

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

STUDIES OF DISK ARRAYS TOLERATING TWO DISK FAILURES
AND A PROPOSAL FOR A HETEROGENEOUS DISK ARRAY

by

Chunqi Han

There has been an explosion in the amount of generated data in the past decade.

Online access to these data is made possible by large disk arrays, especially in the

RAID (Redundant Array of Independent Disks) paradigm. According to the RAID

level a disk array can tolerate one or more disk failures, so that the storage subsystem

can continue operating with disk failure(s). RAID5 is a single disk failure tolerant

array which dedicates the capacity of one disk to parity information. The content

on the failed disk can be reconstructed on demand and written onto a spare disk.

However, RAID5 does not provide enough protection for data since the data loss may

occur when there is a media failure (unreadable sectors) or a second disk failure during

the rebuild process. Due to the high cost of downtime in many applications, two disk

failure tolerant arrays, such as RAID6 and EVENODD, have become popular. These

schemes use 2/N of the capacity of the array for redundant information in order to

tolerate two disk failures. RM2 is another scheme that can tolerate two disk failures,

with slightly higher redundancy ratio. However, the performance of these two disk

failure tolerant RAID schemes is impaired, since there are two check disks to be

updated for each write request. Therefore, their performance, especially when there

are disk failure(s), is of interest.

In the first part of the dissertation, the operations for the RAID5, RAID6,

EVENODD and RM2 schemes are described. A cost model is developed for these

RAID schemes by analyzing the operations in various operating modes. This cost

model offers a measure of the volume of data being transmitted, and provides a

device-independent comparison of the efficiency of these RAID schemes. Based on

this cost model, the maximum throughput of a RAID scheme can be obtained given

detailed disk characteristic and RAID configuration. Utilizing M/G/1 queuing model

and other favorable modeling assumptions, a queuing analysis to obtain the mean

read response time is described. Simulation is used to validate analytic results, as

well as to evaluate the RAID systems in analytically intractable cases.

The second part of this dissertation describes a new disk array architecture,

namely Heterogeneous Disk Array (HDA). The HDA is motivated by a few obser-

vations of the trends in storage technology. The HDA architecture allows a disk array

to have two forms of heterogeneity: (1) device heterogeneity, i.e., disks of different

types can be incorporated in a single HDA; and (2) RAID level heterogeneity, i.e.,

various RAID schemes can coexist in the same array. The goal of this architecture is

(1) utilizing the extra resource (i.e. bandwidth and capacity) introduced by new disk

drives in an automated and efficient way; and (2) using appropriate RAID levels to

meet the varying availability requirements for different applications.

In HDA, each new object is associated with an appropriate RAID level and

the allocation is carried out in a way to keep disk bandwidth and capacity utilizations

balanced. Design considerations for the data structures of HDA metadata are described,

followed by the actual design of the data structures and flowcharts for the most

frequent operations. Then a data allocation algorithm is described in detail. Finally,

the HDA architecture is prototyped based on the DASim simulation toolkit developed

at NJIT and simulation results of an HDA with two RAID levels (RAID1 and RAID5)

are presented.

2

STUDIES OF DISK ARRAYS TOLERATING TWO DISK FAILURES
AND A PROPOSAL FOR A HETEROGENEOUS DISK ARRAY

by
Chunqi Han

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2004

Copyright © 2004 by Chunqi Han

ALL RIGHTS RESERVED

APPROVAL PAGE

STUDIES OF DISK ARRAYS TOLERATING TWO DISK FAILURES
AND A PROPOSAL FOR A HETEROGENEOUS DISK ARRAY

Chunqi Han

Dr. Alexand&Thomasian, Dissertation Advisor 	 Date

Professor of Computer Science, NJIT

DVames Calvin, Committee Member 	 Date
Associate Professor of Computer Science, NJIT

Iy. Josph Leung, Comm' 	 Member 	 Date
Distinguished Professor of Computer Science, NJIT

Dr. Wojciech Rytter, Committee Member 	 Date
Professor of Computer Science, NJIT

,rfian Yang, C1Frdnittee Member 	 Date
Associate Professor of Industrial and Manufacturing Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Chunqi Han

Degree: 	 Doctor of Philosophy

Date: 	 May 2004

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2004

• Master of Science in Computer Science,
Shanghai Jiao Tong University, Shanghai, China, 1998

• Bachelor of Science in Electrical Engineering,
Shanghai Jiao Tong University, Shanghai, China, 1995

Major: 	 Computer Science

Presentations and Publications:

Alexander Thomasian, Chunqi Han, Gang Fu, and Chang Liu, "A Performance
Evaluation Tool for RAID Disk Arrays", submitted to QEST'04.

Chunqi Han, Alexander Thomasian and Chang Liu, "Affinity Based Routing in
Mirrored Disks with Zoning", to appear SPECTS'04.

Gang Fu, Alexander Thomasian, Chunqi Han and Spencer Ng, "Rebuild Strategies
for Clustered Redundant Disk Arrays", to appear in SPECTS'04.

Gang Fu, Alexander Thomasian, Chunqi Han, and Spencer Ng, "Rebuild Strategies
for Redundant Disk Arrays," Conference on Mass Storage Systems and
Technologies '04, College Park, MD, April 13-16 2004.

Chunqi Han and Alexander Thomasian, "Performance of Two Disk Failure Tolerant
Disk Arrays," SPECTS03, Montral, August, 2003.

Alexander Thomasian, Junilda Spirollari, Chang Liu, Chunqi Han, Gang Fu,
"Mirrored Disk Scheduling," SPECTS03, Montral, August, 2003.

R. Boian, A. Sharma, C. Han, G. Burdea, A. Merians, S. Adamovich, M. Recce, M.
Tremaine and H. Poizner, "Virtual Reality-Based Post-Stroke Hand Rehabil-
itation," Proceedings of Medicine Meets Virtual Reality 2002, IOS Press, pp.
64-70, Newport Beach, CA, January 23-26 2002.

iv

This work is dedicated to my beloved wife and family

v

ACKNOWLEDGMENT

I would like to extend my sincere gratitude to my advisor Dr. Alexander Thomasian.

His invaluable guidance and encouragement have contributed significantly to the work

presented in this dissertation.

I would like a warm thanks to Dr. Joseph Leung, Dr. Wojciech Rytter, Dr.

James Calvin and Dr. Jian Yang for their guidance and abundant help throughout

this research.

I would like to thank all the members in the Integrated System Lab, Gang Fu,

Chang Liu, Yue Li and Lijuan Zhang, for their great help and support through the

four years of my research and for the joyful days in the Lab. Special thanks go to

Gang Fu for his great work in developing the DASim simulation toolkit.

I will always be indebted to my parents. Without their moral and intellectual

guidance through my life, all these would be impossible. Also I wish to thank my

brother and parents-in-law for their continuous support and encouragement.

I dedicated this dissertation to my wife, Li Zhang, for her love, understanding,

help, and support.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 	 1

1.1 Motivations for Performance Analysis Study on Double Failure Tolerant
Disk Arrays 	 1

1.2 Hard Disk Structure and Disk Array Organization 	 3

1.2.1 	 Structure of Hard Disk Drive 	 3

1.2.2 	 Single Failure Tolerant Disk Arrays 	 6

1.3 RAID Performance Studies 	 9

1.4 Motivations for Heterogeneous Disk Array 	 11

1.4.1 	 Growth in Disk Capacity 	 11

1.4.2 	 Complex Application Requirements 	 13

1.4.3 	 Management Cost 	 14

1.4.4 	 Summary 	 15

1.5 Related Work for Heterogeneous Disk Array 	 17

1.5.1 	 The File Placement Problem 	 17

1.5.2 	 Techniques to Cope With Disk Heterogeneity 	 19

1.5.3 	 System that Have Multiple RAID Levels 	 21

1.6 Dissertation Overview 	 26

2 DESCRIPTION AND PERFORMANCE ANALYSIS OF DOUBLE DISK
FAILURE TOLERANT DISK ARRAYS 	 27

2.1 Methodology 	 27

2.2 Workload Assumptions 	 28

vii

TABLE OF CONTENTS

(Continued)
Chapter	 Page

2.2.1 Request Sizes and Placements 	 28

2.2.2 The Arrival Process 	 29

2.2.3 The Effect of Caching 	 30

2.3 Basic Operations in RAID 	 31

2.4 Cost of Operations for RAID5 Disk Array 	 32

2.4.1 RAID5 Organization and Operations 	 33

2.4.2 Cost of Operations in RAID5 	 34

2.5 Cost of Operations for RAID6 Disk Array 	 39

2.5.1 RAID6 Organization 	 39

2.5.2 Cost of Operations in RAID6 	 41

2.6 Cost of Operations for EVENODD Disk Array 	 43

2.6.1 The EVENODD Data Layout 	 44

2.6.2 Cost of Operations in EVENODD 	 45

2.7 Cost of Operations for RM2 Disk Array 	 46

2.7.1 The RM2 Data Layout 	 47

2.7.2 Cost of Operations in RM2 	 49

2.8 Analytical Model 	 54

2.8.1 Service Time for Basic Operations 	 55

2.8.2 Service Time for RAID 	 58

2.8.3 Single Disk Mean Response Time Analysis 	 59

2.8.4 Fork-Join Response Time Analysis 	 60

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3 PERFORMANCE COMPARISON OF DOUBLE DISK FAILURE TOLERANT
DISK ARRAYS 	

	

3.1 	 Configuration 	

	

3.2 	 Validation of Analytical Models 	

	

3.3 	 Performance Comparison with FCFS Policy 	

63

63

64

65

3.3.1 Normal Mode 	 65

3.3.2 Degraded Mode with One Disk Failure 	 69

3.3.3 Degraded Mode with Two Disk Failures 	 70

3.4 Performance Comparison with SATF Policy 	 72

4 ARCHITECTURE FOR THE HETEROGENEOUS DISK ARRAY 76

4.1 Heterogeneous Disk Array Architecture 	 77

4.1.1 Request Types 	 77

4.1.2 Scheme Selector 	 80

4.1.3 Splitter 	 81

4.1.4 Distributor 	 81

4.1.5 System Directory 	 82

4.1.6 System Performance Tuner 	 84

4.2 The Data Structure and Operations of System Directory 	 85

4.2.1 Addressable Entities in HDA 	 87

4.2.2 Frequent Operations 	 89

4.2.3 Address Translation Diagram 	 90

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.2.4 	 The Data Structure for Meta Information 	 92

4.2.5 	 Estimated Meta Data Size 	 95

4.2.6 	 Read and Write Operation Procedure 	 96

5 ALLOCATIONS IN HETEROGENEOUS DISK ARRAY 	 100

5.1 Problem Analysis and Formalization 	 100

5.2 A Solution Based on A Greedy Heuristic 	 104

5.3 Verifying the Best-fit Allocation Algorithm 	 106

5.3.1 	 Experiment Parameters 	 106

5.3.2 	 Effectiveness 	 107

5.3.3 	 Robustness 	 109

5.3.4 	 Summary 	 111

5.4 Constraints on Allocation 	 111

5.5 The Allocation Algorithms Used in Simulation 	 113

5.5.1 	 Checking Free Space 	 114

5.5.2 	 Allocating from a VA 	 115

5.5.3 	 Creating new VA 	 115

6 PERFORMANCE OF HETEROGENEOUS DISK ARRAY 	 119

6.1 Configurations 	 119

6.2 Simulation Results with Accurate Estimation of Access Rates 	 121

6.3 Simulation Results with Inaccurate Estimation of Access Rates 	 . . 	 124

7 CONCLUSIONS 	 127

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

APPENDIX A QUEUING FORMULAS 	 128

A.1 M/G/1 Queuing Formulas 	 128

A.2 Non-Preemptive Priority Queuing 	 129

A.3 Fork Join Approximation 	 130

A.3.1 Two-way Fork-Join Approximation 	 130

A.3.2 Multi-way Fork-Join Approximation 	 132

REFERENCES 	 133

xi

LIST OF TABLES

Table Page

1.1 The Trend in Disk Bandwidth 	 12

1.2 The Trend of Bandwidth Capacity Ratio 	 16

2.1 Cost of Operations for RAID5 with N Disks 	 39

2.2 Cost of Operations for RAID6 with N Disks 	 44

2.3 Cost of Operations for RM2 with N disks 	 53

2.4 IBM 18ES Specifications 	 55

3.1 Configurations Used in Comparison 	 64

3.2 Efficiency of RAID Schemes (Escheme) in Normal Mode 	 66

3.3 Performance Degradation Factor with One and Two Disk Failures. 	 . . . 69

3.4 Impact of Stripe Unit Size in RM2 	 71

4.1 Width for Data Fields in HDA 	 95

4.2 Memory Requirement for Tables in HDA 	 96

5.1 Specifications of Hard Drives Used in the Preliminary Experiment 106

5.2 Experiment Result with Accurate Estimation of Access Rate 	 108

5.3 Experiment Result with Inaccurate Estimation of Access Rate. 	 111

5.4 Functions Used in Allocation Algorithms 	 116

6.1 Specifications of Disks Used in HDA Simulation 	 119

xii

LIST OF FIGURES

Figure 	 Page

1.1 The structure of a hard disk. 	 4

1.2 Data layout in RAID levels 0 through 5 	 8

1.3 The trend of storage price. 	 12

1.4 Data Layouts for AdaptRaid° and AdaptRaid5 	 20

1.5 HP AutoRAID system. 	 22

1.6 The components in the attribute managed storage model. 	 25

1.7 Ergastulum's architecture. 	 25

2.1 A sample VSR request 	 32

2.2 Write operation in RAID5 normal mode 	 35

2.3 The cases for RAIDS degraded mode. 	 38

2.4 Data layout in RAID level 6. 	 41

2.5 The cases for RAID6 with one disk failure. 	 42

2.6 The cases for RAID6 with two disk failures 	 43

2.7 The parity Q in EVENODD scheme 	 45

2.8 Sample RM2 Layout 	 48

2.9 Steps to write a failed block in RM2 with one disk failure 	 50

2.10 The cases for RM2 with one disk failure 	 50

2.11 Recover from double disk failure in RM2. 	 52

2.12 Surface fitting for F in RM2 with two failures 	 53

2.13 The cases for RM2 with two disk failures. 	 54

LIST OF FIGURES
(Continued)

Figure Page

3.1 Mean read response time in normal mode with FCFS policy 	 67

3.2 Mean read response time with one failure and FCFS policy 	 67

3.3 Mean read response time with two failures and FCFS policy 	 68

3.4 Mean disk utilization with FCFS policy 	 68

3.5 Mean read response time in normal mode with SATF policy 	 72

3.6 Mean read response time with one failure and SATF policy 	 73

3.7 Mean read response time with two failures and SATF policy 	 73

3.8 Mean disk utilization in normal mode with SATF policy 	 74

4.1 System architecture for heterogeneous disk array 	 78

4.2 Address mapping in AutoRAID. 	 83

4.3 Entities in Heterogeneous Disk Array 	 88

4.4 Address mapping diagram in HDA 	 91

4.5 Tables maintained in HDA 	 93

4.6 Flow chart of address translation for a read operation. 	 97

4.7 Flow chart of address translation for a write operation 	 98

5.1 Allocation modeled as vector sum. 	 101

5.2 Best-fit schedule algorithm for allocator 	 105

5.3 Flowchart for handling allocation requests. 	 114

6.1 Utilization of bandwidth, with accurate estimations of access rate and
read write ratio. 	 121

6.2 Utilization of capacity, with accurate estimations of access rate and read
write ratio 	 122

xiv

LIST OF FIGURES
(Continued)

Figure 	 Page

6.3 Read response time on each disk, with accurate estimations of access rate
and read write ratio. 	 122

6.4 Arrival rate on each disk, with accurate estimations of access rate and
read write ratio. 	 123

6.5 Utilization of bandwidth, with inaccurate estimations. 	 124

6.6 Utilization of capacity, with inaccurate estimations. 	 125

6.7 Read response time on each disk, with inaccurate estimations 	 125

6.8 Arrival rate on each disk, with inaccurate estimations. 	 126

xv

CHAPTER 1

INTRODUCTION

This dissertation consists of two parts. The first part is the performance analysis and

comparison of the disk arrays that can tolerate two disk failures. The second part

describes the Heterogeneous Disk Array architecture and presents simulation results

to quantify its performance. This chapter provides the motivation and background

information for both studies.

1.1 Motivations for Performance Analysis Study on Double Failure

Tolerant Disk Arrays

RAID5 is a popular disk array scheme, which utilizes one parity disk to protect against

single disk failure. When a disk fails, the data on the failed disk can be reconstructed

by exclusive-ORing the data on the surviving disks that are in the same parity group,

and writing the data onto a spare disk. The mean time to data loss (MTTDL) of

RAID5 is proportional to the square of mean time between failures (MTBF) of a

single disk and inversely proportional to the square of number of disks and the mean

time to reconstruct (MTTR) [48]. Such a system is reliable when the number of disk

is small and the MTTR is short. However, single disk failure tolerant is not enough

in some cases because of the following reasons

1. The reliability formula in [48] does not take into account the uncorrectable error

rates of a hard disk. The uncorrectable error rate for the current state-of-the-

art hard drive is 1 error out of 10 15 bits [39]. For a RAID5 array consisting

of twenty one 100 GB disks, the amount of data to be read at the occurrence

1

2

of a disk failure is 2000 Gigabytes or 1.6 x 10 13 bits. The probability of a

successful reading all those bits without an error is 98.4%, which means each

disk failure will risk a data loss in 1.6% of cases. This may be unacceptable in

some applications.

2. Since the data fault can not be detected without the attempt to read the data,

the localized faults on dormant data sectors or tracks can not be detected until

the rebuild process tries to read the data. Therefore, such a hard to detect

localized fault leads to data loss.

3. During the rebuild process, the data are unprotected. A second disk failure

before the completion of reconstruction will lead to a large amount of data loss.

The fast-increasing disk capacity exacerbates all three problems: Given the

increased number of blocks on disk, more erroneous blocks will be created. Seldomly

accessed blocks potentially harbor hidden faults. Large capacity increases rebuild

time (MTTR) and make a second disk failure more possible.

The n-disk-failure-tolerant arrays are a solution to this problem, but only

n = 2 is considered, because it is deemed to be sufficient to make data loss highly

unlikely [9]. StorageTek's Iceberg is an early 2DFT product [15], which uses two check

disks with PH-Q coding (a Reed-Solomon code) [8, 38]. HP's RAID 5DP (double

parity) also uses PH-Q coding [35]. These two systems are referred to as RAID6 in

this dissertation. Two schemes with minimal or low level redundancy: EVENODD

[9] and RM2 [47], are also considered in this study. The advantage of these schemes

over PH-Q coding is that they use only parity and do not require specialized hardware

or more lengthy computations required for Reed-Solomon coding. The more recent

RDP coding also uses parity only and is similar to EVENODD from viewpoint of disk

access [18]. Extensions of both RAID6 and EVENODD methods to three or more

3

redundant disks have been proposed in [3] and [10], respectively. The methods in [30]

are not considered because of their higher levels of redundancy.

1.2 Hard Disk Structure and Disk Array Organization

This section describes the structure and organization of modern hard drives as well as

disk arrays. Subsequent chapters assume intimate knowledge of disk structures and

array layouts.

