. Section 5.2 introduces related

work. In Section 5.3, the new method is presented in detail. Experiments are given

in Section 5.4 and conclusion is given in Section 5.5.

79

5.2 Related Work

The cost of a similarity query consists of CPU cost and I/O cost. For memory-resident

indexing methods or linear scan, usually only CPU cost is considered, while for disk-

resident indexing structures, I/O cost, measured as the number of page accesses, is

typically considered. The estimations of k-NN query cost and range query can be

transformed to each other by estimating the selectivity of a range query and the

approximate query radius of a k-NN query.

The problem of modeling query cost for multi-dimensional index structure has

been studied for many years [28, 12, 16, 47]. Faloutsos et al. [28] present a model to

analysis the range query cost for tree [36]. Then in [47] the cost model for k-NN

search is given for two different distance metrics. They both consider effect of corre-

lation among dimensions by utilizing fractal dimensions, but the models are limited

to low-dimensional data space. A cost model for high-dimensional indexing proposed

in [16] takes into account the boundary effects of datasets in high-dimensional space.

But it assumes the index space is overlap-free, which is impossible in high-dimensional

space for most of the popular indexing structures. In fact, as the dimensionality

increases, the overlap among the nodes of a spatial tree structure is getting so heavier

that can not be ignored. Therefore, the cost models can not estimate the real cost

of querying for high-dimensional datasets. In additional, the cost models above

only focus on the indexing cost, they fail to consider the cost due to dimensionality

reduction. Detailed information about fractal dimensions and the above query models

is provided in Appendix C.

In this thesis, the cost of k-NN queries is analyzed through experiments. The

author of this thesis chooses not to analyze index query cost by modeling because:

1. when dimensionality gets higher, there are so many side effects that mathe-

matical formulation can hardly consider all of them and the precision can not

be guaranteed. The equations in [16] are already very complicated although it

80

only consider some of the effects.

2. Most of the cost models assume the input of data points are bulk loading or

packing, which means divide the dataset into rather small regions which fit into a

single data page so as to reduce overlap. One of the commonly used techniques is

the space filling curve like Hilbert curve [28] and Z-ordering. Another technique

is to divide the data space into partitions which correspond to data pages, either

in a top-down manner [49] or bottom-up manner [17]. However, although they

have very good performance for low-dimensional data, the packing algorithms

are not efficient for high-dimensional datasets. Moreover, as most modern

applications require dynamic insertion and deletion, indexes should be created

dynamically, rather than statically. Some results in Appendix C show that the

cost models do not work for datasets which are not preprocessed.

3. It is shown that the index querying cost is strongly related to the ratio of

information loss in this chapter, therefore the approximate interval of subspace

dimensionality with respect to minimum query cost is expectable and therefore

estimating query cost by experiments is applicable.

The CSVD is also a hybrid method that combines clustering and dimensionality

reduction, but it uses LBG for clustering which can not be able to identify locally

correlated clusters and furthermore, it fails to provide any discussion on optimal

subspace dimensionality.

High-dimensional clustering method like CLIQUE [4] discovers clusters embedded

in subspaces, but it can not be used as the first step of the new method because it

can only find correlation along the dimensions in the original space.

81

5.3 The Hybrid Method for Clustered Datasets

In this chapter, the data being processed are not original datasets but the resulting

datasets after clustering or even after dimensionality reduction, as shown in Figure

5.2.

Figure 5.2 Clustered dataset and Dimensionality reduced clustered dataset.

Definition 5.3.2 A Dimensionality Reduced Clustered Dataset XDRC differs

from Cc in that the dimensionality of Ch is Rh (Rh < N). The average dimensionality

5.3.1 Information Loss and Subspace Dimensionality

The LDR generate clusters based on local correlation inside a dataset and therefore

is efficient for locally correlated dataset. However, according to the LDR method,

the subspace dimensionality of each cluster is determined by many factors, like

MaxReconDist, FracOutliers, local_threshold and the threshold of cluster size - MinSize.

These parameters must be carefully selected to obtain "good" results and usually it

82

takes many iterations to figure them out for a dataset. While, whether or not a

result is "good" relies on user's demands. Dimensionality reduction results in infor-

mation loss and users care more about the ratio of total information loss rather than

individual information loss (Recordist in LDR) because the ratio of total information

loss is a very important link between the subspace dimensionality and efficiency of

query processing, e.g., how does it affect the CPU cost of k-NN queries when 20 out

of 64 dimensions are reduced? It depends on how much information loss.

Normalized Mean Squared Error - NMSE

It is known that the total distance information loss is directly related to the subspace

dimensionality when SVD is performed on the whole dataset: the more dimensions

retained, the less distance information lost. But for clustered dataset, how does the

dimensionality reduction of individual cluster affects the total information loss and

how to control the individual subspace dimensionality according to the error user

can tolerate? If these questions are answered, then an optimal choice of subspace

dimensionalities can be decided to ensure efficiency.

To solve this problem, a formal description of the total distance information loss

- Normalized Mean Squared Error (NMSE)- is needed. It calculates the ratio of the

total distance information loss after dimensionality reduction to the total distance

information before dimensionality reduction.

Equation 2.6 and Equation 2.6 in Chapter 2 gives the definition of NMSE on a

dataset with size M and dimensionality N. Since SVD is a linear transformation that

does not change the Euclidean Distance between points, the distance information loss

of transformed dataset is equal to that of the original dataset. Applied to clustered

datasets Equation 5.2 is obtained, where H is the number of clusters and mh and nh

83

refer to the size and dimensions retained for Ch.

There is a simpler way to calculate NMSE. As shown in Equation 2.7 (Chapter

2), the NMSE of a single cluster is also equal to the ratio of summation of retained

eigenvalues to the summation of all eigenvalues, where Ai is the j-th largest eigenvalue.

Based on Equation 2.7 and Equation 5.2, the equation of the NMSE for clustered

datasets (Equation 3.4) is obtained, where A(,h is the j-th largest eigenvalue of Ch.

