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ABSTRACT

PERFORMANCE EVALUATION OF COMMUNICATION SYSTEMS
WITH TRANSMIT DIVERSITY

by
Chunjun Gao

Transmit diversity is a key technique to combat fading with multiple transmit
antennae for next-generation wireless communication systems. Space-time block
code (STBC) is a main component of this technique. This dissertation consists
of four parts: the first three discuss performance evaluation of STBCs in various
circumstances, the fourth outlines a novel differential scheme with full transmit
diversity.

In the first part, closed-form expressions for the bit error rate (BER) are derived
for STBC based on Alamouti’s scheme and utilizing M-ary phase shift keying (MPSK)
modulation. The analysis is carried out for a slow, flat Rayleigh fading channel with
coherent detection and with non-coherent differential encoding/decoding. The BER
expression for coherent detection is exact. But for differential detection it is an
approximation appropriate for a high signal-to-noise ratio. Numerical results are
provided for analysis and simulations for BPSK and QPSK modulations.

A signal-to-noise ratio loss of approximately 3 dB always occurs with
conventional differential detection for STBC compared to coherent detection. In
the second part of this dissertation, a multiple-symbol differential detection (MSDD)
technique is proposed for MPSK STBCs, which greatly reduces this performance loss
by extending the observation interval for decoding. The technique uses maximum
likelihood block sequence detection instead of traditional block-by-block detection
and is carried out on the slow, flat Rayleigh fading channel. A generalized decision
metric for an observation interval of N blocks is derived. It is shown that for

a moderate number of blocks, MSDD provides more than 1.0 dB performance



improvement corresponding to conventional differential detection. In addition, a
closed-form pairwise error probability for differential BPSK STBC is derived for an
observation interval of N blocks, and an approximate BER is obtained to evaluate
the performance.

In the third part, the BER performance of STBC over a spatio-temporal
correlated channel with coherent and noncoherent detection is illustrated, where a
general space-time correlation model is utilized. The simulation results demonstrate
that spatial correlation negatively effects the performance of the STBC scheme with
differential detection but temporal correlation positively impacts it. However, with
coherent detection, spatial correlation still has negative effect on the performance but
temporal correlation has no impact on it.

In the final part of this dissertation, a differential detection scheme for
DS/CDMA MIMO link is presented. The transmission provides for full transmit
and receive diversity gain using a simple detection scheme, which is a natural
extension of differential detection combined with an orthogonal transmit diversity

(OTD) approach. A capacity analysis for this scheme is illustrated.
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and joined the tumbiling mirth of sun-split clouds-and
done a hundred things you have not dreamed of — wheeled
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touched the face of God.

“High Flight”, By John Gillespie Magee, Jr.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
Transmit diversity has emerged in the last decade as an effective means for achieving
spatial diversity in fading channels with an antenna array at the transmitter.
Depending on whether the channel state information (CSI) is known or not, systems

employing transmit diversity fall into three general categories as follows:

1.1.1 Both the Transmitter and the Receiver Know the CSI

The first category uses implicit or explicit feedback of information from the receiver
to the transmitter to configure the transmitter. It has been observed that significant
performance gains, at lower complexity, can be achieved if the CSI is available at
both the transmitter and the receiver. Telatar [1] analyzed the capacity of a multiple
transmitter system with perfectly known channels at both the transmitters and the
receiver. This capacity achieving scheme involves spatial water-filling in the direction
of the eigenvectors of the channel, in proportion to the eigenvalues, along with
independent and identically distributed (i.i.d) Gaussian codes. Narula et al. [2],
[3] have considered the problem of multiple transmitters and a single receiver system
with imperfect feedback of CSI at the transmitter. The issues in this category are

not within the scope of the work, and will not be further addressed.

1.1.2 Only the Receiver Knows the CSI

The second category uses linear processing at the transmitter to spread the
information across the antennas. At the receiver, information is obtained by
either linear processing or maximume-likelihood decoding techniques. Feedforward

information is required to estimate the CSI from the transmitter to the receiver.
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These estimates are used to compensate for the channel response at the receiver.
Various transmit diversity techniques in this category have been proposed in the
open literature. For example, a delay transmit scheme was proposed by Wittneben
[4], while a variation of the delay scheme was suggested by Seshadri and Winters [5],
where the replicas of the signal are transmitted through multiple antennas at different
times. Space-time coding schemes also fall within this category.

Space-time coding has been a topic of intensive research in recent years. Tarokh
[6] first proposed a space-time trellis coding scheme on a Rayleigh fading channel. The
scheme was shown to provide a good trade-off between constellation size, data rate,
diversity advantage and trellis complexity. A much simpler space-time block code
(STBC) scheme, which provides full diversity advantage, but is not optimized for
coding gain, was proposed by Alamouti [7]. Alamouti’s scheme for two transmit
antennas supports a maximum likelihood detection scheme based only on linear
processing at the receiver. Tarokh et al. [8] generalized the scheme to multiple
transmit antennas (three, four or eight), to obtain full diversity for real-valued
constellations. For complex constellations, full diversity can be obtained only at
the cost of reduced coding rate. Due to its relative simplicity of implementation,
Alamouti’s scheme [7] has been adopted by 3G standards, such as W-CDMA and
CDMA2000. All these designs are based on the assumption that the CSI is perfectly
known at the receiver, but unknown at the transmitter.

Since a closed-form bit error rate (BER) expression would serve as an attractive
alternative to previously derived bounds for evaluating the performance of STBC [9]
[10], a BER analysis for Alamouti’s STBC with known CSI is presented in Chapter
2.



1.1.3 Neither the Transmitter Nor the Receiver Knows the CSI

The third category does not require feedback or feedforward information. Instead,
multiple transmit antennas are used combined with channel coding to provide
diversity. An example of this approach is to combine phase sweeping transmitter
diversity [11] with channel coding [12]. Other examples of this approach are
space-time differential schemes.

The design of the space-time codes mentioned above is based on the assumption
that perfect estimation of CSI is available at the receiver. This is reasonable when
channels change slowly compared with the symbol rates, since the transmitters can
send training symbols, which enable the receiver to estimate the channel accurately.
For cases when accurate channel estimation is not possible or the effort associated
with channel estimation is to be avoided, it is of interest to develop techniques, which
do not require CSI. This makes differential schemes an attractive alternative. With
differential encoding/decoding, CSI is not required either at the transmitter or at the
receiver.

Several schemes for dealing with this issue have been proposed in past two
years. Tarokh and Jafarkhani [13] first suggested a differential STBC scheme for a
slow Rayleigh fading channel with two transmit antennas. In this scheme, neither the
transmitters nor the receiver know the CSI. This scheme can achieve a full diversity
gain but its non-coherent receiver performs 3 dB poorer than a coherent receiver
would. The same authors generalized the differential detection for STBC to more
than two transmit antennas [14]. As is the case for single antenna channels, a loss of
approximately 3 dB is always paid for this differential scheme compared to the related
coherent scheme. Hochwald and Sweldoms [15] proposed a new class of differential
modulation schemes for multiple transmit antennas based on unitary space-time
modulation. At the same time, a related differential modulation scheme using group

codes was proposed by Hughes [16]. These schemes utilize constellations of unitary
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matrices or group codes to achieve full transmit diversity without a knowledge of CSI,
but with a loss of about 3 dB in performance. While Tarokh’s scheme has properties
similar to the 2 x 2 unitary matrixes in the paper [15] or the2 x 2 group codes in the
paper [16], it outperforms both.