1.2.1 Structure of Hard Disk Drive

Figure 1.1 shows the structure of a typical hard drive. A disk drive consists of one or

more platters mounted on a common spindle. Each platter has both sides coated with

magnetic material whose polarity changes with strong localized magnetic field. The

polarity is retained until the next write occurs. The platters rotate at a fixed speed,

which is typically measured as revolutions per minute - RPM. For each platter, there

is a corresponding read/write head mounted at the end of a disk arm. Disk arms

are mounted to a common shaft called actuator. A small directional current on

the actuator motor causes it to move in either direction, and therefore moves the

read/write heads inbound or outbound. This movement, together with the rotations

of platters, allow the access to the data on each platter. Although there are multiple

read/write heads, in most contemporary hard drives, there is only one active head at

any time. This is because it is very hard or impossible to position two head precisely

on corresponding tracks at the same time due to thermal variations of the disk arm

and platters.

Data on disk are organized into sectors, tracks, and cylinders. A sector is a

fixed amount (almost always 512 bytes) of sequential user data plus a header and

4

Figure 1.1 The structure of a hard disk. (Source: [59])

trailer. The sector header contains the sector id and clock synchronization infor-

mation. The sector trailer contains the error correcting code computed over both the

header and data. A track consists of a set of sectors on a data surface that makes

a circle centered at the spindle. Tracks with the same radius constitutes a cylinder.

All the sectors are numbered sequentially as block addresses and constitute a linear

address space to the user.

When a user request arrives, the block address contained in the request is

translated into cylinder and track numbers by the firmware of the disk. The actuator

then moves the disk arms toward the target cylinder and corresponding read/write

head is activated. The time incurred in this movement is called the seek time.

After the head is put on the right track, the disk waits the first requested sector

passes under the read/write head. This waiting time is called rotational latency

or sometimes latency for short. The sum of the seek time and rotational latency is

called the positioning time, since it is the time required to search for the target sector.

After positioning, the constant rotation of the platters makes data sectors pass the

5

read/write head consecutively. The time elapsed for all the requested data sectors

passing under the read/write head is called the transfer time.

In some cases, a transfer would span two tracks. Therefore, two read/write

heads need to be activated one after the other to fulfill the access. The head switching

takes a short time 1 millisecond) and is call the head switching time. Consequently,

to ensure the data of the next track can be read right after the head switching, the

first sector of the next track is positioned from the last sector of the previous track

at an angle equal to the rotation speed times head switching time. A track skew is

then defined to be the number of sectors that takes up this angle. Similarly, when

a transfer spans two cylinders, a cylinder switch time (which is the seek time of one

cylinder plus none-overlapped head switch time) occurs and corresponding cylinder

skew is defined.

When user requests a whole track's worth of data, the rotational latency can

be avoided by starting the reading the data sectors right away, after positioning the

read/write head on the track, rather than waiting until the first sector rotates under

the head. This policy is called the zero-latency operation. For requests that are not

a full track, but consist of multiple sectors, the zero-latency operation can also be

applied. However, the improvement is not as significant as for full-track accesses.

Since the tracks on the outer cylinders have a greater circumference than those

on the inner cylinders, it is natural to put more sectors on a track on outer cylinders.

Hence the idea of zoning. In a zoned disk, adjacent cylinders are grouped into a zone.

The sectors per track remains the same in a zone while it differs between zones. Outer

zones have more sectors per track.

At current recording density, a typical 3 2inch disk has about 1000 sectors per

track, 2 to 8 tracks per cylinder (i.e. 1 to 4 platters) and about 10 4 cylinders per disk.

The revolution speed varies from 5400 to 15000 RPM. Mean seek time varies from 4

6

to 10 milliseconds. The mean latency is about half the rotation time and hence 2 to

5.6 milliseconds.

1.2.2 Single Failure Tolerant Disk Arrays

In the past decade, the performance of processors has been growing steadily. Their

computing power in terms of Million Instruction per Second (MIPS) has been doubling

approximately every two years. However, the I/O performance has been far behind

the CPU processing power. The overall performance of the computer systems is

therefore curbed by the performance of the I/O subsystem, according to Amdahl's

law [31].

Hard disk drives are still the dominating choice of data storage. Since the

mechanical parts (read/write arms, rotating platters) are involved, the accessing

speed of the hard disks is bounded by mechanical limits. Thus the idea of multi-

programming has been applied to increase the performance of I/O subsystem.

The Redundant Array of Independent Disks (RAID) [48] offer the advantage

of fragmenting the total storage space into multiple inexpensive smaller disks, which

allows cost-effective solutions. It also benefits from the higher aggregate bandwidth

of the component disks, and smaller seek latencies associated with shorter arms.

A typical disk array consists of a bunch of identical hard disks connected to

an array controller through a common parallel bus (e.g. SCSI [7]). Recently serial

links (e.g. Fibre Channel) are receiving more attention over parallel connection such

as SCSI buses. Serial links require smaller mechanical interface and are expected

to be more popular since the form factor of disk are getting smaller [28, 29]. The

array controller is connected to a host computer using high-bandwidth links. The

responsibility of the array controller is maintaining address mapping and redundant

7

information, controlling individual disks, translating host requests and recovering

from disk or link failures. The array controller provides a linear address space to

the host. The redundant information is maintained by the disk array controller and

is transparent to the user. The mapping of this host side linear address space to

individual disk address space is referred to as the data layout.

One of the fundamental concepts of RAID disk arrays is striping [48, 26, 42].

Striping is to break the linear address space exported by the array controller into

smaller blocks. Each block is called a stripe unit or striping unit. Consecutive stripe

units are placed onto different drives, so that the stripe unit is the maximum amount of

consecutive data assigned to a single disk. The benefits of striping include automatic

load balancing and high bandwidth for large sequential transfers. However, these two

benefits do not come together with higher concurrency: a smaller stripe unit size

may increase the bandwidth for a single transfer by involving more disks, while at the

same time, this reduces the number of concurrent requests the disk array can handle.

Traditional single failure tolerant disk arrays are classified into five types,

namely RAID level 1 through 5 [48]. This terminology has gained wide acceptance

and is used throughout this dissertation. Although not part of the original RAID

classification, RAID level 0 is often used to indicate a non-redundant disk array with

striping. Briefly, RAID1 is block interleaved dedicated mirroring. RAID2 is bit

or byte-interleaved and using Hamming error correcting code [49]. RAID3 is byte-

interleave parity with one disk dedicated to parity. RAID4 is block-interleave parity

with one disk dedicated to parity. RAID5 is rotated block-interleaved parity with the

parity blocks distributed over all disks. In Figure 1.2, the data and redundancy infor-

mation organizations for RAID levels 0 through 5 are illustrated. The RAID5 design

shown uses left-symmetric organization [37], which is first placing the parity stripe

units on the diagonal and then placing consecutive data stripe units on consecutive

disks. The group of disks that a parity is computed over is called a parity group. For

8

the samples show in Figure 1.2, there is only one parity group for each RAID level. It

is possible that more than one parity group exist in a RAID. This technique is called

declustering and the result RAID scheme is called clustered RAID [44, 33].

Figure 1.2 Data layout in RAID levels 0 through 5. The shaded blocks are parities.
d i means data are bit or byte interleaved over disks. D i means data are block inter-
leaved. means the parity is computed over d i through di , is defined similarly.

Among those RAID levels, RAID 2 and 4 are of less interest. RAID2 uses

Hamming code, which introduces higher redundancy than necessary. In disk arrays,

it is easy to check whether a disk is failed or not by sending special commands or

checking the ECC codes in the sector trailers. This feature makes a disk an erasure

channel, to distinguish from an error channel, in which the location of an error is

unknown. RAID4 differs from RAIDS only in that it is block-interleaved. There

9

is a load imbalance problem for RAID4, since the disk that is dedicated to parity

can be overloaded if a large fraction of requests are writes. RAID5 offers a better

solution by distributing the parity stripe units over all disks, such that the load is

balanced and all disks can contribute to the read throughput. RAID3 is suitable for

the special scenario when the disk array is dedicated to a single application and the

process demands large amount of data at high bandwidth.

The concept of disk array offers a solution for highly reliable parallel data

storage. For single disk tolerant disk arrays, the reliability can be measured in the

form of mean time to data loss(MTTDL). A simple expression for the MTTDL for a

redundant disk array that can tolerate one disk failure is given in [48]:

where N is the total number of disks in the array, G is the number of disks in a RAID

group (i.e. a set of disks over which a parity is computed), MTTFdisk is the mean

time to failure of a component disk, typically 200,000 to 300,000 hours. MTTRdi sk

is the mean time to repair of a component disk, typically a few hours.

1.3 RAID Performance Studies

Since the advent of RAID, there have been numerous performance studies dealing

with various RAID performance metrics. Some studies investigate the maximum

throughput attainable for various RAID levels and different workloads, such as in

[15, 26, 48]. Other studies use mean response time as the main performance metric.

The M/M/1 queueing model with Poisson arrivals and exponential service times was

used in some early studies [40, 44]. However, since the disk service time can be

more accurately modeled with a general distribution, the M/G/1 queuing model was

10

introduced later [59, 65, 43, 36, 64, 17]. Among those, some studies also evaluated

RAIDS performance in degraded and rebuild modes [43, 65, 64, 40, 44].

Beside analytical analyses, simulations are often used in the performance study.

The simulations take two roles: firstly it is used to validate the accuracy of various

approximations in the analytical model, e.g. [65, 64], secondly it is used to solve some

complicated problems that are too difficult to solve by queueing theory [52, 13, 34].

Simulations can be driven by a random number generator or a trace collected from a

real system. While pseudo random number driven simulations offer more flexibility

and control on workloads, results from trace driven simulation are more meaningful

and have more credibility, since it makes a closer emulating of real workloads. However,

trace files are often hard to obtain, and more importantly, they are hard to be

adapted according to various arrival rates and configurations. Since the performance

for various arrival rates and configurations need to be investigated, pseudo random

number rather than trace driven simulations are used in this dissertation.

The caches have a major effect on disk array performance. It operates as

a filter and reduces the disk load by satisfying a fraction of read requests directly.

This fraction is called the cache hit ratio. The performance of the RAID controller

cache can be evaluated by trace driven simulations [73, 66]. The main target for

such simulations is to estimate the cache hit ratio. However, the cache performance

depends heavily on the workload characteristic and varies from case to case. As a

result, most performance studies on redundant disk array investigate the performance

of a disk array without caching. In this dissertation, only throughput provided by

disk arms is of interest and the cache effect is not considered for the same reason.

The effects of caching will be discussed in more detail in Section 2.2.3.

11

1.4 Motivations for Heterogeneous Disk Array

The second part of this dissertation is concerned with devising a self-managed hetero-

geneous storage system. The heterogeneity has two aspects: different disk drives and

different RAID levels in a single disk array. In this section, the motivations for the

introduction of heterogeneous disk array are discussed, followed by description of

related work in the next section.

The heterogenous disk array is motivated by the observations about several

trends in the data storage technology, which are described below.

1.4.1 Growth in Disk Capacity

Rapid improvements in magnetic material and recording technology have lead to an

exponential growth in disk capacity. Since '90s, the areal density of the hard disk

drives has been increasing at 60% per year, which is even faster than before [29, 28].

Figure 1.3 shows the trend of the price per megabyte for both magnetic hard disks

and semiconductor storages (i.e. DRAM and flash memory) in the past two decades.

Note that the Y axis is logarithmic, which means the capacity of a hard drive has

been increasing exponentially, since the price per disk remains steady. In Table 1.1,

the typical seek time and bandwidth for a hard disk in different years are shown. The

data sources are [4], [22] and [39] for the disk models before year 1994, year 1999 and

year 2003, respectively.

However, this rapid increase in disk capacity has the following implications.

Consider the scenario: one of the disks fails after operating for several years, but

the same model is not readily available or cost effective when compared with more

modern disks. Therefore, it is replaced with a new disk drive. The new disk drive

is larger in capacity, and usually has a lower seek time, higher rotational speed and

Figure 1.3 The trend of storage price in the last two decades. The shaded area is
the price range for paper and film media. This figure is a simplified reproduction of
the figure in [29].

12

13

transfer rate. In a traditional disk array configuration, only part of the capacity that

equals that of the old disk drive is used. The extra capacity and bandwidth are simply

wasted [19, 20].

A similar situation arises when a disk array runs out of storage space after a

few years due to the growth in the data or introduction of new applications. Since

the identical disk model is no longer manufactured at that time, one can either add

new disks to the disk array (if it allows such an expansion) or buy a new disk array

altogether. However, in the first approach a large fraction of capacity (perhaps more

than 50%) and bandwidth of the new disks is wasted. The second approach might be

too costly.

A storage system would be more attractive if it allows the user to add new

disk models when there is a shortage of space or bandwidth. The extra capacity

and bandwidth should be fully utilized, so that the user can benefit from the fast

improving technology and enjoy a higher performance-price ratio. This means the

storage system should consist of heterogeneous disks.

1.4.2 Complex Application Requirements

A disk array is usually shared by many applications. Each application accesses one or

multiple datasets. Each dataset can have a number of requirements. The requirements

include, but are not limited to, capacity, throughput, and reliability.

As far as reliability and performance are concerned, there is no single RAID

level that can meet all of the requirements. Each RAID level has different character-

istics and performs well only for a relatively narrow range of workloads. It is desirable,

for example, to use RAID6 rather than RAID5 for critical data since RAID6 provides

more protection over the data, RAID1 is suitable for hot data since the throughput

14

of mirrored data doubles that of a single disk for read requests, RAIDO can be used

for high volume temporary data since it has the lowest storage overhead and it does

not suffer the small write penalty.

A general purpose storage system should be able to combine different RAID

levels. i.e., RAIDO/1/5/6 etc., to meet the requirements of individual stores. In other

words, the storage system should be heterogeneous in terms of the RAID level.

1.4.3 Management Cost

In traditional storage systems, many configuration parameters must be specified

for each new dataset. To achieve the right balance between cost, availability, and

performance is a challenging task. Storage administrators are skilled and highly

paid personnel since they need to make decisions which impact performance, based

on inadequate information. Recent studies have indicated that the cost of large

storage system, over the course of their lifetime is dominated by storage management

costs [1, 46].

Even the array itself is not cheap. It is common for an enterprise class

storage system to cost more than one million dollars. Because of the rules of thumb

used by the administrators, and the not-so-good scalability of most storage system,

the resulting systems are often over-provisioned, which makes them unnecessarily

expensive.

An ideal storage should be self-managed. It should be able to choose the

right configuration for different datasets based on their characteristics. It should be

painlessly expandable, so that there is no need to provide too much spare storage for

future use.

15

1.4.4 Summary

As the previous discussion shows, the hard disk technology has been making great

strides in the past two decades and will continue to do so. Disk capacities have been

doubling every 18 months, and their bandwidths have been increasing steadily as

well. This means the price per megabyte decreases at a fast pace and it is more

cost-effective to use more recent disk products to replace a failed disk or to expand

disk array capacity. Moreover, in some circumstances, a failed disk has to be replaced

by a newer model because the same old model is not available. Consequently, this

mixture of disk model leads to heterogeneity in physical devices.

However, this heterogeneity introduces a few problems. In traditional disk

array, e.g. RAID1/5/6, all disks are identical. If a new disk with larger capacity is

introduced, only part of the capacity that is equal to the old model is utilized. The

rest of capacity, which may exceed 50%, is wasted. As a result, a disk array scheme

that can utilize the extra capacity is attractive.

Besides capacity, the disk heterogeneity has another side effect — on the bandwidth

side.

In this dissertation, the bandwidth is defined as the number of small accesses a

disk can handle in a second. A small access is a read or write to a 4KB block. Although

the disk bandwidth is increasing steadily as shown in Table 1.1, the improvement is

not so fast such that it can not catch up with the pace of disk capacity. This is

because there are mechanical components (e.g. disk arms, platters), which have mass

and momentum that make them difficult to move fast. Also the growing recording

density leads to more tracks per inch (TPI) but makes it more difficult to locate a

track.

As an example, in Table 1.2, three disks are given with their capacity and

bandwidth. It can be observed that the bandwidth/capacity ratio is decreasing very

16

fast over the years. In other words, if the data of the same genre are put into two

disks produced in year 1997 and 2003, the bottleneck of the older model tends to

be at the capacity side, while the bottleneck of the new model tends to be at the

bandwidth side. Therefore, to alleviate the bottlenecks on both disks, it is natural

to put data with higher access rate/MB on the smaller drive while putting the data

with lower access rate/MB on the larger drive.

However, this requires knowledge of access rate at the time of allocation, which

is before the data are actually accessed. This kind of knowledge is hard to obtain,

but it is not hopeless. Most applications have their pattern of accessing data. For

example, the files created by a logger are important but rarely accessed. Files created

by email clients are accessed periodically and should be moderately protected. With

the help of operating system, these pattern can be discovered and forwarded to the

storage system to help making proper allocation decisions.

Inevitably, these access rate estimations are approximate. The inaccuracy may

lead to an unbalanced load problem, which means some disks are over-utilized while

some others are under-utilized in terms of either bandwidth or capacity. To further

optimize the placement of data, it is desirable to have a scheme that can balance the

17

load automatically based on the information gathered by continuously monitoring the

system performance.

To sum up, the Heterogeneous Disk Array architecture to be described in this

dissertation can provide several features that are not available in traditional disk

arrays:

1. It consists of different disk types.

2. Multiple RAID levels coexist in a single physical array.

3. Utilizes the available storage capacity to the maximum extent.

4. Utilizes the available disk bandwidth to the maximum extent.

5. System performance is monitored to make automatic load balancing possible.

1.5 Related Work for Heterogeneous Disk Array

This section describes some previous work related to various aspects of the hetero-

geneous disk array. These aspects include proper placement of files to achieve a

balanced load, utilizing the extra capacity and bandwidth offered by new disks and

incorporating multiple RAID levels in a single disk array.

1.5.1 The File Placement Problem

The objective of the file placement problem is to balance disk workloads (by elimi-

nating disk access skew) or to meet response time requirements for certain appli-

cations. The inputs to the file placement problem are a set of file sizes and their

access frequency and the system configuration: disk capacities, maximum disk access

18

rates, disk bandwidths (transfer rates), data path characteristics, etc. There have

been numerous studies in this field, some of which predate the advent of RAID [23].

A placement optimization program to minimize file access times in multi-disk

multi-computer system is described in [69]. The placement decisions are made in two

steps: first via a macro model, then a micro model.

In the macro model, non-linear programming algorithm such as the Rosenbrock

algorithm [51] is used with an open Queuing Network Model (QNM) as its objective

function evaluator. The output of the macro model consists of optimal relative disk

access rates, which are access rates normalized by the CPU throughputs l . In fact

the macro model heuristic does not guarantee a globally optimal solution, though an

extremely close to optimal solution is invariably found and the same is true of the

micro model heuristic.

The micro model is a Binary Linear Programming Model (BLPM). The QNM

is also involved to help determine the BLPM stopping criteria. The objective function

measures, for each device, the distance between the optimal relative access rates as

computed by the macro model and the sum of the individual file access rates for

files assigned to that device. The user can impose constraints, which either assign or

restrict the assignment of certain files to certain devices.

The BLPM is solved using a greedy heuristic. First, it chooses a fast, but

reasonably good starting assignment of files to devices. Then, after imposing a

finite nested sequence of increasing neighborhoods about points in the space of file

assignments, it searches the neighborhoods in that sequence for an improved assignment.

The algorithm is reasonably fast. Given a rather stringent objective, e.g., the difference

between the mean response times of accessing two files should less than 0.0001 second,

the algorithm converges in a few minutes.

'The model presumes multiple computers with different CPU processing powers.