The proofs of Equation 2.7 and Equation 3.4 can be found in [73].

Dimensionality Reduction According to the NMSE

Equation 3.4 can be also summarized as a function between NMSE and subspace

dimensionality of each cluster: NMSE = f(ni , n2 , ..., RHO). For such a function, given

a target NMSE (tNMSE), there are many solutions for choosing n 1 --, no . CSVD has

a good approach to reduce dimensionality of clustered datasets in a global manner by

sorting eigenvalues of all clusters and removing least significant ones until tNMSE is

reached. The algorithm uses a mm-priority queue Q which has three fields for each

entry: the eigenvalue (key), cluster ID it belongs to and the dimension ID associated

with it. The algorithm is shown in Table 5.1, named Algorithm 1. This method has

been named GM1 in Chapter 3, while the details of the algorithm has not been given

there.

It follows Equation (3.4) to calculate cnrrentNMSE, therefore the resulting set

of dimensions n 1 Rob satisfies tNMSE.

Step 1, 2 3 and 4 finish the initialization, where subbase and sumRemoved

are used to store and compute the denominator and numerator of Equation (3.4)

respectively. Step 5, 6 and 7 remove the least significant eigenvalue from the min-

priority queue and updates cnrrentNMSE iteratively until the queue becomes empty

or the cnrrentNMSE is large enough. The subspace dimensionality of each cluster is

updated and returned in step 8 and 9.

After performing Algorithm 1, NMSE = f(ni , n2 , ..., no) becomes a one-to-one

84

1. Perform the clustering algorithm of a local dimensionality reduction method

(like LDR) to obtain clusters and principal components. Ignore the

subspace dimensionality it generated.

2. For tNMSE = start to end step /3

(b) Create index for each cluster in subspace using any existing multi-

dimensional indexing structure.

(c) Perform k-NN search with sample queries and record I/O cost.

3. Plot the I/O cost versus NMSE and get the value of NMSE corresponding to

the minimum cost, then the corresponding set of subspace dimensionalities

is the answer.

85

monotonous function. Then once the relation between query cost and NMSE is found,

the optimal subspace dimensionality can be obtained right away. Since there are at

most H x N items in the queue, and the number of clusters H is a constant usually

smaller than 100, the cost of Algorithm 1 is just 0(N).

5.3.2 The Hybrid Method

The hybrid method is shown in Table 5.2. Step 1 uses a local dimensionality reduction

Table 5.2 Algorithm 2

method to generate local correlated clusters. If the tNMSE is specified by users, step

2 only has one iteration. Otherwise, the value start, end and have to be decided.

According to experiences, start could be 0.005 and end is not necessary to be larger

86

than 0.3. If you want a precise answer the step ,3 should be small enough, on the other

hand, if you want just an approximate interval of NMSE with respect to minimum

query cost, can be larger, which can reduce the cost of the algorithm. In the

experiments of this chapter, /3 is set such that end ;tarot= 8.

Actually you don't need to have more than five iterations for a dataset since

the experiments in Section 5.4 show that minimal query cost always fall in a small

range of NMSE from 0.05 to 0.35, no matter what kind of dataset is involved.

The subspace dimensionality LDR generated is ignored because it is useless

when iterations are involved. Suppose only MaxReconDist is varied. Then each

time MaxReconDist is changed, the whole process including clustering has to be

redone completely to obtain another set of subspace dimensionality. While using

the proposed method, the dataset only needs to be clustered once and then vary

NMSE to generate subspace dimensionality using Algorithm 1 without even touching

any data point.

5.3.3 Optimal Subspace Dimensionality

Searching index structures built on dimensionality reduced datasets results in false

alarms, which can be removed by accessing the original dataset to obtain the original

distances between the query and candidate nearest neighbors. The distance between

projected (dimensionality reduced) points lower bounds the distance between the

original points, therefore there is no false dismissal [27].

According to Equation 5.1, when indexes are created on an original dataset,

Cost is zero, but Cost, is high and therefore the query cost Cost is quite high

because of the dimensionality curse. Cost drops as more dimensions are reduced, but

Cost increases because of more false alarms as the NMSE increases. When too many

dimensions are removed, Cost, becomes low; however, too much distance information

is lost and Cost becomes very high, therefore Costq is very high. Consequently,

87

Cost is like a convex function of the NMSE. There must be an optimal subspace

dimensionality at which the query cost is the lowest. This optimal subspace dimen-

sionality could be affected by indexing methods or dimensionality reduction methods,

but for a given index and a given dimensionality reduction method, it should be only

related to the NMSE.

Besides query cost, index size is another concern of users. The more dimensions

being removed, the smaller the index is. User may want a subspace dimensionality

such that the index size does not exceed a given value, although the query cost might

not be the lowest. Therefore, the more general objective function should be described

as:

If only query cost is considered, just set a to 1. If index size is also considered,

tradeoff can be made between index size and query cost by set a to a certain value

between 0 and 1.

Of course no matter through modeling or experimental analysis, it is not easy to

find the exact optimal value of subspace dimensionality with respect to the minimum

query cost. Instead, it is practical and still valuable to find a small interval and make

sure the optimal value is in that interval.

5.4 Experiments

In this section, several experiments are carried out for the hybrid method on four

datasets (three real-world datasets and one synthetic dataset), as shown in Table 5.3.

The three real-world datasets are all image datasets with different feature vectors.

The synthetic dataset is created to have local correlation along arbitrary directions

using the algorithm in [22].

88

89

LDR is utilized to generate clusters. For each dataset, two clustered datasets are

generated by varying LDR parameters. The detailed information of those clustered

datasets are given in Table 5.4. In order to find optimal subspace dimensionality, the

NMSE is varied gradually from 0 to 0.5 for each clustered dataset.

SR-trees [42] is used as the indexing method because it was shown to be more

efficient than R-trees in high dimensional space. The split factor for SR-trees is 0.4

and the reinsert factor is 0.3. Before run the algorithm on SR-trees, some experiments

has been done using sequential scan as within-cluster searching methods.

