Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



ABSTRACT

THE DESIGN OF ADJUSTABLE SPHERICAL MECHANISMS
USING PLANE-TO-SPHERE AND SPHERE-TO-PLANE PROJECTIONS

by
Wen-Tzong Lee

The spherical mechanism is a particular type of spatial mechanism. Due to the
orientation of its joint axes and the CL.Jrvature of its links, the workspaces of spherical
mechanisms (whether line segments, closed loops or area regions) are spherical in
curvature. This characteristic of spherical mechanisms makes them quite effective and
practical in motion path and function generation applications requiring spherical rigid
body kinematics.

Although there are design methods available for spherical mechanisms, most of
these methods do not consider the design of a single adjustable spherical mechanism.
With an adjustable spherical mechanism, the user could for example, relocate the fixed or
moving pivots of the spherical mechanism to achieve a greater range of rigid body
locations and orientations. Having adjustability would make a single mechanism
effective for multiple design applications.

Numerous methods have been published for the design of adjustable planar
mechanisms.  Unfortunately, the number of design methods for adjustable spherical
mechanisms, in comparison, is extremely modest. This research bridges the gap between
the need for adjustable spherical mechanism design methods and the design methods
available for adjustable planar mechanisms.

This research presents a new method for synthesizing adjustable spherical four

and five-bar motion, path and function generators using planar motion, path and function



generation methods respectively. The benefits of this method are twofold. One benefit
is that the user can design spherical mechanisms to approximate multiple phases of
prescribed rigid-body path points. Another benefit is that the user can design spherical
path generators using synthesis methods for planar path generators. By projecting the
coordinates of a given spherical mechanism on a plane or the coordinates of a given
planar mechanism on a sphere using the method introduced in this work, the user can
design both planar and spherical mechanisms respec'tively. This research introduces
sphere-to-plane and plane-to-sphere projection methods with optimization methods to
minimize the structural error between the prescribed performance of the adjustable
spherical mechanism and the performance achieved by the synthesized adjustable
spherical mechanism.

This research considers two-phase moving pivot aﬂjustment problems with
constant crank and follower lengths for the spherical mechanism. The spherical
mechanisms considered in this research are four-bar motion, path and function generators
as well as five-bar motion and path generators. Codified models of the projection and

optimization methodologies introduced are also included.
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CHAPTER 1

INTRODUCTION

1.1 Spherical Four and Five-Bar Mechanisms

The spherical mechanism is a particular type of spatial mechanism. As the name
“spherical” implies, some characteristics of this mechaﬁism are like those of a geometric
sphere. For example, the joint axes of spherical mechanism all intersect at the same point
(the center of the sphere) and the links of a spherical mechanism have constant curvature.
Figure 1.1 illustrates a spherical four-bar mechanism. This mechanism is also called the
four-revolute spherical or 4R spherical mechanism. The spherical four-bar mechanism
has a single degree of freedom. Figure 1.2 illustrates a spherical five-bar mechanism.
The spherical five-bar mechanism has two degrees of freedom. Variables ap and by in
Figures 1.1 and 1.2 denote the fixed pivots. Variables a;, b; and ¢, denote the moving
pivots. The u variables denote the joint axes of each fixed and moving pivot. Revolute

joints connect each link in both the spherical four and five-bar mechanisms.






makes them quite effective and practical in motion path and function generation
applications requiring spherical rigid body kinematics.

The capacity for spherical manipulation of rigid bodies in a mechanism has been
proven to be very advantageous when the rigid body is a camera (Figure 1.3) or a fan
(Figure 1.4). In Figure 1.3 [1], a camera is mounted on a 3-DOF spherical mechanism.
This mechanism is called the “Agile Eye” and its respopsiveness is comparable to that of
the human eye. In Figure 1.4 [2], a faﬁ is mounted to a 1-DOF spherical mechanism.
This mechanism is called “The Infinity Fan” and is capable of thoroughly circulating air
in a room even when facing a comer. If these spherical mechanisms were designed to
have adjustable features (for example, adjustable moving pivots) a single “Agile Eye,”
“Infinity Fan” then the spherical mechanism would be able to achieve additional rigid-

body orientations while incorporating essentially the same hardware.

Figure 1.3 A 3-DOF spherical manipulator (the “Agile Eye”).






Figure 1.5 The planar four-bar mechanism.

Figure 1.6 The planar five-bar mechanism.



1.3 Path and Multi-Phase Path Generation for Planar Mechanisms

The objective in path generation is to synthesize a mechanism to achieve a series of
prescribed rigid-body path points. For the five-bar tooling mechanism illustrated in,
Figure 1.7, the rigid body is a machining tool and the rigid body points are various
locations of the tool tip. The objective in multi-phase path generation is to design an
adjustable mechanism to achieve muitiple series of prescribed rigid-body path points.
The advantage of multi-phase path generation is that the user can design a single pgthi
generator to achieve multiple series (or phases) of prescribed i gid-.body path points using
essentially the same hardware. For example, if rigid body path points p;, p2, and p; are
achieved when the five-bar mechanism illustrated in Figure 1.8 incorporates the moving
pivots a; and ¢;, and rigid body path points p;, ps, and ps are achieved when mechanism
incorporates moving pivots a;, and ¢, then the mechanism could be classified as an

adjustable path generator.

— tool tip

Figure 1.7 Five-bar tooling mechanism.



Figure 1.8 Adjustable five-bar path generator and rigid body path
points.

Besides moving pivot adjustment, there are some other kinds of adjustable
mechanisms, such as crank length adjustment (Figure 1.9), fixed pivot adjustment (Figure

1.10), and fixed pivot and crank length adjustment (Figure 1.11).

Figure 1.9 Crank length Adjustment.



Figure 1.10 Fixed pivot adjustment.

Figure 1.11 Fixed pivot and crank length adjustment.

1.4 Function and Multi-Phase Function Generation
for Planar Mechanisms

The objective in function generation is to synthesize a mechanism to achieve a series of
prescribed input-output link relationships. For the four-bar dial mechanism illustrated in
Figure 1.9, reading on one dial and the reading on the other dial are coordinated by a

relationship between the input and output links. The objective in multi-phase function



generation is to design an adjustable mechanism to achieve multiple series of prescribed
input-output link relationships. The advantage of multi-phase function generation is that
the user can design a single function generator to achieve multiple series (or phases) of
prescribed input-output link relationships using essentially the same hardware. For
example, if angles ¢;, ¢, and ¢3 are achieved when the four-bar mechanism illustrated in
Figure 1.10 incorporates the moving pivot by, and angles ¢1, ¢4, and ¢s are achieved when
mechanism incorporates moving pivots by, then the mechanism could be classified as an

adjustable function generator.

2
Gauge 1 Gauge

Figure 1.12 Four-bar dial mechanism.
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Figure 1.13 Adjustable four-bar function generator.

1.5 Motion and Multi-Phase Motion Generation
for Planar Mechanisms

The objective in motion generation is to design a mechanism to achieve a series of
prescribed rigid-body positions. For the planar five-bar loading mechanism illustrated in,
Figure 1.11, the rigid body is the carrying block and the position of the rigid body is
represented by various locations on the carrying block (points p, q and r). The objective
in multi-phase motion generation is to design an adjustable mechanism to achieve
multiple series of prescribed rigid-body positions. One advantage of multi-phase motion
generation is that the user can design a single motion generator to approximate multiple
series (or phases) of prescribed rigid-body positions using essentially the same hardware.
For example, if nigid-body position 1, 2 and 3 are achieved when the five-bar mechanism
(in Figure 1.12) incorporates the moving pivots a; and c¢;, and positions 1, 4 and 5 are

achieved when a;, and c¢;, are incorporated, this mechanism could be classified as an
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adjustable motion generator. As illustrated in Figure 1.12, the mechanism with moving
pivots a; and ¢; and the mechanism with moving pivots a;, and c¢;, use the same
components (or hardware). The only difference between the two mechanisms are the

locations of the moving pivots a and c.

Figure 1.14 Five-bar loading mechanism.

Figure 1.15 Adjustable five-bar motion generator and rigid-body
positions.
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1.6 Literature Review

Previous work in spherical path generation [3-7] includes the work of Tong and Chiang
[3] who developed compatible equations to synthesize spherical path generators based on
the relationship between the coupler pole and the mechanisms joints. Chang, Lu and
Hwang [4] developed equations for spherical four-bar linkages to trace a coupler curve
with two prescribed cusps by using a special case of spherical Burmester curves.
Angeles and Liu [5] developed a method to optimize the spherical path generator by
formulating the problem as two loops and minimizing the structural error between the
two loops. Lin [6] used a continuation method to synthesize spherical four-bar path
generators. Funabshi, Iwatsuki and Yoshiaki [7] considered path generation using
spherical four-bar mechanisms with adjustable crank lengths.

Previous work in the area of planar path generation [3,7-21] includes the work of
Tao and Krishnamoorthy [8] who presented a graphical method to synthesize a four-bar
path generator to produce different coupler curves by adjusting the length of the crank
link. Kay and Haws [9] developed generalized design equations for a path generating
cam-link mechanism. Zhou and Cheung [10] developed a generic algorithm to obtain the
global solution for continuous path generation by measuring the link length structural
error instead of the structural error between the prescribed curve and generated curve.
Ullah and Kota [11] introduced a new method to optimize the structural in path
generation by using the Fourier function to describe the coupler curve. Tong and Chang
[3] developed compatible equations to synthesize planar path generators based on the
relation shop between the coupler pole and the mechanism joints. Sandor, Kaufman,

Erdman, Foster, Sadler, Smith and Kerashaw [12] introduced a geared linkage for path
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generation. Bali and Chand [13] presented a synthesis method for planer five-bar path
generation with prescribed timing and variable topology for motion between extreme
positions using the complex number method. Starns and Fulgrad [14] presented a
synthesis method for a geared five-bar path generating mechanism using continuation
methods. Connor, Douglas and Gilmartin [15] presented a methodology for the synthesis
of hybnid, five-bar path generating mechanisms. Freudenstein and Roth [16] developed a
numerical method-based synthesis appréach for path generators. McGovern and Sandor
[17] presented a method to synthesize adjustable function generators using complex
variables. Funabshi, Iwatsuki and Yoshiaki [7] considered path generation using planar
four-bar mechanisms with adjustable crank lengths. Chang [18] proposed synthesis
methods to design mechanisms that are adjustable to tracing variable circular arcs with
prescribed velocities. Beaudrot [19] introduced a synthesis method by which planar four-
bar mechanisms can be adjusted to achieve multiple linear paths. In the work of
Shimojima, Ogawa, Fujiwara and Sato [20], adjusting methods and the types of outputs
are classified and planar four-bar and multi-link mechanisms are synthesized by
considering pressure angles and the rations of link lengths. Tao and Yan [21] considered
the design of adjustable planar linkages to achieve variable circular arcs.

Previous work in spherical function generation [5, 7, 22-25] includes the work of
Liu and Angeles [S] who developed an optimization method for four-bar function
generators. In this method, the design error is formulated as an equality-constrained
minimization problem. The authors also introduced an optimization method for four-bar
spherical function generators under mobility constraints [22]. Lin and Chiang [23]

introduced a synthesis method for five-bar spherical function generators using the pole
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method. Sodhi and Wilhelm [24] presented an expanded set of computer input-output
angle solutions curves for use in designing four-revolute spherical function generators.
Chen and Chiang [25] developed a fourth-order synthesis method for spherical four-bar
function generators using relative pole equations. Funabshi, Iwatsuki and Yoshiaki [7]
considered function generation using spherical four-bar mechanisms with adjustable
crank lengths.

Previous work in the area of pianar function generation [7, 12, 22, 23, 26.-35]7
includes the work of Raot [26] who introduced a four-bar, epicyclical gear train
mechanism that can develop a function of two independent variables. Watanable [27]
developed an analytical method for the synthesis of a planar four-bar mechanism to
generate an approximate function over a finite interval. Chuang and Chiang [28]
presented an optimum solution for a planar four-bar function generator concerning both
structural error and transmission angle. Chiang, Pennestri and Chung [29] introduced
computer-based methods for higher order synthesis of four-bar function generators.
Beale and Simionescu [30] presented an optimum synthesis method for the planar four-
bar function generator using the Akermann steering linkage as an example. Todorov [31]
presented a dimensional synthesis method for planar function generators. Yin and Wu
[32] introduced an optimal model of a function generator that considers the effects of
radial clearances in joints and structural error. Liu and Angeles [22] introduced an
optimization scheme for four-bar planar function generators under mobility cbnstraints.
Lin and Chiang [23] introduced a synthesis method for five-bar planar function
generators using the pole method. McGovern and Sandor [33] presented a method to

synthesize adjustable function generators using complex variables. Naik and Amarnath
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[34] presented a method to synthesize an adjustable four-bar function generator using
five-bar linkage theory. Sandor, Kaufman, Erdman, Foster, Sadler, Smith and Kerashaw
[12] introduced a geared linkage for function generation. Basu and Farhang [35]
presented a mamthematical formulation for the analysis and design of two-input, small
crank, five-bar mechanisms for function generation. Funabshi, Iwatsuki and Yoshiaki [7]
considered function generation using planar four-bar mechanisms with adjustable crank
lengths. |

Previous work in spherical mechanism design, analysis and motion generation
[36-42] includes the work of Furlong and Vance [36] who presented a new approach
using a virtual reality environment to design spherical mechanisms. Sodhi and Shoup
[37, 38] presented relationship between the axodes and the geometric configuration of the
spherical four-revolute mechanism and a general analytical method for synthesizing the
four-revolute spherical mechanism based on the fixed axode. Gilmartin and Duffy [39]
examined type and mobility analysis of the spherical four-link mechanism. McCarthy
and Bodduluri [40, 41] considered the generalization of planar rectification theory to
spherical 4R mechanisms as well as an approach to the finite position synthesis of
spherical four-bar linkages that unites traditional precision theory with recent results in
approximate position synthesis. Ruth and McCarthy [42] described a computer-aided
design software system for spherical four-bar linkages that is based on Burmester’s
planar theory. Lin [6] used a continuation method to synthesize spherical four-bar
motion generators.

Previous work in planar mechanism design, analysis and motion generation [12,

43-47] includes the work of Wang and Sodhi [43] who developed a method for the
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synthesizing an adjustable moving pivot four-bar mechanism for multi-phase motion
generation. Ahmad [44] produced a summary of synthesis methods for four-bar linkages
with adjustable crank pivots for different motion generation problems. Sandor, Kaufman,
Erdman, Foster, Sadler, Smith and Kerashaw [12] introduced a geared linkage for motion
generation. Dhingra and Mani [45] developed a computer-based approach for
synthesizing six different link and geared mechanismg to achieve finite and multiply-
separated positions. Wilhelm [46] introduced multi-phase motion generation methods for
planar four-bar mechanisms. Chuenchom and Kota [47] presented generalized analytical

methods for designing adjustable mechanisms based of the synthesis of adjustable dyads.

1.7 Research Objectives

Although there are methods available for the design of spherical mechanisms (as
described in the literature review included in Section 1.6), most of these methods do not
consider the design of a single adjustable spherical mechanism. With an adjustable
spherical mechanism, the user could relocate the mixed or moving pivots of the
mechanism to achieve a new mechanism configuration, and subsequently, additional
motion, path or function generation applications.

The primary objective of this research is to develop new methods for the design of
four and five-bar spherical mechanisms for multi-phase motion, path and motion
generation. With such methods, the user could design four and five-bar spherical
mechanisms to achieve multiple phase of prescribed rigid-body positions, path points or

crank and follower displacement angles using essentially the same hardware.
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In accordance to the synthesis of adjustable spherical four and five-bar
mechanisms, another objective of the research is to develop an optimization method to
minimize the structural error of the synthesized adjustable spherical mechanisms. Using
such a method in accordance with multi-phase motion, path and function generation
methods, the user could design adjustable spherical motion, path and function generators
with optimum parameters for minimum structural errors in rigid-body positions, path
points or crank and follower displacemeﬁt angles respectively.

To achieve the primary objective, methods for the design of adjustable planar four
and five-bar mechanisms for-multi-phase motion, path and function generation are also
developed in this research. With such methods, the user could design four and five-bar
planar mechanisms to achieve multiple phase of prescribed rigid-body positions, path

points or crank and follower displacement angles using essentially the same hardware.

1.8 Research Methodology

Using the theories of planar rigid-body guidance, planar rigid-body point guidance and
planar four-bar crank and follower displacement angle relationships, design equations
were developed under constant-length constraints. For planar mechanism synthesis, these
equations govern the fixed-pivot locations, moving-pivot locations and link lengths in
accordance with the prescribed rigid-body points, rigid-body path points and crank and
follower displacement angles. The design equations were developed to include multi-
phase motion path and function generation for planar four and five-bar mechanisms.
Using the geometric relationships between spheres, planes, line-sphere

intersections and line-plane intersections, projection methods were developed. With the
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developed plane-to-sphere and sphere-to-plane projection methods, the user could project
the joint coordinates of a planar mechanism (essentially, points on a plane) to the surface
of a specified sphere (resulting in a spherical mechanism).

Optimization methods were developed to minimize the structural errors in the
rigid-body positions, path points and crank and follower displacement angles of
adjustable spherical motion, path and function generators (respectively) synthesized using
plane-to-sphere projection. The optimization approaéh capitalizes on the relationship
between structural error and the projection length in plane-to-sphere projections.

Codified models of the developed multi-phase motion, path and function
generation equations, the plane-to-sphere and sphere-to-plane projection methods and the
optimization method were built using the mathematical analysis software
MATHEMATICA. With these codified models, the user can design adjustable spherical
four and five-bar motion, path and function generators with minimum structural error on

a computer.



CHAPTER 2

ADJUSTABLE PLANAR MECHANISMS AND DESIGN EQUATIONS

The design equations for the synthesis for adjustable planar mechanisms are introduced in
this chapter. Unlike non-adjustable planar mechanisms, adjustable planar mechanisms
can be designed to achieve multiple mechanism configurations (and subsequently
multiple phases of prescribed motion, path or function generation parameters) using
essentially the same hardware. Specifically, this chapter includes the design equations
for adjustable four-bar motion, path and function generators and adjustable five-bar

motion and path generators.

2.1 Adjustable Planar Four-Bar Path Generator

Figure 2.1 illustrates the planar four-bar path generator. Link ap-a; is the designated
crank link and link bo-b; is the designated follower link. Links ag-a; and bg-b; of the
mechanism must satisfy the constant length condition only. Given a fixed pivot by and a
moving pivot b, the constant length condition in Equation 2.1 [48,49] must be satisfied

when synthesizing the crank and follower links of the planar four-bar mechanism.

19
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Figure 2.1 The planar four-bar path generator with rigid body
point p and orientation angle ©.

(b; — bo) (b —bo) = (b1 —bo) (b1 —bg) j=2,3,....n (2.1)
where

bo = (box, boy, 1), b1 = (bix, by, 1), bj = [Dj]by,
and

cosf,; —sinf,; p,—p, cosf;+p,sing,;
[D]j]= sing; cos6; p;,-p, sing,; — p,,cosf; | . 2.2)
0 0 1 ‘

Equation 2.1 is rewritten as Equation 2.3. In Equation 2.3, the variable R represents the
length of the follower link.

(bj—bg)'(bj—bo)=R* j=2,3,....n (2.3)
Variable p in Equation 2.2 represents the coordinates of the rigid body curve points.

Variable 0 represents the angular displacement between position “1” and “j” of the rigid
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body. Since there are four variables (box, boy, bix and biy), a maximum of five rigid body
curve points can be prescribed, with no arbitrary choice of parameter for a single phase
(see Table 2.1).

In Table 2.1, the maximum numbers of prescribed rigid body curve points for the
planar four-bar path generator for several phases are given. The number of fixed and
moving pivot coordinates for the crank and follower links determines the maximum
number of rigid body curve points that the user can prescribe. The example problem in:
Section 6.1 demonstrates the design of a planar and spherical four-bar path generator to

achieve a two-phase moving pivot adjustment application.

Table 2.1 Prescribed Rigid Body Curve Point and Phase Variations for the Adjustable
Planar Four-Bar Path Generator

Crank or Follower Links
Number of | Max. number of rigid Number of Number of
phases body curve points unknowns free choices
1 5 4 0
2 8 6 0
3 11 8 0
n 5+3(n-1) 2+2n 0

In the two-phase, adjustable moving pivot example problem in Section 6.1, the
required unknowns are ag, a;, a1n, bg, b; and b;,. The unknowns, a, and by, represent the
fixed pivots of the planar four-bar mechanism. The unknowns, a;, aj,, b; and by,
represent the moving pivots in phase 1 and phase 2 of the planar four-bar mechanism.
Since each of these unknowns has two components, there are a total of 12 variables to

determine.
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a0 = (a0X9 a()y), a = (alxa aly), A= (almb alny)a
bo = (bOX’ bOy), b, = (bIXa bly), b, = (bInXa b]ny)-
Equations 2.4 through 2.8 were used to calculate five of the six unknowns in ao,

a; and a;,. The variable ag, and the link length R; are specified.

([D2)a1 — a0)"([Di2]ari— a0) - Ry* = 0 (2.4)
([D13]a1 - a0) '([D13]ai— ap) — R, =0 | (2.5)
([D1sJa: — 20)'([D14lar— 20) - Ri = 0 2.6)
([Dse)ain — 80)"([Dss)arn—a0) — Ry* = 0 @7)
([Ds7)a1n — 20) ([Ds7}ain— o) - Ri* =0 @8

Equations 2.9 through 2.13 were used to calculate five of the six unknowns in by,

b, and b;,. The variable by, and the link length R; are specified.

([D12]b1 — be) ([D12]b1—bg) —R> =0 (2.9)
([D13]b1 = bo) ([D1s]b1- bo) ~Ry* = 0 (2.10)
([D1aJb1 = bo) ([D14]b1— bo) ~Rz* = 0 @.11)
([Dss]bin — bo) ([Dselbin—bo) —R;* =0 2.12)
([Ds7]b1n — bo) ([Ds7]bi—bg) ~Ro* =0 2.13)

2.2 Adjustable Planar Four-Bar Funcﬁon Generator

The planar four-bar function generator is illustrated in Figure 2.2. In this work, link ap-a
is the designated crank link and link bo-b, is the designated follower link. Link a;-b; of
the planar four-bar mechanism must satisfy the constant length condition only. Given a

fixed pivots a;=(0,0) and by=(1,0), the constant length condition in Equation 2.14 [48,49]
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must be satisfied when synthesizing the crank and follower links of the planar function

generator.
Figure 2.2 The planar four-bar function generator with
displacement angles 0y; and ¢y;.
(aj—b) (a—-b))=(a;—b) (@ -b) j=2,3,....n (2.14)
where

a) = (aix, a1y, 1), by = (bix, by, 1), ;= [Dyj]ay,

and

cos(,, ~4,;) —sin(f,;—¢,;) 1-cosg;
[D,]=|sin@,-4,) cos6,-4,) sing; |. (2.15)
0 0 1

Equation 2.14 can be rewritten as Equation 2.16. In Equation 2.16, the variable L,
represents the length of the coupler (sometimes called rigid body) link. Although the
moving pivots of both the crank and follower link of the planar four-bar mechanism are
adjustable, only the length of the follower link will be adjusted (not the crank link) in this

work.
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(a-b) (@-b)=L, j=2,3,....n (2.16)
Variables 6;; and ¢y; in Equation 2.15 represent the angular displacements of the crank
and follower links.  Since there are four variables (aiy, aiy, bix and bjy), a maximum of
four crank and follower displacement angles can be prescribed, with no arbitrary choice
of parameter for a single phase (see Table 2.2).

In Table 2.2, the maximum numbers of prescribed crank and follower
displacement angles for the adjustable planar four-bar function generator for several
phases are given. The number of moving pivot coordinates for the crank and follower
links determines the maximum number of crank and follower displacement angles. The
example problem in Section 6.2 demonstrates the design of a planar and spherical four-

bar function generator to achieve a two-phase moving pivot adjustment application.

Table 2.2 Prescribed Displacement Angle and Phase Variations for the Adjustable
Planar Four-Bar Function Generator

Crank or Follower Links
Number of Max. number of Number of Number of
phases displacement angles unknowns free choices
1 4 4 0
2 8 8 0
3 12 12 0
n 4+4n 4+4n 0

In the two-phase, adjustable moving pivot example problem in Section 6.2, the
required unknowns are a;, b; and b;,. These unknowns represent the moving pivots in
phase 1 and phase 2 of the planar four-bar mechanism. Since each of these unknowns

has two components, there are a total of 6 variables to determine.
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a; = (aix, aiy), b1 = (bix, biy), bin = (binx, biny)-
Equations 2.17 through 2.21 were used to calculate five of the six unknowns in ay,

b; and by,. The variable a;, and the link length L, are specified.

([D12]a; — b)) ([D12]ai-by) -1, =0 (2.17)
([Dis]a; = b)) ([Dis]ai—by) - L, =0 (2.18)
([Dig]a; — by)" ([Dis]a-by)—L; =0 | (2.19)
([Dis]ar  biy)" ([Dis)ar—by) — Lz = 0 (2.20)
([Dig]a; — bin)! ((Dislai—bin) =Ly =0 (2.21)

2.3 Adjustable Planar Four-Bar Motion Generator

The planar four-bar motion generator is illustrated in Figure 2.3. In this work, link ap-a,
is the designated crank link and link bo-b, is the designated follower link. Links ao-a;
and by-b; of the planar four-bar mechanism must satisfy the constant length condition
only since its fixed and moving pivot joint axes remain parallel. Given a fixed pivot b,
and a moving pivot by, the constant length condition in Equation 2.22 [48,49] must be
satisfied when synthesizing the crank and follower links of the planar four-bar

mechanism.
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Figure 2.3 The planar four-bar motion generator with rigid body
points p, q and r.

(bj — bo) (b; — bo) = (b1 —bg) (b1 —=bg) j=2,3,....n (2.22)
where
bo = (box, boy, 1), b1 = (bix, biy, 1), b; = [Dy;]by,

and

pjx qjx rjx plx qlx ’ix -
(D, ]=|Py a5 m Py @ m| - (2.23)
1 1 141 1 1
Equation 2.22 can be rewritten as Equation 2.24. In Equation 2.24, the variable R
represents the length of the crank or follower link.
(bj—bp)'(bj—be)=R*> j=2,3,....n (2.24)
Equation 2.23 is a rigid body displacement matrix. It is a derivative of the spatial rigid

3D
1

body displacement matrix [48,49]. Given the coordinates for a rigid body in position
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c6r I

and the subsequent “j,” matrix [Dj] is the transformation matrix required to transform

IT3ED)
1

coordinates from position to position “j.” Variables p, q and r in Equation 2.23
represent the position of the rigid body in two-dimensional space. Although the position
of a rigid body in two-dimensional space is commonly described by a single point and a
displacement angle (p and 6 for example), the author chose to describe the rigid body
using three points for computational purposes. If the user prefers to describe the rigid
body using conventional notation, the displacement matrix in Equation 2.23 wiil be
replaced with the conventional plane rigid body displacement matrix [48,49]. Since there
are four variables (box, boy, bix and byy), a maximum of five rigid body positions can be
prescribed, with no arbitrary choice of parameter for a single phase (see Table 2.3).

Points p, q and r should not all lie on the same line in each rigid body position.
Taking this precaution prevents the rows in the rigid body displacement matrix (Equation
2.23) from becoming proportional. With proportional rows, this matrix could not be
inverted.

In Table 2.3, the maximum numbers of prescribed rigid body positions for the
adjustable planar four-bar motion generator for several phases are given. The number of
fixed and moving pivot coordinates for the crank and follower links determines the
maximum number of rigid body positions. The example problem in Section 6.3

demonstrates the design of a planar and spherical four-bar motion generator to achieve a

two-phase moving pivot adjustment application.



Table 2.3 Prescribed Rigid Body Position and Phase Variations for the Adjustable
Planar Four-Bar Mechanism

Crank or Follower Links

Number of Max. number of Number of Number of
phases rigid body positions unknowns free choices

1 5 4 0

2 8 6 0

3 11 8 0

n 5+3(n-1) 2+2n 0
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In the two-phase, adjustable moving pivot example problem in Section 6.3, the

required unknowns are ag, aj, ain, bo, by and by,. The unknowns ao and b represent the

fixed pivots of the planar four-bar mechanism. The unknowns a;, ai, b; and by,

represent the moving pivots in phase 1 and phase 2 of the planar four-bar mechanism.

Since each of these unknowns has two components, there are a total of 12 variables to

determine.

ap = (aOXa aOy)a a = (alx’ aly), aA;n = (alnx, alny),

by = (b0x, bOy), b, = (blx; bly)» bin= (blnx, blny)-

Equations 2.25 through 2.29 were used to calculate five of the six unknowns in ao,

a; and a;,. The variable ag, and the link length R; are specified. Variable R, represents

the link a;— ao.

([D12]a1 — 20)"([Di2]ai- ap) - R* =0

([D13]a; — a0) ([Dis]ai— ag) - R;> =0

([Dis]a; — ag)" ([D14)a;— 2p) - R* =0

([Dss)ain — a0)"([Dss]ain— a0) —R;* =0

([Ds7]ain — a0) ([Ds7]ain— a0) —R* =0

(2.25)
(2.26)
(2.27)
(2.28)

(2.29)
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Equations 2.30 through 2.34 were used to calculate five of the six unknowns in
by, b; and by,. The variable by, and the link lengths R, are specified. Variable R;

represents the link b;— by.

([D12]b1 — bo) ([D12]b1— bo) —Ry* =0 (2.30)
([D13]bs — bo) ([Diz]bi—bo) ~Ra* =0 @31)
([D14]b; — bo) ([Dis]bi~bo) —R* =0 | (2.32)
([Dss]bin — bo) ([Dse]bin— bo) — Rf =0 : (2.33)
([Ds7]b1n — bo) ([Ds7]bia— bo) —Ry* =0 (2.34)

2.4 Adjustable Planar Five-Bar Path Generator

The planar five-bar path generator is illustrated in Figure 2.4. In this work, links ap-a
and by-b; are the driving links (denoted by driving link angles 6 and ¢). Links a¢-a; and
b;-¢; of the planar five-bar mechanism are synthesized using the constant length
condition only. The constant length constraint Equations 2.35 and 2.36 [48,49] are

satisfied when synthesizing links ao-a; and b;-c; of the planar five-bar mechanism.
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Figure 2.4 Planar five-bar path generator with driving link angles
0, ¢, and rigid body path point p.

(a;—a0)'(a;— a0) = (a1 —a0) (a1 - a) j=2,3,....n (2.35)
(¢—b)"(c;—b)=(ci —b) (e =b1) j=2,3,....n (2.36)
where
ap = (aox, A0y, 1), a1 = (a1x, a1y, 1), 3 = [Dyjlay,
b; = (box + Racos(¢1), boy + Rasin(d) , 1), b; = [T;]by,
¢1 = (Cix Ciy, 1), €= [Dyj]en,
and

cos&,j —sin@u Dy — Py, cosé’,j +p, sin0,j
[D,;]=|sin6, cos6; p,~p,sing,-p,cosb, |, (2.37)
0 0 1
cos(6g;) —sin(6p;) by, cos(6¢;)+ b, sin(6¢;) + by,
[T}] =|sin(6¢;) cos(64;) —by, Sin(84;) — by, cos(5¢;) + by, |- (2.38)
0 0 1
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Equations 2.35 and 2.36 can be rewritten as Equations 2.39 and 2.40. In Equation 2.39,
the variable R; represents the length of link ap-a; and the variable R represents the
length of link b;-¢; in Equation 2.40. The variable R4 represents the length of link bo-b,

(aj-20)"(a—a9)=R,* j=2,3,....n (2.39)

(c;—b)'(c;—-b)=Ry* j=2,3,....n (2.40)
Since there are four variables in each equation (agy, 2oy, Ajx, Ajy and bjy, bjy, ¢jx and c;jy), a
maximum of five rigid body path poinis can be prescribed, with no arbitrary choice of
parameter for a single phase (see Table 2.4).

In Table 2.4, the maximum numbers of prescribed rigid body path points for the
adjustable planar five-bar path generator for several phases are given. The number of
fixed and moving pivot coordinates for the links to be synthesized (links a-a; and b;-¢))
determines the maximum number of rigid body path points. The example problem in
Section 6.4 demonstrates the design of a planar and spherical five-bar path generator to

achieve a two-phase moving pivot adjustment application.