19

Another model for the file placement problem is described by Hill [32]. Files

are modeled as 2-dimensional vectors (size and access rate), and disks are modeled as

a container that has a maximum capacity and a maximum throughput (in accesses per

second). The problem of file placement then reduces to a vector scheduling problem.

However, an appropriate algorithm is not clearly specified.

1.5.2 Techniques to Cope With Disk Heterogeneity

Methods to utilize the extra space for larger disks in a RAIDO or RAID5 systems,

named AdaptRaid0 and AdaptRaid5, are described in [19, 20], respectively. Their

methods are based on intuitive ideas. Sample data layouts in the two cases are given

in Figure 1.4 and are self-explanatory.

Although these algorithms fully utilize disk capacity, they do not take load

balancing into account. For example, it is obvious that disk 3 in Figure 1.4(b) has

a heavier load than disk 2. This is because there are two parity blocks in a base

layout (the layout circumscribed by thick lines) on disk 3, which protect a total of 6

data blocks, while there is only one parity block on disk 2 which protects only 2 data

blocks. Therefore, since every data update is accompanied by a parity update, the

frequency with witch the parities on disk 3 are updated is much higher than that of

disk 2. Another unsolved problem is how to evolve to a new data and parity layout

once new disks are added to the system.

More studies of heterogeneous disks are carried out in a multimedia environment,

e.g., for video on demand — VOD. A system that can ensure the continuous display

using heterogeneous disk-subsystems is described in [72, 71]. The underlying technique

is called disk merging, which is to organize heterogeneous disks into a group of identical

logical disks. The algorithm first chooses how many logical disks should be mapped to

each of the slowest physical disks. Then the characteristic of the multimedia streams

20

(a) Data Layout in AdaptRaid0 (b) Data and Parity Layout in AdaptRaid5

Figure 1.4 Data, Layouts for AdaptRaid() and AdaptRaid5. Figures are extracted
from [191 and [20].

are used to estimate parameters, which are then used to determine how many logical

disks map to the other faster disk types in the system (usually these numbers are

proportional to the ratios of the bandwidths of those disks to the slowest disk).

Comparing the two methods, it is clear that the latter method tackles the

bandwidth aspect of the heterogeneity. Although the latter method can create some

identical logical disks out of heterogeneous physical disks and therefore balances

the workloads on all disks, some capacity of the larger disks are wasted (unless

the bandwidth-capacity ratio for all disks are the same). It should be noted that

the workloads in a multimedia system are much more predictable than in a general

purpose computer system, in which requests with high concurrency and high variation

are expected.

A different approach which is based on Bandwidth to Space Ratio (BSR)

is proposed in [21], which attempts to utilize both bandwidth and capacity to the

maximum extent. The BSR deviation of a device is defined as the deviation of the

(a) Data Layout in AdaptRaid° (b) Data and Parity Layout in AdaptRaid5

Figure 1.4 Data Layouts for AdaptRaid° and AdaptRaid5. Figures are extracted
from [19] and [20].

are used to estimate parameters, which are then used to determine how many logical

disks map to the other faster disk types in the system (usually these numbers are

proportional to the ratios of the bandwidths of those disks to the slowest disk).

Comparing the two methods, it is clear that the latter method tackles the

bandwidth aspect of the heterogeneity. Although the latter method can create some

identical logical disks out of heterogeneous physical disks and therefore balances

the workloads on all disks, some capacity of the larger disks are wasted (unless

the bandwidth-capacity ratio for all disks are the same). It should be noted that

the workloads in a multimedia system are much more predictable than in a general

purpose computer system, in which requests with high concurrency and high variation

are expected.

A different approach which is based on Bandwidth to Space Ratio (BSR)

is proposed in [21], which attempts to utilize both bandwidth and capacity to the

maximum extent. The BSR deviation of a device is defined as the deviation of the

21

BSR of the video objects on the device from the BSR of that device. The objective

function is to minimize the BSR deviation. The heuristic used to select drives for

replicas is a greedy algorithm in nature. When placing a video replica, the devices

are considered in decreasing order of BSR deviation. Then select from the list the

first device whose BSR deviation can be reduced by the video replica being placed.

This algorithm solves the problem fairly well in some circumstances. The Zipf

distribution is used to characterize the video access rate in their experiment. The

results show both bandwidth and space capacity are almost 100% utilized at the

same time, which is ideal. However, their experiment uses disks that have the same

BSR, which is not the case in reality. As shown in Section 1.4.4, since disk capacity

are growing at an exponential rate, while disk bandwidth are growing much more

slowly, the BSRs for more recent disks are smaller than the old ones. Whether their

algorithm still performs well in this situation is uncertain.

Another problem is that there are some situations in which the algorithm will

result in very skewed space utilization. For example, consider the following situation:

there are two disks with BSRs 0.6 and 0.3, the current cumulative BSR of the objects

on the two disks are 0.4 and 0.3, respectively. If there are continuous incoming video

allocation request with constant BSR 0.5, all the video objects will be placed on the

first disk.

1.5.3 System that Have Multiple RAID Levels

1.5.3.1 HP AutoRAID system. The HP AutoRAID hierarchical storage

system is a two-level storage hierarchy implemented inside a single disk array controller

[68]. At the upper level of this hierarchy, two copies of active data are stored to

provide full redundancy and excellent performance via mirroring. At the lower level,

RAID5 parity protection is used to provide improved storage cost for less active data,

22

at somewhat lower performance. The hierarchical system automatically and trans-

parently manages migration of data blocks between these two levels as access patterns

change. The result is a fully-redundant storage system that is easy to use, suitable

for a wide variety of workloads, largely insensitive to dynamic workload changes, and

that performs much better than disk arrays with comparable numbers of spindles and

much larger amounts of front-end RAM cache [68, 67].

Figure 1.5 The reads and writes operations in HP AutoRAID. Figures are extracted
from [67].

The reads and writes are handled as shown in Figure 1.5. Reads are served

by directly accessing the RAID1 or RAID5 partition of the array, if the data is not

in cache. Writes are more complicated. The data are first stored into the write cache

(arrow 1). When the data in the cache needs destaging and the old data are in the

RAID1 partition, then just update it (arrow 2); if the old data are in RAID5 partition,

usually the data are first promoted to the RAID1 level (arrow 3) and then updated

(arrow 2).

23

While promoting data from RAID5 to RAID1, it is possible that the RAID1

partition runs out of space. Therefore, some of the data in the RAID1 level are

downgraded to RAID5 level. The selection of data to be downgraded is based on

the access frequency and aging policy. In following situations, the cache may destage

directly to RAID5 level (arrow 5): (i) if a high rate of sequential I/O's is detected,

since a "full stripe" write can be used to update the data; (ii) if the writes to data

that are in RAID5 occur very quickly such that the movement of data to RAID1 and

associated aging process would consume too much of the controller's bandwidth.

In effect, the AutoRAID uses RAID1 as a cache for RAID5. The current

working set are kept in RAID1 partition. When a working set becomes dormant, and

there is need for space for a new working set, the old one is downgraded into the

RAID5 partition. The scheme works well when the size of working set is not large

and can fit into the RAID 1 partition. When the working set is larger than RAID 1

partition, the constant promoting and downgrading impair the system performance a

great deal. When the working set changes frequently, there is also the need to switch

data in and out of RAID1 partition, which has the same effect as a large working set.

1.5.3.2 Attribute Managed Storage Design Tools. The Minerva [2] and

Ergastulum [5, 6] are two storage system design tools developed at Hewlett-Packard

Laboratories. They are two versions of a solution to the attribute mapping problem

raised in 1995 [27, 11] and formalized in 1996 [58].

The target for both systems is to create a self-configuring and self-managing

storage system. The storage is given a specification of the workload it has to support,

the data it needs to store, and of the storage devices at its disposal. It then decides

how many of each kind of storage device to use, and how to balance the load and data

24

across them. Both the workload behavior and the device capabilities are specified by

the attributes of the load and the device, respectively.

The workload attributes include performance requirements, such as mean

throughput, maximum latency, and jitter; resiliency needs such as availability, relia-

bility, and fault models; cost bounds; data sizes and so on. Device attributes are

expressed similarly.

The components in the attribute managed storage system are shown in Figure 1.6.

Storage objects (also named stores) are the basic persistent unit that applications

access, and that must be assigned to storage devices. These objects could be files,

tables, or parts of tables in a database, a media clip or blocks of a scientific data set.

A stream represents the application workload on the object and the resources

that the workload uses. It captures the dynamic component of a workload and

summarizes its I/O request pattern. The assignment metadata are maintained by

the system for the mapping of objects to devices. The mapping engine takes the

requirements of objects and capabilities of devices as input, negotiates and finds out

a good mapping of objects to devices such that all the requirements can be satisfied

with the lowest cost.

Ergastulum is described here, since it is an improved version of Minerva. The

architecture of Ergastulum is shown in Figure 1.7. The workloads are described in

terms of stores and streams as mentioned above.

Ergastulum consists of three main components: a data structure, called the

device tree, that keeps track of the current design, previous designs and possible

configuration changes; a search algorithm that uses various strategies to find a near-

optimal design; and a state management component, called speculation, that allows

Ergastulum to easily roll back to a previously generated design with low overhead.

In Ergastulum, the mapping engine uses a search heuristic, which is a gener-

alized version of best-fit bin packing with randomization. The algorithm has two

phases. The initial assignment starts with empty devices. The list of stores is

randomized, each store is assigned into the device tree using a best-fit search of

the tree. In order to escape from local minima, in the second phase, a random subset

of stores are removed from the device tree and re-assigned.

Attribute managed storage model is a static model and therefore the Minerva

and Ergastulum storage system design tools can give a reasonably good design only

if the attributes of workloads are known in advance and do not vary often. However,

for a general purpose storage system, the workloads may change over time, new

applications may be installed and thus introduce new streams. The static design

approach is not suitable for such systems. System upgrading is another problem that

the static design model cannot solve. Although the static design tool can be executed

again after system upgrading, the new solution can be totally different from the old

26

one, which means that all of the old data need to be moved. This usually leads to a

long outage of service and can be prohibitively expensive.

1.6 Dissertation Overview

The dissertation consists of two parts. The first part is a description, performance

analysis, and comparison of disk arrays that can tolerate two disk failures. The RAID

schemes considered are RAID6, EVENODD and RM2. The performance of RAIDS

and RAIDO is also analyzed to evaluate the cost of fault tolerance. In Chapter 2 the

operations for various RAID schemes are described and analyzed. Then analytical

model for the estimation of throughput and response time are described. Chapter

3 provides simulation results for various RAID schemes. The performance for these

schemes are compared. The simulation also serves as a validation of the analytical

model described in Chapter 2.

The second part of this dissertation is the Heterogeneous Disk Array (HDA)

architecture. Chapter 4 describe the architecture of the HDA. The functions of each

module are defined. The data structures and algorithms used in the architecture are

given. Chapter 5 gives the simulation result for a HDA. Chapter 6 concludes the

dissertation.

Appendix A gives the queuing formulas used in the analytical model for the

response time of double disk failure tolerant disk arrays.

CHAPTER 2

DESCRIPTION AND PERFORMANCE ANALYSIS OF DOUBLE

DISK FAILURE TOLERANT DISK ARRAYS

This chapter describes the analytical model for the performance of double disk failure

tolerant disk arrays. It starts with describing the methodology used in the model.

Then the workload assumptions and primitive operations are defined. After that the

cost models for RAID5, RAID6, EVENODD and RM2 with various number of failures

are described. For each disk array scheme, firstly its data layout and operations are

analyzed, which is followed by its case graphs and cost functions. The RAID5 analysis

is provided for the purpose of drawing a baseline for the comparison and investigating

the performance-wise cost of maintaining two check blocks in double failure tolerant

arrays. Finally, a queuing analysis utilizing M/G/1 model is described.

2.1 Methodology

To compare the performance of RAID6, EVENODD, RM2 systems with each other

and RAIDO and RAID5, firstly several basic disk operations are defined: reads, writes,

read-modify-writes, and more complex VSR accesses (see Section 2.3) for RM2. These

basic disk operations are the building blocks of other more complicated operations.

Given a disk model with its detailed specifications and a RAID configuration, the cost

(or mean service time) of these basic operations can be precisely calculated. Then

the more complicated operations in various operating modes (e.g, normal mode and

degrade mode with single or double disk failures) can be expressed as linear functions

of those basic operations. These linear functions are called the cost functions in

this dissertation. For a given workload and RAID configuration, the cost functions

27

28

are utilized with given disk characteristics to estimate the maximum throughput.

However, this analysis assumes FCFS (i.e. First Come First Serve) scheduling policy.

A much higher maximum throughput can be obtained by using SATF (Shortest Access

or positioning Time First) policy, as reported in Chapter 3.

Since the cost functions are not based on assumption of any particular disk

model or RAID organization, the performance of various schemes can be compared

using this cost model in a disk independent manner. These cost functions combined

with request arrival rates can also be used to estimate I/O bus bandwidth requirements.

By incorporating M/G/1 queuing model with cost functions, mean user response time

can be estimated. Multiple non-preemptive priorities can be solved by this analytical

model. For example, read requests can have a higher priority than write requests

since application response time is usually defined by underlying read response times.

A detailed simulation tool which is call DASim is built from ground up to validate

the analytical model as well as to investigate the performance of SATF and other

local scheduling policies which are difficult to solve analytically. These results are

presented in Chapter 3.

2.2 Workload Assumptions

This section describes the workload assumptions used in the cost model as well as

queueing model in subsequent sections.

2.2.1 Request Sizes and Placements

Storage Performance Council's SPC Benchmark-l TM is characterized by "predomi-

nantly random I/O operations as typified by multi-user OLTP, database and email

server environments" {60]. An analysis of I/O traces from OLTP applications for

29

airline reservations showed that 96% of requests are to 4 KB blocks and the rest to

24 KB blocks [50]. In other words, I/O requests tend to be relatively small blocks of

data.

The access time of "modern" disks is dominated by the positioning time for

random requests, so that exact sizes of smaller requests have very little effect on

performance. When the stripe unit is much larger than the maximum block size

being accessed, the possibility that a request will cross stripe unit boundaries and

access two disks is quite small.

Based on these facts, the requests are assumed to be randomly distributed over

all disk blocks in this dissertation. In fact, it provides a lower bound to performance.

However, as noted at a later point, it is relative rather than absolute performance

that are of interest. A similar statement applies to the using of the FCFS, rather

than the SATF policy in the performance analysis.

The analytic and simulation models presented in this dissertation consider the

processing of discrete requests generated by an infinite number of sources, which differ

from continuous requests usually generated by a finite number of sources and accessing

successive blocks of data. In fact, modern disk drives with high data transfer rates

are well equipped to handle such requests.

2.2.2 The Arrival Process

Most I/O trace analyses have shown that the arrival rate of requests varies drastically

over time. One study recommends to pick peek arrival periods and model their arrival

process as Poisson arrivals [70]. Almost all analytical studies of RAID postulate

Poisson arrivals, see, e.g. [16], [43], [65].

30

In reality the arrival process can be modeled more precisely with M/G/1//S

model. Disk requests are generated by a finite set of S transactions executing concur-

rently. Each transaction generates a disk request after a think-time Z. As the queue-

length (q) of disk requests at all disks of the disk array increases, the arrival rate

decreases according to (S — q)/Z. However, the M/G/1 model with infinite sources

rather than the M/G/1//S model is used in the analysis because:

1. In OLTP applications, the number of concurrent transactions is large. Therefore,

it is close to infinite sources.

2. The throughput can be varied by changing one parameter only (the arrival

rate A) with M/G/1 model, which brings great flexibility in the simulation and

modeling.

3. The M/G/1 model is easier to analyze but still provides results that are accurate

enough.

For a given disk utilization, the mean response time RM/G/1 > RM/G/1//s, but

this difference gets smaller with increasing S and smaller service time variability [12].

Therefore, M/G/1 model can give a prudent estimation of system response time.

2.2.3 The Effect of Caching

In this dissertation, the performance of disk arrays are compared without considering

the disk array controller cache. In effect, the comparisons are done when the disk

array is processing read misses and destages of write requests from the disk array

controller cache. In other words, only the throughput provided by disk arms rather

than cache hits are examined. However, caches have great impact on the disk array

performance, which are discussed below, but they affect all disk array schemes equally.

31

The rate of read requests to the disk array is reduced due to hits in the caches.

Write requests are considered completed as soon as a dirty block is written into a

duplexed NVRAM cache, so that the destaging of dirty blocks from NVRAM can be

deferred. If a dirty block is overwritten a times in the NVRAM then the destaging

rate is reduced by a factor 1 + a. Batched destaging of dirty blocks can be optimized

to minimize destaging time. Those optimizations are not considered in this study,

since a and information about the locality of requests to be destaged are not available.

If the caching of parity blocks is allowed, the cache would be more beneficial

for RAID5 than RAID6 and RM2, since RAID6 has twice as many parity blocks as

RAID5 and this number is slightly higher for RM2. However, the caching of check

blocks is not recommended in [66], since they do not contribute to read hits.

The hard disk's onboard cache hit ratio is expected to be negligibly small for

random accesses and is therefore ignored.

To summarize, the effect of caching is ignored. The performance of different

RAID systems are compared when they are subjected to the same arrival rates for

reads and destages.

2.3 Basic Operations in RAID

This section describes the basic operations used in the cost model. These operations

are considered atomic and non-preemptive, which means once an operation is scheduled

to run, it can not be interrupted by a higher priority request. The costs for executing

read (or write) requests for a RAID scheme are expressed as functions of various types

of basic operations specified below.

1. SR/SW: Single Read / Single Write of a single block. SW seeks are slightly

longer than SR's due to head settling time.

32

2. RMW: Read-Modify-Write of a single block. A RMW is an SR is followed by

a full disk rotation to update the data block. A RMW is treated as an atomic

disk access in our study.

3. V S R(M, k). Variable-distance Simple Reads are used in RM2 recovery process.

It involves accessing 1 < k < M blocks out of M neighboring stripe units on

the same disk, which constitute a segment. The blocks are at the same offset in

the stripe unit. A sample is shown in Figure 2.1. This operation is introduced

since a VSR(M, k) access requires much less seek than k separate SR requests

due to the proximity of VSR blocks.

Figure 2.1 A sample VSR(8, 4) request. Read 4 blocks out of 8 neighboring stripe
units. Each block are at the same offset in its stripe unit.

Hereafter, the notations DSR, Dsw, DRMW and DvsR(mx) are used to denote

the cost (i.e. service time) of the corresponding disk operations. In Section 2.8.1 the

disk service times are obtained for the aforementioned basic operations.

2.4 Cost of Operations for RAID5 Disk Array

RAID5 is single disk failure tolerant. The cost of operations for RAID5 is discussed in

this section to serve as a baseline of comparison. It is also useful when investigating

the performance-wise side effect of keeping redundant information.

33

2.4.1 RAID5 Organization and Operations

RAID5 [48] uses exclusive-OR to calculate the parity information and the parity

information is distributed on all hard disks in order to balance the load. There are

several different ways to distributed the parity information. The most common way

is the left symmetric layout, as show in Figure 1.2(f) on page 8. The parity blocks

are on the diagonal. Each parity block is the exclusive-OR of all the data blocks on

4-1—. —,,,,, o4-1-;,,c, i r%

where N is the total number of disks in the array. When the O h data block fails, its

content can be reconstructed by rewriting equation 2.1 as:

The write operation requires to update both the data and parity block. When

the size of the data to be written is small, instead of computing the parity all over

again using equation 2.1, it is more efficient to do it incrementally as follows:

Thus, one write request will result in four disk accesses: read old data, read old parity,

write new data and write new parity. Therefore, the service demand for a small write

request is more than doubled compared to a non-redundant system, hence the name

small write penalty.