For sequential scan, the exact k-NN algorithm proposed in Chapter 4 is applied,

while when using SR-trees, the exact k-NN algorithm of LDR is applied (See Appendix

A), which has been proved to be optimal [22]. It uses a priority queue to navigate

the tree structures of all clusters and finds the exact answers by ranking. Therefore,

it accesses as few points as possible.

The query costs appeared in all figures are averaged over one thousand 20-NN

90

queries which are randomly selected from each dataset.

The experiments were implemented using C++ on a Dell Workstation (Intel

Pentium 4 CPU, 2.0 GHz, and 512 MB RAM) with Windows 2000 Professional.

5.4.1 NMSE and the Average Subspace Dimensionality

The datasets are clustered datasets with more than one cluster each. To make life

easier, the average subspace dimensionality defined in Section 5.3.1 is plotted instead

of dimensionality of each cluster. Besides the reason specified at Section 5.3.2, the

subspace dimensionality obtained by LDR is ignored for the following two points:

• The average subspace dimensionality can not always be described as a monotonous

function of MaxRecordist, see the series of SYNT64 in Figure 5.3 (a), even if all

other parameters are fixed. Also it can be seen from Table 5.4 that the number

of clusters changes as well. The curves in Figure 5.3 (b) show that, when using

Algorithm 1, the average subspace dimensionality decreases monotonously and

smoothly as NMSE increases, although each dataset may have different paces.

• For some datasets the curve of average subspace dimensionality with respect

91

to MaxReconDist is monotonously decreasing like the series of GABOR60 in

Figure 5.3 (a), but the magnitude of MaxReconDist is unexpectable. It can be

seen from Figure 5.3 (a), for SYNT64 the average subspace dimensionality is

18 at MaxReconDist = 1 , while for GAB0R60, LDR does not have such level

of dimensionality reduction until ReconDist > 4. Consequently, the choice of

LDR parameters is very much data-dependent. Unlike MaxRecordist, NMSE

is always in [0, 1].

5.4.2 Query Costs and Subspace Dimensionality

A. Without High-dimensional Indexing

The following are the experiments without building any indexes, just linear

scanning among the clusters. Figure 5.4 plots the CPU costs versus NMSE for

SYNT64 and GAB0R60. The results show that the curves are just like what are

expected and the optimal dimensionality is always obtained at around 5% to 20%

information loss, i.e., when NMSE E [0.05, 0.2], no matter what kind of dataset is

involved.

92

B. With SR-trees

Algorithm 2 is implemented on the clustered datasets in Table 5.4 for the four

datasets respectively. The results are listed in Figure 5.5, 5.6, 5.7 and 5.8, where

(a) of them illustrate query costs versus NMSEs, and (b) of them illustrate query

costs versus subspace dimensionalities. The query costs are the summation of index

query costs and post-processing cost which are both measured as the number of

page accesses. Like the LDR data structure, d + 1 dimensions is kept when the

dimensionality is reduced to d, where the reconstruction distance Recordist is stored

in the extra dimension. The following conclusions are obtained from the experimental

results:

• The curve between query cost and average subspace dimensionality has a "U"

shape as expected, and optimal subspace dimensionality does exist.

• Different clustered datasets from the same dataset have almost same optimal

intervals of subspace dimensionality.

• Different datasets have different optimal subspace dimensionalities since the

correlation degrees are different. But they have almost same NMSE values with

93

respect to the minimum query costs. From the four figures it can be seen that

the optimal subspace dimensionalities attain at around 20 for SYNt64 (Figure

5.5 (b)), 23 for TXT55 (Figure 5.6 (b)), 18 for C0LH64 (Figure 5.5 (b)) and

32 for GABOR6O (Figure 5.5 (b)), but the minimum costs all attains at around

It means minimum

query cost is strongly related to NMSE.

With SR-trees, the minimum k-NN query cost is achieved at NMSE;-.,---, 0.03

for LDR generated clustered datasets, no matter on synthetic dataset or real-world

image datasets. In other cases, i.e., using other indexing methods, or dimensionality

reduction methods, or other kind of datasets, the value of NMSE might be different.

5.5 Conclusion

In this paper, a hybrid method is presented to discover the relationship among k-NN

query cost, ratio of total information loss, and subspace dimensionality for clustered

datasets, which are generated by a local dimensionality reduction method. The author

found that the optimal subspace dimensionality does exist and can be identified

through the proposed method. In addition, it can be seen that the minimum query

94

cost is strongly related to the NMSE for a given index method and dimensionality

reduction method, and therefore using the NMSE for finding optimal subspace dimen-

sionality is a good choice. The experiments show that the new method works well for

both real-world datasets and synthetic datasets.

CHAPTER 6

CONCLUSION

Similarity search in high-dimensional datasets is very important for many modern

database applications. In order to deal with the dimensionality curse as the dimen-

sionality increases, many techniques such as multi-dimensional indexing and dimen-

sionality reduction, have been introduced to improve the efficiency of similarity search.

The contributions of this thesis can be summarized as follows:

• Improvements on CSVD: Dimensionality reduction, using the Singular Value

Decomposition method to retain a subset of features which are supposed to be

more important, is considered to be an effective way to improve the efficiency of

index structures. The SVD or PCA have been widely used for identifying the

principal components of the original datasets to which dimensionality reduction

is applied. This method is very effective when the dataset consists of homoge-

neonsly distributed vectors. For heterogeneonsly distributed vectors, or local

correlated datasets, a more efficient representation, with the same degree of

normalized mean squared error, can be generated by CSVD — dividing the

dataset into clusters, reducing dimensionality individually using SVD. In this

thesis, the three methods for selecting dimensions to be retained for CSVD

(LM, GMl and GM2) have been presented and compared with each other.

Experimental results with four datasets show that GM1 outperforms LM and

GM2.

