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ABSTRACT

THE DESIGN OF ADJUSTABLE SPHERICAL MECHANISMS
USING PLANE-TO-SPHERE AND SPHERE-TO-PLANE PROJECTIONS

by
Wen-Tzong Lee

The spherical mechanism is a particular type of spatial mechanism. Due to the

orientation of its joint axes and the curvature of its links, the workspaces of spherical

mechanisms (whether line segments, closed loops or area regions) are spherical in

curvature. This characteristic of spherical mechanisms makes them quite effective and

practical in motion path and function generation applications requiring spherical rigid

body kinematics.

Although there are design methods available for spherical mechanisms, most of

these methods do not consider the design of a single adjustable spherical mechanism.

With an adjustable spherical mechanism, the user could for example, relocate the fixed or

moving pivots of the spherical mechanism to achieve a greater range of rigid body

locations and orientations. Having adjustability would make a single mechanism

effective for multiple design applications.

Numerous methods have been published for the design of adjustable planar

mechanisms. Unfortunately, the number of design methods for adjustable spherical

mechanisms, in comparison, is extremely modest. This research bridges the gap between

the need for adjustable spherical mechanism design methods and the design methods

available for adjustable planar mechanisms.

This research presents a new method for synthesizing adjustable spherical four

and five-bar motion, path and function generators using planar motion, path and function



generation methods respectively. The benefits of this method are twofold. One benefit

is that the user can design spherical mechanisms to approximate multiple phases of

prescribed rigid-body path points. Another benefit is that the user can design spherical

path generators using synthesis methods for planar path generators. By projecting the

coordinates of a given spherical mechanism on a plane or the coordinates of a given

planar mechanism on a sphere using the method introduced in this work, the user can

design both planar and spherical mechanisms respectively. This research introduces

sphere-to-plane and plane-to-sphere projection methods with optimization methods to

minimize the structural error between the prescribed performance of the adjustable

spherical mechanism and the performance achieved by the synthesized adjustable

spherical mechanism.

This research considers two-phase moving pivot adjustment problems with

constant crank and follower lengths for the spherical mechanism. The spherical

mechanisms considered in this research are four-bar motion, path and function generators

as well as five-bar motion and path generators. Codified models of the projection and

optimization methodologies introduced are also included.
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CHAPTER 1

INTRODUCTION

1.1 Spherical Four and Five-Bar Mechanisms

The spherical mechanism is a particular type of spatial mechanism. As the name

"spherical" implies, some characteristics of this mechanism are like those of a geometric

sphere. For example, the joint axes of spherical mechanism all intersect at the same point

(the center of the sphere) and the links of a spherical mechanism have constant curvature.

Figure 1.1 illustrates a spherical four-bar mechanism. This mechanism is also called the

four-revolute spherical or 4R spherical mechanism. The spherical four-bar mechanism

has a single degree of freedom. Figure 1.2 illustrates a spherical five-bar mechanism.

The spherical five-bar mechanism has two degrees of freedom. Variables a0 and b 0 in

Figures 1.1 and 1.2 denote the fixed pivots. Variables al, b 1 and c 1 denote the moving

pivots. The u variables denote the joint axes of each fixed and moving pivot. Revolute

joints connect each link in both the spherical four and five-bar mechanisms.

1
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Figure 1.2 The spherical five-bar mechanism.

Due to the orientation of its joint axes and the curvature of its links, the

workspaces of spherical mechanisms (whether they are line segments, closed loops or

area regions) are spherical in curvature. This characteristic of spherical mechanisms
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makes them quite effective and practical in motion path and function generation

applications requiring spherical rigid body kinematics.

The capacity for spherical manipulation of rigid bodies in a mechanism has been

proven to be very advantageous when the rigid body is a camera (Figure 1.3) or a fan

(Figure 1.4). In Figure 1.3 [1], a camera is mounted on a 1-DOF spherical mechanism.

This mechanism is called the "Agile Eye" and its responsiveness is comparable to that of

the human eye. In Figure 1.4 [2], a fan is mounted to a 1-DOF spherical mechanism.

This mechanism is called "The Infinity Fan" and is capable of thoroughly circulating air

in a room even when facing a corner. If these spherical mechanisms were designed to

have adjustable features (for example, adjustable moving pivots) a single "Agile Eye,"

"Infinity Fan" then the spherical mechanism would be able to achieve additional rigid-

body orientations while incorporating essentially the same hardware.



4

Figure 1.4 A 1-DOF spherical manipulator (the "Infinity Fan").

1.2 Planar Four and Five-Bar Mechanisms

Figure 1.5 illustrates a planar four-bar mechanism.	 Like the spherical four-bar

mechanism, the planar four-bar mechanism has a single degree of freedom. Figure 1.6

illustrates a planar five-bar mechanism. Like the spherical five-bar mechanism, the

planar five-bar mechanism has two degrees of freedom. Variables a0 and b0 in Figures

1.5 and 1.6 denote the fixed pivots. Variables al, b 1 and c 1 denote the moving pivots.



Figure 1.6 The planar five-bar mechanism.
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1.3 Path and Multi-Phase Path Generation for Planar Mechanisms

The objective in path generation is to synthesize a mechanism to achieve a series of

prescribed rigid-body path points. For the five-bar tooling mechanism illustrated in,

Figure 1.7, the rigid body is a machining tool and the rigid body points are various

locations of the tool tip. The objective in multi-phase path generation is to design an

adjustable mechanism to achieve multiple series of prescribed rigid-body path points.

The advantage of multi-phase path generation is that the user can design a single path

generator to achieve multiple series (or phases) of prescribed rigid-body path points using

essentially the same hardware. For example, if rigid body path points Al, p2, and p 3 are

achieved when the five-bar mechanism illustrated in Figure 1.8 incorporates the moving

pivots a l and c 1 , and rigid body path points pi, p4, and p5 are achieved when mechanism

incorporates moving pivots al„ and ch in, then the mechanism could be classified as an

adjustable path generator.

Figure 1.7 Five-bar tooling mechanism.



Figure 1.8 Adjustable five-bar path generator and rigid body path
points.

Besides moving pivot adjustment, there are some other kinds of adjustable

mechanisms, such as crank length adjustment (Figure 1.9), fixed pivot adjustment (Figure

1.10), and fixed pivot and crank length adjustment (Figure 1.11).

Figure 1.9 Crank length Adjustment.
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Figure 1.11 Fixed pivot and crank length adjustment.

1.4 Function and Multi-Phase Function Generation
for Planar Mechanisms

The objective in function generation is to synthesize a mechanism to achieve a series of

prescribed input-output link relationships. For the four-bar dial mechanism illustrated in

Figure 1.9, reading on one dial and the reading on the other dial are coordinated by a

relationship between the input and output links. The objective in multi-phase function
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generation is to design an adjustable mechanism to achieve multiple series of prescribed

input-output link relationships. The advantage of multi-phase function generation is that

the user can design a single function generator to achieve multiple series (or phases) of

prescribed input-output link relationships using essentially the same hardware. For

example, if angles 41, ()2, and 43 are achieved when the four-bar mechanism illustrated in

Figure 1.10 incorporates the moving pivot b1, and angles (1)1, (1)4, and 45 are achieved when

mechanism incorporates moving pivots b 1 , then the mechanism could be classified as an

adjustable function generator. •

Figure 1.12 Four-bar dial mechanism.
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Figure 1.13 Adjustable four-bar function generator.

1.5 Motion and Multi-Phase Motion Generation
for Planar Mechanisms

The objective in motion generation is to design a mechanism to achieve a series of

prescribed rigid-body positions. For the planar five-bar loading mechanism illustrated in,

Figure 1.11, the rigid body is the carrying block and the position of the rigid body is

represented by various locations on the carrying block (points p, q and r). The objective

in multi-phase motion generation is to design an adjustable mechanism to achieve

multiple series of prescribed rigid-body positions. One advantage of multi-phase motion

generation is that the user can design a single motion generator to approximate multiple

series (or phases) of prescribed rigid-body positions using essentially the same hardware.

For example, if rigid-body position 1, 2 and 3 are achieved when the five-bar mechanism

(in Figure 1.12) incorporates the moving pivots a l and c1, and positions 1, 4 and 5 are

achieved when a l „ and chin are incorporated, this mechanism could be classified as an
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adjustable motion generator. As illustrated in Figure 1.12, the mechanism with moving

pivots a l and c 1 and the mechanism with moving pivots ai r, and c1n use the same

components (or hardware). The only difference between the two mechanisms are the

locations of the moving pivots a and c.

Figure 1.15 Adjustable five-bar motion generator and rigid-body
positions.
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1.6 Literature Review

Previous work in spherical path generation [3-7] includes the work of Tong and Chiang

[3] who developed compatible equations to synthesize spherical path generators based on

the relationship between the coupler pole and the mechanisms joints. Chang, Lu and

Hwang [4] developed equations for spherical four-bar linkages to trace a coupler curve

with two prescribed cusps by using a special case of spherical Burmester curves.

Angeles and Liu [5] developed a method to optimize the spherical path generator by

formulating the problem as two loops and minimizing the structural error between the

two loops. Lin [6] used a continuation method to synthesize spherical four-bar path

generators. Funabshi, Iwatsuki and Yoshiaki [7] considered path generation using

spherical four-bar mechanisms with adjustable crank lengths.

Previous work in the area of planar path generation [3,7-21] includes the work of

Tao and Krishnamoorthy [8] who presented a graphical method to synthesize a four-bar

path generator to produce different coupler curves by adjusting the length of the crank

link. Kay and Haws [9] developed generalized design equations for a path generating

cam-link mechanism. Zhou and Cheung [10] developed a generic algorithm to obtain the

global solution for continuous path generation by measuring the link length structural

error instead of the structural error between the prescribed curve and generated curve.

Allah and Kota [11] introduced a new method to optimize the structural in path

generation by using the Fourier function to describe the coupler curve. Tong and Chang

[3] developed compatible equations to synthesize planar path generators based on the

relation shop between the coupler pole and the mechanism joints. Sandor, Kaufman,

Erdman, Foster, Sadler, Smith and Kerashaw [12] introduced a geared linkage for path
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generation. Bali and Chand [13] presented a synthesis method for planer five-bar path

generation with prescribed timing and variable topology for motion between extreme

positions using the complex number method. Starns and Fulgrad [14] presented a

synthesis method for a geared five-bar path generating mechanism using continuation

methods. Connor, Douglas and Gilmartin [15] presented a methodology for the synthesis

of hybrid, five-bar path generating mechanisms. Freudenstein and Roth [16] developed a

numerical method-based synthesis approach for path generators. McGovern and Sandor

[17] presented a method to synthesize adjustable function generators using complex

variables. Funabshi, Iwatsuki and Yoshiaki [7] considered path generation using planar

four-bar mechanisms with adjustable crank lengths. Chang [18] proposed synthesis

methods to design mechanisms that are adjustable to tracing variable circular arcs with

prescribed velocities. Beaudrot [19] introduced a synthesis method by which planar four-

bar mechanisms can be adjusted to achieve multiple linear paths. In the work of

Shimojima, Ogawa, Fujiwara and Sato [20], adjusting methods and the types of outputs

are classified and planar four-bar and multi-link mechanisms are synthesized by

considering pressure angles and the rations of link lengths. Tao and Yan [21] considered

the design of adjustable planar linkages to achieve variable circular arcs.

Previous work in spherical function generation [5, 7, 22-25] includes the work of

Liu and Angeles [5] who developed an optimization method for four-bar function

generators. In this method, the design error is formulated as an equality-constrained

minimization problem. The authors also introduced an optimization method for four-bar

spherical function generators under mobility constraints [22]. Lin and Chiang [23]

introduced a synthesis method for five-bar spherical function generators using the pole
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method. Sodhi and Wilhelm [24] presented an expanded set of computer input-output

angle solutions curves for use in designing four-revolute spherical function generators.

Chen and Chiang [25] developed a fourth-order synthesis method for spherical four-bar

function generators using relative pole equations. Funabshi, Iwatsuki and Yoshiaki [7]

considered function generation using spherical four-bar mechanisms with adjustable

crank lengths. •

Previous work in the area of planar function generation [7, 12, 22, 23, 26-35]

includes the work of Raot [26] who introduced a four-bar, epicyclical gear train

mechanism that can develop a function of two independent variables. Watanable [27]

developed an analytical method for the synthesis of a planar four-bar mechanism to

generate an approximate function over a finite interval. Chuang and Chiang [28]

presented an optimum solution for a planar four-bar function generator concerning both

structural error and transmission angle. Chiang, Pennestri and Chung [29] introduced

computer-based methods for higher order synthesis of four-bar function generators.

Beale and Simionescu [30] presented an optimum synthesis method for the planar four-

bar function generator using the Akermann steering linkage as an example. Todorov [31]

presented a dimensional synthesis method for planar function generators. Yin and Wu

[32] introduced an optimal model of a function generator that considers the effects of

radial clearances in joints and structural error. Liu and Angeles [22] introduced an

optimization scheme for four-bar planar function generators under mobility constraints.

Lin and Chiang [23] introduced a synthesis method for five-bar planar function

generators using the pole method. McGovern and Sandor [33] presented a method to

synthesize adjustable function generators using complex variables. Naik and Amarnath
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[34] presented a method to synthesize an adjustable four-bar function generator using

five-bar linkage theory. Sandor, Kaufman, Erdman, Foster, Sadler, Smith and Kerashaw

[12] introduced a geared linkage for function generation. Basu and Farhang [35]

presented a mamthematical formulation for the analysis and design of two-input, small

crank, five-bar mechanisms for function generation. Funabshi, Iwatsuki and Yoshiaki [7]

considered function generation using planar four-bar mechanisms with adjustable crank

lengths.

Previous work in spherical mechanism design, analysis and motion generation

[36-42] includes the work of Furlong and Vance [36] who presented a new approach

using a virtual reality environment to design spherical mechanisms. Sodhi and Shoup

[37, 38] presented relationship between the axodes and the geometric configuration of the

spherical four-revolute mechanism and a general analytical method for synthesizing the

four-revolute spherical mechanism based on the fixed axode. Gilmartin and Duffy [39]

examined type and mobility analysis of the spherical four-link mechanism. McCarthy

and Bodduluri [40, 41] considered the generalization of planar rectification theory to

spherical 4R mechanisms as well as an approach to the finite position synthesis of

spherical four-bar linkages that unites traditional precision theory with recent results in

approximate position synthesis. Ruth and McCarthy [42] described a computer-aided

design software system for spherical four-bar linkages that is based on Burmester's

planar theory. Lin [6] used a continuation method to synthesize spherical four-bar

motion generators.

Previous work in planar mechanism design, analysis and motion generation [12,

43-47] includes the work of Wang and Sodhi [43] who developed a method for the
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synthesizing an adjustable moving pivot four-bar mechanism for multi-phase motion

generation. Ahmad [44] produced a summary of synthesis methods for four-bar linkages

with adjustable crank pivots for different motion generation problems. Sandor, Kaufman,

Erdman, Foster, Sadler, Smith and Kerashaw [12] introduced a geared linkage for motion

generation. Dhingra and Mani [45] developed a computer-based approach for

synthesizing six different link and geared mechanisms to achieve finite and multiply-

separated positions. Wilhelm [46] introduced multi-phase motion generation methods for

planar four-bar mechanisms. Chuenchom and Kota [47] presented generalized analytical

methods for designing adjustable mechanisms based of the synthesis of adjustable dyads.

1.7 Research Objectives

Although there are methods available for the design of spherical mechanisms (as

described in the literature review included in Section 1.6), most of these methods do not

consider the design of a single adjustable spherical mechanism. With an adjustable

spherical mechanism, the user could relocate the mixed or moving pivots of the

mechanism to achieve a new mechanism configuration, and subsequently, additional

motion, path or function generation applications.

The primary objective of this research is to develop new methods for the design of

four and five-bar spherical mechanisms for multi-phase motion, path and motion

generation. With such methods, the user could design four and five-bar spherical

mechanisms to achieve multiple phase of prescribed rigid-body positions, path points or

crank and follower displacement angles using essentially the same hardware.
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In accordance to the synthesis of adjustable spherical four and five-bar

mechanisms, another objective of the research is to develop an optimization method to

minimize the structural error of the synthesized adjustable spherical mechanisms. Asing

such a method in accordance with multi-phase motion, path and function generation

methods, the user could design adjustable spherical motion, path and function generators

with optimum parameters for minimum structural errors in rigid-body positions, path

points or crank and follower displacement angles respectively.

To achieve the primary objective, methods for the design of adjustable planar four

and five-bar mechanisms for-multi-phase motion, path and function generation are also

developed in this research. With such methods, the user could design four and five-bar

planar mechanisms to achieve multiple phase of prescribed rigid-body positions, path

points or crank and follower displacement angles using essentially the same hardware.

1.8 Research Methodology

Asing the theories of planar rigid-body guidance, planar rigid-body point guidance and

planar four-bar crank and follower displacement angle relationships, design equations

were developed under constant-length constraints. For planar mechanism synthesis, these

equations govern the fixed-pivot locations, moving-pivot locations and link lengths in

accordance with the prescribed rigid-body points, rigid-body path points and crank and

follower displacement angles. The design equations were developed to include multi-

phase motion path and function generation for planar four and five-bar mechanisms.

Asing the geometric relationships between spheres, planes, line-sphere

intersections and line-plane intersections, projection methods were developed. With the
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developed plane-to-sphere and sphere-to-plane projection methods, the user could project

the joint coordinates of a planar mechanism (essentially, points on a plane) to the surface

of a specified sphere (resulting in a spherical mechanism).

Optimization methods were developed to minimize the structural errors in the

rigid-body positions, path points and crank and follower displacement angles of

adjustable spherical motion, path and function generators (respectively) synthesized using

plane-to-sphere projection. The optimization approach capitalizes on the relationship

between structural error and the projection length in plane-to-sphere projections. -

Codified models of the developed multi-phase motion, path and function

generation equations, the plane-to-sphere and sphere-to-plane projection methods and the

optimization method were built using the mathematical analysis software

MATHEMATICA. With these codified models, the user can design adjustable spherical

four and five-bar motion, path and function generators with minimum structural error on

a computer.



CHAPTER 2

ADJUSTABLE PLANAR MECHANISMS AND DESIGN EQUATIONS

The design equations for the synthesis for adjustable planar mechanisms are introduced in

this chapter. Unlike non-adjustable planar mechanisms, adjustable planar mechanisms

can be designed to achieve multiple mechanism configurations (and subsequently

multiple phases of prescribed motion, path or function generation parameters) using

essentially the same hardware. Specifically, this chapter includes the design equation

for adjustable four-bar motion, path and function generators and adjustable five-bar

motion and path generators.

2.1 Adjustable Planar Four-Bar Path Generator

Figure 2.1 illustrates the planar four-bar path generator. Link a0-a1 is the designated

crank link and link bo-b1  is the designated follower link. Links a0-a1 and b0-b1 of the

mechanism must satisfy the constant length condition only. Given a fixed pivot 1)0 and a

moving pivot b 1 , the constant length condition in Equation 2.1 [48,49] must be satisfied

when synthesizing the crank and follower links of the planar four-bar mechanism.
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Equation 2.1 is rewritten as Equation 2.3. In Equation 2.3, the variable R represents the

length of the follower link.

Variable p in Equation 2.2 represents the coordinates of the rigid body curve points.

Variable 0 represents the angular displacement between position "1" and "j" of the rigid
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body. Since there are four variables (box , boy, b1x and Ely ), a maximum of five rigid body

curve points can be prescribed, with no arbitrary choice of parameter for a single phase

(see Table 2.1).

In Table 2.1, the maximum numbers of prescribed rigid body curve points for the

planar four-bar path generator for several phases are given. The number of fixed and

moving pivot coordinates for the crank and follower links determines the maximum

number of rigid body curve points that the user can prescribe. The example problem in

Section 6.1 demonstrates the design of a planar and spherical four-bar path generator to

achieve a two-phase moving pivot adjustment application.

In the two-phase, adjustable moving pivot example problem in Section 6.1, the

required unknowns are ao, al, al,,, boa, b1 and an . The unknowns, ao and boa, represent the

fixed pivots of the planar four-bar mechanism. The unknowns, al, al,,, b1 and b1n,

represent the moving pivots in phase 1 and phase 2 of the planar four-bar mechanism.

Since each of these unknowns has two components, there are a total of 12 variables to

determine.