When the size of write request is large enough to span at least half of the

stripe, the reconstruct write strategy is more efficient. In a reconstruct write, the

data blocks that are not to be updated are read from the same stripe, then they

are XORed with the new data to get the new parity by equation 2.1. Then the new

parity and data are updated on corresponding disks. However, since OLTP workload

34

with small request size is assumed, the reconstruct write strategy is not used except

in cases when there are disk failures.

2.4.2 Cost of Operations in RAID5

This section investigates two operating modes for a RAID5 disk array: normal mode

and degraded mode. In normal mode, there is no disk failure, while in degraded

mode there is one disk failure. Rebuild mode is a special degraded mode with rebuild

process reconstructing the data onto a spare disk. The rebuild process usually runs

in a low priority to minimize the impact on user requests. Rebuild mode is not

considered in this dissertation.

The costs for read and write operations in normal and degraded modes are

analyzed with a case-by-case approach as follows:

2.4.2.1 Normal Mode.

Read Operation In normal mode, all hard disk are working. The cost to read a

single block is just a simple read. Therefore,

The subscript "r0" means reading with no disk failure.

Write Operation As discussed earlier, the new parity is computed using equation 2.3.

Four accesses are required to complete a write request. These four accesses

consists two read-modify-writes, as shown in Figure 2.2. The cost for write

oneration is two read-modify-writes.

The subscript "w0" means writing with no disk failure.

35

Figure 2.2 Write operation in RAID5 normal mode. Only disk operations are
shown, the numerical operations (e.g, exclusive-OR.) are omitted since they are not
the bottleneck of the performance. The read and write operations on each disk forms
an read-modify-write (RMW). The RAM' of parity block starts after the read part
of RMW on data block is finished.

2.4.2.2 Degraded Mode.

Read Operation In degraded mode, a request may read from a failed disk or non-

failed disk.

Case 1 Read from a non-failed disk. The cost in this case is one simple read.

The probability for this case is:

Case 2 Read from the failed disk.

Then reconstruction is required. Using equation 2.2, the failed block can

be reconstructed by reading and exclusive-ORing all the surviving data

blocks in the same stripe and the parity block, which totals (N— I) simple

Write Operation Similarly, there are two cases:

Case 1 Write to non-failed disk, with probability

Depends on whether the associated parity block is on a failed disk or not,

there exists two subcases:

Subcase 1.1 The parity block is on the failed disk.

The fraction of this case is:

Since the parity block is unavailable, the parity read and write are not

necessary, and the reading of the old value of the data block is omitted

as well. Therefore, the cost will be only one simple write.

36

ci.i = Dsw

37

Subcase 1.2 The parity block is on a non-failed disk.

Then the data block and parity block need to be updated as in normal

mode.

Cost of write in case 1 is:

Case 2 Write to failed disk, with probability

Since the data block is failed, only the parity block need to be updated.

The parity is computed using equation 2.1, which means all the remaining

data block in the same stripe need to be read, and then exclusive-ORed

with the new data, follows by a simple write to the parity disk. The cost

is therefore:

The cost of write with single disk failure is:

38

2.4.2.3 Summary. As discussed in the previous subsection, the cases with

their probabilities and operating strategies can be represented in a case-breakdown

graph. For RAID5 with degraded mode, the case-breakdown graph is shown in

Figure 2.3. The fractions in the parentheses are the probability of the corresponding

case. The costs for RAID5 read and write operations in normal and degraded mode

are summarized in Table 2.1. For the sake of brevity, the lengthy case by case analyses

will be omitted for other schemes. Only the most complicated cases will be described.

The case-breakdown graph will be shown to sketch the cases and the cost of operations

will be given.

39

Table 2.1 Cost of Operations for RAID5 with N Disks

2.5 Cost of Operations for RAID6 Disk Array

RAID6 uses Reed-Solomon code to maintain two redundant disks and therefore can

survive two disk failures. The scheme can easily be extended to tolerate more than

two disk failures by using more check disks.

2.5.1 RAID6 Organization

RAID6 uses two check disks to tolerate two disk failures, but more generally a disk

array can utilize the Reed-Solomon code on n data disks and k check disks (N = n+k),

with data words (d i) and checksum words (ci), as shown below

to tolerate up to k disk failures. If the words are w bits wide, the constraint N < 2'

applies, which is not a problem in practice.

The algorithm has two main aspects[8]:

• using the Vandermonde matrix to calculate the checksum words;

• using Gaussian Elimination to recover from failures;

It should be noted that all the calculation are performed over Galois Fields.

40

41

RAID6 is a special case of the above paradigm with k = 2 check disks. The

left symmetric data layout in RAID5 can be applied on RAID6 as well, as shown in

Figure 2.4 RAID6 data organization with left symmetric layout. The shaded area
are check blocks. Pi --j and Q ij are the two check words computed over D i through.
D.

However, the left symmetric data layout exhibits slightly load imbalance problem,

especially when the total number of disks N is small [63]. Therefore, a modified left

symmetric data layout based on pseudo random number generator is used to ensure

that the load is balanced under all operating modes. Since this modified layout itself

does not affect the analytical model that follows, it is omitted.

2.5.2 Cost of Operations in RAID6

The processing costs in RAID6 are similar to those in RAID5, except that two rather

than one check block need to be updated in RAID6.

In normal mode, the operations of RAID6 are similar to operations in RAID5.

A read is a simple read and a write will incur three read-modify-writes: one to the

data block and two for both check blocks.

With single disk failure, a data block to be read from a failed disk (probability

f = 1/N) can be reconstructed by reading the associated data and one of the two

42

check blocks, which is (N — 2) SRs in total. A write to a failed block (probability

f = 1/N) involves the reconstruct write strategy: first read the remain N — 3 data

blocks, then compute both check blocks and overwrite them with two SWs. A write to

a non-failed block requires a RMW to the data block followed by one or two RMWs to

the parity blocks depending on whether the parities are on the failed disk (f = 2/N)

or non-failed (f = (N — 3)/N) disks. These cases are shown in Figure 2.5.

With two disk failures, there are more cases. We list the cases with their

probability, operating strategy and corresponding cost in Figure 2.6. Particularly,

when both failures are on the check disks, the system is degraded into a RAID);

when one failure is on data while the other failure is on a check disk, the system is

equivalent to a RAID5 disk array in degraded mode; when both failures are on data

disks, a reconstruction is required only if the request wants to update one of the failed

block.

43

The cost of operations for RAID6 with none, one or two disk failures are

summarized in Table 2.2.

2.6 Cost of Operations for EVENODD Disk Array

The EVENODD scheme [9] was introduced by M. Blaum et al, in 1995. EVENODD

has two desirable features: Firstly, the coding is based solely on the XOR operation,

so that its hardware implementation requires the same hardware as RAIDS. A

complexity comparison of XOR operations is provided in [9], which shows that the

ratio of the number of XOR operations for RAID6 versus EVENODD tends to five as

the number of disks increases. Secondly, it utilizes two parity disks to protect against

two disk failures, which is the minimum redundancy possible. In this section, after a

brief description of EVENODD, the cost functions for its operations are provided.

44

2.6.1 The EVENODD Data Layout

The EVENODD scheme organizes data as symbols in an (m-1) x (m+2) array, where

ni is the number of data disks. This array is referred to as a segment. Each column

in the array represents a disk. Column m and m + 1 hold redundant information

referred to as the P and Q parities. The symbol size can be as small as one bit to as

large as desired.

Parity P is the XOR of all the data symbols in the same row, which is similar

to the parity in RAID5. The Q parities are computed over a diagonal that spans

m — 1 rows, as shown in Figure 2.7.

A special diagonal parity that is distributed over all parity Q symbols, denoted

as S, is the exclusive-OR of those data symbols marked with oo. i.e. S = ED oo. The

name of the scheme comes from the diagonal parity S. On the other hand, S can also

be obtained as the exclusive-OR of all the symbols in columns m and m + 1, which

correspond to all symbols in parity P and Q, respectively.

The EVENODD scheme works only when the number of data disks m is a

prime number [9]. When m is not prime, there is a simple way around it: select a

45

Figure 2.7 The parity Q in EVENODD scheme. Sample shown uses 5 data and
2 parity disks, corresponding to rn = 5. The notation <> EE oc means this symbol
is computed by exclusive-ORing all the data symbols marked with Q and oc. This
graph is a modified reproduction of the graph in [9].

prime number larger than the number of disks, and assume that the rest are virtual

disks with all zero contents.

When there are one disk failure, the failed data can be reconstructed in the

same way as in RAID5 since the parity P is same as in RAID5. When there are two

disk failures and both failures happen with data disks, a complex process is required

to reconstruct the failed symbols. However, as will be shown in the next section,

this complexity does not affect our analysis on disk accesses when the symbol size is

adequately small. Therefore, the lengthy discussion on the reconstruction process is

omitted.

2.6.2 Cost of Operations in EVENODD

The EVENODD scheme is as efficient as RAID6 when symbol size is adequately

small [9]. If the minimum block size is 4KB, the symbol size can be 4096/(m — 1)

so that each column in the segment will be one block. There are several good prime

numbers for this purpose, e.g, m = 17 and m = 257. One can vertically stack as

many segments as required, with the data allocated consecutively across segment

boundaries on a disk, to make the striping unit as large as desired. Again, the actual

46

number of disks in the array can be less than m + 2 since the rest can always be

virtual disks.

With proper small symbol size, the reading of a block will correspond to the

reading of a whole column, and the writing of a block in normal mode will be the

updating of the data block and two parity columns, which are also one block each.

The disk access pattern in EVENODD in normal mode is then exactly the same as

in RAID6, so their performance will be indistinguishable from the viewpoint of disk

access.

With single disk failure, the reading of a failed block will result in reading all

the corresponding data blocks and the parity P block followed by an exclusive-OR

of these blocks. As to the write operation, first reconstruct the old value and then

update the column of parity P and Q by two RMWs. The access pattern is the same

as in RAID6 and so is the cost.

When there are two failed disks, in order to recover from the failure, we need

to read all the surviving symbols, which are equivalent to all surviving blocks in a

row. This cost is again the same as the cost in RAID6.

To summarize, EVENODD and RAID6 are identical from the viewpoint of

disk access pattern in all operating modes. Therefore, the cost functions for RAID6

in Table 2.2 are applicable to EVENODD with adequately small symbol size.

2.7 Cost of Operations for RM2 Disk Array

RM2 [47] was introduced by C. I. Park in 1995. It features

• Tolerate double disk failure.

• Use exclusive-OR only so that we can use the current hardware.

47

• Be able to get a layout for arbitrary redundancy ratio.

In this section, the RM2 redundancy scheme is described first. This is followed

by descriptions of its operations and operating costs.

2.7.1 The RM2 Data Layout

The double failure data placement given in [47] is defined as: "Given a redundancy

ratio p and the number of disks N, construct N parity groups each of which consists

of 2(M — 1) data blocks and one parity block such that each data block should be

included in two groups, where M = l/p." Each disk contains one parity and M — 1

data units in a segment, so that the parity blocks are distributed evenly.

An algorithmic solution to this problem is based on an N x N redundancy

matrix (RM), where each column corresponds to a disk and each row corresponds

to a parity group. The columns of RM are called placement vectors. Values of the

elements of RM, RMi ,j , are defined as follows:

A parity block of the disk j belongs to parity group i.

Nothing (none of the blocks on disk j belongs to parity group i).

The lath data block of disk j belongs to group i. (l< k<M — 1)

The redundancy matrix RM must have the following properties: (1) There is

only one —1 in each row, i.e., each parity group (PG) has one parity block. (2) There

is only one —1 in each column, i.e. one parity block for each disk in a segment.

(3) Each column has 2(M — 1) positive entries with each number appearing exactly

twice, i.e., each data block is protected by exactly two parity blocks.

An RM2 data layout is defined by an RM, which can be constructed as follows:

1. Select the target redundancy ratio p and set M = 1/p.

49

For example, given p = 1/3, then M = 1/p = 3. N = 7 is the smallest number

satisfying the inequalities. The seed placement vector is (-1, 2, 1, 1, 2, 0, 0)'. The RM

matrix and data layouts are shown in Figure 2.8. Note that the parity group size for

the RM2 scheme is 2M — 1 blocks, since each parity block protects 2M — 2 data

blocks. The inequalities imply that p = 1/M > 3/(N + 2), which means that RM2

has a higher redundancy ratio than RAID6, which is always 2/N.

The physical position of a block can be different within a disk. For example,

in disk 0, the position of P0 and D2,3 can be exchanged and still can tolerate double

disk failure.

2.7.2 Cost of Operations in RM2

In normal mode the cost is C = DSR for reads and C 3DRMW for writes, since two

parity blocks in addition to the data block need to be updated.

With one failed disk, a data block on the failed disk can be reconstructed

by using either of its parity groups. Since the parity group size is 2M — 1, the

reconstruction requires reading 2M — 2 blocks. For write requests, corresponding

parity blocks need to be updated if they are available. In the case that the data

block is failed, reconstruct write strategy is applied on one of the two parities, which

involves 2M — 3 reads. For the other parity, instead of using reconstruct write and

reading another 2M — 3 blocks, the old data is first reconstructed and the second

parity is updated in a incremental manner. An example for this case is shown in

Figure 2.9. The cases and their corresponding costs are shown in Figure 2.10 for

RM2 with one disk failure.

When there are two disk failures, depending on whether the target block is

failed or not, there are different strategies as described below.

50

new data
D34'

3

D62

P5

DO!

D03

P6

DI2

Read from
failed 	 Read from

disk (1/N) 	 normal
disk ((N-1)/N)

Figure 2.9 An example of writing a failed block in RM2 with one disk failure. .D34
is on a failed disk and is being updated. D34 is protected by parities P3 and P4.
The shaded blocks show the parity group of P3. The steps to update D34 are: (1)
Reconstruct old value of D34. (2) Update parity P3. (3) Update parity P4 using
Read Modify Write. Steps 2 and 3 can be done in parallel.

Incoming
Requests

RM2 degraded mode
(1 failed disk)

Fork/Join Read of
the surviving
(2m-2) disks

(F/J)(2m-2)read

Read () Write (fw)

Data on failed disk,
parities on non-failed disk

(1/N)

Both data and parity
are on non-failed disks

((N-3)/N)

3 RMW on data and
parity disks

Data on non-failed disk,
one of the two parities

on failed disk (2/N)

2 RMW

Reconstruct write:
Read the surviving

(2m-3) data block, plus one of
the parity block, then update
the 2 parity blocks using 2

RMWs

(F/A2m-3)read + 2RMW

Figure 2.10 The cases for R M2 with one disk failure. N is the total number of
disks. fr and are the fraction of read and write requests, fr + = 1. The fractions
in the parentheses are the probability for the corresponding case. F/J is the short for
fork/ j oin.

With two disk failures, a read request to a block is successful with probability

f = (N — 2)/N and the cost is C = DSR. The target block is unavailable with

51

probability 2/N, in which case a recovery path is needed and the number of steps

varies from 1 to 2M — 2.

As an example, in Figure 2.8 consider an access to d2 , 3 with disk DO and D3

failed. Utilizing p2 and the associated parity group then d 2 , 3 p2 d2,5 ED d6,2 d1,2,

which is quite similar to the process in RAID5. However, if D2 fails instead of

D3 then d2 , 3 cannot be reconstructed using p 3 directly, since d3 , 6 is not available.

However, d3 , 6 can be reconstructed using p 6 , so we have the following two steps:

path to rebuild block d2,3 is d3,6 	 d2,3, whose length is two. It is easy to ascertain

that with DO and D1 failed, the path to reconstruct

and 2.4 disk accesses are required per (surviving) disk. Figure 2.11 shows this recovery

process and recovery paths.

Read requests in RM2 with two disk failures are processed as the VSR(M, k)

request type (introduced in Section 2.3), where 1 < k < M blocks from M stripe

units are read from a disk. The mean number of blocks to be read to reconstruct a

failed block is denoted by F. Clearly, F is a function of N and M. To determine

this function, instead of embarking on a lengthy combinatorial analysis, all possible

cases for array configurations with N < 100 and M < 20 are enumerated, and then a

surface-fitting with respect to N and M is done using Matlab. The surface is shown

in Figure 2.12. The result is:

Although with the original RM2 data layout, the load on each disk is not

balanced when there are two disk failures. However, this can be solved by shuffling

the columns according to a pseudo random number generator [63]. Therefore, the

load is balanced and those F blocks are assumed to be evenly distributed over the

52

The case analysis for write requests is similar to the read, except it has more

cases. In general, a lost data block is reconstructed as in read and then the available

parity blocks are written. Those cases as well as the cases in processing read requests

are shown in Figure 2.13.

The cost for a read or write operation with two disk failure is then a weighted

sum of the costs show in the figure. The costs of operations for an RM2 disk array

with none, one or two disk failures are summarized in Table 2.3.

53

Figure 2.13 The cases for R, !12 with two disk failures.

2.8 Analytical Model

In this section, the maximum throughput and read response time for a disk array are

obtained given its scheme, number of disks, stripe unit size, etc. Characteristics of the

disks constituting the array are specified by detailed information on disk geometry

and a seek time table. The workload assumptions are described in Section 2.2. The

scheduling policy is FCFS or FCFS with read priority.

The stripe unit size is selected to be large compared to most request sizes to

ensure that the possibility of stripe crossover and multiple disk accesses is negligibly

small. With increasing disk capacities and higher data volumes, much larger stripe

units can be sustained without introducing an access skew.

55

This section is organized as follows. Firstly the moments of service time for

basic operations are calculated, which is followed by the derivation of service times

in RAID disk arrays. Finally the equations are provided for estimating the mean

response time for read requests in normal and degraded mode, which includes fork-

join requests.

The notation x with different subscripts is used to denote corresponding service

time. W is mean waiting time, R is mean response time, fr and fu, are fraction of

read/write requests and X is maximum throughput.

2.8.1 Service Time for Basic Operations

The analysis presented here is applicable to modern disk drives with zoning, such

as the IBM 18ES (model DNES-309170W) 1 , whose detailed characteristic, as well

as many others, are available at [55]. This drive is used to set the parameters in

the analytic and simulation tools. The basic parameters for this drive are listed in

Table 2.4.

I http://www.storage.ibm.com/hdd/prod/ultrastar.htm

56

Disk service time has three components: seek, latency and transfer time, which

are represented by the random variables xs , x 1 and x t , respectively. Service time for

SR, SW, and RMW requests are:

where Th is the head settling time for write, and Trot = 60/RPM is the disk rotation

time. The transfer delays in path elements, parity calculation and disk controller time

are ignored because: firstly, they are small and overlapping each other; secondly, such

hardware details are not available.

The ith moment of seek time (x0 requires the seek time characteristic and seek

distance distribution PD (d) . The seek time characteristic as well as detailed zoning

information can be obtained by using the DixTrac tool developed at CMU [55]. The

characteristic for several hard drives are available at [22].

cylinders [65]. The mean seek distance is 1/3 of total cylinder number. For zoned

disks, all cylinders do not contain the same amount of data. Therefore, this equation

does not hold. The seek distance distribution for zoned disk is calculated as follows.

57

where cyl is the number of cylinders. This model can be easily extended to

handle nonuniform disk accesses, e.g., hot data sets residing on certain disk cylinders,

but this is beyond the scope of this discussion.

The probability of a seek with distance d when the read/write head is currently

at cylinder k is:

58

Given the composition of request sizes, it is possible to obtain the moments

over different transfer sizes. However, when all transfer sizes are small, the average

transfer time can be treated as a constant.