• Performance comparison of local dimensionality reduction methods:

In this thesis, local methods CSVD and LDR have been analyzed and compared

from the viewpoints of compression ratio, CPU cost, and retrieval efficiency.

MMDR was also compared to CSVD from the viewpoints of compression ratio

95

96

and CPU cost on synthetic as well as real-world datasets. Experiments are held

by using sequential scan for within-cluster search and the results show that

CSVD outperforms LDR and MMDR.

• An exact k-NN search algorithm:

An algorithm to find the exact k nearest neighbors has been proposed for local

dimensionality reduction methods. The original k-NN algorithm for CSVD

is an approximate method since it violates the lower-bounding property. The

proposed k-NN algorithm is based on a multi-step k-NN search algorithm which

is designed for global dimensionality reduction method. Experiments with two

datasets show that it requires less CPU time than the approximate algorithm

at a comparable level of accuracy.

• Optimal subspace dimensionality for clustered datasets:

Since dimensionality reduction cause distance information loss, the number of

dimensions to be retained becomes a critical issue. The total cost of a similarity

query is the sum of index query cost and postprocessing cost, which is used

to remove false alarms. As the number of dimensions being removed increases,

index query cost decreases obviously, however, postprocessing cost increases due

to the increasing number of false alarms. There must be an optimal subspace

dimensionality at which the query cost is minimized. Local dimensionality

reduction methods generate multiple clusters and each of them has different

subspace dimensionality respectively. This makes the identification of optimal

subspace dimensionalities more difficult. In this thesis a hybrid method has

been presented to determine optimal subspace dimensionality of each cluster.

The experiments on four datasets show that the proposed method works well

for both real-world datasets and synthetic datasets.

APPENDIX A

K-NN ALGORITHM OF LDR

The algorithm for k-NN queries is shown in the Table A.1. It was proposed for LDR

method in [22]. It uses a mm-priority queue (qnene) to navigate the nodes and objects

in the multi-dimensional indexes of the clustered dataset in increasing order of their

distances from query A. Each entry in the queue is either a node or a point and

stores: the id of the node or point T it corresponds to, the cluster S it belongs to

and its distance dist from the query anchor A. The items are sorted on dist i.e., the

smallest item appears at the top of the queue. For nodes, the distance is defined by

MINDIST, while for objects, it is just the point-to-point distance.

Initially, for each cluster Si , A is mapped to its subspace using the information

stored in the root node R, and becomes Ai . Then, for each cluster, the distance

MINDIST(Qi , Ri) of A, from the root node Ri is computed and pushed into the

queue along with the distance and the id of the cluster S i . The k closest neighbors

of A among the outliers are calculated with sequential scan and are put into the set

temp.

Step 5 through Step 19 are the navigation of the indexes (one SR-tree for each

cluster for example). An item is popped out from the top of the queue at each outer

loop. If the popped item is a point, compute the distance of the original E-dimensional

point (by accessing the full tuple on disk) from A and append it to temp (Lines 11-13).

If it a node, compute the distance of each of its children to the appropriate projection

of A - top.S (where top.S denotes the cluster which top belongs to) and push them

into the queue (Lines 14-19). A point 0 is moved from temp to resnlt only when it is

among the k nearest neighbors of A for sure. The condition 0 .dist < top.dist in Line

7 ensures that there exists no unexplored point 0' such that D(0' ,A) < D(0, A).

97

98

By inserting the points in temp (i.e. already explored items) into resnlt in increasing

order of their distances in the original space (by keeping temp sorted), it also ensure

there exists no explored point 0' such that D(0', Q) < D(0, Q). This shows that

the algorithm returns the correct answer i.e., the same of points as querying in the

original space.

This algorithm is applied in Chapter 5 of this thesis.

APPENDIX B

CPU COST OF REGULAR K-MEANS AND ELLIPTICAL K-MEANS

The regular k-means method tends to discover clusters with spherical shapes. In

applications like image processing and pattern recognition, it is often desirable to

find natural clusters. Data points that are locally correlated should be grouped into

one cluster. The elliptical k-means algorithm discovers elliptical shaped clusters which

is based on an adaptively changing normalized Mahalanobis distance metric as shown

in Equation 2.1 in Chapter 2.

CPU cost of the regular k-means and the elliptical k-means is compared in this

appendix because, it is done with exact k-NN search algorithm described in Chapter

4 but not the approximate k-NN in Chapter 3, and it didn't produce any significant

results.

Figure B.1 CPU cost versus NMSE of exact k-NN algorithm for the two k-means
algorithm for TXT55. (a): 4 clusters (b): 16 clusters.

Figure B.1 shows the CPU costs of querying clustered datasets produced by

regular k-means and elliptical k-means algorithm, with exact k-NN algorithm described

in Chapter 4. Actually for the TXT55 dataset, firstly, there is not big difference

99

100

between the CPU costs of the two clustering methods, this is the reason that the

author uses regular k-means for CSVD in most cases. Secondly, minimum query

costs are reached at different points of NMSE for the two methods (0.1 for elliptical

k-means and 0.2 for regular k-means). When NMSE < 0.12, the elliptical k-means

has lower query cost; when 0.12 < NMSE < 0.38, the regular k-means has lower

cost; when NMSE > 0.38, the elliptical k-means has lower query cost again.

APPENDIX C

ANALYTIC K-NN QUERY COST MODEL

The problem of modeling query cost for multi-dimensional index structure has been

studied for many years. Faloutsos et al [28] present a model to analyze the range query

cost for the R-tree [36]. Then the cost model for k-NN search for two different distance

metrics is given in [47]. Both models consider effect of correlation among dimensions

by utilizing fractal dimension, however, they are limited to low-dimensional data

space. A cost model for high-dimensional indexing proposed in [16] takes into account

the boundary effects of datasets in high-dimensional space. But it assumes the index

space is overlap-free, which is impossible in high-dimensional space for most of the

popular indexing structures.