Table 2.4 Prescribed Rigid Body Position and Phase Variations for the Adjustable
Planar Five-Bar Mechanism

Link ag-a; Link b,-c;
Number of] Max. # of rigid Number of | Number of | Number of | Number of
phases body unknowns | free choices | unknowns | free choices
1 5 4 0 6 2
2 8 6 0 8 2
3 11 8 0 10 2
n 5+3(n-1) 2+2n 0 6+2(n-1) 2
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- In the two-phase, adjustable moving pivot example problem in Section 6.4, the
required unknowns are ay, ai, a,, by, ¢; and ¢, The unknown variables ag, a;, by, and ¢;
represent the fixed and moving pivots required for the planar five-bar mechanism to
achieve the prescribed rigid body path points in phase 1. The unknown variables a;n, and
¢ represent the moving pivot adjustments required to achieve the prescribed rigid body
path points in phase 2. Since each of these variables except b; has two unknown
components, and b; has four unknowﬁs (box, boy, R4 and ¢), there are a total of 14
variables to determine.

a9 = (aox, Aoy), a1 = (a1x, A1y), A1n = (Q1nx, 1ny)s

b; = (box + Racos(91), boy + Rasin(¢s) , 1), €1 = (C1x, C1y)s €1n = (Cinxs Ciny)-

Equations 2.41 through 2.45 were used to calculate five of the six unknowns in ao,

a; and a;,. The variable ag, and the link length R, were specified.

(ID12]as — a)"([D12]ai— ag) Ry = 0 (2.41)
([D13)a; — 20)"([D1s]ar- ag) —Ry* =0 (2.42)
([D1s]a; - ag)"([D1s)ai— ap) - Ry* =0 (2:43)
([Dss}ain — 30)"([Dss)ai— a0) —Ry* =0 (2.44)
([Ds7]a1n — 20) ([Ds7)ai— a)) ~Ri* =0 (2.45)

In gear-driven, chain-driven and belt-driven five-bar mechanisms, the driving link
angles have a functional relationship (e.g. 8¢ = f(86) = k*36 in Figure 2.4). This
relationship depends on the ratios of the gears, sprockets or pulleys connecting both
driving links in the mechanism. To accommodate such drive types for the planar five-
bar mechanism, the driving link angle 6 must be determined first. After calculating ao,

a, and a;,, the driving link angle 8 could be determined by the Cosine Law (Equation
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2.46). After calculating this angle for every [D);] position of link ag-ay, the user can then

establish a 8¢ = f(80) = k*30 relationship and calculate the other driving link angle ¢.

The angle 8¢ in Equation 2.38 is the difference between angles ¢ and ¢, in Equation 2.36.

6, = cos™ [Iu—ulﬁ} , whereu =2a,a,v=bga,

(2.46)

Equations 2.47 through 2.51 were used to calculate five of the eight unknowns in by, ¢;

and ci,. The variables by, boy, ¢ (in variable b;) and the link length R3 were specified.

([D12)er — [T1]by) ([DrzJer— [Ti]br) - Ry* = 0
([D1s)es - [T2Jby) ([Disler— [Ta]by) —Ry* = 0
([Dialer — [T3]b1) ([Disler— [T3]b1) —Rs* =0
([Dsslein — [Telb1) ([Dsslein— [Ts]b1) —Rs* =0

([Ds1]cin — [T7101) ((Ds7)ern— [T+]b1) — R’ =0

(2.47)
(2.48)
(2.49)
(2.50)

2.51)
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2.5 Adjustable Planar Five-Bar Motion Generator

The planar five-bar motion generator is illustrated in Figure 2.5. In this work, links ap-a,
and by-b, are the driving links (denoted by driving link angles 6 and ¢). Links ay-a; and
b;-¢; of the planar five-bar mechanism are synthesized using the constant length
condition only. The constant length constraint Equations 2.52 and 2.53 [48,49] are
satisfied when synthesizing links a¢-a, énd b;-c; of the planar five-bar mechanism. ‘The

variable Ry represents the length of link bg-b;.

Figure 2.5 Planar five-bar motion generator with driving link
angles 6, ¢ and rigid body position points p, q and r.

(a— a0)"(aj—ag) = (a1 — a9) (a1 —ap) j=2,3,....n (2.52)
(¢-b)'(c;-b)=(c1-b) (c1—by) j=2,3,....n (2.53)

where
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a9 = (aox, gy, 1), a1 = (a1x, a1y, 1), 3; = [Dyj]ay,
b; = (box + R400$(¢1), boy + R45in(¢;) , 1), bj = [Tj]b],
¢ = (Cix C1y, 1), €= [Dyj]ey,

and

pjx qjx ’}'x plx qlx rlx

[Dlj] = piy qjy rjy ply qu rly 4 (2;54)
1 1 1 1 I 1 ‘
cos(d¢;) —sin(og;) —b,, cos(6¢;)+b,, sin(6¢;) + b, :
[7;] =| sin(6¢;) pos(5¢j) ~by, sin(69;) — b,, cos(64,) + b, | - (2.55)

0 0 1

Equations 2.52 and 2.53 can be rewritten as Equations 2.56 and 2.57. In Equation
2.56, the variable R, represents the length of link ao-a; and the variable R represents the
length of link b,-¢; in Equation 2.57.

(aj—a0)"(a—ag)=R,®> j=2,3,....n (2.56)

(¢-b)'(cg—b)=Rs* j=2,3,....n (2.57)

Equation 2.54 is a rigid body displacement matrix. It is a derivative of the spatial
rigid body displacement matrix [48,49]. Given the coordinates for a rigid body in

(1342 (T34

position “1” and the subsequent *j,” matrix [Dj] is the transformation matrix required to
transform coordinates from position “i” to position “j.”Variables p, q and r in Equation
2.54 represent the position of the rigid-body in two-dimensional space. Although the
position of a rigid body in two-dimensional space is commonly described by a single
point and a displacement angle (p and 6 for example), the authors chose to describe the

rigid body using three points for computational purposes. If the user prefers to describe

the rigid body using conventional notation, the displacement matrix in Equation 2.54 can
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be replaced with the conventional plane rigid body displacement matrix. Since there
are four variables in each equation (aox, agy, a1x, aoy and by, biy, Cix and c1y), a maximum
of five rigid body positions can be achieved with no arbitrary choice of parameter for a
single phase (see Table 2.5).

Points p, q and r should not all lie on the same line in each rigid body position.
Taking this precaution prevents the rows in the rigid boc_ly displacement matrix (Equation
2.54) from becoming proportional. With proportional rows, this matrix could nof be
inverted. |

In Table 2.5, the maximum numbers of prescribed rigid body positions for thg
adjustable planar five-bar motion generator for several phases are given. The number of
fixed and moving pivot coordinates for the links to be synthesized (links ap-a; and b;-¢;)
determines the maximum number of rigid body positions. The example problem in
Section 6.5 demonstrates the design of a planar and spherical five-bar mechanism motion

generator to achieve a two-phase moving pivot adjustment application.

Table 2.5 Prescribed Rigid Body Position and Phase Variations for the Adjustable
Planar Five-Bar Mechanism

Link agp-a; Link b;-¢;
Number of| Max. number of | Number of | Number of | Number of | Number of
phases rigid body unknowns | free choices | unknowns | free choices
1 5 4 0 6 2
2 8 6 0 8 2
3 11 8 0 10 2
n 5+3(n-1) 2+2n 0 6+2(n—1) 2

In the two-phase, adjustable moving pivot example problem in Section 6.5, the
required unknowns are ay, a;, ajn, by, ¢; and ¢j,. The unknown variables ag, a;, by, and ¢;

represent the fixed and moving pivots required for the planar five-bar mechanism to
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achieve the prescribed rigid body path points in phase 1. The unknown variables a;, and
¢1n represent the moving pivot adjustments required to achieve the prescribed rigid body
path points in phase 2. Since each of these variables except by has two unknown
components, and b; has four unknowns (box, boy, R4+ and ¢), there are a total of 14
variables to determine.

29 = (20, 40y), A1 = (21, 31y), A1 = (31ne Biny),

bi = (box + Racos($1), boy + Rasin(91) , 1), €1 = (C1x, C1y);

€in = (Cinx, Ciny)-

Equations 2.58 through 2.62 were used to calculate five of the six unknowns in ao,

a; and a;,. The variable ag, and the link length R, were specified.

(ID12)a; — 20)"([Di2]a— a)) - Ry* =0 (2.58)
([D13]a1 - ag)"([D13]ai— a0) ~Ry* =0 (2.59)
([Dia]a; - 20) ([Di4]ai— a0) —R,* =0 (2.60)
([Dsslain — 20)"([Dse]ain— a0) — Ry* =0 2.61)
([Ds7]a1n — 20)"([Ds7)ain— a0) - Ry’ =0 (2.62)

In gear-driven, chain-driven and belt-driven five-bar mechanisms, the driving link
angles have a functional relationship (e.g. 8¢ = f(660)=k-50 in Figure 2.5). This
relationship depends on the ratios of the gears, sprockéts or pulleys connecting both
driving links in the mechanism. To accommodate such drive types for the planar five-
bar mechanism, the driving link angle  must be determined first. After calculating ao,
a, and a,,, the driving link angle 6 could be determined by the Cosine Law (Equation

2.63). After calculating this angle for every [D;;j] position of link ao-a;, the user can then
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éstablish a 8¢ = f(86) = k- 50 relationship and calculate the other driving link angle ¢.

The angle 8¢ in Equation 2.55 is the difference between angles ¢ and ¢, in Equation 2.53.

01=cos™ [ﬁﬁ] , whereu=aza ,v=b,a,

(2.63)

Equations 2.64 through 2.68 were used to calculate five of the eight unknowns in

bi, ¢, and ¢;,. The variables by, bo§, ¢ (in variable b;) and the link length R3 were

specified. |
([Dizler — [TyJb) ((DizJer- [TiJb1) — Ry =0
(IDis)er - [T2b)([(Disler— [Talby) - Ry* =0
(ID1aler - [Ts]b1) ([Dagler— [T3]by) —Rs* =0
(IDsslein — [Telb1) ((Dsslern— [Telbr) —Rs* =0

([Ds7]ein — [T71b1)([Ds7lern— [T7lb1) —Rs* =0

2.64)
(2.65)
(2.66)
(2.67)

(2.68)



CHAPTER 3

ADJUSTABLE SPHERICAL MECHANISMS

This chapter introduces several classifications of adjustable spherical mechanisms. Like
adjustable planar mechanisms, adjustable spherical mechanisms can be designed to
achieve multiple mechanism configurations (and subsequently multiple phases of
prescribed motion, path or function geﬁeration parameters) using essentially the éame
hardware. The particular adjustable spherical meéhanisms introduced in this chapt.er are
four-bar motion, path and function generators and adjustable five-bar motion and path
generators. This chapter also introduces the displacement equations for spherical four

and five-bar mechanisms.

3.1 Adjustable Spherical Four-Bar Path Generator

Figure 3.1 illustrates an adjustable spherical four-bar path generator. Point p represents
the rigid body point. To achieve the prescribed rigid body curve points in phase I, the
moving pivots incorporated are a; and b,. To achieve the prescribed rigid body curve
points in phase II, the moving pivots incorporated are a;, and by,. Links ap-a; and ag-a;,
are the designated crank links and links bg-b; and bo-b;, are the designated follower

links.
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zZ12=—ca, - c0, -6, — ca, - ca, - cb, - 50, + sa, - sa, - 6,

(3.10)
—ca, -cb, - 58, - ch, - s6,
z13 =-sa, - 56, + ca, -sa, - s6, + ca, - cB, - sa, - s6, + cb, - sa; - 56, (3.11)
z22l=ca, -c,-s6, +cb, - s, +ca, - cb, - 50, + ca, -ca, - cb, - s6, — 3.12)
sa, -sa, -6, '
z22 =ca, -ca,-cf,-cb; —ca, -ca, -cb, -cl, - b, -sa, - sa, + 3.13)
cl, -sa, -sa, —ca, -s6, -s0; +ca, - 56, - 56, '
z23=-ca,-sa, —ca,-cb,-sa, —ca, -cb, -cf, -sa, - ca, - cb, - sa, + (3.14)
sa, - 56, - s6, '
231=~-cb, -sq, -sb, + sa, - s0, —ca, - cb, - se, - 56, — ca, - sa, - 56, (3.15)
z32=ca, -cb, -cb, -sa, +ca, - b, -sa, +ca, - sa, + (3.16)
ca,-cl, -sa, —sa, -s6, - 56, '
z33=ca,-ca,-ca, -ca, —cb,-sa, -sa, +cb, -sa, -sa, (3.17)

In Equations 3.9 through 3.17, variables “c0” and “s6” represent cos(0) and sin(0)

respectively and variables “ca” and “sa” represent cos(a) and sin(a), respectively.

3.5 Adjustable Spherical Five-Bar Path Generator

Figure 3.6 illustrates an adjustable spherical five-bar path generator. Point p represents
the rigid body point. To achieve the prescribed rigid body curve points in phase I, the
moving pivots incorporated are a; and ¢;. To achieve the prescribed rigid body curve
points in phase II, the moving pivots incorporated are a;, and ¢;,. Links a,-a;, ap-a;, and

bo-b; are the designated crank links.















50

zl1=ch, cf, - ca, 0, s6, -sa, sa s6, s6, +ca, s6,(ca; cb; s6, +cb, sb;)
—c0,(cb, cb; —ca, 50, s6;) (3.26)
z12=cb, sa, sa, s, —ca, ca, cb, sb, +sa, sa, s6, —ca, cb, s, -

ca, c8,(cag cl; s6, +cO, s6;)— s6,(cb, cb —ca; s6, sb;) (3.27)
z13=-ca, sa; s6, +ca, sa, s6, +ca, cO, sa, s6, +

cd, sa, s6, —sa,(ca, cb; sb, +cé1 s6;) (3.28)
z21=cb, sb, +ca, cb, 56, - sa,(ca, sa, +ca, cb, so;)sb, -

cl,(—ca, cb; s6, —ca, ca; cb, s6; +sa, sas sb)+
ca, s6,(ca, cas cb, cb; -cl; sa, sa; —ca, sb, sb;) (3.29)

z22=ca, ca, cb, cf;, —ch, sa, sa, + cl, sa,(ca; sa, +ca, cf, sa;)-

ca, 56, s6, —s0,(—ca, cb; s6, —ca, ca; cb, sb; +sa, sa; s6;)—
ca, cf,(ca, ca, cb, cl; —cb; sa, sa;—ca, s6, sb;) (3.30)

223=—ca, cb, sa, —ca, cb, cb, sa, - ca,(ca; sa, +ca, cb, sa;)+
sa, 56, 56, —sa,(ca, ca, cb, cl;—cl sa, sa; —ca, s6, s6;) (3.31)
z31=sa, O, —sa,(ca, ca; ~cO, sa, so;)s6, -

cl,(cO; sa, s6, +ca, cb, sa, sb; +ca, sa; s6;)+
ca, s6,(—ca; cb, cb; sa, —-ca, cb; sa,+sa, s6, sb;) _ (3.32)

232=ca, b, sa, +ca, sa, +cl, sa,(ca, ca,—cb, sa, sa;) -

56,(cb; sa, s6, +ca, cb, sa, sb; +ca, sa, s6;)—
ca, cB,(—ca; cb, ch; sa, —ca, cb; sa, +sa, sb, sb;) (3.33)

z33=ca, ca, —cb, sa, sa, - ca,(ca, ca;s—ch, sa, sa;)—

sa,(—cas cB, cb; sa, —ca, cb; sa, +sa, sO, sb) (3.34)
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In Equations 3.26 through 3.34, variables “c0” and “s0” represent cos(8) and sin(6)

respectively and variables “ca” and “sa” represent cos(at) and sin(a), respectively.



CHAPTER 4

PLANE-TO-SPHERE AND SPHERE-TO-PLANE PROJECTION METHODS

This chapter introduces the plane-to-sphere and sphere-to-plane projection used to design
spherical mechanisms (given planar mechanisms) and planar mechanisms (given
spherical mechanisms) respectively. In plane-to-sphere projection, each joint coordinate
of a planar mechanism is projected on the surface of a specified sphere. In sphere-to-
plane projection, each joint coordinate of a spherical mechanism is projected on a
specified plane. The chapter also includes an optimization method to minimize the

structural error in plane-to-sphere projections.

4.1 Plane-to-Sphere and Sphere-to-Plane Projection Methods

The joints and rigid body points of a planar mechanism could be projected on the surface
of a sphere. Figures 4.1 and 4.2 illustrate the projection of a point on a plane (Xp,yp,2p) t0
a point on the surface of a sphere (x;,ys,zs). The projection line passes through the center
of the sphere (the global origin). As Figures 4.1 and 4.2 illustrate, the plane that the point
lies on (and ultimately the planar mechanism) is parallel to the x-y plane of the global

coordinate system and is offset from the x-y plane by a distance “d” along the z-axis.
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4.2 where variable “r” is the radius of the sphere. The projection line from the point on
the plane (xp,yp,Zp) to center of the sphere is represented by Equation 4.3. The point of
intersection between the projection line and the surface of the sphere (XYs,zs) is

expressed in Equation 4.4.

z=d 4.1
*+y*+z22=r’, r<d 4.2)
x=xp-t
<y=yp-t
kz=zp-t=d~t’teR 4.3)
(x,=x,t
o-r

1Y, =y,t ,where t= —— =
z. =d-t \/d tX Y, . . )
. ,and o =1 is a sign variable 4.4)

X

A (xpj’ypj’zpi

(xp’yp’z
x’ys’zs

e

Figure 4.3 Sphere-to-Plane projection in X-Z plane.
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The joints and rigid body points of a spherical mechanism could be projected on a
plane. Figure 4.3 illustrates the projection of a point on a sphere (Xs,ys,2s) to a point on a
plane (xp,¥p,Zp). Again, the projection line passes through the center of the sphere (the
global origin). As Figure 4.3 illustrates, the origin of the sphere that the point lies on
(and ultimately the spherical mechanism) is coincident with the origin of the global
coordinate system and the projection plane is offset from the x-y plane by a distance “d”
along the z-axis.

The projection line from the center of the sphere to the point on the sphere
(Xs,¥s,Zs) and the point of intersection between the projection line and the plane (xp,¥p,2p)

is expressed in Equation 4.5.

x,=k-x,
Y,=k-y, 4.5)
z,=k-z,=d, then k=d/z,

4.2 Structural Error Calculation

4.2.1 Structural Error Calculation for Path Generation

In this work, the structural error in path generation is the difference between the
prescribed rigid body path points and the points achieved by the 'synthesized path
generator. In Figure 4.4, the structural error Ser (Equation 4.6) is the magnitude of the
difference between the prescribed points (pp) and those achieved by the synthesized

mechanism (pg).
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» X
z
Figure 4.4 Structural error in path generation.
Sy =Py = Pe) + (P = D) +(Pye = )’ (4.6)

The magnitude of the projection offset distance “d” and the radius of the sphere
determines the overall scale of the synthesized. For example, as “d” gets larger (for a
fixed sphere radius “r”’) the overall scale of the projected spherical mechanism decreases
as well. The structural error is multiplied by the projection length in sphere-to-plane
projection to enable the user to compare structural errors for spherical mechanisms at
different projection-offset distances. The structural error is divided by the projection
length in plane-to-sphere projection to enable the user to compare structural errors for

spherical mechanisms at different projection offset distances.
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4.2.2 Structural Error Calculation for Motion Generation

A y
D
- —_—
» Serr Generded rigid-body position
y 14
af 7\ ) Prescribed rigic-body position
g —
Serr / \ 7y
7 qPA/ \r Serr
T —2 v _
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Figure 4.5 Structural error in motion generation.

In this work, the structural error in motion generation is the difference between the
prescribed rigid body positions and those points achieved by the synthesized motion
generator. In Figure 4.5, the structural error Ser (Equation 4.7) is the magnitude of the

average difference between the prescribed positions (pp, gp, Ip) and those achieved by the

synthesized mechanism (pg, qg, I').

S,, = (Serr, + Serr, +Serr,) /3= ((P — P +(Dyy = Pg) +(Pr =P ) *

V@, 9. @, -95) +(d, —4) +

J(rpx —r VA, )+ (0, — 1)) /3 (4.7)

The magnitude of the projection offset distance “d” and the radius of the sphere
determines the overall scale of the synthesized. For example, as “d” gets larger (for a

fixed sphere radius “r’’) the overall scale of the projected spherical mechanism decreases
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as well. The structural error is multiplied by the projection length in sphere-to-plane
projection to enable the user to compare structural errors for spherical mechanisms at
different projection-offset distances. The structural error is divided by the projection
length in plane-to-sphere projection to enable the user to compare structural errors for

spherical mechanisms at different projection offset distances.



CHAPTERS

COMPUTER MODEL FOR OPTIMIZATION METHOD

This chapter introduces the algorithms and codified models of plane-to-sphere projection
and optimization methods. The mathematical analysis software MATHEMATICA was
used to build and implement the models. Using the codified models, the user can project
the joint coordinates of a given planar mechanism onto a sphere and determine the
optimum projection length to minimize the structural error of the resulting spherical

mechanism.

5.1 Optimization Method for Plane-to-Sphere Projection Method

The author used the mathematical analysis software MATHEMATICA to codify the
plane-to-sphere projection and optimization method. Figure 5.1 illustrates the flowchart
of the computer models. This research also includes the MATHEMATICA models used
in this work to design adjustable spherical motion, path and function generators (see
Appendix B). The adjustable path generation MATHEMATICA model (for spherical

four-bar mechanisms) is used as an example in this section.
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Figure 5.1 Flowchart for MATHEMATICA models.

In block 1 of the flowchart (part 1 of Section 5.2), the user provides the prescribed
planar rigid body points and the fixed and moving pivots of the synthesized planar four-
bar path generator. Because it would be most likely that only the prescribed spherical
rigid body points would be available in spherical path generation applications, the
spherical points must be projected onto a plane using the sphere-to-plane projection
method. The MATHEMATICA model of the plane-to-sphere projection method is

provided in Section 5.2. Performing the projection would convert the spherical points
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into planar points-making them compatible with planar path generation methods. When
the prescribed planar rigid body points are calculated, the user can synthesize a planar
path generator using the synthesis method provided in Section 2.1 or any other adjustable
path generation method available.

In block 2 of the flowchart (part 2 of Section 5.2), the planar rigid body points and
the fixed and moving pivots of the synthesized planar path generator are projected onto a
sphere. The radius of the sphere, projec‘tion length and the number of solution iterations
are user-defined.

Blocks 3, 4 and 5 (parts 3 through 6 in Section 5.2) represent an iterative
procedure in which the structural error between the rigid body points achieved by the
adjustable spherical path generator and the prescribed rigid body points of this
mechanism is calculated. The user must determine whether the structural error calculated
is sufficient by comparing it to an acceptable error value. If the calculated error is not
acceptable, the user increases the projection length and recalculates the structural error.
As demonstrated in the example problems throughout Chapter 6, structural error
decreases with respect to an increasing projection length (in motion, path and function
generation). If the error is acceptable, the end result would be an adjustable spherical
path generator that approximates the prescribed rigid body points within the desired
structural error.

Figure 5.2 illustrates parts 3 through 6 in Section 5.2. This figure is a detailed
flowchart of blocks 3 and 4 in Figure 5.1. The kinematic parameters of the spherical path
generator are calculated in blocks 1 through 3 of Figure 5.2. These parameters include

the input and output crank angles and the orientation angles of the intermediate links of
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the spherical mechanism. The kinematic parameters are used as initial positions of the
mechanism for displacement analysis. In part 4 of Section 5.2, lines 39 through 54 are
the codified Dual Number [50] displacement equations for the spherical four-bar
mechanism.

Blocks 4 and 5 in Figure 5.2 represent lines 57 through 70 in Section 5.2. The
spherical mechanism is displaced a full crank rotation incrementally using the codified
Dual Number equations. Block 5 in Figﬁre 5.2 represents lines 61 through 70 in Section
5.2. All of the crank displacement angles and intermediate link displacement angles are
tabulated. Block 6 in Figure 5.2 represents the part 5 of Section 5.2, where the
displacement equations are defined. Using the tabulated displacement angles of the
spherical path generator, the calculated link lengths and initial position angles, the
location of the moving pivot (a) and the rigid body points are calculated for each
increment of the displacement cycle of the spherical mechanism in part 5 of Section 5.2.

Block 7 in Figure 5.2 represents part 6 in Section 5.2, where lines 82 through 85
search for the optimal position of the rigid body points for the last position of a phase.
Minimizing the last position of a phase is necessary since it carries the greatest structural
error. The result of part 6 are rigid body points for each increment of the displacement
cycle of the spherical path generator. In lines 86 and 87 of Section 5.2, the structural
error between each of the tabulated rigid body point and each prescribed rigid body point
and the minimum error is displayed. If the calculated structural error is greater than
desired, the user can increase the projection length in line 3 of Section 5.2 and recalculate

a new structural error. By increasing the projection length gradually over a range and
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calculating the structural error for each projection length, the structural error plots in the
example problems throughout Chapter 6 were generated.

As written, the model in Section 5.2 will calculate the structural error for rigid
body point 4 (the rigid body point variables for position 4 or “p4” are used in line 81 in
Section 5.2). To calculate the structural error of another position, the p variable in line
81 of the model in Section 5.2 must be replaced with those of the desired position (for
example, for position “n” the variable must be “pn”).

To achieve the rigid body points in phase 1 for the spherical four-bar path
generator, the moving pivots a; and b; are used and the moving pivots a;, and b, are
used to achieve the positions in phase 2. As written, the model in Section 5.2
incorporates the phase 1 moving pivots in lines 28 through 35. To incorporate the phase
2 moving pivots (a;, and by,), the user must replace variable “al” and “b1” with “aln”
and “bln” in lines 28 through 35.

In this section, the MATHEMATICA model for adjustable spherical four-bar path
generation in Appendix B.1 is used as an example. The MATHEMATICA models for
adjustable spherical four-bar function and motion generation are given in Appendix B.2
and B.3, respectively. The MATHEMATICA models for adjustable spherical five-bar

path and motion generation are given in Appendix B.4 and B.5, respectively.
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Figure 5.2 Detailed flow chart of blocks 3 and 4 in Figure 5.1.



5.2 MATHEMATICA Model of Plane-to-Sphere Projection and
Optimization for Adjustable Spherical Four-Bar Path Generator
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The following MATHEMATICA model illustrates the plane-to-sphere projection method

for fdur-bar path generator. The model was divided into six parts and that could make

the model more readable.

Part 1: User-defined problem input

B W

TheMaxIterations=500;
ProjLength=7
RadofSphere=1;

Plane2Sphere[{x_,y },r_,d_J):={r*x/Sqrt[d*2+x"2+y”*2],r*y/Sqrt [d"2+

x"2+y*2],r*d/sqrt [d"2+x*2+y"2]}
plp={-0.6953,1.2291};p2p={-0.6019,1.3026};
p3p={-0.5020,1.3675};p4ap={-0.3964,1.4233};
pSp={-0.6953,1.2291};p6p={-0.5883,1.2796};
p7p={-0.4774,1.3193};
a0p={0.0000,-0.0092378};
alp={-0.76744,0.63171};
alnp={-0.45554,0.88092};
b0p={1.0000,-0.016575};
blp={0.58693,1.4253};
blnp={1.0472,1.4827};

Part 2: Plane-to-sphere projection

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

pl=Plane2Sphere [plp, RadofSphere, ProjLengthl]
p2=Plane2Sphere [p2p, RadofSphere, ProjLength]
p3=Plane2Sphere [p3p,RadofSphere, ProjLength]
p4=Plane2Sphere [p4p, RadofSphere, ProjLengthl}
p5=Plane2Sphere [p5p, RadofSphere, ProjLength]
p6=Plane2Sphere [p6p, RadofSphere, ProjLength]
p7=Plane2Sphere [p7p, RadofSphere, ProjLengthl]
a0=Plane2Sphere [a0Op, RadofSphere, ProjLength] ;
al=Plane2Sphere [alp,RadofSphere, ProjLength] ;
aln=Plane2Sphere [alnp, RadofSphere, ProjLength] ;
b0=Plane2Sphere [bOp, RadofSphere, ProjLength] ;
bl=Plane2Sphere [blp,RadofSphere, ProjLengthl] ;
biln=Plane2Sphere [blnp,RadofSphere, ProjLength] ;

Part 3: Calculate initial position variables of the spherical mechanism

28.
29.
30.
31.
32.
33.
34.

al=ArcCos[a0.al/Sqrt[a0.a0]/Sqrtlal.all];

a2=ArcCos {al.bl/Sqrt [bl.bl] /Sqrt[al.all];

a3=ArcCos [bl.b0/Sgrt [bl.bl]/Sqgrt [b0.b0]];

a4=ArcCos [a0.b0/Sqgrt [a0.a0] /Sqrt [b0.b0]];

cal=Cos [al] ;sal=Sin[al] ;ca2=Cos [a2] ;sa2=Sin[a2];

cal3=Cos [@3] ;sa3=Sin[a3] ;cad=Cos [a4] ;sa4=Sin [a4];

AngleBTAxes [{ax_,ay_,az_},{bx_,by ,bz_}]:={-(az by-ay bz)/(-ay
bx+ax by),-(az bx-ax bz)/(ay bx-ax by),1}



35.
36.
37.

38.
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alphalv=AngleBTAxes [a0,al];

alpha4v=AngleBTAxes {a0,b0];

®10=ArcCos [alphalv.alphadv/Sqrt [alphalv.alphalv]l/Sqrt [alpha4v.alp
ha4v]];

$10=Pi-$10+Pi;

Part 4: Spherical mechanism Dual-Number displacement equations.

39.
40.

41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

62.
63.
64.
65.
66.

67.
68.
69.
70.

ClearAllchl,s601,c62,s602,c63,s683,ch4,s564];
M[c6 ,s6_,ca_,sa_):={{c8,-ca s6,sa s6},{sb,ca cé,-sa cb},{0,sa,
ca}}
M2=M[c82,s62,ca2,sa2];
M3=M[c63,s863,ca3,sa3];
M4=M[ch4,s64,ca4d,sad];
M1=M[cf1,s61,cal,sal];
Z=M2.M3- Transpose [M1].Transpose {M4];
z11=2[[1,1])];
z12=2[[1,2]];
z13=2[[1,3]1];
z21=z[[2,11];
z22=2[[2,2]];
z23=2[[2,3]1];
z31=2[1[3,11];
z32=z[[3,2]];
z33=2[[3,3]1;
cf2g=-0.3;862g=-0.9;c63g=-0.17;s563g=-0.9;
ch4g=-0.17;s64g=-0.9;
For[$l=010; k=1,
ksTheMaxIterations,
®1=01-20/TheMaxIterations*Pi/180. ;k=k+1,
ch1=Cos [d1];s01=Sin[dl];
Angles:FindRoot[{zll==0,212==0,zl3==0,z21==0,222==0,
223==0}, {c62,c82g}, {s62,s62g}, {c63,ch3g},
{s63,s63g},{ch4,chag},{sb4,s864g}];
cf2g=Angles[[1,2]];s62g=Angles([[2,2]];
cf3g=Angles[[3,2]];s63g=Angles[[4,2]];
chag=Angles [[5,2]];s64g=Angles([6,2]];
anscf2=Angles[[1,2]] ;anssf2=Angles[[2,2]];
#2=Which[anscf2=0 && anss8#2=20,ArcCos [anscé2}],
anscf2<0 && anssf2>0,ArcCos[ansch2],
anscf2<0 && anss62s0,2*Pi-ArcCos[ansc62],
anscf2>0 && anssf2<0,-ArcCos[ansc62]];
If[k==1,62begin=02,1];
deltaf2[k]=62-62begin;
deltafl[k]l=01-010;
]

Part 5: Displacement analysis for spherical four-bar path generator

71.

Rulo_,u_J]:={{ull1,11]%2*(1-Cos[a])+Cos[a],
ulf1,11] ull2,1]1] (1-Coslal)-ull3,1]] Sinlal,
ull1,1]] ull3,1]1] (1-Coslal)+ul(2,1]] sinlal},
{ufl1,1]] ull2,1]] (1-Coslal)+ull3,1]1] Sinle],
ull2,111%2 (1-Cosla))+Coslal,

ulf2,1]1 ull3,1]1] (1-Coslal)-ull1,1]] Sinlal},
{ull1,11) ull3,1]) (1-Coslal)-ull2,1]] Sinle],



72.
73.
74.
75.
76.
77.