The three random variables xs , x1, x t are independent for small requests, which

implies the expectation of the product of two variable is the product of their individual

Therefore, the ith moment for the service time of

SR requests, for example, is obtained by taking the expectation of both sides:

Higher moments of SWs and RMWs can be obtained similarly.

The moments for VSR(M, k) requests are difficult to obtain analytically,

therefore lightweight simulation is applied to estimate their first three moments.

2.8.2 Service Time for RAID

The costs of processing user level reads and writes on RAID5, RAID6, and RM2 disk

arrays are linear functions of the costs for SR, SW, RMW, and VSR(M,k) operations.

For a given mixture of reads and writes with frequency fr and fu„ the overall cost

is a weighted sum. An additional weighted sum is required to take into account

different request sizes. Only one request size is considered in this study to simplify

the discussion.

The cost functions can be used in estimating the volume of data to be trans-

ferred on I/O buses. For example, in a RAID5 disk array, an user level read incurs

an SR request, while a logical write incurs two RMWs. Assuming that disks have

XOR functionality, the data disk generates the update mask ddiff = dne„, 8 doid,

which is transmitted to the parity disk. The parity disk then computes and writes

p„,, = ddiff ED poid . Given that the parity and data disks are on different buses, two

59

data transfers are required on the "data" bus and one on the "parity" bus. A similar

enumeration is possible when the data, parity, or both data and parity blocks are

cached by the disk array controller.

In general, for a RAID scheme with given operation mode and fraction of

reads (fr), the maximum throughput of the array can be obtained by the following

few steps: (1) check the corresponding cost table (Table 2.1, 2.2 and 2.3); (2) calculate

the fractions for different types of primitive operations; (3) compute the mean service

time Idisk as a weighted sum of those operations; (4) the maximum throughput is

then obtained as (N — i)lxdisk , where i is the number of failed disks.

2.8.3 Single Disk Mean Response Time Analysis

The analysis in this section is extended from the analysis described in [62]. The mean

and second moment of waiting time for the M/G/1 model are [61]:

60

where A is the arrival rate and p is the disk utilization. The utilization p = ATdisk

should be less than one to ensure a non-saturated system. This formula applies to

any of the disks, since their loads are balanced.

The mean and second moment of response time for read requests with FCFS

scheduling policy are:

pr is the disk utilization due to read requests only, xdisk is the overall service time for

a request. It can be observed from the equations that effectively read requests only

compete against each other [61].

A complete list of the equations are shown in Appendix A. The validations for

the above analyses are shown in Section 3.2.

2.8.4 Fork-Join Response Time Analysis

Estimating the fork-join response time is listed as a challenging problem in [15].

In fact, an approximate expression for the mean response time of n-way fork-join

requests (4)j) was developed under Markovian assumptions (Poisson arrivals and

exponential service times) in [45] and utilized in several RAID studies, e.g., [40].

Here an easy is described to compute approximate expression for n way fork-join

response time RF;; for general service times. This approximate solution is validate it

against simulation [24].

61

Reconstruction of a data block on a failed disk in RAID5/1F corresponds to

an N — 1 way fork-join. However, this is not a pure fork/join system since each disk

processes its own requests, which interfere with fork/join requests. This non-pure

fork-join response time is denoted as R;(7) . When fork-join requests are processed

in FCFS order together with interfering requests, the queue-lengths they encounter

at each server tend to be more variable than the queue-lengths they would have

encountered in a "pure" fork-join system. In effect the response times at different

queues are more independent than they would be in a pure fork-join system.

It is known from [45] that e/), < 1:? 7:2,x , where Rt, is the maximum of the

response times of n requests constituting the fork-join request. Experimental results

show that for the same overall utilization, the inequalities ei)j < RF' (In) < Itt, hold

in most cases. The second inequality is violated when interfering requests result in

an overall service time which is much more highly variable than that of fork-join

requests, but this is usually not true for RAID workloads. Therefore, it is reasonable

to use R;(72 c-'-' lti, since it is unclear how to interpolate between the two bounds

and IVI is a tight upper bound.

Consider a fork-join request that involves reading of all surviving disks and

XORing them as in RAID5 with one disk failure. To compute MI for those read

requests, first the response times of the component SR requests are approximated with

the extreme-value distribution. The reason of choosing extreme-value distribution is

because its expected value of the maximum is easy to compute. The extreme-value

distribution is given as

to the mean and variance of extreme-value distribution, the two parameters a and b

can be computed easily. It follows that

Calibration against simulation results shows that R 'F(/71j> can be estimated more

accurately by dividing the second term by 1.27 [24], i.e.

In the case of SATF requests this coefficient is 1.10 [24], i.e.

This approximation is validated with simulation results, as reported in [24].

The 95 th percentile of read response time (in normal mode) can be expressed

This formula can be derived for an exponential service time

distribution. The response time distribution for M/M/1 with arrival rate A and

service rate ,u > A is also exponential:

mean response time. Setting R(t) =

since the standard deviation of response time a = R when R(t) is exponential. This

approximation may be poor at lower arrival rates where a follows the disk service

time distribution (it has ci, < 1 in this case). However, R(t) tends to an exponential

distribution, regardless of service time distribution, since its coefficient of variation

cv -4 1 as p -- 1 [65].

CHAPTER 3

PERFORMANCE COMPARISON OF DOUBLE DISK FAILURE

TOLERANT DISK ARRAYS

This chapter describes the simulation configuration and results. The simulation

results are used to validate the analytical model described in Chapter 2 and to

compare the performance for various disk array schemes that can tolerate double

disk failures.

The chapter is organized as follows. In the first section the configuration of

RAID systems under consideration is described. Next the validation of the analytical

model is provided. Then, the maximum throughput and the mean response time for

read requests are used to compare the performance of RAID6 and RM2 with each

other and also RAID5 and RAIDO with FCFS scheduling policy. Finally, the response

time with SATF policy is provided. Note that EVENODD performance is exactly the

same as RAID6 in all modes, so that all the discussion and results for RAID6 apply

to EVENODD as well.

3.1 Configuration

The total number of disks N is varied to investigate the scalability of the schemes.

A fixed N implies the same normal mode maximum throughput in processing read

requests, so that it is a fair comparison of the penalty of updating check disks. A small,

intermediate, and large RAID configuration, are considered with N = 7 1 19 / 39 disks

respectively, as shown in Table 3.1. The stripe unit size is 512 KB.

63

64

Table 3.1 Configurations Used in Comparison (The three numbers in each box
correspond to the configurations with N =7, 19 and 39 disks.)

A parity group in RAID5 is a set of disks over which the parity is computed.

Parity group (or more precisely redundancy group) sizes have a major impact on

degrade mode performance. For RAID5 there is one parity group whose size is N.

For RAID6, there are two groups of size N — 1, one associated with P and the other

with Q. The parity group size for RM2 is 2M — 1 < (2N ± 1)/3 when N is odd, since

N < 3M — 2 (see Section 2.7), i.e., it is smaller than that of RAID6, which favors the

performance of RM2 versus RAID6 when both have single disk failures.

To summarize the workload model used in the simulation: arrivals are Poisson,

requests are fixed size and are uniformly distributed over all available address space.

Two cases when the fraction of reads fr = 0.75 and fr = 0.50 are considered.

3.2 Validation of Analytical Models

Since there are several approximations involved in the analytical model, a validation is

necessary to show the accuracy of the approximations. A detailed disk array simulator

called DASim l [63] is used to validate the analysis. The simulator takes into account

65

most hard drive details such as zoning, track and cylinder skews, spare cylinders and

track aligned access. It uses disk specification extracted by the DixTrac project [551,

which contains detailed disk geometric information as well as the seek time table.

The simulation is run with various array schemes and configurations shown

in Table 3.1. The validation results with N = 19 for the mean read response time

(R,) are presented in Figures 3.1, 3.2, and 3.3 for the three modes with zero, one,

and two disk failures, respectively. The result shows that the analysis describe in

Chapter 2 is highly accurate for RAIDO, RAID5, RAID6 (also EVENODD) and RM2

at all operating modes.

3.3 Performance Comparison with FCFS Policy

3.3.1 Normal Mode

The performance of a disk array is a function of the characteristics of disk drives

constituting it, so that it is the relative rather than absolute values of throughput

that are of interest.

The maximum throughput of a scheme is denoted as Xscheme with proper

subscript. A good measure of the efficiency of a scheme operating in normal mode

is the ratio of its maximum throughput (X scheme) to that of RAIDO, denoted as

It is observed that Escheme = 1 for all schemes when the

fraction of write ft, = 0. But due to the small write penalty, it decreases rapidly with

increasing ft, and more parity units in a stripe.

Escheme for RAID5, RAID6 and RM2 operating in normal mode are summarized

in Table 3.2 using the throughput model described in Chapter 2. Note that these

values are independent of N and apply to all three configurations. It follows that

RAID6 and RM2 have the same performance in normal mode, while RAID5 performs

66

better since it updates one check disk rather than two. Performance deteriorates

rapidly at higher values of ft, , showing the high cost of parity updating. This is a

justification for techniques to reduce the write penalty by aforementioned caching

techniques or using log-structured arrays [41].

While)(scheme is a good indicator of the performance of a scheme, its mean read

response time (R,) is also important since it may be unacceptable at higher arrival

rates. Figures 3.1, 3.2 and 3.3,are plots of 1?„ versus the arrival rate for N = 19,

fr = 0.75 with zero, one, and two disk failures. For applications that impose response

time limits, the maximum throughput with respect to the highest acceptable response

time (say 100 ms) can be estimated.

In Figure 3.4,the utilization factors are plotted for systems with zero, one and

two failures. Since utilization is arrival-pattern independent, it can give a general

comparison of the efficiency of different schemes. The lines are grouped into three

bunches, corresponding to the operation mode with zero, one and two failures. The

distance between the bunches shows the cost of recovery. Within a bunch, the slopes

show the efficiency of different schemes: a lower slope means a higher throughput.

67

68

400100 	 200 	 300
Arrival Rate (1/s)

RAID6 (Analytical)

—RM2 (Analytical)

— —RAID6 (Simulation)

—RM2 (Simulation)

5000

E 200
C)
E
H
ci 150

CC

100
CC

Right to left: 	 E0(LS)

0.9 RD6,RM2, O
E0+, E0(LS)

IL
6

0.8 	 with 2 failures

0.7

Left to right:
E0(LS),RD6,E0+,
RM2,RAID5 with
1 Failure

0

0 0.6
u.

0 0.5

0.4
'4=

RDO 	 RD5
— — — R06/E0+/RM2 	 - EO(LS)

R05-1F RD6-1F
— E0(LS)-1F 	 E0+-1F
	 RM2-1 F RD6/E0(SS)-2F
	 E0(LS)-2F 	 E0+-2F
	 RM2-2F

0.1

RD5

RDO

Figure 3.3 Mean read response time with two disk. failures, N = 19,f, = 75%, and
FCFS scheduling policy on each disk. Stripe unit size is 128KB.

0 	 200 	 400 	 600 	 800 	 1000 	 1200 	 1400 	 1600
Arrival Rate(l/sec)

Figure 3.4 Mean disk utilization in normal mode, with N = 19,f, 	 75%, and
FCFS scheduling policy on each disk. Stripe unit size is 128KB.

69

3.3.2 Degraded Mode with One Disk Failure

With one disk failure the system performance deteriorates due to the overhead associated

with reconstructing the data on the failed disk. The performance degradation factor

is defined as the ratio of the maximum throughput with one (or two) disk failures to

the maximum throughput with no disk failure. Since the maximum throughput for

RAID6 and RM2 are the same in normal mode, this performance degradation factor

is also a good indicator of their relative performance.

Table 3.3 gives the performance degradation factor for RAIDS, RAID6 and

RM2.

The loss of throughput with a single disk failure with respect to normal mode

for all schemes is around 30% for fr = 0.75 and 20% for fr = 0.5. RM2 has the

smallest throughput loss and outperforms RAID6. This is because RM2 is effectively

a clustered RAID and its parity group size is smaller than RAID6 (see Table 3.1).

An clustered RAID6 (as in [3]) can be appropriately configured to match RM2's

performance with the same level of overhead.

70

The performance degradation for all schemes is affected very little by with

increasing N, which implies their maximum throughputs (Xscheme) are almost linear

functions of N. The reason is that the mean cost of operation with single disk failure

divided by the number of disks is 0(1) for all schemes. For example, as in RAID5

array, a disk failure will double the load on each disk regardless of the number of

disks in the array.

3.3.3 Degraded Mode with Two Disk Failures

When there are two failed disks, the performance degradation varies with the scheme

as shown in Table 3.3. All schemes suffer a throughput loss of at least 36%. RM2

retains about 48-61%, while RAID6 and EVENODD retain 51-64% of their normal

mode throughput.

RAID6 (also EVENODD) shows good scalability, since the mean cost of operation

on each disk is 0(1). On the other hand, the performance loss for RM2 increases with

the number of disks (N). This is due to its chain-like rebuild procedure, in which

recovery paths of length 0(N) are involved. The details are discussed below.

RM2 uses a chain-like recovery procedure in the degraded mode with double

disk failure, which means that the recovery of each block in the chain requires the

recovery of the previous block (if any) plus accessing the remainder of its parity group

(See Section 2.7 and Figure 2.11). This property leads to the reading of more than

one block from a disk, which forms a VSR type basic operation (see Section 2.3).

Therefore, the cost of operation in RM2 with double failures is inherently higher than

that in RAID6.

Without going into detail, multiple blocks can be retrieved more efficiently if

the stripe unit size is small, since they are more likely to be on the same cylinder/track.

71

As a result, an RM2 scheme with smaller stipe unit size can offer a higher maximum

throughput. Multiple runs of simulation are used to investigate the impact of stripe

unit size on maximum throughput. The configuration is N = 19 with fr 0.75 with

various stripe unit sizes from 4KB to 1024KB. Throughputs normalized with respect

to RAID6 are given in Table 3.4.

It is observed that RM2 performance is not affected by stripe unit size in

normal and degraded mode with one disk failure. However, with two disk failures,

its maximum throughput drops 16% when the stripe unit size increases from 4KB to

1024KB. At very small stripe unit size, the VSR operations are very likely equivalent

to a simple read since multiple stripe units are on the same track. Therefore, the

effect of declustering (i.e. smaller parity group size) overrides the effect of chain-like

recovery pattern at very small stripe unit size and makes the maximum throughput

of RM2 higher than that of RAID6.

However, in practice, it is desirable to keep the stripe unit size large so that

the possibility that a request cross the boundary of a stripe unit is low enough. For

example, imagine a stripe unit size of 4KB, and a 12KB write will span three stripe

units. These three stipe units are covered by six parity groups. Therefore, six 4KB

parity stripe units on six disks need to be updated, which is prohibitively expensive.

Table 3.4 The Impact of Stripe Unit Size on Maximum Throughput in R,1\42 (Value
shown are XH,„/XRA1D6 with different stripe unit sizes.)

72

3.4 Performance Comparison with SATF Policy

In this section, the simulation results for disk arrays with SATF scheduling policy

on individual disks are reported. The mean read response times versus arrival rate

with N = 19 and fr = 0.75 are plotted in Figure 3.5, 3.6 and 3.7, for various RAID

schemes with none, one and two disk failures, respectively. In Figure 3.4, the change

It can be observed that SATF can greatly increase the maximum throughput

as well as decrease the response time. By comparing Figure 3.1 and Figure 3.5, it is

observed that the throughput at a response time threshold of 300ms for all schemes

have an improvement of at least 50% with SATF policy. When there are one disk

failure, the comparison between Figure 3.2 and Figure 3.6 shows an improvement over

70%. When there are two disk failures, both RAID6 and RM2 benefit from SATF an

improvement over 80% in throughput.

73

74

Figure 3.8 Mean disk utilization in normal mode, with N = 19,f,	 75%, and
SATF scheduling policy on each disk. Stripe unit size is 128KB.

In a disk array that uses FCFS local scheduling policy, the response time

tends to reach infinity at near saturate arrival rates. In contrast, in a disk array that

uses SATF scheduling, the response time shows moderate increase even at very high

arrival rates. In other words, the saturate arrival rate for SATF is well greater than

the saturate arrival rate for FCFS. For example, as shown in Figure 3.5, the system

is not saturated even when the system response time is already higher than 300 ms.

Further simulation study has shown the saturate arrival rate with SATF scheduling

is about double the saturate arrival rate with FCFS. The reason behind this is that

SATF always select from the queue the request with lowest access time. When the

arrival rate increase, the queue length increase as well. Therefore, the SATF have a

larger set of candidate requests and thus can probably find a request with less access

time than before. In effect, a longer queue helps reduce the mean service time for

executing requests and therefore increases the throughput.

In Figure 3.8, the utilizations versus arrival rates are show for RAID5, RAID6

and RM2 running in normal mode. Comparing with Figure 3.4, the major difference is

75

that the curves with SATF scheduling are not straight lines as with FCFS scheduling.

This indicates the mean service time for requests decreases with higher arrival rates.

In particular, the systems continue to yield increasing throughput after the disks are

fully utilized. This means those extra throughput after the disks are 100% utilized

should solely owe to the reduction in mean service time.

CHAPTER 4

ARCHITECTURE FOR THE HETEROGENEOUS DISK ARRAY

Based on the analysis and motivation in Section 1.4, the author proposes the Hetero-

geneous Disk Array (HDA) architecture with the following features:

• Allowing different disk models.

• Allowing multiple RAID levels to coexist in a single physical array.

• Utilizing available disk storage capacity to the maximum extent.

• Utilizing available disk access bandwidth to the maximum extent.

• Constant monitoring on the system performance to improve data allocation

decisions and to make automatic load balancing possible.

The heterogeneity lies in both disk drive models and organizations, i.e., RAID

levels. The heterogeneity in the device means that the disk array consists of disk

drives of various capacity and access bandwidth. While in the array organization,

different redundant data protection levels (RAID5, RAID6, RAID1/0) can be used

simultaneously in the same disk array. Even for two datasets that use same RAID

level (RAID5 or RAID6), their parity group sizes can be different.

In this chapter, the architecture of the proposed Heterogeneous Disk Array is

described. The function and design of essential components are discussed. Especially,

the data structures for metadata and the flow charts for processing requests are shown.

76

77

4.1 Heterogeneous Disk Array Architecture

The architecture for the heterogeneous disk array (HDA) system is shown in Figure 4.1.

The system consists of an array controller and the underlying hard disks of various

models. As the central component of the heterogeneous storage system, the array

controller consists of the following parts:

Scheme Selector: chooses proper RAID level and parity group size for different

applications;

Splitter: breaks a large allocation request to smaller requests;

Distributor: selects appropriate hard drive to store the data, also called allocator

since it handles allocation requests;

System Directory: provides logical-to-physical address mapping and data-parity

block mapping;

System Tuner: tunes the system by moving data blocks to achieve near-optimal

balanced utilization of the hard disks. This is an optional module of the system;

Performance Monitor: monitors the utilized bandwidth and capacity on all disks

as inputs to the distributor.