A BER analysis for Alamouti’s STBC with differential detection is presented in
Chapter 2. Next, in order to narrow the 3 dB performance gap between differential
detection and coherent detection, a multiple-symbol differential detection (MSDD)
technique for Alamouti’s STBC is proposed in Chapter 3. The BER performance
of Alamouti’ STBCs over a spatial and temporal correlated channel with coherent
and noncoherent detection is illustrated in Chapter 4. Then to overcome the
implementation complexity of existing differential multiple-input multiple-output
(MIMO) systems, a new and simple differential detection scheme for DS/CDMA
MIMO links is presented in Chapter 5.

1.2 System Model
Since both Chapter 2 and Chapter 3 deal with issues about Alamouti’s STBC scheme,
the system model for this scheme is introduced here:

Consider a wireless communication system operating over a slow, flat Rayleigh
fading channel in which STBC codewords are sent from two transmit antennas to
Q receive antennas following the procedure outlined in Alamouti’s paper {7]. Each
STBC codeword consists of two symbols transmitted over two time epochs. Let the
codeword index be k and the time epoch index within the codeword be ¢ (t =1,2).
Then, the received signal at time index k, time slot ¢ and receive antenna ¢ is given

as

r9 =E Zh(‘”d‘t) +n®, 1<¢<Q, (1.1)



where h,@ is the path gain from transmit antenna 4 to the receive antenna g. Path
gains are modeled as quasi-static over some frame of arbitrary length, i.i.d. complex-
valued Gaussian random variables with zero-mean and variance 1/2 per dimension.
Path gains are assumed to vary independently frame to frame. The quasi-static
assumption is to ensure that no time diversity masks the effects of spatial diversity,
the main topic of this dissertation. In practical terms, it means that BER is evaluated
based on instantaneous SNR values. Noise samples nch) are modeled as i.i.d, zero-
mean, complex-valued Gaussian random variables with variance Ny/2 per dimension;
dff,)c is the k-th transmitted symbol from antenna 4 at time slot ¢t (£ =1,2); E; is the
total symbol energy from the two transmit antennas.

Following Alamouti’s scheme [7] with coherent detection, STBC codewords Sy

can be expressed as follows

dY 4% s s
ol I e T 0.2
dog ok —S3k Sik

where the symbol ‘*’ denotes complex conjugation, and the symbols s;; € A, where
A is the MPSK constellation

Ao {ej21r(m—1)/M

% Im=12,.. M} , (1.3)

where the factor 1/+/2 is introduced to normalize the total transmit power per symbol
epoch to Fj;.
With differential detection, STBC codewords C; can be expressed

d 4 c c
%= o e sl 0.9
dyj doj —Cr Cik

where ¢;; (1 = 1,2) is differentially encoded [13].



CHAPTER 2

BER ANALYSIS OF MPSK SPACE-TIME BLOCK CODE

2.1 Introduction

Analysis of trellis space-time codes and space-time block codes has been traditionally
based on the union or other bounds. The union bound can be found from the
pairwise error probability. In Tarokh’s paper [6], an upper bound was derived for
the pairwise error probability of space-time trellis codes. The bound is used to
analyze the diversity and coding gains of such codes. Simon improved these results
by obtaining an exact pairwise error probability over the flat Rayleigh fading channel
expressed in terms of the Gaussian tail function Q(-) [17]. A union bound on
the symbol error probability for STBC was obtained in Li’s work [9]. For receive
diversity over the Rayleigh fading channel with coherent detection, a closed-form
expression of the BER was derived in Proakis’ book [18] based on the probability
density function (PDF) of the instantaneous signal-to-noise ratio (SNR). In Lo’s
paper [19], an approzimate expression of the BER was developed for maximum ratio
transmission under the assumption of CSI known both at the transmitter and at the
receiver. By approximating a MIMO Rayleigh channel as a single-input single-output
(SISO) Gaussian channel, an approzimate expression for the BER of certain STBC
was obtained in Bauch’s work [10].

The work presented in this chapter is motivated by the observation that for the
special case of STBC based on Alamouti’s scheme, it is possible to obtain closed-form
expression for the BER. An closed-form BER expression would serve as an attractive
alternative to previously derived bounds for evaluating performance. The expressions
are derived from the PDF of the phase of the received signal. While the procedure

for deriving the BER. applies to any M-ary phase shift keying (MPSK) modulation,
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binary PSK (BPSK) and quartenary PSK (QPSK) examples are worked out in detail.
BER expressions are derived below for both coherent modulation (only the receiver

knows the CSI) and differential modulation (neither the transmitters nor the receiver

knows the CSI).

2.2 Coherent Detection
2.2.1 Receiver Model

Based on Equation (1.1) and Equation (1.2), the received signal model is given by

(9) (@ (@)
T 51, Sok h n

:l; = T :) :I; ’ 1)
Tok —85k Sk hy ngh

where rg"’,g and rg‘fg represent the received signals of antenna ¢ at time slots 1 and 2,

respectively. Converting Equation (2.1) to a more convenient form,

hgq) —h;(")
[ r§?13 —rZ,(,Z) ] = /E, [ S1,k So.k ] h(q) h*(q) + [ ng‘,ll)c _n;fg) ] . (2.2)
2 1

Starting with Equation (2.2), the following convenient form can be obtained

r@ 5o _yn| e e RO _p@
rl g o s, st RO @
2,k 1,k 2k Sik 2 1
(9) *(q)
n, —n
1,k 2,k 2.3)
i

Expressing Equation (2.3) into vector form,

RY = VE,SH® + N?, (2.4)



where the following definitions apply

[ @ @ | [
@ _ | Tk Tk _ Sk S2k
B'=| @0 .| Sk = A
Tok  Tik —Sok Sik (2.5)
@ _ p*@) @ _, |
H@ = b —hy N@ = | Mk T2k
- , N@ = )
i hgﬂ hl(q) | | ngql)c nl,(g)

For QQ receive antennas, the signal model is

Ry = DeH + N, (2.6)

where

R, = [RPRY..R{,
N, = [NONP .. NE,
Dk = Sk@lq,

H = diag[HY H® .. HO], 2.7)

the symbol ® denotes the Kronecker product and 1, is a vector of ones of dimension
indicated by the subscript.
Finally the channel model incorporating all K transmitted blocks can be put in

the following matrix form

R=DH+N, (2.8)

where R = [R1 Ry ... Rx|” is a 2K x 2Q matrix, the superscript denotes

transposition, and both D and N are defined analogous to R.