78.
79.
80.

uflf2,11]1 ull3,1]] (1-Cosfal)+ull1,1]] Sinla],
ul[3,1]]1%2 (1-Coslel)+Coslal}};
uvak={{uax}, {vay}, {vaz}};
ataxis={{a0[[1]1]},{a0l[2]1},{a0[([3]1}};
boaxis={{bo[[1]1},{bo[[2]1},{bO[[3]1}};
For [k=1,ksTheMaxIterations, k++,
NewAl [k] =Ru[deltafl[k],6a0axis] . (al-a0)+a0;
alaxis={{NewAl[k] [[1]]}, {NewAl[k] [[2]]},
{NewAl[k] [[3]1}};
pltemp [k] =Ru[deltafl [k],6 a0axis]. (pl-a0)+a0;
NewP1 [k]=Ru{deltaf2[k] , alaxis]. (pltemp [k] -NewAl [k]) +NewAl [k] ;
]

Part 6: Search for the optimum mechanism solution for the rigid body point

81.
82.
83.
84.

85.
86.

87.

P11=p4;
For [k=1;minsqrt=9999;myk, ksTheMaxIterations, k++,
toleranceErr [k] =Sgrt [ (NewP1{k] [[1]]-P11([[1]]) "2+
(NewP1 (k] [[2])-P11[[2]]) "2+ (NewP1{k] [[3]1]-P11[[3]])"2];
If [minsgrt>toleranceErr [k],
minsgrt=toleranceErr [k] ;myk=k,];
]
myanswer2 [ProjLength] ={myk,deltaédl [myk] *180/Pi,
NewP1 [myk],
ProjLength,minsqrt*ProjLength}
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CHAPTER 6

SPHERICAL MECHANISM SYNTHESIS EXAMPLES

This chapter includes an array of example problems in which all of the theory, methods
and models introduced in this work are demonstrated. Applications such as the design of
adjustable planar and spherical four-ba; motion, path and function generators and the
design of adjustable planar and spherical five-bar motion and path generators are
included in this chapter. Methods such as the plane-to-sphere and sphere-to-plane
projections and the plane-to-sphere optimization method are included as well as the
application of the codified MATHEMATICA models introduced in Chapter 5 are

demonstrated in the example problems.

6.1 Synthesis of Adjustable Four-Bar Spherical and
Planar Path Generators

6.1.1 Plane-to-Sphere Projection

This particular problem depicts a situation where the user wants to calculate the spherical
equivalent of an adjustable planar four-bar path generator. In this situation, the user
would already have prescribed planar rigid body points. The end objective in this
example is to calculate the parameters of an adjustable spherical four-bar path generator
that would achieve the prescribed planar rigid body points (when projected onto a
sphere). The x and y-coordinates of seven prescribed planar rigid-body points and

orientation angles are listed in Table 6.1.
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Table 6.1 Prescribed Rigid-Body Points and Orientation Angles for the Adjustable
Planar Four-Bar Path Generator

p 6, [Deg.]

Pos. 1 -0.69530, 1.22910

Pos. 2 -0.60190, 1.30260 2.15730
Pos. 3 -0.50200, 1.36750 421840
Pos. 4 -0.39640, 1.42330 6.19050
Pos. 5 -0.69530, 1.22910

Pos. 6 -0.58830, 1.27960 1.91820
Pos. 7 -0.47740, 1.31930 3.77960

Using Equations 6.1 through 6.10, the prescribed rigid-body parameters in Table
6.1 and the following initial guesses (agx =0, box=1,R; =1, Ry =1.5):

agy = 0.1, a; = (-0.7, 0.6), a1, = (-0.5, 0.7),

boy = 0.1, b; = (0.6, 1.5), b1, = (1.0, 1.4),
the adjustable planar four-bar path generator solutions converge to

agy = -0.0092378, a; = (-0.76744, 0.63171), a;, = (-0.45554, 0.88092),

boy = -0.016575, by = (0.58693, 1.4253), by, = (1.0472, 1.4827).
The positions achieved by the synthesized adjustable planar four-bar path generator (see
Figure 6.1) are given in Table 6.2. Equations 6.1 through 6.10 are identical to Equations

2.4 through 2.13.

([D1z]a: - 20)"([D12]ai- a0) ~Ri* =0 (6.1)
([Di3)a; — )" ([Di3]ai- a0) - R* =0 (6.2)
(ID14] &1 — a0) ([D1s] a1~ 20) ~Ry* = 0 (6.3)
([Dss)ain — a0) ([Dse]ain—a0) —Ri* =0 (6.4) '

([Ds7)ain — a0) ([Ds7)ai— a0) — Ry = 0 (6.5)
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([D12]b; — bo) ([D12]b1- bo) = Ry* =0 (6.6)
([D13]by — bo) ([D13]bi—bo) — Ry = 0 6.7)
(ID14]b1 — bo) ([D14]b1—bo) ~ Ry* = 0 (6.8)
([Dss]b1n — bo) (IDss]b1n— bo) —R;* =0 (6.9)
([Ds7]bin — bo) ([Ds7]bin—bo) —Ry* =0 (6.10)

Table 6.2 Planar Rigid-Body Points Generated by the Synthesized Adjustable Four-Bar
Path Generator

Pos. P

Pos. 1 -0.69530, 1.22910
Pos. 2 -0.60184, 1.30248
Pos. 3 -0.50191, 1.36740
Pos. 4 -0.39632, 1.42320
Pos. 5 -0.69530, 1.22910
Pos. 6 -0.58830, 1.27954
Pos. 7 -0.47739, 1.31925

Figure 6.1 Synthesized adjustable planar four-bar path generator.
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As previously mentioned, the end objective in this example is to calculate the
parameters of an adjustable spherical four-bar path generator that would achieve the
prescribed planar rigid body positions in Table 6.1 when projected onto a sphere. Using
the plane-to-sphere projection method described in Section 4.1, each joint coordinate of
the synthesized adjustable planar four-bar path generator is projected onto a specified
sphere. This origin of this sphere is coincident with the origin of the coordinate system
and the synthesized planar mechanism iies on plane parallel to the x-y plane and offset
from the origin by a distance “d” along the z-axis (see Figure 4.2).

The magnitude of the offset distance “d” is inversely proportional to the structural
error between the prescribed “projected” rigid body points and the points achieved by the
projected adjustable spherical four-bar path generator. Plots of the structural errors
between the prescribed and generated rigid body points of the adjustable spherical four-
bar path generator are illustrated in Figures 6.2 through 6.6 (for each rigid body point).
As these figures illustrate, as the magnitude of the projection length “d” increases, the
structural error decreases.

In this example a projection length of 11, and subsequently a structural error
(Sen*d) less than 0.001 in Figures 6.2 through 6.6, was selected. The sphere onto which
the planar rigid body points were projected has a radius of 1. The prescribed rigid body
points (from Table 6.1) projected onto a sphere or radius 1 and offset distance 11 are
given in Table 6.3. The projected fixed and moving pivots of the synthesized adjustable
spherical four-bar path generator are given in Table 6.4. The plane-to-sphere projections
were performed using the MATHEMATICA model in Appendix B.1. In Table 6.4, the

joint axes for the projected fixed and moving pivots of the adjustable spherical four-bar
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path generator are the unit vectors from the center of the sphere (the origin of the
coordinate system) to each fixed and moving pivot. The adjustable spherical four-bar

path generator is illustrated in Figure 6.7.

Structural Error Plot for Phase 1, Position 2
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Figure 6.2 Structural error plot for phase I, position 2.

Structural Error Plot for Phase I, Position 3
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Figure 6.3 Structural error plot for phase I, position 3.
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Structural Error Plot for Phase I, Position 4
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Figure 6.4 Structural error plot for phase I, position 4.

Structural Error Plot for Phase 11, Position 6
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Figure 6.5 Structural error plot for phase II, position 6.
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Structural Error Plot for Phase II, Position 7
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Figure 6.6 Structural error plot for phase II, position 7.

Table 6.3 Prescribed Projected Rigid-Body Points for the Adjustable Spherical Four-Bar
Path Generator

Pos. p
Pos. 1 -0.06270, 0.11083, 0.99186
Pos. 2 -0.05426, 0.11742, 0.99160
Pos. 3 -0.04524, 0.12324, 0.99135
Pos. 4 -0.03572, 0.12824, 0.99110
Pos. S -0.06270, 0.11083, 0.99186
Pos. 6 -0.05305, 0.11539, 0.99190
Pos. 7 -0.04305, 0.11897, 0.99196

Table 6.4 Projected Fixed and Moving Pivots of the Adjustable Spherical Four-Bar Path

Generator
ag 0.00000, -0.00084, 1.00000
a -0.06948, 0.05720, 0.995%4
a, -0.04125, 0.07976, 0.99596
bo 0.09054, -0.00150, 0.99589
b, 0.05284, 0.12832, 0.99032

bln

0.09393, 0.13299, 0.98666
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6.1.2 Sphere-to-Plane Projection

Given the synthesized adjustable spherical four-bar path generator in the previous sub-
section, the parameters of a kinematically-equivalent adjustable planar four-bar path
generator will be calculated to demonstrate the structural error difference between plane-
to-sphere and sphere-to-plane projections. Using the sphere-to-plane projection method
described in Section 4.1, each joint coordinate of the synthesized adjustable spherical
four-bar path generator is projected onto a specified plane as described in Section 4.1.
The origin of this sphere is coincident with the origin of the coordinate system and the
synthesized planar path generator lies on plane parallel to the X-Y plane and offset from
the origin by a distance “d” along the z-axis.

As indicated in to Figures 6.8 through 6.12, the magnitude of the offset distance
“d” has no effect on the structural error between the prescribed projected rigid body
points and the rigid body points achieved by the projected adjustable planar four-bar path
generator. This is due to the joint axes varying with the projection length in plane-to-
sphere projections but remaining constant with varying projection lengths in sphere-to-
plane projection.

No matter what ﬁrojection length is specified, the prescribed rigid body points of
the adjustable planar four-bar path generator illustrated in Figure 6.1 are achieved
precisely when projecting the synthesized adjustable spherical four-bar path generator
onto a plane. Figures 6.8 through 6.12 illustrate the structural error between the
prescribed projected rigid body points and the points achieved by the projected adjustable

planar four-bar path generator (for each rigid body point).
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Figure 6.8 Structural error plot for phase I, position 2.

Structural Error Diagram for Phase 1 Position 3
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Figure 6.9 Structural error plot for phase 1, position 3.
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Figure 6.10 Structural error plot for phase I, position 4.

Structural Error Plot for Phase II, Position 6
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Figure 6.11 Structural error plot for phase II, position 6.
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Structural Error Plot for Phase 11, Position 7
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Figure 6.12 Structural error plot for phase II, position 7.

6.2 Synthesis of Adjustable Four-Bar Spherical and
Planar Function Generators

6.2.1 Plane-to-Sphere Projection

This particular problem depicts a situation where the user wants to calculate the spherical
equivalent of an adjustable planar four-bar function generator. In this situation, the user
would already have prescribed planar crank and follower displacement angles. The end
objective in this example is to calculate the parameters of an adjustable spherical four-bar
function generator that would achieve the prescribed planar crank and follower
displacement angles. Seven prescribed crank and follower displacement angles are listed

in Table 6.1.



Table 6.6 Prescribed Crank and Follower Link Angular Displacements for the
Adjustable Planar Four-Bar Function Generator

olj [Deg.] ¢lj [Deg.]
Pos. 1-2 10.0 7.5043
Pos. 1-3 20.0 14.9632
Pos. 1-4 30.0 22.2630
Pos. 1-5 15.0 9.7349
Pos. 1-6 30.0

18.9815
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Equations 6.11 through 6.15 were used to calculate five of the six unknowns in a,

b; and by,. The variable aj, and the coupler length L, were specified (a;x =-0.2 and L, =

1). Using the following initial guesses:

= 0.7, b1= (0.6, 1.3), b= (0.7, 1.2),

the planar four-bar function generator converges to

ajy= 0.6838, b= (0.7713, 0.9218), bi,= (0.7267, 1.0590).

The displacement angles achieved by the synthesized adjustable planar four-bar

function generator (see Figure 6.13) are given in Table 6.7. Equations 6.11 through 6.15

are identical to Equations 2.17 through 2.21.

([D12]a; - b)" ([Di2]ai—by) - L2 =0

([D1s)a; = by)T ([Dis]a;-by) - L> =0

([D1s)a; — by)" ((Dislai-by) - L> =0

(IDis]a; — byi)T ((Dis]ai-bin) - L* =0

([D1]a; — bin)" ((Dig)ai—bin) - L’ =0

(6.11)
(6.12)
(6.13)
(6.14)

(6.15)
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Table 6.7 Crank and Follower Link Displacement Angles Achieved by the Adjustable
Planar Four-Bar Function Generator

Pos. 6,; [Deg.] ¢,; [Deg.]

Pos. 1-2 10.0 7.5045
Pos. 1-3 20.0 14.9634
Pos. 1-4 30.0 22.2632
Pos. 1-5 15.0 9.7240
Pos. 1-6 30.0 18.9697

X /sy K T 7
S e

Figure 6.13 Synthesized adjustable planar four-bar function
generator.

As previously mentioned, the end objective in this example is to calculate the
parameters of an adjustable spherical four-bar function generator that would achieve the
prescribed planar crank and follower displacement angles in Table 6.6. Using the plane-
to-sphere projection method described in Section 4.1, each joint coordinate of the
synthesized adjustable planar four-bar function generator is projected onto a specified °

sphere. This origin of this sphere is coincident with the origin of the coordinate system
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and the synthesized planar mechanism lies on plane parallel to the x-y plane and offset
from the origin by a distance “d” along the z-axis (see Figure 4.2).

The magnitude of the offset distance “d” is inversely proportional to the structural
error between the prescribed displacement angles and the angles achieved by the
projected adjustable spherical four-bar function generator. In this work, structural error

in function generation is defined as the error |¢, - ¢_ | /¢, (Equation 6.16), where ¢, is the

prescribed displacement angle and ¢, is the displacement angle achieved by the

synthesized adjustable spherical four-bar function generator. Plots of the structural error
s between the projected and generated displacement angles of the adjustable spherical
four-bar function generator are illustrated in Figures 6.14 through 6.18 (for each
displacement angle). As these figures illustrate, the magnitude of the projection length

“d” increases as the structural error decreases.
)
error = ——— (6.16)

In this example, a projection length of 10 and subsequently an error (Serr*d) less
than 0.005 in Figures 6.14 through 6.18 was selected. In addition, the sphere onto which
the planar function generator parameters are projected has a radius of 1. The prescribed
crank and follower displacement angles for the spherical function generator are given in
Table 6.6. The projected fixed and moving pivots of the synthesized adjustable planar
four-bar function generator are given in Table 6.8. These plane-to-sphere projections
were performed using the MATHEMATICA model in Appendix B.2. In Table 6.8, the
joint axes for the projected fixed and moving pivots of the adjustable spherical four-bar

function generator are the unit vectors from the center of the sphere (the origin of the
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coordinate system) to each fixed and moving pivot. The adjustable spherical four-bar

function generator is illustrated in Figure 6.19.

Error Plot for Phase 1, Position 2
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Figure 6.14 Error plot for phase I, position 2.
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Figure 6.15 Error plot for phase I, position 3.
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Error Plot for Phase 1, Position 4
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Figure 6.16 Error plot for phase I, position 4.

Error Plot for Phase II, Position 5
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Figure 6.17 Error plot for phase II, position 5.
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Error Plot for Phase 11, Position 6
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Figure 6.18 Error plot for phase II, position 6.

Table 6.8 Projected Fixed and Moving Pivots of the Adjustable Spherical Four-Bar
Function Generator

a 0.0,0.0, 1.0

a -0.00667, 0.02279, 0.99970
bo 0.03331, 0.0, 0.99940

b, 0.02569, 0.03070, 0.9992
bin 0.02420, 0.03527, 0.99910







87

6.2.2 Sphere-to-Plane Projection

Given the synthesized adjustable spherical four-bar function generator in the previous
sub-section, the parameters of a kinematically-equivalent adjustable planar four-bar
function generator will be calculated to demonstrate the structural error difference
between plane-to-sphere and sphere-to-plane projections. Using the sphere-to-plane
projection method described in Section 4.1, each joint coordinate of the synthesized
adjustable spherical four-bar function generator was projected onto a specified plane as
described in Section 4.1. This origin of this sphere is coincident with the origin of the
coordinate system and the synthesized planar function generator lies on plane parallel to
the X-Y plane and offset from the origin by a distance “d” along the z-axis.

As indicated in Figures 6.20 through 6.24, the magnitude of the offset distance
“d” has no effect on the structural error between the crank and follower displacement
angles and the displacement angles achieved by the adjustable planar four-bar function
generator. This is due to the joint axes varying with the projection length in plane-to-
sphere projections but remaining constant with varying projection lengths in sphere-to-
plane projection.

No matter what projection length is specified, the adjustable planar four-bar
function generator illustrated in Figure 6.13 is achieved precisely when projecting the
synthesized adjustable spherical four-bar function generator onto a plane. Figures 6.20
through 6.24 illustrate the structural error between the prescribed crank and follower
displacement angles and the angles achieved by the projected adjustable planar four-bar -

function generator (for each displacement angle).
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Figure 6.20 Error plot for phase I, position 2.
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Figure 6.21 Error plot for phase I, position 3.
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Error Plot for Phase I, Position 4
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Figure 6.22 Error plot for phase I, position 3.
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Figure 6.23 Error plot for phase 1, position 5.
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Error Plot for Phase I1, Position 6
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Figure 6.24 Error plot for phase II, position 6.

6.3 Synthesis of Adjustable Four-Bar Spherical and
Planar Motion Generators

6.3.1 Plane-to-Sphere Projection

This particular problem depicts a situation where the user wants to calculate an adjustable
spherical four-bar motion generator given prescribed spherical rigid body positions. The
end objective in this example is to calculate the parameters of an adjustable spherical
four-bar motion generator that would achieve the prescribed spherical rigid body
positions.

The x, y and z-coordinates of seven prescribed spherical rigid-body positions are
listed in Table 6.10. The positions in Table 6.10 lie on a sphere with a radius of 1 unit. It
is the design intent that one mechanism adjustment achieves position 1 through 4 and

another mechanism adjustment achieves position 5 through 6.
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Using the sphere-to-plane projection method described in Section 4.1, the planar

rigid-body positions in Table 6.11 are calculated. The positions in Table 6.11 are the

spherical rigid-body positions in Table 6.10 projected onto a plane at an offset distance

on 7 units (d; = 7) along the z-axis from the origin of the coordinate system. As

illustrated in Figures 4.1, the origin of the coordinate system is coincident with the origin

of the sphere containing the prescribed rigid body positions.

Table 6.10 Prescribed Rigid Body Points for the Adjustable Spherical Four-Bar Motion

Generator
Pos. p q r

Pos. 1 | .0.02733,0.19212, 0.98099 | 0.00551,0.27613,0.96111 | 0.12076, 0.25322, 0.95984
Pos.2 | .0.01571,0.19792,0.98009 | 0.01877,0.28080, 0.95958 | 0.13321, 0.25522, 0.95766
Pos. 3 | 1000362, 0.20285,0.97920 | 0.03238,0.28464,0.95809 | 0.14595, 0.25648, 0.95547
Pos. 4 | (.00886, 0.20687, 0.97833 | 0.04627, 0.28758, 0.95664 | 0.15894, 0.25696, 0.95326
Pos.5 | 0.02733,0.19212,0.98099 | 0.00551,0.27613,0.96111 | 0.12076, 0.25322, 0.95984
Pos. 6 | _0.01628, 0.19486, 0.98070 | 0.01492, 0.27909, 0.96015 | 0.13018, 0.25762, 0.95744
Pos. 7

-0.00518, 0.19657, 0.98048

0.02418, 0.28111, 0.95937

0.13945, 0.26131, 0.95513

Table 6.11 Prescribed Projected Rigid-body Positions for the Adjustable Planar Four-
Bar Motion Generator

Pos. p q r
Pos. 1 -0.19502, 1.3709 0.04013,2.01112 0.88069, 1.84670
Pos. 2 -0.11220, 1.41358 0.13692, 2.04840 0.97370, 1.86553
Pos. 3 -0.02588, 1.45011 0.23658, 2.07964 1.06926, 1.87903
Pos. 4 0.06339, 1.48017 0.33857, 2.10430 1.16713, 1.88691
Pos. 5 -0.19502, 1.37090 0.04013,2.01112 0.88069, 1.84670
Pos. 6 | -0.116203, 1.39086 0.10878, 2.03471 0.95177, 1.88350
Pos. 7 -0.03698, 1.40338 0.17643,2.05111 1.02201, 1.91510




92

Now that the spherical rigid-body positions have been projected onto a plane, they
are planar rigid-body positions and an adjustable planar motion generator can be designed
to approximate these positions. Equations 6.17 through 6.21 are used to calculate five of
the six unknowns in 2o, a; and a;,. Equations 6.22 through 6.26 are used to calculate five
of the six unknowns in by, by and by,. These equations are identical to Equations 2.25
through 2.34. The variable ao, and the link length R, are specified (apx = 0 and R; =1).
The variable by, and the link length R; are specified (box = 1.5 and R; = 1.5). Using the
following initial guesses:

agy = 0.1, a,=(-0.6, 0.7), a;,=(-0.2, 0.9),

boy =0.1, b;=(1.2, 1.3), b1,= (0.8, 1.2),
the planar four-bar motion generator solutions converges to

agy = -0.0296205, a;= (-0.63841, 0.739811), a;,= (-0.260941, 0.935936),

boy =-0.0947279, b= (1.28369, 1.38921), b;,= (0.839684, 1.25246).

The synthesized adjustable planar four-bar motion generator is illustrated in Figure 6.25.

(ID12)a; - 29) ([D12]a1— ao) - Ri2=0 (6.17)
([D13]a; — 20)"([D1s]ai— a0) - R;* = 0 (6.18)
(ID14]a; - a0) ([D14]a- 20) - R;> =0 (6.19)
([Dss)ain — a0) ([Dss]ain—ao) - Ri> =0 (6.20)
([Ds7)a1n — 20) ([Ds7]aim—a0) - R’ =0 (6.21)
([D12]b1 = bo)"([Di2]bi— bg) —R2 =0 (6.22)
([D13]b; — bo) ([D13]bi— bg) —R*>=0 (6.23)
([D14]b1 — bo) ([D14]b1— bg) —R* =0 (6.24)

([Dss]bin — bo) ([Dse]bin— bo) — R, =0 (6.25)
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([Ds7]b1n — bo)'([Ds7]bin— bo) = Ry* = 0 (6.26)

Figure 6.25 Synthesized adjustable planar four-bar motion
generator.

Now that a mechanism solution has been calculated for the projected planar rigid-
body positions, the joints of the adjustable planar four-bar motion generator are projected
back onto a sphere with a radius of 1 unit to determine the joints of the adjustable
spherical motion generator required to achieve the prescribed rigid-body positions in
Table 6.10.

Using the MATHEMATICA model in Appendix B.3, the error plots in Figures
6.26 through 6.30 were generated for each rigid body position of the adjustable spherical
four-bar motion generator. These figures illustrate that the structural error between the
prescribed and achieved rigid-body positions of the adjustable spherical four-bar motion
generator decreases as the projection length increases.

For this example, the maximum allowable error (Serr * d) for each rigid body
position is 0.01 units. Since the sphere-to-plane projection length is 7 units, the plane-to-

sphere projection length is also 7 units to maintain the scale of the prescribed rigid-body
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positions. With a plane-to-sphere projection length of 7 units, the maximum structural
error obtained is approximately 0.008 units for rigid body position 4 and 0.005 for

position 7.

Structural Error Plot for Phase I, Position 2
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Figure 6.26 Structural error plot for phase I, position 2.

Structural Error Plot for Phase I, Position 3
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Figure 6.27 Structural error plot for phase I, position 3.
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Structural Error Plot for Phase I, Position 4

0.08 ~
0.064 -
0.048 -

Serr * d

0.032 -
0.016 -

0 ettty
0 5 ' 10 15 20
Projection length, d

Figure 6.28 Structural error plot for phase I, position 4.

Structural Error Plot for Phase II, Position 6
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Figure 6.29 Structural error plot for phase II, position 6.
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Structural Error Plot for Phase II, Position 7
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Figure 6.30 Structural error plot for phase II, position 7.

Using a projection length of 7 units in plane-to-sphere projection results in the

adjustable spherical four-bar motion generator fixed and moving pivots given in Table

6.12. Figure 6.31 illustrates a graphical representation of the synthesized adjustable

spherical four-bar motion generator. Table 6.13 includes the rigid-body positions

achieved by the adjustable spherical four-bar motion generator along with the calculated

structural error.

Table 6.12 Projected Fixed and Moving Pivots for the Adjustable Spherical Four-Bar
Motion Generator

a9
a;
ain
bo
b;
bin

0, -0.00423, 0.99999
-0.09033, 0.10467, 0.99040
-0.03692, 0.13244, 0.99050
0.20951, -0.01323, 0.97772
0.17704, 0.19159, 0.96538
0.11727, 0.17491, 0.97758
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in Section 4.1, each joint coordinate of the synthesized adjustable spherical four-bar
motion generator is projected on a specified plane as described in Section 4.1. The origin
of this sphere is coincident with the origin of the coordinate system and the synthesized
planar motion generator lies on plane parallel to the X-Y plane and offset from the origin
by a distance “d” along the z-axis.

As indicated in Figures 6.32 thrpugh 6.36, the magnitude of the offset distance
“d” has no effect on the structural error between the prescribed projected rigid body
positions and the positions achieved by the projected adjustable planar four-bar motion
generator. This is due to the joint axes varying with the projection length in plane-to-
sphere projections but remaining constant with varying projection lengths in sphere-to-
plane projections.

No matter what projection length is specified, the adjustable planar four-bar path
generator given in Figure 6.25 is achieved precisely when projecting the synthesized
adjustable spherical path generator onto a plane. Figures 6.32 through 6.36 illustrate the
structural error between the prescribed projected rigid body positions and the positions
achieved by the adjustable planar four-bar motion generator (for each rigid body

position).
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Structural Error Plot for Phase I, Position 2
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Figure 6.32 Structural error plot for phase I, position 2.

Structural Error Plot for Phase 1, Position 3

1.E-03 -
1.E-03 -
©
£ 7.E04 1
(73
n
4.E-04 -
0.E+00 . — T T
0 5 10 15 20

Projection Length, d

Figure 6.33 Structural error plot for phase I, position 3.
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Structural Error Plot for Phase I, Position 4
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Figure 6.34 Structural error plot for phase I, position 4.

Structural Error Plot for Phase II, Position 6
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Figure 6.35 Structural error plot for phase II, position 6.
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Structural Error Plot for Phase II, Position 7
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Figure 6.36 Structural error plot for phase II, position 7.

6.4 Synthesis of Adjustable Five-Bar Spherical and
Planar Path Generators

6.4.1 Plane-to-Sphere Projection

This particular problem depicts a situation where the user wants to calculate an adjustable
spherical five-bar path generator given prescribed spherical rigid body points. The end
objective in this example is to calculate the parameters of an adjustable spherical five-bar
path generator that would achieve the prescribed spherical rigid body points.

The x, y and z-coordinates of seven prescribed spherical rigid body points are
listed in Table 6.14. The positions in Table 6.14 lie on a sphere with a radius of 1 unit. It
is the design intent that one mechanism adjustment achieves positions 1 through 4 and
another mechanism adjustment achieves positions 5 through 7.

Using the sphere-to-plane projection method described in Section 4.1, the planar

rigid-body positions in Table 6.15 were calculated. The positions in Table 6.15 are the
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spherical rigid-body positions in Table 6.15 projected onto a plane at an offset distance of
5 units (d; = 5) along the z-axis from the origin of the coordinate system. As illustrated in
Figure 5.1, the origin of the coordinate system is coincident with the origin of the sphere

containing the prescribed rigid body positions.

Table 6.14 Prescribed Rigid Body Points for the Adjustable Spherical Five-Bar Path
Generator

Pos. p ‘ q

Pos. 1 0.03393, 0.35490, 0.93429 -0.02644, 0.19433, 0.98058
Pos. 2 0.05158, 0.34898, 0.93571 0.00722, 0.18343, 0.98301
Pos. 3 0.06711, 0.33704, 0.93910 0.03969, 0.16656, 0.98523
Pos. 4 0.07946, 0.31904, 0.94441 0.07001, 0.14400, 0.98710
Pos. 5 0.03393, 0.35490, 0.93429 -0.02644, 0.19433, 0.98058
Pos. 6 0.06647, 0.35564, 0.93226 0.00771, 0.19596, 0.98058
Pos. 7 0.09752, 0.35146, 0.93111 0.04162, 0.19165, 0.98058

Table 6.15 Prescribed Projected Rigid-Body Points and Orientation Angles for the
Adjustable Planar Five-Bar Path Generator

Pos. P 0y [Deg.]
Pos. 1 0.18158, 1.89930
Pos. 2 0.27562, 1.86479 4.82323
Pos. 3 0.35731, 1.79448 9.87692
Pos. 4 0.42069, 1.68910 15.26541
Pos. 5 0.18158, 1.89930
Pos. 6 0.35650, 1.90741 -0.04825
Pos. 7 0.52368, 1.88732 0.31107

Now that the spherical rigid-body positions have been projected onto a plane, they
are planar rigid-body positions and an adjustable planar path generator can be designed to

approximate these positions. Equations 6.27 through 6.31 are used to calculate five of
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the six unknowns in a, a; and a,,. These equations are identical to Equations 2.41
through 2.45. The variable ag, and the link length R; were specified (aox = 0 and R; = 1).
Using the following initial guesses:

agy = 0.01, a,= (0.1, 0.9), a;,= (-0.1,0.9),
the adjustable planar five-bar path generator solutions converges to

agy = 0. 00041, a;=(0.12192, 0.99304), a;= (-0.13450, 0.99126).

(ID12)a: — a0) ([D12]a— a0) - Ri* =0 (6.27)
(ID13]a: — a0) ([Di3]a;— a0) - Ri* =0 (6.28)
([Di]a; — a0)"([Di4]ai— ag) - R{*=0 (6.29)
([Dss}arn — a0)'([Ds¢ain—a0) - Ri* = 0 (6.30)
(IDs7)a1n — 20) ([Ds7]ain—a0) - Ry* =0 (6.31)

Using Equation 6.32, the displacement angles (86) for this link were calculated.
These displacement angles are -10°, -20°, and -30° for phase 1 and -10° and -20° for
phase 2. The displacements for angle ¢ were calculated using the relationship of 8¢ = f
(86) = 0.5*50. With this relationship, displacement 8¢ angles of -5°, -10° and -15° for

phase 1 and -5° and -10° for phase 2 were calculated.

61 =cos™ Mﬁ} , whereu=a.a,v=b,a, (6.32)
([Diz)e; — [Ti]by)"([Dizler— [T11b1) —Rs* =0 (6.33)
(ID13)e; — [TaIby) ([Disle— [T2]by) - Rs* = 0 (6.34)
([D14]er = [Ts]b1) ([Dialer— [Ts]by) - Ri>= 0 (6.35)
([Dss)ein — [Telb1) ([Dsslein— [Tslb1) - Ry* =0 (6.36)

([Ds7)ein — [T7]b1) ([Ds7lein— [T7]b1) —Rs* =0 (6.37)
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Equations 6.33 through 6.37 were used to calculate five of the eight unknowns in
by, ¢; and ¢;,. Equations 6.32 through 6.37 are identical to Equations 2.46 through 2.51.
The variable by, the link R4 and the initial value of angle ¢ were specified (bo = (1.25, 0),
Rs=1, $ =45°).
Using the following initial guesses:

R;=1.0,¢;=(0.9, 1.5), €1r= (1.2, 1.8),
the adjustable planar five-bar path generator solutions converges to

¢;=(0.89096, 1.45454), ¢;,=( 1.21704, 1.77820), R3=1.30204.

The synthesized adjustable planar five-bar path generator is illustrated in Figure
6.37. A gear train was incorporated in the synthesized adjustable planar five-bar path
generator. Since the prescribed relationship between the driving link displacement angles
was ¢ = f(50) = 0.5*30, a 2:1 gear ratio between both driving links is required. The
same ratio is required if pulleys, sprockets or independent motors are incorporates in the

driving links.
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Figure 6.37 The synthesized adjustable planar five-bar path
generator.

Although an adjustable planar five-bar path generator has been synthesized, an
adjustable spherical five-bar path generator is needed to approximate the prescribed rigid
body positions in Table 6.14. Using the MATHEMATICA model in Appendix B.4, each
joint coordinate of the synthesized planar five-bar mechanism is projected onto a sphere
of unit radius.

The structural error plots for each rigid body position are illustrated in Figures
6.38 through 6.42. As these figures illustrate, the structural error (S * d) decreases as
the magnitude of the projection length “d” increases.