2.2 Adjustable Planar Four-Bar Function Generator

The planar four-bar function generator is illustrated in Figure 2.2. In this work, link ao-at

is the designated crank link and link bo-b1  is the designated follower link. Link a1-b1 of

the planar four-bar mechanism must satisfy the constant length condition only. Given a

fixed pivots ao=(0,0) and bo=(1,0), the constant length condition in Equation 2.14 [48,49]



23

must be satisfied when synthesizing the crank and follower links of the planar function

generator.

Equation 2.14 can be rewritten as Equation 2.16. In Equation 2.16, the variable L2

represents the length of the coupler (sometimes called rigid body) link. Although the

moving pivots of both the crank and follower link of the planar four-bar mechanism are

adjustable, only the length of the follower link will be adjusted (not the crank link) in this

work.



Variables Oil and (1)1j in Equation 2.15 represent the angular displacements of the crank

and follower links. Since there are four variables (Dix, ally, b1 and Ely ), a maximum of

four crank and follower displacement angles can be prescribed, with no arbitrary choice

of parameter for a single phase (see Table 2.2).

In Table 2.2, the maximum numbers of prescribed crank and follower

displacement angles for the adjustable planar four-bar function generator for several

phases are given. The number of moving pivot coordinates for the crank and followers

links determines the maximum number of crank and follower displacement angles. The

example problem in Section 6.2 demonstrates the design of a planar and spherical four-

bar function generator to achieve a two-phase moving pivot adjustment application.

In the two-phase, adjustable moving pivot example problem in Section 6.2, the

required unknowns are a l , b1 and b 1n. These unknowns represent the moving pivots in

phase 1 and phase 2 of the planar four-bar mechanism. Since each of these unknowns

has two components, there are a total of 6 variables to determine.
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2.3 Adjustable Planar Four-Bar Motion Generator

The planar four-bar motion generator is illustrated in Figure 2.3. In this work, link a0-a1

is the designated crank link and link b0-b1 is the designated follower link. Links ao-a1

and b0-b1 of the planar four-bar mechanism must satisfy the constant length condition

only since its fixed and moving pivot joint axes remain parallel. Given a fixed pivot boa

and a moving pivot b1, the constant length condition in Equation 2.22 [48,49] must be

satisfied when synthesizing the crank and follower links of the planar four-bar

mechanism.
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Equation 2.22 can be rewritten as Equation 2.24. In Equation 2.24, the variable R

represents the length of the crank or follower link.

Equation 2.23 is a rigid body displacement matrix. It is a derivative of the spatial rigid

body displacement matrix [48,49]. Given the coordinates for a rigid body in position "i"
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and the subsequent "j," matrix [Di] is the transformation matrix required to transform

coordinates from position "i" to position "j." Variables p, q and r in Equation 2.23

represent the position of the rigid body in two-dimensional space. Although the position

of a rigid body in two-dimensional space is commonly described by a single point and a

displacement angle (p and 9 for example), the author chose to describe the rigid body

using three points for computational purposes. If the user prefers to describe the rigid

body using conventional notation, the displacement matrix in Equation 2.23 will be

replaced with the conventional plane rigid body displacement matrix [48,49]. Since there

are four variables (bo x, boy, b1 and Ely ), a maximum of five rigid body positions can be

prescribed, with no arbitrary choice of parameter for a single phase (see Table 2.3).

Points p, q and r should not all lie on the same line in each rigid body position.

Taking this precaution prevents the rows in the rigid body displacement matrix (Equation

2.23) from becoming proportional. With proportional rows, this matrix could not be

inverted.

In Table 2.3, the maximum numbers of prescribed rigid body positions for the

adjustable planar four-bar motion generator for several phases are given. The number of

fixed and moving pivot coordinates for the crank and follower links determines the

maximum number of rigid body positions. The example problem in Section 6.3

demonstrates the design of a planar and spherical four-bar motion generator to achieve a

two-phase moving pivot adjustment application.



Table 2.3 Prescribed Rigid Body Position and Phase Variations for the Adjustable
Planar Four-Bar Mechanism
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In the two-phase, adjustable moving pivot example problem in Section 6.3, the

required unknowns are a0, al, a1n, boa, b1 and 13 1n . The unknowns ao and 130 represent the

fixed pivots of the planar four-bar mechanism. The unknowns al, al n, b1 and bln

represent the moving pivots in phase 1 and phase 2 of the planar four-bar mechanism.

Since each of these unknowns has two components, there are a total of 12 variables to

determine.

Equations 2.25 through 2.29 were used to calculate five of the six unknowns in ao,

a l and al. The variable a0  and the link length R1 are specified. Variable R1 represents

the link al— a0.
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Equations 2.30 through 2.34 were used to calculate five of the six unknowns in

bo , b1 and b1. The variable bo x and the link lengths R2 are specified. Variable R2

represents the link b1— boa.

•

2.4 Adjustable Planar Five-Bar Path Generator

The planar five-bar path generator is illustrated in Figure 2.4. In this work, links a0-a1

and b0-b1 are the driving links (denoted by driving link angles 0 and (1)). Links kraal and

b-c1 of the planar five-bar mechanism are synthesized using the constant length

condition only. The constant length constraint Equations 2.35 and 2.36 [48,49] are

satisfied when synthesizing links a0-a1 and 131-c1 of the planar five-bar mechanism.
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Equations 2.35 and 2.36 can be rewritten as Equations 2.39 and 2.40. In Equation 2.39,

the variable R 1 represents the length of link ao-a1 and the variable R3 represents the

length of link b1-c1 in Equation 2.40. The variable R4 represents the length of link b0-b1

Since there are four variables in each equation

maximum of five rigid body path points can be prescribed, with no arbitrary choice of

parameter for a single phase (see Table 2.4).

In Table 2.4, the maximum numbers of prescribed rigid body path points for the

adjustable planar five-bar path generator for several phases are given. The number of

fixed and moving pivot coordinates for the links to be synthesized (links are al and b i -c i )

determines the maximum number of rigid body path points. The example problem in

Section 6.4 demonstrates the design of a planar and spherical five-bar path generator to

achieve a two-phase moving pivot adjustment application.
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In the two-phase, adjustable moving pivot example problem in Section 6.4, the

required unknowns are a0, al, aln, b1, c 1 and cln. The unknown variables a0, al, b1, and c1

represent the fixed and moving pivots required for the planar five-bar mechanism to

achieve the prescribed rigid body path points in phase 1. The unknown variables al and

c1n represent the moving pivot adjustments required to achieve the prescribed rigid body

path points in phase 2. Since each. of these variables except b 1 has two unknown

components, and b1 has four unknowns (bo x, boy, R4 and 4)), there are a total of 14

variables to determine.

In gear-driven, chain-driven and belt-driven five-bar mechanisms, the driving link

angles have a functional relationship

relationship depends on the ratios of the gears, sprockets or pulleys connecting both

driving links in the mechanism. To accommodate such drive types for the planar five-

bar mechanism, the driving link angle 9 must be determined first. After calculating ao,

a 1 and al,„ the driving link angle 0 could be determined by the Cosine Law (Equation



33

2.46). After calculating this angle for every [Dlj] position of link *rah the user can then

establish a 54) = f(50) = k*80 relationship and calculate the other driving link angle 4.

The angle 64 in Equation 2.38 is the difference between angles 4 and 41 in Equation 2.36.
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2.5 Adjustable Planar Five-Bar Motion Generator

The planar five-bar motion generator is illustrated in Figure 2.5. In this work, links a0-a1

and bo-b1 are the driving links (denoted by driving link angles 9 and 4)). Links a0-a1 and

b1-c1 of the planar five-bar mechanism are synthesized using the constant length

condition only. The constant length. constraint Equations 2.52 and 2.53 [48,49] are

satisfied when synthesizing links a0-a1 and 131-c1 of the planar five-bar mechanism. The

variable R4 represents the length of link b0-b1.



35

Equation 2.54 is a rigid body displacement matrix. It is a derivative of the spatial

rigid body displacement matrix [48,49]. Given the coordinates for a rigid body in

position "i" and the subsequent "j," matrix [Did] is the transformation matrix required to

transform coordinates from position "i" to position "j."Variables p, q and r in Equation

2.54 represent the position of the rigid-body in two-dimensional space. Although the

position of a rigid body in two-dimensional space is commonly described by a single

point and a displacement angle (p and 0 for example), the authors chose to describe the

rigid body using three points for computational purposes. If the user prefers to describe

the rigid body using conventional notation, the displacement matrix in Equation 2.54 can
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be replaced with the conventional plane rigid body displacement matrix. Since there

are four variables in each equation (aix, ahoy, Dix, ahoy and 131 x , Ely, Aix and clay), a maximum

of five rigid body positions can be achieved with no arbitrary choice of parameter for a

single phase (see Table 2.5).

Points p, q and r should not all lie on the same line in each rigid body position.

Taking this precaution prevents the rows in the rigid body displacement matrix (Equation

2.54) from becoming proportional. With proportional rows, this matrix could not be

inverted.

In Table 2.5, the maximum numbers of prescribed rigid body positions for the

adjustable planar five-bar motion generator for several phases are given. The number of

fixed and moving pivot coordinates for the links to be synthesized (links a0-ai and bi-ci)

determines the maximum number of rigid body positions. The example problem in

Section 6.5 demonstrates the design of a planar and spherical five-bar mechanism motion

generator to achieve a two-phase moving pivot adjustment application.

In the two-phase, adjustable moving pivot example problem in Section 6.5, the

required unknowns are a0, al, aln, b1, c1 and chi . The unknown variables ao, al, b 1 , and c1

represent the fixed and moving pivots required for the planar five-bar mechanism to
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achieve the prescribed rigid body path points in phase 1. The unknown variables a l „ and

can represent the moving pivot adjustments required to achieve the prescribed rigid body

path points in phase 2. Since each of these variables except b 1 has two unknown

components, and b 1 has four unknowns (box, boy, R4 and 4)), there are a total of 14

variables to determine.

In gear-driven, chain-driven and belt-driven five-bar mechanisms, the driving link

angles have a functional relationship (e.g. 80 = f(860)= k .50 in Figure 2.5). This

relationship depends on the ratios of the gears, sprockets or pulleys connecting both

driving links in the mechanism. To accommodate such drive types for the planar five-

bar mechanism, the driving link angle 0 must be determined first. After calculating a0,

a 1 and al,,, the driving link angle 0 could be determined by the Cosine Law (Equation

2.63). After calculating this angle for every D1i] position of link ao-a1, the user can then
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establish a 5q = f (SO) = k • 50 relationship and calculate the other driving link angle (I).

The angle 6(I) in Equation 2.55 is the difference between angles (I) and (1) 1 in Equation 2.53.

u.v
01= Dos - ' [ 	  , where u = Goa , v = Joao 	(2.63)IuHvl
Equations 2.64 through 2.68 were used to calculate five of the eight unknowns in

J 1 , c 1 and cln .	 The variables box, boy, 4  (in variable J1) and the link length R7 were

specified.

([D12]c1 —	 [T1]b1) — R72 = 0 (2.64)

(P)131ci — [T21131)1VD131c1— [T2]b1 — R72 = 0 (2.65)

([Disci — [T311131A[Dialci— [T7lb1) — R72 = 0 (2.66)

([D56lC1n	 [T61131)1VD561C1n [T61131) — R72 	0 (2.67)

([D571Cln 	 [T7lb1iraD571Cln— [T7lb1) — R72 = 0 (2.68)



CHAPTER 3

ADJUSTABLE SPHERICAL MECHANISMS

This chapter introduces several classifications of adjustable spherical mechanisms. Like

adjustable planar mechanisms, adjustable spherical mechanisms can be designed to

achieve multiple mechanism configurations (and subsequently multiple phases of

prescribed motion, path or function generation parameters) using essentially the same

hardware. The particular adjustable spherical mechanisms introduced in this chapter are

four-bar motion, path and function generators and adjustable five-bar motion and path

generators. This chapter also introduces the displacement equations for spherical four

and five-bar mechanisms.

3.1 Adjustable Spherical Four-Bar Path Generator

Figure 3.1 illustrates an adjustable spherical four-bar path generator. Point p represents

the rigid body point. To achieve the prescribed rigid body curve points in phase I, the

moving pivots incorporated are a1 and b1. To achieve the prescribed rigid body curve

points in phase II, the moving pivots incorporated are alr and b1. Links a0-a1  and a0-a1

are the designated crank links and links bo-b1 and bo-b1n are the designated follower

links.
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3.2 Adjustable Spherical Four-Bar Function Generator

Figure 3.2 illustrates an adjustable spherical four-bar function generator. Angles 0 and (I)

represent the angular displacements of the crank and follower links. To achieve the

prescribed angular displacements in phase I, the moving pivots incorporated are a l and

b 1 . To achieve the prescribed angular displacements in phase II, the moving pivots

incorporated are al and 13 1 ,. Link ao-a1  is the designated crank link and links bo-b 1 and

1130-b1, are the designated follower links.
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3.3 Adjustable Spherical Four-Bar Motion Generator

Figure 3.3 illustrates an adjustable spherical four-bar function generator. Points p, q and

r represent the position of the rigid body. To achieve the prescribed rigid body position

in phase I, the moving pivots incorporated are a l and b 1 . To achieve the prescribed rigid

body positions in phase II, the moving pivots incorporated are Li n and b hi. Links a0-a1

and a0-aii are the designated crank links and links b0-b1 and bo-bh  are the designated

follower links.



3.4 Spherical Four-Bar Mechanism and Rigid Body
Displacement Equations

The displacement equations described in this section are associated with the spherical

four-bar path, function and motion generators introduced in Sections 3.1, 3.2 and 3.3.

The point p shown in Figure 3.3 represents a rigid body point on a spherical R-R dyad.

The position of point p is calculated by Equation 3.1.



In this research, dual-number method [50] was used to build the displacement

equations for the spherical four-bar mechanism illustrated in Figure 3.5. These

displacement equations are given in Equations 3.9 through 3.17. Equations 3.9 through

3.17 are used to calculate angles 02 through 0 4 in Figure 3.5. Variable 01 is prescribed.

When solving for angles 02, 03, and 04, six variables (cos(02), sin(02), cos(03), sin(03),
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cos(04), sin(04)) are unknown. Equations 3.9 through 3.14 are used to calculate the six

unknown variables in angles 02, 03, and 04.

Figure 3.5 Spherical four-bar mechanism with relative joint
rotation angles (0) and joint axis angles (a).



3.5 Adjustable Spherical Five-Bar Path Generator

Figure 3.6 illustrates an adjustable spherical five-bar path generator. Point p represents

the rigid body point. To achieve the prescribed rigid body curve points in phase I, the

moving pivots incorporated are a1 and c 1 . To achieve the prescribed rigid body curve

points in phase II, the moving pivots incorporated are al n and clan.

b0-b1 are the designated crank links.
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3.6 Adjustable Spherical Five-Bar Motion Generator

Figure 3.7 illustrates an adjustable spherical five-bar path generator. Points p, q and r

represent the position of the rigid body. To achieve the prescribed rigid body curve

points in phase I, the moving pivots incorporated are a l and c1. To achieve the prescribed

rigid body curve points in phase II, the moving pivots incorporated are ai r, and ciao. Links

a0-a1, ao-ain, and bb-bi are the designated crank links.
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3.7 Spherical Five-Bar Mechanism and Rigid Body
Displacement Equations

The displacement equations described in this section are associated with the spherical

five-bar path and motion generators introduced in Sections 3.6 and 3.7. The point p

shown in Figure 3.8 represents a rigid body point on a spherical R-R dyad. The position

of point p is calculated by Equation 3.18.



In this research, dual-number method [50] was used to build the displacement

equations for the spherical four-bar mechanism illustrated in Figure 3.9. These

displacement equations are given in Equations 3.26 through 3.34. Equations 3.26

through 3.33 are used to calculate angles 02 through 0 5 in Figure 3.5. Variable 01 is

prescribed. When solving for angles 02, 03, and 04, eight variables (cos(02), sin(02),
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cos(04), sin(05), cos(05), sin(05), cos(04), sin(05)) are unknown. Equations 4.26 through

4.44 are used to calculate the six unknown variables in angles 02, 04, 05, and 04.
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Al 1= 0, c03 - ca2 s02 s93 - sa sa c se, 50b +ca s04(ca5 c05 sei+ c0, 50c )

-c04 (c0, c95 - cab s0, sas ) 	 (3.26)

c04 sac sac .501 - ca2 cab c03 502 +sae sab 502 - cab c02 503 -

cab c04(ca5 09c s0l +c0, s05 )- 50b (c9, c05 - cas s9, 50c ) 	 (3.27)

A13----ca4 sas s0,+ cab sae 502 + cab c0 b sab 502 +

c02 sab 503 - sa4(ca5 c05 seal+ c0, s05 )

A21= c03 s02 + ca2 c02 503 - sab (cac sal + cal cO sac )50b -

c04(ca5, c05 se,- cal cab c01, sa5+ sa1, sac 50c ) +
cab s04 (ca, cab c0, c05 - c05 sa1, sac - ca, se, s05 )

A22= cab cab c02 c03 - c02 sae sab + c04 sab (cac sac, + ca, c01, sac ) -

cab 502 503 - se4(-cal c05 50,- ca, cab c0, 50c + sa1, sac 50c ) -
cab c94 (ca,ca5 c01 ce5 - c05 sa1, sac  - cal se, secs)

A23—cab c02 sae  - ca2 092 c03 sab - cab (causal + cal c0, sac ) +

sab 502 503 - sa4(ca1, ca5 cep, 09c - c05 sa1, sac - cal se, 50c )

A31= sae 503 - sa4(ca5, ca5  - c0, sa l sa5)s04-

C04 (cec sa, se, + ca5 C0, sa1, secs+ cal sac 50c ) +
cab s04(-ca5 c03, ce5 sal - ca, c05 sac + sa1, se, 50c )

A32= cab c03 sa2 +ca2 sa3 + c04 sac (ca, ca5  - cO1, sa1, sac ) -

504 (c05 sal 501 + ca5 cc, sa l s05 + cal sac 50c ) -
cab c04(-ca5  cO1, ce5 sac, - cal c05 sac + sal sO1, 50c )

A33= cab ca3-c03  sae sab - cab (ca, ca5  - cO1, sa l sac ) -

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

sa4(-ca c0, c05 sa1, - ca, c05 sac + sa1, 50i 50c ) 	 (3.35)
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In Equations 3.26 through 3.34, variables "c0" and "s9" represent cos(9) and sin(8)

respectively and variables "ca" and "sa" represent cos(a) and sin(a), respectively.



CHAPTER 4

PLANE-TO-SPHERE AND SPHERE-TO-PLANE PROJECTION METHODS

This chapter introduces the plane-to-sphere and sphere-to-plane projection used to design

spherical mechanisms (given planar mechanisms) and planar mechanisms (given

spherical mechanisms) respectively. In plane-to-sphere projection, each joint coordinate

of a planar mechanism is projected on the surface of a specified sphere. In sphere-to-

plane projection, each joint coordinate of a spherical mechanism is projected on a

specified plane. The chapter also includes an optimization method to minimize the

structural error in plane-to-sphere projections.

4.1 Plane-to-Sphere and Sphere-to-Plane Projection Methods

The joints and rigid body points of a planar mechanism could be projected on the surface

of a sphere. Figures 4.1 and 4.2 illustrate the projection of a point on a plane (x p,yp,zp) to

a point on the surface of a sphere (x„y„z s). The projection line passes through the center

of the sphere (the global origin). As Figures 4.1 and 4.2 illustrate, the plane that the point

lies on (and ultimately the planar mechanism) is parallel to the x-y plane of the global

coordinate system and is offset from the x-y plane by a distance "d" along the z-axis.
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The equation for the plane is given in Equation 5.1. The projection length "d" is

the distance between the center of the sphere and the plane. The center of the sphere is

coincident with global origin and the surface of the sphere is represented by the Equation
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4.2 where variable "r" is the radius of the sphere. The projection line from the point on

to center of the sphere is represented by Equation 5.3. The point of

intersection between the projection line and the surface of the sphere (x„y s,z,) is

expressed in Equation 4.4.
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The joints and rigid body points of a spherical mechanism could be projected on a

plane. Figure 5.3 illustrates the projection of a point on a sphere (x s ,ys ,A s) to a point on a

plane (xp,yp,zp). Again, the projection line passes through the center of the sphere (the

global origin). As Figure 4.3 illustrates, the origin of the sphere that the point lies on

(and ultimately the spherical mechanism) is coincident with the origin of the global

coordinate system and the projection plane is offset from the x-y plane by a distance "d"

along the A-axis.