2.2.2 BER Analysis
It is known that the optimal maximum likelihood (ML) receiver with known CSI is

given by Hughes [16]

7= argmintr {(R— D¢H) (R — DgH)*} , (2.9)

where 7tr” denotes the trace function; ‘f’ is defined as the Hermitian operation;
and D, represents a specific sequence of transmitted messages. The optimal receiver
is based on the entire received sequence (2.8) and since its complexity is exponential
in the sequence length K, a simpler suboptimal receiver is suggested based on only

one received block. In this case, the quadratic detector reduces to:

7 = argméin tr {(Rk - DH) Ry — DgH)t}
= argmax Retr {R,c (DgH)J’}

= argmaxRe tr {RH'1,8¢7}, (2.10)

where S® is a message matrix. The suboptimal receiver in Equation (2.10) can be
interpreted as a optimum combiner that generates the matrices T = Ry H'1q followed
by a decision mechanism. Consider now the properties of the combiner output
Y, where TY! is a 2 x 2 diagonal matrix with equal entries. Exploiting previous

definitions, the (1,1) element of this matrix can be expressed

Q
T = YO (VEhs1x + )
q=1
+h (VB s1p+ 15 P) (2.12)
Due to symmetry considerations, the symbols s x, s, & have the same error probability,

hence just one of the combiner outputs, say Y;, can be analyzed. The BER of s;

can be obtained from the probability density function (PDF) of T;.
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Define the random variables

qu) - h;(q),
Xé") — th),
VO = (VEDs )

v = (VEhPsie+mP) s (2.12)
then T; can be expressed

Q
T, = Z (qu)Yl(Q)* + XQ(Q)Y2(Q)*) . (2.13)
g=1

Conditional on the symbol s;x, the sets (Xi(q),Y;(Q)), i = 1,2, are two pairs of
correlated, complex-valued, zero-mean, Gaussian random variables. The two pairs
are however, mutually statistically independent and identically distributed.

Define Z, = Re(Y;) and Z; = Im(Y,). The joint characteristic function
¥ (jv1, juy) of the random variables Z, and Z; can be obtained using Proakis’ book
[18]. An alternative interpretation to Equation (2.10) is that the phase of T; is
the decision variable for the detection of s14. Define R = /Z2+Z2, and © =
tan~(Z;/Z,).

The goal is to obtain the PDF p (#) , where lower case notation is for realizations
of the corresponding upper case denoted random variables. This is achieved as follows:
compute the joint PDF of Z, and Z;, p(zy, 2), from the Fourier transform of the joint
characteristic function ¥ (jv1, jvs), and from p(z,, 2;) obtain p(r, #), the joint PDF of
the envelope R and the phase ©. By integrating p(r, #) over the variable r, the PDF
p(#). can be obtained. The result can be found in Proakis’ book [18, p. 891]. The
error prabability of the received signal can be obtained by integrating p(f) over the

angle interval complementary to the correct decision.
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According to Proakis’ book 18], the probability of  in an interval is expressed

Cy2@-1(q _ 2\2Q
Pr(fy <0<6) = =D A—-e?)

27 (2Q — 1)!
xS o)~ [ oy, (219

where the function f (b, @) is defined as follows:

1 1—(b/u?>—1)a2
f,a) = b= 12 [“\/ (bl//l; ) cot™! oy
P12
— cot™! 0ib )1, (2.15)
/1= b/ = 1) o
and
—pcos B; .
;= i=1,2. (2.16)

Vb — 12 cos?f;’

The term y represents the normalized cross-correlation between X and Y9, for
1 = 1, 2. To proceed with the BER computation, and with all symbols equally
likely, assume symbol si; has zero phase, ie., sip = 1/ V2. Now, the normalized

cross-correlation is defined

) - 2.17
s (217)
where from Equation (2.12)
@|?
Mgy = E (’Xi" I ) =1, (2.18)
2
since by assumption F ( hSQ)I ) =1,
2
my, = E ( Yi(Q)l )

= E,/2+ N, (2.19)
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since |31,k12 =1/2, and

= E, /2. (2.20)

It follows that the normalized cross-correlation is given by where p = E;/N, is the

SNR per symbol.

BPSK For BPSK signals, the BER can be obtained by integrating the density
function of #, p(#) over the ranges 0.57 < § < 7 and 1.57 < # < 2. Since from
Proakis’ book [18, p. 891], the density p(f) is an even function of # (for any MPSK

constellation), it follows that the BER is given by

P, =2Pr(r/2<0<m). (2.21)

Using Equation (2.14) in Equation (2.21) and after some algebraic manipulations, the

closed-form BER for the non-coherent Alamouti scheme with BPSK is obtained.

When p is large enough, /-2 ~ 1, and 2(p1+2) ~ 5-, then
) 2Q-1 1 q
Ppol— =Y CH(—|. 2.23

By Mathematica, the asymptotic expression (2.23) can be approximated as

22QT (0.5 + 2Q) 2Q
P~ s ()

(2.24)

where T (-) is the Euler gamma function. Obviously, the BER varies as 1/p raised to
2Q
the 2Qth power, and (%) is diversity gain. Thus, with 2Q fold diversity, the BER

decreases inversely with 2Qth power of SNR.
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QPSK In the QPSK case, a Gray code is used to map pairs of bits into phases.
For a transmitted symbol sy, it is clear that a single bit error is committed when
the received phase is if( <pg< %fn, and a double bit error is committed when the

received phase is 37 < 6 < 7. Thus, the BER is expressed as

Py = P.(n/4 <0 <3r/4)+ 2P, (r <0< 3n/4). (2.25)

Similarly to Equation (2.22), the BER for the non-coherent Alamouti schemes with

QPSK modulation for @) receive antennas is obtained
2Q—1
1 [ p 2q 1 \?
Py==-1|1—,/—— E (———) . (2.26)
2 p+4 pr q p+4
and the conclusion for diversity is same as that for BPSK case.

2.3 Differential Detection

2.3.1 Differential Encoding/Decoding
The differential STBC scheme analyzed in this dissertation is the one recently
proposed by Tarokh and Jafarkhani [13] based on the Alamouti transmit diversity
scheme [7]. Follows a brief description of the method.

The STBC codeword S; defined in Expression (1.2), consists of two vectors
[s14 » S2,4] and [—s3, s},], which have unit length and are orthogonal to each other.
Indeed, SkS}Lc = I, where I, is the 2 x 2 identity matrix. The message matrix Sy
is differentially encoded by a procedure resembling standard single-antenna DPSK
[18]. To initialize transmission, the transmitter sends a code unitary matrix Co, for

example

1/v2 1/V2
-1/vV2 1/V2

(2.27)
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The differentially encoded message C;, at time k, k > 1, is obtained by multiplying

the codeword at time k — 1, C;_; by the current message S;, namely

Ci = SiCs_1. (2.28)

This process is initialized with C; = S;Cy. These relations are similar to single-
antenna DPSK. The only difference is that the variables here are matrices rather
than scalars.