The cost model to be verified in this chapter are based on the above two models,

therefore they are introduced in details in the following sections. Since they both

utilize fractal dimensions, it is necessary to first give a brief introduction to fractals

and fractal dimensions.

C.1 Fractal Dimensions

A fractal is a rough or fragmented geometric shape that can be subdivided into parts,

each of which is (at least approximately) a reduced-size copy of the whole. Fractals

are generally self-similar and independent of scale.

There are many mathematical structures that are fractal; e.g. the Sierpinski

triangle, the Koch snowflake, the Mandeibrot set and the Fern (Figure Al).. Fractals

also describe many real-world objects, such as clouds, mountains, turbulence, and

coastlines, that do not correspond to simple geometric shapes.

A set of points is a fractal if it exhibits self-similarity over all scales. This is

illustrated by an example: Figure A.2 shows the first few steps in constructing the

101

Figure C.1 (a) Sierpinski triangle; (b) Koch snowflake; (c) Mandeibrot set; (d)
Fern.

Sierpinski triangle. Theoretically, the Sierpinski triangle is derived from an equilateral

triangle ABC, by excluding its middle and recursively repeating this procedure for

each of the resulting smaller triangles. The resulting set of points exhibits "holes"

in any scale; moreover, each smaller triangle is a miniature replica of the whole

triangle. In general, the characteristic of fractals is this self-similarity property:

parts of the fractal are similar (exactly or statistically) to the whole fractal. The

Sierpinski triangle gives an example of points which follow a highly non-uniform but

deterministic distribution. There should be a way to describe it mathematically.

Often high-dimensional vector space suffer from large differences between their

embedding dimensions and fractal dimensions. Embedding dimension (E) refers to

103

Figure C.2 Five steps in generating Sierpinski triangles.

the dimensionality of the original data space, i.e., number of attributes or features.

Fractal dimension (d) is the intrinsic dimension of a dataset and is defined as the real

dimensionality in which the points can be embedded, while preserving the distances

among them [23]. For example, a line embedded in a 100-dimensional space has

intrinsic dimension 2 and embedding dimension 100.

The Hausdorff fractal dimension or box-counting fractal dimension is the basic

type of fractal dimension and it is defined as follows [67]: Divide the dimensionality

space into hyper-cubic grid cells of side r. Let N(r) denote the number of cells

that are penetrated by the fractal (i.e., contain 1 or more points of it). Then the

(box-counting) fractal dimension d o of a fractal is defined as

This definition is useful for mathematical fractals, that consist of infinite number

of points. For a point-set that has the self-similarity property in the range of scales

(rib, r2), its Hausdorif fractal dimension do is measured as [28]

Another popular fractal dimension often used for query cost model is Correlation

fractal dimension and is defined as

104

C.2 Faloutsos's Query Cost Models

According to the study in [28] and [11], the real-world datasets also behave like

fractals, with linear box-count plots. Fractal dimensions can help to estimate query

cost because the previous query models [29, 5] assume data distribution to be uniform

and independent (d = E), which is not true for real-world datasets with fractal

dimension much smaller than embedding dimension. They believe that the previous

estimations of R-tree cost tend to be too pessimistic. As fractal dimension is utilized,

Faloutsos et al. create a function to estimate the number of page accesses for range

queries on the R-tree:

where Pall is the average number of nodes accessed by a query of size q for each

dimension, h is the height of the tree, (is the side size of rectangles in j-th level and

and Chef f is defined as the effective capacity of the

nodes of the R-tree as the average number of entries per node:

the average node utilization and C is the maximum number of rectangles per node).

This equation can only be used for Goo norm and the query is assumed uniformly

and independently distributed. A formula is given in [47] to estimate the cost of

nearest neighbor search for both roc and .C2 on R-tree using Aorrelation fractal

dimension. Also, the query can have same distribution as the data itself.

However, for higher than three dimensions an accurate function for r2 is not

available. Instead, the results of Goo norm are used to give an upper bound and lower

bound of query cost for ,C2 norm.

105

Assume the biased model, square queries of radius E. The average number of

query-sensitive anchors (the centers of gravity of the query regions) of an MBR with

side length 1 is :

Therefore, the average number of accesses of R-tree pages needed to answer a

k-NN query with B2 distance is estimated as

average number of query-sensitive anchors of an MBR with side length (xi . For range

query, just modify d i,LiT(k')to E for E-range query as following.

C.3 Bohm's Query Cost Models

Based on the above results, Boehm generates a more general query cost model which

can be used for both L and ,C2 distance metrics and, especially, for high-dimensional

indexing (e.g., X-tree) in [16], also the query can be either uniformly and indepen-

dently distributed or with the same distribution as the dataset itself.

Actually, in high-dimensional space, a Minimum Bounding Rectangle (MBR) is

a hyper-rectangle. However, for a range query, if Euclidean distance is the distance

metric that applies, the shape of the query range should be a hyper-sphere (see the

example in Ahapter 2). To estimate how many pages are being accessed, one has

to know the number of pages intersect with the query, therefore it is important to

106

calculate the intersection of a hyper-rectangle and a hyper-sphere. The Minkowski

Sum [43] is utilized in [16] to enlarge the page region so that if the original page

touches any point of the query hyper-sphere, then the enlarged page touches the

center point of the query sphere. Then the calculation of page volume in the previous

models becomes the calculation of the hyper-volume of Minkowski enlargement.

Some effects of high-dimensionality are considered in that paper, including

boundary effects and the large extension of query region. Boundary effects refer to the

phenomenon occurring in high-dimensional data spaces that all data and query points

are likely to be near by the boundary of the data space, while the large extension of

query region refers to the phenomenon that when dimensionality is getting higher,

the query radius for range query becomes so large that approaches the radius of the

whole space, given that the query selectivity is same as that in lower-dimensionality

space. The combination of the two effects leads to the observation that large part

of a typical range or k-NN query sphere must be outside the boundary of the data

space.