The projection line from the center of the sphere to the point on the sphere

(x s ,ys ,A s) and the point of intersection between the projection line and the plane

is expressed in Equation 4.5.

4.2 Structural Error Calculation

4.2.1 Structural Error Calculation for Path Generation

In this work, the structural error in path generation is the difference between the

prescribed rigid body path points and the points achieved by the synthesized path

generator. In Figure 4.4, the structural error Serer (Equation 4.6) is the magnitude of the

difference between the prescribed points (pp) and those achieved by the synthesized

mechanism (Kg).



The magnitude of the projection offset distance "d" and the radius of the sphere

determines the overall scale of the synthesiAed. For example, as "d" gets larger (for a

fixed sphere radius "r") the overall scale of the projected spherical mechanism decreases

as well. The structural error is multiplied by the projection length in sphere-to-plane

projection to enable the user to compare structural errors for spherical mechanisms at

different projection-offset distances. The structural error is divided by the projection

length in plane-to-sphere projection to enable the user to compare structural errors for

spherical mechanisms at different projection offset distances.



4.2.2 Structural Error Calculation for Motion Generation
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In this work, the structural error in motion generation is the difference between the

prescribed rigid body positions and those points achieved by the synthesized motion

generator. In Figure 4.5, the structural error S, (Equation 4.7) is the magnitude of the

average difference between the prescribed positions (pp, qp, rp) and those achieved by the

synthesiAed mechanism (n.. a.. r01

The magnitude of the projection offset distance "d" and the radius of the sphere

determines the overall scale of the synthesiAed. For example, as "d" gets larger (for a

fixed sphere radius "r") the overall scale of the projected spherical mechanism decreases
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as well. The structural error is multiplied by the projection length in sphere-to-plane

projection to enable the user to compare structural errors for spherical mechanisms at

different projection-offset distances. The structural error is divided by the projection

length in plane-to-sphere projection to enable the user to compare structural errors for

spherical mechanisms at different projection offset distances.



CHAPTER 5

COMPUTER MODEL FOR OPTIMIZATION METHOD

This chapter introduces the algorithms and codified models of plane-to-sphere projection

and optimiAation methods. The mathematical analysis software MATHEMATICA was

used to build and implement the models. Asing the codified models, the user can project

the joint coordinates of a given planar mechanism onto a sphere and determine the

optimum projection length to minimiAe the structural error of the resulting spherical

mechanism.

5.1 Optimization Method for Plane-to-Sphere Projection Method

The author used the mathematical analysis software MATHEMATICA to codify the

plane-to-sphere projection and optimization method. Figure 5.1 illustrates the flowchart

of the computer models. This research also includes the MATHEMATICA models used

in this work to design adjustable spherical motion, path and function generators (see

Appendix B). The adjustable path generation MATHEMATICA model (for spherical

four-bar mechanisms) is used as an example in this section.
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Figure 5.1 Flowchart for MATHEMATICA models.

In block 1 of the flowchart (part 1 of Section 5.2), the user provides the prescribed

planar rigid body points and the fixed and moving pivots of the synthesiAed planar four-

bar path generator. Because it would be most likely that only the prescribed spherical

rigid body points would be available in spherical path generation applications, the

spherical points must be projected onto a plane using the sphere-to-plane projection

method. The MATHEMATICA model of the plane-to-sphere projection method is

provided in Section 5.2. Performing the projection would convert the spherical points
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into planar points-making them compatible with planar path generation methods. When

the prescribed planar rigid body points are calculated, the user can synthesiAe a planar

path generator using the synthesis method provided in Section 2.1 or any other adjustable

path generation method available.

In block 2 of the flowchart (part 2 of Section 5.2), the planar rigid body points and

the fixed and moving pivots of the synthesized planar path generator are projected onto a

sphere. The radius of the sphere, projection length and the number of solution iterations

are user-defined.

Blocks 3, 4 and 5 (parts 3 through 6 in Section 5.2) represent an iterative

procedure in which the structural error between the rigid body points achieved by the

adjustable spherical path generator and the prescribed rigid body points of this

mechanism is calculated. The user must determine whether the structural error calculated

is sufficient by comparing it to an acceptable error value. If the calculated error is not

acceptable, the user increases the projection length and recalculates the structural error.

As demonstrated in the example problems throughout Chapter 6, structural error

decreases with respect to an increasing projection length (in motion, path and function

generation). If the error is acceptable, the end result would be an adjustable spherical

path generator that approximates the prescribed rigid body points within the desired

structural error.

Figure 5.2 illustrates parts 3 through 6 in Section 5.2. This figure is a detailed

flowchart of blocks 3 and 4 in Figure 5.1. The kinematic parameters of the spherical path

generator are calculated in blocks 1 through 3 of Figure 5.2. These parameters include

the input and output crank angles and the orientation angles of the intermediate links of
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the spherical mechanism. The kinematic parameters are used as initial positions of the

mechanism for displacement analysis. In part 4 of Section 5.2, lines 39 through 54 are

the codified Dual Number [501 displacement equations for the spherical four-bar

mechanism.

Blocks 4 and 5 in Figure 5.2 represent lines 57 through 70 in Section 5.2. The

spherical mechanism is displaced a full crank rotation incrementally using the codified

Dual Number equations. Block 5 in Figure 5.2 represents lines 61 through 70 in Section

5.2. All of the crank displacement angles and intermediate link displacement angles are

tabulated. Block 6 in Figure 5.2 represents the part 5 of Section 5.2, where the

displacement equations are defined. Asing the tabulated displacement angles of the

spherical path generator, the calculated link lengths and initial position angles, the

location of the moving pivot (a) and the rigid body points are calculated for each

increment of the displacement cycle of the spherical mechanism in part 5 of Section 5.2.

Block 7 in Figure 5.2 represents part 6 in Section 5.2, where lines 82 through 85

search for the optimal position of the rigid body points for the last position of a phase.

MinimiAing the last position of a phase is necessary since it carries the greatest structural

error. The result of part 6 are rigid body points for each increment of the displacement

cycle of the spherical path generator. In lines 86 and 87 of Section 5.2, the structural

error between each of the tabulated rigid body point and each prescribed rigid body point

and the minimum error is displayed. If the calculated structural error is greater than

desired, the user can increase the projection length in line 3 of Section 5.2 and recalculate

a new structural error. By increasing the projection length gradually over a range and
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calculating the structural error for each projection length, the structural error plots in the

example problems throughout Chapter 6 were generated.

As written, the model in Section 5.2 will calculate the structural error for rigid

body point 4 (the rigid body point variables for position 5 or "p4" are used in line 81 in

Section 5.2). To calculate the structural error of another position, the p variable in line

81 of the model in Section 5.2 must be replaced with those of the desired position (for

example, for position "n" the variable must be "pn").

To achieve the rigid body points in phase 1 for the spherical four-bar path

generator, the moving pivots a 1 and b1 are used and the moving pivots a l , and bhp, are

used to achieve the positions in phase 2. As written, the model in Section 5.2

incorporates the phase 1 moving pivots in lines 28 through 35. To incorporate the phase

2 moving pivots (a l p, and bhp), the user must replace variable "al" and "bi" with "ale

and "bin" in lines 28 through 35.

In this section, the MATHEMATICA model for adjustable spherical four-bar path

generation in Appendix B.1 is used as an example. The MATHEMATICA models for

adjustable spherical four-bar function and motion generation are given in Appendix B.2

and B.3, respectively. The MATHEMATICA models for adjustable spherical five-bar

path and motion generation are given in Appendix B.4 and B.5, respectively.



Figure 5.2 Detailed flow chart of blocks 3 and 4 in Figure 5.1.
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5.2 MATHEMATICA Model of Plane-to-Sphere Projection and
Optimization for Adjustable Spherical Four-Bar Path Generator

The following MATHEMATICA model illustrates the plane-to-sphere projection method

for four-bar path generator. The model was divided into six parts and that could make

the model more readable.
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CHAPTER 6

SPHERICAL MECHANISM SYNTHESIS EXAMPLES

This chapter includes an array of example problems in which all of the theory, methods

and models introduced in this work are demonstrated. Applications such as the design of

adjustable planar and spherical four-bar motion, path and function generators and the

design of adjustable planar and spherical five-bar motion and path generators are

included in this chapter. Methods such as the plane-to-sphere and sphere-to-plane

projections and the plane-to-sphere optimiAation method are included as well as the

application of the codified MATHEMATICA models introduced in Chapter 5 are

demonstrated in the example problems.

6.1 Synthesis of Adjustable Four-Bar Spherical and
Planar Path Generators

6.1.1 Plane-to-Sphere Projection

This particular problem depicts a situation where the user wants to calculate the spherical

equivalent of an adjustable planar four-bar path generator. In this situation, the user

would already have prescribed planar rigid body points. The end objective in this

example is to calculate the parameters of an adjustable spherical four-bar path generator

that would achieve the prescribed planar rigid body points (when projected onto a

sphere). The x and y-coordinates of seven prescribed planar rigid-body points and

orientation angles are listed in Table 6.1.
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Using Equations 6.1 through 6.10, the prescribed rigid-body parameters in Table

6.1 and the following initial guesses

The positions achieved by the synthesized adjustable planar four-bar path generator (see

Figure 6.1) are given in Table 6.2. Equations 6.1 through 6.10 are identical to Equations

2.4 through 2.13.



Figure 6.1 Synthesized adjustable planar four-bar path generator.
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As previously mentioned, the end objective in this example is to calculate the

parameters of an adjustable spherical four-bar path generator that would achieve the

prescribed planar rigid body positions in Table 6.1 when projected onto a sphere. Asing

the plane-to-sphere projection method described in Section 4.1, each joint coordinate of

the synthesiAed adjustable planar four-bar path generator is projected onto a specified

sphere. This origin of this sphere is coincident with the origin of the coordinate system

and the synthesiAed planar mechanism lies on plane parallel to the x-y plane and offset

from the origin by a distance "d" along the z-axis (see Figure 4.2).

The magnitude of the offset distance "d" is inversely proportional to the structural

error between the prescribed "projected" rigid body points and the points achieved by the

projected adjustable spherical four-bar path generator. Plots of the structural errors

between the prescribed and generated rigid body points of the adjustable spherical four-

bar path generator are illustrated in Figures 6.2 through 6.6 (for each rigid body point).

As these figures illustrate, as the magnitude of the projection length "d" increases, the

structural error decreases.

In this example a projection length of 11, and subsequently a structural error

(Served) less than 0.001 in Figures 6.2 through 6.6, was selected. The sphere onto which

the planar rigid body points were projected has a radius of 1. The prescribed rigid body

points (from Table 6.1) projected onto a sphere or radius 1 and offset distance 11 are

given in Table 6.3. The projected fixed and moving pivots of the synthesiAed adjustable

spherical four-bar path generator are given in Table 6.4. The plane-to-sphere projections

were performed using the MATHEMATICA model in Appendix B.1. In Table 6.4, the

joint axes for the projected fixed and moving pivots of the adjustable spherical four-bar
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path generator are the unit vectors from the center of the sphere (the origin of the

coordinate system) to each fixed and moving pivot. The adjustable spherical four-bar

path generator is illustrated in Figure 6.7.



Structural Error Plot for Phase I, Position 4
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Structural Error Plot for Phase II, Position 7
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Table 6.3 Prescribed Projected Rigid-Body Points for the Adjustable Spherical Four-Bar
Path Generator



Using the MATHEMATICA model located in Appendix B.1, the rigid-body

points achieved by the adjustable spherical four-bar path generator were calculated along

with the measured structural error. The rigid body points achieved by the adjustable

spherical four-bar path generator and the measured structural error are given in Table 6.5.

Table 6.5 Rigid-Body Points Achieved by the Adjustable Spherical Four-Bar Path
Generator
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6.1.2 Sphere-to-Plane Projection

Given the synthesiAed adjustable spherical four-bar path generator in the previous sub-

section, the parameters of a kinematically-equivalent adjustable planar four-bar path

generator will be calculated to demonstrate the structural error difference between plane-

to-sphere and sphere-to-plane projections. Asing the sphere-to-plane projection method

described in Section 4.1, each joint coordinate of the synthesiAed adjustable spherical

four-bar path generator is projected onto a specified plane as described in Section 4.1.

The origin of this sphere is coincident with the origin of the coordinate system and the

synthesiAed planar path generator lies on plane parallel to the X-Y plane and offset from

the origin by a distance "d" along the A-axis.

As indicated in to Figures 6.8 through 6.12, the magnitude of the offset distance

"d" has no effect on the structural error between the prescribed projected rigid body

points and the rigid body points achieved by the projected adjustable planar four-bar path

generator. This is due to the joint axes varying with the projection length in plane-to-

sphere projections but remaining constant with varying projection lengths in sphere-to-

plane projection.

No matter what projection length is specified, the prescribed rigid body points of

the adjustable planar four-bar path generator illustrated in Figure 6.1 are achieved

precisely when projecting the synthesized adjustable spherical four-bar path generator

onto a plane. Figures 6.8 through 6.12 illustrate the structural error between the

prescribed projected rigid body points and the points achieved by the projected adjustable

planar four-bar path generator (for each rigid body point).



Structural Error Plot for Phase I, Position 2
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Structural Error Plot for Phase I, Position 4
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Structural Error Plot for Phase II, Position 7
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6.2 Synthesis of Adjustable Four-Bar Spherical and
Planar Function Generators

6.2.1 Plane-to-Sphere Projection

This particular problem depicts a situation where the user wants to calculate the spherical

equivalent of an adjustable planar four-bar function generator. In this situation, the user

would already have prescribed planar crank and follower displacement angles. The end

objective in this example is to calculate the parameters of an adjustable spherical four-bar

function generator that would achieve the prescribed planar crank and follower

displacement angles. Seven prescribed crank and follower displacement angles are listed

in Table 6.1.
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Table 6.7 Crank and Follower Link Displacement Angles Achieved by the Adjustable
Planar Four-Bar Function Generator

81

Figure 6.13 SynthesiAed adjustable planar four-bar function
generator.

As previously mentioned, the end objective in this example is to calculate the

parameters of an adjustable spherical four-bar function generator that would achieve the

prescribed planar crank and follower displacement angles in Table 6.6. Asing the plane-

to-sphere projection method described in Section 4.1, each joint coordinate of the

synthesized adjustable planar four-bar function generator is projected onto a specified

sphere. This origin of this sphere is coincident with the origin of the coordinate system
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and the synthesized planar mechanism lies on plane parallel to the x-y plane and offset

from the origin by a distance "d" along the A-axis (see Figure 4.2).

The magnitude of the offset distance "d" is inversely proportional to the structural

error between the prescribed displacement angles and the angles achieved by the

projected adjustable spherical four-bar function generator. In this work, structural error

in function generation is defined as the error 10, — 0, Obi (Equation 6.16), where Op is the

prescribed displacement angle and Og  is the displacement angle achieved by the

synthesiAed adjustable spherical four-bar function generator. Plots of the structural error

s between the projected and generated displacement angles of the adjustable spherical

four-bar function generator are illustrated in Figures 6.14 through 6.18 (for each

displacement angle). As these figures illustrate, the magnitude of the projection length

"d" increases as the structural error decreases.

In this example, a projection length of 10 and subsequently an error (Serr*d) less

than 0.005 in Figures 6.14 through 6.18 was selected. In addition, the sphere onto which

the planar function generator parameters are projected has a radius of 1. The prescribed

crank and follower displacement angles for the spherical function generator are given in

Table 6.6. The projected fixed and moving pivots of the synthesized adjustable planar

four-bar function generator are given in Table 6.8. These plane-to-sphere projections

were performed using the MATHEMATICA model in Appendix B.2. In Table 6.8, the

joint axes for the projected fixed and moving pivots of the adjustable spherical four-bar

function generator are the unit vectors from the center of the sphere (the origin of the
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coordinate system) to each fixed and moving pivot. The adjustable spherical four-bar

function generator is illustrated in Figure 6.19.



Error Plot for Phase I, Position 4
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Figure 6.16 Error plot for phase I, position 4.



Error Plot for Phase II, Position 6
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Figure 6.18 Error plot for phase II, position 6.

Table 6.8 Projected Fixed and Moving Pivots of the Adjustable Spherical Four-Bar
Function Generator
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Figure 6.19 The adjustable spherical four-bar path generator
calculated by plane-to-sphere projection.

Using the MATHEMATICA model located in Appendix B.2, the crank and

follower link displacement angles achieved by the adjustable spherical four-bar function

generator were calculated along ' with measured displacement angle error. The

displacement crank and follower angles achieved by the adjustable spherical four-bar

function generator and the measured displacement angle error are given in Table 6.9.
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6.2.2 Sphere-to-Plane Projection

Given the synthesiAed adjustable spherical four-bar function generator in the previous

sub-section, the parameters of a kinematically-equivalent adjustable planar four-bar

function generator will be calculated to demonstrate the structural error difference

between plane-to-sphere and sphere-to-plane projections. Asing the sphere-to-plane

projection method described in Section 4.1, each joint coordinate of the synthesiAed

adjustable spherical four-bar function generator was projected onto a specified plane as

described in Section 4.1. This origin of this sphere is coincident with the origin of the

coordinate system and the synthesiAed planar function generator lies on plane parallel to

the X-Y plane and offset from the origin by a distance "d" along the z-axis.

As indicated in Figures 6.20 through 6.24, the magnitude of the offset distance

"d" has no effect on the structural error between the crank and follower displacement

angles and the displacement angles achieved by the adjustable planar four-bar function

generator. This is due to the joint axes varying with the projection length in plane-to-

sphere projections but remaining constant with varying projection lengths in sphere-to-

plane projection.

No matter what projection length is specified, the adjustable planar four-bar

function generator illustrated in Figure 6.13 is achieved precisely when projecting the

synthesized adjustable spherical four-bar function generator onto a plane. Figures 6.20

through 6.24 illustrate the structural error between the prescribed crank and follower

displacement angles and the angles achieved by the projected adjustable planar four-bar

function generator (for each displacement angle).



Figure 6.21 Error plot for phase I, position 3.
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Figure 6.23 Error plot for phase II, position 5.
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6.3 Synthesis of Adjustable Four-Bar Spherical and
Planar Motion Generators

6.3.1 Plane-to-Sphere Projection

This particular problem depicts a situation where the user wants to calculate an adjustable

spherical four-bar motion generator given prescribed spherical rigid body positions. The

end objective in this example is to calculate the parameters of an adjustable spherical

four-bar motion generator that would achieve the prescribed spherical rigid body

positions.

The x, y and z-coordinates of seven prescribed spherical rigid-body positions are

listed in Table 6.10. The positions in Table 6.10 lie on a sphere with a radius of 1 unit. It

is the design intent that one mechanism adjustment achieves position 1 through 4 and

another mechanism adjustment achieves position 5 through 6.
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Using the sphere-to-plane projection method described in Section 5.1, the planar

rigid-body positions in Table 6.11 are calculated. The positions in Table 6.11 are the

spherical rigid-body positions in Table 6.10 projected onto a plane at an offset distance

on 7 units (di = 7) along the z-axis from the origin of the coordinate system. As

illustrated in Figures 4.1, the origin of the coordinate system is coincident with the origin

of the sphere containing the prescribed rigid body positions.
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Now that the spherical rigid-body positions have been projected onto a plane, they

are planar rigid-body positions and an adjustable planar motion generator can be designed

to approximate these positions. Equations 6.17 through 6.21 are used to calculate five of

the six unknowns in aox, a 1 and ain. Equations 6.22 through 6.26 are used to calculate five

of the six unknowns in Joe, b1 and ba n. These equations are identical to Equations 2.25

through 2.34. The variable ao and the link length R 1 are specified (ao  = 0 and R 1 = 1).

The variable box and the link length R2 are specified (box = 1.5 and R2 = 1.5). Asing the

following initial guesses:



Now that a mechanism solution has been calculated for the projected planar rigid-

body positions, the joints of the adjustable planar four-bar motion generator are projected

back onto a sphere with a radius of 1 unit to determine the joints of the adjustable

spherical motion generator required to achieve the prescribed rigid-body positions in

Table 6.10.