The description in Equation (2.28) is consistent with the encoding algorithm in

Tarokh’s paper [13]:

Cik C1,k-1 —€3 k-1
= S1,k + sok . (2.29)

Cok C2,k—1 k-1

Note that the codeword Cy, has the same unitary property as the message matrix Sy.
Indeed, from the definition (1.4) it is easily verified that C xC! = I,. Obviously, if the

codewords Cy, are observable at the receiver, the messages Sy can be decoded from
CiCL_, = $xC;1Cl_, = S;. (2.30)
2.3.2 Receiver Model

Based on Equation (1.1) and Equation (1.4), the signal model at the receiver for the

two time slots associated with each codeword is given by

(9) (® (@)

T c h n

:’; ~VE | ™ Ok : ) + 2’; ) (2.31)
Tz?k _G’z“,k 01*,1; h2q ”’2?k

where earlier definitions apply. Starting with Equation (2.31), at the output of each

receive antenna, the matrices are formed as R}cq), 1<¢<@Q,

RY = C,H® + N©, (2.32)
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where
(9) *(q) (e} 2)
T —r c c
Ry = :ql; 2(qk) > Cr= k(z)* (’i)*
Tok Tk -G G
(@) _p(@+ @ _, (@=
e R A s
i h2Q) hlq n2?k "1(,1k

Note that this construction ensures the unitary property of Rg’) independent of the

values of rg‘f,)c and 'rg,’,z. For @) receive antennas, the signal model is

Ry = DyH + Ng, (2.33)

where
R, = [R{ORY . R, Ne= [N NP .. N,

D, = Ci®1q, H=diag[H" H® ... H?], (2.34)

Stemming from the unitary property of Cj, the matrices D, have the property
D.D! = QI,, where I denotes the identity matrix of dimension indicated by the
subscript. Likewise, Dy = SigDi_;. Finally the channel model incorporating all

K transmitted blocks can be put in the following matrix form

R=DH+N, (2.35)

where R = [R; Ry ... RK]T is a 2K x 2@ matrix, and both D and N are defined

analogous to R.

2.3.3 BER Analysis
It is known that the optimal maximum likelihood (ML) receiver with unknown CSI

is given by Hughes [16]

7= arg max tr {R*DgDZR} , (2.36)
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where Dy represents a specific sequence of transmitted messages. The optimal receiver
is based on the entire received sequence (2.35) and since its complexity is exponential
in the sequence length K, a simpler suboptimal receiver is suggested based on only

the last two received blocks. In this case, the quadratic detector reduces to:
] QL QS®i Ry

Qs® QL Ry
= argmaxtr {R]_ Rt + R} ,SO'Ri + RISOR,1 + RIR}

¢ = argmaxtr [RL_l R}

= argmax Retr {R,’g_ls(‘ﬁRk }

= argmax Retr {S(l)kaR;_l} , (2.37)

where S® is a message matrix, and the identity tr {AB} = tr {BA}is used. The
suboptimal receiver in Equation (2.37) can be interpreted as a demodulator that
generates the matrices Gg= RkR;'c_l followed by a decision mechanism. Consider
now the properties of the demodulator output G. Exploiting previous definitions,

the (1,1) element of this matrix can be expressed

g = g{(|hgq)'2+lhgq)|2) 0

1 * * * *
+h (ci | — i + DO (2)1/?')*”%_1)

2 1)* 2)% 1 *
+hY (C( 0+ % 4 (22 Pn) 1 P ) )} (2.38)

where v = R /B?, i = 1,2, is a random variable and second order noise terms

were neglected. It follows that the complex scalar g can serve as a decision statistic

for the detection of the message symbol sg). In Equation (2.38), let

ng) — h(q)

Xé") — h(a)

yl(q) - h(Q)* m +C(l) (q)* ' cff)’;n(q) +c (1)* (q) (q) (2) (q)ngzl)e 3

Y2(<1) — h(q)* (1 +c(2)n(q,):_ L+ cg)*lng’)* 6552)*;,/2(;1)”&(5’)C (¢1)ngq’)c .- (2.39)
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Then g can be expressed

g= zQ: (X{q)l/l(Q) + Xéq)yz(q)) _ (2.40)
g=1

Consider the properties of the random variables defined in Equation (2.39). Under the
assumptions delineated in the Section 1.2, all these random variables have zero-mean.
Clearly, X@, X{© are independent and identically distributed (i.i.d.) complex-valued
Gaussian with unity variance. The variates Yl(q), Yz(q) require a bit more careful
consideration due to their dependence on 1/@ and Vé‘”, respectively. It is not difficult
to show that /9 are of the form @ = exp (—j24) , where ¢ is a uniformly distributed
phase in the interval (—m/2,7/2). It follows that multiplication by qu) does not affect
the distribution of complex Gaussian variates in Equation (2.39).

It is easy to see that pairs (Xi(q),Y;(“')) ,i=1,2,¢g=1,...,Q, are correlated,
complex-valued, zero-mean Gaussian. Moreover, it can be shown that E [1/1('1)1/2(‘1)*] =
0, but details are omitted here due to space considerations. Based on these
observations, it is concluded that the pairs (qu),},;(q)) are i.i.d. This conclusion
facilitates the application of known results for the development of BER analysis.

Repeating the procedure carried out for the coherent case, define Z, =
Re(g), Z = Im(g) and R = /Z2+ 72, © = tan"'(Z;/Z,), and obtain the
PDF p(f) in the form Proakis’ book [18, p. 891]. This PDF is a function of the
cross-correlation ji4 defined in Expression (2.17). The following quantities are required

for the computation of yg:

Mgz = E ([X,.(‘”r) =1, (2.41)
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and

My = E(y;(‘l)r)

E, N «
- Sl (el )
= %+2N0, (2.42)

2)%
lcgc )1

where the unitary property of the matrices Cy is exploited.
Finally, assume that the transmitted symbol has zero phase, i.e., 515 =1 /2

and compute
My = E (Xi(Q)}/i*(q))

- VE, /2. (2.43)

It follows that the normalized cross-correlation for differential STBC is given by

Pd
— — 2.44

where the subscript is used to distinguish between the coherent and differential cases
and the SNR per symbol py = E,/2Nj is half of that in the coherent case.

Repeating the argument and steps used for coherent case, the BER for BPSK
differential STBC is given by

P 1= [P QQ_ ( 1 ),, (2.45)
- 1 ). 45
= pa+ 52 pore 2 (pa+2)

For QPSK differential STBC, the BER is

2Q— q
1
Ppar = [1-, [_Pd_ ) 46
todift = Pd + 4 (Pd + 4) (2.46)

Note that Py gier, Pu ait, have the same expressions as Py, and Py, respectively,

but the definitions of p; and p are different.
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Figure 2.1 Comparison of analysis and simulation with coherent and differential
detection in BPSK case (1 bit/s/Hz).