C.4 The Revised Query Model for Range Queries

Although Böhm's model is more complicated, the principle is actually same as that of

,Faloutsos's. In both models, query costs are proportional to Hyper_volume(l, E.)d2/E

where Hyper_volume(l) is the hyper-volumes of the inflated MBR described in [47]

or the hyper-volumes of the Minkowski Sum in [16]. Therefore, the author chooses

Faloutsos's cost model [47] as basic model and improves it to be able to handle

datasets with any high dimensionality for range query (based on the equation A.7).

The equation with B2 distance metric is as follows:

107

C.5 Experiments

The cost model of range query Equation A.8 is verified using a 16-dimensional time

series dataset with 100,000 signals, which is generated by Random- Walk model, a

synthetic time series generator obtained from Dr. Byoung-Kee Yi. The feature

extraction method of [79] is applied to generate five feature datasets with dimen-

sionality (E) equals to 2, 4, 6. 8 and 16. Then Equation A.8 is used to estimate the

average number of page Pallall accessed by a range query with radius E for each dataset.

All data are normalized to a unit hyper-cube.

The fractal dimension can be calculated in Linear time [74] 1 . The query

costs are averaged over 1000 biased queries. DR-tree (2.5v) library developed at

the University of Maryland with some modifications to handle £debased search is

used to create R-trees and process queries. The page size is set to 4096.

The results of estimations and experimental results are listed in Table A.1. The

first column is the feature dimensionality and the next two columns show values of d o

(Hausdorif fractal dimension) and d2 (Aorrelation fractal dimension), and then comes

the results of original equations Equation A.6 and the results of Equation A.8. The

last two columns are experimental results without packing and with packing. The

packing algorithm is from [49].

Aompared to the experimental values, the estimates are much smaller and do not

increase with the dimensionality as they should have been (like those of experimental

results). According to the equation A.8, the cost is proportional to hyper — volume

versus Cef f (without lost of generality here only number of leaf node accessed is

considered). While, when dimensionality increases, the hyper-volume drops dramat-

ically because l and E are very small (much less than 1.0) due to the normalization,

even though E increases a little. Therefore, although C hef f also decreases, the cost still

drops.

From Table A.1, it is also seen that for experimental results, the difference

between packing or no packing is insignificant when dimensionality becomes higher.

This means packing algorithm, at least the STR algorithm in [49] is not efficient for

high-dimensional.

REFERENCES

[1] A. Aggarwal. On the effects of dimensionality reduction on high dimensional similarity
search. In Proc. ACM Symposium on Principles of Database Systems (PODS),
pages 256-266, 2001.

[2] A. Aggarwal and P. Yu. Finding generalized projected clusters in high dimensional
space. In Proc. Conf. ACM Special Interest Group on Management of Data
(SIGMOD), pages 70-81, 2000.

[3] R. Agrawal, A. Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. In Proc. 4th Int'l Conf. on Foundations of Data Organization and
Algorithms (FODO), pages 69-84, 1993.

[4] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In Proc. Conf.
ACM Special Interest Group on Management of Data (SIGMOD), pages 94-105,
1998.

[5] W. Aref and H. Samet. Optimization strategies for spatial query processing. In Proc.
Int'l Conf. on Very Large Data Bases (VLDB), pages 81-90, 1991.

[6] M. Arya, W. F. Aody, A. Faloutsos, J. Richardson, and A. Toya. Qbism: A prototype
3-d medical image database system. IEEE Data Eng. Bnll., 16(1):38-42, 1993.

[7] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal
of the ACM, 45(6):891-923, 1998.

[8] S. D. Backer and P. Scheunders. A competitive elliptical clustering algorithm. Pattern
Recognition Letter, 20(11-13), 1999.

[9] R. Bayer and E. McAreight. Organization and maintenance of large ordered indexes.
Acta Informatica, 1(3):173-189, 1972.

[10] N. Beckman, R. S. H. P. Kriegal, and B. Seeger. The R* tree: an efficient and robust
access method for points and rectangles. In Proc. Conf. ACM Special Interest
Group on Management of Data (SIGMOD), pages 322-331, 1990.

[11] A. Belussi and C. Faloutsos. Estimating the selectivity of spatial queries using the
'correlation' fractal dimension. In Proc. Int'l Conf. on Very Large Data Bases
(VLDB), pages 299-310, 1995.

[12] A. Belussi and A. Faloutsos. Self-spacial join selectivity estimation using fractal
concepts. ACM Transactions on Information Systems, 16(2):161-201, 1998.

109

110

[13] S. Berchtold, D. Keim, and H. Kriegel. The X-tree: an index structure for high-
dimensional data. In Proc. 22nd Intl. Conf. on Very Large Databases (VLDB),
pages 28-39, 1996.

[14] P. Berkhin. Survey of clustering data mining techniques. Technical Report, Accrue
Software, 2002. http: //www. accrue . com/products/rp_cluster_review.pdf,
March 2nd, 2004.

[15] K. Beyer, R. R. J. Goldstein, and U. Shaft. When is "nearest neighbor" meaningful?
In Proc. on International Conference on Data Engineering (ICDE), pages 217-
235, 1999.

[16] A. Bohm. A cost model for query processing in high-dimensional data space. ACM
Transactions on Database Systems (TODS), 25(2):129-178, 2000.

[17] A. Boehm and H. Kriegel. Efficient bulk loading of large high-dimensional indexes. In
Proc. Int'l Conf. on Data Warehousing and Knowledge Discovery, pages 251-260,
1999.

[18] V. Aastelli and L. Bergman, editors. Image Databases: Search and Retrieval of Digital
Imagery. John Wiley and Sons, 2002.

[19] V. Aastelli, A. Thomasian, and A. S. Li. ASVD: clustering and singular value decom-
position for approximate similarity search in high dimensional spaces. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 15(3):671-685, 2003.

[20] K. Ahakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally adaptive dimen-
sionality reduction for indexing large time series database. ACM Transactions
on Databse Systems (TODS), 27(2):188-228, 2002.