4.1.1 Request Types

There are three kinds of incoming requests for the heterogeneous disk array: allocation

requests, update requests, and read requests. An allocation request is to create a new

object, i.e., to assign some free space from the disk array to a new file. An update

request, as implied by the name, is to update on the disk the data object (a file) that

has been previously allocated. An allocation request may or may not be followed

System
Directory

(Logical-physical
address mapping,

data-parity block
mapping)

System
Tuner

(optional)
(tune up the

system by
moving blocks to

achieve optimal
balanced
utilization)

co 	CO 	
V

Hard
drive

,7

Hard
drive

• • 	 •

Hard drive

Data channel(s)

A

• • 	 •
Hard drive

Allocation Request
(size, expected access rate,

read/write ratio,
desired availability) s<9/76.0,

Read and
Update Request
(logical block address)

78

co

Array Controller

Scheme
Selector

(choose RAID level,
parity group size)

Performance
Monitor

(max throughput,
capacity, throughput
used, capacity used)

Splitter
(break large request
to smaller equal size

requests)

Distributor
	 (Select appropriate

hard drive that store
the data)

Control channel(s)

Figure 4.1 System architecture for heterogeneous disk array.

79

immediately by the writing of the file, which is an one time activity. A read request

has its usual meaning — reading data from disk.

The read and update requests are simpler than allocation requests. The only

parameter required for read and update requests is the logical address and the size

of the read/update. The logical addresses of requests are translated into physical

addresses by the system directory. The controller then checks those physical addresses

and fetches or updates the data. For an update request, the system directory also

checks whether there are any parity block(s) that need to be updated. If so, the

parity block(s) is also updated.

For allocation requests, besides the size, the following parameters are required

as well:

• Desired availability rating (i.e. reliability).

• Expected access rate in accesses per second.

• Expected read/write ratio for future accesses.

The first parameter, desired availability rating, will be used in deciding the

RAID level for the data. There are various ways to specify the availability. For

example, it can be specified quantitatively using MTTDL (Mean Time To Data Loss)

or qualitatively, e.g., "very high availability required" . Another simple approach is to

tag the allocation request with a RAID level, i.e. let the user specify the RAID level.

The next two parameters are related to the accessing pattern of the data object being

allocated. These two parameters will be used in the allocation of the data blocks.

More details will be given in Section 4.2 and Chapter 5.

80

4.1.2 Scheme Selector

When an allocation request comes to the array controller, it is first send to the Scheme

Selector. If the availability of the request is specified in terms of MTTDL, the Scheme

Selector module will select a suitable RAID level (i.e. RAID 0/1/5/6) based on its

desired availability rating. This decision is made through the help of a reliability

model. If the request is tagged with a RAID level, the scheme selector does nothing

and passes it onto the next module.

where N is the total number of disks in the array, G is the number of disks in a RAID

group (i.e. a set of disks over which a parity is computed), MTTFdisk is the mean time

to failure of a component disk, MTTRdisk is the mean time to repair of a component

disk, which is in fact the rebuild time of a disk array. This model assumes that

disk failure rates are identical, independent, and exponentially distributed random

variables. In arrays that maintain one or more on-line spare disks, the repair time

can be very short, usually less than an hour, and so that the MTTDL can be very

long and exceeds the normal projected disk deployment intervals (5 years).

81

The reliability models for other redundant disk arrays have been studied in

[26], [56] and [51.

4.1.3 Splitter

The purpose of the splitter is to break a big allocation request into smaller pieces

so that each piece does exceed the size of a relocation block (see Section 4.2). These

small pieces are called sub-allocation requests. Each sub-allocation request is handled

separately or in a batch. Additional constraints may apply to this batch of allocation

requests. For example, if the data are stored using the RAIDS scheme, it is desirable

that the sub-allocation requests are sent to different disks.

4.1.4 Distributor

The distributor is the key component of the system. It takes a batch of equal-size

blocks from the splitter and assign them to disks so that bandwidth and capacity

utilizations for all disks are roughly equal and the constraints are met. The task of

the distributor can be modeled as a vector scheduling problem with constraints. The

details of this problem will be discussed in Chapter 5.

Since the distributor considers both bandwidth and capacity utilization, the

throughput model described in Chapter 2 is used to estimate the utilization given the

hard disk specifications and workload characteristics.

Because the allocation requests are handled by the distributor, the distributor

is also called the allocator.

82

4.1.5 System Directory

While processing an allocation request, after deciding the placement of each allocation

sub-request, the distributor outputs its decision to the system directory.

The System Directory component is a set of data structures and procedures

that provide the following services:

1. Stores and retrieves the logical-to-physical address mapping information in an

efficient way (in terms of both space and time).

2. Stores and retrieves the data-parity relations between blocks. In other words,

given the logical address of a data block, it should return the logical address(es)

of corresponding parity block(s), and vice versa.

3. Keeps track of the hotness of blocks for performance tuning.

4. Manages free space.

For the address mapping service, it is impossible to record every allocation

request since there are too many requests and the mapping would be much too large.

A multi-level indirection (like in virtual memory address mapping) is an attractive

option.

In HP AutoRAID system [68], the disk storage is divided into small units

called Relocation Blocks (RBs). The RBs are the basic units of migration in the

system. A predetermined number of sequential RBs are combined into Physical

EXtents(PEXes). Several PEXes (> 3) can be combined to make a Physical Extent

Group (PEG). Then every PEG can be considered as a virtual disk array and be

formatted to be RAID5, mirrored or remain unformatted. The system maintains a

list of all RBs, each RB points to a PEG table to which it belongs. Every PEG has

a PEG table, which holds list of RBs in PEG and list of PEXes used to store them.

The logical structure of the address mapping is shown in Figure 4.2.

Figure 4.2 Structure of tables that map PEGs, PEXes arid physical disk addresses
in HP AutoRAID (extracted from [68]).

In AutoRAID, RBs are 64KB and PEXes are 1MB in size. Both are too small

for current array configurations. In a 10TB array, 10M RB size will require roughly

20-30M memory for the address mapping, which fits well in the memory of an array

controller and makes 10M a reasonable RB size.

It would be too much overhead to record the access rate of each block. Since

the RB is the basic unit for data migration, it is natural to record the access rate of

each RB.

Introducing RBs and PEGs into the system will also effect the way system

handles allocation requests. Since RBs are the basic units of data migration, each

RB should be formatted to a RAID level. The system directory should keep a list of

partially-filled RBs, and try to fill these RBs first when handling allocation requests.

More details on the data structure and address mapping flowcharts are given

84

4.1.6 System Performance Tuner

The allocations are based on predicted access rates. Such prediction requires the

extension of operation system functionality to record the mean access rate and pattern

(i.e. read/write ratio) for data generated by a certain application. However, even with

the help of operating system, it is very difficult, if not impossible, to give accurate

prediction in a multiprogramming environment.

Furthermore, there are several constraints that should be satisfied when making

allocations. For example, the data and parity blocks that are in the same stripe must

be placed on different disks. These constrains make load balancing more difficult.

Therefore, it would be helpful to have a background process to tune the system

when the system running at a low utilization. Such a process is represented as the

system tuner component in Figure 4.1.

The system performance tuner takes disk utilization statistics (e.g. throughput

and space utilization) and the access frequency for data as input, and balances the

utilizations of all disk drives. Such balancing is performed by swapping data blocks

between disk drives.

It has been shown in [69] that if there is an improvement involving n disks,

there exists at least one improvement involving just two disks. In other words, the

swap operation is all we need for the purpose of balancing. This should be interpreted

as allowing the system to reduce the amount of neighborhood searching.

The "disk cooling" procedure described in [53, 54] is a greedy algorithm for load

balancing. It tracks the heat associated with data blocks, computes the temperature

of each disk, then relocate the hottest block from the hot disks, so that the number

of blocks to be moved is minimized (See Section 1.5.1). The cooling process is

triggered only when the temperature of hottest drive is higher than 1+ 6 the average

temperature, where 6 is a system parameter. The dynamic tracking of the heat of the

85

blocks is implemented based on a moving average of the inter-arrival time of requests

on the same block.

However, the disk cooling algorithm assumes homogeneous disk drives and

does not consider the constraints introduced by redundancy schemes (e.g. data and

parity cannot reside on the same disk).

In order to gather up-to-date information on the data access rate and device

utilization, the performance monitor module constantly keep track of the device

utilization while the system directory records the access rate for data blocks. This

information is made available to the performance tuner to balance the load on disks.

Since data migrations are usually expensive operations, the system performance

tuner runs in background and only when the system is idle or having light workload.

4.2 The Data Structure and Operations of System Directory

The system directory provides a transparent layer between logical addresses, which

is visible to the user (OS), and physical addresses, which can be understood by

devices. In traditional disk arrays, there are similar layers which are defined through

algorithmic functions. For example, the device number for a logical address A in

RAID5 with left symmetric layout can be calculated by A/SU mod N, where SU is

stripe unit size and N is total number of disks.

In HDA, the layer is implemented by fully-associative mapping. This mapping

offers great flexibility: the actual data blocks can be moved without affecting the user

address space. In other words, the data migration is transparent to the user. This

transparency is very important for automatic performance tuning, which is described

in Section 4.1.6. However, there is a price to pay for the fully-associative mapping

— the size of the mapping table. It is impractical to map every possible physical

86

address to a logical address. In HDA, this mapping is toward relocation blocks (RBs).

A relocation block is the smallest unit of data migration. Therefore, each relocation

block has an entry in the system directory and has a corresponding logical address,

which is its RB number.

Another important task for the system directory is to keep track of the actual

access rate to data objects. The actual access rate will be the input information to

the system performance tuner which is discussed in Section 4.1.6. Due to the volume

of requests, it is impossible to record every access to every data block. Actually, since

the relocation block is the smallest unit of data migration, only the aggregated access

rate to a relocation block need to be recorded.

In this section, the detailed design of the system directory is described. The

information stored in the system directory are crucial to the Heterogeneous Disk

Array. It includes all the information about the format and data organization of

the array and some statistical data. The aggregation of this information are named

"m,etadata", and the corresponding data structure are named meta data structure

hereinafter.

This section is organized as follows: first the entities in the metadata are listed,

then the frequent operations are analyzed. The address translation diagram, which

is optimized according to the frequent operations, is then presented. This is followed

by a list of the actual data structures used in HDA. The estimated meta information

size and read/write operation flowcharts based on these data structure are discussed

thereafter.

87

4.2.1 Addressable Entities in HDA

The addressable entities in the HDA are listed as follows:

1. Device A device is usually a physical disk drive, or more precisely, it is an

array-controller-visible device. However, it can also be a disk array. Each

device is identified by a unique Logical Unit Number (LUN). Each device has

its own capacity and maximum throughput (bandwidth) and all blocks in the

device are addressable by using a single integer value, which is referred to as

device_offset.

2. Relocation Block (RB) A relocation block (RB) is a set of contiguous sectors

in raw storage space. The size of an RB is a predetermined fixed number.

3. Virtual Disk (VD) A virtual disk (VD) is a predetermined number of contiguous

RBs on a device. Here, "contiguous" means that they are physically one after

another rather than their addresses are consecutive.

4. Virtual Array (VA) A virtual array (VA) consists of one or more VDs from

different devices. A virtual array is formatted to use a certain RAID level.

5. Data/Parity Block Data blocks are accessible by user applications, while

parity blocks store redundant information and are usually transparent to users.

Both data and parity blocks are addressable.

These entities and their relationships are shown in Figure 4.3.

For each of the first four entities, there is an address associated with it. The

addresses are consecutive integers starting from zero. The addresses for different

entities are in different address space, i.e., there both RB number 0 and device number

0. The address spaces are not necessary to be linear, which means there can be holes

in the address space. However, a linear address space for device, RB, VD and VA

r igure 4-3 rAlUILICZS 111 rit%eiogenuutth Llhli rway.

numbers can greatly simplify and speedup the table lookup procedure, as will be

shown later.

For data/parity blocks, there are two addresses associated with each data

block — physical address and HDA address. The HDA address is a logical address

that is visible to users. The physical address is the address that can be understood

by underlying devices. Both of them are compound addresses, as described below:

Physical Address A physical address is a (L UN, device_offset) pair, where LUN is

the device# for a disk drive. Every physical address uniquely locates a block in

the raw storage space of HDA. This block may stores user data or redundancy

info. Therefore, it might not be addressable in user storage space.

89

HDA Address HDA addresses are visible to the file system. It is the counterpart of

physical address in user storage space. An HDA address is an (RB#, RB_offset)

pair, where RB_offset is the offset from the beginning of the RB.

4.2.2 Frequent Operations

The most frequent operation for a HDA is read operation. The next frequent operations

are writing and allocation. Therefore, the most frequent address mapping is the trans-

lation from an HDA address to a physical address. To make this translation fast and

efficient, a direct mapping from RB# to physical address should be maintained in

the HDA controller.

There are various operations (e.g. read, write, allocation, rebuild) in a disk

array. Each operation requires some kind of address translation. Those address

translations are listed below.

1. HDA address to physical address. The read/write are the most frequent

operations. Both operations arrive with the target HDA address as its parameter.

The HDA address should be translated into corresponding physical address very

efficiently. An HDA address consists of an RB# and a offset. Therefore, a fast

and efficient mapping from RB# to physical address should be maintained in

the controller.

2. Scheme lookup. Given an HDA address, the array controller should be able

to determine what RAID scheme was applied on this block. This translation is

used while processing write requests or rebuild requests in case of disk failure.

3. Buddy lookup. For write requests, if the target block is protected by one or

more redundant blocks, those check blocks also need to be updated. Therefore,

the array controller should be able to locate the corresponding check block(s)

90

given a data block. Certainly, buddy lookup should be preceded by a scheme

lookup to determine the number of check blocks.

4. Physical address to VA information. When one of the disks fails, a rebuild

process starts to recover all protected data blocks on the failed disk. Therefore,

the controller should be able to tell which virtual array does a physical block

belong to, and determine the addresses for its buddy blocks.

5. Create new VA from free space. This happens when the system need more

space for a given RAID scheme. Please note that an HDA creates VAs as needed

rather than pre-partitions raw disk space into different VAs.

6. Enumerate all VAs for a given RAID scheme. The array controller should

be able to enumerate all the VAs for a given RAID scheme. This happens when

the system manager queries array configuration or a backup software needs to

copy all of the data for a given RAID scheme.

7. Relocate RBs. The physical location of an RB can be moved by load balancing

process. The mapping between RBA and physical address need to be changed

accordingly.

4.2.3 Address Translation Diagram

Based on the previous discussion, the address mapping diagram is defined in Figure 4.4.

This diagram is optimized to provide fast address translations for frequent operations

while having enough flexibility and requiring moderate storage. The redundancy in

the metadata is reduced to the minimum in order to reduce the cost for maintaining

the integrity for metadata.

The addresses of entities are translated by following the arrows in the address

translation diagram. The ratios above links means whether it is a one-to-one or many-

91

Figure 4.4 Address mapping diagram in HDA. The address entities can be
translated following the arrows in the diagram. The ratios on the links means whether
it is a many-to-one, one-to-many, or one-to-one relationship.

to-one or one-to-many relationship. For example, by following the one-to-many link

between Device# and Virtual Disk#, we can enumerate all the virtual disks that

resides on a given physical device.

The links are directed, which means translations can only be done following the

arrow. For example, and RB# can be translated directly into a Physical Address,

but no direct translation exist from RB# to Virtual Disk#. However, such trans-

lation can be done indirectly by following the links: RB# ---+ Physical Address
1:1 m:1(Device#, Device_offset) pair Virtual Disk#. Some translations are

bi-directional, which are equivalent to two separate links with opposite directions.

The mappings can be done only in one direction because the mapping is indexed to

allow efficient lookup.

92

4.2.4 The Data Structure for Meta Information

A simplified illustration for the tables maintained in the HDA are shown in Figure 4.5.

There are four kinds of tables. Their data structures and relationships are as follows:

4.2.4.1 Table of RBs. 	 There is one global table of RBs in the HDA. It stores

the mapping from RB# to physical address and the heat index from the RB. The

data structure for a row in the table is shown below:

This table is indexed by RB#, which is indicated by underlining. The Device#

and Device_offset make a physical address pair. The Heat index records the access

rate for the blocks in this RB.

If the RB# is sequential, which means it starts from zero and grows without

having holes, the field RB# is implied by table subscript can therefore be omitted to

save space.

4.2.4.2 Virtual Disk Table. Virtual disks (VDs) are fixed sized consecutive

disk spaces on physical devices. Each VD contains a fixed number (RB_PER_VD) of

RBs. The RB#'s in a VD may not be consecutive as a result of background workload

balancing. Each VD can be a member of a certain Virtual Array, or marked as

unformatted space.

There is a VD table for each physical device in the HDA. A record in the VD

table consists of the following fields.

Figure 4.5 Tables maintained in HDA.

93

94

VD# consist of Device# and an index of the VD in that device. Since the

VDs have fixed size, a VD# can be directly mapped to a physical address simply by

multiplying the VD size with the index.

The VD table is sorted on VD#. VA# is the id for the VA to which VA the

VD belongs. RB1, RBRB _PER _VD are the list of RBs in this VD. Since RB_PER_VD is

a predefined constant, the VD table entries are of fixed size as well. As before, VD#

is implied by table subscript and can be omitted.

4.2.4.3 Virtual Array Table. The virtual array table is a global table. It

keeps all information about the organization of the virtual arrays, including RAID

scheme, component virtual disks, parity location etc. The data fields for a record in

VA table is as follows:

VD1, VD2,	 VDk are the list of VDs that constitute this virtual array. The

parity VD(s) are listed first. For example, in a RAID5 (or more precisely, RAID4)

virtual array, VD1 is the virtual parity disk. In RAID6 (without parity rotating),

VD1 and VD2 stores parity P and Q, respectively. Since each virtual array can have

different number of virtual disks, the length of the records are variable. An index is

made on VA# for fast locating the corresponding record.

4.2.4.4 RAID scheme Table. 	 The global RAID scheme table stores all the

VAs for a certain RAID level in the HDA. The fields for each record in the table are

shown below:

The records are variable length. An index is made on RAID scheme.

95

4.2.5 Estimated Meta Data Size

In this subsection, the field width for the data structures discussed in previous section

are decided. Then the meta data size is estimated.

The first decision to made is the field width for RBA. Initially an RB size of

10 MB is assumed, which is a relatively small chunk that can be moved easily. A field

width of 4 bytes can support up to a raw storage of 40 PB, which is adequate since

it can support a disk array consisting of 200,000 disk drives with each disk having

200GB. The width for other data fields can be defined similarly and are summarized

in Table 4.1.

For a mid-size disk array of 100TB raw capacity, the sizes for each table and

also the total meta info size are listed in Table 4.2. RB_PER_VD = 8 is assumed in the

calculation. It is shown that the meta information requires about 180MB memory

space, which is reasonable for a 100TB array and can be kept in memory for efficient

access.

Table 4.2 Memory Requirement for Tables in HDA

96

4.2.6 Read and Write Operation Procedure

The flowchart for the address translation in read and write operations are shown

below. To simplify the discussion, only the operations in normal mode is discussed

and the write operation assumes RAIDS. Operations in degraded mode and/or in

other RAID schemes are similar.

4.2.6.1 Flow Chart for Read Operation. Read is the most frequent operation

in HDA. For a read operation, the HDA address need to be translated into a physical

address. The steps required for such translation are shown in Figure 4.6.

The read operation has two parameters — target HDA address and request

size. The HDA address consists of two parts: RB number and offset within the RB.

The RB number is looked up in the RB table to find out its physical address, which

is a (device number, device offset) pair. This device offset gives the physical address

for the starting point of the RB. When added by the offset within RB, the physical

address for the target block is found. The request is passed down to the device

without any change. To sum up, the translation from HDA address to physical

address requires only one table lookup and one addition. Note that since RB number

is a sequential integer starting from zero, a lookup in the RB table is equivalent to

97

Figure 4.6 Flow chart of address translation for a read operation.

fetching an element from a large array, which requires only one multiplication (for

element address) and one memory access.