2.4 Numerical Results
Numerical results are provided to demonstrate the analysis developed in this
dissertation and to compare it with simulation results.

Figure 2.1 shows the BER versus the SNR for binary coherent and differential
Alamouti’s STBC. Curves were obtained both by analysis and simulations as indicated
by the figure annotations. A very good match is observed between the analysis and
simulation. The slight bias at low SNR for the differential case can be attributed to the
second order noise terms, which were neglected in the analysis. Figure 2.2 presents
the case of coherent and differential STBC with QPSK modulation. The figures
confirm that an approximately 3 dB performance gap exists between the coherent and
differential schemes. Note that the performance for differential STBC with QPSK is a
little better than Tarokh’s results [13] since bits are mapped to QPSK symbols using

the Gray code.
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Figure 2.2 Comparison of analysis and simulation with coherent and non-coherent
detection in QPSK case (2 bits/s/Hz).
2.5 Conclusions

Closed-form expressions of the BER for coherent and differential schemes based on
Alamouti’s STBC were derived. The channel model assumed was slow, flat fading
Rayleigh. While the procedure outlined is applicable to any MPSK modulation,
explicit BER expressions were obtained for BPSK and QPSK. Comparison of
analytical and simulation results validates the new expressions. The closed-form
expressions show that approximately 3 dB SNR loss is incurred by the differential
scheme compared to the coherent case. The method presented is extendable to other

MIMO channels.



CHAPTER 3

MSDD FOR MPSK SPACE-TIME BLOCK CODES

3.1 Introduction

Multiple-symbol differential detection (MSDD) was first presented for one transmit
antenna over the additive white Gaussian noise (AWGN) channel by Divsalar and
Simon [20]. By extending the observation interval to more than two symbols, the
technique makes use of maximum likelihood sequence detection instead of symbol-
by-symbol detection as in conventional differential detection. The performance of
MSDD depends on the number of observation symbols. For a moderate number of
symbols, MSDD bridges the performance gap between non-coherent and coherent
communications. In Divsalar’s and Ho’s papers [21] [22], MSDD was applied to the
flat Rayleigh fading channel.

Motivated by MSDD, Fan [23] extended the observation interval of differential
Alamouti STBC [13] to 3 blocks. As a result, a performance improvement of about
0.5 dB for BPSK messages was demonstrated. In addition, Bhukania et al. [24]
expanded MSDD idea to the STBC scheme in Hochwald’s paper [15] for 3 blocks and
incorporate knowledge of fading correlation, assuming that the channel changes once
per block.

In this chapter, differential Alamouti’s STBC for larger observation intervals is
generalized. The decision metric for N blocks of observation interval is derived. It
is shown that for an observation interval of N = 8 blocks there is a gain of about
1.5 dB over differential Alamouti’s STBC with two blocks. Moreover, based on the
generalized decision metric for an observation interval of N blocks, a closed-form
pairwise error probability for BPSK STBC is derived , and an approximate bit error

rate is obtained to evaluate its performance.

21
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3.2 Receiver Model
Based on the system model in the Section 1.2, to simplify notation and with no
loss of generality, assume that there is only one receive antenna. Note that the
differential Alamouti’s STBC scheme consists of sending the code matrix C; rather
than message matrix S; directly, where Cy, is differentially encoded by Expression
(2.28). Now, observe the received signals when the differential code matrix Cy is
transmitted. From Equation (1.1) and Equation (1.4), the corresponding received

signals can be written

T, Cik C2, h n
1k —JE 1k C2,k I , (3.1)

Tk —C5k Clk ho Tk

where 1 ; and 754 represent two received signals at time slots 1 and 2, respectively.
Paralleling Equation (3.1) and using matrix notation, the signal model at the

receiver for the two time slots associated with each codeword is expressed

R; = VE,CHy + ¥y, (3.2)
where
Tk —Tok Clk  Cok
Rk = ) Ck = I
Tok  Tik —CGk Clk (3.3)
hiy —h3 n -n’
He=| , W= | e
hy R} Tigk Ny

For the MSDD signal model, consider an observation interval consisting of N
blocks of symbols, where, consistent with differential decoding, each block is defined
as two symbols at two time slots. A frame consists of L symbol blocks. The channel
is assumed constant during a frame, which implies that the channel is fixed during

the observation interval. Starting from the kth block Ry, the received sequence can
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be expressed as

R=ECH+ 1V, (3.4)

where

= [ReRpoq - Rewia]”
diag {Cg, Cg_1, ...Cx_n41}

= [HpHi ... Henia)”

@ o QO W
I

= [Ug Ty oo Pponia]” (3-5)

The matrices R, H, and ¥ are 2N x 2 and C is 2N x 2N. For convenience, the
2N x 2N matrix S = diag {Sk, S¢_1,---Sg—n+1} is also defined.

3.3 Decision Metric for MSDD
3.3.1 Coherent Detection
Assume that the observation interval consists of N blocks. If the CSI is known, from
Expression (3.4), conditioned on the transmitted symbols C and the channel H, the
matrix R is a complex-valued, zero-mean Gaussian random matrix. Its probability

density function (PDF) is given by Hughes [16]

p(RIH,C) = # exp {— tr [(R— \/EZCH)H (R- \/E‘_CH)] } . (3.6)

If the code matrices are equally likely, the optimal receiver is the maximum-likelihood

detector [25] and can be simplified so that C can be detected by

C = arg_ max _ p(RIHC)

C1,k—i; C2,k—i€

= arg_ max Retr [HH(N'JHR] (3.7)

€l,k—is C2,k—i€EF
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The optimal receiver utilizes the entire receive sequence (3.4). Since its complexity
is exponential in the sequence length N, a simpler suboptimal receiver can be

constructed utilizing only the last two received blocks. Simplifying Equation (3.7),

[6k_1 6k] = arg max Retr [Hféka+Hf_16£I_le_1] . (38)

C1,k—i» Co,k—iEF

If C;, is differential encoded by Equation (2.28), then the detector is equivalent

to

[6k_1 §k] =arg_ max __Retr [Hféf_lgkRk+Hf_16,’:_le_1] . (3.9)

C1,k—i) C2,k—i E€F

Expression (3.7) and (3.9) are the decision metric for the case that channel is
known, but the author is concerned with the decision metric for situations when the

channel is unknown.