Asing the MATHEMATICA model in Appendix B.3, the error plots in Figures

6.26 through 6.30 were generated for each rigid body position of the adjustable spherical

four-bar motion generator. These figures illustrate that the structural error between the

prescribed and achieved rigid-body positions of the adjustable spherical four-bar motion

generator decreases as the projection length increases.

For this example, the maximum allowable error (Serer * d) for each rigid body

position is 0.01 units. Since the sphere-to-plane projection length is 7 units, the plane-to-

sphere projection length is also 7 units to maintain the scale of the prescribed rigid-body
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positions. With a plane-to-sphere projection length of 7 units, the maximum structural

error obtained is approximately 0.008 units for rigid body position 5 and 0.005 for

position 7.



Structural Error Plot for Phase I, Position 4
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Structural Error Plot for Phase II, Position 7
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Using a projection length of 7 units in plane-to-sphere projection results in the

adjustable spherical four-bar motion generator fixed and moving pivots given in Table

6.12. Figure 6.31 illustrates a graphical representation of the synthesized adjustable

spherical four-bar motion generator. Table 6.13 includes the rigid-body positions

achieved by the adjustable spherical four-bar motion generator along with the calculated

structural error.



Table 6.13 Rigid-Body Positions Achieved by the Adjustable Spherical Four-Bar
Motion Generator
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6.3.2 Sphere-to-Plane Projection

Given the synthesized spherical four-bar motion generator in the previous sub-section,

the parameters of a kinematically-equivalent adjustable planar four-bar motion generator

will be calculated to demonstrate the structural error difference between plane-to-sphere

and sphere-to-plane projections. Using the sphere-to-plane projection method described
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in Section 4.1, each joint coordinate of the synthesized adjustable spherical four-bar

motion generator is projected on a specified plane as described in Section 4.1. The origin

of this sphere is coincident with the origin of the coordinate system and the synthesized

planar motion generator lies on plane parallel to the X-Y plane and offset from the origin

by a distance "d" along the A-axis.

As indicated in Figures 6.32 through 6.36, the magnitude of the offset distance

"d" has no effect on the structural error between the prescribed projected rigid body

positions and the positions achieved by the projected adjustable planar four-bar motion

generator. This is due to the joint axes varying with the projection length in plane-to-

sphere projections but remaining constant with varying projection lengths in sphere-to-

plane projections.

No matter what projection length is specified, the adjustable planar four-bar path

generator given in Figure 6.25 is achieved precisely when projecting the synthesiAed

adjustable spherical path generator onto a plane. Figures 6.32 through 6.36 illustrate the

structural error between the prescribed projected rigid body positions and the positions

achieved by the adjustable planar four-bar motion generator (for each rigid body

position).



Structural Error Plot for Phase I, Position 2
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Figure 6.33 Structural error plot for phase I, position 3.



Structural Error Plot for Phase I, Position 4
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Structural Error Plot for Phase II, Position 7
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6.4 Synthesis of Adjustable Five-Bar Spherical and
Planar Path Generators

6.4.1 Plane-to-Sphere Projection

This particular problem depicts a situation where the user wants to calculate an adjustable

spherical five-bar path generator given prescribed spherical rigid body points. The end

objective in this example is to calculate the parameters of an adjustable spherical five-bar

path generator that would achieve the prescribed spherical rigid body points.

The x, y and z-coordinates of seven prescribed spherical rigid body points are

listed in Table 6.14. The positions in Table 6.14 lie on a sphere with a radius of 1 unit. It

is the design intent that one mechanism adjustment achieves positions 1 through 4 and

another mechanism adjustment achieves positions 5 through 7.

Asing the sphere-to-plane projection method described in Section 4.1, the planar

rigid-body positions in Table 6.15 were calculated. The positions in Table 6.15 are the
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spherical rigid-body positions in Table 6.15 projected onto a plane at an offset distance of

5 units (di = 5) along the z-axis from the origin of the coordinate system. As illustrated in

Figure 5.1, the origin of the coordinate system is coincident with the origin of the sphere

containing the prescribed rigid body positions.

Now that the spherical rigid-body positions have been projected onto a plane, they

are planar rigid-body positions and an adjustable planar path generator can be designed to

approximate these positions. Equations 6.27 through 6.31 are used to calculate five of
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the six unknowns in aox, a1 and a l ,,. These equations are identical to Equations 2.41

through 2.55. The variable ao and the link length R 1 were specified (ao = 0 and R 1 = 1).

Using the following initial guesses:



The synthesized adjustable planar five-bar path generator is illustrated in Figure

6.37. A gear train was incorporated in the synthesiAed adjustable planar five-bar path

generator. Since the prescribed relationship between the driving link displacement angles

gear ratio between both driving links is required. The

same ratio is required if pulleys, sprockets or independent motors are incorporates in the

driving links.



Figure 6.37 The synthesized adjustable planar five-bar path
generator.

Although an adjustable planar five-bar path generator has been synthesized, an

adjustable spherical five-bar path generator is needed to approximate the prescribed rigid

body positions in Table 6.14. Asing the MATHEMATICA model in Appendix B.4, each

joint coordinate of the synthesized planar five-bar mechanism is projected onto a sphere

of unit radius.

The structural error plots for each rigid body position are illustrated in Figures

6.38 through 6.42. As these figures illustrate, the structural error (S, * d) decreases as

the magnitude of the projection length "d" increases.

In this example, a projection length of 5 (and subsequently, a structural error less

than 0.01 in Figures 6.38 through 6.42) was selected. Table 6.16 includes the fixed and

moving pivots of the synthesized adjustable spherical five-bar path generator projected

onto a sphere. Figure 6.43 illustrates the synthesiAed adjustable spherical five-bar path
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generator. The rigid body points achieved by the adjustable spherical five-bar path

generator are given in Table 6.17 along with the measured structural error. With a plane-

to-sphere projection length of 5 units, the maximum structural error (S e, * d) calculated is

approximately 0.0098 units for rigid body position 4 and 0.0066 for position 7.



Structural Error Plot for Phase I, Position 4
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Structural Error Plot for Phase II, Position 7
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z 

Figure 6.43 The adjustable spherical five-bar path generator
calculated by plane-to-sphere projection.

Table 6.17 Rigid-Body Positions Achieved by the Synthesized Adjustable Spherical
Five-Bar Path Generator

I) Sea * d [10 -3 ]

Pos. 1 0.03393, 0.35590, 0.93529

Pos. 2 0.05125 0.35855 , 0.93593 3.3

Pos. 3 0.06589 0.33615 0.93950 7.8

Pos. 4 0.07771 0.31825 0.95582
9.8

Pos. 5 0.03393 , 0.35590 , 0.93529

Pos. 6 0.06653 , 0.35655 , 0.93195
5.5

Pos. 7 0.09780 0.35265 0.93063 6.6
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6.4.2 Sphere-to-Plane Projection

Given the synthesized spherical five-bar path generator in the previous sub-section, the

parameters of a kinematically-equivalent adjustable planar five-bar path generator will be

calculated to demonstrate the structural error difference between plane-to-sphere and

sphere-to-plane projections. Asing the sphere-to-plane projection method described in

section4.1, each joint coordinate of the synthesized spherical path generator is projected

onto a specified plane as described in Section 4.1. The origin of this sphere is coincident

with the origin of the coordinate system and the synthesiAed adjustable planar five-bar

path generator lies on plane parallel to the X-Y plane and offset from the origin by a

distance "d" along the z-axis.

As indicated in Figures 6.44 through 6.48, the magnitude of the offset distance

"d" has no effect on the structural error between the prescribed projected points and the

points achieved by the projected adjustable planar five-bar path generator. This is due to

the joint axes varying in orientation with the projection length in plane-to-sphere

projections but remaining constant with varying projection lengths in sphere-to-plane

projections.

No matter the projection length is specified, the adjustable planar five-bar path

generator illustrated in Figure 6.37 is achieved precisely when projecting the synthesized

adjustable spherical five-bar path generator onto a plane. Figures 6.44 through 6.48

illustrate the structural error between the prescribed projected rigid body points and the

points achieved by the adjustable planar five-bar path generator (for each rigid body

point).



Structural Error Plot for Phase I, Position 2
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Structural Error Plot for Phase II, Position 7
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Figure 6.48 Structural error plot for phase II, position 7.
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6.5 Synthesis of Adjustable Five Bar Spherical and
Planar Motion Generators

6.5.1 Plane-to-Sphere Projection

This particular problem depicts a situation where the user wants to calculate an adjustable

spherical five-bar motion generator given prescribed spherical rigid body positions. The

end objective in this example is to calculate the parameters of an adjustable spherical

five-bar motion generator that would achieve the prescribed spherical rigid body

positions.

The x, y and z-coordinates of seven prescribed rigid body positions are listed in

Table 6.18. The positions in Table 6.18 lie onto a sphere with a radius of 1 unit. It is the

design intent that one mechanism adjustment achieves position 1 through 4 and another

mechanism adjustment achieves position 5 through 7.

Using the sphere-to-plane projection method described in Section 4.1, the planar

rigid-body positions in Table 6.19 were calculated. The positions in Table 6.19 are the

spherical rigid-body positions in Table 6.18 projected onto a plane at an offset distance

on 6 units (d i = 6) along the A-axis from the origin of the coordinate system. As

illustrated in Figure 4.1, the origin of the coordinate system is coincident with the origin

of the sphere containing the prescribed rigid body positions.



115

Now that the spherical rigid-body positions have been projected onto a plane, they

are planar rigid-body positions and an adjustable planar motion generator can be designed

to approximate these positions. Equations 6.38 through 6.42 were used to calculate five

of the six unknowns in aox, a1 and ai r,. These equations are identical to Equations 2.58

through 2.62. The variable ao and the link length R 1 were specified (Cox = 0 and R 1 = 1).

Asing the following initial guesses:

ahoy = 0.01, a1 = (0.01, 0.9), al, = (-0.20, 0.90),

the adjustable planar five-bar motion generator solutions converges to



Equations 6.44 through 6.48 were used to calculate five of the eight unknowns in

b 1 , c 1 and c hi . Equations 6.43 through 6.48 are identical to Equations 2.63 through 2.68.

The variable Joe, the link R4 and the initial value of angle 4 were specified

Using the following initial guesses:



the planar five-bar mechanism solutions converged to

The synthesized adjustable planar five-bar motion generator is illustrated in

Figure 6.49. A gear train was incorporated in the synthesiAed adjustable planar five-bar

motion generator. Since the prescribed relationship between the driving link

displacement angles was 841= f(60) = 0.5*80, a 2:1 gear ratio between both driving links

is required. The same ratio is required if pulleys, sprockets or independent motors are

incorporates in the driving links.

Figure 6.49 The synthesized adjustable planar five-bar motion
generator
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Although an adjustable planar five-bar motion generator has been synthesized, an

adjustable spherical five-bar motion generator is needed to approximate the prescribed

rigid body positions in Table 6.18. Asing the MATHEMATICA model in Appendix B.5,

each joint coordinate of the synthesized planar five-bar motion generator is projected

onto a sphere of unit radius.

The structural error plots for reach rigid body position are illustrated in Figures

6.50 through 6.54. As these figures illustrate, the structural error (S, * d) decreases as

the magnitude of the projection length "d" increases.

In this example, a projection length of 6 (and subsequently a structural error less

than 0.01 in Figures 6.50 and 6.54) was selected. Table 6.20 includes the fixed and

moving pivots of the synthesiAed adjustable spherical five-bar motion generator projected

onto a sphere. Figure 6.55 illustrates the synthesized adjustable spherical five-bar

motion generator. The rigid body positions achieved by the adjustable spherical five-bar

motion generator are given in Table 6.21 along with the measured structural error. With

a plane-to-sphere projection length of 6 units, the maximum structural error (S e, * d)

calculated is approximately 0.008 units for rigid body position 4 and 0.007 for position 7

shown as Table 6.21.



Structural Error Plot for Phase I, Position 2
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Structural Error Plot for Phase I, Position 4
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Structural Error Plot for Phase II, Position 7
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Table 6.21 Rigid-Body Positions Achieved by the Synthesized Adjustable Spherical
Five-Bar Motion Generator
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6.5.2 Sphere-to-Plane Projection

Given the synthesiAed adjustable spherical five-bar motion generator in the previous sub-

section, the parameters of a kinematically equivalent planar motion generator will be

calculated to demonstrate the structural error difference between plane-to-sphere and

sphere-to-plane projections. Asing the sphere-to-plane projection method described in

Section 4.1, each joint coordinate of the synthesized spherical motion generator is

projected onto a specified plane as described in Section 4.1. The origin of this sphere is

coincident with the origin of the coordinate system and the synthesiAed planar mechanism

lies on plane parallel to the X-Y plane and offset from the origin by a distance "d" along

the z-axis.

According to Figures 6.56 through 6.60, the magnitude of the offset distance "d"

has no effect on the structural error between the prescribed projected rigid body positions

and the positions achieved by the projected adjustable planar five-bar motion generator.

This is due to the joint axes varying with the projection length in plane-to-sphere

projections but remaining constant with varying projection lengths in sphere-to-plane

projections.

No matter what projection length is specified, the adjustable planar five-bar

motion generator illustrated in Figure 6.49 is achieved precisely when projecting the

synthesiAed adjustable spherical five bar motion generator onto a plane. Figures 6.56

through 6.60 illustrate the structural error between the prescribed projected rigid body

positions and the positions achieved by the adjustable planar five-bar motion generator

(for each rigid body position).



Structural Error Plot for Phase I, Position 2
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Structural Error Plot for Phase I, Position 4
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Structural Error Plot for Phase II, Position 7
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CHAPTER 7

DISCUSSION AND CONCLUSION

In this work, the mathematical analysis software package MATHEMATICA was used to

compute the plane-to-sphere and sphere-to-plane projection methods. This package can

express a numerical value to well over ten significant figures. Since all of the numerical

figures calculated in this work are dimensionless, the dimensionless term "unit" was

often used as a suffix to describe them. In the Plane-to-Sphere projection example

problems in Chapter 6, the structural errors for positions 4 and 7 (as opposed to the

intermediate positions) were used to determine the projection length because the

structural error at these positions (the last position of each phase) are the greatest.

In the MATHEMATICA models located in Appendix B, the user must determine

whether the calculated structural error is sufficient by comparing it to an acceptable error

value. If the calculated error is not acceptable, the user increases the projection length

and recalculates another structural error.

The adjustable spherical five-bar path and motion generators synthesiAed in

Chapter 6 can be driven by attaching motors to the input and output links or by

employing a train of bevel gears. If the latter option is employed, the designer must

select (or design) bevel gears [51] that will fit the overall shaft angle (the angle between

joint axes uao and bubo) and maintain the prescribed input-output link displacement ratio

(the gear ratio).

Throughout the example problems in Chapter 6, the term "kinematically-

equivalent" was often used. Given a spherical mechanism, a kinematically-equivalent

127
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planar mechanism is one where the rigid-body displacements (or crank and follower

displacement angles in function generation) between the two mechanisms are identical.

Rigid body displacement is not to be confused with rigid body position because , for all

practical purposes, the rigid body positions between planar and spherical mechanisms

could never be identical due to their workspaces.

The theory mathematical modeling and application of a new technique for

synthesiAing adjustable four and five-bar path, function and motion generators in two

ways was presented and demonstrates in this work. First, given an adjustable planar four

or five-bar path, function or motion generator, the user can design a kinematically-

equivalent adjustable spherical four or five-bar path, function or motion generator

respectively. Second, given an adjustable spherical four or five-bar path, function or

motion generator, the user can design a kinematically-equivalent adjustable planar path,

function of motion generator. The benefits of this method are twofold. One benefit is

that adjustable spherical and planar four and five-bar mechanisms can be designed for

multi-phase motion, path and function generation applications. Another benefit is that

spherical and planar four-and five-bar motion, path and function generators can be

designed using synthesis methods for planar and spherical motion, path and function

generators respectively. Two-phase moving pivot adjustment problems with constant

crank and follower lengths are considered in this work.



APPENDIX A

PLANE AND SPHERICAL MECHANISM DISPLACEMENT EQUATIONS BY

DUAL-NUMBER METHOD

A.1 Displacement Equations for Planar Four-Bar Mechanism

Equation A.1 defines the displacement of an arbitrary rigid body point p on an R-R dyad

of a planar four-bar mechanism (see Figure A.1).
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Equations A.8 through A.16 are used to calculate angles 0 1 through 04 (see figure A.2).

These equations were derived using the dual number formulation [50] in Equations A.5

through A.7.
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In Equations A.8 through A.16, the coefficient of e ° is the real component. The

coefficient of e l is the dual component. Variables "c0" and "s8" represent cos(8) and

sin(8), respectively.
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A.2 Displacement Equations for Spherical Four-Bar Mechanism

Equation A.17 defines the displacement of an arbitrary rigid body point p on an R-R dyad

of a spherical four-bar mechanism (see figure A.3).
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Equations A.25 through A.33 are used to calculate angles 0 1 through 0 4 (see figure A.5).

These equations were derived using the dual number formulation [50] in Equations A.22

through A.25.
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A.3 Displacement Equations for Planar Five-Bar Mechanism

Equation A.35 defines the displacement of an arbitrary rigid body point p on an R-R dyad

of a planar five-bar mechanism (see Figure A.5).
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Equations A.41 through A.59 are used to calculate angles 0 1 through 05 (see Figure A.6).

These equations were derived using the dual number formulation [50] in Equations A.38

through A.40.
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A.4 Displacement Equations for Spherical Five-Bar Mechanism

Equation A.50 defines the displacement of an arbitrary rigid body point p on an R-R dyad

of a spherical five-bar mechanism (see Figure A.7).
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Equations A.58 through A.66 are used to calculate angles 0 1 through 05 (see Figure A.8).