4.2.6.2 Flow Chart for Write Operation. 	 Figure 4.7 illustrates the address

translation procedure to process a write request. RAID5 scheme is assume in this flow

chart. The input HDA logical address will be mapped into two physical address: one

for the data block, the other for the parity block. For other scheme such as RAID6,

similar procedures can be define to give the physical address for both parity blocks.

98

99

The physical address for the data block is generated in the same way as in

processing a read request. The RB table is looked up to get the physical address

for the starting point of the RB. The device offset of RB is broken into two parts:

a VD index within device and RB index within VD. This is possible because the

VD contains a fixed number of RBs and RBs have fixed size. Therefore, the VD

index within device equals the device offset divided by VD size, while the RB index

within VD is the remainder. Coupled with the device number, the VD index in device

becomes a VD number on which the data block resides. By looking up in the VD

table, the VA# for the VA of which the VD is a component can then be obtained.

By looking up the VA table, the VD# for the parity virtual disk can be obtained.

The physical address for a given VD# can easily be obtained by multiplying the VD

index by VD size. The final physical address of the parity block then consists of the

device number copied from parity VD# and a device offset which is the sum of offset

of VD in device, offset of RB in VD and offset within RB.

CHAPTER 5

ALLOCATIONS IN HETEROGENEOUS DISK ARRAY

The allocator is the key component of HDA. It handles all allocation requests and

manages free space. It decides the device from which the space is allocated for the

allocation request. If there is not enough free space in the virtual array, a new

virtual array of the desired scheme is created. In this case, the allocator also need to

determine the subset of devices from which the new virtual array will be created.

As has been discussed in Section 1.4, one challenge in heterogeneous disk array

is how to utilize both capacity and bandwidth to the maximum extent. In this chapter,

the problem is formalized and one possible solution is described. This solution is

then verified in a simplified environment to show its effectiveness and robustness. In

Section 5.4, more discussions on the constraints on allocation are given. Finally, the

actual allocation algorithms used in the performance study of HDA (see Chapter 6)

are described.

5.1 Problem Analysis and Formalization

Both disks and allocation requests are modeled as 2-dimensional vectors. For an

allocation request, the first dimension is the access rate, and the second dimension

is size. For a disk drive, the two dimensions are maximum throughput (accesses per

second) and capacity. As shown in Figure 5.1, disk allocation can be modeled by

adding request vectors and making sure that their sum is less than the disk vector in

any coordinate.

100

101

The value of a is usually chosen between 0 and 1 to emphasize more on the

throughput, because balanced throughputs are more important than balanced disk

capacities, and more often system bottleneck is throughput rather than capacity.

Although many storage system design and optimization tools choose to balance

the response time [2, 5, 69, 53], the optimization target in HDA is throughput because

of the following considerations:

1. Most applications do not impose stringent limits on I/O response time. Typical

disk service time for a read request is about ten milliseconds for modern disks.

This implies that the mean response time is reasonable, as long as the utilization

of the disk is not very high, e.g., below 90%.

2. By giving higher priority to requests that are more urgent, requests that require

lower response time can be satisfied.

3. Response times for requests which are processed by the same disk interfere with

each other, because of their competition for disk access. Since our system is

103

dynamic and the RAID levels and data layouts are determined at runtime, a

placement that can satisfy the response time requirement currently may not be

able to satisfy the requirement later. New data may be placed on the same disk,

introducing additional requests and therefore the response time will grow.

4. Although disk utilization is not strictly additive (depends on disk scheduling

policy), it roughly satisfies the triangle inequality. For example, workloads

A and B incurring a disk utilizations equal to 0.1 and 0.2 on separate disks

are expected to result in a disk utilization less than or equal to 0.3, with an

appropriate disk scheduling policy, such as SATF. This property enables the

placement problem to be modeled as a bin packing problem.

5. If the response time is balanced over all disks, the faster disks will have higher

utilization. Consider a RAID5 system processing only read requests, the load

on all surviving disks is doubled when a single disk fails. If the faster disks have

higher utilization, such doubling may lead to overloading, and the response time

on that disk becomes infinite.

Possible solutions to this problem can be classified into off- line and on - line

algorithms. In an off- line algorithm, the full knowledge of all items are given before

the algorithm starts. In contrast, an on- line algorithm assigns every item p i solely

on the basis of the item's own information and system statistical data, without any

information on subsequent items. The decisions of an on-line algorithm are irrevocable

— assigned items can not be reassigned to other device or such re-assignment would

incur high cost.

Although the problem is defined as an off-line problem, both on-line and off-

line heuristic solution for the problem are required. The off-line algorithm will be

used by the system tuner. The on-line algorithm will be used by the allocator.

104

It is easy to see that the problem is NP-hard [25], which means it is quite

impossible to find an optimal solution in polynomial time. Therefore it is more

practical to seek a low-cost heuristic algorithms to find acceptable solution in linear

time.

This problem belongs to a generalized multi-dimensional variable sized vector

scheduling problem [14]. There are numerous studies on related problems since 1970's,

including variable sized bin packing, vector packing and vector scheduling. However,

to the best of our knowledge, there is no existing online algorithm that solve the

problem at hand satisfactorily.

5.2 A Solution Based on A Greedy Heuristic

In a typical storage system, each block takes a very small fraction of throughput and

capacity. This can be mapped to a bin packing problem with small items, in which a

better asymptotic ratio is often possible.

Greedy algorithms are natural candidates for finding approximate solutions to

variable size vector scheduling problems. The best-fit heuristic is extended to the two-

dimensional vector scheduling problem: an incoming request is assigned to the lath

device so that the target function is minimized. The algorithm is given in Figure 5.2.

Since the first objective F1 uses the max function, there may yield multiple

choices of disk number with the same objective value. In this case, one of the choices

is selected randomly. For the objective function F2, such situation will rarely happen.

105

106

5.3 Verifying the Best-fit Allocation Algorithm

In this section, a synthetic workload is used to verify the effectiveness and robustness

of the best-fit heuristic described in Section 5.2. Effectiveness means that the heuristic

can provide a better solution than some other algorithms (described below). Robustness

means that the algorithm can yield a reasonable solution with imprecise estimation

of access rate.

5.3.1 Experiment Parameters

Three hard drives with different capacities and bandwidth are used in the experiment.

The models and their specifications are shown in Table 5.1.

The other allocation strategies used in the comparisons are:

Round robin To place the allocation request onto one of the hard drives in a round

robin manner.

Random To place the allocation request onto a random hard drive

Proportional to throughput To place the allocation request onto a hard drive

with probability proportional to its maximum throughput (i.e. bandwidth). In

107

where x i is the bandwidth of disk i and n the total number of disks.

Proportional to capacity To place the allocation request onto a hard drive with

probability proportional to its capacity. In other words, the probability of

putting a request on disk i is

where ci is the capacity of disk i and n the total number of disks.

It is worthwhile to note that round robin strategy is equivalent to tradi-

tional striping. Proportional to throughput and proportional to capacity

are the two most common allocation strategies used in distributed storage. The

AdaptRaid5 [19, 20] uses data layout equivalent to proportional to capacity. The

disk merging technique described in [71, 72] is in fact a proportional to throughput

algorithm.

5.3.2 Effectiveness

Since the problem is NP-complete [25], heuristic algorithms are more practical. Instead

of embarking on a lengthy worst case analysis, it is of more interest to investigate its

performance under typical workload. Therefore, a program is developed to investigate

the effectiveness of the algorithm shown in Figure 5.2 with synthetic workload.

In the synthetic workload, the arrival process is Poisson. The requested

allocation size follows exponential distribution with a cutoff threshold. Requests

whose size greater than a threshold are ignored since such request are already divided

108

into smaller pieces by splitter. The estimated access rate is also exponentially distributed

with a cutoff threshold. Extremely hot data are excluded from disk access since they

usually reside in the cache.

Table 5.2 gives the results of the experiment with accurate estimates of access

rates. The parameters for the workload are: request size is exponentially distributed

with mean 8KB, minimum 1KB and the cut off threshold is 128KB; access rate is

exponentially distributed with mean 0.000128 accesses per second and the cut off

threshold is 10.

The allocation process stops when any of the three disks is 99% utilized in

either capacity or bandwidth. Ux (i) and Ue (i) are the utilizations of throughput and

capacity respectively for disk i when the program stops. The # of reqs is the number

of requests held by the disks at the end of the run. The three disks used in the

experiments are listed in Table 5.1. The ax and o are the standard deviation of the

utilizations for the throughput and capacity over the three disks, respectively. The

objective functions F1 and F2 are described in Section 5.1 on page 102.

109

It can be observed that the best fit heuristic can hold more allocation requests

and is therefore more cost-effective than other strategies. Round-robin and random

strategies perform similarly. Both of them stop when the second disk is full since

it has only 2.0GB, so that it becomes the bottleneck while the first disk drive is

filled less than a quarter. Proportional to throughput and proportional to capacity

perform slightly better, since they take into consideration one aspect of the disk

features. Proportional to capacity performs better than throughput only because the

aggregate throughput-capacity ratio (=16.94 per GB per second) is greater than the

mean throughput-capacity requirement of the workload (=16.7 per GB per second).

In other words, the capacity is the more limiting resource in this experiment.

The best fit heuristic with objective function F2 (i.e. Equation 5.2) can allocate

more than the double number of requests that can be allocated by the random or

round-robin strategies. It can be observed that when the program stops, all three

disks are filled 99% and the throughput utilization are also same. This means that all

available capacity and bandwidth is fully utilized and resources are not wasted. The

objective function F1 (Equation 5.1) is inferior since it emphasizes the balancing of

the utilization of disk bandwidth and pays less attention to the variance in capacity

utilization.

In a word, it is shown by experiment that the best fit heuristic outperforms

all other strategies by a large factor and can utilize all available resource, when the

estimation of the access rate is accurate.

5.3.3 Robustness

In reality, the estimations of access rates and read-write ratios are usually inaccurate.

Therefore, it is necessary to investigate whether the heuristic still works well with

inaccurate estimates.

110

The inaccuracy appears in two ways: Firstly there can be a big variance,

which means the actual mean access rate for a certain block is around the estimated

mean with some fluctuation, while the overall actual access rate is same as estimated.

Secondly the estimation can be biased, which means the estimated access rate always

tends to be greater (or smaller) than the actual one, and this results in the overall

over- (or under-) estimation of the access rate.

The program is modified to add both variance and bias to the estimated access

rate. The extent of variance and bias is controlled by two variables: V and B,

respectively. The inaccurate estimated access rate is generated by:

The result with V = 1 and B = —0.5 is shown in Table 5.3. The parameters

of the workload are same as for Table 5.2 except that the estimated access rate are

not accurate.

By comparing the results in Table 5.2 and Table 5.3, it is shown that the

best fit heuristic performs almost equally well with inaccurate estimation as with

accurate estimation. This is partially because each request takes only a very small

portion of the resources of a disk. After a request is processed, its actual access rate

is discovered and disk utilizations are updated. Therefore, the following requests will

get the correct knowledge of previous requests and are routed to a proper disk.

111

Table 5.3 Experiment Result with Synthetic Workload and Inaccurate Estimation
of Access Rate

5.3.4 Summary

In this section, the verification for the effectiveness and robustness of the best-fit

heuristic is presented. It is shown that the best-fit heuristic work well when each

allocation request takes very small portion of the system resource, which is generally

the case in real system. Is is also shown that the second objective function F2 =

5.4 Constraints on Allocation

The greedy algorithm discussed in the previous section can give satisfactory result

with a synthetic workload (see Section5.3). However, there are several constrains

that need to be considered while making the allocation. Some constrains are soft

constrains, which means they are desirable but not a must. The others are hard

112

constrains, which means that they must be complied to in order to get a correct

allocation. The constrains are described as follows:

1. The data and corresponding parity stripe units in a RAIDx parity group must

not be placed on the same device. This is a must-be-met constraint that ensures

the data can be recovered when there is a device failure and is essential to the

correctness of the scheme.

2. The blocks that are from the same allocation request should be placed on a

single device up to the size of a stripe unit. This is a soft constraint. It

encourages the space to be allocated in large continuous chunks and therefore

reduces the number of fragments for an allocation. Since sequential read is

much more efficient than random small reads, continuous data chunk provides

higher transfer rate for large request sizes.

3. Preferably, the stripe units of a parity group should be placed on a set of devices

of the same type. This is also a soft constraint. The purpose for this constraint is

to reduce the service time and response time variance in a virtual array. Since

the mean service time on different disk types for a given request may vary,

a virtual array consisting of VDs from heterogeneous disk drives shows high

variance in response time. Although this is not a big problem for applications

that do not impose a response time limit, in some situations this high variance

in response time may impair the performance. For example, at the time of one

disk failure, a request to reconstruct a block is processed as a fork-join of a

set of read requests on surviving disks. The high variance of response time on

individual disks increases the overall response time of this fork-join request.

113

5.5 The Allocation Algorithms Used in Simulation

In this section, the procedures for free space management and allocation in HDA are

described. These procedures are implemented by extending the DASim simulation

toolkit [63] and the simulation results are given in Chapter 6.

A simplified configuration is considered, in which there is no deallocation of

data blocks. In other words, the data are written on the drive and never erased.

The absence of data deallocation greatly simplifies free space management, since no

garbage collection is required.

HDA is a hierarchical organization, e.g. VA consists of VDs, each VD has

multiple RBs, and an RB may hold multiple data blocks. Therefore, the free space

management has multiple levels as well, i.e. management of free VDs and management

of free space within VAs and VDs.

To start with, the conceptual flowchart to handle an allocation request is shown

in Figure 5.3. Here, only RAID1 and RAID5 are shown, but other RAID levels can

be incorporated similarly.

For each RAID level, there is an active VA associated with it. Allocation

requests come tagged with a certain RAID level, then the corresponding active VA is

checked. Space is allocated from the active VA for the allocation requests until space

is exhausted. When this happens, a new VA is created from the free VDs on one or

more devices (based on the RAID level), and the new VA become the active VA for

that RAID level.

In Figure 5.3, there are three operations that need further explanation: (1)

checking free space in VA (block a), (2) allocating from a VA (block b) and (3)

creating new VA (block c). These operations are described below.

114

Figure 5.3 Flowchart to handle allocation requests for R,AID1 and RAID5 virtual
arrays.

5.5.1 Checking Free Space

Since the Allocator follows the Splitter in the HDA architecture (see Figure 4.1), no

further split will occur. In other words, all requests should be put into a single RB.

Consequently, the free space check should ensure that there is at least one data VD

in the active VA that has enough free space, rather than the sum of free space on all

data VDs is large enough.

115

5.5.2 Allocating from a VA

After checking that there is enough space for the allocation request, the allocation

request is handled by the active VA of the corresponding RAID level (block b in

Figure 5.3). The task is to decide to which VD this allocation request should be

sent. The algorithm used is the greedy heuristic shown in Figure 5.2. The difference

is that the capacity and bandwidth are for virtual disks rather than real ones. The

capacity of each VD is just its size, while the bandwidth is calculated when the VD

is incorporated into a new VA. The bandwidth of a VD is not a limit that physically

exists, which means a VD can have bandwidth utilization greater than the bandwidth

assigned to it, in which case the VD is actually using the bandwidth that is assigned

to other VDs. In fact, the bandwidth for a VD is a goal rather than a limit. Therefore,

we call this virtual bandwidth the target bandwidth of a VD. In general, the target

bandwidth of a VD is a fraction of the remaining bandwidth of the disk. For example,

if there are 10 free VDs on a disk, then each VD takes 1/10 of the unutilized disk

bandwidth. However, this value is adjusted to speed up the balancing process. The

details of how to compute the target bandwidth for a VD is shown in Section 5.5.3.

The procedure for allocating from a VA is shown in Algorithm 1. In the

algorithm, the functions listed in Table 5.4 are used.

5.5.3 Creating new VA

For a certain RAID level, when the active VA run out of space, a new VA is created

from free VDs. Each VD comes from different physical devices. Since the width of a

VA (i.e., the number of VDs in a VA) is usually less than the total number of devices,

a selection has to be made. In the current implementation, the decision is made based

on the capacity usage. In other words, we choose VDs from the devices that have a

higher percentage of free space.

Table 5.4 Functions Used in Allocation Algorithms

116

For RAID levels that have redundancy, another decision to be made is on which

VD(s) should be used to store the parity blocks. In the current implementation, the

parity VD for a RAID5 VA is chosen randomly. An alternative way of choosing

the parity VD is to select the VD from the device that has the lowest bandwidth

utilization. The argument for this approach is that the parity VD may have a higher

arrival rate for requests than data VDs. However, this is not always true, since it

depends on the mean read/write ratio of disk accesses, as well as the width of the

VA.

For each VD in the new VA, its target bandwidth is computed. The target

bandwidth is used in the best-fit heuristic to guide the allocations requests into a

proper VD, as shown in Algorithm 1. The calculation of target bandwidth takes into

consideration the current bandwidth utilization of the device. Therefore, it carries

the statistical information of actual data access rate, which is observed by the system

monitor. In general, the target bandwidth of a VD is the remaining bandwidth

divided by the number of free VDs on the device. Then this target bandwidth is

adjusted with a factor to speedup the balancing process. When the device is busier

117

than the average, the factor is smaller than one. When the device is less busy, the

factor is greater than one.

The procedure to create a new VA is shown in Algorithm 2 and the procedure

to calculate the target bandwidth for VDs is shown in Algorithm 3. The meaning of

the functions used in the algorithms are listed in Table 5.4.

118

CHAPTER 6

PERFORMANCE OF HETEROGENEOUS DISK ARRAY

The Heterogeneous Disk Array architecture described in Chapter 4 is prototyped

based on the DASim simulator [63]. This chapter reports the simulation assumptions

and results.

The chapter is organized as follows: Firstly the configurations of the simulation

is described. Then the results based on accurate estimates of access rates is presented.

This is followed by the simulation results based on inaccurate estimates of access rates.

6.1 Configurations

A heterogeneous disk array with six disks is considered. The six disks have four

models, with capacity ranging from 2 GB to 9 GB. The disk models and their speci-

fications are given in Table 6.1.

119

120

The arrival process is Poisson for both allocation and access (i.e. read/update)

requests. The request size follows exponential distribution. The mean request size

is 100 sectors or 50KB, with a cutoff threshold at 4096 sectors and a minimum at

one sector. The access rate is also exponentially distributed, with mean access rate

8 x 10 -7 accesses per second. The minimum access rate is 0, the maximum is 10

accesses per second. Two RAID levels (RAID1 and RAID5) coexist in the HDA.

Each allocation request is tagged as either RAID1 or RAID5, with 30% of them

tagged as RAID1. Multiples runs of simulations is executed with various read/write

ratio for data blocks, but only read:write = 3:1 is reported here.

The arrival rate for the allocation requests remains constant throughout the

simulation. In other words, a constant flow of allocation requests is assumed. The

arrival rate for accessing the data blocks depends on how many data objects have

been allocated on the disk. The simulator keeps track of all the data objects that has

been allocated and generates read/write requests according to the actual access rate

of each data object after it is allocated. As time elapses, more allocation requests are

processed and more space is allocated. Therefore, the arrival rate for data objects

increases with time, so do the utilizations and response times for disk accesses. The

simulation stops when either bandwidth or capacity utilization of any disk exceeds

95%.

The size of a relocation block is 10 megabytes, each virtual disk has 2 RBs. A

RAID1 virtual array consists of two virtual disks. A RAID5 virtual array consists of

five virtual disks, one of which stores the parity.