3.3.2 Non-coherent Detection

Assume that the observation interval consists of N blocks. If the CSI is known, from
Expression (3.4), conditioned on the transmitted symbols C and the channel H, the
matrix R is a complex-valued, zero-mean Gaussian random matrix. Its probability

density function (PDF) is given by Hughes [16]

p(RJH,C) = #exp {- r [(R— VECH)' (R- \/ECH)] } . (310)

If the code matrices are equally likely, the optimal receiver is the maximum-likelihood

detector [25], so C can be detected by

C = arg_ max _ p(RHOC)

Ci,k—i) C2,k—i€

= arg_ min tr [(R—\/E_'S(NZH)T (R—\/E_;(Z‘H)] . (3.11)

C1,k—iy C2,k—i€A

Expression (3.11) is the decision metric for the case that channel is known, but the

author is concerned with decision metric for situations when the channel is unknown.
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Differential encoding can be applied when the channel H is unknown, but
fixed over some time intervals. In this case, the transmitter sends the code matrix
C. instead of sending messages S, directly. For a block of N observations,
the received matrix R given that message matrix S is transmitted (through code

matrix C) has a multivariate Gaussian conditional PDF

p(R|S) = exp{— tr (R'"A"'R)}, (3.12)

1
()™ det A

where A is the covariance matrix of R, A = E{RR|S}. Since path gains are assumed

constant during a frame, H; = H;, ¢ # j, hence,

E [(\/ECH +9) (VECH+ \1:)*]

= E[E,CHH'C' + ¥¥']

A

= E,C(I, ® 1y5) C' + NoLay, (3.13)

where 1y represents an N x N matrix with all elements equal 1.
Using the unitary property of the matrix C, it can be shown that det A is
independent of the messages Sg, Sg_1,-..Sk_n+1-

Define the matrices A, F, B, and D:

A = Noby, (3.14)
F = E,Lpy, (3.15)
B = CL.®1nx1), (3.16)
D = (I,®1ya) Cf, (3.17)

where 1y4; is a vector of ones. Then Equation (3.13) can be expressed as A =

BFD + A. Using the matrix inversion lemma [26]

(A+BFD) ' =A"'— A"'B(F'+DA'B) 'DA, (3.18)
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and Equation (3.13),

1 E,

A= 1 — s
No ¥ No(E, + Ny)

C(I,;®1y)C'. (3.19)

Since the natural logarithm is a monotonically increasing function of its
argument, maximizing p(R|S) over S in Equation (3.12) is equivalent to maximizing
In (p(R|S)) over S. Choosing the sequence S to maximize logarithm of Equation

(3.12), results in the decision metric

A = tr[~In(detA) - (R'A-'R)]
E,

}KF(E—J\FRT (CI.®1x)C)R| (3.20)

= ftr [— In(det A) — NLRfR +
0

As det A, R'R, Ny, and E, are independent of transmitted messages, they can be

ignored. Then the decision metric becomes:

=tr[R'C (I, ® 15) C'R]. (3.21)

Expanding Expression (3.21), the metric can be expressed

[N—-1N-1
o= tr ZZRL_iCk_iCL_ij—j]

| i=0 j=0

[N—1 N-1N-1
= tr|Y Ri ,Cp.iCL ,Rk-,] +tr [Z > Rf CiiC] _]Rk_,]
itj

| =0 i=0 ;=0

N-11i-1
= T +2Retr [Z > R} ,CrCl_ ij_j] : (3.22)

i=1 j=0

where

N
T =tr [Z R! _,.ck_,-c;_,.Rk_,-] : (3.23)

1=0
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and ”"Re” denotes the real part. Due to the unitary property of C;_;, T is independent

of the transmitted symbol sequence. Thus the decision metric becomes

N—1i-1
Z ZR;—iCk—iCL—ij—j} . (3.24)

i=1 j=0

7 = Retr

Using the identity for the trace function [26],

Retr [R}_,CxiCl Rp ;| = Retr [Ri R} ,CiiCl |, (3.25)

from Equation (3.24), (3.25), and (2.30),

[N—-1i-1

n = Retr Z ZRk—jR;c—iCk—iC}:t—j

| =1 ;5=0

N-1i-1
= Retr Z ZRk—jRL—i (Sk_j...Sk_,;H)t} . (3.27)

Li=1 j=0

(3.26)

The differentially encoded message S can then be detected from

N-1i-1
= ~ o~ ~ 1
S = arg  max ARe tr [Z ZRk_jR;[c—i (Sk_jSk_j_l...Sk_iH) :i . (328)

81, k—1s 32,k—i €
1,k—1%s 32,k—1 i=1 j:()

This is the MSDD decision metric for an observation interval of N blocks. Notice
that no channel information is required for the signal detection. For an observation
interval of N blocks, there are N — 1 message blocks (the first block C; does not
contain information). Each block contains two unknown symbols. Hence, for M-PSK
symbols, there are M%¥—1 possible message block sequences Sk, Sg_1, -..Sk_n2. As
in single antenna MSDD, the complexity of the receiver increases exponentially with
the length of the observation interval.

Next, the special cases of N = 2 and N = 3 is discussed.

Two-Block Observation Interval When N = 2, Equation (3.28) becomes

Sg=arg_max Retr {RkR};_lg;‘c} . (3.29)

81,k,82,5€A
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Let S; be the message matrix that is differentially encoded and transmitted. Then

RiRL_, = (lhial +1hoi?) EsSk+ v E,CH Y],

+VE U H!_Cl , + 9] . (3.30)

Equation (3.30) is similar to the expression (26) in Tarokh’s paper [13]. MSDD
is a generalization of the differential space-time codes in Tarokh’s paper [13]. The
notation not only enables to express the MSDD decision statistic, but also provides

a simpler way to express known results for two blocks observation interval.

Three-Block Observation Interval Another special case of interest is an
observation interval of N = 3. A receiver scheme with significant notational
complexity was suggested in the paper [23]. Once again, the notation provides a
simple decision statistic expressed as a special case of Equation (3.28). Sg, Sg_; can

be detected by

[gk §k—1] = arg_max Retr {RkR£_1§L+

31,k,92,6 €A

~ ~ o~ 1
ReiR} 8], + ReR], (S:8i1) } (3.31)

Using decision metric in Equation (3.28), blocks of differentially encoded signals
can be detected by observing intervals of different lengths. Figure 3.1 and Figure
3.2 consist of curves for various observation intervals and for BPSK and QPSK
modulations, respectively. The curves for N = 2 correspond to the scheme suggested
in Tarokh’s paper [13]. Indeed these curves match those in the reference. The curve
for N = 3 in Figure 3.1 matches well the results in Fan’s paper {23]. Note that there
is an almost 0.5 dB improvement by increasing the observation interval from N = 2
to N =3.

Since the computation complexity of the decision statistic in Equation (3.28)

increases exponentially with N, results for observation intervals of only 8 blocks (16
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Bit Error Probability
-
(=3

107 i i i ] i ) ]
6 7 8 9 10 1 12 13 14
SNR(dB)

Figure 3.1 Multiple symbol differential detection for space-time block code with
BPSK signal. Bit Error Rate versus SNR for different length of observation interval,
2 transmit antennas, 1 receive antenna.

symbols) are presented. For BPSK and N = 8, there is about 1.5 dB performance
improvement compared to the conventional differential detection. This implies a 1.5
dB and 1 dB gain, respectively, over previously published results for 2 and 3 block
observation intervals.