In this example, a projection length of 5 (and subsequently, a structural error less
than 0.01 in Figures 6.38 through 6.42) was selected. Table 6.16 includes the fixed and -
moving pivots of the synthesized adjustable spherical five-bar path generator projected

onto a sphere. Figure 6.43 illustrates the synthesized adjustable spherical five-bar path
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generator. The rigid body points achieved by the adjustable spherical five-bar path
generator are given in Table 6.17 along with the measured structural error. With a plane-
to-sphere projection length of 5 units, the maximum structural error (Ser * d) calculated 1s

approximately 0.0098 units for rigid body position 4 and 0.0066 for position 7.

Structural Error Plot for Phase 1, Position 2
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Figure 6.38 Structural error plot for phase I, position 2.

Structural Error Plot for Phase I, Position 3

0.035 -+
0.028 -

0.021 -

Serr*d

0.014 -+

0.007

Projection length, d

Figure 6.39 Structural error plot for phase I, position 3.
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Structural Error Plot for Phase 1, Position 4
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Figure 6.40 Structural error plot for phase I, position 4.

Structural Error Plot for Phase II, Position 6
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Figure 6.41 Structural error plot for phase II, position 6.



108

Structural Error Plot for Phase II, Position 7
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Figure 6.42 Structural error plot for phase II, position 7.

Table 6.16 Projected Fixed and Moving Pivots for the Synthesized Adjustable Spherical
Five-Bar Path Generator

ao
a
A
bo
b,
C

Cin

0, 0.00008, 1.
0.02391, 0.19475, 0.98056
-0.02638, 0.19440, 0.98057

0.24254, 0, 0.97014
0.36137, 0.13057, 0.92323
0.16865, 0.27533, 0.94644
0.22353, 0.32660, 0.91835
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6.4.2 Sphere-to-Plane Projection

Given the synthesized spherical five-bar path generator in the previous sub-section, the
parameters of a kinematically-equivalent adjustable planar five-bar path generator will be
calculated to demonstrate the structural error difference between plane-to-sphere and
sphere-to-plane projections. Using the sphere-to-plane projection method described in
sectiond.1, each joint coordinate of the synthesized spﬁerical path generator is projected
onto a specified plane as described in Section 4.1. The origin of this sphere is coincident
with the origin of the coordinate system and the synthesized adjustable planar five-bar
path generator lies on plane parallel to the X-Y plane and offset from the origin by a
distance “d” along the z-axis.

As indicated in Figures 6.44 through 6.48, the magnitude of the offset distance
“d” has no effect on the structural error between the prescribed projected points and the
points achieved by the projected adjustable planar five-bar path generator. This is due to
the joint axes varying in orientation with the projection length in plane-to-sphere
projections but remaining constant with varying projection lengths in sphere-to-plane
projections.

No matter the projection length is specified, the adjustable planar five-bar path
generator illustrated in Figure 6.37 is achieved precisely when projecting the synthesized
adjustable spherical five-bar path generator onto a plane. Figures 6.44 through 6.48
illustrate the structural error between the prescribed projected rigid body points and the
points achieved by the adjustable planar five-bar path generator (for each rigid body

point).
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Figure 6.44 Structural error plot for phase I, position 2.

Structural Error Plot for Phase 1, Position 3

2.0E-05 -
1.5E-05 -

1.0E-05 -

Serr/d

5.0E-06 -

0.0E+00 T . T

0 5 10 15 20
Projection length, d

Figure 6.45 Structural error plot for phase I, position 3.
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Structural Error Plot for Phase I, Position 4
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Figure 6.46 Structural error plot for phase I, position 4.

Structural Error Plot for Phase 11, Position 6
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Figure 6.47 Structural error plot for phase II, position 6.
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Structural Error Plot for Phase II, Position 7
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Figure 6.48 Structural error plot for phase II, position 7.
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6.5 Synthesis of Adjustable Five Bar Spherical and
Planar Motion Generators

6.5.1 Plane-to-Sphere Projection

This particular problem depicts a situation where the user wants to calculate an adjustable
spherical five-bar motion generator given prescribed spherical rigid body positions. The
end objective in this example is to calculate the parameters of an adjustable spherical
five-bar motion generator that would achieve the prescribed spherical rigid body
positions.

The x, y and z-coordinates of seven prescribed rigid body positions are listed in
Table 6.18. The positions in Table 6.18 lie onto a sphere with a radius of 1 unit. It is the
design intent that one mechanism adjustment achieves position 1 through 4 and another
mechanism adjustment achieves position 5 through 7.

Using the sphere-to-plane projection method described in Section 4.1, the planar
rigid-body positions in Table 6.19 were calculated. The positions in Table 6.19 are the
spherical rigid-body positions in Table 6.18 projected onto a plane at an offset distance
on 6 units (d; = 6) along the z-axis from the origin of the coordinate system. As
illustrated in Figure 4.1, the origin of the coordinate system is coincident with the origin

of the sphere containing the prescribed rigid body positions.
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Table 6.18 Prescribed Rigid Body Positions for the Adjustable Spherical Five-Bar
Motion Generator

Pos. p q r

POS-_I -0.02180, 0.24170, 0.97011 0.02937, 0.30795, 0.95095 0.12226, 0.30577, 0.94422
Pos. 2 -0.00092, 0.23265, 0.97256 0.04373, 0.30286, 0.95203 0.13581, 0.30743, 0.94183
Pos. 3 0.01869,0.21822,0.97572 0.05623, 0.29246, 0.95462 0.14687, 0.30427, 0.94119
Pos. 4 0.03622, 0.19845, 0.97944 0.06596, 0.27677, 0.95867 0.15448, 0.29655, 0.94244
Pos. 5 -0.02180, 0.24170, 0.97011 0.02937, 0.30795, 0.95095 0.12226, 0.30577, 0.94422
Pos. 6 0.00642, 0.24303, 0.97000 0.05700, 0.30874, 0.94944 0.14917, 0.30571, 0.94037
Pos. 7 0.03388, 0.23955, 0.97029 0.08333, 0.30531, 0.94860 0.17473, 0.30211, 0.93712

Table 6.19 Prescribed Projected Rigid-Body Positions for the Adjustable Planar Five
Bar Motion Generator

Pos. P q r

Pos. 1 -0.1348, 1.4949 0.1853, 1.9430 0.7769, 1.9430
Pos. 2 -0.0057, 1.4356 0.2758, 1.9089 0.8653, 1.9584
Pos. 3 0.1150, 1.3422 0.3537, 1.8385 0.9366, 1.9397
Pos. 4 0.2220, 1.2158 0.4130, 1.7323 0.9838, 1.8879
Pos. 5 -0.1348, 1.4949 0.1853, 1.9430 0.7769, 1.9430
Pos. 6 0.0397, 1.5033 0.3602, 1.9511 0.9518, 1.9506
Pos. 7 0.2095, 1.4813 0.5271, 1.9311 1.1187, 1.9343

Now that the spherical rigid-body positions have been projected onto a plane, they
are planar rigid-body positions and an adjustable planar motion generator can be designed
to approximate these positions. Equations 6.38 through 6.42 were used to calculate five
of the six unknowns in ay, a; and a;,. These equations are identical to Equations 2.58
through 2.62. The variable ag, and the link length R, were specified (agx = 0 and R; = 1).
Using the following initial guesses:

agy = 0.01, a, = (0.01, 0.9), a;, = (-0.20, 0.90),

the adjustable planar five-bar motion generator solutions converges to



agy = -0.0023, a, = (0.1212, 0.9903), aj, = (-0.1350, 0.9885).
([Di2]a1 — 20) ([Di2)ar- &) - R,* =0

(ID13]a; — 20) ([D13)ar—ag) - R* =0

([Di4)ai — 2)"([D1a]ar—a0) - Ry* =0

([Dss)ain — 20) ([Dss)ain— ) - Ry* =0

([Ds7]aim — ao)T([D57]a1n—- ag) - R2=0
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(6.38)
(6.39)
(6.40)
(6.41)

(6.42)

Using Equation 6.43, the displacement angles (86) for this link were calculated.

These displacement angles are -10°, -20°, and -30° for phase 1 and -10° and -20° for

phase 2. The displacements for angle ¢ were calculated using the relationship 3¢ = f(36)

= (0.5*80. With this relationship, displacement &¢ angles of -5°, -10° and -15° for phase

1 and -5° and -10° for phase 2 were calculated.

61=cos™ [IT—I:’!] , whereu=2a,a,v=b.a,
ul.

((Di2ler - [Tib)) ([DizJer- [Ti]bi) —Rs* =0
([Disler - [T2)b)) ([Disler- [Ta]bi) - Rs* =0
([D1ale; — [T3]by) ([Dra)er- [T3]br) - Ry* = 0
([Dss)ein — [Telbr) ((Dsslers— [Telbr) - Ry’ =

“([Ds7]ewn — [T71b1) '((Ds7)ein— [T7]b1) —Rs* =0

(6.43)

(6.44)
(6.45)
(6.46)
(6.47)

(6.48)

Equations 6.44 through 6.48 were used to calculate five of the eight unknowns in

by, ¢, and ¢;,. Equations 6.43 through 6.48 are identical to Equations 2.63 through 2.68.

The variable by, the link R4 and the initial value of angle ¢ were specified (bo = (1.25, 0),

Ri=1, ¢ = 45°).

Using the following initial guesses:
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R;=1.0,¢; =(0.7, 1.6) , ¢;, = (1.0, 1.9),
the planar five-bar mechanism solutions converged to

R3=1.3037, ¢; = (0.8894, 1.4552), ¢1n = (1.2153, 1.7792).

The synthesized adjustable planar five-bar motion generator is illustrated in
Figure 6.49. A gear train was incorporated in the synthesized adjustable planar five-bar
motion generator. Since the prescribed relationship between the driving link
displacement angles was 8¢ = f(80) = 0.5*86, a 2:1 gear ratio between both driving links
is required. The same ratio is required if pulleys, sprockets or independent motors are

incorporates in the driving links.

4,-9; n,Xs

Figure 6.49 The synthesized adjustable planar five-bar motion
generator
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Although an adjustable planar five-bar motion generator has been synthesized, an
adjustable spherical five-bar motion generator is needed to approximate the prescribed
rigid body positions in Table 6.18. Using the MATHEMATICA model in Appendix B.S,
each joint coordinate of the synthesized planar five-bar motion generator is projected
onto a sphere of unit radius.

The structural error plots for reach rigid body position are illustrated in Figures
6.50 through 6.54. As these figures illustrate, the structural error (S * d) decreases as
the magnitude of the projection length “d” increases.

In this example, a projection length of 6 (and subsequently a structural error less
than 0.01 in Figures 6.50 and 6.54) was selected. Table 6.20 includes the fixed and
moving pivots of the synthesized adjustable spherical five-bar motion generator projected
onto a sphere.  Figure 6.55 illustrates the synthesized adjustable spherical five-bar
motion generator. The rigid body positions achieved by the adjustable spherical five-bar
motion generator are given in Table 6.21 along with the measured structural error.  With
a plane-to-sphere projection length of 6 units, the maximum structural error (Ser * d)
calculated is approximately 0.008 units for rigid body position 4 and 0.007 for position 7

shown as Table 6.21.
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Structural Error Plot for Phase I, Position 2
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Figure 6.50 Structural error plot for phase I, position 2.

Structural Error Plot for Phase 1, Position 3
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Figure 6.51 Structural error plot for phase I, position 3.
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Structural Error Plot for Phase I, Position 4
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Figure 6.52 Structural error plot for phase I, position 4.

Structural Error Plot for Phase II, Position 6
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Figure 6.53 Structural error plot for phase II, position 6.
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Structural Error Plot for Phase II, Position 7
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Figure 6.54 Structural error plot for phase II, position 7.

Table 6.20 Projected Fixed and Moving Pivots of the Synthesized Adjustable Spherical
Five-Bar Motion Generator

a 0, -0.0004, 1

a 0.0199, 0.1628, 0.9865
an -0.0222, 0.1625, 0.9865
bo 0.2040, 0.0, 0.9790
b, 0.3082,0.1113, 0.9448
3] 0.1426, 0.2333, 0.9619
Cin 0.1906, 0.2791, 0.9412
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6.5.2 Sphere-to-Plane Projection

Given the synthesized adjustable spherical five-bar motion generator in the previous sub-
section, the parameters of a kinematically equivalent planar motion generator will be
calculated to demonstrate the structural error difference between plane-to-sphere and
sphere-to-plane projections. Using the sphere-to-plane projection method described in
Section 4.1, each joint coordinate of the synthesized spherical motion generator is
projected onto a specified plane as described in Section 4.1. The origin of this sphere is
coincident with the origin of the coordinate system and the synthesized planar mechanism
lies on plane parallel to the X-Y plane and offset from the origin by a distance “d” along
the z-axis.

According to Figures 6.56 through 6.60, the magnitude of the offset distance “d”
has no effect on the structural error between the prescribed projected rigid body positions
and the positions achieved by the projected adjustable planar five-bar motion generator.
This is due to the joint axes varying with the projection length in plane-to-sphere
projections but remaining constant with varying projection lengths in sphere-to-plane
projections.

No matter what projection length is specified, the adjustable planar five-bar
motion generator illustrated in Figure 6.49 is achieved precisely when projecting the
synthesized adjustable spherical five bar motion generator onto a plane. Figures 6.56
through 6.60 illustrate the structural error between the prescribed projected rigid body
positions and the positions achieved by the adjustable planar five-bar motion generator

(for each rigid body position).



Structural Error Plot for Phase I, Position 2
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Figure 6.56 Structural error plot for phase I, position 2.

Structural Error Plot for Phase I, Position 3
1.E-04 -
9.E-05 -

6.E-05 -

Serr/d

3.E-05 A

0.E+00 T T

0 5 10 15 20
Projection length, d

Figure 6.57 Structural error plot for phase I, position 3.
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Figure 6.58 Structural error plot for phase I, position 4.
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Figure 6.59 Structural error plot for phase II, position 6.
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Structural Error Plot for Phase I1, Position 7
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Figure 6.60 Structural error plot for phase II, position 7.



CHAPTER 7

DISCUSSION AND CONCLUSION

In this work, the mathematical analysis software package MATHEMATICA was used to
compute the plane-to-sphere and sphere-to-plane projection methods. This package can
express a numerical value to well over ten significant figures. Since all of the numerical
figures calculated in this work are dimensionless, the dimensionless term “unit” was
often used as a suffix to describe them. In the Plane-to-Sphere projection example
problems in Chapter 6, the structural errors for positions 4 and 7 (as opposed to the
intermediate positions) were used to determine the projection length because the
structural error at these positions (the last position of each phase) are the greatest.

In the MATHEMATICA models located in Appendix B, the user must determine
whether the calculated structural error is sufficient by comparing it to an acceptable error
value. If the calculated error is not acceptable, the user increases the projection length
and recalculates another structural error.

The adjustable spherical five-bar path and motion generators synthesized in
Chapter 6 can be driven by attaching motors to the input and output links or by
employing a train of bevel gears. If the latter option is employed, the designer must
select (or design) bevel gears [51] that will fit the overall shaft angle (the angle between
joint axes W, and upp) and maintain the prescribed input-output link displacement ratio
(the gear ratio).

Throughout the example problems in Chapter 6, the term ‘kinematically-

equivalent” was often used. Given a spherical mechanism, a kinematically-equivalent
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planar mechanism is one where the rigid-body displacements (or crank and follower
displacement angles in function generation) between the two mechanisms are identical.
Rigid body displacement is not to be confused with rigid body position because , for all
practical purposes, the rigid body positions between planar and spherical mechanisms
could never be identical due to their workspaces.

The theory mathematical modeling and application of a new technique for
synthesizing adjustable four and five-bar path, function and motion generators in two
ways was presented and demonstrates in this work. First, given an adjustable planar four
or fiver-bar path, function or motion generator, the user can design a kinematically-
equivalent adjustable spherical four or five-bar path, function or motion generator
respectively. Second, given an adjustable spherical four or five-bar path, function or
motion generator, the user can design a kinematically-equivalent adjustable planar path, .
function of motion generator. The benefits of this method are twofold. One benefit is
that adjustable spherical and planar four and five-bar mechanisms can be designed for
multi-phase motion, path and function generation applications. Another benefit is that
spherical and planar four-and five-bar motion, path and function generators can be
designed using synthesis methods for planar and spherical motion, path and function
generators respectively. Two-phase moving pivot adjustment problems with constant

crank and follower lengths are considered in this work.



APPENDIX A
PLANE AND SPHERICAL MECHANISM DISPLACEMENT EQUATIONS BY

DUAL-NUMBER METHOD

A.1 Displacement Equations for Planar Four-Bar Mechanism

Equation A.1 defines the displacement of an arbitrary rigid body point p on an R-R dyad

of a planar four-bar mechanism (see Figure A.1).

Figure A.1 Displacement of a planar mechanism R-R dyad

P=[Re:J(p:'-2)+ 2 (A1)
where

p1' = [Re1](p1 —a0) + a9 (A2)

a=[Rgi](a1 —ao) + 2o (A.3)
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and
cos@ -sin@ O
[R,]=|sin@ cosf O
0 0 1
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(A.4)

Equations A.8 through A.16 are used to calculate angles 6, through 04 (see figure A.2).

These equations were derived using the dual number formulation [50] in Equations A.5

through A.7.
g
e
az /f' =
as
N\
LA
N\
N 61
ai N\ VA
x T ] P
a4
Figure A.2 Planar four bar mechanism with relative joint rotation
angles (0) and linkage lengths (a).
Given

W3- T =0

therefore

(A.5)
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z1l1 z12 z13 0 00
z21 z22 z23|={0 0 O
z31 z32 z33 0 00 (A.6)
where
cosf, —sinf, ea,-sinf,
M =|sind, cosé, —ea, -cos0, (A7)
0 ea, 1
and
z11=(cb, - b, —cb, - cf, — 56, - 6, + 56, - 56,)e° (A.8)
z12 =(=ch, - 56, — B, - 50, — cb, - 56, — B, - 56,)e’ + (a, - a, - s0,)€e’ (A.9)
z13=(-a, -s6,+a, -s6, +a, -0, -s6, +a, - 6, - s6,)e' (A.10)
221=(c6, - 56, +cB, - s6, + c, - 0, + B, - s6,)e’ + (~q, - a, - s6,)e’ (A.11)
222 =(cl, -cb, — cb, - cl, - 56, - 56, + 56, - 56,)e° + (A12)
(-a,-a,-cb, +a,-a,- cb,)e
z223=(-a,—a,-cb,—a, cb,—a,-ch,-cl, +a, -6, - s6,)e' (A.13)
231=(~q,-cb, 56, +a, 50, - a, -6, - a, -cb, - s6,)¢ (A.14)
z32=(a, +a,-cl,+a,-cl, +a, -ch,-c6, - a, -6, -56,)e' (A.15)
z33=(a,-a, ¢, —a,-a,-cb,)e’ (A.16)

In Equations A.8 through A.16, the coefficient of ¢® is the real component. The
coefficient of €' is the dual component. Variables “c8” and “s@” represent cos(0) and

sin(6), respectively.
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z11=cB,-cl,~cb,-cl, —ca, -s6, -s0, +ca, - 56, - s, (A.25)

z12 = —ca, - cB, - 56, — ca, - ca, - b, - 56, + sa, - sa, - 5O, —ca, - B, - 5O, (A.26)
-6, - 50,

z13=-sa, 56, +ca, - sa, - 6, + ca, - B, - sat, - s6, + B, - sa, - 56, (A.27)

z21=ca, - cl, -6, +cb, - 56, +ca, - b, - 56, + ca, - ca, - ¢, - 56, (A28)
-sa, -sa, - 56,

z22=ca, -ca, -cb, -cb, — ca, - ca, - O, - cB, — ¢, - sa, - sa, (A.29)
+cl, -sa, -sa, —ca, 56, -0, + ca, - s, - 56, '

223 =—-ca, -sa, —ca, - b, - sa, —ca, -cb, - cb, - sa, —ca, - cb, - s, (A.30)
+sa, - 56, - s6,

231=—cb, -sa, -5, + sa, - 56, —ca, - B, - s, - 56, — ca, - sz, - 56, (A.31)

z32=ca,-cb,-cl, -sa, +ca, -cb, - sa, +ca, - sa, (A32)
+cq, -cl, -sa, —sa, -s6, - s6,

z33=ca,-ca,—ca, -ca, —cb, -sa, -sa, +cb, -sa, - sa, (A.33)

In Equations A.25 through A.33 variables “c6” and “sO” represent cos(6) and sin(0)

respectively and variables “ca” and “sa” represent cos(a) and sin(a), respectively.
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A.3 Displacement Equations for Planar Five-Bar Mechanism

Equation A.34 defines the displacement of an arbitrary rigid body point p on an R-R dyad

of a planar five-bar mechanism (see Figure A.5).

Figure A.S Displacement of a planar mechanism R-R dyad.

P=[Re](pi'-a)+a (A.34)
where

pi' = [Ra1](p1 — a0) + 2o | (A.35)

a=[Re1](a; —a0) + 20 (A.36)

and

cos@ -sind O
[R,]=|sin@ cosf@ O (A.37)
0 0 1
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Equations A.41 through A.49 are used to calculate angles 0, through 65 (see Figure A.6).

These equations were derived using the dual number formulation [50] in Equations A.38

through A.40.

63

ac
a3

02
64

05
o1

X — I—7 a4

/ A

fr———— 05—

Figure A.6 Planar five bar mechanism with relative joint rotation
angles (0) and linkage lengths (a).

Given

MM =M MT M =0 (A.38)
therefore

z1l z12 213 0 00

z21 z22 z23({=|0 0 O

z31 z32 z33] |0 0 O (A.39)
where

cos@, -sinf, ea,-sind,
M =|sinf, cosf, -ea,-cosf, (A.40)
0 ea 1

n



and

z11=(ch, cb, — 56, O, +56,(cO; 6, +ch, s6;)—cB,(ch, cb — 56, s6;))e’

+(-a, a; 56, s6,)e’

212 = (-6, 6, — 8, s, —c0,(cO, s6, +ch, s6;)+
—56,(ch, cb, - s6, s6,))e’ +(a, a; cb, 56, +a, a, s6,)e’

z13 = (~a, 56, +a, $0, +a, cB, 56, +a, cb, 56, —a,(cl; s6, + b, s6;))¢

z21=(cb, cb; s6, + O, 56, +cb, 50, +cb, cb; 56,
+cb, ¢, 56 - s6, s6, s6;)e°

+(-q, a, 56, —a, a; B, s6, —a, a, cb; 50, —a, a, cb, s6,)e’

222 =(cb, cb, —cb, cb, cb, —s0, sb, + cb, sb, s6,
+cO, s6, sO, +ch, s6, s6,)e"+(-a, a, cb, +a, a, b, +

2
a, a; c6, c0, +a, a; cl, c; —a, a, 50, sb)e

223 =(-a, —a, ¢, —a, cb, —a, cb, cb, —a, cb, cb, +a, s0, 5O,
+a, 56, s6,)e

z31=(-a, ¢, cb; s6, + a, s6, —a, s6, —a; cb, s8, —a, cb, cb; 56,

_a, ¢, 56, cB, cb, s, +a, sB, s6, sb,)e'

z32=(a,+a, cb,+a, cb, +a, cb, cb; +a, cb, b, cb, —a, cb; sb, sb,

—a, cb, s6, s0, —a; s6, sO, —a, cb, s6, s6,)e'

233=(q, a; c6,-a, a, cB, +a, a; cb;+a, a, cb, c; -a, a, sb, s6;)e’
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(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

In Equations A.41 through A.49, the coefficient of €® is the real component; the

coefficient of €' is the dual component. Variables “c6” and “s” represent cos(6) and

sin(0), respectively.
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z11=c6, cf, —ca, 50, 56, —sa, sa; s6, sO, +ca, s0,(ca; cb; s6, +cb, sb;)
—c8,(cO, cb; —cas sb, sb) (A.58)

z12=cb, sa, sa; s6, —ca, ca, cO, s6, +sa, sa, s6, —ca, cb, s6, —
ca, cf,(ca; cl; 56, +c, s6;)— s6,(cb, cb; —ca; s6, sb;) (A.59)

z13=-ca, sa; s6, +ca, sa, s6, +ca, cb, sa, s6, +
b, sa; 56, —sa,(ca; cO; s6, +ch, sb) (A.60)

221=cb, s6, +ca, ¢, 56, - sa,(ca; sa, +ca, cb, sa)sb, —
cf,(—ca, cl; s6,—ca, ca; cb, sO; +sa, sa, s6;)+
ca, s6,(ca, ca, ch, c, —ch; sa, sa,—ca, sb, sb;) (A.61)

z22=ca, ca, cb, cb, -ch, sa, sa, + cb, sa,(ca sa, +cq, cb, sa;)-
ca, s6, s, —s0,(-ca, cl; s6, —ca, ca, cb, sb; +sa, sa, sb;)—
ca, c8,(ca, ca, cb, cb; —cl; sa, sa; -ca, sb, sb;) (A.62)

223=-ca, ¢, sa, —ca, cb, cb, sa, - ca,(ca; sa, +ca, cb, sa;)+
sa, s6, 56, -sa,(ca, ca; cb, cb; —cb; sa, sa;—ca, sb, s6;) (A.63)

z31=sa, s0, -sa,(ca, ca;—cl, sq, sa;)s6, —
cd,(cO; sa, s6, +ca, cb, sa, s6, +ca, sa; s6;)+
ca, s6,(—ca; cb, cb; sa, —ca, cb; sa; +sa, sb, sb;) (A.64)

232=ca, b, sa, +ca, sa, +cl, sa,(ca, ca; —cb, sa, sa;)—
56,(cl; sa, s6, +ca; cb, sa, sb; + ca, sa; s6;)—
ca, cb,(—ca; cb, cb; sa, —ca, cb; sa; +sa, s6, sb;) (A.65)

z33=ca, ca, —-cb, sa, sa, - ca,(ca, cas—cb, sa, sa;)-
sa,(—ca; cb, cb; sa, —ca, cb; sa; +sa, s6, sb;) (A.66)

In Equations A.58 through A.66, variables “c6” and “s©” represent cos(6) and sin(6)

respectively and variables “co’” and “sa” represent cos(a) and sin(a), respectively.



APPENDIX B

MATHEMATICA MODELS

B.1 Adjustable Four-Bar Path Generator

The following MATHEMATICA models include four sections. Section B.1.1 illustrated
how to programming the synthesis design equations for planar four-bar path generator by
MATHEMATICA language. Section B.1.2 illustrated the Dual-number method and the
displacement equations for planar four-bar path generator. Section B.1.3 illustrated
plane-to-sphere projection method, dual-number method and displacement equations for
spherical four-bar path generator. Section B.1.4 illustrates the sphere-to-plane projection

method for spherical four-bar path generator.

B.1.1 Synthesis Design of Planar Four-Bar Path Generator

D1j[6_,plx_,ply_,p3x_,piy_l={{Cos[8],-Sin[8],pix-plx Cos[6]+ply
sin(61},{sin[6],Cos[6],pjy-plx Sin[6]-ply Cos[6]},{0,0,1}}

ao={{o}, {a0y}, {1}}

al={{alx}, {aly}, {1}}

aln={{alnx}, {alny}, {1}}

bo={{1}, {boy},{1}}

bi={{b1x}, {b1y}, {1}}

bin={{binx}, {biny}, {1}}

pl={{-0.6953},{1.2291},{1}}
p2={{-0.6019},{1.3026},{1}}
p3={{-0.5020},{1.3675},{1}}
p4={{-0.3964},{1.4233}, {1}}
p5={{-0.6953}, {1.2291}, {1}}
p6={{-0.5883},{1.2796}, {1}}
p7={{-0.4774},{1.3193}, {1}}

612=-2.1573*Pi/180;

623=-2.0611*Pi/180;

34=-1.9722*Pi/180;

#56=-1.9182*Pi/180;

667=-1.8614*Pi/180;

D12=D1j [612,p1[[1,1]],p2([2,1]),p2([[2,1]),p2[[2,1]]]}
D13=D1j [6#12+623,p1[[1,1]],p1([[2,1)],p31[2,1])],p3([[2,1]]]
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D14=D1j [012+023+634,p1[[1,1]],p1[[2,1]],p4([2,11],p4[[2,1]]]
D56=D1j[656,p5([{1,1])],p51[2,1)],p6([12,1]],p6[[2,1]]]
D57=D1j [656+667,p5[[1,1]1],p5([[2,2]],p7[[2,1]],p7([2,1]]]
El=Transpose[(D12.al-a0)].(D12.al-a0)-1."2
E2=Transpose[(D13.al-a0)].(D13.al-a0)-1."2
E3=Transpose[(D14.al-a0)].(D14.al-a0)-1."2
E4=Transpose [ (D56.aln-a0)]. (D56.aln-a0) -1."2
ES5=Transpose [ (D57.aln-a0)]. (D57.aln-a0)-1."2
FindRoot [{E1[[1,1]]==0,E2[[1,1]])==0,E3[[1,1]]==0,E4([[1,1)]1==0,E5([[1,1]]
==0},{a0y,0.1},{alx,-0.7},{aly,0.6},
{alnx,-0.5}, {alny,0.7}]
Fl=Transpose[(D12.bl-b0)]. (D12.bl1-b0)-1.5
F2=Transpose [ (D13.bl-b0}]. (D13.b1-b0)-1.5
5
1

A
A

A

F3=Transpose[(D14.bl1-b0)). (D14.b1-b0)-1.

F4=Transpose | (D56.bln-b0)]. (D56.bin-bo) - 2

F5=Transpose[(D57.bln-b0)]. (D57.bln-b0)-1.5"2

FindRoot [{F1[[1,1]]==0,F2([[1,1]]==0,F3[[1,1)]==0,F4([([21,1]1)==0,F5([1,1]]
==0}, {b0y,0.1}, {b1x,0.6}, {bly,1.5}, {binx,1.0}, {blny,1.4}]

2
2
2
5A
5

.