121

6.2 Simulation Results with Accurate Estimation of Access Rates

With accurate estimation of access rate and read write ratio, the simulation results are

shown in Figure 6.1, 6.2, 6.3 and 6.4. Since the target for the HDA is to balance the

utilizations on both capacity and bandwidth for all disks, we plot the two utilizations

of each disk over the entire simulation time frame to show whether they are close to

each other. The read response time and arrival rate on individual disks are shown as

well.

Figure 6.1 Utilization of bandwidth, with accurate estimations of access rate and
read write ratio.

It can be observed from Figure 6.1 that the bandwidth utilization on all disks

are very close to each other during the entire allocation process. There are some

fluctuations, but the difference of the utilization between any two disks are less than

5%. In Figure 6.2, it is shown that the utilization of capacity on individual disks are

closely matched at all time too. Therefore, both capacity and bandwidth are utilized

in a balanced way and the system resources are fully exploited.

In Figure 6.3, the read response time for individual disk is shown. The response

time for the 4th and 5th disks (index number 3rd and 4th) are higher than the rest

Figure 6.3 Read response time on each disk, with accurate estimations of access
rate and read write ratio.

of disks because they are slower and have a higher mean service time. The curves

follow the same trend and response time remains steady in a wide range of time. This

means the system works in a stable manner.

Figure 6.4 Arrival rate on each disk, with accurate estimations of access rate and
read write ratio.

In Figure 6.4, the mean arrival rates for data access requests (i.e. read and

update requests) are shown for each individual disk. All disks gains a linearly

increasing arrival rate over the time. Among them, the 3rd disk (index number 2nd)

has the highest slope, which means it takes a larger portion of all arriving requests,

while the 4th and 5th (index number 3rd and 4th) disks take the lowest arrival rates.

This is because the 3rd disk has the highest bandwidth and the 4th and 5th disks

have the lowest bandwidths. The arrival rate grows almost linearly, and the ratio of

arrival rate between any two disks remains the same, which equals the ratio of their

bandwidths.

In short, the simulation shows that the HDA architecture can balance the

utilization of both bandwidth and capacity over all disks, and therefore exploits the

system resources to the greatest extent possible. The read response time on each disk

may differ, since the disks have different access times but close utilizations. However,

the difference is rather small. The arrival rate of read and update requests on each

disk is proportional to the bandwidth of the disk.

124

6.3 Simulation Results with Inaccurate Estimation of Access Rates

In a real system, accurate estimation of access rates and read write ratios is an

impossible task. Therefore, whether HDA can perform satisfactorily needs to be inves-

tigated. In this section, the simulation result of HDA architecture with inaccurate

estimation of access rate is reported. The configurations remain the same as in

Section 6.2, except that the estimated access rates and read write ratio vary from the

actual values.

Similar to Section 5.3.3, the estimated access rate for an allocation request

is a calculated by multiplying an error percentage on the actual access rate (see

page 110). For the estimated read write ratio, a similar approach is applied. The

value of estimated read write ratio is checked to make sure it is between zero and one.

In the simulation, a variance of 30% and bias of 10% (i.e., V = 0.3 and

B = 0.1) is added to the estimated access rate. A variance of 30% and bias of 10%

(V = 0.3 and B = —0.1) is added to the estimated read write ratio. The simulation

result with inaccurate estimations are show in Figure 6.5, 6.6, 6.7 and 6.8.

125

Figure 6.7 Read response time on each disk, with inaccurate estimations on access
rate and read write ratio.

It is shown in Figure 6.5 and 6.6 that both capacity and bandwidth utilizations

at all disks are close to each other. By comparing Figure 6.5 with Figure 6.1, it can

be observed that the two figures are very similar. With inaccurate estimations, there

is a little more fluctuations from the average, which is a result of the inaccuracy.

Figure 6.8 Arrival rate on each disk, with inaccurate estimations on access rate
and read write ratio.

The response time and arrival rates for individual disks are shown in Figure 6.7

and Figure 6.8, respectively. Both of them are very close to the corresponding figure

with accurate estimations in Section 6.2.

In a word, the simulation shows that the HDA system can tolerate inaccuracy

in the estimation of access rate and read write ratio come with the allocation requests.

Therefore, the HDA architecture works satisfactorily with inaccurate estimation of

access rate and read write ratio.

CHAPTER 7

CONCLUSIONS

In this dissertation, device independent cost models for various RAID levels are

defined. Based on these cost models and given detailed specification of disk character-

istics, the maximum throughput achievable for various RAID levels can be obtained.

A queuing analysis based on M/G/1 queuing model is also described. The response

time are obtained for RAIDO, RAIDS, RAID6, EVENODD, and RM2 using this

queuing analysis as well as by simulation. The simulation results serve as validation

of the queuing analysis, and also to evaluate the performance of SATF scheduling

policy.

In the second half of the dissertation, the Heterogeneous Disk Array (HDA)

architecture is described. The motivations for this new architecture is based on several

trends in storage technology. This heterogeneous disk array features: (i) Allowing

different disk models and making efficient usage of the extra capacity and bandwidth

made available by new disk drives, hence heterogeneous devices. (ii) Allowing multiple

RAID schemes to coexist on a single physical device, hence heterogeneous configu-

rations. (iii) The disk loads are roughly balanced in terms of both bandwidth and

capacity utilizations.

The data structures for the HDA are defined and the algorithm for the allocation

is described. A simulation based on these data structures and allocation algorithm

is made to investigate its performance. Simulation results shows that it is possible

to balance the utilization of bandwidth and capacity at the same time and therefore

provides efficient usage of the available resources in a heterogeneous disk environment.

The reliability requirements are also met by using a proper RAID scheme. The

response time on each disk are stable and acceptable for a wide range of utilizations.

127

128

129

130

A.3 Fork Join Approximation

A.3.1 Two-way Fork-Join Approximation

In a K way fork-join queuing system, the expected value of the maximum of K

response times (RnKla x) is an upper bound for RFK". When regular requests contribute

heavily to the utilization of individual disks, the components of fork-join response

time are almost independent. In this case, RTax in addition to begin an upper bound

to RFK", is also a good approximation to it.

131

The coefficient of variation of response time can be obtained using the expressions for

the moments of response time. If we concerned with SRW requests, which constitute

a fork-join request,

132

A.3.2 Multi-way Fork-Join Approximation

Approximate response time with extreme value distribution (type II, i.e. maximum

value), which is defined by:

where 7 ,-,' 0.5772 is the Euler-Mascheroni constant. Assuming all component operations

have same distribution of response time, with first two moments R and R (2) , then we

can match the variance to the response time variance and get

REFERENCES

[1] N. Allen. Don't waste your storage dollars: what you need to know. Research note
COM-13-1217, Gartner Group, March 2001.

[2] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-Szendy, R. Golding,
A. Merchant, M. Spasojevic, A. Veitch, and J. Wilkes. Minerva: An automated
resource provisioning tool for large-scale storage systems. ACM Transactions on
Computer Systems, 19(4):483-518, 2001.

[3] G. A. Alvarez, W. A. Burkhard, and F. Cristian. Tolerating multiple failures in RAID
with optimal storage and uniform declustering. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, pages 62-72, Denver, CO,
June 1997.

[4] K. S. Amiri. Scalable and manageable storage systems. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, December 2000.

[5] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan, and Q. Wang. Ergastulum:
Quickly finding near-optimal storage system designs. HP Laboratories SSP
technical report HPL-SSP-2001-05, June 2002.

[6] E. Anderson, R. Swaminathan, A. Veitch, G. Alvarez, and J. Wilkes. Selecting RAID
levels for disk arrays. In Conference on File and Storage Technologies (FAST'02),
Monterey, CA, USA, January 2002.

[7] ANSI X3.131-1986, New York NY. American National Standard for Information
System - Small Computer System Interface(SCSI), 1986.

[8] M. Blaum. A Course on Error-Correcting Codes. Lecture Notes available from author,
1997.

[9] M. Blaum, J. Brady, J. Brunk, and J. Menon. EVENODD: An efficient scheme for
tolerating double disk failures in RAID architectures. IEEE Transactions on
Computers, 44(2):192-202, February 1995.

[10] M. Blaum, J. Brady, J. Brunk, J. Menon, and A. Vardy. The EVENODD code and its
generalizations. In H. Jin, T. Cortes, and R. Buyya, editors, High Performance
Mass Storage and Parallel I/O, pages 187-205. John Wiley, 2002.

[11] E. Borowsky, R. Golding, A. Merchant, L. Schrier, E. Shriver, M. Spasojevic, and
J. Wilkes. Using attribute-managed storage to achieve qos. In Proc. of the 5th
Int'l Conf. Workshop on Quality of Service, Columbia University, New York,
June 1997.

[12] J. P. Buzen and P. S. Goldberg. Guidelines for the use of infinite source queueing
models in the analysis of computer system performance. In Proceedings of AFIPS
1974 National Computer Conference, volume 43, pages 371-374, 1974.

[13] J. Chandy and A. Reddy. Failure evaluation of disk array organizations. In Proceedings
of 13th International Conference on Distributed Computing Systems (ICDCS),
pages 319-326, 1993.

133

134

[14] C. Chekuri and S. Khanna. On multi-dimensional packing problems. In SODA:
ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical
and Experimental Analysis of Discrete Algorithms), pages 185-194, 1999.

[15] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-
performance, reliable secondary storage. ACM Computing Surveys, 26(2):145-
185, June 1994.

[16] S. Chen and D. Towsley. The design and evaluation of RAID5 and parity striping disk
array architectures. Journal of Parrallel and Distributed Computing, 10(1/2):41-
57, Feburary 1993.

[17] S. Chen and D. Towsley. A performance evaluation of RAID architectures. IEEE
Transactions on Computers, 45(10):1116-1130, 1996.

[18] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar.
Row-diagonal parity for double disk failure correction. In Proceeding of the Third
USENIX Conference on File and Storage Technologies, San Francisco, CA, March
2004.

[19] T. Cortes and J. Labarta. A case for heterogeneous disk arrays. In Proceedings of
the 1st IEEE International Conference on Cluster Computing (Cluster 2000),
Saxony, Germany, November 2000.

[20] T. Cortes and J. Laborta. Extending heterogeneity to RAID level 5. In Proceedings
of the 2001 USENIX Annual Technical Conference, pages 119-132, Boston, MA,
June 2001.

A. Dan and D. Sitaram. An online video placement policy based on bandwidth to
space ratio (BSR). In Proceedings of the 1995 ACM SIGMOD international
conference on Management of data, pages 376-385, San Jose, CA, May 1995.
ACM Press.

[22] Validated disk parameters. http://www.pdl.cmu.edu/DiskSim/diskspecs.html
(Retrieved on April 2004).

[23] L. W. Dowdy and D. V. Foster. Comparative models of the file assignment problem.
ACM Computing Surveys (CSUR), 14(2):287-313, 1982.

[24] G. Fu and A. Thomasian. Fork join approximation and validation. Technical Report,
Integrated System Lab, CS Department, NJIT, 2003.

[25] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.

[26] G. A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Storage. MIT
Press, 1992.

[27] R. Golding, E. Shriver, T. Sullivan, and J. Wilkes. Attribute-managed storage. In
Workshop on Modeling and Specification of I/O, 1995.

[28: E. Grochowski and R. Fontana Jr. Magnetic recording technology — advances through
the year 2000 and beyond. In Proceedings of 7th Biennial IEEE Nonvolatile
Memory Technology Conference, pages 8-12, Albuquerque, NM, USA, June 1998.

[29] E. Grochowski and R. D. Halem. Technological impact of magnetic hard disk drives
on storage systems. IBM Systems Journal, 42(2):338-346, 2003.

[21

135

[30] L. Hellerstein, G. A. Gibson, R. M. Karp, and R. H. Katz. Coding techniques for
handling failures in large disk arrays. Algorithmica, 12(2/3):182-208, 1994.

[31] J. L. Hennessy, D. A. Patterson, and D. Goldberg. Computer Architecture: A Quanti-
tative Approach. Morgan-Kauffman Publishers, 3rd ed. edition, 2003.

[32] R. A. Hill. System for managing data storage based on vector-summed size-frequency
vectors for data sets, devices, and residual storage on devices. US Patent 5345584,
1994.

[33] M. Holland, G. A. Gibson, and D. P. Siewiorek. Architectures and algorithms for on-
line failure recovery in redundant disk arrays. Journal of Distributed and Parallel
Databases, 2(3):295-335, 1994.

[34] M. C. Holland. On-Line Data Reconstruction in Redundant Disk Arrays. Technical
report cmu-cs-94-164, Carnegie Mellon University, Pittsburgh, PA, April 1994.

[35] An analysis of RAID 5DP. HP White Paper, http : //www . hp . com.

[36] A. Kuratti and W. Sanders. Performance analysis of the RAIDS disk array.
In Proceedings of International Computer Performance and Dependability
Symposium, pages 236-245, Erlangen, Germany, April 1995.

[37] E. Lee and R. Katz. Performance consequences of parity placement in disk array.
In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 190-199, 1991.

[38] W. Litwin and T. Schwarz. LH*Rs : A high-availability scalable distributed data
structure using reed solomon codes. In Proceedings of the SIGMOD International
Conference, pages 237-248, Dallas, Tx, USA, 2000.

[39] Maxtor Enterprise SCSI Hard Drive Products: http : //www .maxtor . com/en/
products/scsi (Retrieved on April 2004).

[40] J. M. Menon. Performance of RAIDS disk arrays with read and write caching. Journal
of Distributed and Parallel Databases, 11(3):261-293, July 1994.

[41] J. M. Menon. A performance comparison of RAID5 and log-structured arrays. In
Proceedings of the 4th IEEE International Symposium on High Performance
Distributed Computing, pages 167-178, Washington, D.C., Augest 1995.

[42] A. Merchant and P. Yu. Performance analysis of a dual striping strategy for replicated
disk arrays. In Proceedings of the Second International Conference on Parallel
and Distributed Information Systems, pages 148-157, San Diego, January 1993.

[43] A. Merchant and P. Yu. Analytic modeling of clustered RAID with mapping based on
nearly random permutation. IEEE Transaction on Computers, 45(3):367-373,
March 1996.

[44] R. R. Muntz and J. C. S. Lui. Performance analysis of disk arrays under failure. In
Proceedings of the 16th VLDB Conference, pages 162-173, Brisbane, Australia,
August 1990.

[45] R. Nelson and A. Tantawi. Approximate analysis of fork-join synchronization in
parallel queues. IEEE Transactions on Computers, 37(6):739-743, 1988.

136

[46] R. Paquet and M. Nicolett. The cost of storage management: A sanity check. Research
note DF-14-6838, Gartner Group, November 2001.

[47] C.-I. Park. Efficient placement of parity and data to tolerate two disk failures in
disk array systems. IEEE Transactions on Parallel and Distributed Systems,
6(11):1177-1184, November 1995.

[48] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for redundant arrays of
inexpensive disks (RAID). In Proceedings of ACM SIGMOD 1988 International
Conference on Management of Data, pages 109-116, Chicago, IL, June 1988.

[49] W. Peterson and E. Weldon Jr. Error-Correcting Codes. MIT Press, 1972.

[50] K. K. Ramakrishnan, P. Biswas, and R. Karedla. Analysis of file I/O traces in
commercial computing environments. In Proceedings of ACM SIGMETRICS
Conference, pages 78-90, 1992.

[51] H. Rosenbrock. An automatic method for finding the greatest or least value of a
function. The Computer Journal, 3(3):175-184, 1960.

[52] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer,
27(3):17-28, March 1994.

[53] P. Scheuermann, G. Weikum, and P. Zabback. "Disk Cooling" in Parallel Disk
Systems. IEEE Data Engineering Bulletin, 17(3):29-40, 1994.

[54] P. Scheuermann, G. Weikum, and P. Zabback. Data partitioning and load balancing
in parallel disk systems. VLDB Journal, 7(1):48-66, 1998.

[55] J. Schindler and G. R. Ganger. Automated disk drive characterization. Technical
Report CMU-CS-99-176, 1999.

[56] T. Schwarz. Reliability and Performance of Disk Arrays. PhD thesis, University of
California, San Diego, 1994.

[57] T. Schwarz and W. Burkhard. Multi-dimensional disk array reliability. Technical
report CS93-324., University of California, San Diego, October 1993.

[58] E. Shriver. A formalization of the attribute mapping problem. HP labs technical
report HPL-SSP-95-10, HP Labs, July 1996.

[59] E. Shriver. Performance Modeling for Realistic Storage Devices. PhD thesis, New
York University, New York, NY, 1997.

[60] Storage performance council. http://www.storageperformance.org .

[61] H. Takagi. Queueing Analysis - A Foundation of Performance Evaluation. North-
Holland, 1991.

[62] A. Thomasian. Performance evaluation of RAID5 disk arrays. In Tutorial,
SIGMETRICS'98, Madison , Wisconsin, June 1998.

[63_ A. Thomasian, C. Han, G. Fu, and C. Liu. A performance evaluation tool for RAID
disk arrays. Technical Report, Integrated System Lab, CS Department, NJIT,
2004.

137

[64] A. Thomasian and J. Menon. Performance analysis of RAID5 disk arrays with a
vacationing server model for rebuild mode operation. In Proceedings of the 10th
Int'l Conf. on Data Engineering, pages 111-119, 1994.

[65] A. Thomasian and J. Menon. RAID5 performance with distributed sparing. IEEE
Transactions on Parallel and Distributed Systems, 8(6):640-657, 1997.

[66] K. Treiber and J. M. Menon. Simulation study of cached RAID5 designs. In
Proceedings of the 1st IEEE Symposium on High-Performance Computer Archi-
tecture, pages 186-197, 1995. also IBM Research Report RJ 9823.

[67] D. Voigt. HP AutoRAID field performance. HP World 1998 Presentation #3354,
Auguest 1998.

[68] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID hierar-
chical storage system. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP), pages 96-108, Copper Mountain, Colorado, USA,
1995.

[69] J. Wolf. The placement optimization program: a practical solution to the disk file
assignment problem. In Proceedings of the 1989 ACM SIGMETRICS Interna-
tional Conference, pages 1-10, Berkeley, CA, May 1989.

[70] P. Zabback, J. Menon, and J. Riegel. The RAID configuration tool. In Proceedings
of the 3rd International Conference on High Performance Computing, 1996. also
IBM Research Report RJ 10055.

[71] R. Zimmermann and S. Ghandeharizadeh. Continuous display using heterogeneous
disk-subsystems. In Proceedings of the Fifth ACM Multimedia Conference, pages
227-238, Seattle, WA, November 1997.

[72] R. Zimmermann and S. Ghandeharizadeh. HERA: Heterogeneous extension of RAID.
In Proceedings of the 2000 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA2000), Las Vegas, Nevada, June
2000.

[73] B. T. Zivkov and A. J. Smith. Disk cache design and performance as evaluated
in large timesharing and database systems. In Proceedings of 23rd Annual
Conference of the Computer Measuremet Group (CMG), pages 639-658, Orlando,
FL, December 1997.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: Description and Performance Analysis of Double Disk Failure Tolerant Disk Arrays
	Chapter 3: Performance Comparison of Double Disk Failure Tolerant Disk Arrays
	Chapter 4: Architecture for the Heterogeneous Disk Array
	Chapter 5: Allocations in Heterogeneous Disk Array
	Chapter 6: Performance of Heterogeneous Disk Array
	Chapter 7: Conclusions
	Appendix A: Queuing Formulas
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