For comparison, by utilizing decision metric (3.9), the simulation results for
differential Alamouti STBC and regular Alamouti STBC with coherent detection
(for regular STBC, only an observation interval of one block is needed) have also
been obtained, which are represented by ”Coh-Diff” and ”Coherent” in Figure 3.1
and Figure 3.2 respectively. It appears that those curves will converge to the one for
differential STBC with coherent detection for both BPSK and QPSK modulation.

Through theoretical analysis, this observation result will be verified later.
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Bit Error Probability

6 7 8 9 10 7] 12 13 14
SNR(dB)

Figure 3.2 Multiple symbol differential detection for space-time block code with
QPSK signal. Bit Error Rate versus SNR for different length of observation interval,
2 transmit antennas, 1 receive antenna.

3.4 Performance Analysis
Before addressing performance analysis, some theorems are provided ( without proof
due to space constraints ) :

Theorem 1: If A,B are two 2 x 2 orthogonal real matrices, then AB = BA.

Theorem 2: If A,B are two 2 x 2 orthogonal complex matrices, then
Retr(AB) = Retr(BA).

Theorem 3: Assume that A,B are two 2 X 2 orthogonal complex matrices,
if C = AB, and D = A + B, then C is an orthogonal matrix, and D is an unitary
matrix.

Theorem 4: If A is a 2x2 unitary complex matrix, then Retr(A) = Retr(A').

Theorem 5: Assume that ® is a 2 X 2 unitary random complex matrix, each
element of which has zero mean and variance Ny /2 per dimension, Hy, is a 2Xx2 unitary

constant complex matrix defined in (3.3), and A is a 2 x 2 orthogonal real constant
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matrix, then the mean E [Retr(AH,®)] = 0, and the variance Var [Re tr(AH,®)] =
2 (|ha]? + |ha|?) No.

Theorem 6: Assume that ® is a 2 x 2 unitary random complex matrix, each
element of which has zero mean and variance Ny/2 per dimension, Hy, is a 22 unitary
constant complex matrix defined in (3.3), and A, B are two 2 X 2 constant unitary

real matrices, then

cov {Retr(AH;®), Re tr(BH,®)}

= No (1haf” + |ho/*) Retr(ABY). (3.32)

Theorem 7: Assume that ®,¥ are two 2 x 2 unitary random complex
matrices, each element of which has zero mean and variance Ny/2 per dimension
and A,B are two 2 x 2 unitary constant complex matrices, then the mean
E {Retr(®A)Retr(¥B)} = 0.

Suppose that the messages sent at each block are the same BPSK messages,
namely, S = S, . Since errors occur during transmission of code matrix Cy due to
channel fading and noise, after differential decoding, assume that the message Ej in

each block is detected, where

S1¢ 52, €1k €2k
S¢ = L E , (3.33)

—S2¢ S1¢ —€2k €Lk

and ey esr € A, which is defined in Expression (1.3). Obviously E,Jﬂ}‘c =1I,. In
order to measure the difference between S and Ej, define Dy = EkS};. So the matrix
distance between S; and E; can be expressed to Retr (I — Dx). When no error
occurs, Dy = I, so Retr (I — Dg) = 0. Meanwhile, DkD}; =I5, so matrix D; has

the same orthogonal property as the message matrix Sy and code matrix Cy. Since
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D, Di_1, ...D¢_n.2 are orthogonal matrices, from Theorem 3,

Retr (I, — Dka—l-uDk—-N+2) > 0. (334)

Now, the code matrix is observed. Recall that code matrices Cg,
Ck_1, ... Cr_n41 are transmitted instead of transmitting message matrices
Sk, Sk—1,.-Sk_n42 directly. Due to the influence of fading and noise, suppose
that while Cg, Ci_1, ... Ci_n1 are transmitted, Qg,Qg—1,...-Qr—n+18r€ actually
received which causes that the differentially decoded message matrices Sg, Sg—1, ...
Si—ni2 to be transformed to the error message matrices Eg, Eg 1, ... Eg_nyo.

Obviously

Qr = ExQi1 = EE; 1 Ey 9. Ep n2Cr—n115 (3.35)

and QkQL-] = E;. Since Cx_; and Q4_;, (2 = 0,...,N — 1) are orthogonal real
matrices when BPSK messages are employed, from Theorem 1, the difference between

Cr_; and Qx_;, (i = 0,..., N — 1) can be expressed as

Retr {Qk_,»C,*c_i} = Retr {Dg_;Dj_;—1---Dr_ni2}- (3.36)

From Equation (3.26), the decision value for a correct decision can be expressed

N-1i-1
ho= Retr {Z 5 (R ChiCL) } , a1

i=1 j=0

and the decision value for an erroneous decision can be obtained by

N-1i-1
e = Retr {z Z (Rk..jRL_iQk—iQZ_j) } . (3.38)

i=1 j=0

3.4.1 Closed-Form Pairwise Error Probability
If the receiver decodes to E when S is actually sent, the error decision value 7, for

E should be greater than the correct decision value 7, for S, the error probability
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P (S — E|S) given S is usually defined as pairwise error probability. Here, it can

be expressed as
P(S—E[S) = P(n.—n.>0S)

= P (Ii-:l §Retr ((I)k—i,k—j) > 0) . (3.39)

i=1 j=0

Substituting Expression (2.32) into Equation (3.37) and (3.38), utilizing

Theorem 1 and 2,

Retr {q)k—-i,k—j}

12

E;Retr {Hk-iHL_j (Dg—jDg—j1---Dp—it1 — 12)}
+v/F, Retr { Ce_jHi ;9] Qu Q) ; + ¥ssHL ,CLQi-iQ};
~CpjHi ¥} CiiCL, — W HE CL GOl ) (3.40)

Note that the second-order noise terms in Expression (3.40) are ignored since they
are quite small compared to other noise terms when SNR is large enough. Meanwhile,

path gains Hy_;, Hy_; are assumed to be unchanged during a frame.

Let
N-1i-1
A = 35 Retr{®_ix;}
i=1 j=0
= —E, (" + |hal) p+ VB, Retr (A), (3.41)

where the MSDD distance is defined as

N—-11i-1
p=Retr {Z Z (I — Dk—jDk—j—l---Dk—i+1)} ’ (3.42)
i=1 j=0
and
N-1i-1
A= {Ck—ij—j‘I’L_iQk—iQI_j + 0 H}_Cl_Qe-Qf

Il
—
I
=}

i=1 j

—Cy—Hy-; ¥}, _,CiiCl_ _‘I’kﬁ'H;rc—iCl:—iCk—iC};—j} : (3-43)
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Since Q—i, Qx—j, Cr—i and Cy_;can be regarded as constant orthogonal matrices
when S and E are given, Expression (3.41) can be regarded as the sum of a constant
2 and some Gaussian random variables. Note that the elements of the unitary
noise matrices Wy_;, Wy_; are zero-mean. By Theorem 5, E [Retr(A)] = 0, where
E[-] denotes the mathematical expectation. Since p is assumed to be a constant

when S is given, the mean of A is only related to Retr(A). Finally,

E{A} = —E, (|} + k) p. (3.44)