B.1.2 Displacement Analysis for Planar Four-Bar Path Generator

MyMaxIterations=1000;
ClearAll[cfl,s601,al,c02,s62,a2,c03,s603,a3,ch4,s64,a4);
M({cé_,s6_,a_]:={{cb,-s6,e a s6},{s6,ch,-e a c6},{0,e a, 1}}
M2=M[c62,s602,a2] ;
M3=M[c63,s03,a3];
M4=M[c64,s64,a4];
M1=M[c61,s61,al];

Z=M2 .M3-Transpose [M1] . Transpose [M4] ;
z11=2[[1,1]]);

z12=2[[1,2]1;

213=Z[[11 3] ] H

z21=z2[[2,1]];

z22=2[[2,21];

z23=2[[2,311]1;

z31=2[[3,1]1;

232=2[[3,2]11];

z33=2[1[3,3]11];
equll=Coefficient[z11,e,0]==0;
equl2=Coefficient([z12,e,0]==0;
equl3=Coefficient [z13,e,1]==0;
equ2l=Coefficient[221,e,0]==0;
equ22=Coefficient [222,e,0]==0;
equ23=Coefficient[z23,e,1]==0;
equ3l=Coefficient(z31,e,11==0;
equ32=Coefficient (z32,e,1]==0;
plp={-0.6953,1.2291};
0.6019,1.3026};
0.5020,1.3675};
-0.3964,1.4233};
0.6953,1.2291};
0.5883,1.2796};
0.4774,1.3193};



a0p={0.0000,-0.0092378};

alp={-0.76744,0.63171};

alnp={-0.45554,0.88092};

bop={1.0000,-0.016575};

blp={0.58693,1.4253};

blnp={1.0472,1.4827};

al=Sqrt[(alp-a0p) . (alp-alp)];

a2=8qrt [ (bip-alp) . (blp-alp)];

a3=Sqrt [ (bOp-blp). (bOp-blp)];

a4=Sqrt [ (a0p-boOp) . {a0p-boOp)];

f1begin= ArcCos[(bOp-alp). (alp-a0p)/Sgrt[(bOp-alp) . (bOp-
a0Op)l/sqrt[(alp-ao0p). (alp-a0p)]]+Pi

MR[6 _]:={{Cos[8],-Sin[6]}, {Sin[8],Cos(6]}};

For [k=1;81=61begin, ksMyMaxIterations,
k++;61=61-20/MyMaxIterations*Pi/180.,
deltafl[k]=61-61begin;
cf1=Cos [81];s601=8Sin[61];

Answer=FindRoot [{equll, equl2,equl3,equ32,equ3l,equ23}, {ch2, -
0.3},{s62,-0.9},{c63,-0.2},{s63,-0.8},{ch4,-0.1},{s64,-0.9}];
anscé2=Answer [[1,2]] ;anssf82=Answer{[2,2]];

92=Which[ansc§220 && anssf2z0,ArcCos [anscé2],

anscf2<0 && anssf2>0,ArcCos[ansch2],

ansc2s0 && anssf2s0,2*Pi-ArcCos [ansc62],

anscf2>0 && anssf2<0, -ArcCos [anscf2]];

If [k==1,62begin=62,];

deltaf2[k]=62-602begin;

newal [k]=MR [deltaf1[k]].{{(alp-ao0p) [[1]]1}, {(alp-

aop) [[211}}+{{aop[[1]}1},{aop((2]1}};
p11(k]=MR[deltad1(k]].{{(plp-aop) [[1]]1}, { (plp-

aop) [[21)}}+{{aopl[1]1},{a0pl[2]1}};

newpl [k] =MR [deltaf2 [k]]. (p1l [k] -newal [k]) +newal [k] ;

square2 [k]=(newpl[k] [[1]]-p2p[[1]]) "2+ (newpl[k] [[2]]-p2p[[2
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11)%2;
square3 [k] = (newpl [k] [[1]]-p3p[[1]]) "2+ (newpl (k] [[2]]-p3p[[2]])"2;
11)%2;

square4 [k]=(newpl (k] [[1]]-p4p[[1]]) "2+ (newpl [k] [[2]]-p4ap[[2
1;

For [k=1;minsqrt2=999;minsgrt3=999;minsqrt4=999;myk2; myk3;myk4, ksMyMaxIt

erations, k=k+1,
If [minsqrt2s>square2 (k] [[1])],minsgrt2=square2 (k] [[1]]};myk2=k,];
If [minsgrt3s>square3 [k} [[1]],minsgrt3=square3[k] [[1]];myk3=k,];
If [minsqrt4a>squared [k] [[1]],minsgrt4=square4 [k] [[1]] ;myka=k,];
1;

newpl [myk2]

newpl [myk3]

newpl [myk4]

deltafl [myk2]*180/Pi

deltafl [myk3]*180/Pi

deltafl [myk4] *180/Pi

B.1.3 Spherical Four-Bar Path Generator by Plane-to-Sphere Projection

RadiusOfSphere=1;

TheMaxIterations=500;

ProjectionLength=7

ClearAll [plp,p2p,pP3p,P4pP,P5P,P6P,P7P,P1,P2,p3,p4,P5,P6,pP7];
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Plane2Sphere [{x_,y_},r_,d_):={r*x/sqrt[d"2+x*2+y"2],r*y/Sqrt [d"2+x"2+y"
2], r*d/sqrt [d*2+x"2+y”*21}

plp={-0.6953,1.2291};p2p={-0.6019,1.3026};

p3p={-0.5020,1.3675};p4p={-0.3964,1.4233};

p5p={-0.6953,1.2291};p6p={-0.5883,1.2796};

p7p={-0.4774,1.3193};

pl=Plane2Sphere [plp, RadiusOfSphere, ProjectionLength]

p2=Plane2Sphere [p2p,RadiusOfSphere, ProjectionLength]

p3=Plane2Sphere [p3p,RadiusOfSphere, ProjectionLengthl]

p4=Plane2Sphere [p4p, RadiusOfSphere, ProjectionLength]

p5=Plane2Sphere [p5p,RadiusOfSphere, ProjectionLength]

p6=Plane2Sphere [p6p, RadiusOfSphere, ProjectionLength]

p7=Plane2Sphere [p7p,RadiusOfSphere, ProjectionLength]

Clearall [aOp,alp,alnp,bOp,blp,blnp,ad,al,aln,b0,bl,bln,al,x2,a3,04,cal,
sal,ca2,sa2,ca3,se3,cad,sadl;

a0p={0.0000,-0.0092378};

alp={-0.76744,0.63171};

alnp={-0.45554,0.88092};

bOp={1.0000,-0.016575};

blp={0.58693,1.4253};

blnp={1.0472,1.4827};

a0=Plane2Sphere [a0p,RadiusOfSphere, ProjectionLength] ;

al=Plane2Sphere [alp,RadiusOfSphere, ProjectionLength] ;

aln=Plane2Sphere [alnp,RadiusOfSphere, ProjectionLength] ;

b0=Plane2Sphere [b0Op,RadiusOfSphere, ProjectionLength] ;

bl=Plane2Sphere [blp,RadiusOfSphere, ProjectionLength] ;

bln=Plane2Sphere [blnp,RadiusOfSphere, ProjectionLength] ;

ol=ArcCos [a0.al/Sqrt [a0.a0]/Sgrt[al.alll;

a2=ArcCos [al.bl/Sqgrt [bl.bl]/Sqgrtlal.alll;

a3=ArcCos [bl.b0/Sqrt [bl.bl]l /Sqrt [b0.b0]];

a4=ArcCos [a0.b0/Sqrt [a0.a0] /Sqrt [b0.b0]];

cal=Cos [al] ;sal=Sin[al] ;ca2=Cos [@2] ;sa2=Sin[a2];

ca3=Cos [e@3] ;sa3=Sin[a3] ;ca4=Cos [04] ;sa4=Sin[w4];

AngleBTAxes [{ax_,ay_,az_},{bx_,by_,bz_}]:={-(az by-ay bz)/(-ay bx+ax
by), - (az bx-ax bz)/(ay bx-ax by),1}

alphalv=AngleBTAxes [a0,al];

alpha4v=AngleBTAxes [a0,b0];

®10=ArcCos[alphalv.alphad4v/Sgrt[alphalv.alphalv]/Sqrt[alphad4v.alphadv]];

$100=Pi-10+Pi;

ClearAll [cf1,s01,ch2,s62,c63,803,c64,s64];

M[ch_,s6_,ca_,sa_):={{ch,-ca s6,sa s8},{s6,ca c6,-sa c8},{0,sa, ca}}

M2=M[c62,862,ca2,sa2];

M3=M{c63,s63,ca3,sa3];

M4=M[c64,s64,cad,sadl;

M1=M[c61l,s61,cal,sall;

Z=M2 .M3-Transpose [M1] .Transpose [M4] ;

z11=2[[1,1]];

z12=2[[1,2]];

z13=2[[1,3]1];

221=Z[[211]] H

z22=2[[2,2]];

z23=2[[2,31];

z31=2[[3,1]];

z32=2[[3,21];

z33=2[[3,3]];

cf2g=-0.3;s562g=-0.9;c83g=-0.17;563g=-0.9,;c04g=-0.17;s04g=-0.9;
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For [$1=0100; k=1, k€TheMaxIterations,
®1=p1-20/TheMaxIterations*Pi/180.;
k=k+1,
ch#1=Cos [p1];s601=Sin[pl};
Angles=FindRoot [{z11==0,212==0,213==0,221==0,222==0,223==0}, {c62,cé
2g}, {s62,s62g}, {c63,ch3g}, {s63,s63g}, {cb4,cb4g}, {s64,s64g}];
cf2g=Angles[[1,2]];s82g=Angles[[2,2]];
cf3g=Angles[[3,2]];s63g=Angles[[4,2]];
cf4ag=Angles[[5,2]];sf4g=Angles[[6,2]];
anscf2=Angles|[[1,2]];anssf2=Angles[[2,2]];
#2=Which[ansc82=0 && anssf2=z0,ArcCos [anscf2],anscl2<0 &&
anss02>0,ArcCos [ansc62],
ansc82s0 && anssf2s0,2*Pi-ArcCos [anscé2],
anscd2>0 && anssf#2<0, -ArcCos [ansc62]];
If [k==1,82begin=62,1];
deltaf2 [k]=62-02begin;
deltafl[k]=01-0100;
1
Rulo ,u_l:={{ull1,11)%2*(1-Cos[a})+Cos[al,ull1,1]] ull2,1]] (1-Cosla])-
ul[3,11] sinfe),ull1,1]] ull3,1]] (1-Coslal)+ull2,1]]
sinfel}, {ull1,1]] ull2,1)] (1-Cosleal)+ul[3,1]1] Sin[al,ull2,1]]"2
(1-Cos [a])) +Cos [l ,ull2,1]] ul(3,1]}] (1-Cosleal)-ull1,1])]
sinfal}, {ull1,1]] ull3,1]] (1-Coslel)-ull2,1]] Sin(e],ul{2,1]]
ull3,1]] (1-Cosl[a))+ul[1,1]] Sinla],ull3,1]1%2 (1-Cosla])+Coslal}};
uak={{uax}, {vay}, {uvaz}};
aoaxis={{a0[[1]11},{a0[[2]1},{a0[(3]]}};
boaxis={{bo[[1]]1},{bo[[2]1},{bO[[3]1]1}};
For {k=1,ksTheMaxIterations, k++,
NewAl [k] =Ruldeltafl[k],al0axis] . (al-a0)+a0;
alaxis={{NewAl[k] [[1]]}, {NewA1l[k] [[2]]}, {NewAl([k] [[3]1}};
pltemp [k]=Ru[deltafl [k],a0axis] . (pl-a0)+a0;
NewP1 [k] =Ru [delta#2 [k] ,alaxis] . (pltemp [k] -NewAl [k] ) +NewAl [k] ;
]
Pll=p4;
For [k=1;minsqrt=9999;myk, ksTheMaxIterations, k++,
toleranceErr [k]=Sqrt [ (NewP1[k] [{1]]-P11[[1]]) "2+ (NewPl[k] [[2]]-
P11[[2]1])"2+ (NewP1[k] [[3]]1-P11[[3]])"2]);
If [minsgrt>toleranceErr {k],minsqrt=toleranceErr [k];myk=k,];
]
myanswer2 [ProjectionLength] ={myk,deltafl [myk] *180/Pi, NewP1 [myk] , Project
ionLength,minsgrt*ProjectionLength}

B.1.4 Planar Four-Bar Path Generator by Sphere-to-Plane Projection

RadiusOfSphere=1;

DistanceOfProjection=11

MyMaxiterations=400;

ClearAll [plp,p2p,P3p,P4P,P5pP,P6P,P7P,P1,P2,p3,p4,P5,pP6,p7];
ProjectionFun([{x_,y_,z_},d_l:={d/z*x,d/z*y}
pl={-0.06269,0.1108,0.9919};

p2={-0.05426,0.1174,0.9916};

p3={-0.04524,0.1232,0.9913};

p4={-0.03572,0.1282,0.9911};

p5={-0.06269,0.1108,0.9919};
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p6={-0.05305,0.1154,0.9919};

p7={-0.04305,0.1190,0.9920};

plp=ProjectionFun[pl,DistanceOfProjection]

p2p=ProjectionFun [p2,DistanceOfProjection]

p3p=ProjectionFun [p3,DistanceOfProjection]

p4p=ProjectionFun[p4,DistanceOfProjectionl]

p5p=ProjectionFun[p5,DistanceOfProjection]

pép=ProjectionFun [p6,DistanceOfProjection]

p7p=ProjectionFun{p7,DistanceOfProjection]

Clearhll [aOp,alp,alnp,bOp,blp,blnp,ad,al,aln,b0,bl,binl;

a0={0.0000,-0.0008398,1.0000};

al={-0.06948,0.05719,0.9959};

aln={-0.04124,0.07976,0.9960};

b0={0.09054,-0.001501,0.9959};

b1={0.05284,0.1283,0.9903};

bin={0.09393,0.1330,0.9867};

a0p=ProjectionFun[a0,DistanceOfProjection]

alp=ProjectionFun([al,DistanceOfProjection]

alnp=ProjectionFun|aln,DistanceOfProjection]

bOp=ProjectionFun [b0,DistanceOfProjection]

blp=ProjectionFun [bl,DistanceOfProjection]

blnp=ProjectionFun [bln,DistanceOfProjection]

ClearAll [cf1,s61,al,ch2,s02,a2,c63,s563,a3,c04,s64,a4,M1,M2,M3,M4];

M[cb_,s6_,a_]:={{cb,-s6,e a s6},{sf,ch,-e a c6},{0,e a, 1}}

M2=M[cb2,s62,a2] ;

M3=M[c63,s563,a3};

M4=M[cl4,s64,a4];

M1=M[c61,s61,al]l;

Z=M2 .M3-Transpose [M1] . Transpose [M4] ;

z11=z([1,1]];

z12=2Z[[1,2]];

z13=2[[1,31];

z21=2[[2,1]1];

z22=2[[2,2]]);

z23=z(1[2,3]];

z31=2[[3,1]];

z32=2[1[3,2]1;

z33=2[1[3,3]];

equll=Coefficient{z1l1l,e,0]==0

equl2=Coefficient[z12,e,0]==0

equl3=Coefficient[z13,e,1]l==

equ2l=Coefficient[z21,e,0]==0

equ22=Coefficient [222,e,0]}==0

equ23=Coefficient [223,e,1]==0

equ3l=Coefficient[z31,e,1]==0

equ32=Coefficient [232,e,1]==0

ClearAll [al,a2,a3,a4];

al=Sqgrt[(alp-aop) . (alp-alp)]

a2=Sqrt[(blp-alp) . (blp-alp)]

a3=Sqrt [ (bOp-bilp) . (bOp-blp)]

a4=Sqrt [ (a0p-bop) . (a0p-bop) ]

MR[6_]:={{Cos[8],-Sin(6]}, {Sin[6],Cos{6]}};

ClearAll [61begin, 61];

f1begin=ArcCos [ (bOp-a0p) . (alp-a0p) /Sqgrt [ (bOp-a0p) . (bOp-a0Op)l/Sartl(alp-
aop) . (alp-a0Op) 1] +Pi;

For [k=1;681=01begin, ksMyMaxiterations,
k++;01=061-20/MyMaxiterations*Pi/180.,
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deltafl[k]l=61-61begin;
ch1=Cos[01];
s01=Sin[01];
Answer=FindRoot [{equll,equl2,equl3,equ32,equ3l,equ23}, {cb2, -
0.3},{s62,-0.9},{c63,-0.2},{s63,-0.8},{cb4,-0.1},{s64,-0.9}1;
anscf2=Answer [[1,2]];
anssf2=Answer[[2,2]1;
82=Which[ansc8220 && anssf2=0,ArcCos [anscé2],
anscf2<0 && anssf2>0,ArcCos[ansch2],
anscf2s0 && anssf2s0,2*Pi-ArcCos[anscf2],
anscf2>0 && anss#2<0, -ArcCos[anscé2]];
If [k==1,62begin=02,];
deltafd2 [k]=62-62begin;
newal [k]=MR[deltaf1[k]l].{{(alp-a0p) [[1]1},{(alp-
aop) [[2]11}}+{{a0p ({111}, {a0p[(2]11}};
pll([k]=MR[deltad1l[k]].{{(pilp-ao0p) [[1]]}, { (plp-
aop) [[211}}+{{aop[[1]1},{aopl[211}};
newpl [k]=MR [deltaf2[k]]. (p1l1[k]-newal [k]) +newal [k];
square2 [k]=(newpl[k] [[1]]-p2p[[1]]) "2+ (newpl[k] [[2]]-p2p[[2]])"~2;
square3 [k] = (newpl[k] [[1]]1-p3p[[1]1]) "2+ (newpl (k] [[2]]-p3p[[2]])"2;
square4 [k] = (newpl[k] [[1]]-p4p[[1]]) "2+ (newpl (k] [[2]]-p4p[[2]1])72;
]

For [k=1;minsqgrt2=999;minsqrt3=999;minsgrt4=999; minsqrt5=999; myk2;myk3;m
yk4 ;myk5,
ksMyMaxiterations, k=k+1,
If [minsgrt2s>square2 [k] [[1]],minsqrt2=square2 [k] [[1]];myk2=k,];
If [minsqgrt3>square3 (k] [[1]],minsgrt3=square3[k] [[1]];myk3=k,];
If [minsqrt4>square4 [k] [[1]],minsgrt4=square4 [k] [[1]];myk4s=k,];
]

StructuralErr_ Position2 [DistanceOfProjection]=Sqrt [minsqgrt2]/DistanceOf
Projection

StructuralErr_Position3 [DistanceOfProjection]=Sqgrt [minsgrt3]/DistanceOf
Projection

StructuralErr Position4 [DistanceOfProjection]=Sqgrt [minsqgrt4]/DistanceOf
Projection

newpl [myk2]

newpl [myk3]

newpl {myk4]

deltafl [myk2]*180/Pi

deltafl [myk3]*180/Pi

deltafl[myk4]*180/Pi

B.2 Adjustable Four-Bar Function Generator

The following MATHEMATICA models include three sections. Section B.2.1 illustrated ~
how to programming the synthesis design equations and angle displacement analysis for

four-bar function generator by MATHEMATICA language. Section B.2.2 illustrated
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plane-to-sphere projection method, dual-number method and displacement equations for
spherical four-bar function generator. Section B.2.3 illustrated the sphere-to-plane

projection method for spherical four-bar function generator.

B.2.1 Synthesis Design and Displacement Analysis of Planar Four-Bar Function
Generator

Clearall[a0,al,b0,bl,bln];

D1j[6_,¢_)={{Cos[6-d],-Sin[6-d],1-Cos[d])},{Sin[6-0],Cos[b-
®1,8in[®]1},1{0,0,1} }

ao={{o}, {0}, {1}};

al={{-0.2},{a1y},{1}};

bo={{1},{0},{1}};

bi={{b1x}, {biy}, {1}};

bin={{blnx}, {biny}, {1}};

#12=-10.*Pi/180;

#13=-20.*Pi/180;

14=-30.*Pi/180;

§15=-15.*Pi/180;

#16=-30.*Pi/180;

$12=-7.50426541*Pi/180;

$13=-14.96321349*Pi/180;

$14=-22.26300237*Pi/180;

$15=-9.73488647*P1/180;

$16=-18.9814518*P1i/180;

D12=D1j[612,012];

D13=D1j [613,313];

D14=D1j [614,014];

D15=D1j [615,015];

D16=D1j [616,016];

El=Transpose([(D12.al-bl)]. (D12.al-bl)-1."2;

E2=Transpose[(D13.al-bl)].(D13.al-bl)-1."2;

E3=Transpose[(Dl4.al-bl)].(Dl4.al-bl)-1."2;

E4=Transpose|[(D15.al-bln)]. (Di5.al-blin)-1."2;

E5=Transpose[(D16.al-bln)}. (D16.al-bln)-1.%2;

answer:FindRoot[{El[[1,1]]==0,E2[[1,1]]==0,E3[[1,1]]==0,E4[[1,1J]==0,E5
[{1,1]]1==0},{aly,0.7},{b1x,0.6},{bly,1.3},{blnx,0.7}, {blny,1.2}];

aop={0,0};

alp={-0.2,answer([[1,2]11};

bop={1,0};

blp={answer[[2,2]],answer[[3,2]1};

blnp={answer[[4,2]],answer[[5,2]]1};

al=Sgrt[(alp-a0Op) . (alp-alp)};

a2=Sqrt[(blp-alp). (blp-alp)l;

a3=8qrt [ (bOp-blp) . (bOp-blp)];

a4=8qgrt [ (a0p-boOp) . (a0p-bop)];

Clearnll [cf1,s861,c62,502,c603,s603,ch4,s64]);

Mlc6_,s6_,a_):={{c6,-s6,e a s6},{s6,ch,-e a c6},{0,e a, 1}}

M2=M[c62,s802,a2];

M3=M[c63,s603,a3];
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M4=M[c84,s64,a4];

M1=M[c61,s61,all;

Z=M2 .M3-Transpose [M1] . Transpose [M4] ;

zz11=2Z[[21,11];

zz12=2([1,211;

zz13=2[[1,3]};

z221=2[{2,11];

z222=2[[2,21];

zz23=2[[2,3]];

zz31=2[[3,1]];

z2z32=2[(3,2]1];

2233=2[([3,31];

equll=Coefficient{zz1ll,e,0]==0;

equl2=Coefficient [zz12,e,0]==0;

equl3=Coefficient[2z13,e,1]==0

equ2l=Coefficient [(zz21,e,0]==0

equ22=Coefficient [2222,e,0]==0

equ23=Coefficient [2223,e,1]==0;

equ3l=Coefficient [zz31,e,1}==0;

equ32=Coefficient [2232,e,1]==0;

f1begin=ArcCos [ (b0Op-a0p) . (alp-a0p) /Sgrt [ (bOp-alOp) . (bOp-ao0p)]/sqgrt[(alp-
a0p) . (alp-a0Op)l]+Pi;

For [k=1;61=601begin, ks5,

k++;601=61-10*Pi/180,

deltafl[k]=61-61begin;

cfl1l=Cos[01];

s61=Sin[61];

Answer [k} =FindRoot [{equll, equl2, equl3, equ32,equ3l,equ23},
{c62,-0.1},{s62,-0.8},{c83,-0.5},{s63,-0.5},{co4,-0.1},
{s64,-0.9}1;

anscf2=Answer [k} [[1,2]];

anssf2=Answer [k] [[2,2]];

anscf4=Answer [k} [[5,2]];

anssf4=Answer [k] [[6,2]];

82=Which[anscf2=0 && anss#2=0,ArcCos [ansch2],

ansch2<0 && anss62>0,ArcCos[ansch2],
ansch22s0 && anssf2s0,2*Pi-ArcCos[ansch2],
anscl2>0 && anssf2<0,-ArcCos [ansc2]];

#4=Which[anscf4=20 && anssf4=20,ArcCos [ansch4],

anscf4<0 && anss84>0,ArcCos [anscf4],
anscf4s<0 && anssf4s0,2*Pi-ArcCoslanscé4],
anscf4>0 && anssf4<0,-ArcCos[ansc4]];

If [k==1,602begin=62;604begin=604,];

deltaf2 [k} =62-62begin;

deltaf4 [k] =04-64begin;

]

deltaf1[1]*180/Pi
deltaf4{1]*180/Pi
deltaf1({2]*180/Pi
deltaf4 [2] *180/Pi
deltaf1([3]}*180/Pi
deltaf4 [3]1*180/Pi+360
deltaf1([4]*180/Pi
deltaf4 [4]1*180/Pi+360



B.2.2 Spherical Four-Bar Function Generator by Plane-to-Sphere Projection

RadiusOfSphere=1;

DistanceOfProjection=8

ProjectionFun({x_,y_},r_,d_]:={r*x/sqrt[d"2+x"2+y"2],r*y/
Sqrt [@*2+x*2+y”2],r*d/sqrt [d"2+x"2+y"2]1};

Clearall [ol, @2, a3, 04, cal,sal, ca2,sa2, ca3, sa3, cod, sadl ;

aop={0.,0.};

alp={-0.2,0.6838};

bop={1,0.};

blp={0.771257,0.921844};

blnp={0.726739,1.05898};

a0=ProjectionFun{a0p, RadiusOfSphere,DistanceOfProjection];

al=ProjectionFun[alp,RadiusOfSphere,DistanceOfProjection];

b0=ProjectionFun [bOp, RadiusOfSphere,DistanceOfProjection] ;

bl=ProjectionFun[blp, RadiusOfSphere,DistanceOfProjection];

bln=ProjectionFun [blnp,RadiusOfSphere,DistanceOfProjection];

al=ArcCos [a0.al/Sqrt[a0.a0] /Sqrtlal.al]ll;

a2=ArcCos[al.bl/Sqgrt[bl.bl]/Sqrtlal.alll;

a3=ArcCos [bl.b0/Sqgrt [bl.bl] /Sqrt [b0.b0]];

ad4=ArcCos [a0.b0/Sgrt [a0.a0] /Sqrt [b0.b0]];

cal=Cos[al] ;sal=Sin[al] ;ca2=Cos [a2] ;sa2=Sin[a2];

ca3=Cos [a3] ;sa3=Sin[a3] ;cas=Cos [ad] ;sa4=Sin[wa4d];

AngleBTAxes [{ax_,ay_,az_},{bx_,by ,bz_}]:=
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If [ax==0 && ay==0 ,{-by,bx,0},{-(az by-ay bz)/(-ay bx+ax by),-(az

bx-ax bz)/(ay bx-ax by),1}]
alphalv=AngleBTAxes [a0,al];
alpha4v=AngleBTAxes [a0,b0];
®10=ArcCos[alphalv.alphadv/Sqgrt[alphalv.alphalv]/
Sqgrt [alpha4v.alpha4v] ]l +Pi
ClearAll [c01,s601,c04,s604,c03,8603,c02,8602];

Mlcé_,s6_,co_,sa_):={{ch,-ca s6,sa sb},{sf,ca cb,-sa cb},{0,sa, ca}}

M2=M[c62,s562,ca2,sa2];
M3=M[c63,s863,ca3,sa3];
M4=M[c64,s64,cad,s04];
M1=M[c01,s61,cal,sall;
Z=M2 .M3-Transpose [M1] . Transpose [M4] ;
z11=2Z2[[1,1]]
z12=2[[1,2]]
z13=2[[1,3]]
z21=2{[2,1]]
z22=2{[2,2]]
z23=2Z[[2,31]
z31=2[[3,1]]
232=2[[3,2]]
233=2[[3,31]
For [1=010; k=1, k<8, d1=01-5.*Pi/180;k=k+1,
cf1=Cos[dl];
s01=Sin[01];
Angles:FindRoot[{zll==0,212==0,zl3==0,221==0,222==0,
z23==0},{c62,0.1},{s62,-0.95},{c63,-0.1},{s63,-0.9}, {cb4, -
0.2},{s64,-0.9}1;
anscl4=Angles([5,2]];
anssf4=Angles[[6,2]];
64=Which[anscf420 && anssf4=20,ArcCos[anscb4],
anscf4<0 && anssf4>0,ArcCos[ansch4],



151

anscf4s0 && anssf4s<0,2*Pi-ArcCoslanscf4],
anscf4>0 && anssf4<0,2*Pi-ArcCos[anscf4]];
If[k==1, 64begin=04;Print [Angles],];
deltaf4 [k]=604-64begin;
deltafl{k]=01-010;
]
outputl2 [DistanceOfProjection]=deltaf4 [3] *180/Pi
outputl3 [DistanceOfProjection] =deltaf4[5]*180/Pi
outputl4 [DistanceOfProjection]=deltaf4[7]*180/Pi

B.2.3 Planar Four-Bar Function Generator by Sphere-to-Plane Projection

RadiusOfSphere=1;

DistanceOfProjection=6
ProjectionFun{{x_,y_,z_}.,d_l:={d/z*x,d/z*y};
ClearAll [a0Op,alp,alnp,bOp,blp,blnp,ad,al,aln,bo,bl,bln];
a0={0.,0.,1.};
al={-0.00666479,0.0227869,0.999718};
b0={0.0333148,0.,0.995445};
b1={0.025688,0.0307035,0.999198};
bin={0.0242025,0.035267,0.999085};
a0p=ProjectionFun[a0,DistanceOfProjection];
alp=ProjectionFun{al,DistanceOfProjection];
bOp=ProjectionFun [b0,DistanceOCfProjection];
blp=ProjectionFun[bl,DistanceOfProjection];
blnp=ProjectionFun[bln,DistanceOfProjection];
ClearAll[ch1,s61,c62,s62,c63,s603,ch4,s04,al,a2,a3,a4];
M[c6_,s6_,a_]:={{cb,-s6,e a s6},{sb,ch,-e a c6},{0,e a, 1}}
M2=M[c62,s62,a2] ;

M3=M[c63,s63,a3];

M4=M[ch4,s64,a4];

M1=M[cfl,s61,al];
Z2=M2.M3-Transpose [M1] . Transpose [M4] ;
z11=2[[1,1]]);

z12=2[[1,2]1];

z13=2[[1,3]}];

221=2[[2,1]};

z22=2[[2,2]];

z23=2[[2,3]];

z31=2[[3,1]];

232=2[[3,2]];

233=21[1[3,3]11;

equll=Coefficient[z1l1l,e,0]==0
equl2=Coefficient[z12,e,0]==
equl3=Coefficient [z13,e,1]==0
equ2l=Coefficient [{221,e,0]==0
equ22=Coefficient [222,e,0]==
equ23=Coefficient [z23,e,1]==0
equ3l=Coefficient[z31,e,1]==
equ32=Coefficient[z32,e,1]==0
al=Sqrt[(alp-a0p) . (alp-a0p)]

a2=8Sqrt [(blp-alp) . (blp-alp)]

a3=sqrt [ (bOp-blp) . (bOp-blp)]

a4=Sqrt [ (a0p-bOp) . (aOp-bop) ]
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ClearAll [61begin, 61] ;
61begin=ArcCos [ (bOp-a0lp) . (aip-alp) /Sqrt [ (bOp-alp) . (bOp-a0p)]l/Sqgrt[(alp-
ao0p) . (alp-ao0p)]1+Pi;
For [k=1;61=61begin, ks8,k++;01=01-5*Pi/180,
deltafl[k]=601-61begin;
cfl=Cos[61];s61=Sin[61];
Answer=FindRoot [{equll,equl2, equl3,equ32, equ3l, equ23},
{c62,-0.3},{s62,-0.9},{c63,-0.2},{s63,-0.8},{ch4,-0.1}, {s64,-
0.9}];
anscfl4=Answer [[5,2]];
anssf4a=Answer[[6,2]];
#4=Which[anscf4=0 && anssf420,ArcCos [ansch4],
anscf4<0 && anssf4>0,ArcCos [anscé4d],
anscf4s0 && anssf4s0,2*Pi-ArcCos [anscé4],
anscf4>0 && anssf4<0,2*Pi-ArcCos[anschf4]];
If [k==1,64begin=04,1];
deltaf4 [k]=64-64begin;
]
Positionl [DistanceOfProjection)=deltaf4 [3]*180/Pi
Position2 [DistanceOfProjection] =deltaf4 [5] *180/Pi
Position3 [DistanceOfProjection]=deltaf4([7]*180/Pi

B.3 Adjustable Four-Bar Motion Generator

The following MATHEMATICA models include four sections. Section B.3.1 illustrated
how to programming the synthesis design equations for planar four-bar motion generator
by MATHEMATICA language. Section B.3.2 illustrated the Dual-number method and
the displacement equations for planar four-bar motion generator. Section B.3.3
illustrated plane-to-sphere projection method, dual-number method and displacement
equations for spherical four-bar motion generator. Section B.3.4 illustrates the sphere-to-

plane projection method for spherical four-bar motion generator.