[21] K. Ahakrabarti and S. Mehrotra. The hybrid tree: An index structure for high dimen-
sional feature space. In Proc. on International Conference on Data Engineering
(ICDE), pages 440-447, 1999.

[22] K. Ahakrabarti and S. Mehrotra. Local dimensionality reduction: A new approach to
indexing high dimensional space. In Proc. Int'l Conf. on Very Large Data Bases
(VLDB), pages 89-100, 2000.

[23] E. Ahevez, G. Navarro, R. Baeza-Yates, and J. Marroqun. Proximity searching in
metric spaces. ACM Computing Surveys, 33(3):271-321, 2001.

[24] P. Aiaccia, M. Patella, and P. Zezula. M-tree: an efficient access method for similarity
search in metric spaces. In Proc. 23nd Int'l Conf. on Very Large Data Bases
(VLDB), pages 426-435, 1997.

[25] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1-38,
1977.

111

[26] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proc. 2nd. Conf.
ACM Special Interest Group on Knowledge Discovery in Data and Data Mining
(SIGHED), pages 226-231, 1996.

[27] A. Faloutsos. Searching Multimedia Databases by Content. Kluwer Academic
Publishers, Boston, MA, 1996.

[28] A. Faloutsos and I. Kamel. Beyond uniformity and independence: Analysis of the
R-tree using the concept of fractal dimension. In Proc. ACM Symposium on
Principles of Database Systems (PODS), 1994.

[29] A. Faloutsos, T. Sellis, and N. Roussopoulos. Analysis of object oriented spatial access
methods. In Proc. Conf. ACM Special Interest Group on Management of Data
(SIGHED), pages 426-439, 1987.

[30] F. Farnstrom, J. Lewis, and A. Elkan. Scalability for clustering algorithms revisited.
SIGKDD Explorations Newsletter, 2(1):51-57, 2000.

[31] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. E. Abbadi. Approximate
nearest neighbor searching in multimedia databases. In Proc. on International
Conference on Data Engineering (ICDE), pages 503-511, 2001.

[32] R. Finkel and J. Bentley. Quad trees: A data structure for retrieval on composite
keys. Acta Informatics, 4(1):l-9, 1974.

[33] V. Gaede and 0. Gunther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170-231, 1998.

[34] D. L. Gall. Mpeg: a video comparession standard for multimedia applications.
Communication of the ACM (CACM), 34(4):46-58, 1991.

[35] S. Guha, R. Rastogi, and K. Shim. AURE: an efficient clustering algorithm for large
databases. In Proc. Conf. ACM Special Interest Group on Management of Data
(SIGHED), pages 73-84, 1998.

[36] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. Conf.
ACM Special Interest Group on Management of Data (SIGHED), pages 47-57,
1984.

[37] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In Proc. 4th Symp.
Advances in Spatial Databases, pages 83-95, 1995.

[38] A. Jain, H. Lin, S. Pankanti, and R. Bolle. An identity-authentication system using
fingerprints. Proceedings of the IEEE, 85(9):l365-1388, 1997.

[39] A. K. Jain and A. Vailaya. Image retrieval using color and shape. Pattern Recognition,
29(8):1233-1244, 1996.

112

[40] H. Jin, B. Ooi, H. Shen, and A. Yu. An adaptive and efficient dimensionality reduction
algorithm for high-dimensional indexing. In Proc. on International Conference
on Data Engineering (ICDE), pages 87-100, 2003.

[41] I. T. Jolliffe. Principal Component Analysis, 2nd. edition. Springer-Verlag New York,
Inc., 2002.

[42] N. Katayama and S. Satoh. The SR-tree: An index structure for high dimen-
sional nearest neighbor queries. In Proc. Conf. ACM Special Interest Group
on Management of Data (SIGHED), pages 369-380, 1997.

[43] A. Kaul and M. O'Aonnor. Aomputing minkowski sums of regular polyhedra.
Technical Report RA 18891 (82557) IBM T.J. Watson Research Aenter, 1992.

[44] E. Keogh, K. Ahakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction for
fast similarity search in large time series databases. Knowledge and Information
Systems, 3(3):263-286, 2001.

[45] B. Kim and S. Park. A fast k-nearest-neighbor finding algorithm based on the ordered
partition. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 8(6):761-766, 1986.

[46] F. Korn, H. V. Jagadish, and A. Faloutsos. Efficiently supporting ad hoc queries in
large datasets of time sequences. In Proc. Conf. ACM Special Interest Group on
Management of Data (SIGMOD), pages 289-300, May 1997.

[47] F. Korn, B. Pagel, and A. Faloutsos. On the "dimensionality curse" and the "self-
similarity blessing". In IEEE Transactions on Knowledge and Data Engineering
(TKDE), pages 96-111, 2001.

[48] F. Korn, N. Sidiropoulos, A. Faloutsos, E. Siegel, and Z. Protopaps. Fast nearest
neighbor search in medical image databases. In Proc. 22nd Int'l Conf. on Very
Large Data Bases (VLDB), pages 215-226, 1996.

[49] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A simple and efficient
algorithm for r-tree packing. In Proc. on International Conference on Data
Engineering (ICDE), pages 597-605, 1997.

[50] A. Li, P. Yu, and V. Aastelli. Hierarchy-scan: a hierarchical algorithm for similarity
search of databases consisting of long sequences. In Proc. on International
Conference on Data Engineering (ICDE), pages 546-553, New Orleans, LA, 1996.

[51] Y. Li, A. Thomasian, and L. Zhang. An exact k-nearest neighbor search algorithm
for ASVD. Technical Report ISL-2003-02, Integrated Systems Lab, Dept. of
Aomputer Science, New Jersey Institute of Technology, 2003.

[52] Y. Li, A. Thomasian, and L. Zhang. Finding optimal subspace dimensionality for
k-NN search in clustered datasets. Technical Report ISL-2004-01, Integrated
Systems Lab, Dept. of Aomputer Science, New Jersey Institute of Technology,
2004.