These equations were derived using the dual number formulation [50] in Equations A.55

through A.57.
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APPENDIX B

MATHEMATICA MODELS

B.1 Adjustable Four-Bar Path Generator

The following MATHEMATICA models include four sections. Section B.1.1 illustrated

how to programming the synthesis design equations for planar four-bar path generator by

MATHEMATICA language. Section B.1.2 illustrated the Dual-number method and the

displacement equations for planar four-bar path generator. Section B.1.3 illustrated

plane-to-sphere projection method, dual-number method and displacement equations for

spherical four-bar path generator. Section B.1.4 illustrates the sphere-to-plane projection

method for spherical four-bar path generator.
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D14=D1j[012+023+1934,p1[[1,1]],p1[[2,1]],p4[[1,1]],p4[[2,1]]]
D56=D1j[056,p5[[1,1]],p5[[2,1]],p6[[1,1]],p6[[2,1]]]
D57=D1j[856+067,p5[[1,1]],p5[[2,1]],p7[[1,1]],p7[[2,1]]]
E1=Transpose[(D12.al-a0)].(D12.a1-a0)-1. A 2
E2=Transpose[(D13.al-a0)].(D13.al-a0)-1. A 2
E3=Transpose[(D14.al-a0)].(D14.al-a0)-1. A 2
E4=Transpose[(D56.aln-a0)].(D56.aln-a0)-1. A 2
E5=Transpose[(D57.aln-a0)].(D57.aln-a0)-1.'2
FindRoot[(E1[[1,1]]==0,E2[[1,1]]==0,E3[[1,1]]==0,E4[[1,1]]==0,E5[[1,1]]

==0},{a0y,0.1},{alx,-0.7},{aly,0.6},
{alnx,-0.5},{alny,0.7}]

F1=Transpose[(D12.bl-b0)].(D12.bl-b0)-1.5 A 2
F2=Transpose[(D13.bl-b0)].(D13.bl-b0)-1.5 A 2
F3=Transpose[(D14.b1-b0)].(D14.b1-b0)-1.5 A 2
F4=Transpose[(D56.bln-b0)].(D56.bln-b0)-1.5 A 2
F5=Transpose[(D57.bln-b0)].(D57.bln-b0)-1.5 A 2
FindRoot[fF1[[1,1]]==0,F2[[1,1]]==0,F3[[1,1]]==0,F4[[1,1]]==0,F5[[1,1]]

==0},{b0y,0.1},{blx,0.6},{bly,1.5},(blnx,1.0),(blny,1.4)]

B.1.2 Displacement Analysis for Planar Four-Bar Path Generator

MyMaxlterations=1000;
ClearAll[c01,sel,al,c02,s02,a2,c03,s03,a3,c04,s04,a4];
M[c0_,s0_,a_]:={{c0,-se,e a s0},{s0,c0, - e a c0},{0,e a, ill
M2=M[c02,s02,a2] ;
M3=M[c83,s03,a3];
M4=M[c04,s04,a4];
M1=M[cel,s01,a1];
Z=M2.M3-Transpose[M1].Transpose[M4];
z11=Z[[1,1]];
z12=Z[[1,2]];
z13=Z[[1,3]];
z21=Z[[2,1]];
z22=Z[[2,2]];
z23=Z[[2,3]];
z31=Z[[3,1]];
z32=Z[[3,2]];
z33=Z[[3,3]];
equl1=Coefficient[z11,e,0]==0;
equl2=Coefficient[z12,e,0]==0;
equl3=Coefficient[z13,e,1]==0;
equ21=Coefficient[z21,e,0]==0;
equ22=Coefficient[z22,e,0]==0;
equ23=Coefficient[z23,e,1]==0;
equ3l=Coefficient [z31, e, 1] ==0;
equ32=Coefficient[z32,e,1]==0;
plp={-0.6953,1.2291};
p2p={-0.6019,1.3026};
p3p={-0.5020,1.3675};
p4p={-0.3964,1.4233};
p5p={-0.6953,1.2291};
p6p={-0.5883,1.2796};
p7p={-0.4774,1.3193};
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a0p={0.0000,+0.0092378};
alp={-0.76744,0.63171};
alnp={-0.45554,0.88092};
b0p={1.0000, -0.016575};
blp={0.58693,1.4253};
blnp={1.0472,1.4827};
al=Sqrt [ (alp-aop) . (alp-aop) ] ;
a2=Sort [ (alp-aop) . (alp-aop) ] ;
ak=Sort [ (b0p-blp) . (ale-ale) ] ;
a4=Sqrt [ (aop-bop) . (alp-aop) ] ;
elbegin= ArsCos [ (bop-alp) . (alp-alp) /Sort [ (ale-ale) . (bop-

ale) ] /Sort [ (ale-ale) . (ale-ale) ] ] +Pi
MR[0 ._] :={ {Cos [8] , +Sin[0] }, Sin[0] ,Cos [Oil);
For[k=1;01=81aegin,ksMyMaxIterations,

k++;01=81-2o/MyMaxIterations*Pi/18o.,
delta8l[k]=01+81aegin;
c01=Cos [81] ; s81=Sin [81] ;
Answer=FindRoot[(eoull,eou12,eou13,eou32,eou31,eou23),(c82, -

o.3),(s82,+l.9),(c03,-o.2),(s03,-l.8),(c84,+o.1),{s84, - o.9}];
ansc82=Answer [ [1,2] ] ;anss02=Answer [ [2,2] ] ;
02=Which [ansct92o && anss02al,ArcCos [ansc82] ,

ansc825o && anss825o ,ArcCos [anss82] ,
anss825o && anss825o,2*Pi-ArsCos [ansc82] ,
anss825o && ansc825o, +ArsCos [anss82] ] ;

If [k==1,82begin=82, ] ;
deltaO2 [k] =82-82begin;

newal [k] =MR [delta8l [k] ] . { { (ale-ale) [ [1] ] } , { (lalp+
ale) [ [2] ] } }+{ alp [ [1] ] } , (al [ [2] ] )1;

pall [k] =MR [delta8l [k] ] . { { (plp-a0p) [ [1] ] } , { (plop+
ale) [ [2] ] 1) +{ (al [ [1] ] } , (al [ [2] ] } );
newel [k] =MR [delta82 [k] ] . (e11 [k] -newal [k] ) +newal [k] ;
souare2 [k] = (newel [k] [ [1] ] +eke [ [1] ] ) A 2+ (newel [k] [ [2] ] -eke [ [2] ] ) A 2;
souarek [k] = (newel [k] [ [1] ] +eke [ [1] ] ) A 2+ (newel [k] [ [2] ] -eke [ [2] ] ) A 2;
souare2 [k] = (newel [k] [ [1] ] -eke [ [1] ] ) A 2+ (newel [k] [ [2] ] -eke [ [2] ] ) A 2;

);
For[k=1;minsort2=999;minsortk=999;minsortk=999;myk2;mykk;mYkk,ksMyMaxIt

erations,k=k+1,
If [minsort2=souare2 [k] [ [1] ] , minsortk=souarek [k] [ [1] ] ;mykk=k, ] ;
If [minsort2=souare2 [k] [ [1] ] ,minsort2=souare2 [k] [ [1] ] ;mykk=k, ] ;
If [minsort2=souare2 [k] [ [1] ] ,minsortk=souarek [k] [ [1] ] ;myk2=k, ] ;
l;

newpl[myk2]
newel[myk2]
newpl[myk2]

deltael[myk2]*18o/Pi
delta82 [myk2] *18o/Pi
delta82 [myk2] *18o/Pi

B.1.3 Spherical Four-Bar Path Generator by Plane-to-Sphere Projection

RadiusOfSehere=1;
TheMaxlterations=5oo;
ProjestionLength=7
ClearAll[eie,e2e,eke,e2p,e5e,e6e,e7e,e1,e2,ek,e2,e5,e6,e7];
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Plane2Sphere[{x_,y_},r_,d_]:=1r*x/Sqrt[d A 2+x"2+yA 2],r*y/Sqrt[d A2+xA2+y"
2],r*d/Sqrt[d A 2+x ^ 2+y A 2])

plp={-0.6953,1.2291);p2p={-0.6019,1.3026};
p3p={-0.5020,1.3675};p4p={-0.3964,1.4233};
p5p={-0.6953,1.2291};p6p={-0.5883,1.2796};
p7p={-0.4774,1.3193};
p1=Plane2Sphere[plp,RadiusOfSphere,ProjectionLength]
p2=Plane2Sphere[p2p,RadiusOfSphere,ProjectionLength]
p3=Plane2Sphere[p3p,RadiusOfSphere,ProjectionLength]
p4=Plane2Sphere[p4p,RadiusOfSphere,ProjectionLength]
p5=Plane2Sphere[p5p,RadiusOfSphere,ProjectionLength]
p6=Plane2Sphere[p6p,RadiusOfSphere,ProjectionLength]
p7=Plane2Sphere[p7p,RadiusOfSphere,ProjectionLength]
ClearAll[a0p,alp,alnp,b0p,b1p,b1np,a0,a1,aln,b0,b1,b1n,al,a2,a3,a4,cal,

sal,ca2,sa2,ca3,sa3,ca4,sa4];
a0p={0.0000,-0.0092378};
alp={-0.76744,0.63171};
alnp={-0.45554,0.88092};
b0p={1.0000,-0.016575};
blp={0.58693,1.4253};
blnp={1.0472,1.4827};
a0=Plane2Sphere[a0p,RadiusOfSphere,ProjectionLength];
a1=Plane2Sphere[alp,RadiusOfSphere,ProjectionLength];
aln=Plane2Sphere[alnp,RadiusOfSphere,ProjectionLength];
b0=Plane2Sphere[b0p,RadiusOfSphere,ProjectionLength];
b1=Plane2Sphere[blp,RadiusOfSphere,ProjectionLength];
bln=Plane2Sphere[blnp,RadiusOfSphere,ProjectionLength];
al=ArcCos[a0.al/Sqrt[a0.a0]/Sqrt[al.al]];
a2=ArcCos[al.bl/Scart[bl.b1]/Sqrt[al.al]];
a3=ArcCos[bl.b0/Sqrt[bl.b1]/Sqrt[b0.b0]];
a4=ArcCos[a0.b0/Sqrt[a0.a0]/Sqrt[b0.b0]];
cal=Cos[al];sal=Sin[al];ca2=Cos[a2];sa2=Sin[a2];
ca3=Cos[a3];sa3=Sin[a3];ca4=Cos[a4];sa4=Sin[a4];
AngleBTAxes[{ax_ f ay_,az_},{bx_,by_,bz_}]:=(-(az by-ay bz)/(-ay bx+ax

by),-(az bx-ax bz)/(ay bx+ax by),1}
alphalv=AngleBTAxes[a0,a1];
alpha4v=AngleBTAxes[a0,b0];
,t10=ArcCos[alphalv.alpha4v/Sqrt[alphalv.alphalv]/Sqrt[alpha4v.alpha4v]];
it100=Pi-410+Pi;
ClearAll[c01,01,c02,02,c03,03,c04,04];
M[c0_,s0_,ca_,sa_]:={{c0,+ca seduce se},{0,ca c8,-sa c0},{0,sa, ca}}
M2=M[c02,02,ca2dua2];
M3=M[c03,03,ca3dua3];
M4=M[c04,04,ca4dua4];
M1=M[c01,01,caldual];
Z=M2.M3-Transpose[M1].Transpose[M4];
z11=Z[[1,1]];
z12=Z[[1,2]];
z13=Z[[1,3]];
z21=Z[[2,1]];
z22=Z[[2,2]];
z23=Z[[2,3]];
z31=Z[[3,1]];
z32=Z[[3,2]];
z33=Z[[3,3]];
c82g=-0.3;s02g=-0.9;c83g=-0.17;03g=-0.9;c04g=+0.17;s04g=-0.9;
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For[cD1=t,100;k=1,TheMaxIterations,
V1=1, 1-20/TheMaxIterations*Pi/180.;
k=k+1,
s81=Cos(1)1];s01=Sin[cD1];
Angles=FindRoot[{z11==0,z12==0,z13==0,z21==0,z22==0,z23==0},{s82,c0
2g},{s82du82g},{s83,s03g},{s03du83g},{c84,c04g},{s04du04g}];
C82g=Angles[[1,2]];s82g=Angles([2,211;
cO3g=Angles([3,2]);s03g=Angles[[4,2]];
s84g=Angles[[5,2]);s84g=Angles[[6,2]];
ansc82=Angles[(1,2)];anss82=Angles([2,2]];
02=Whish[anssO2z0 && anss820,ArcCos[ansc82],ansc8250 &&
anss1925o,ArsCos[anss82],

ansc8250 && anss82s0,2*Pi-ArsCos[ansc82],
ansc8250 && anss8250,-ArcCos[ansc82]);

If[k==1,02begin=82,];
delta82(k)=02-02begin;
deltael[k]=1)1-t, 100;

Ru[a_,u_]:={{u[[1,1]) ^ 2*(1-Cos[a])+Cos[a],u[[1,1]) u[[2,1]) (1-Cos[a])-
u[(3,1]) Sin[a],u[[1,1]] u([3,1]) (1-Cos[a])+u([2,1)]
Sin[a]},{u[[1,1)] u[[2,1]] (1-Cos[a])+u[[3,1]] Sin[a],u[[2,1)] ^ 2
(1-Cos[a])+Cos[a],u([2,1]) u[[3,1)) (1-Cos[a])-u([1,1]]
Sin[a]},{u[[1,1)] u[(3,1]] (1-Cos[a])-u[[2,1]] Sin[a],u[(2,1)]
u([3,1]) (1-Cos[a])+u[[1,1]] Sin[a],u[[3,1)] ^2 (1-Cos[a])+Cos[a]}};

uak={{uax},{uay},{uaz}};
a0axis={{a0([1]]},{a0([2])},{a0[[3]]}};
bOaxis={{b0([1])},{b0[[2]]},{b0[[3]]}};
For[k=1,ksTheMaxIterations,k++,

NewAl[k]=Ru[delta8l[k],a0axis].(al-a0)+a0;
a0axis={ {NewAl [k] [ [1] ] } , (NewA0 [k] [ [2] ] } , {NewA0 [k] [ [3] ) } } ;

p0temp [k] =Ru [delta82 [k] , a0axis . (pl-a0) +a0;
NewP0 [k] =Ru [delta02 [k] , a0axis . (p0temp [k] -NewAl [k] ) +NewAl [k] ;

Pll=p4;
For[k=1;minsort=9999;myk,ksTheMaxIterations,k++,

toleranceErr [k] =Sorts [ (NewP1 [k] [ [1] ] -P11 [ [1] ] ) ^ 2+ (NewP1 [k] [ [2] ] -
P11 [ [2] ] ) ^ 2+ (NewP1 [k] [ [3] ] -P11 [ [3] ] ) ^ 2] ;
If [minsort=toleranceErr [k] ,minsort=toleranceErr [k] ;myk=k, ] ;

myanswer2[ProjectionLength]={myk,deltaO0[myk]*180/Pi,NewPl[myk),Project
ionLength,minsort*ProjectionLength}

B.1.4 Planar Four-Bar Path Generator by Sphere-to-Plane Projection

RadiusOfSphere=1;
DistanceOfProjestion=11
MyMaxiterations=400;
ClearAll[p0p,p2p,p3p,p4p,p5p,p6p,p7p,p1,p2,p3,p4,p5,p6,p7];
ProjectionFun[{x_,y_,z_},d_]:={d/z*x,d/z*y}
p1={-0.06269,0.1108,0.9919};
p2={-0.05426,0.1174,0.9916};
p3={-0.04524,0.1232,0.9913};
p4={-0.03572,0.1282,0.9911};
p5={-0.06269,0.1108,0.9919};
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p6={-0.05305,0.1154,0.9919};
p7={-0.04305,0.1190,0.9920};
plp=ProjectionFun[p1,Distance0fProjection]
p2p=ProjectionFun[p2,Distanse0fProjection]
p3p=ProjectionFun[p3,Distanse0fProjestion]
p4p=ProjectionFun[p4,Distanse0fProjestion]
p5p=ProjestionFun[p5,Distance0fProjection]
p6p=ProjectionFun[p6,Distance0fProjection]
p7p=ProjectionFun[p7,Distanse0fProjection]
ClearAll[a0p,alp,alnp,b0p,b1p,b1np,a0,a1,aln,b0,b1,b1n];
a0={0.0000,-0.0008398,1.0000};
a1={-0.06948,0.05719,0.9959};
aln={-0.04124,0.07976,0.9960};
b0={0.09054,-0.001501,0.9959};
b1={0.05284,0.1283,0.9903};
bln={0.09393,0.1330,0.9867};
a0p=ProjectionFun[aO,Distanse0fProjection]
alp=ProjectionFun[a1,Distance0fProjestion]
alnp=ProjectionFun[aln,Distanse0fProjestion]
b0p=ProjectionFun[bO,Distanse0fProjection]
blp=ProjestionFun[bl,Distanse0fProjection]
blnp=ProjectionFun[bln,Distance0fProjection]
ClearAll[cOlduel,al,s82,s82,a2,c03,03,a3,c04,s04,a4,M1,M2,M3,M4];
M[s0_du0_,a_]:={{c0,-se,e a se},{s0,c0,-e a c0},{0,e a, 1}}
M2=M[c82du02,a2] ;
M3=M[c03du03,a3];
M4=M[s94du04,a4];
M1=M[ce1,sel,a1];
Z=M2.M3-Transpose[M1].Transpose[M4];
z11=Z([1,1]];
z12=Z[[1,2]];
z13=Z[[1,3]];
z21=Z[[2,1]];
z22=Z[[2,2]];
z23=Z[[2,3]];
z31=Z[[3,1]];
z32=Z[[3,2)];
z33=Z[[3,3]];
eoull=Coefficient(z11,e,0]==0
eoul2=Coefficient[z12,e,0]==0
eoul3=Coefficient [z13, e, 1] ==0
eou21=Coeffisient[z21,e,0]==0
eou22=Coefficient[z22,e,0]==0
eou23=Coefficient [z23, e, 1) ==0
eou31=Coefficient[z31,e,1]==0
eou32=Coefficient[z32,e,1]==0
ClearAll[al,a2,a3,a4];
al=SortUalp-a0p).(alp-a0p)]
a2=Sort[(blp-alp).(blp-alp)]
a3=Sort[(b0p-blp).(b0p-blp)]
a4=Sqrt[(a0p-b0p).(a0p-b0p)]
MR[0 ._]:={{Cos[8],-Sin[0]},{Sin[0],Cos[0]}};
ClearAll[elbegin,01];
elbegin=ArcCos[(b0p-a0p).(alp-a0p)/Sort[(b0p-a0p).(b0p-a0p)]/SortNalp-

a0p).(alp-a0p)]]+Pi;
For[k=1;01=01begin,ksMyMaxiterations,

k++;01=01-20/MyMaxiterations*Pi/180.,



B.2 Adjustable Four-Bar Function Generator

The following MATHEMATICA models include three sections. Section B.2.1 illustrated

how to programming the synthesis design equations and angle displacement analysis for

four-bar function generator by MATHEMATICA language. Section B.2.2 illustrated
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plane-to-sphere projection method, dual-number method and displacement equations for

spherical four-bar function generator. Section B.2.3 illustrated the sphere-to-plane

projection method for spherical four-bar function generator.
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M4=M[c04du04,a4];
M1=M[c82du82,a1];
Z=M2.M3-Transpose[M1].Transpose[M4];
zz11=Z[[1,1]];
zz02=Z[[1,2]];
zz03=Z[[1,3]];
zz21=Z[[2,1]];
zz22=Z[[2,2]);
zz23=Z[[2,3]];
zz31=Z[[3,1]];
zz32=Z[[3,2]];
zz33=Z[[3,3]];
eou00=Coefficient[zz00,e,0]==0;
eou02=Coefficient[zz12,e,0]==0;
eou03=Coefficient[zz13,e,1]==0;
eou21=Coefficient[zz21,e,0]==0;
eou22=Coefficient[zz22,e,0]==0;
eou23=Coefficient[zz23,e,1]==0;
eou31=Coefficient[zz31,e,1]==0;
eou32=Coefficient[zz32,e,1]==0;
O0begin=ArcCos[(b0p-a0p).(a0p-a0p)/Sort[(b0p-a0p).(b0p - a0p)]/Sort[(a0p -

a0p).(a0p-a0p)]]+Pi;
For[k=1;82=82begin,ks5,

k++;82=82-10*Pi/180,
deltae0[k]=01-82begin;
c82=Cos[82];
s82=Sin[82];
Answer[k]=FindRoot[{equ00,eou12,eou13,eou32,eou31,eou23},

{c82,-0.1},{s82,-0.8},{c03,-0.5},{s03,-0.5},{c04,-0.1},
{s04,-0.9}];

ansc82=Answer[k][[1,2]];
anss82=Answer[k][[2,2]];
ansc04=Answer[k][[5,2]];
anss04=Answer[k][[6,2]];

02=Which[ansc020 && anss820,ArcCos[ansc82],
ansc82s0 && anss82=O,ArcCos[ansc02],
ansc84s0 && anss84s0,4*Pi-ArcCos[anss84],

anss845o && anss84s0,-ArcCos[ansc04]];
04=Which[ansc04z0 && anss04a0,ArcCos[ansc04],

ansc84s0 && anss04=O,ArcCos[anss84],
ansc82s0 && anss04s0,4*Pi-ArcCos[ansc84],

ansc84s0 && anss04s0,-ArcCos[ansc84]];
If[k==1,04begin=04;04begin=04,];
delta84[k]=04-04begin;
delta04[k]=04-04begin;
]

delta82[1]*180/Pi
delta04[1]*180/Pi
delta82[4]*180/Pi
delta04[4]*180/Pi
delta82[3]*180/Pi
delta04[3]*180/Pi+360
delta82[4]*180/Pi
delta04[4]*180/Pi+360
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B.3 Adjustable Four-Bar Motion Generator

The following MATHEMATICA models include four sections. Section B.3.1 illustrated

how to programming the synthesis design equations for planar four-bar motion generator

by MATHEMATICA language. Section B.3.2 illustrated the Dual-number method and

the displacement equations for planar four-bar motion generator. Section B.3.3

illustrated plane-to-sphere projection method, dual-number method and displacement

equations for spherical four-bar motion generator. Section B.3.4 illustrates the

sphere-to-plme projection method for spherical four-bar motion generator.