B.3.1 Synthesis Design of Planar Four-Bar Motion Generator

pijlp_.,q ,r_,pl_,q1_,r1_J:={{p1[[1,1)),q2(([1,1]),r1[[1,1]]},
{p1ll2,11),q1((2,1)),r1(([2,2]]},{2,1,1} }.
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Inverse[{{p[(1,11],ql(2,1]),x([[21,1)1},
{pll2,111,q((2,1)),x([2,111},{1,1,1} }1;
ao={{o}, {aoy}, {1}};
al={{aix}, {aly},{1}};
aln={{alnx}, {alny}, {1}};
bo={{1.5}, {boy},{1}};
bi={{bix}, {bly},{1}};
bin={{binx}, {biny},{1}};
pl={{-0.1950},{1.3709}, {1} };q1={{0.0401},{2.0111},{1}};
ri={{0.8807},{1.8467},{1}};
p2={{-0.1122},{1.4136},{1}};q2={{0.1369}, {2.0484},{1}};
r2={{0.9737},{1.8655},{1}}; '
p3={{-0.0259},{1.4501},{1}};qg3={{0.2366},{2.0796},{1}};
r3={{1.0693},{1.8790},{1}}; _
pa={{0.0634},{1.4802},{1}};qa={{0.3386},{2.1043},{1}};
ra={{1.1671},{1.8869},{1}};
p5={{-0.1950},{1.3709},{1}};q5={{0.0401},{2.0111},{1}};
r5={{0.8807},{1.8467},{1}};:
p6={{-0.1162},{1.3909},{1}};qg6={{0.1088},{2.0347},{1}};
r6={{0.9518},{1.8835},{1}};
p7={{-0.0370},{1.4034},{1}};q7={{0.1764}, {2.0511}, {1}};
r7={{1.0220},{1.9151},{1}};
D12=D1j[pl,ql,rl,p2,q92,r2];
D13=D1j [pl,ql,xr1l,p3,q3,r3];
D14=D1j [pl,ql,rl,p4,q4,r4d];
D56=D1j [p5,95,r5,p6,q6,xr6];
D57=D1j [p5,495,r5,p7,97,x7];
El=Transpose[(D12.al-a0)].(D12.al-a0)-1."2;
E2=Transpose [ (D13.al-a0)]. (D13.al-a0)-1.%2;
E3=Transpose{(D14.al-a0)]. (Dl4.al-a0)-1."2;
E4=Transpose[(D56.aln-a0)]. (D56.aln-a0)-1."2;
ES=Transpose[(D57.aln-a0)]. (D57.aln-a0)-1."2;
FindRoot [{E1[(1,1]1==0,E2([1,1]]==0,E3[[1,1]]==0,E4([[1,1]]==0,E5([1,1]]
==0}, {a0y,0.01},{alx,-0.6},{aly,0.7},
{ainx,-0.2}, {alny,0.9}]

“2
~2

Fl=Transpose[(D12.bl-b0)]. (D12.b1-b0)-1.5%2;

F2=Transpose [ (D13.bl-b0)]. (D13.b1-b0)-1.5"2;

F3=Transpose[(D14.bl-b0)]. (D14.b1-b0)-1.5"2;

F4=Transpose { (D56 .bln-b0}]. (D56.bln-b0)-1.5%2;

F5=Transpose [ (D57 .blin-b0)]. (D57.bin-bo0)-1.5"2;

FindRoot [{F1{[1,1]1==0,F2[[1,1]]==0,F3([([1,1]}]==0,F4([[1,1]]1==0,F5([1,1]]
==0}, {b0y,0.01}, {b1x,1.3}, {bly,1.5}, {blnx, 0.8}, {blny,1.3}]

B.3.2 Displacement Analysis for Planar Four-Bar Motion Generator

MyMaxIterations=800;

ClearAll [cf1,s61,al,ch2,s62,a2,c63,s03,a3,ch4,s584,a4];
Mlcod_,s6_,a_):={{cb,-s6,e a s8},{s8,c6,-e a c6},{0,e a, 1}}
M2=M{[c02,s62,a2] ;

M3=M[c63,s63,a3];

M4=M[c64,s04,a4];

M1=M[c61l,s601,all;

Z=M2.M3-Transpose [M1] . Transpose [M4] ;

211=21[1[1,1]]
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z12=2[[1,21]
z13=2[[1,3]]
z21=2Z[[2,1]]
z22=2[[2,2]]
z23=Z[[2,3]]
z31=2{[3,11]
z32=2[[3,2]]
z33=2[[3,3]]
equll=Coefficient[z11l,e,0]==0
equl2=Coefficient [z12,e,0]==0
equl3=Coefficient [213,e,1]==0
equ2l=Coefficient [z21,e,0]==0
equ22=Coefficient [z22,e,0]==0
equ23=Coefficient [223,e,1]==0
equ3l=Coefficient [z31,e,1]==0
equ32=Coefficient [z32,e,1]==0
plp={-0.1950,1.3709};q1p={0.0401,2.0111};
rip={0.8807,1.8467};p2p={-0.1122,1.4136};
q2p={0.1369,2.0484};r2p={0.9737,1.8655};
p3p={-0.0259,1.4501};g3p={0.2366,2.0796};
r3p={1.0693,1.8790};p4p={0.0634,1.4802};
q4p={0.3386,2.1043};r4p={1.1671,1.8869};
p5p={-0.1950,1.3709},;95p={0.0401,2.0111};
r5p={0.8807,1.8467};p6p={-0.1162,1.3909};
g6p={0.1088,2.0347);r6p={0.9518,1.8835};
p7p={-0.0370,1.4034};g7p={0.1764,2.0511};
r7p={1.0220,1.9151};a0p={0,-0.0261977};
alp={-0.6384,0.743255};
alnp={-0.260506,0.939355};
bop={1.5,-0.0881517};
blp={1.28305,1.39579};
blnp={0.839614,1.25892};
al=sSqgrt [ (alp-a0p) . (alp-a0p)];
a2=Sqgrt[(blp-alp). (blp-alp)];
a3=Sqrt [ (bOp-blp) . (bOp-bip)];
a4=8Sqrt[(a0p-bop) . (adp-bop)1;
f#1begin=ArcCos [ (bOp-a0Op) . (alp-alOp)/Sqart [ (bOp-ao0p) . (bOp-alp)]/Sqrt{(alp-
ao0p) . (alp-a0Op)]]+Pi
MR[6_]:={{Cos[6],-sin[6]},{Sin[6],Cos[8]}};
ch2t=-0.3; 5602t=-0.9; cH3t=-0.2; s63t= -0.8; ch4t=-0.1; s64t=-0.9;
For [k=1;01=61begin, ksMyMaxIterations,
k++;01=61-20./MyMaxIterations*Pi/180,
deltafl[k]=61-61begin;
ch1=Cos[61];
s61=8in[61];
Bnswer=FindRoot [{equll, equl2, equl3,equ32,equ3l,equ23}, {ch2,co2t}, s
62,s62t}, {c63,ch3t},{s63,s03t},{ch4,chat}, {s64,s04t}];
cf2t=Answer[[1,2]];s02t=Answer[[2,2]];cl3t=Answer([([3,2]];
s63t=Answer|[[4,2]];
cfat=Answer([5,2]];s04t=Answer[[6,2]];
anscfl=cél;anssfl=s61;
anscf2=Answer[[1,2]];anssf2=Answer[[2,2]];
anscf3=Answer|[[3,2]];
anssf3=Answer [ [4,2]];anscf4=Answer[[5,2]];
anssf4=Answer[[6,2]];
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62=Which[ansc82z20 && anssf2z20,ArcCos[anscf2],anscf2<0 &&
anssf2>0,ArcCos [anscf2],anscf2s0 && anssf2<0,2*Pi-
ArcCos [anscf2],ansch#2>0 && anssf2<0, -ArcCos [ansc62]];
If [k==1, 62begin=02,];
deltaf2 [k]=62-62begin;
newal [k]=MR[deltafl [k]].{{(alp-ao0p) [[1]1]}, {(alp-
aop) [[211}}+{{aop[(1]11},{a0op[(2]1}};:
pll[k]=MR[deltad1(k]].{{(pip-aop) [[1]1},{(plp-
aop) [[2]11}}+{{aop ({111}, {a0p[(2]11}};:
g11[k]=MR[deltad1[k]].{{(glp-ao0p) [[111}, {(qlp-
aop) [(211}}+{{a0op[[1]1},{a0p([2]]}};
ril[k]=MR[deltaf1[k]].{{(r1p-ao0p) [[11]}, { (rlp-
aop) [[2]1}}+{{a0p[(1]]},{a0op([2]1]1}};
newpl [k]=MR [delta#2 [k]]. (p11l (k] -newal [k]) +newal [k] ;
newql [k]=MR [deltaf2 [k]]. (qll[k] -newal [k])+newal [k] ;
newrl [k] =MR [deltaf2[k]]. (r11[Kk]-newal [k]) +newal [k];
squarep2 [k] = (newpl [k] [[1]1]-p2p[[1]]) "2+ (newpl [k] [[2]]-p2p[[2]])"2;
squarep3 [k] = (newpl [k] [[1]]-p3p[[1]]) "2+ (newpl(k] [[2]]-p3p[[2]1])"2;
squarep4 [k]= (newpl (k] [[1]]-p4p[[1]]) "2+ (newpl (k] [[2]1]-p4ap[[2]])"2;
squareq2 [k] = (newgl[k] [[1]]-g2p[[1]])“2+ (newql [k] [[2]]1-q2p[[2]])"2;
squareq3 [k] = (newgl [k] [[1]]-g3p[[1]])“2+(newql [k] [[2]}]-g3p[[2]])"2;
squareq4 [k] = (newgl (k] [[1]]-q4p[[1]]) "2+ (newqgl[k] [[2]1]-qap[[2]])"2;
squarer2 [k] = (newrl[k] [[1]]-r2p[[1]])*2+ (newrl (k] [[2)])-xr2p[[2]])"2;
squarer3 [k] = (newrl[k] [[1)]-r3p[[1]]) "2+ (newrl (k] [[2]])-xr3p[[2]])"2;
squarer4 [k] = (newrl[k] [[1]]-r4p[[1]])) "2+ (newrl[k] [[2]]-rapl[2])])"2;
square?2 [k] =squarep2 [k] +squareq2 [k] +squarer2 [k] ;
square3 [k] =squarep3 [k] +squareg3 [k] +squarer3 [k] ;
square4 [k] =squarep4 [k] +squareg4 [k] +squarer4 [k] ;
]
For [k=1;minsqrt2=999;minsqgrt3=999; minsgrt4=999;myk2 ;myk3;myk4,
ksMyMaxIterations, k=k+1,
If [minsqrt2s>square2 (k] [[1]],minsqgrt2=square2 [k] [[1]];myk2=k,];
If [minsqgrt3ssquare3 [k] [[1]],minsqrt3=square3 (k] [[1]];myk3=k,];
If [minsgrt4s>square4d (k] [[1]],minsgrt4=square4 [k] [[1]];myk4d=k,];
]
newpl [myk2]
newpl [myk3]
newpl [myk4]
newqgl [myk2]
newql [myk3]
newql [myk4]
newrl [myk2]
newrl [myk3]
newrl [myka4]
deltaf1 [myk2] *180/Pi
deltafl [myk3] *180/Pi
deltafl[myk4] *180/Pi
SErrp2=Sgrt [minsqgrt2]/3
SErrp3=Sgrt [minsqrt3]/3
SErrp4=Sqgrt [minsqgrt4]/3

B.3.3 Spherical Four-Bar Motion Generator by Plane-to-Sphere Projection

MyMaxIterations=400;
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RadiusOfSphere=1;
DistanceOfProjection=7
ProjectionFun[{x_,y_}.,r_,d_):={r*x/sqrt [d"2+x*2+y”"2],r*y/sSqrt [d"2+x"2+y

“2],r*d/sqrt [d*2+x"2+y"2] }
plp={-0.1950,1.3709};qlp={0.0401,2.0111};
r1p={0.8807,1.8467};p2p={-0.1122,1.4136};
q2p={0.1369,2.0484};r2p={0.9737,1.8655};
p3p={-0.0259,1.4501};q3p={0.2366,2.0796};
r3p={1.0693,1.8790};p4p={0.0634,1.4802};
g4p={0.3386,2.1043};r4p={1.1671,1.8869};
p5p={-0.1950,1.3709};g5p={0.0401,2.0111};
r5p={0.8807,1.8467};p6p={-0.1162,1.3909};
q6p={0.1088,2.0347};r6p={0.9518,1.8835};
p7p={-0.0370,1.4034};q7p={0.1764,2.0511};
r7p={1.0220,1.9151};
pl=ProjectionFun [plp,RadiusOfSphere,DistanceOfProjection]
p2=ProjectionFun [p2p,RadiusOfSphere,DistanceOfProjection]
p3=ProjectionFun[p3p,RadiusOfSphere,DistanceOfProjection]
p4=ProjectionFun [p4p,RadiusOfSphere,DistanceOfProjectionl]
p5=ProjectionFun [p5p, RadiusOfSphere,DistanceOfProjection]
p6=ProjectionFun [p6p,RadiusOfSphere,DistanceOfProjection]
p7=ProjectionFun[p7p,RadiusOfSphere,DistanceOfProjection]
gl=ProjectionFun[glp,RadiusOfSphere,DistanceOfProjection]
g2=ProjectionFun [q2p,RadiusOfSphere,DistanceOfProjection]
g3=ProjectionFun [g3p,RadiusOfSphere,DistanceOfProjection]
g4=ProjectionFun [g4p, RadiusOfSphere,DistanceOfProjection]
g5=ProjectionFun [g5p, RadiusOfSphere,DistanceOfProjection]
g6=ProjectionFun [g6ép, RadiusOfSphere,DistanceOfProjection]
g7=ProjectionFun [q7p,RadiusOfSphere,DistanceOfProjection]
ri=ProjectionFun[rlp,RadiusOfSphere,DistanceOfProjection]
r2=ProjectionFun[r2p,RadiusOfSphere,DistanceOfProjection]
r3=ProjectionFun [r3p,RadiusOfSphere,DistanceOfProjection]
r4=ProjectionFun [r4p, RadiusOfSphere,DistanceOfProjection]
r5=ProjectionFun [r5p, RadiusOfSphere,DistanceOfProjection]
ré6=ProjectionFun[rép,RadiusOfSphere,DistanceOfProjection]
r7=ProjectionFun{r7p,RadiusOfSphere,DistanceOfProjection]
a0p={0,-0.0261977};
alp={-0.6384,0.743255};
alnp={-0.260506,0.939355};
bop={1.5,-0.0881517};
blp={1.28305,1.39579};
blnp={0.839614,1.25892};
a0=ProjectionFun [a0p,RadiusOfSphere,DistanceOfProjection]
al=ProjectionFun[alp,RadiusOfSphere,DistanceOfProjection]
aln=ProjectionFun [alnp,RadiusOfSphere,DistanceOfProjection]
b0=ProjectionFun [b0Op,RadiusOfSphere,DistanceOfProjection]
bl=ProjectionFun[blp,RadiusOfSphere,DistanceOfProjection]
biln=ProjectionFun[blnp, RadiusOfSphere,DistanceOfProjection]
al=ArcCos[a0.al/Sqrt[a0.a0] /Sgrt[al.alll;
a2=ArcCos [al.bl/Sqrt [bl.bl]/Sgrt[al.alll;
a3=ArcCos [bl.b0/Sqrt [bl.bl] /Sgrt [b0.b0]];
a4=ArcCos [a0.b0/Sgrt [a0.a0] /Sgrt [b0.b0]];
cal=Cos [al] ;sal=Sin[al] ;ca2=Cos [a2] ;sa2=Sin[a2];
ca3=Cos [a3] ;sa3=Sin[a3] ;cad=Cos [04d] ;sa4=Sin[w4d] ;
AngleBTAxes [{ax_,ay_,az_},{bx_,by_,bz_}]:=

{-(az by-ay bz)/(-ay bx+ax by),-(az bx-ax bz)/(ay bx-ax by),1}

alphalv=AngleBTAxes [a0,al];



alpha2v=AngleBTAxes [al,bl];
alpha3v=AngleBTAxes [bl,b0];
alpha4v=AngleBTAxes [a0,b0];

®10=ArcCos[alphalv.alphad4v/Sqrt[alphalv.alphalv]/Sqgrt[alphadv.
$40=ArcCos [alpha3v.alphad4v/Sqrt [alpha3v.alpha3v]/Sqrt [alpha4v.
®20=ArcCos{alphalv.alpha2v/Sqgrt[alphalv.alphalv}/Sqrt[alpha2v.
®30=ArcCos[alpha3v.alpha2v/Sqrt[alpha3v.alpha3v]/Sqrt[alpha2v.

$®100=Pi-010+Pi;
®100*180/Pi
ClearAll [c81,s61,c02,8602,c63,s63,ch4,s64];
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alphadv]];
alpha4vl];
alpha2v]];
alpha2v]];

M[cé_,s6_,ca_,sa_):={{cb,-ca s6,sa s8},{s6,ca cb,-sa cb},{0,sa, ca}}

M2=M[c62,s8602,ca2,sa2];
M3=M[c63,s603,ca3,sa3];
M4=M{c64,s04,cuas,sa4d];
M1=M[cf1,s01,cal,sal];
Z=M2.M3-Transpose [M1] . Transpose [M4] ;
zz11=2[[1,1]];
zz12=2[[1,2]];
2z13=2[[1,3]];
zz21=Z[[2,111];
zz22=2[(2,2]1];
2z23=2[[2,3]];
zz31=2[[3,1]];
z232=2[[3,2]];
zz33=2[[3,31];

tcf2=-0.3;ts02=-0.9;tch3=-0.17;ts63=-0.9;tch4=-0.17;ts64=-0.9;

For [b1=0100; k=1, kSMyMaxIterations,
@1=¢1-20./MyMaxIterations*Pi/lBO;k=k+1,
cf1=Cos[dl];
s01=8Sin[d1];

Angles=FindRoot [{zz11==0,2212==0,2213==0,2221==0,2222==0,2223==0}, {
c62,tc62),{s62,ts62},{co3,tch3},{s63,ts03}, {ch4,tch4a}, {s64,tsh

4}1;
tc62=Angles[[1,2]];tsf2=Angles[[2,2]];
tch3=Angles[[3,2]]);tsf3=Angles|[[4,2]];
tcf4=Angles[[5,2]];tsf4=Angles[[6,2]];
anscf2=Angles[[1,2]]);
anssf2=Angles|[[2,2]];
62=

Which[anscf2=20 && anssf220,ArcCos[anscb2],
anscf2<0 && anss2>0,ArcCos [anscé2],
anscf2<0 && anssf2s0,2*Pi-ArcCos[anscé2],
ansch2>0 && anssh2<0, -ArcCos [ansc82]];

If [k==1,62begin=602,];

deltaf2[k]=62-62begin;

deltafl[k]l=01-9100;

]
Rulo_,u_J:={{ull1,1]]1%2*(1-Cos [a]) +Cos [a],

ufll1,1]1] ull2,1]] (1-Cosla))-ull3,1]1] Sinlel,
ull1,1]) ull3,1]1] (1-Coslal)+ull2,1]) Sinlel},
{ull1,1]) ulf2,1]] (1-Cosl[al)+ull3,1]] Sinle],

ull2,111%2 (1-Coslal)+Cos[a]l,

ull2,1]) ull3,1]] (1-Coslal)-ull1,1]] Sinlol},
{ull1,1]] ull3,1]] (1-Cosle])-ul[2,1]] Sinlel,
ull2,11] ull3,1)) (1-Cos[el))+ull1,1]] Sinlel,

ull3,1]1%2 (1-Cos[a])+Coslal}};
uak={{uax}, {uay}, {vaz}};



158

ataxis={{a0([[1]11},{a0l[2]11},{a0[(3]]1}};
boaxis={{b0o[[1])]1},{b0[[2]1]},{bO[[3]1}};
For [k=1, ksMyMaxIterations, k++,
NewAl [k] =Ru [deltafl[k],a0axis]. (al-a0)+a0;
alaxis={{NewAl[k] [[1]]}, {NewA1l{k] [[2]]}, {NewAl[k] [[3]]}};
pltemp [k] =Ru[deltafl [k] ,a0axis]. (pl-a0)+al;
gltemp [k]=Ru[deltafl [k], a0axis]. (gql-a0)+a0l;
ritemp [k]=Ru(deltafl [k] ,a0axis]. (r1-a0)+ao0;
NewPl [k] =Ru[deltaf2 {k],alaxis]. (pltemp [k] -NewAl [k]) +NewAl [k] ;
NewQ1 [k] =Ru [deltaf2 [k],alaxis] . (gltemp [k] -NewAl [k]) +NewAl [k] ;
NewR1 [k] =Ru [deltaf2 [k],alaxis] . (rltemp [k] -Newal [k] ) +NewAl (k] ;
1
P1ll=p4;Q11=q4;R11=r4;
For [k=1;minsqgrt=9999;myk, ksMyMaxIterations, k++,
toleranceErr [k] = (Sqrt [ (NewP1 [k] [[1]])-P11[[1]]) "2+ (NewP1[k] [[2]]-
P11[[2]1]) "2+ (NewP1([k] [[3]1]-P11[([31])"*2]+Sqrt[(NewQl[k] [[1]]-
Q11[[1]1]) "2+ (NewQl [k] [[2]]-Q11([[2]]) "2+ (NewQ1l[k] [[3]]-
Q11 [[3]1])"2)+8grt[(NewR1[k] [[1)]}-R11[[1]])"2+ (NewR1lI[k] [[2]]~-
R11[[2]]) "2+ (NewR1l[k}[[3]]-R11[[31])%2])/3.;
If [minsqrt>toleranceErr [k] ,minsqrt=toleranceErr [k]; myk=k,];
]
myanswer4 [DistanceOfProjection] ={deltafl [myk]*180/Pi,
DistanceOfProjection, toleranceErr [myk] *DistanceOfProjection}
P11=p3;0Q011=q3;R11=x3;
For [k=1;minsqrt=9999;myk, ksMyMaxIterations, k++,
toleranceErr [k] = (Sqrt [ (NewP1 [k] [[1]])-P11([1]]) "2+ (NewP1l([k] [[2]]-
P11[[2]1)"2+ (NewP1([k] [[3]]-P11[[3]])"2]+Sqgrt([(NewQl (k] [[1]]-
Q11{[1]]) "2+ (NewQl [k] [{2]]1-Q11[[2]])"2+ (NewQl([k][[3]]-
011[{31]1)"2]1+Sqgrt[(NewRl[k] [[1]]-R11[[1]})"2+ (NewR1[k] [[2]]-
R11[[2]])"2+ (NewR1l[k) [[3]]1-R11([{3]])%2]})/3.;
If [minsgrt>toleranceErr [k] ,minsgrt=toleranceErr [k]; myk=k,];
]
myanswer3 [DistanceOfProjection] ={deltadl [myk] *180/Pi,
DistanceOfProjection, toleranceErr [myk] *DistanceOfProjection}
P11=p2;Q11=q2;R11=x2;
For [k=1;minsqrt=9999;myk, ksMyMaxIterations, k++,
toleranceErr [k] = (Sqrt [ (NewP1[k] [[1]]-P11[[1]]) "2+ (NewP1[k] [[2]]-
P11{[2]]) "2+ (NewPl[k][[3]]-P11[[3]1])"2]+Sqrt([(NewQl[k][[1]]-
Q11([[1]]) "2+ (NewQ1 (k] [[2]]1-Q11[[2]])"2+ (NewQl([k][[3]1]-
011([[3]])"2)+Sgrt[(NewR1[k] [[1]]-R11[[2]]) "2+ (NewR1[k] [[2]]-
R11[[2]]) "2+ (NewR1l([k] [[3]1]-R11[[3]])%2])/3.;
If [minsgrt>toleranceErr (k] ,minsgrt=toleranceErr [k] ;myk=k,];
]
myanswer2 [DistanceOfProjection] ={deltafl [myk] *180/Pi,DistanceOfProjecti
on, toleranceErr [myk] *DistanceOfProjection}

B.3.4 Planar Four-Bar Motion Generator by Sphere-to-Plane Projection

RadiusOfSphere=1;

DistanceOfProjection=7

ClearAll [plp,p2p,p3p,p4p.,pP5p,P6P,P7P,P1l,p2,p3,p4,pP5,pP6,P7];
UnProjectionFun({x_,y_,z_},d_l:={d/z*x,d/z*y}
pl={-0.0273,0.1921,0.9810};g1={0.0055,0.2761,0.9611};
r1={0.1208,0.2532,0.9598};



p2={-0.0157,0.1979,0.9801};g2={0.0188,0.2808,0.9596};

r2={0.1332,0.2552,0.9577};

p3={-0.0036,0.2028,0.9792};g3={0.0324,0.2846,0.9581};

r3={0.1460,0.2565,0.9555};

p4={0.0089,0.2069,0.9783};q4={0.0463,0.2876,0.9566};

r4={0.1589,0.2570,0.9533};

p5={-0.0273,0.1921,0.9810};45={0.0055,0.2761,0.9611};

r5={0.1208,0.2532,0.9598};

p6={-0.0163,0.1949,0.9807};96={0.0149,0.2791,0.9602};

r6={0.1302,0.2576,0.9574};

p7={-0.0052,0.1966,0.9805};q7={0.0242,0.2811,0.9594};

r7={0.1394,0.2613,0.9551};

plp=UnProjectionFun[pl,DistanceOfProjection]
p2p=UnProjectionFun[p2,DistanceOfProjection]
p3p=UnProjectionFun[p3,DistanceOfProjection]
p4p=UnProjectionFun[p4,DistanceOfProjection]
pSp=UnProjectionFun{p5,DistanceOfProjection]
pép=UnProjectionFun [p6,DistanceOfProjection]
p7p=UnProjectionFun [p7,DistanceOfProjection]
glp=UnProjectionFun[qgl,DistanceOfProjection]
g2p=UnProjectionFun[g2,DistanceOfProjection]
g3p=UnProjectionFun [g3,DistanceOfProjection]
g4p=UnProjectionFun[g4,DistanceOfProjection]
g5p=UnProjectionFun [g5,DistanceOfProjection]
gép=UnProjectionFun[g6,DistanceOfProjection]
g7p=UnProjectionFun|[q7,DistanceOfProjection]
rlp=UnProjectionFun{rl,DistanceOfProjection]
r2p=UnProjectionFun[r2,DistanceOfProjection]
r3p=UnProjectionFun{r3,DistanceOfProjection)
rap=UnProjectionFun[r4,DistanceOfProjection]
r5p=UnProjectionFun{r5,DistanceOfProjection]
rép=UnProjectionFun|[r6,DistanceOfProjection]
r7p=UnProjectionFun[r7,DistanceOfProjection]

ClearAll{a0p,alp,alnp,bOp,blp,blnp,a0d,al,aln,bo,bl,bln];

a0={0.0000,-0.0008398,1.0000};
al={-0.06948,0.05719,0.9959};
aln={-0.04124,0.07976,0.9960};
b0={0.09054,-0.001501,0.9959};
b1={0.05284,0.1283,0.9903};
bin={0.09393,0.1330,0.9867};
a0p=UnProjectionFun[a0,DistanceOfProjection]
alp=UnProjectionFun[al,DistanceOfProjection]

alnp=UnProjectionFun[aln,DistanceOfProjection]

bOp=UnProjectionFun [b0,DistanceOfProjection]
blp=UnProjectionFun [bl,DistanceOfProjection]

blnp=UnProjectionFun{bln,DistanceOfProjection]
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On the Design of slide-crank mechanisms part II: Multi-phase path and

function generation
plane mechanism by Dual Number

ClearAll[cfl,s61,al,c62,s62,a2,c63,s63,a3,ch4,s64,a4,M1,M2,M3,M4];
Mlc6_,s0_,a_]:={{ch,-s6,e a sb},{s6,ch,-e a c6},{0,e a, 1}}

M2=M([c62,s862,a2];

M3=M[c#3,s5603,a3];

M4=M[cb4,s64,a4]);

M1=M[c81,s61,all;

Z=M2 .M3-Transpose [M1] . Transpose [M4] ;
zz11=2[[1,111;



zz12=2[[1,21];
zz13=2[[1,3]];
2221=Z2[[2,11]);
zz22=2[[2,2]11;
zz23=21[[2,3]1;
zz31=2[[3,1]1];
zz32=2[1[3,2]];
zz33=2[[3,3]1];

equll=Coefficient[zzll,e,0]==0
equl2=Coefficient[zz12,e,0]==0
equl3=Coefficient [zz13,e,1]==0
equ2l=Coefficient [2221,e,0]==0
equ22=Coefficient [zz22,e,0]==
equ23=Coefficient [z223,e,1]=
equ31=Coefficient[zz31,e,1]==0
equ32=Coefficient [2232,e,1]==

plp={-0.6953,1

p2p={-0.6019,1.
p3p={-0.5020,1.
p4p={-0.3964,1.
p5p={-0.6953,1.
pép={-0.5883,1.
p7p={-0.4774,1.

a0p={0.0000, -0

alp={-0.7674,0.

.2291}
3026}
3675}
4233}
2291}
2796}
3193}
.0092};
6317} ;

alnp={-0.4555,0.8809};

bop={1.0000, -0

.0166};

blp={0.5869,1.4252};

binp={1.0472,1.
Clearall [al,a2,
al=8qgrt[(alp-aop)
a2=Sqrt[(blp-alp).
a3=Sqrt [ (bOp-blp) .
a4=Sqrt [ (a0dp-bop)

4827};
a3,a4]);

. (alp-a0p)]
(blp-ailp)l
(bOp-bilp) ]
. (a0p-bop) ]

MR[6_]:={{Cos[68],-Sin[6]}, {Sin[6],Cos(6]}};
ClearAll [61begin, 61];

f81begin=ArcCos

[ (bOp-alp) .

(alp-a0Op) /Sqrt [ (bOp-alp) .

a0p) . (alp-a0p)]11+Pi;
For [k=1;61=61begin,k=<4000,k++;61=61-0.02*Pi/180,

deltafl [kl

=61-61begin;

cb1l=Cos[61];
s81=Sin[61];

Answer=FindRoot[{equll,equlz,equ13,equ32,equ31,equ23},
{c62,-0.3},{s62,-0.9}, {c63,-0.2},{s63,-0.8},{ch4,-0.1},{s64,-

0.9}1;

anscf2=Answer[[1,2]];
anssf2=Answer{[2,2]];
62=Which[ansc8220 && anssf02z20,ArcCos [ansc82],
anscf2<0 && anssf2>0,ArcCos [ansch2],
anscf2s0 && anssf2s0,2*Pi-ArcCos[anscf2],
anscf2>0 && anssfh2<0, -ArcCos[anscfd2]];
If [k==1,62begin=62,];

delta#2 [k]

=62-62begin;

newal [k] =MR [deltaf1 [k]].{{ (alp-a0p) [
aop) [[2]11}}+{{a0pll1]1},{a0p[I2
pli[k]=MR{[deltafl[k]].
aop) [[2]11}}+{{aop[[1]]},{a0Opl[2

{{(p1p-ao0p) [[1]

— s e
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(bop-a0Op)l/Sqrtl(alp-



newpl [k]=MR [deltaf2[k]]. (pl1[k] -newal [k]) +newal {k] ;

square2 [kl = (newpl (k] [[1]])-p2p[[1]}) "2+ (newpl[k] [[2]]-p2p[I2
square3 [k] = (newpl [k] [[1]]-p3p[[1]1]) "2+ (newpl([k] [[2]]-p3p[{2
square4 [k] = (newpl [k] [[1]]1-pap[[1]]) "2+ (newpl (k] [[2]]-p4p[I[2

]

For [k=1;minsqrt2=999; minsqgqrt3=999;minsqrt4=999;

minsqrt5=999;myk2;myk3;myk4;myk5,
ks4000,
k=k+1,

If [minsqrt2s>square2[k] [[1]],minsqgrt2=square2 (k] [[1]];myk2=k,];
If [minsqgrt3>square3 [k] [[1]],minsgrt3=square3 [k] [[1]];myk3=k,];
If [minsqrt4>squared [k] [[1]],minsqrtd4=square4 [k] [[1]] ;myk4=k,];

]
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StructuralErr2 [DistanceOfProjection] =Sgrt [minsgrt2] /DistanceOfProjectio

n;

StructuralErr3 [DistanceOfProjection] =Sqgrt [minsqrt3] /DistanceOfProjectio

n;

StructuralErr4 [DistanceOfProjection]=Sgrt [minsqrt4] /DistanceOfProjectio

n;

newpl [myk2]

newpl [myk3]

newpl [myk4]

deltafl [myk2] *180/Pi
deltafl[myk3]*180/Pi

deltafl [myk4a] *180/Pi

Sqgrt [square2 [myk2]]

Sqrt [square3 [myk3]]

Sqrt [square4 [myk4]]

StructuralErr2 [DistanceOfProjection]
StructuralErr3 [DistanceOfProjectionl
StructuralErr4 [DistanceOfProjectionl

B.4 Adjustable Five-Bar Path Generator

The following MATHEMATICA models include four sections. Section B.4.1 illustrated

how to programming the synthesis design equations for planar five-bar path generator by

MATHEMATICA language. Section B.4.2 illustrated the Dual-number method and the

displacement equations for planar five-bar path generator.