113

[53] T. Lillesand and R. W. Kiefer. Remote Sensing and Image Interpretation. Wiley and
Sons, New York, 4th edition, 2000.

[54] K. Lin, H. V. Jagadish, and A. Faloutsos. The TV-tree: an index structure for
high-dimensional data. Proc. Int'l Conf. on Very Large Data Bases (VLDB),
3(4):517-542, 1994.

[55] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. IEEE
Transactions on Communications, com-28, pages 84-95, 1980.

[56] B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval of image
data. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
18(8):837-842, 1996.

[57] H. Miller and J. Han, editors. Geographic Data Mining and Knowledge Discovery.
Taylor and Francis, New York, NY, 2001.

[58] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Pektovic, P. Yanker,
A. Faloutsos, and G. Taubin. The QBIA project: Querying images by content
using color, texture„ and shape. In Proc. SPIE Vol. 1908: Storage and Retrieval
for Image and Video Databases, pages 173-187, 1993.

[59] J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file: An adaptable, symmetric
multikey file structure. ACM Transactions on Database Systems (TODS),
9(1):38-71, 1984.

[60] A. V. Oppenheim and R. W. Schafer. Digital Signal Processing. Prentice-Hall,
Englewood Aliffs, NJ, 1975.

[61] B. Pagel, H. Six, H. Toben, and P. Widmayer. Towards an analysis of range query
performance in spatial data structures. In Proc. ACM Symposium on Principles
of Database Systems (PODS), pages 214-221, 1993.

[62] E. Petrakis and A.Faloutsos. Similarity searching in medical image databases. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 3(9):435-447, 1997.

[63] W. Press, S. Teukoisky, W. Vetterling, and B. Flannery. Numerical Recipes in C, the
Art of Scientific Computing. Aambridge University Press, Aambridge, United
Kingdom, 2nd edition, 1992.

[64] J. Richards. Remote Sensing Digital Image Analysis, An Introduction. Wiley and
Sons, New York, 1993.

[65] J. T. Robinson. The k-d-b-tree: a search structure for large multidimensional dynamic
indexes. In Proc. Conf. ACM Special Interest Gronp on Management of Data
(SIGHED), pages 10-18, 1981.

[66] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proc. Conf.
ACM Special Interest Group on Management of Data (SIGHED), pages 71-79,
1995.

114

[67] M. Schroeder. Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise. W.
H. Freeman and Aompany, New York, 1991.

[68] T. Seidl and H. P. Kriegel. Optimal multi-step k-nearest neighbor search. In Proc.
Conf. ACM Special Interest Group on Management of Data (SIGMOD), pages
154-165, 1998.

[69] T. Sellis, N. Roussopoulos, and A. Faloutsos. The R+ tree: a dynamic index for multi-
dimensional objects. In Proc. Int'l Conf. on Very Large Data Bases (VLDB),
pages 507-518, 1987.

[70] J. R. Smith. Integrated Spatial and Feature Image System: Retrieval, Analysis and
Compression. Phd ttesis, Electrical Engineering Dept, Aolumbia University,
1997.

[71] K. Sung and T. Poggio. Example-based learning for view-based human face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
20(1):39-51, 1998.

[72] A. Thomasian, V. Aastelli, and A. S. Li. RASVD: Recursive clustering and singular
value decomposition for approximate high-dimensionality indexing. In Proc.
Conf. on Information and Knowledge Management (CIKM), pages 267-272,
1998.

[73] A. Thomasian, Y. Li, and L. Zhang. Performance comparison of local dimensionality
reduction methods. Technical Report ISL-2003-01, Integrated Systems Lab,
Dept. of Aomputer Science, New Jersey Institute of Technology, 2003.

[74] A. Traina Jr., A. J. M. Traina, L. Wu, and A. Faloutsos. Fast feature selection using
fractal dimension. In XV Brazilian Symposium on Databases (SBBD), October
2000.

[75] W. Wang, J. Yang, and R. Muniz. STING: a statistical information grid approach
to spatial data mining. In Proc. 23rd Int'l Conf. on Very Large Data Bases
(VLDB), pages 186-195, 1997.

[76] R. Weber, H. -J. Schek, and S. Blott. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In Proc. 24th Int'l
Conf. on Very Large Data Bases (VLDB), pages 194-205, 1998.

[77] D. White and R. Jain. Similarity indexing with ss-trees. In Proc. on 12th International
Conference on Data Engineering (ICDE), pages 516-523, 1996.

[78]H. Williams and J. Zobel. Indexing nucleotide databases for fast query evaluation.
In Proc. 5th Int'l Conf. on Extending in Database Technology (EDBT), pages
275-288, 1996.

[79] B. Yi and A. Faloutsos. Fast time sequence indexing for arbitrary 1p norms. In Proc.
26th Int'l Conf. on Very Large Data Bases (VLDB), pages 385-394, 2000.

115

[80] A. Yu, B. Ooi, K. Tan, and H. Jagadish. Indexing the distance: An efficient method
to knn processing. In Proc. Int'l Conf. on Very Large Data Bases (VLDB), pages
421-430, 2001.

[81] D. S. Zhang and G. Lu. Evaluation of similarity measurement for image retrieval.
In IEEE Int'l Conf. on Neural Networks and Signal Processing, pages 928-931,
2003.

[82] T. Zhang, R. Ramakrishnan, and M. Livny. BIRAH: an efficient data clustering
method for very large databases. In Proc. Conf. ACM Special Interest Group on
Management of Data (SIGMOD), pages 103-114, 1996.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: High-Dimensional Indexing
	Chapter 3: Performance of CSVD
	Chapter 4: K-Nearest Neighbor Search
	Chapter 5: Optimal Subspace Dimensionality
	Chapter 6: Conclusion
	Appendix A: K-NN Algorithm of LDR
	Appendix B: CPU Cost of Regular K-Means and Elliptical K-Means
	Appendix C: Analytic K-NN Query Cost Model
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