B.3.2 Displacement Analysis for Planar Four-Bar Motion Generator
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z14=Z[[1,4]]
z13=Z[[1,3]]
z41=Z[[4,1]]
z44=Z[[4,4]]
z43=Z[[4,3]]
z31=Z[[3,1]]
z34=Z[[3,4]]
z33=Z[[3,3]]
eou00=Coefficient[z11,e,0]==0
eou04=Coefficient[z14,e,0]==0
eou03=Coefficient[z13,e,1]==0
eou41=Coefficient[z41,e,0]==0
eou44=Coefficient[z44,e,0]==0
eou43=Coefficient[z43,e,1]==0
eou31=Coefficient[z31,e,1]==0
eou34=Coefficient[z34,e,1]==0
p0p={-0.1950,1.3709};o1p={0.0401,4.0111};
r0p={0.8807,1.8467};p4p={-0.1144,1.4136};
o4p={0.1369,4.0484};r4p={0.9737,1.8655};
p3p={-0.0459,1.4501};o3p={0.4366,4.0796};
r3p={1.0693,1.8790};p4p={0.0634,1.4804};
o4p={0.3386,4.1043};r4p={1.1671,1.8869};
p5p={-0.1950,1.3709};o5p={0.0401,4.0111};
r5p={0.8807,1.8467};p6p={-0.1164,1.3909};
o6p={0.1088,4.0347};r6p={0.9518,1.8835};
p7p={-0.0370,1.4034};o7p={0.1764,4.0511};
r7p={1.0440,1.9151};a0p={0,-0.0461977};
a0p={-0.6384,0.743455};
alnp={-0.460506,0.939355};
b0p={1.5,-0.0881517};
b0p={1.48305,1.39579};
b0np={0.839614,1.45894};
a0=SortNalp-a0p).(a0p-a0p)];
a4=Sort[(b1p-a0p).(b0p-a0p)];
a3=Sort[(b0p-b0p).(b0p-b0p)];
a4=Sort[(a0p-b0p).(a0p-b0p)];
O0begin=ArcCos[(b0p-a0p).(a0p-a0p)/Sort[(b0p-a0p).(b0p-a0p)]/Sort[(a0p-

a0p).(a0p-a0p)]]+Pi
MR[0_]:={{Cos[0],-Sin[0]},{Sin[0],Cos[0]}};
c94t=-0.3; s84t=-0.9; cO3t=-0.4; s93t= -0.8; c84t=-0.1; 	 s84t=-0.9;
For[k=1;82=82begin,k5MyMaxIterations,

k++;82=82-40./MyMaxIterations*Pi/180,
delta82[k]=82-82begin;
c82=Cos[82];
s82=Sin[82];
Answer=FindRoot[{eou00,eou14,eou13,eou34,eou31,eou43},{c84,c040,1s

04du040,{c03,c030,{s03,030,{c84,c840,{s04,040];
c84t=Answer[[1,4]];s84t=Answer[[4,4]];c03t=Answer[[3,4]];
s93t=Answer[[4,4]];
c84t=Answer[[5,4]];s04t=Answer[[6,4]];
ansc82=c82;anss82=s82;
ansc04=Answer[[1,4]];anss84=Answer[[4,4]];
ansc03=Answer[[3,4]];
ansse3=Answer[[4,4]];ansc84=Answer[[5,4]];
anss04=Answer[[6,4]];



B.3.3 Spherical Four-Bar Motion Generator by Plane-to-Sphere Projection
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RadiusOfSphere=1;
Distance0fProjection=7
ProjectionFun[{x_,y_},r_,d_]:={r*x/Sort[d A 4+xA4+y ^ 4],r*y/Sort[d A4+xA4+y

'4],r*d/Sort[d A 4+x A4+y A 4]}
p0p={-0.1950,1.3709};o1p={0.0401,4.0111};
rlp={0.8807,1.8467};p4p={-0.1144,1.4136};
o4p={0.1369,4.0484};r4p={0.9737,1.8655};
p3p={-0.0459,1.4501};o3p={0.4366,4.0796};
r3p={1.0693,1.8790};p4p={0.0634,1.4804};
o4p={0.3386,4.1043};r4p={1.1671,1.8869};
p5p={-0.1950,1.3709);o5p={0.0401,4.0111};
r5p={0.8807,1.8467);p6p={-0.1164,1.3909};
o6p={0.1088,4.0347};r6p={0.9518,1.8835};
p7p={-0.0370,1.4034};o7p={0.1764,4.0511};
r7p={1.0440,1.9151};
p1=ProjectionFun[p1p,RadiusOfSphere,Distance0fProjection]
p4=ProjectionFun[p4p,RadiusOfSphere,Distance0fProjection]
p3=ProjectionFun[p3p,RadiusOfSphere,Distance0fProjection]
p4=ProjectionFun[p4p,RadiusOfSphere,Distance0fProjection]
p5=ProjectionFun[p5p,RadiusOfSphere,Distance0fProjection]
p6=ProjectionFun[p6p,RadiusOfSphere,Distance0fProjection]
p7=ProjectionFun[p7p,RadiusOfSphere,Distance0fProjection]
o1=ProjectionFun[o1p,RadiusOfSphere,Distance0fProjection]
o4=ProjectionFun[o4p,RadiusOfSphere,Distance0fProjection]
o3=ProjectionFun[o3p,RadiusOfSphere,Distance0fProjection]
o4=ProjectionFun[o4p,RadiusOfSphere,Distance0fProjection]
o5=ProjectionFun[o5p,RadiusOfSphere,Distance0fProjection]
o6=ProjectionFun[o6p,RadiusOfSphere,Distance0fProjection]
o7=ProjectionFun[o7p,RadiusOfSphere,Distance0fProjection]
r1=ProjectionFun[r0p,RadiusOfSphere,Distance0fProjection]
r4=ProjectionFun[r4p,RadiusOfSphere,Distance0fProjection]
r3=ProjectionFun[r3p,RadiusOfSphere,Distance0fProjection]
r4=ProjectionFun[r4p,RadiusOfSphere,Distance0fProjection]
r5=ProjectionFun[r5p,RadiusOfSphere,Distance0fProjection]
r6=ProjectionFun[r6p,RadiusOfSphere,Distance0fProjection]
r7=ProjectionFun[r7p,RadiusOfSphere,Distance0fProjection]
a0p={0,-0.0461977};
alp={-0.6384,0.743455};
a0np={-0.460506,0.939355};
b0p={1.5,-0.0881517};
b0p=11.48305,1.395791;
b0np={0.839614,1.45894};
a0=ProjectionFun[a0p,RadiusOfSphere,Distance0fProjection]
a0=ProjectionFun[a0p,RadiusOfSphere,Distance0fProjection]
a1n=ProjectionFun[amnp,RadiusOfSphere,Distance0fProjection]
b0=ProjectionFun[b0p,RadiusOfSphere,Distance0fProjection]
b1=ProjectionFun[b0p,RadiusOfSphere,Distance0fProjection]
b1n=ProjectionFun[b0np,RadiusOfSphere,Distance0fProjection]
a1=ArcCos[a0.a0/Sort[a0.a0]/Sort[a0.a0]];
a4=ArcCos[a0.b0/Sort[b0.b1]/Sort[a0.a0]];
a3=ArcCos[b0.b0/Sort[b0.b1]/Sqrt[b0.b0]];
a4=ArcCos[a0.b0/Sort[a0.a0]/Sort[b0.b0]];
ca0=Cos[a0];sa0=Sin[a0];ca4=Cos[a4];sa4=Sin[a4];
ca3=Cos[a3];sa3=Sin[a3];ca4=Cos[a4];sa4=Sin[a4];
AngleBTAxes[{ax_,ay_,az_},{bx_,by_,bz_}]:=

{-(az by-ay bz)/(-ay bx+ax by),-(az bx-ax bz)/(ay bx-ax by),1
alpha0v=AngleBTAxes[a0,a1];
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alpha4v=AngleBTAxes[a0,b1];
alpha3v=AngleBTAxes[b0,b0];
alpha4v=AngleBTAxes[a0,b0];
4)10=ArcCos[alphalv.alpha4v/Sqrt[alphalv.alphalv]/Scirt[alpha4v.alpha4v]];
t140=ArcCos[alpha3v.alpha4v/Sort[alpha3v.alpha3v]/Sort[alpha4v.alpha4v]];
NO=ArcCos[alphalv.alpha2v/Sort[alphalv.alphalv]/Sqrt[alpha2v.alpha2v]];
00=ArcCos[alpha3v.alpha2v/Sort[alpha3v.alpha3v]/Sqrt[alpha2v.alpha2v]];
c11100=Pi-It1O+Pi;
4:1100*180/Pi
ClearAll[c82,01,c84du64,c63du63,c64,04];
M[c6 du0_,ca_dua_]:={{c6,-ca sedum s6},{s6,cm c6,-sm c6},{0dum, ca}}
M4=MTc64du64,cm4dum4];
M4=MTc64du64,cm4dum4];
M4=MTc64du64,cm4dum4];
M4=MTc64du64,cm4dum4];

Z=M4.M3-Transpose[M1].Transpose[M4];
zzl1=Z[[1,1]];
zz04=Z[[1,4]];
zz03=Z[[1,3]];
zz41=Z[[4,1]];
zz44=Z[[4,4]];
zz43=Z[[4,3]];
zz31=Z[[3,1]];
zz34=Z[[3,4]];
zz33=Z[[3,3]];
tc64=-0.3;ts64=-0.9;tc63=-0.17;ts63=-0.9;tc64=-0.17;ts64=-0.9;
For[t1-4100;k=1,1(MyMaxIterations,

,11=t1-40./MyMaxIterations*Pi/180;k=k+1,
c61=Cos[4:11];
s82=Sin[t1];
Angles=FindRoot[{zz01==0,zz04==0,zz03==0,zz41==0,zz44==0,zz43==0),{

c64,tc84},{s64,ts64},{c03,tc63},{s63,ts63},{c84,tc84},{04,ts0
4}];

tc84=Angles[[1,4]];ts64=Angles[[4,4]];
tc03=Angles[[3,4]];ts63=Angles[[4,2]];
tc64=Angles[[5,4]];ts64=Angles[[6,4]];
ansc64=Angles[[1,41];
anss84=Angles[[4,41];
62=

Which[ansc62z0 && anss64a0,ArcCos[ansc64],
ansc62<0 && anss62>O,ArcCos[ansc62],
ansc62s0 && anss64s0,4*Pi-ArcCos[ansc62],
ansc62<0 && anss64<0,-ArcCos[ansc62]];

If[k==1,62begin=62,];
delta62[k]=62-62begin;
deltae0[k]=11, 1-t$100;

Ru[m_,u_]:=((u[[1,1]] ^4*(1-Cos[m])+Cos[m],
u[[1,1]] u[[4,11] (1-Cos[m])-u[[3,1]] Sin[a],
u[[1,1]] u[[3,1]] (1-Cos[m])+u[[4,1]] Sin[a]l,
(u[[1,1]] u[[4,1]] (1-Cos[a])+u[[3,1)] Sin[m],
u[[4,1]] ^ 4 (1-Cos[a])+Cos[a],
u[[4,1]] u[[3,1]] (1-Cos[a])-u[[1,1]] Sin[m]),
fu[[1,1]] u[[3,1]] (1-Cos[a])-u[[4,1]] Sin[a],
u[[4,1]] u[[3,1]] (1-Cos[a])+u[[1,1]] Sin[a],
u[[3,1]1 ^ 4 (1-Cos[m])+Cos[a]}};

uak={{uax},{uay},{uaz}};
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a0axis={ Mao [ [1] ] } , (ao [ [2] ] } , (ao [ [3] ] } } ;
a0axis={ (a0 [ [1] ] } , ODOR [ [ 2] ] 1, 0)o [ [ 3] ] } } ;

For [k=1, ksMyMaxIterations, k++,
Newel [k] =eu [delta02 [k] , a0axis] . (a1-ao) +a0;
aoaxis= (Newell [k] [ [1] ] } , {Newell [k] [ [2] ] } , {Newel [k] [ [3] ] } } ;
pltemp [k] =eu [deltaell [k] , a0axis] . (ol-ao) +al ;

rltemp [k] =eu [delta02 [k] , aoaxis] . (ol-ao) +ao;
rltemp [k] =eu [delta02 [k] , aoaxis] . (rl-a0) +ao ;
NewP1 [k] =eu [deltaO2 [k] , a0axis] . (rltemo [k] -Newel [k] ) +Newel [k] ;

Newel [k] =eu [delta62 [k] , aoaxis] . (rltemo [k] -Newel [k] ) Newel [k] ;
Newe1 [k] =eu [delta62 [k] , a0axis] . (ritemp [k] -Newel [k] ) +NewAl [k] ;

Pll=o4;e11=o4;e11=r4;
For [k=1;minsort=9999;myk, ksMyMaxIterations,k++,

toleranceErr [k] = (Sorts [ (Newe1 [k] [ [1] ] -e11 [ [1] ] ) ^ 2+ (Newel [k] [ [2] ] -
e11 [ [2] ] ) ^ 2+ (Newell [k] [ [3] ] -e11 [ [3] ] ) '2] +Sorts [ (Newell [k] [ [1] ] -
e11 [ [1] ] ) A 2+ (Newel [k] [ [2] ] -e11 [ [2] ] ^ 2+ (Newel[k] [ [3] ] -
e11 [ [3] ] ) '2] +Sorts [ (Newell [k] [ [1] ] -e11 [ [1] ] '2+ (Newel [k] [ [2] ] -
e11 [ [2] ] ) A 2+ (Newel] [ [3] ] -e11 [ [3] ] ) '2] ) /3 . ;

If [minsort>toleranceErr [k] ,minsort=toleranceErr [k] ; myk=k, ] ;

myanswer4 [Distance0ferojecti] ={delta02 [myk] *18o/ei,
Distance0ferojecti, toleranceErr [myk] *Distanceofprojection}

Pll=p3;e11=o3;e11=r3;
For [k=1 ; minsort=9999 ; myk, ksMyMaxIterations, k++,

toleranceErr [k] = (Sorts [ (Newe1 [k] [ [1] ] -e11 [ [1] ] ) '2+ (Newel [k] [ [2] ] -
e11 [ [2] ] ) "2+ (Newell [k] [ [3] ] -e11 [ [3] ] ) A 2] +Sorts [ (Newell [k] [ [1] ) -
e11 [ [1] ] ) '2+ (Newel [k] [ [2] ] -e11 [ [2] ] ) ^2+ (Newel] [ [3] ] -
e11 [ [3] ] ) "2] +Sorts [ (Newe1 [k] [ [1] ] -e11 [ [1] ] ) A 2+ (Newell [k] [ [2] ] -
e11 [ [2] ] ) '2+ (Newel] [ [3] ] -e11 [ [3] ] ) "2] ) /3 . ;

If [minsort>toleranceErr [k] ,minsort=toleranceErr [k] ; myk=k, ] ;

myanswer3 [Distanceofprojecti] = deltaO2 [myk] *18o/ei,
Distanceofprojecti, toleranceErr [myk] *Distance0ferojecti}

ell=p2;e11=o2;e11=r2;
For [k=1;minsort=9999;myk, ksMyMaxIterations,k++,

toleranceErr [k] = (Sorts [ (Newell [k] [ [1] ] -e11 [ [1] ] 	 (Newell [k] [ [2] ] -
e11 [ [2] ) ) '2+ (Newel [k] [ [3] ] -e11 [ [3] ] ) '2] +Sorts [ (Newel [k] [ [1] ] -
e11 [ [1] ] ) "2+ (Newell [k] [ [2] ] -e11 [ [2] ] ) '2+ (Newel] [ [3] ] -
e11 [ [3] ] ) ^ 2] +Sorts [ (Newel [k] [ [1] ] -e11 [ [1] ] ) '2+ (Newell [k] [ [2] ] -
e11 [ [2] ] "2+ (Newel] [ [3] ] -e11 [131] ) A 2] ) /3. ;

If [minsort>toleranceErr [k] ,minsort=toleranceErr [k] ;myk=k, ] ;

myanswer2 [Distanceofprojecti] = delta82 [myk] *18o/ei ,Distance0ferojecti
on, toleranceErr [myk] *Distanceofprojection}

B.3.4 Planar Four-Bar Motion Generator by Sphere-to-Plane Projection

eadiusOfSphere=1;

Distanceofprojection
ClearAll[o1p,o2p,o3o,p4p,o5o,p6p,p7p,o1,p2,p3,o4,o5,p6,o7];
UnerojectionFun[{x_,y_,z_},d_]:={d/z*x,d/z*y}
p1={-l.o273,0.1921,o.9810};o1={o.0o55,0.2761,l.9611};
r1={o.1208,o.2532,l.9598};
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zz12=Z[[1,2]];
zzl3=Z[[1,3]];
zz21=Z[[2,1]];
zz22=Z[[2,2]];
zz23=Z[[2,3]];
zz31=Z[[3,1]];
zz32=Z[[3,2]];
zz33=Z[[3,3]];
eoull=Coefficient [zzll, e, 01 ==l
eoul2=Coefficient[zz12,e,0]==0
eoul3=Coefficient[zz13,e,1]==0
eou21=Coefficient[zz21,e,0]==0
eou22=Coefficient[zz22,e,0]==0
eou23=Coefficient[zz23,e,1]==0
eou31=Coefficient[zz31,e,1]==0
equ32=Coefficient [zz32, e, 1] ==l
plp={-0.6953,1.2291}
p2p={-0.6019,1.3026}
p3p={-0.5020,1.3675}
p4p={-0.3964,1.4233}
p5p={-0.6953,1.2291}
p6p={-0.5883,1.2796}
p7p={-0.4774,1.3193}
a0p={0.0000,-0.0092};
alp={-0.7674,0.6317};
alnp={-0.4555,0.8809};
b0p={1.0000,-0.0166};
blp={0.5869,1.4252};
blnp={1.0472,1.4827};
ClearAll[al,a2,a3,a4];
al=SortNalp-a0p).(alp-a0p)]
a2=Sort[(blp-alp).(blp-alp)]
a3=Sort[(b0p-blp).(b0p-blp)]
a4=Sort[(a0p-b0p).(a0p-b0p)]
MR[0_]:={{Cos[0],-Sin[0]},{Sin[0],Cos[0]));
ClearAll[Olbegin,01];
Olbegin=ArcCos[(b0p-a0p).(alp-a0p)/Sort[(b0p-a0p).(b0p-a0p)]/Sort[(alp-

a0p).(alp-a0p)]]+Pi;
For[k=1;01=01begin,ks4000,k++;01=01-0.02*Pi/180,

deltael[k]=01-01begin;
c01=Cos[01];
sO1=Sin[01];
Answer=FindRoot[{equll,eou12,eou13,eou32,eou31,eou23},

{c62,-0.3},{s62,-0.9},{c03,-0.2},{s03,-0.8},{c84,-0.1},{s04,-
l.9}];

ansc02=Answer[[1,2]];
anss62=Answer[[2,2]];

02=Which[ansc020 && anss62a0,ArcCos[ansc612],
ansc02<0 && anss62>O,ArcCos[ansc82],
ansc02s0 && anss62s0,2*Pi-ArcCos[ansc02],

ansc625o && anss02<0,-ArcCos[ansc02]];
If[k==1,02begin=02,];

delta82 [k]=02-02begin;
newal [k] =MR [delta01 [k] ] . { { (alp-aop) [ [1] ] 1, { (al-

atop) [ [2] ] )1+{ {alp [ [1] ] ) , {alp [ [2] ] ));
p11 [k] =MR [delta0l [k] ] . { { (plp-aop) [ [1] ] 1, { (plop-

alp) [ [2] ] 11+{ {alp [ [1] ] ), {alp [ [2] ] 1) ;
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B.4 Adjustable Five-Bar Path Generator

The following MATHEMATICA models include four sections. Section B.4.1 illustrated

how to programming the synthesis design equations for planar five-bar path generator by

MATHEMATICA language. Section B.4.2 illustrated the Dual-number method and the

displacement equations for planar five-bar path generator. Section B.4.3 illustrated

plane-to-sphere projection method, dual-number method and displacement equations for

spherical five-bar path generator. Section B.4.5 illustrates the sphere-to-plane projection

method for spherical five-bar path generator.
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z23=Z[[2,3]];
z31=Z[[3,1]];
z32=Z[[3,2]];
z33=Z[[3,3]];
equ11=Coefficient[z11,e,01
equl2=Coefficient[z12,e,0]
equl3=Coefficient [z13,e, 1]
equ23=Coefficient[z23,e,1]
equ3l=Coefficient [z31, e, 1]
equ32=Coefficient[z32,e,1]
plp={o.1816,1.8993);
p2p={0.2756,1.8648);
p3p={0.3573,1.7945};
p4p={o.4207,1.6891);
p5p={o.1816,1.8993);
p6p={0.3565,1.9074};
p7p={0.5237,1.8873);
a0p={0.oo00,0.0o0412039};
alp={o.121889,0.993036);
alnp={-o.134435,0.991261);
b0p={1.25,o};
blp={1.95711,o.7o71o7);
clp={o.891267,1.45417};
clnp={1.21674,1.77753);
al=SortHalp-a0p).(alp-aop)]
a2=SortNalp-clp).(alp-clp)]
a3=Sort[(clp-blp).(clp-blp)]
a4=Sort[(blp-a0p).(blp-a0p)]
a5=Sort[(a0p-a0p).(bop-aop)]
Olbegin=ArcCos[(bop-aop).(alp-aop)/Sort[(b0p-aop).(bop-aop)]/SortHalp -

a0p).(alp-aop)]]+Pi;
O5begin=2 Pi-45.*Pi/180.
Me[0_]:={{Cos[8],-Sin[0]},{Sin[0],Cos[0]}}
ket=o.5