Section B.4.3 illustrated

plane-to-sphere projection method, dual-number method and displacement equations for

spherical five-bar path generator. Section B.4.4 illustrates the sphere-to-plane projection

method for spherical five-bar path generator.
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B.4.1 Synthesis Design of Planar Five-Bar Path Generator

D1j [6_,plx_,ply_,pix_,pjy_l={
{Cos[8],-8in[6),pjx-plx Cos[8)+ply*Sin[08]},
{sin[8],Cos[8]),pjy-plx Sin[6]-ply Cos[6]1},{0,0,1}};
Tild ,b0x_,bOy 1={{Cos[d],-Sin[d], -b0x Cos[d]+bOy
Sin[d)+b0x}, {Sin([d],Cos[d], -b0x Sin[d]-bOy Cos[d]+bOy}, {0,0,1}};
pi={{0.1816},{1.8993},{1}};
p2={{0.2756},{1.8648},{1}}
p3={{0.3573},{1.7945}, {1
p4={{0.4207},{1.6891},{
p5={{0.1816}, {1.8993}, {
p6={{0.3565},{1.9074}, {
p7={{0.5237}, {1.8873}, {
612=4.8260*Pi/180;
#13=9.8795*Pi/180;
#14=15.2680*Pi/180;
#56=-0.04756*Pi/180;
#57=0.3145*Pi/180;
D12=D1j[612,p1[[2,1]},p1[(2,1])]),p2([[2,1])],p2[[2,1]]
D13=D1j[613,p1[([21,11},p1[[2,1]],p3([([1,1]1],p3([I[2,1]]
D14=D1j[614,p1([([2,1]),p2[12,1]]),p4[[1,1]],p4([2,1]}]
D57=D1j [657,p5([1,1]},p5[(2,1])),p7((1,1])),p710[2,1111;
Clearall [a0x,a0y,alx,aly,alnx,alny,b0x,b0y,blx,bly, clx,cly, clnx, clny];
ao={{0.0}, {a0y},{1}};
al={{aix}, {aly}, {1}};
aln={{alnx}, {alny}, {1}};
bo={{1.25},{0},{1}};
ci={{cix}, {c1y}, {1}};
cln={{cinx}, {ciny}, {1}};
R1=1.0;
R2=1.0;
$1=45.0*P1/180;
bl={{b0[[1,1]]+R2 Cos[dl]},{bO[[2,1]]+R2 Sin{¢1]},{1}};
El=Transpose[(D12.al-a0)].(D12.al-a0)-R1"2;
E2=Transpose [ (D13.al-a0)].(DP13.al-a0)-R1°2;
E3=Transpose[(D14.al-a0)]. (D14.al-a0)-R1*2;
E4=Transpose [ (D56.aln-a0)]. (D56.aln-a0)-R1"2;
ES5=Transpose [ (D57.aln-a0)].(D57.aln-a0)-R1"2;
answl=FindRoot [{E1[[1,1]]==0,E2[[1,1]]==0,E3[[1,1]]==0,
E4[[1,11}==0,E5[[1,1]]==0}, {a0y,0.0},{alx,0.1},{aly, 0.9},
{ainx,-0.1}, {alny,0.9}]
a0y=answl([[1,2]]
alx=answll[[2,2]]
aly=answl[([3,2]]
alnx=answl/[[4,2]]
alny=answl|[[5,2]]
61=ArcCos [Transpose[(al-a0)]. (b0-a0)/
Sqrt [Transpose[(al-a0)]. (al-a0)]/
Sqrt [Transpose [b0-a0] . (b0-a0)1] [[1,1]1];

1}i
1}i
1}i
}}i
}};

1;
1;
1;
1;
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62=ArcCos [Transpose [ (D12.al-a0)]. (b0-a0)/
Sqrt [Transpose [(D12.al-a0)]. (D12.al-a0)]/
Sgrt [Transpose [b0-a0]. (b0-a0)11[[1,1]1};
63=ArcCos [Transpose [ (D13.al1-a0)]. (b0-a0)/
Sgrt [Transpose [ (D13.al-a0)].(D13.al-a0)]}/
Sqrt [Transpose [b0-a0] . (b0-a0)]1] [[1,1]1];
64=ArcCos [Transpose [ (D14.al-a0)]. (b0-a0)/
Sqgrt [Transpose[(D14.al-a0)]. (D14.al-a0)]/
Sgrt [Transpose [b0-a0] . (b0-a0)]1] {[1,1]];
§5=ArcCos [Transpose [ (aln-a0)]. (b0-a0)/
Sqgrt [Transpose[(aln-a0)]. (aln-a0)]/
sqrt [Transpose [b0-a0] . (b0-a0)]]{[1,1]];
§6=ArcCos [Transpose [ (DS6.aln-a0)] . (b0-a0)/
Sqgrt [Transpose [ (D56.aln-a0)]. (D56.aln-a0)]/
Sqrt [Transpose [b0-a0] . (b0-a0)]1]{[1,1]];
67=ArcCos [Transpose [ (D57.aln-a0)]. (b0-a0)/
sqrt [Transpose [ (D57.aln-a0)) . (D57.aln-a0)]/
Sqrt [Transpose [b0-a0] . (b0-a0)]1]1[[1,1]];
k63=0.5;
T12=Tj [k6d (62-61),b0[[1,1]),b0[[2,1]1]1];
T13=Tj [k6d (63-61),bo[[1,1]1]),b0[[2,1]]];
T14=Tj [k6d (64-61),b0[[1,1])]),b0O[[2,11]];
T56=T]j [k6p (66-65),b0[[1,1]1]),b0[[2,1]]];
T57=Tj [kéd (67-65),b0[[1,1]],b0[[2,1}]];
Fl=(Transpose [D12.c1-T12.bl]. (D12.¢1-T12.bl) -R3%2);
F2={(Transpose [D13.c1-T13.b1) . (D13.c1-T13.bl) -R3%2);
F3=(Transpose [ (D14.c1-T14.b1)].(D14.c1-T14.b1l)-R3%2);
F4=(Transpose [ (D56.c1n-T56.b1) 1. (D56.¢c1n-T56.b1) -R3%2) ;
F5= (Transpose [ (D57.c1ln-T57.b1)}. (D57.¢c1n-T57.b1) -R3%2);
ans2=FindRoot [{F1[[1,1)]==0,F2[[1,1]1==0,F3[[1,1]]==0,
F4[[1,1]1)==0,F5[[1,1]]==0}, {c1x,0.9},{c1ly,1.5},
{cinx,1.2},{clny,1.8},{R3,1.3}]
clx=ans2{[1,2]]
cly=ans2{[2,2]]
cinx=ans2[[3,2]]
clny=ans2[[4,2]]
R3=ans2[[5,2]]

B.4.2 Displacement Analysis for Planar Five-Bar Path Generator

ClearAll (c82,s62,a2,c63,s863,a3,c04,s64,a4,cll,s61,al,ch5,s65,a5,z11,z12,
213,221,222,223,231,232,233];

Mlcé ,s6_,a_]1:={{c8,-s6,e a sb},{s6,c6,-e a c6},{0,e a, 1}}

M2=M[c62,s802,a2];

M3=M[c03,s863,a3];

M4=M[c04,804,a4];

M1=M[c61l,s01,al];

MS=M[cf5,s605,a5] ;

Z=M2 .M3-Transpose [M1] . Transpose [M5] . Transpose [M4] ;

z11=2Z[[1,11];

z12=2[[1,21];

z13=2Z[[1,311];

z21=21[[2,1]];

z22=2[[2,2]1];
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z23=2[[2,31];
231=2[[3,1]];
z32=21[[3,21];
z33=2[[3,3]];
equll=Coefficient [z11,e, 0]
equl2=Coefficient (212, e, 0]
equl3=Coefficient [213,e,1]
equ23=Coefficient [z23,e,1]
equ3l=Coefficient [2z31,e,1]
equ32=Coefficient [232,e,1]
plp={0.1816,1.8993};
p2p={0.2756,1.8648};
p3p={0.3573,1.7945};
p4p={0.4207,1.6891};
pSp={0.1816,1.8993};
p6p={0.3565,1.9074};
p7p={0.5237,1.8873};
a0p={0.0000,0.000412039};
alp={0.121889,0.993036};
alnp={-0.134435,0.991261};
bop={1.25,0};
bilp={1.95711,0.707107};
clp={0.891267,1.45417};
clnp={1.21674,1.77753};
al=Sqrt[(alp-aop) . {(alp-a0p)]
a2=Sqgrt[(alp-clp) . (alp-clp)]
a3=8qrt[(clp-blp). (clp-blp)]
a4=Sqrt [ (bip-boOp) . (b1p-bop)]
a5=Sqrt [ (bOp-ao0p) . (bOp-a0p)]
61begin=ArcCos [ (bOp-a0p) . (alp-a0p) /Sqrt [ (bOp-aolp) . (bOp-alp)]/Sqrt[(alp-
aop) . (alp-aop)]1+Pi;
85begin=2 Pi-45.*Pi/180.
MR[6_]:={{Cos[6],-Sin[6]}, {Sin[6],Cos[6]}}
k63=0.5
§50=2. Pi-45.*Pi/180
tch2=0.6;ts62=-0.8;tch3=0.4;ts63=-0.9;tch4=-0.2;ts64=-0.9;
For [k=1;601=601begin,

ks15300,

k++;61=61-0.002*Pi/180,

deltafl[k]l=01-61begin;

deltads [k]=kfdp*deltadl[k];

#5=650~-deltabs [k];

cf1=Cos [61];

s61=Sin[61];

cf5=Cos [65] ;

sf5=8in[65];

Answer=FindRoot [{equll, equl2,equl3,equ32,equ3l,equ23}, {ch2,tco2}, (s
62,ts62),{c63,tco3},{s63,ts03},{ch4,tch4}, {s64,ts64}];

tch2=Answer[[1,2]];ts62=Answer[[2,2]];

tch3=Answer[[3,2]1];tsf3=Answer{[4,2]];
tcf4a=nAnswer[[5,2]];tsb4=RAnswer[[6,2]];
anscl2=Answer [[1,2]];

anssf2=Answer [[2,2]];

§2=Which[ansc2=0 && anssf2=20,ArcCos[anscf2],
anscf2<0 && anss#2>0,ArcCos [ansch2],
anscf2s0 && anssf2s0,2*Pi-ArcCos [anscf2],
anscf2>0 && anssf2<0,-ArcCos[anscf2]1];
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delta#d2[k]=62-62begin;
newal [k]=MR [deltafl[k]].{{ (alp-ao0p) [[11]1}, {(alp-
aop) [[2]1}}+{{aop([111},{aop[(2]1]}}
pl1[k]=MR[deltafdl[k]].{{(pip-a0p) [[1]1]},
aop) [[2]11}}+{{aopl(11]},{a0opl[2]]}}
newpl [k]=MR [deltaf2[k]]. (p1l1l[k]-newal[k])+newal [k];
square2 [k] =(newpl [k] [[1]]-p2p[[1]]) "2+ (newpl (k] [[2]]-p2p[[2]])"2;
square3 [k] = (newpl[k] [[1]])-p3p[[1]]) "2+ (newpl[k] [[2)]-p3p[[2]])"2;
square4 [k]l=(newpl (k] [[1]]-p4p[[1]]) "2+ (newpl (k] [[2]]-p4p[[2]1)72;
]
For [k=1;minsgrt2=999;minsqgrt3=999;minsqrt4=999;myk2;myk3;myk4,k<15300,k
=k+1,
If [minsgrt2s>square2(k] [[1]],minsgrt2=square2[k] [[1]] ;myk2=k,];
If [minsgrt3>square3[k] [[1]],minsqgrt3=square3 [k] [[1]];myk3=k,];
If [minsgrt4>square4 [k] [[1]],minsgrt4=square4 [k] [[1]] ;mykd=k,];
]
newpl [myk2]
newpl [myk3]
newpl [myk4]
delta#fl [myk2]*180/Pi
deltafl [myk3]*180/Pi
deltafl [myk4]*180/Pi

}
{ (p1p-
)

A

B.4.3 Spherical Five -Bar Path Generator by Plane-to-Sphere Projection

MyMaxSteps=1000;

RadiusOfSphere=1;

DistanceOfProjection=7

ClearAll [plp,p2p.,pP3p,P4p.P5P.P6P.P7P,P1,pP2,p3,pP4,pP5,pP6,P7];

ProjectionFun[{x_,y_},r_,d_]l:={r*x/sqrt[d*2+x"2+y*2],r*y/
sqrt [d*2+x*2+y”2],r*d/sqrt [d*2+x"2+y"2] }

plp={0.1816,1.8993};

p2p={0.2756,1.8648};

p3p={0.3573,1.7945};

p4p={0.4207,1.6891};

p5p={0.1816,1.8993};

pép={0.3565,1.9074};

p7p={0.5237,1.8873};

pl=ProjectionFun [plp,RadiusOfSphere,DistanceOfProjection]

p2=ProjectionFun [p2p, RadiusOfSphere, DistanceOfProjection]

p3=ProjectionFun [p3p,RadiusOfSphere,DistanceOfProjection]

p4=ProjectionFun [p4p,RadiusOfSphere,DistanceOfProjection]

pS=ProjectionFun [p5p,RadiusOfSphere,DistanceOfProjection]

pé=ProjectionFun [p6p,RadiusOfSphere,DistanceOfProjection]

p7=ProjectionFun [p7p,RadiusOfSphere,DistanceOfProjection]

Clearall [aOp,alp,alnp,bOp,blp,blnp,ad,al,aln,bo,bl,bln,ol,e2,a3,04,cal,
sal,ca2,sa2,ca3,sa3,cad,s04];

a0p={0.0000,0.000412039};

alp={0.121889,0.993036};

alnp={-0.134435,0.991261};

bop={1.25,0};

bip={1.95711,0.707107};

c1lp={0.891267,1.45417};

clnp={1.21674,1.77753};
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a0=ProjectionFun [a0p,RadiusOfSphere,DistanceOfProjection]
al=ProjectionFun[alp, RadiusOfSphere,DistanceOfProjection]
aln=ProjectionFun[alnp, RadiusOfSphere,Distance0OfProjection]
bo=ProjectionFun {b0p, RadiusOfSphere,DistanceOfProjection]
bi=ProjectionFun[blp,RadiusOfSphere,DistanceOfProjection]
cl=ProjectionFun[clp,RadiusOfSphere,DistanceOfProjection]
cln=ProjectionFun [clnp,RadiusOfSphere,DistanceOfProjection]
al=ArcCos[a0.al/Sqrt [a0.a0]/Sqrt[al.all]);
a2=ArcCos [al.cl/Sqrt[cl.cl]/Sqrtlal.all];
a3=ArcCos[cl.bl/Sqrt[cl.cl]/Sqrt[bl.bil];
a4=ArcCos [bl.b0/Sqrt [bl.bl]/Sqrt[b0.b0]];
a5=ArcCos [a0.b0/Sqrt [a0.a0] /Sqrt [b0.bO]];
cal=Cos [al] ;sal=Sin[al] ;ca2=Cos (2] ;sa2=Sin[wa2];
ca3=Cos [a3] ;sa3=Sin[a3] ;cad4=Cos [a4] ;sad=Sin[a4] ;ca5=Cos [a5] ;sa5=8in[a5];
AngleBTAxes [{ax_,ay_,az_}, {bx_,by_,bz_}]:={-(az by-ay bz)/(-ay bx+ax
by),
- (az bx-ax bz)/(ay bx-ax by),1}
alphalv=AngleBTAxes [a0,al];
alpha2v=AngleBTAxes [al,cl];
alpha3v=AngleBTAxes [c1l,Dbl];
alpha4v=AngleBTAxes [bl,b0];
alpha5v=AngleBTAxes [b0, a0l ;
¢10=ArcCos[alphabv.alphalv/Sqgrt{alphalv.alphalv]/Sqrt[alpha5v.alpha5v]]
+Pi;
®20=ArcCos[alphalv.alpha2v/Sqgrt[alphalv.alphalv]/Sqgrt{alpha2v.alpha2v]];
$30=ArcCos [alpha3v.alpha2v/Sqrt[alpha3v.alpha3v] /Sqgrt[alpha2v.alpha2v]];
»40=ArcCos[alpha3v.alphadv/Sqrt[alpha3v.alpha3v]/Sqgrt{alphadv.alphadv]]
+Pi;
®50=ArcCos[alphadv.alpha5v/Sqgrt[alpha5v.alpha5v]/Sqgrt[alphadv.alphadv]]
+Pi;
Dual Nuber method for spherical mechanism.
Clearall [c61,s61,c62,8602,c63,5603,c64,s04,c65,s685];
Mlcb ,s6_,co_,so_):={{ch,-ca s6,sc s6},{sf,ca cb,-sa c6},{0,sa, ca}}
M2=M[c62,s602,ca2,sa2];
M3=M[c63,s863,ca3,sa3];
M4=M[cf4,s64,cas,sad];
M1=M[cf1,s61,cal,sal];
M5=M[c85,s65, ca5,sa5];
Z=M2 .M3-Transpose [M1] . Transpose [M5] . Transpose [M4] ;
z11=2Z[[1,11];
z12=2z[[1,2]];
z13=2[[1,3]];
z21=2[[2,1]1;
z22=2[[2,2]];
z23=2[[2,3]];
z31=2[[3,1]1]);
z32=2 [ [3/2]] h
z33=2[[3,3]];
Spherical Mechanism by Dual Number Method
tch2=0.6;ts02=-0.7;tch3=0.3;ts83=-0.9;tch4=-0.2;ts04=-0.9;
For [¢1=010; k=1, kSMyMaxSteps,
$1=01-33./MyMaxSteps*Pi/180;k=k+1,
deltadl[k]}=01-010;
deltad5[kl=(d1-010)*0.5;
&5=050-deltad5[k];
cfl=Cos [¢1];
s61=Sin[d1];
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c65=Cos [05];
s65=Sin (5] ;
Angles=FindRoot [{2z11==0,212==0,213==0,221==0,222==0,223==0}, {c62, tc
62}, {s62,ts62},{ch3,tch3},{s63,ts03}, {ch4,tch4a},{s04,ts604}];
tc62=Angles[[1,2]];tsf2=Angles[[2,2]];
tch3=Angles[[3,2]];tsf3=Angles[[4,2]];
tcf4=Angles[[5,2]];tsf4=Angles[[6,2]];
anscd2=Angles[[1,2]];
anssf#2=Angles[[2,2]];
#2=Which[anscf220 && anssf2=0,ArcCos{ansch2],
anscl2<0 && anss#2>0,ArcCos[anscl2],
anscd#2s0 && anss@#2s0,2*Pi-ArcCos [anscé2],
anscf2>0 && anssf2<0,2*Pi-ArcCos [anscé2]];
If [k==1,62begin=62,];
deltaf2 [k]=62-62begin;
deltabl [k]=01-010;
]
Rula_,u_J:={{ul{1,1]1]1"2*(1-Cos[al)+Cos[a],ulll,1]] ull2,1]]
(1-Cos[a])-ull3,1]] sinle),ull1,1]] ull3,1]] (1-Coslal)+
ull2,1]) Sin(al},{ull1,1]] ul(2,1]] (1-Coslal)+ul(3,1]]
Sinf[a]l,ull2,11]1%2 (1-Cos{al)+Coslal,ull2,1]) ull3,1]]1 (1-Coslel)-
ufll1,1]) Ssinfel},{ull1,1)] ull3,1]] (1-Coslal)-ull2,1]]
sinfa),ull2,1]] ull3,1]1] (1-Coslal)+
ull1,1]) sinla),ull3,11]1%2 (1-Coslal)+Coslal}};
uak={{uax}, {vay}, {uaz}};
aoaxis={{a0[[1]1]},{a0[[2]]},{a0l
boaxis={{bo[[1]]1},{bo[[2]]},{bOI
For [k=1, ksMyMaxSteps, k++,
NewAl [k]=Rul[deltadl[k],a0axis]. (al-a0)+a0;
alaxis={{NewAl([k] [[1]]}, {NewAl[k] [[2]]}, {NewAl([k] [[3]]}};
pltemp [k} =Ru[deltadl [k],a0axis]. (p1-a0)+a0l;
NewPl{k]=Ru[deltaf2 [k],alaxis] . (pltemp [k] -NewAl [k]) +NewAl [k];
]
Pd=p2;
For [k=1;minsgrt=9999; myk, ksMyMaxSteps, k++,
toleranceErr [k]=Sqrt [ (NewP1[k] [[1]]1-PA[([1]]) "2+
(NewP1[k]) [[2]]1-Pd[[2]1]) "2+ (NewP1([k] [[3]1]-Pd[[3]])"2];
If [minsgrt>toleranceErr (k] ,minsqgrt=toleranceErr [k] ;myk=k,];
]
myanswer2 [DistanceOfProjection] ={myk,deltafl [myk]*180/Pi,
DistanceOfProjection,NewP1 [myk], minsgrt*DistanceOfProjection}
Pd=p3;
For [k=1;minsqrt=9999;myk, ksMyMaxSteps, k++,
toleranceErr [k]l=Sqgrt [ (NewP1 [k] [[1)]1-Pd[[1]]) "2+
(NewP1 [k] [[2])-Pd[[2]])"2+ (NewP1l[k] [[3]]-PA[[3]])"2];
If [minsqrt>toleranceErr[k] ,minsgrt=toleranceErr[k]; myk=k,];
1
myanswer3 [DistanceOfProjection] ={myk,deltafl [myk] *180/Pi,DistanceOfProj
ection,NewP1 [myk] ,minsqrt*DistanceOfProjection}
Pd=p4;
For [k=1;minsqrt=9999;myk, ksMyMaxSteps, k++,
toleranceErr [k]=Sqrt [ (NewP1[k] [[1]]-PA[[1]}]) "2+
(NewP1 [k] [[2]]-PA[[2]]) "2+ (NewP1[k] [[3]1]-Pd[[3]])"2];
If [minsqgrt>toleranceErr[k],minsgrt=toleranceErr [k] ;myk=k,];
]
myanswer4 [DistanceOfProjection] ={myk,deltaf1l [myk] *180/Pi,DistanceOfProj
ection,NewPl [myk] ,minsgrt*DistanceOfProjection}

[(311}};
(311}};



B.4.4 Planar Five -Bar Path Generator by Sphere-to-Plane Projection

MyMaxSteps=320;
RadiusOfSphere=1;
DistanceOfProjection=6

ClearAll [plp,p2p,pP3p,P4P,P5p,P6P,P7P,P1,pP2,P3,pP4,pP5,P6,P7];

ProjectionFun{{x_,y_,z_},d_]:={d/z*x,d/z*y}
pl={0.0339334,0.354899,0.934289}
p2={0.0515763,0.348982,0.935709}
p3={0.0671077,0.337041,0.939095}
p4={0.0794622,0.319039,0.944405}
p5={0.0339334,0.354899,0.934289}
p6={0.0664699,0.355638,0.932257}
p7={0.0975245,0.351457,0.931111}
plp=ProjectionFun[pl,DistanceOfProjection]
p2p=ProjectionFun [p2,DistanceOfProjection]
p3p=ProjectionFun {p3,DistanceOfProjection]
p4p=ProjectionFun[p4,DistanceOfProjection]
p5p=ProjectionFun [p5,DistanceOfProjection]
pép=ProjectionFun[p6,DistanceOfProjection]
p7p=ProjectionFun[p7,DistanceOfProjection]

Clearall [a0p,alp,alnp,bOp,blp,binp,a0d,al,aln,bo,bl,bln];

a0={0.,0.0000824078,1.};
al={0.023904,0.194747,0.980562};
aln={-0.0263645,0.1944,0.980568};
b0={0.242536,0,0.970143};
b1={0.361374,0.130565,0.923234};
c1={0.168708,0.27526,0.946451};
cln={0.22349,0.326496,0.918397};
a0Op=ProjectionFun[a0,DistanceOfProjection]
alp=ProjectionFun[al,DistanceOfProjection]
alnp=ProjectionFun[aln,DistanceOfProjection]
bOp=ProjectionFun[b0,DistanceOfProjection]
blp=ProjectionFun[bl,DistanceOfProjection]
clp=ProjectionFun[cl,DistanceOfProjection]
clnp=ProjectionFun[cln,DistanceOfProjection]
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Clearall [c62,s8602,a2,c63,s63,a3,c04,s64,a4,c01,s61,al,cd5,s65,a5,zz1l,zz

12,213,2z2221,z222,2223,2231,2232,2233];

Mlcb_,s6_,a_]:={{cb,-s6,e a sb},{sf,c6,-e a c6},{0,e a, 1}}

M2=M[c62,s562,a2];
M3=M[c63,s63,a3];
M4=M([c04,s04,a4];
M1=M[cf1l,s61,all;
M5=M[c85,865,a5] ;

Z=M2 .M3-Transpose [M1] . Transpose [M5] . Transpose [M4] ;

z11=21[[1,11];
z12=z[[1,2]];
z13=2[[1,31];
221=2([2,1])];
z22=27[[2,2]];
z23=2[[2,3]];
z31=2{[3,1]1;
z32=2{1[3,2]];
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z33=2[[3,3]];
equll=Coefficient [z11,e,0]
equl2=Coefficient[z12,e,0]
equll3=Coefficient[z13,e,1]
equ23=Coefficient [223,e,1]
equ3dli=Coefficient [231,e,1]
equ32=Coefficient [z32,e, 1}
Clearall[al,a2,a3,a4];
al=Sqgrt[(alp-a0p) . (alp-alp)]
a2=Sqrt[(clp-alp) . (clp-alp)]
a3=Sqrt [(blp-clp) . (blp-clp)]
a4=Sqrt [ (bOp-blp) . (bOp-blp)]
a5=Sqrt [ (a0p-bop) . (a0p-bop) ]
ClearAll [81begin, 61]; '
61begin=ArcCos [ (bOp-a0p) . (alp-a0p)/Sqrt [ (bOp-a0p) . (bOp-a0p)l/Sqart[(alp-
aop) . (alp-ao0p)]1+Pi;
#5begin=2 Pi-45.*Pi/180.
MR[8 ]:={{Cos[6],-Sin[6]},{sin[6]),Cos[6]}};
k63=0.5;
#50=2. Pi-45.*Pi/180;
tc2=0.6;ts602=-0.8;tc03=0.4;ts63=-0.9;tch4=-0.2;ts604=-0.9;
For [k=1;61=601begin, ksMyMaxSteps,
k++;601=601-32/MyMaxSteps*Pi/180.,
deltafl[k]}=61-61begin;
deltafs [k]l=k8d*deltalbl [k];
#5=650-deltads [K];
cfl=Cos[61] ;s61=Sin[61];
c85=Cos [65] ;s05=Sin{65];
Answer=FindRoot [{equll,equl2,equl3,equ32,equ3l,equ23}, {c62,tch2},{s
62,ts02},{ch3,tch3},{s03,ts03}, {ch4,tchs}, {s64,ts64}];
tcf2=Answer|[[1,2]]);tsf2=Answer[[2,2]1];
tch3=Answer [ [3,2])];tsf3=Answer[[4,2]];
tcb4a=Answer[[5,2]];tsb4=Answer[[6,2]];
anscf2=Answer[[1,2]] ;anssf2=Answer[[2,2]];
#2=Which[ansc6220 && anss62=20,ArcCos [ansc2],
ansch#2<0 && anss62>0,ArcCos [ansc62],
ansch2s<0 && anssf2<0,2*Pi-ArcCoslanscf2],
anscf2>0 && anssf62<0, -ArcCos [ansc2]];
If [k==1,62begin=62;Print [Answer],];
deltaf2 [k]=62-02begin;
newal (k] =MR [deltaf1[k]].{{(alp-a0p) [[1]11},{ (alp-
aop) [[21]}}+{{aop((1]1},{a0p[[211}};
pl1l[k]}=MR[deltad1[k]].{{(pip-aop) [[1]1]}, { (pip-
aop) [[211}}+{{aop([1]1},{a0p[(2]]}};
newpl [k] =MR [deltaf2 [k]]. (p1l1 [k] -newal [k] ) +newal [k] ;
square2 [k] = (newpl (k] [[1]]-p2p[[1]]) "2+ (newpl (k] [(2)]1-p2p[[2]])"2;
square3 [k] = (newpl [k] [[1]1]-p3p{{111) "2+ (newpl[k] [[2]]-p3p[[2]1])7°2;
square4 [k1=(newpl[k] [[1])-p4p{{1]11} "2+ (newpl[k] [[2]]-p4p[[2]])"2;
]
For [k=1;minsqrt2=999;minsqrt3=999;minsqgrt4=999;myk2; myk3;myk4, ksMyMaxSt
eps, k=k+1,
If [minsqrt2>square2 [k] [[1]],minsgrt2=square2 [k] [[1]];myk2=k,];
If [minsqgrt3ssquare3 [k] [[1]],minsgrt3=square3 (k] [[1]];myk3=k,];
If [minsqrt4s>square4 (k] [[1]],minsqrté4=square4 [k] [[1]];myk4=k,];
]
StructuralErr2 [DistanceOfProjection] =Sqrt [minsgrt2]/
DistanceOfProjection
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StructuralErr3 [DistanceOfProjection}=Sqrt [minsqrt3]/
DistanceOfProjection

StructuralErr4 [DistanceOfProjection] =Sqrt [minsqrt4]/
DistanceOfProjection

newpl [myk2]

newpl [myk3]

newpl [myk4]

deltaf1 [myk2] *180/Pi

deltafl [myk3]*180/Pi

deltafl [myk4] *180/Pi
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B.5 Adjustable Five-Bar Motion Generator

The following MATHEMATICA models include four sections. Section B.5.1 illustrated
how to programming the synthesis design equations for planar five-bar motion generator
by MATHEMATICA language. Section B.5.2 illustrated the dual-number method and
the displacement equations for planar five-bar motion generator. Section B.5.3 illustrated
plane-to-sphere projection method, dual-number method and displacement equations for
spherical five-bar motion generator. Section B.5.4 illustrates the sphere-to-plane

projection method for spherical five-bar motion generator.

B.5.1 Synthesis Design of Planar Five-Bar Motion Generator

p1jlp_,q ,r_,pl_,ql_,rl_J):={{p1ll1,1]),q1([1,1]],r2([1,2111},{p2l(2,11],
gqlff2,11],r1[[2,111},{1,1,1} } . Inversel
;{;;[[1,11],q[[1,1JJ,r[[1,11]},{p[[z,lll,q[[2,1]1,r[[2,111},{1,1,1
1;
Tjld_,bOx ,b0y 1={{Cos[d,-Sin[d],-bOx Cos[dp]+bOy
Sin[d]+b0x}, {Sin[d],Cos[d]), -b0x Sin[d]-bOy Cos[d]+b0y},{0,0,1}};
pl={{-0.1348},{1.4949},{1}};q1={{0.1853},{1.9430},{1}};
ri={{0.7769}, {1.9430},{1}};
p2={{-0.0057},{1.4353},{1}};q2={{0.2756},{1.9087},{1}};
r2={{0.8652},{1.9585},{1}};
p3={{0.1149},{1.3419},{1}};q3={{0.3534},{1.8382},{1}};
r3={{0.9363},{1.9397},{1}};
p4={{0.2219},{1.2157},{1}};qa={{0.4128},{1.7322},{1}};
ra={{0.9835},{1.8880},{1}};
pS={{-0.1348},{1.4949},{1}}:;q5={{0.1853},{1.9430}, {1}};
r5={{0.7769}, {1.9430},{1}};:
p6={{0.0397},{1.5033},{1}};q6={{0.3602},{1.9511},{1}};
r6={{0.9518},{1.9506},{1}};
p7={{0.2095}, {1.4813},{1}}:;q7={{0.5271},{1.9311}, {1}};
r7={{1.1187}, {1.9343},{1}};
D12=D1j [pl,ql,rl,p2,q2,xr2]
D13=D1j [pl,ql,rl,p3,q3,r3]
D14=D1j [pl,ql,rl,p4,q4,r4]
D56=D1j [p5,495,r5,p6,q6,ré]
D57=D1j [p5,q5,r5,p7,97,x7]
ClearAll [a0x,a0y,alx,aly,alnx,alny,b0x,b0y,blx,bly, clx,cly, clnx, clny]
ao={{0.0},{ao0y}, {1}};
a1={{aix}, {aly}, {1}};
aln={{alnx}, {alny}, {1}};



bo={{1.25},{0},{1}}

ci={{cix}, {cly}, {1}

cln={{cinx}, {clny},

R1=1.0;

R2=1.0;

$®1=45.0*Pi/180;

bl={{b0[[1,1]]+R2 Cos[d1l]}, {bO[[2,1]]+R2 Sin{dll},{1}}

El=Transpose[(D12.al-a0)]. (D12.al-a0)-R1"2

E2=Transpose [ (D13.al-a0)].(D13.al-a0)-R1"2

E3=Transpose [ (D14.al-a0)]. (D1l4.al-a0)-R1"2

E4=Transpose [ (D56.aln-a0)]. (D56.aln-a0) -R1"2

ES5=Transpose [ (D57.aln-a0)] . (D57.aln-a0) -R1"2

answl=FindRoot [{E1[[1,1]]1==0,E2[[1,1]1]==0,E3[[1,1]]==0,
E4[[1,1)]1==0,E5([[1,1]])==0},{a0y,0.01}, {alx,0.1}, {aly,
0.9}, {alnx,-0.1}, {alny,0.9}]

a0y=answl[[1,2]}]

alx=answil[[2,2]]

aly=answl[[3,2]]

alnx=answl[[4,2]]

alny=answll[[5,2]]

61=ArcCos [Transpose[(al-a0)]. (b0-a0)/Sqrt [Transpose[(al-a0)]. (al-
a0)l/sqrt [Transpose [b0-a0]. (b0-a0)}]1 [[1,1]];

02=ArcCos [Transpose [ (D12.al-a0)]. (b0-a0)/Sgrt [Transpose[(D12.al-
a0)].(D12.al-a0)]/Sqrt [Transpose [b0-a0]. (b0-a0)]] [[1,1]];

63=ArcCos [Transpose [ (D13.al-a0)]. (b0-a0) /Sqrt [Transpose[(D13.al-
a0)l.(D13.al-a0)]/Sqrt [Transpose [b0-a0]. (b0-a0)]] [[1,1]1];

f4=ArcCos [Transpose[(D14.al-a0)]. (b0-a0) /Sgrt[Transpose[(D14.al-
a0)].(D14.al-a0)]/sgrt [Transpose [b0-a0] . (b0-a0)]] [[1,1]];

6#5=ArcCos [Transpose [ (aln-a0)]. (b0-a0) /Sqrt [Transpose [ (aln-a0)]. (aln-
a0)]/sgrt [Transpose [b0-a0] . (b0-a0)1]11[[1,1]1];

86=ArcCos [Transpose [ (D56.aln-a0)]. (b0-a0)/Sqgrt [Transpose([(D56.aln-
a0)].(D56.aln-a0)]/Sqgrt [Transpose [b0-a0]. (b0-a0)1][[1,1]];

67=ArcCos [Transpose [ (D57.aln-a0)]. (b0-a0) /Sqrt [Transpose [ (D57.aln-
a0)].(D57.aln-a0)]/sqrt [Transpose [b0-a0]. (b0-a0)J]1[[1,1]1];

k0=0.5;

T12=Tj [k6d(62-61),b0[[1,1]],bO[[2,1]]]

T13=Tj [k6d(63-61),b0[[1,1]1],b0[[2,1]]]

T14=Tj [k6d(64-61) ,b0[[1,1]1],b0[[2,11]]

T56=Tj [k6d (66-65) ,b0[[1,1]],b0[[2,1]]]

T57=Tj [k6b (67-65) ,b0o[[1,1]],b0[[2,11]]

Fl=Transpose [D12.c1-T12.b1].(D12.c1-T12.bl)-R3"2

F2=Transpose [D13.c1-T13.bl]. (D13.c1-T13.bl)-R3"2

F3=(Transpose[(D14.c1-T14.bl)].(D14.c1-T14.bl)-R3%*2)

F4= (Transpose [ (D56.c1n-T56.b1)]. (D56.c1n-T56.bl) ~-R3*2)

F5= (Transpose [ (D57.¢c1n-T57.b1)]. (D57.c1n-T57.bl) ~-R3*2)

FindRoot [{F1[[1,1]]==0,F2([[1,1])==0,F3[[1,1]]==0,

F4[[1,1)]==0,F5[[1,1]1==0},{c1x,0.9},{c1y,1.5}, {clinx,
1.2}, {ciny,1.8},{R3,1.3}]

b
{1}}):

B.5.2 Displacement Analysis for Planar Five-Bar Motion Generator

plp={-0.1348,1.4949};
p2p={-0.0057,1.4353};
p3p={0.1149,1.3419};
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p4p={0.2219,1.2157};
pS5p={-0.1348,1.4949};
p6p={0.0397,1.5033};
p7p={0.2095,1.4813};
glp={0.1853,1.9430};
g2p={0.2756,1.9087};
g3p={0.3534,1.8382};
qg4p={0.4128,1.7322};
q5p={0.1853,1.9430};
g6p={0.3602,1.9511};
q7p={0.5271,1.9311};
rip={0.7769,1.9430};
r2p={0.8652,1.9585};
r3p={0.9363,1.9397};
r4p={0.9835,1.8880};
r5p={0.7769,1.9430};
ré6p={0.9518,1.9506};
r7p={1.1187,1.9343};
aop={0,-0.00229193};
alp={0.121248,0.990334};
alnp={-0.134977,0.988511};
bop={1.25,0};
blip={1.9571,0.7071};
clp={0.889398,1.45516};
clnp={1.21532,1.7792};
Michf_,s0_,a_]l:={{c6,-s6,e a s6},{sb,cl,-e a cb},{0,e a, 1}}
M2=M[c62,s862,a2] ;
M3=M[c63,563,a3];
M4=M([c64,s04,a4];
M1=M[c61,s61,al]l;
M5=M[c65,5605,a5] ;

Z=M2 .M3-Transpose [M1] .Transpose [M5] . Transpose [M4] ;
z11=2[[1,1]];
z12=2z[[1,2]];
z13=2[[1,3]];
z21=2[[2,1]];
z22=2[[2,2]1];
z23=2[[2,3]];
z31=2[[3,1]];
z32=2[[3,2]];
z33=2[[3,3]];
equll=Coefficient [211,e, 0]
equl2=Coefficient [z12,e, 0]
equl3=Coefficient[z13,e,1]
equ23=Coefficient [223,e,1]
equ3l=Coefficient[z31,e,1]
equ32=Coefficient [232,e,1]

al=Sqgrt[(alp-alp). (alp-alp)]

a2=sqrt [ (alp-clp). (alp-clp)]

a3=1.30373

ad=1

a5=8qrt [ (bOp-alp) . (bOp-aodp)]

61begin=ArcCos [ (bOp-a0p) . (alp-a0p) /Sqrt [ (bOp-alp) . (bOp-a0p)]/Sqrt[(alp-
aop) . (alp-a0p)]]1+Pi

65begin=2 Pi-45.*Pi/180.

MR[6 ]:={{Cos[6],-5in[6]},{Sin[6],Cos[6]})
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k63=0.5
650=2.*Pi-45.*Pi/180
tcf2=0.6;ts62=-0.8;tch3=0.4;ts63=-0.9;tch4=-0.2;ts64=-0.9;
For [k=1;61=61begin, k<6200,
K++;601=61-0.005*Pi/180,
deltafl[k]=61-01begin;
delta#s [k]=kfd * deltadl[k];
#5=050-deltads [k];
ch1=Cos [01] ;
sf#1=8in[01];
cf5=Cos [65];
£65=8in[65];
Answer=FindRoot [{equll, equl2,equl3,equ32,equ3l,equ23}, {cb2,tch2},
{s62,ts62},{ch3,tch3},{s63,ts63},{ch4,tch4a},{s64,ts04}];
tch2=Answer[[1,2]];tsf2=Answer[[2,2]];
tc83=Answer[[3,2]];tsf3=Answer([[4,2]];
tcf4=Answer [[5,2]];tsf4=Answer([[6,2]];
anscf2=Answer [ [1,2]];
anssf2=Answer|[[2,2]];
§2=Which [anscf2z20 && anssf2=20,ArcCos [anscb2],
ansch2<0 && anssf2>0,ArcCos [anscf2],
ansc2s0 && anssf2s<0,2*Pi-ArcCos [anscf2],
anscl2>0 && anssf2<0,-ArcCos[ansc62]];
deltaf2[k]=62-62begin;
newal [k]=MR [deltaf1[k]].{{(alp-a0p) [[1]1]},{(alp-aop) [[2]]}}+
{{aopl[1]1}, {aopl[2]11}}:
plillk]=MR[deltad1[k]].{{ (plp-aop) [[11]1},{ (plp-
aop) [[211}}+{{a0p[(1]1},
{aop[[2]1}};
gl1[k]=MR[deltad1([k]].{{(gip-aop) [[111}, { (glp-
aop) [[2]11}}+{{a0p[[111},
{aop[[211}};r11(k]=MR[deltab1[k]].{{(r1p-a0p) [[1]11},
{(rip-aop) [[2]]}}+{{aop[[1]]},{a0op[[2]]}};
newpl [k]=MR [deltaf2 [k]]. (p11 [k] -newal [k]) +newal [k];
newql [k]=MR [deltaf2[k]]. (g1l [k]-newal [k] ) +newal [k];
newrl (k] =MR [deltaf2[k]]. (r11[k] -newal [k]) +newal [k] ;
square2 [k] = (newpl (k] [[1]])-p2p[[1]]) "2+ (newpl[k] [[2]]-p2p[[2
square3 [k] = (newpl [k] [[1]]-p3p[[1]]) "2+ (newpl [k] [[2]]-p3p[I2
square4 [k] = (newpl[k] [[1]]-p4p[[1]]) "2+ (newpl[k] [[2]]-pap[[2
squareq2 [k] = (newgl [k] [[1)]-g2p[[1]]) “2+ (newql [k] [[2]1)-g2p[I
squareq3 [k] = (newgl [k] [{1]1]1-g3p[[1]]) "2+ (newql [k] [[2])-g3p[I
squareq4 [k] = (newql [k] [[1]]-q4p[[1]]) "2+ (newql [k] [[2]]-qg4p (I
squarer2 [kl =(newrl[k] [[1]]-r2p{[1]]) "2+ (newrl[k] [[2]]-r2p[[2
squarer3 [k]=(newrl[k] [[1]1]-r3p[[1]])"2+(newrl[k] [[2]]-r3p[I[2
squarer4 [kl =(newrl [kK] [[1]]-r4p[[1}])“*2+(newrl[k] [[2])]-r4p[[2
tot2 [k] =square2 [k] +squareq2 [k] +squarer2 [k] ;
tot3 [k] =square3 [k] +squareq3 [k] +squarer3 [k] ;
tot4 [k] =square4 [k] +squareq4 [k] +squarer4 (k] ;
]

NN N e

For [k=1;minsqrt2=999;minsqrt3=999;minsqrt4=999;
minsgrtg2=999;minsqgrtg3=999;
minsqrtg4=999;minsqrtr2=999;minsqrtr3=999;
minsgrtr4=999;myk2;myk3;myk4;mykqg2;mykqg3;mykg4; mykr2;mykr3;mykr4,
k<6200,
k=k+1,

If [minsgrt2>tot2[k] [[1]],minsqgrt2=tot2[k] [[1]];myk2=k,];
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If [minsqgrt3s>tot3[k] [[1]],minsgrt3=tot3[k] [[1]];myk3=k,];
If [minsqrt4>totd [k] [[1]],minsqgrta=tota [k] [[1]];myks=k,];
]

newpl [myk2]

newpl [myk3]

newpl [myk4]

newql [myk2]

newql [myk3]

newql [myk4]

newrl [myk2]

newrl [myk3]

newrl [{myk4]

deltafl [myk2] *180/Pi

deltafl [myk3]*180/Pi

deltafl[myk4] *180/Pi

B.5.3 Spherical Five -Bar Motion Generator by Plane-to-Sphere Projection

TheMaxIteration=200;
RadiusOfSphere=1;
DistanceOfProjection=6
plp={-0.1348,1.4949};p2p={-0.0057,1.4353};
p3p={0.1149,1.3419};p4p={0.2219,1.2157};
p5p={-0.1348,1.4949)};p6p={0.0397,1.5033};
p7p={0.2095,1.4813};
glp={0.1853,1.9430};q2p={0.2756,1.9087};
q3p={0.3534,1.8382};q4p={0.4128,1.7322};
g5p={0.1853,1.9430};q6p={0.3602,1.9511};
q7p={0.5271,1.9311};
rlp={0.7769,1.9430};r2p={0.8652,1.9585};
r3p={0.9363,1.9397};r4p={0.9835,1.8880};
r5p={0.7769,1.9430};r6p={0.9518,1.9506};
r7p={1.1187,1.9343};
a0p={0,-0.00229193};alp={0.121248,0.990334};
alnp={-0.134977,0.988511}; bOop={1.25,0};blp={1.9571,0.7071};
clp={0.889398,1.45516};clnp={1.21532,1.7792};
ClearAll [plp,p2p,p3p,P4pP,P5pP,P6P,P7P,P1,P2,pP3,pP4,P5,P6,P7];
ProjectionFun([{x_,y_},r_,d_):={r*x/Sqrt [d*2+x"2+y"2],r*y/Sqrt [d"2+x"2+y
“2),r*d/ Sqrtl[d*2+x"2+y”2]}
pl=ProjectionFun [plp,RadiusOfSphere,DistanceOfProjection];
p2=ProjectionFun [p2p,RadiusOfSphere,DistanceOfProjection];
p3=ProjectionFun [p3p,RadiusOfSphere,DistanceOfProjection] ;
p4=ProjectionFun [p4p,RadiusOfSphere,DistanceOfProjection];
pS=ProjectionFun [p5p,RadiusOfSphere,DistanceOfProjection];
p6=ProjectionFun[pép, RadiusOfSphere,DistanceOfProjection];
p7=ProjectionFun [p7p,RadiusOfSphere,DistanceOfProjection];
gl=ProjectionFun[qglp,RadiusOfSphere,DistanceOfProjection];
g2=ProjectionFun [g2p,RadiusOfSphere,DistanceOfProjection];
g3=ProjectionFun [g3p, RadiusOfSphere,DistanceOfProjection];
g4=ProjectionFun [g4p, RadiusOfSphere,DistanceOfProjection]};
g5=ProjectionFun[g5p, RadiusOfSphere,DistanceOfProjection] ;
g6=ProjectionFun [gép,RadiusOfSphere,DistanceOfProjection];
g7=ProjectionFun[g7p,RadiusOfSphere,DistanceOfProjection] ;
rl=ProjectionFun [rlp,RadiusOfSphere,DistanceOfProjection];
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r2=ProjectionFun [r2p,RadiusOfSphere, DistanceOfProjection];
r3=ProjectionFun [r3p,RadiusOfSphere,DistanceOfProjection];
r4=ProjectionFun[r4p,RadiusOfSphere,DistanceOfProjection];
r5=ProjectionFun [r5p,RadiusOfSphere,DistanceOfProjection];
ré6=ProjectionFun [ré6p,RadiusOfSphere, DistanceOfProjection];
r7=ProjectionFun [r7p,RadiusOfSphere,DistanceOfProjection] ;
a0=ProjectionFun [a0p,RadiusOfSphere,DistanceOfProjection];
al=ProjectionFun [alp,RadiusOfSphere,DistanceOfProjection];
aln=ProjectionFun{alnp,RadiusOfSphere,DistanceOfProjection];
b0=ProjectionFun [bOp, RadiusOfSphere,DistanceOfProjection];
bl=ProjectionFun [blp, RadiusOfSphere,DistanceOfProjection];
cl=ProjectionFun[clp,RadiusOfSphere,DistanceOfProjection];
cln=ProjectionFun [clnp,RadiusOfSphere,DistanceOfProjection] ;
al=ArcCos[a0.al/Sqgrt [a0.a0] /Sgrtal.alll;
a2=ArcCos [al.c1l/Sgrtcl.cl]l/Sqgrt[al.all];
a3=ArcCos[cl.bl/Sgrtlcl.cl1l}/Sqrt[bl.bl]];
a4=ArcCos [bl.b0/Sqgrt [bl.bl]/Sqrt [b0.b0]];
a5=ArcCos [a0.b0/Sqrt [a0.a0] /Sqrt [b0.bO]];
cal=Cos [al] ;sal=Sin[al] ;ca2= Cos[a2] ;sa2=Sin[a2];
ca3=Cos [a3] ;sa3=Sin[a3] ;ca4=
Cos [a4] ;sa4=Sin[a4] ;ca5=Cos [a5] ;sa5=Sin[a5] ;
AngleBetweenAxies [{ax_,ay ,az_}, {bx_,by_,bz_}]:={-(az by-ay bz)/(-ay
bx+ax by),-(az bx-ax bz)/(ay bx-ax by),1}
alphalv=AngleBetweenAxies [a0,al];
alpha2v=AngleBetweenAxies [al,cl];
alpha3v=AngleBetweenAxies [cl,bl];
alphad4v=AngleBetweenAxies [bl,b0];
alphaSv=AngleBetweenAxies [b0,a0];
¢10=ArcCos [alpha5v.alphalv/Sqgrt [alphalv.alphalv]/Sqrt [alphaSv.alphaS5v]]+
Pi;
$50=2Pi-
ArcCos [alpha4v.alpha5v/Sqrt [alpha5v.alpha5v] /Sqrt [alpha4v.alpha4v]];
ClearAll [c61,s601,c62,8602,c63,5603,c04,8604,c65,885];
M[c6_,s6_,co_,sa_]:={{ch,-ca s8,sa s6},{s6,ca cf,-sa c8},{0,sa, ca}}
M2=M[c62,s862,ca2,sa2] ;
M3=M[c#3,8683,ca3,sa3];
M4=M[cb4,s04,cad,sad]l;
M1=M[c61,s601,cal,sal]l;
M5=M[c65,s585, ca5,sa5] ;
Z=M2 .M3-Transpose [M1] . Transpose {M5] . Transpose [M4] ;
z11=2[[1,1]];
z12=2[[1,2]1];
z13=2z[[1,3]1];
z21=z[[2,1]]);
z22=2[[2,2]1];
z23=2[[2,31];
z31=2[[3,1]];
232=2[[3,2]1;
233=2[[3,3]];
tch2=0.6;ts62=-0.7;tch3=0.3;ts63=-0.9;tchH4=-0.2;ts64=-0.9;
For [¢1=410;k=1,ksTheMaxIteration,
¢1=¢1-32./TheMaxIteration*Pi/180;k=k+1,
deltadl [k]l= ¢1-¢10;
deltads [k]1=(¢1-¢10)*0.5;
$5=¢50-delta¢s [k];
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cf1l=Cos [$1];

561=Sin[¢1];

cf5=Cos [$5] ;

s85=Sin[¢$5];

Angles=FindRoot [{211=0,212=0,213=0,221=0,222=0,223=0}, {c62,tc62}, {sf
2,ts62),{c63,tco3}, {s63,ts63},{chs,tch4},{s64,ts04}];

tcf2=Angles[[1,2]];tsf2=Angles[[2,2]];

tcé3=Angles[[3,2]];tsf3=Angles[[4,2]];

tcl4=Angles[[5,2]];tsb4=Angles[[6,2]];

§2=Which[tcf2z0 && ts62=0,ArcCos[tcf2],tch2<0 &&
ts82>0,ArcCos [tc82],tcf2<0 && tsf2s<0,2*Pi-ArcCos{tchd2],tchd2>0 &&
ts02<0,2*Pi-ArcCostcb2]];

If [k=1,62begin=02,];

deltaf2 [k]=602-62begin;

deltafl[k]l=01-410;

]

Rulo ,u_l:={ {ull1,1)]1%2*(1-Cos[al)+Coslal, ull1,1]] ull2,1]) (1-
Cos[a])-ull3,1)] Sinlel,ull1,1]] ull3,1]]) (1-Coslal)+ul(2,1]] sinla]
¥
{ull1,11] ull2,1]] (1-Cos[al)+ul[3,1]] Sinle]l, ul(2,1]11%2 (1-
Cos [@])+Cos [a), ul[2,1]] ul[3,1]1] (1-Cosla))- ull1l,1]] Sinla] },
{ull1,1]) ull3,1]] (1-Coslel)-ull2,1]] Sinl[el, ull2,1]] ull3,11] (1-
Coslal)+ull1,1]] Sinfla),ull3,1]1%2 (1-Cosla])+Coslal} };

uak={{uax}, {vay}, {vaz}};

a0axis={{a0[[1]]},{a0[[2]11},{a0([3]]}};

boaxis={{b0[[1]1},{b0o[[2]11},{bO[[3]1]}};
For [k=1,ksTheMaxIteration, k++,
NewAl [k]=Ru[deltafl (k] ,a0axis] . (al-a0)+a0;
alaxis={{NewAl[k] [[1]]}, {NewAl[k] [[2]]}, {NewAl[k] [[3]1]}};
pltemp [k]=Ruldeltafl [k],h a0axis] . (pl-a0)+a0;
NewP1 [k] =Ru[delta#2[k],alaxis] . (pltemp [k] -NewAl [k]) +NewAl [k] ;
gltemp [k] =Ru[deltafl[k] ,a0axis] . (gql-a0)+a0;
NewQ1 [k]=Ru[deltaf2[k],alaxis]. (gltemp [k] -NewAl [k]) +NewAl [K] ;
ritemp [k]=Rul[deltafl[k],a0axis}. (r1-a0)+al;
NewR1 [k]=Rul[deltaf2[k],alaxis] . (ritemp [k] -NewAl [k] ) +NewAl (k] ;
]
Pd=p4;Qd=g4;Rd=r4;
For [k=1;minsqrt=9999;myk, ksTheMaxIteration, k++,
toleranceErr [k]=(Sqrt [(NewP1[k] [[1]]-Pd[[1]1]) "2+ (NewP1([k] [[2]]~
Pd[[2]])"2+ (NewP1[k] [[3]]-PA[[3]])"2]+Sqrt[(NewQl[k] [[1]]-
QdI[[1)]) "2+ (NewQl[k] [[2]]-Qd[[2]]) "2+ (NewQl [k] [[3]]-
Qdl[3]1])"2)+Sqgrt[(NewRl[k] [[1]]-Rd[[1]]) "2+ (NewR1[k] [[2]]-
RA[[2]]) "2+ (NewRl[k] [[3]]-RA[[31])72])/3;

If [minsqrt>toleranceErr [k],minsgrt=toleranceErr [k];myk=k,];

]
myanswer4 [DistanceOofProjection] ={deltafl [myk] *180/Pi,DistanceOfProjecti
on, minsgrt*DistanceOfProjection}
Pd=p3;Qd=g3;Rd=r3;
For [k=1;minsqrt=9999;myk, ksTheMaxIteration, k++,
toleranceErr [k] = (Sqrt [ (NewP1 [k] [{1]]-Pd[[1]]) "2+ (NewP1[k] [[2]]-
PA[[2]]) "2+ (NewPl[k][[3]1]-PA[[3]])"2]+Sqgrt[(NewQl([k] [[1]]-
Qd[[1]1)*2+(NewQl[k] [[2]1]-Qd[[2]])" 2+ (NewQ1 [k] [[3]]-
Qdl[31])"2)+sqrt [ (NewRl[k] [[1]]1-RA[[1]]) "2+ (NewR1[k] [[2]]-
RA[[21]) *2+(NewR1[k] [[3]]1-RA[[3]1])72]1)/3;

If [minsqgrt>toleranceErr [k] ,minsgrt=toleranceErr [k];myk=k,];

]
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myanswer3 [DistanceOfProjection] ={deltadl {myk] *180/Pi,DistanceOfProjecti
on, minsgrt*DistanceOfProjection}
Pd=p2;Qd=g2;Rd=r2;
For [k=1;minsqrt=9999;myk, ksTheMaxIteration, k++,
toleranceErr [k]=(Sgrt [ (NewP1i[k] [[1]]-Pd[[1]]) "2+ (NewPl1l[k] [[2]]-
Pd[[2]]) "2+ (NewP1[k] [[3]1]-Pd([[3]])"2])+Sqrt[(NewQl[k] [[1]]-
Qd[[1]]) "2+ (NewQl [k] [[2]1]1-Qd[[2]]) "2+ (NewQl (k] [[3]]-
Qd[[3]1)"2]+Sqrt[(NewRl([k] [[1]]1-RA[[1]}])"2+(NewR1[k] [[2]]-
RA[[2]1]) "2+ (NewR1[k] [[3]]-RA[[3]])"2])/3;
If [minsqgrt>toleranceErr [k] ,minsgrt=toleranceExrr [k] ;myk=k,];
]
myanswer2 [DistanceOfProjection] ={deltafl [myk] *180/Pi,DistanceOfProjecti
on, minsqrt*DistanceOfProjection}

B.5.4 Planar Five -Bar Motion Generator by Sphere-to-Plane Projection

MyMaxSteps=320;

RadiusOfSphere=1;

DistanceOfProjection=5

Clearall [plp,p2p,p3p,pP4pP,P5pP,P6p,P7P,Pl,P2,P3,p4,P5,pP6,pP7];
ProjectionFuni{x_,y ,z_},d_]l:={d/z*x,d/z*y}
pl1={-0.021795,0.241702,0.970106}
p2={-0.000923932,0.232652,0.97256}
p3={0.0186851,0.21822,0.975721}
p4={0.036223,0.198451,0.979441}
p5={-0.021795,0.241702,0.970106}
p6={0.00641815,0.243033,0.969997}
p7={0.0338794,0.239549,0.970293}
g1={0.0293685,0.307949,0.950949)}
q2={0.04373,0.302857,0.952032}
q3={0.0562272,0.292464,0.954622}
q4={0.0659565,0.276768,0.95867}
q5={0.0293685,0.307949,0.950949}
q6={0.0569979,0.308741,0.949437}
q7={0.0833346,0.305307,0.948601}
rl={0.122261,0.305771,0.944223}
r2={0.135812,0.307429,0.941829}
r3={0.146873,0.304272,0.941194}
r4={0.154481,0.296554,0.942439}
r5={0.122261,0.305771,0.944223}
r6={0.149173,0.305713,0.940365}
r7={0.174726,0.302113,0.937123}
plp=ProjectionFun{pl,DistanceOfProjection]
p2p=ProjectionFun[p2,DistanceOfProjection]
p3p=ProjectionFun [p3,DistanceOfProjection]
p4p=ProjectionFun [p4,DistanceOfProjection]
pSp=ProjectionFun [p5,DistanceOfProjection)
pép=ProjectionFun [p6,DistanceOfProjection]
p7p=ProjectionFun [p7,DistanceOfProjection]
glp=ProjectionFun[qgl,DistanceOfProjection]
g2p=ProjectionFun[g2,DistanceOfProjection]
g3p=ProjectionFun{g3,DistanceOfProjection}
g4p=ProjectionFun{g4,DistanceOfProjection]
g5p=ProjectionFun{g5,DistanceOfProjection]



gép=ProjectionFun[gé,DistanceOfProjection]
g7p=ProjectionFun{q7,DistanceOfProjection]
rlp=ProjectionFun[rl,DistanceOfProjection]
r2p=ProjectionFun [r2,DistanceOfProjection]}
r3p=ProjectionFun [r3,DistanceCfProjection]
r4p=ProjectionFun[r4,DistanceOfProjection]
r5p=ProjectionFun[r5,DistanceOfProjection]
rép=ProjectionFun{ré,DistanceOfProjection]
r7p=ProjectionFun[r7,DistanceOfProjection]

ClearAll [aOp,alp,alnp,bOp,blp,blnp,ad,al,aln,bl,bl,blin];
a0={0,-0.000381988,1.};al={0.0199343,0.16282,0.986454};
ailn={-0.0221915,0.16252,0.986456};b0={0.203954,0,0.97898};
b1={0.308175,0.111344,0.944791};
c1={0.142585,0.233286,0.961898}; .
c1n={0.190634,0.279084,0.941154};
a0p=ProjectionFun{a0,DistanceOfProjection]
alp=ProjectionFun[al,DistanceOfProjection]
alnp=ProjectionFun[aln,DistanceOfProjection]
bOp=ProjectionFun [b0,DistanceOfProjection]
blp=ProjectionFun [bl,DistanceOfProjection]
clp=ProjectionFun[cl,DistanceOfProjection]
clnp=ProjectionFun|cln,DistanceOfProjection]
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ClearAll [c62,s02,a2,c03,863,a3,cb4,s604,a4,chl,s61,al,ch5,s65,a5,2z211,zz2

12,z13,2z221,2222,2223,2231,2232,2233];
Mlcé_,s6 ,a_):={{cb,-s6,e a s8},{s6,c6,-e a c6},{0,e a, 1}}

M2=M([c62,s62,a2];
M3=M[c63,s63,a3];
M4=M[cl4,s64,a4];
M1=M[cf1,s61,all;
M5=M[c85,805,a5];

Z=M2 .M3-Transpose [M1] . Transpose [M5] . Transpose [M4] ;

zz11=2[[1,1]];
z212=2[[1,2]];
zz13=21[[1,311];
22z21=2[[2,111;
zz222=2[[2,21];
2z23=2[[2,311];
zz31=Z[[3,11]);
z22z32=2[[3,2]];
zz33=2[[3,31];

equll=Coefficient[zzll,e,b 0]
equl2=Coefficient [z212,e,0]
equl3=Coefficient[2zz13,e, 1]
equ23=Coefficient [zz23,e,1]
equ3l=Coefficient[zz31,e,1]
equ32=Coefficient [zz32,e,1]

ClearAll[al,a2,a3,
. (alp-ao0p)]
. (clp-alp)}
. (blp-ci1p)]
a4=Sqgrt [ (bOp-bip).
a5=Sqgrt [ (a0p-bop) .

al=sqgrt[(alp-a0p)
a2=8grt[(clp-alp)
a3=8qgrt[(blp-clp)

a4);

(bOp-bip) ]
(a0p-bop) ]

ClearAll [f1begin, 61];
61begin=ArcCos [ (bOp-a0Op) . (alp-a0p)/Sqrt[(bOp-a0p) . (bOp-a0p)]/Sart((alp-

a0p) . (alp-a0Op)]]+Pi;
f5begin=2 Pi-45.*Pi/180.

MR[6_]:={{Cos[0],-Sin([6]},{Sin(6],Cos(8]}};
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k6d=0.5;
§50=2. Pi-45.*Pi/180;
tc@2=0.6;ts€2=-0.8;tC93=0.4;tS€3=-0.9;tCG4=-0.2;t504=-0.9;
For[k:l;61=01begin,ksMyMaxSteps,k++;01:61—32./MyMaxSteps*Pi/lBO.,
deltafl[k]=601-61begin;
deltads [k]=kfd*deltadl [K];
#5=050-deltads [k];
ch1l=Cos[01];s01=5in[61] ;chH5=Cos[65] ;s65=Sin[65];
Answer=FindRoot [{equll, equl2,equl3, equ32,equ3l,equ23}, {c62,tch2}, {s
62,ts62},{c63,tco3},{s63,ts63}, {ch4,tchs}, {s64,ts04}];
tcf2=Answer [[1,2]];tsb2=Answer[[2,2]];
tch#3=Answer[[3,2]];tsb3=Answer[[4,2]];
tcf4a=Answer[[5,2]];tsb4=Answer({6,2]1];
ansc82=Answer [[1,2]];anssf2=Answer[[2,2]];
§2=Which[anscf220 && anssf2=20,ArcCos [ansch2],anscf2<0 &&
anssf2>0,ArcCos [anscf2] ,anscf2s0 && anssf2s0,2*Pi-
ArcCos [ansc62] ,ansc82>0 && anssf2<0, -ArcCos [anscf2]];
If [k==1,62begin=02;Print [Answer],];
deltaf2 [k]=02-62begin;
newal [k] =MR [deltaf1[k]].{{(alp-a0p) [[1]1},{(alp-
aop) [1211}}+{{a0p([111},{a0p[[2]1}};
pll[k]=MR [deltaf1[k]].{{(plp-aop) [[1]1]1},{(plp-
aop) [[2]11}}+{{a0p[[1]11},{a0p[[2]1}};
gl1[k)=MR[deltad1[k]].{{(glp-aop) [[1]1]},{(qglp-
aop) [[211}}+{{aop((111},{aopl(2]1]1}};
r1l[k]=MR[deltaf1(k]].{{(rip-aop) [[1]1}, {(r1p-
aop) [[21]1}}+{{aop[[1]1},{a0p([2]1}};
newpl [k] =MR [delta62 [k]]. (p1l[k] -newal [k]) +newal [k] ;
newqgl [k] =MR [delta62 [k]]. (g1l [k] -newal [k] ) +newal [k] ;
newrl [k]=MR [deltaf2[k]]. (r1l[k] -newal [k]) +newal [k] ;
square2 [k] = (newpl (k] [[1]]-p2p[[1]]) "2+ (newpl[k] [[2]]-
p2p[(2]])*2+ (newql[k] [[1)]1-g2p[[1]]) "2+ (newqgl[k] [[2]]-
q2p[[2]1]) "2+ (newrl (k] [[1])]-r2p[[1]]) "2+ (newrl[k] [[2]]-
r2pl[21])72;
square3 [k] = (newpl [kl [[1]1]-p3p[[1]]) "2+ (newpl (k] [[2]]-
p3pl[2]1]) "2+ (newqgl (k] [[1]1]-g3p[[1}])"2+ (newqgl[k] [[2]]-
a3pl[2]]) "2+ (newrl([k] [[1]]-r3p[[1]]) "2+ (newrl(k] [[2]]-
r3p[[2]])”°2;
square4 [k] = (newpl [k] [[1]]-p4p[{1]]) *2+ (newpl[k] [[2]]-
pap[[211) "2+ (newgl [k] [[1]1]1-q4p[[1]]) "2+ (newql (k] [[2]]-
g4p[[2])) "2+ (newrl (k] [[1]1]-r4p[([1]1]) "2+ (newrl([k] [[2]]-
rap[[2]))*2;
]
For [k=1;minsqrt2=999;minsqrt3=999;minsqgrt4=999;myk2; myk3;myk4,
ksMyMaxSteps, k=k+1,
If [minsgrt2ssquare2 [k] [[1]],minsqrt2=square2 (k] [[1]];myk2=k,];
If [minsgrt3s>square3 (k] [[1]],minsqrt3=square3 [k] [[1]];myk3=k,];
If [minsqrt4s>square4 [k] [[1]],minsgrté=square4 [k] [[1]];myk4=k,];
]
StructuralErr [DistanceOfProjection] =Sqrt [minsqrt4] /DistanceOfProjection;
deltafl [myk2]*180/Pi
deltafl [myk3]*180/Pi
deltafl [myk4]*180/Pi
StructuralErr [DistanceOfProjectionl
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