850=2. Pi-45.*Pi/180
tc82=o.6;ts82=-o.8;tc03=o.4;ts03=-o.9;tc84=-0.2;ts04= - 0.9;
For[k=1;01=01begin,

ks153oo,
k++;01=01-0.o02*Pl/180,
deltael[k]=01-01begin;
delta85[k]=k0Vdelta01[k];
05=850-delta05[k];
c81=Cos[01];

05=Sin[85];
c85=Cos[05];
05=Sin[85];
Answer=Findeoot[{equll,equ12,equ13,equ32,equ31,equ23},{c02,tc02},{s

02,ts82},{c83,tc03},{s83,ts03},{c84,tc84},{s84,ts04}];
tc02=Answer[[1,2]];ts02=Answer[[2,2]];
tc03=Answer1[3,2]];ts83=Answer[[4,2]];
tc84=enswer[[5,2]];ts84=Answer[[6,2]];
ansc82=enswer[[1,2]];
anss82=enswer[[2,2]];

02=Which[ansc020 && anss82ao,ercCos[ansc192],
ansc02s0 && anss82>O,ercCos[ansc82],
ansc82s0 && anss8250,2*Pi-ercCos[ansc82],
ansc82s0 && anss8250,-ercCos[ansc02]];
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a0=ProjectionFun[a0p,eadiusOfSphere,Distance0fProjection]
a1=ProjectionFun[a1p,eadiusOfSphere,Distanceoferojection]
aln=ProjectionFun[alnp,eadiusOfSphere,Distance0ferojection]
a0=ProjectionFun[a0p,eadiusOfSphere,Distanceoferojection]
b1=ProjectionFun[blp,eadiusOfSphere,Distance0fProjection]
c1=ProjectionFun[clp,eadiusOfSphere,Distanceoferojection]
cln=ProjectionFun[clnp,eadiusOfSphere,DistanceOferojection]
u1=ercCos[a0.al/Sort[al.a0]/Sqrt[al.al]];
u2=ercCos[al.cl/Sort[cl.c1]/Sqrt[al.al]];
u3=ercCos[cl.bl/Sort[cl.c1]/Sort[bl.bl]];
u4=ercCos[bl.a0/Sort[bl.b1]/Sort[b0.b0]];
a5=ercCos[a0.b0/Sort[ao.ao]/Sort[a0.a0]];
cal=Cos[ml];sal=Sin[al];cm2=Cos[a2];sa2=Sin[a2];
ca3=Cos[m3];sa3=Sin[a3];cm4=Cos[a4];sa4=Sin[a4];ca5=Cos[a5];sm5=Sin[a5];
engleBTexes[{ax_,ay_,az_},{bx_,by_,bz_}]:=(-(az by-ay bz)/(-ay bx-ax

by),
-(az bx-ax bz)/(ay bx-ax by),i}

alphalv=engleBTexes[ao,a1];
alpha2v=engleBTexes[al,c1];
alpha3v=engleBTexes[cl,b1];
alpha4v=AngleBTexes[bl,a0];
alpha5v=engleBTAxes[a0,a0];
it10=ArcCos[alpha5v.alphalv/Sort[alphalv.alphalv]/Sqrt[alpha5v.alpha5v]]

-Pi;
NO=ArcCos[alphalv.alpha2v/Sqrt[alphalv.alphalv]/Sqrt[alpha2v.alpha2v]];
00=ArcCos[alpha3v.alpha2v/Sort[alpha3v.alpha3v]/Sort[alpha2v.alpha2v]];
(140=ArcCos[alpha3v.alpha4v/Scirt[alpha3v.alpha3v]/Sqrt[alpha4v.alpha4v]]

-Pi
t.50=ArcCos[alpha4v.alpha5v/Sort[alpha5v.alpha5v]/Sqrt[alpha4v.alpha4v]]

-Pi;
Dual Nuber method for spherical mechanism.
Clearell[c01du01,c82du62,c03du83,c84du04,c05du05];
M[c19_du0_,cm_dum_]:={{c0,-cm sedum se},{s0,cce c8, - sce c0},{0dum, ca}}
M2=M[c82du02,cm2dum2];
M3=M[c03du03,cm3dum3];
M4=M[c84du04,cm4dum4];
M1=M[c01du01,cmlduml];
M5=M[c05du05,ca5dum5];
Z=M2.M3-Transpose[M1].Transpose[M5] Transpose[M4];
z11=Z[[1,1]];
z12=Z[[1,2]];
z13=Z[[1,3]];
z21=Z[[2,1]];
z22=Z[[2,2]];
z23=Z[[2,3]];
z31=Z[[3,1]];
z32=Z[[3,2]];
z33=Z[[3,3]];
Spherical Mechanism by Dual Number Method
tc82=0.6;ts02=-0.7;tc83=0.3;ts83=-0.9;tc84=-0.2;ts84=-0.9;
Forkld=10;k=1,MyMaxSteps,

cb1=41-33./MyMaxSteps*Pi/180;k=k-1,
deltacId[k]=4)1-(1)10;
deltat, 5[k]=(cal—$10)*0.5;
4)5=1, 50-delt05[k];
ce1=CosW];
s05=Sin[tl];
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c95=cos [(1)5] ;
s05=Sin [4015] ;
engles=Findeoot [(z11==o, z12==o, z13==o, z21==0, z22==o, z23==o), {s03, Mc

02), s82,ts82 {c03,tc03}, {s93,ts93}, c84,tc84}, (s04,ts04)];
ts82=engles [ [1,2] ] ; ts03=engles [ [2,2] ] ;
ts82=engles [ [3,2] ] ; ts03=engles [ [4,2] ] ;
ts82=engles [ [5,2] ] ;ts82=engles [ [6,2] ] ;
anss03=engles [ [1,2] ] ;
ts03=engles [ [2,2] ] ;

02=Whish [ts03s0 && ts82a0,Arccos [anss03] ,
ansc02<0 && ts035o ,erccos [anss03] ,
ts035o && ts825o,2*Pi-Arccos [s03] ,
ts03s0 && ts82<0,2*Pi-erscos [s03] ] ;

If [k==1,02begin=02, ] ;
delta92 [k] =02-92begin;
delta92 [k] =c1, 1-1t10;

eu [a_,u_] :={ {u [ [1,1] ] "2* (1-cos [m] ) -cos [m] ,u [ [1,1] ] u [ [2,1] ]
(1-cos [m] ) -u [ [3,1] ] Sin [a] ,u [ [1,1] ] u [ [3,1] ] (1-cos [a] ) -
u [ [2,1] ] Sin [m] } , {u [ [1, 1] ] u [ [2,1] ] (1-cos [m] )-u[ [3,1] ]
Sin [a] ,u [ [2,1] ] "2 (1-cos [a] ) -cos [a] ,u [ [2,1] ] u [ [3,1] ] (1-cos [a] ) -
u [ [1,1] ] Sin [m] ), (u [ [1,2] ] u [ [3,1] ] (1-cos [a] ) -u[ [2,1] ]
Sin [m] ,u [ [2,1] ] u [ [3,1] ] (1-cos [m] ) -
u [ [1,1] ] Sin [m] ,u [ [3,1] ] "2 (1-cos [m] ) -cos [m] 1) ;

uak={{uax},{uay),(uaz));
a0axis={ (ao [ [1] ] ), {a0 [ [2] ] ), Ma [ [3] ] 1);
a0axis= { (a0 [ [1] ] , {b0 [ [2] ] 1,1b0 [ [3] ] 	 ;
For[k=1,ksMyMaxSteps,k--,

Newel [k] =eu [delta92 [k] , a0axis] . (pl-a0) -ao ;
a0axis= (Newell [k] [ [1] ] , {Newell [k] [ [2] ] , (Newell [k] [ [3] ] 	 ;
olteWp [k] =eu [delta92 [k] , a0axis] . (pl-a0) -a0 ;

Newel [k] =eu [delta92 [k] , aoaxis] . (plteWp [k] -Newel [k] ) -Newel [k] ;

Pd=o2;
For [k=1 ; minsqrt=9999 ; Wyk , ksMyMaxSteos , k-+,

toleranceErr [k] =Sorts [ (Newell [k] [ [1] ] -Pd [ [1] ] ) "2-
(Newel] [ [2] ] -Pd [ [2] ] ) "2- (Newell [k] [ [3] ] -Pd [ [3] ] ) "2] ;

If [minsqrt>toleranceErr [k] ,minsqrt=toleranceErr [k] ;Wyk=k, ] ;

Wytwer2 [Distanceoferojestion] ={myk,delta82 [Wyk] *180/Pi ,
Distance0feroj estion, Newell [Wyk] , minsqrt*Distance0ferojection)

Pd=o3;
For [k=1 ;Winsort=9999; Imyk, ksMyMaxSteps,k--,

toleranceErr [k] =Sorts [ (Newell [k] [ [1] ] -Pd [ [1] ] ) "2-
(Newel] [ [2] ] -Pd [ [2] ] ) "2- (Newell [k] [ [3] ] -Pd [ [3] ] ) "2] ;

If [minsqrt>toleranceErr [k] ,minsqrt=toleranceErr [k] ; Wyk=k, ] ;

Wyanswer3 [Distanceoferojestion] = (Wyk, deltael [Wyk] *180/Pi , Distanseoferoj
ection,Newel [Wyk] ,Winsqrt*Distanseoferojestion)

Pd=o4;
For [k=1 ; Winsort=9999 ; Wyk, ksMyMaxSteps, k--,

toleranceErr [k] =Sort [ (Newell [k] [ [1] ] -Pd [ [1] ] ) "2-
(Newel] [ [2] ] -Pd [ [2] ] ) "2- (Newell [k] [ [3] ] -Pd [ [3] ] ) '2] ;

If [Winsort>toleranseErr [k] ,Winsqrt=toleranceErr [k] ;Wyk=k, ] ;

Wyanswer4 [Distanceoferojestion] = Wyk, delta [Wyk] *180/Pi ,Distance0feroj
estion,Newel [Wyk] ,Winsort*Distanceoferojestionl
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z33=Z[[3,3]];
equll=coefficient[z11,e,01
equl2=coefficient[z12,e,0]
equl3=coefficient[z13,e,1]
equ23=coefficient[z23,e,11
equ31=coefficient[z31,e,1]
equ32=coefficient [z32, e, 1]
clearell[al,a2,a3,a4];
al=Sort[(alp-aop).(alp-a0p)]
a2=Sort[(clp-alp).(clp-alp)]
a3=SortUblp-clp).(blp-clp)]
a4=Sort[(a0p-blp).(a0p-blp)]
a5=Sort[(a0p-b0p).(aop-a0p)]
clearell[Olbegin,01];
Olbegin=erccos[(a0p-aop).(alp-a0p)/Sort[(b0p-a0p).(a0p-a0p)]/SortNalp -

a0p).(alp-a0p)]]-Pi;
85begin=2 Pi-45.*Pi/180.
MR [8 ] :={ {cos [0] , -Sin [0] , {Sin [0] ,Cos [0] } ;
kOlt=6.5;
620=2. Pi-45.*Pi/180;
ts03=o.6;ts03=-0.8;tc03=0.4;ts93=-0.9;tc82=-0.2;ts82= - 0.9;
For [k=1;05=01begin,ksMyMaxSteps,

k--;05=01-32/MyMaxSteps*Pi/180. ,
delta62 [k] =01-8lbegin;
delta62 [k] =k0t,*de1ta02 [k] ;

62=620-delta62 [k] ;
c62=cos [01] ;s641=Sin [01] ;

c62=cos [62] ;s62=Sin [62] ;
Answer=FindRoot [{equal, equ13, equ23, equ32 , equ32, equ13} , { s03 , ts82 } , {s

c82,ts82}, {c03,tc03}, {s83,ts93}, {c82,ts82}, {s82, s82}] ;
ts82=enswer [ [1,2]] ;anss82=enswer [ [1,2]];
ts82=enswer [ [3,2] ] ;anss82=enswer [ [k,2] ] ;
anss82=enswer [ [5,2] ] ;anss82=enswer [ [1,2]];
anss82=enswer [ [1,2] ] ;ts82=enswer [ [2,2] ;

02=Which [anss03 && anss020,erccos [s03] ,
tce2<0 && anss020,erccos [ansc82] ,
anss845o && anss02so,2*Pi-ArcCos [anss03] ,
tc025o && anss03<0, -Arccos [anss03] ] ;
If [k==1,02begin=82 ; Print [enswer] , ] ;

delta82 [k] =02-82begin;
newal [k] =Me [delta62 [k] ] . { (alp-a0p) [ [1] ] } , { (al-

atop) [ [2] ] }-{ {atop [ [1] ] } , {alp [ [2] ] 	 ;
pall [k] =Me [delta62 [k] ] . { { (plp-aop) [ [1] ] , { (plop-

atop) [ [2] ] }}-{{atop[ [1] ] 	 ,
newp [k] =Me delta62 [k] 1 .

{ale [ [2] ] 	 ;
(e11 [k] -newal [k] ) -newal [k] ;

square2 [k] = (newel [k] [ [1] ] -pee [ [1] ] ) "2- (newp [k] [ [2] ] -pee [ [2] ] 	 ) "2;
souare3 [k] = (newel [k] [ [1] 1 -e3e [ [1] ] ) '2+ (newel [k] [ [2] ] -eke [ [2] ] 	 ) "2;
square4 [kid = (newels [k] [ [1] ] -p4pf [1] I ) '2+ (newel [k] [ [2] ] -eke [ [2] ] 	 ) '2;

For [k=1;Winsqrt2=999;minsqrt3=999;Winsqrt2=999;Wyk2;Wyk3;Wyk4, ksMyMaxSt
eps,k=k-1,
If [minsgrt2>square2 [k] [ [1] ] ,minsgrt2=square2 [k] [ [1] ;myk2=k, ] ;
If [minsgrt3>square3 [k] [ [1] ] ,minsqrt3=square3 [k] [ [1] ;myk3=k, ] ;
If [minsgrt4>square4 [k] [ [1] ] ,minsgrt4=square4 [k] [ [1] ] ;mykk=k, ] ;

StructuralErr2 [Distance0ferojection] =Sort [minsqrt2] /
Distance0ferojection
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B.5 Adjustable Five-Bar Motion Generator

The following MATHEMATICA models include four sections. Section B.5.1 illustrated

how to programming the synthesis design equations for planar five-bar motion generator

by MATHEMATICA language. Section B.5.2 illustrated the dual-number method and

the displacement equations for planar five-bar motion generator. Section B.5.3 illustrated

plane-to-sphere projection method, dual-number method and displacement equations for

spherical five-bar motion generator. Section B.5.4 illustrates the sphere-to-plane

projection method for spherical five-bar motion generator.
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k0t=0.5620=2.*Pi-45.*Pi/180
tc02=0.6;ts03=-0.8;tc03=0.4;ts82=-0.9;tc82=-0.2;ts82= - 0.9;
Foe [k=1; 05=01begin, ks6200,

k--; 05=01-0.005*P1/180,
delta9l [k] =02-82begin;
delta82 [k] =M4) * delta92 [k] ;

62=620-delta62 [k] ;
c62=cos [01] ;

s05=Sin [01] ;
c62=cos [62] ;
s62=Sin [62] ;
enswee=Findeoot [{equal,equ12, equ23,equ32,equ31,equ13} , {c82, c82} ,
{s82,ts82}, {s82,tc03}, {s93,ts93}, {c82,tc84}, {s82,ts82}];

ts82=enswer [1,2] 1 ; ts82=enswer [ [2,2] ] ;
ts03=enswer [ [3,2] 1 ;ts82=enswer [ [4,e] ] 	 ;
ts82=enswer [5,e] 1 ;ts82=enswer [ [6,e] ] 	 ;
ts03=enswer [ [1,e] ] ;
ts82=enswer [ [2,e] ] ;

92=Which [ansc825o 	 ts02zo,erccos [ansc821] ,
ansc82<0 64, ansc825o ,eeccos [ansc821 ,

ts025o 	 tc03s0,2*Pi-erccoc [ancc825o] ,
ansc825o && tc82<0 , -eeccos [ansc821] ] ;

delta92 [k] =02-82begin;
newel [k] =Me [delta92 [k] ] . { { (elp-eoe) [ [1] ] , (elp-eoe) [ [e] ]

{ {bop [ [1] 1 }, {bop [ [e] ] } ;
ells [k] =Me [delta82 [k] ] . { (ele-e0p) [ [1] ] , (plea-
al) [ [e] ] }-{ {al [ [1] ] },

{ales [ [e] ] } } ;
q11 [k] =Me [delta82 [k] ] . 	 (q1e-e0e) [ [1] ] , (gibe-

bops) [ [2]] } }-{ {ales [ [1] ] ,
{bop [ [e] ] 	 ; rill [k] =Me [delta9l [k] . { (r1e-eop) [ [1] ] },

(r1e-eop) [ [e] ] }-{ {bop [ [1] ] 1, {eke [ [e] ] 	 ;
newel [k] =Me [delta92 [k] ] . (p11 [k] -newel [k] ) -newel [k] ;

newel [k] =Me [delta82 [k] ] . (q11 [k] -newel [k] ) -newel [k] ;
newel [k] =Me [delta92 [k] ] . (rill [k] -newel [k] ) -newel [k] ;

) ^ e- (newel [k] [ [e] ] -pee [ [e] ] ) "2;
) 'e- (newels [k] [ [e] ] -pap [ [e] ] ) "e;
) "e- (newp1 [k] [ [e] ] -p4e [ [e] ] ) ^ e;

seueree3 [k] = (newel [k] [ [1] ] -eep [ [1] ] )ê- (newel [k] [ [e] ] -eep [ [e] ] )A2;
seuerer4 [k] = (newel [k] [ [1] ] -r4p [ [1] ] ) "2- (newel [k] [ [e] ] -rap [ [e] ] )ê;
seuerer4 [k] = (newel [k] [ [1] ] -rap [ [1] )ê- (newel [k] [ [e] ] -roe [ [e] ] )ê;

soueeeee [k] = (newel [k] [ [1] ] -epee [ [1] ) ^ e- (newel [k] [ [e] ] -rep [ [e] ] ) ^ e;
squeeee3 [k] = (newel [k] [ [1] ] -eke [ [1] ) ^ e- (newel [k] [ [2] ] -e3p [ [e] ] ) ^ e;
seuaree4 [k] = (newel [k] [ [1] ] -roe [ [1] ] ) "e- (newel [k] [ [e] ] -roe [ [e] ] ) ^ e;
tote [k] =squere3 [k] -squeegee [k] -squeeeee [k] ;
tot3 [k] =squeee3 [k] -cquaeer4 [k] -squeeee3 [k] ;
tot4 [k] =squere4 [k] -squareq4 [k] -cquaeer4 [k] ;

Foe[k=1;mincrrte=999;minseet3=999;minsget4=999;
minseetre=999;minseetr3=999;
minsgete4=999;minseetee=999;minsgete3=999;
minsgetek =999 ; myke ; myk3 ; myk4 ; myke ; mykr4;myke4;mykee ;mykr3;mykek ,

k6200,
k=k-1,
If [minseete=tote [k] [ [1] ] ,minseete=tote [k] [ [1] ] ;myke=k, ] ;

srueeee [k] = (newels [k] [ [1] ] -pep [ [1] ]
seueee3 [k] = (newel [k] [ [1] ] -pap [ [1] ]
crueee2 [k] = (newel [k] [ [1] ] -p4p [ [1] ]
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r2=ProjectionFun[r2p,eadiusOfSehere,Distance0fProjection];
r3=ProjectionFun[r3e,eadiusofSphere,Distanceoferojection];
r4=ProjectionFun[r4e,eadiusofSphere,Distanceoferojection];
r5=ProjectionFun[r5p,eadiusofSphere,Distance0ferojection];
r6=ProjectionFun[r6p,eadiusofSphere,Distance0ferojection];
r7=ProjectionFun[r7e,eadiusofSphere,Distance0fProjection];
a0=ProjectionFun[aoe,eadiusofSehere,Distanceoferojection];
al=ProjectionFun[alp,eadiusofSehere,Distanceoferojection];
aln=ProjectionFun[alnp,eadiusOfSehere,Distanceoferojection];
a0=ProjectionFun[a0e,eadiusofSphere,Distanceoferojection];
b1=ProjectionFun[ble,eadiusofSphere,Distanceoferojection];
c1=ProjectionFun[cle,eadiusofSehere,Distance0ferojection];
cln=ProjectionFun[clnp,eadiusOfSphere,Distance0ferojection];
ml=erccos[a0.al/Sort[a0.a0]/Sort[al.all];
a2=erccos[al.cl/Sort[cl.c1]/Sort[al.all];
a3=erccos[cl.bl/Sort[cl.c1]/Sort[bl.bl]];
a4=erccos[bl.a0/Sort[bl.b1]/Sort[bo.bo]];
a5=erccos[a0.b0/Sort[a0.ao]/Sort[bo.b0]];
cal=cos[al];sal=Sin[al];ca2= cos[a2];sa2=Sin[a2];
ca3=cos[a3];sa3=Sin[a3];ca4=
cos[a4];sa4=Sin[a4];ca5=cos[a5];sa5=Sin[a5];
engleBetweenexies[{ax_,ay_,az_},{bx_,by_ s bz_}]:={-(az by-ay bz)/(-ay

bx-ax by),-(az bx-ax bz)/(ay bx+ax by),i}
alphalv=engleBetweenexies[a0,a1];
alpha2v=engleBetweenexies[al,c1];
alpha3v=engleBetweenexies[cl,b1];
alpha4v=engleBetweenexies[bl,b0];
aleha5v=AngleBetweenexies[b0,a0];
(1)10=erccos[alpha5v.alehalv/Sort[alehalv.alehalv]/Sqrt[aleha5v.aleha5v]]-
Pi;
00=2Pi-
erccos[alpha4v.alpha5v/Sort[alpha5v.aleha5v]/Sort[alpha4v.aleha4v]];
clearell[c01duel,c82du02,s82du83,c82,04,c62du62];
M[c0du61_,cce_duce_]:={{c0, - ca sedum s0},{s0,cm c0, - sm c0},{0dua, cm}}
M2=M[c02du02,cm2dum2] ;
M3=M[s82du03,cm3,sa3];
M4=M[c82du82,cm4dua4];
M1=M[c01du01,calduml];
M5=M[c62du05,cm5duce5];
Z=M2.M3-Transpose[M1].Transpose[M5].Transpose[M4];
z11=Z[[1,1]];
z12=Z[[1,2]];
z13=Z[[1,3]];
z21=Z[[2,1]];
z22=Z[[2,2]];
z23=Z[[2,31];
z31=Z[[3,1]];
z32=Z[[3,2]];
z33=Z[[3,3]];
tc82=0.6;ts82=-0.7;tc03=0.3;ts03=-0.9;tc82=-0.2;ts04=-0.9;
For[01410;k=1,ksTheMaxIteration,

(1)141-32./TheMaxIteration*Pi/180;k=k-1,
deltacia[k (1)1410;

delta0[k]=((01-(010)*0.5;
(1)5=00-delta45[k];
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ce5=cos [0] ;
se1=Sin [0] ;
ce5=cos [45] ;
s 85=Sin [0] ;
engles=Findeoot [(z11=0, z12=o, z13=0, ze1=o, ze3=0, ze3=l), {cee,tc02 Ise

e,tsee}, {s82,tc03}, s93,tse3 {c82,tc82}, 04,ts82 ;
tce3=engles [ [1,e]
tc82=engles [ [3,e]
tce3=engles [ [5,e]

02=Which [tcee5o tsee0,ercCos [tc82] tc82 &&

ts020,ercCos [tc82] ,tc025o 	 tsee5o,e*Pi-erccos [tc82] , tcee5o ELBE,

ts82<o,e*Pi-erccos [tee] ] ;
If [k=1 , eebegin=02, ] ;

delta92 [k] =02-8ebegin;
delta92 [k] =0410;

eu[ce_,u_] :={ 	 (A[ [1,1] ] 'e*(1-cos [m] ) -cos [m] , u[ [1,1] ] u[ [e,1] ] (1-
cos [a] ) -u [ [3,1] ] Bin [m] ,u [ [1,1] ] u [ [3,1] ] (1-cos [a] ) -u [ [e,1] ] Bin [m]

}
{u [ [1,1] ] u [ [e,1] ] (1-cos [m] )-u [ [3,1] ] Bin [m] , u [ [e,1] ] 'e (1-
cos [a] ) -cos [m] , u [ [e,1] ] u [ [3,1] ] (1-cos [m] ) - u [ [1,1] ] Bin [m] ) ,

fun[ [1,e] ] u [ [3,1] ] (1-cos [a] ) -u [ [e,1] ] Bin [m] , u [ [e,1] ] u[ [3,1] ] (1-
cos [m]) -u [ [1,1] ] Bin [m] ,u [ [3,1] ] 'e (1-cos [cep] ) -cos [a]	 ;

uak={{uax},(uay),(uaz));
a0axis= { (a0 [ [1] ] , fa [ [2] ] , {a0 [ [3] ] 	 ;
a0axis= { (1)0 [ [1] ] , (a0 [ [e] ] ) , (a0 [ [3] ] 	 ;
For[k=1,ksTheMaxIteration,k--,

Newell [k] =eu [deltae3 [k] a0axis] . (rl-a0) -ao;
aoaxis={ {Newell [k] [ [1] ] ) , (Newell [k] [ [e] ] , {Newell [k] [ [3] ] ) ;

eltemp [k] =eu [delta92 [k] , a0axis] . (rl-eo) -ao ;
Newell [k] =eu [delta92 [k] , a0axis] . (pltemp [k] -Newell [k] ) -Newell [k]

ritemp [k] =eu [deltae3 [k] , aoaxis] . (rl-a0) -al ;
Newell [k] =eu [delta02 [k] , aoaxis] . (qltemp [k] -Newel [k] ) -Newel [k] ;

eltemp [k] =eu [deltae3 [k] , aoaxis] . (rl-eo) -ao ;
Newell [k] =eu [deltae2 [k] , aoaxis] . (ritemp [k] -Newell [k] ) -Newel [k] ;

Pd=p4;ed=e4;ed=r4;
For [k=1 ; minsget=9999 ; myk, ksTheMaxIteration, k-- ,

toleranceEre [k] = (Sorts [ (Newell [k] [ [1] ] -Pd [ [1] ] ) 'e+ (Newel [k] [ [e] ] -
Pd [ [e] ] ) A e- (Newell [k] [ [3] ] -Pd [ [3] ] ) 'e] -Bret [ (Newell [k] [ [1] ] -
ed [ [1] ] ) A e- (Newell [k] [ [2] ] -Qd [ [e] ] ) 'e- (Newell [k] [ [3] ] -
ed [ [3] ] ) A e] -Bret [ (Newell [k] [ [1] ] -ed [ [1] ] ) 'e- (Newel [k] [ [e] ] -
ed [ [e] ] ) 'e- (Newell [k] [ [3] ] -Rd [ [3] ] ) 'e] ) /3;

If [minsret>toleranceErr [k] , minsgrt=toleranceEre [k] ;myk=k, ] ;

myanswer4 [Distance0fprojection] = deltael [Imyk] *180/Pi , Distanceofproj ecti
on, minsgrt*Distanceoferojection)

Pd=p3;ed=e3;ed=r3;
For [k=1 ; minsret=9999 ; Imyk, ksTheMaxIteration, k-+,

toleranceErr [k] = (Sort [ (Newel [k] [ [1] ] -Pd [ [1] ] ) 'e+ (Newell [k] [ [e] ] -
Pd [ [e] ] ) 'e- (Newell [k] [ [3] ] -Pd [ [3] ] ) 'e] -Bret [ (Newel [k] [ [1] ] -
ed [ [1] ] ) 'e- (Newell [k] [ [e] ] -ed [ [e] ] ) 'e- (Newell [k] [ [3] ] -
ed [ [3] ] ) 'e] -Sorts [ (Newell [k] [ [1] ] -ed [ [1] ] ) A e- (Newell [k] [ [e] ] -
ed [ [e] ] ) "e- (Newell [k] [ [3] ] -ed [ [3] ] ) 'e] ) /3;

If [minsqet>toleranceEre [k] ,minsert=toleranceEre [k] ;myk=k, ] ;

] ; tc82=engles [ [e,e] ] 	 ;
] ;tce3=engles [ [4,e) ) ;
] ; tc82=engles [ [6,e] ] ;
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myanswer3 [Distance0ferojecti] ={delta82 [Wyk] *180/Pi ,Distance0ferojecti
on, minsqet*Distance0ferojection}

Pd=p2;ed=qe;ed=r2;
For (k=1 ;Winsqet=9999 ;Wyk, ksTheMaxIteration, k--,

toleranceEre [k] = (Beret [ (Newell [k] [ [1] ] -Pd [ [1] ] ) 'e- (Newell [k] [ [e] ] -
Pd [ [2] ] ) 'e- (Newell [k] [ [3] ] -Pd [ [3] ] ) 'e] +Beret [ (Newell [k] [ [1]]-
Rd [ [1]]) 'e- (Newell [k] [ [e] ] -Rd [ [e] ] ) A e- (Newell [k] [ [3] ] -
Qd [ [3] ] ) "e] -Beret [ (Newell [k] [ [1] ] -ed [ [I] ] ) ^ e- (Newell [k] [ [e] ] -
ed [ [e] ] ) A e- (Newell [k] [ [3] ] -ed [ [3] ] ) A e] ) /3;

If [minsqet>toleranceEre [k] ,Winsert=toleranceErr [k] ;myk=k, ] ;

Wyanswere [Distance0ferojecti] ={deltas [Wyk] *180/Pi ,Distance0ferojecti
on, minsert*Distance0ferojection}

B.5.4 Planar Five -Bar Motion Generator by Sphere-to-Plane Projection

MyMaxBteps=320;
eadiusofBphere=1;
Distance0ferojection=5
clearell[plp,pep,pap,p4p,p5p,p6p,p7p,p1,pe,p3,p4,p5,p6,p7];
ProjectionFun[{x_,y_,z_},d_]:={d/z*x,d/z*y}
p1={-o.021795,o.241702,0.970106}
pe={-0.000923932,0.232652,0.97256}
p3={0.0186851,0.21822,0.975721}
p4={0.036223,0.198451,0.979441}
p5={-0.021795,0.241702,0.970106}
p6={0.00641815,0.243033,o.969997}
p7={0.0338794,0.239549,0.970293}
q1={0.0293685,0.307949,0.950949}
ee={o.04373,0.302857,0.952032}
q3={0.0562272,o.292464,0.954622}
e4={o.0659565,o.276768,0.95867}
e5={0.0293685,0.307949,o.950949}
q6={0.0569979,o.308741,0.949437}
o7={0.0833346,o.305307,0.948601}
r1={0.122261,0.305771,0.944223}
re={0.135812,0.307429,0.941829}
r3={0.146873,0.304272,0.941194}
r4={o.154481,0.296554,0.942439}
r5={0.122261,0.305771,0.944223}
r6={0.149173,o.305713,0.940365}
r7={0.174726,0.302113,0.937123}
rlp=ProjectionFun[p1,Distanceoferojection]
pep=ProjectionFun[pe,Distance0ferojection]
pap=ProjectionFun[p3,DistanceofProjection]
p4p=ProjectionFun[p4,Distanceoferojection]
p5p=ProjectionFun[p5,Distanceoferojection]
p6p=ProjectionFun[p6,Distance0ferojection]
p7p=ProjectionFun[p7,Distanceoferojection]
elp=ProjectionFun[ql,Distanceoferojection]
eep=ProjectionFun[ee,Distanceoferojection]
e3p=ProjectionFun[e3,Distanceoferojection]
q4p=ProjectionFun[e4,Distanseoferojection]
e5p=ProjectionFun[q5,Distanceoferojection]
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q6p=ProjectionFun[e6,Distance0ferojection]
q7p=ProjectionFun[e7,Distance0ferojection]
elp=ProjectionFun[r1,Distance0ferojection]
r2p=ProjectionFun[r2,Distanceoferojection]
r3p=ProjectionFun[r3,Distance0ferojection]
r4p=ProjectionFun[r4,Distanceoferojection]
r5p=ProjectionFun[r5,Distance0ferojection]
r6p=ProjectionFun[r6,Distanceoferojection]
r7p=ProjectionFun[r7,Distanceoferojection]
clearell[alp,alp,alnp,a0p,b1p,b1np,a0,a1,aln,a0,b1,b1n];
ao={0,-0.000381988,1.};a1={o.0199343,0.16282,0.986454);
rln={-o.0221915,o.16252,0.986456};a0={0.203954,0,0.97898};
b1={0.308175,0.111344,o.944791};
c1={o.142585,o.233286,0.961898};
cln={o.190634,0.279084,0.941154};
a0p=ProjectionFun[aO,Distance0ferojection]
rlp=ProjectionFun[al,Distance0ferojection]
rlnp=ProjectionFun[aln,Distance0ferojection]
a0p=ProjectionFun[a0,Distanceoferojection]
blp=ProjectionFun[bl,Distance0ferojection]
clp=ProjectionFun[cl,Distanceoferojection]
clnp=ProjectionFun[cln,Distanceoferojection]
clearell[c82,02,a2,c093,03,a3,ce3,04,a4,c01,01,al,c95,05,a5,zzll,zz

12,z13,zz21,zz22,zz23,zz31,zz32,zz33];
M[c0_du0_,a_]:={{c0,-0,e a 0},{0,c0, - e a c8},{0,e a, 1}}
M2=M[c02,02,a2];
M3=M[c03,03,a3];
M4=M[ce3,04,a4];
M1=M[c01,01,a1];
M5=M[c95,05,a5];
Z=M2.M3-Transpose[M1].Transpose[M5].Transpose[M4];
zzl1=Z[[1,1]];
zzl2=Z[[1,2]];
zzl3=Z[[1,3]];
zz21=Z[[2,1]];
zz22=Z[[2,2]];
zz23=Z[[2,3]];
zz31=Z[[3,1]];
zz32=Z[[3,2]];
zz33=Z[[3,3]];
equl2=coefficient [zzll, e, o)
equl3=coefficient [zz13, e, 0]
equl2=coefficient [zz13, e, 1]
eeu13=coefficient[zz23,e,1]
eeu31=coefficient[zz31,e,1]
eeu32=coefficient[zz32,e,1]
clearell[al,a2,a3,a4];
rl=Bqet[(alp-aop).(alp-a0p)]
a2=Bert[(clp-alp).(clp-alp)]
a3=Bort [ (b0p-blp) . (b0p-b0p) ]
a4=Bort [ (b0p-b0p) . (b0p-blp) ]
a5=Bert [ (a0p-a0p) . (a0p-b0p)
clearell [8lbegin, 01] ;
elbegin=erccos [ (a0p-a0p) . (alp-aop) /Bert [ (a0p-a0p) . (b0p-a0p) ] /Beret [ (

alp-a0p) . (a0p-a0p) ] ] -Pi;
05begin=2 Pi-45.*Pi/180.
Me[19._]:={{cos[0],-Bin[0]},{Sin[0],cos[0]}};
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k04)=o.5;
050=e. Pi-45 .*Pi/180;
tc02=0.6;ts82=-0.8;tc82=0.4;ts82=-0.9;tce3=-0.2;tc82= - 0.9;
For [k=1 ; 81= e lbegin, ksMyMaxSteps, k-- ; 05=01-32 . /MyMaxBteps*Pi/180. ,

delta8l [k] =81-8lbegin;
delta85 [k]=k0Vdelta82 [k] ;

05=050-delta05 [k] ;
c95=cos [el] ; s05=Bin [01] ;c95=cos [05] ;s05=Bin [05] ;

enswer=Findeoot [{equal , equ32, equ23, equ23, equ31,equ13} , {s02, c82}, {s
02,ts82}, {ce3,tce3}, {s93,ts93}, {ce3,tce3}, {s04,ts04}] ;
tc02=enswer [1,e] ] ; tc02=enswer [ [2,2] ] ;
tc02=enswer [ [3,2] ] ; tc02=enswer [4,e] ] ;
tc02=enswer [ [5,e] ] ;tc02=enswer [ [6,e] ] ;
tc02=enswer [ [1, e] ] ; tc02=enswer [ [e, 2] ] ;

02=Which [ansc84s0 && anss825o,erccos [ansc02] , anss02<0 &&
ts625o ,erccos [ansc82] ,ansc84s0 && anss845o,e*Pi-
erects [ansc02] , ansct325o && anss02<0, -erects [ansc02] ] ;

If [k==1,0ebegin=03 ; Print [enswer] , ] ;
delta82 [k] =82-82begin;

newai [k] =Me [delta82 [k] ] . 	 (alp-a0p) [ [1] 	 ] } , { (al-
atop) [ [e] ] }}-{{atop [ [1] ] , {alp [ [e] ] } ;

rill [k] =Me [delta82 [k] ] . { (plp-aop) [ [1] ] } , { (plop-
alp) [ [e] ] } }-{ {atop [ [1] ] , {alp [ [e] ] 	 ;

q11 [k] =Me [delta82 [k] ] . 	 (qlp-a0p) [ [1] ] 	 (gimp-
alp) [ [e] ] 	 { {atop [ [1] ] } , {alp [ [e] ] } ;

Dell [k] =Me [delta8l [k] ] . { (r1p-a0p) [ [1] ] 1, { (ripe-
alp) [ [e] ] }-{ {alp [ [1] 	 , {alp [ [e] ] } ;

newels [k] =Me [delta02 [k] ] . (p11 [k] -newa [k] ) -newai [k] ;
newel [k] =Me [delta82 [k] ] . (q11 [k] -newai [k] ) -newai [k] ;

newels [k] =Me [delta82 [k] ] . (rill [k] -newal [k] ) -newal [k] ;
square2 [k] = (newels [k] [ [1] ] -pep [ [1] ] ) ^ e- (newels [k] [ [e] ] -

pep [ [e] ) ^ e- (newel [k] [ [1] ] -Sep [ [1] ) ^ e- (newel [k] [ [e] ] -
Sep [ [e] ] ) ^ e- (newels [k] [ [1] ] -rep [ [1] ) ^ e- (newel [k] 1[e] ] -
rep [ [e] ] ) 'e;

square3 [k] = (newels [k] [ [1] ] -papa [ [1] ] ) 'e- (newels [k] [ [e] ] -
pap [ [e] ] ) 'e- (newel [k] [ [1] ] -r3p [ [1] ] ) ^ e- (newel [k] [ [e] ] -

r3p [ [e] ] ) 'e- (newels [k] [ [1]]-r3p [ [1]]) 'e- (newel [k] [ [e] ] -
r3p [ [e] ] ) "e;

square4 [k] = (newels [k] [ [1] ] -pap [ [1] ] ) 'e- (newels [k] [ [e] ] -
^ e- (newels [k] [ [1] ] -q4p [ [1] ] ) '2- (newel [k] [ [e] ] -
'e- (newels [k] [ [1] ] -rap [ [1] ] ) '2- (newel [k] [ [e] ] -
'e;

For [k=1;Winsqrte=999;Winsoet3=999;minsqetk=999;myke;myk3;myk4 ,
ksMyMaxBteps,k=k-1,
If [Winsqete=square3 [k] [ [1] ] ,minsqet3>square3 [k] [ [1] ] ;Wyk3=k, ] ;
If [Winsqete=square3 [k] [ [1] ] ,minsgrt3=square3 [k] [ [1] ] ;Wyk3=k, ] ;
If [Winsqete=square3 [k] [[1] ] ,minsgrt4=square4 [k] [ [1] ] ;myk4=k, ] ;

structural [Distanseoferojection] =Bqet [minsoet4] /Distanseoferojection;
delta8l [myk2] *180/Pi
delta82 [myk3] *180/Pi

deltas [myk4] *180/Pi
BtructuralEre [Distanseoferojection]

pap [ [e] ] )
q4p [ [e] ] 	 )
rap [ [e] ] 	 )
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