However, the variance of A is more complicated, because some terms in Expression
(3.43) are correlated, although most of the terms are assumed to be mutually
independent. Through Theorems 1 to 7, it is proved in Appendix A that the variance

of A can be expressed as

Var {A} = E,;Var [Retr(A)]

= AN(N —1) (haf* + [2”) EoNo

2

-1 ¢-1

+2(N - 2)E3N0 (|h1l2 + lhg‘Q) Re tl‘{ (Dk._jDk_j_1...Dk—i+1 + 12)}

i

~

- O

N-1i—
_4(N — I)ESN() (|h1|2 + |h2|2) Retr { (Dk—jDk—j—l---Dk-i+l)} ,(3.45)
i=1 j=0
where Var [-] denotes mathematical variance.
Note that

N-1i-1

Y L=N®N-1). (3.46)

i=1 j=0

Then Expression (3.45) can be simplified to

Var {A} = 2Np (|h1[* + |ho[*) E,No. (3.47)
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From Expression (3.39), (3.41), (3.44) and (3.47),

P; (S — E|S) = Pr(ne > nc|S)
= P.(A>0|S)
Q (o (P + 1) 2) (3.48)

where ‘Q’ denotes Q function and v is defined as E,/N,, SNR per symbol.

Define the instantaneous SNR. as

=73 Ik, (3.49)
=1

using the alternative form of the Gaussian Q-function [17], then

P8 —ES) = Q(V(/i2Nm)
= %/jﬂ exp (——(—/;Z:ifl\;—?b) de. (3.50)

Since the PDF of -, can be obtained in Proakis’ book [18], then

RS —ES) = [ Q(VONm) ptwdr (351)

Using the integration tool in Win’s paper [27] for Equation (3.51),

P.(S—E|S) = % [1 —p— %u (1- ,ﬂ)] , (3.52)

_ | _(p/2N)y
B=\ G2y +2 (3.53)

3.4.2 Approximate Bit Error Rate

where

The error probability (3.52) of the pairwise message matrix error event

{S— E} as the event, at which the receiver decodes into message
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matrix F when S is actually transmitted, has been obtained. Let
W =(81 k—i> 52,k—i» --+S1,k~N+2> S2,k—N+2) Tepresent a sequence with 2(N — 1)log, M
information bits, and G=(e; g—i, €2,k—i> ---€1,k—N+2, €2,k—N+2) denote an error sequence
with the same number of information bits. The BER P, given S is union-bounded
by Divsalar’s and Liu’s papers [20][28]

1

B < SN T)iog, 7 Y o(u,@)P, (S —ES), (3.54)

S#E

where ©O(u, 1) represents the Hamming distance between sequence u and . The
pairwise message matrix error rate P, (S — E|S) is given by Equation (3.52). M
represents the modulation level (M = 2 for BPSK) and 2(N — 1) log, M denotes the
total number of transmitted message bits.

From Equation (3.52) and (3.53), it is evident that if ¥ and NV are fixed and p —
o , then g = 1 and P (S— E|S) — 0. Since dP, (S — E[S)/dp <
0, P.(S — E|S) is a monotonically decreasing function of the MSDD distance
p. Moreover, it is shown in Appendix C that, when v and N are large enough,
P(S — E|S) ~ 1/p?. Hence, at a given SNR (v is constant), it is expected that the
minimum p will dominate the union bound (3.54), and this BER analysis approach
was adapted in Divsalar’s and Lao’s papers [20][29] as well. The expectation can be
verified by some special cases illustrated as follows.

To simplify the analysis, assume that all the BPSK message symbols are
1/ VZs. There are three cases to describe the error event for one block by the
matrix distance: (i) If no symbol error occurs, then Retr(Is — Dg) = 0. (ii) If
one-symbol error happens, then Retr (I — D;) = 2. (ii) If two-symbol error occurs,

then Retr (I, — D) = 4.

Case 1 N=2 From Expression (3.52), when N = 2, there is only one-block

message S;. One-symbol error and two-symbol error probably occur for this case.
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For one-symbol error, Retr (D;) = 0, then p; = 2, ©;(u,u) = 1. For two-symbol
error, Retr (Dg) = —2, then p; = 4, Oy(u,d) = 2. Apparently, the minimum
P (Pmin = 2) is only caused by one-symbol error. If only the minimum p is considered,

from Expression (3.54)

1 1
B~ 1-p—-u(1-p?)]. 3.55
b 2[ k(1 llﬂ (3.55)
where p = , /L. The expression (3.55) is exactly the closed-form error bit rate for

y+4°
differential detection with an observation interval of two blocks derived in the paper

[30], which verifies that one-bit error dominates the performance in this case.

Case 2 N=3 When N = 3, there are two blocks of messages S; and Sk, so
the number of total information bits is 4. Since there are too many cases when
errors occur, only some dominant terms in Expression (3.54) are considered. By
calculating p for any case, it is evident that the minimum p (pmin = 4) is only caused
by one-symbol error and two-symbol error. If only the minimum p is considered, from

Equation (3.54), the approximate BER is

U
*%P— —%(Lﬁﬂ] (3.56)

where p = /-15.

Case 3 N — oo In the general case for arbitrary N, the dominant terms in the
union bound (3.54) occur for the sequence that results in the minimum value of p. By
analysis, it is found to be a general rule for this scheme that only one-symbol error and
two-symbol error can generate the minimum value of p, and pmin = 2(N — 1), which
is shown in Appendix B. Since there are 2(N — 1) solutions for one-symbol error

and (N — 2) solutions for two-symbol error when pmin occurs, and a total of 2(N —
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1) information bits are transmitted, then the approximate BER is

1%2(N—1) 4y 2% (N—-2)
B~ oD P,,“+————2(N_1) P®,
= %[l—u—%ﬂ(l_ﬂ?)]
R | T
where
(N —1)/N]y (3.58)

(N-1)/Nly+2"

Obviously, Equation (3.57) can be used in the special cases for N = 2,3. If N —

00, then y — ﬁg, S0
Py~ 2x L 1—u—1u(1—u2) . (3.59)
2 2
Note that the pairwise error probability
1 1
Plfl) = Pb(2) =3 [1 — U 5” (1 — ,uz)] . (3.60)

When N — oo, p — ,7—13, so Expression (3.59) is exactly the closed-form BER for
differential STBC with coherent detection (D.11) derived in Appendix D. Hence, the
approximate BER of this scheme (3.59) approximately converges to the performance
of differential STBC with coherent detection for a given SNR, which is identical with

the MSDD results for receive diversity [29].

3.5 Numerical Results
Numerical results are provided to compare the analysis and simulation result. The
simulation is carried out over a quasi-static, flat Rayleigh fading channel, for which
the channel gains are assumed to be constant during a frame, but changes from frame

to frame.
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Figure 3.3 Asymptotic characterics of MSDD for STBCs over two transmit
antennas( 14 dB SNR, BPSK, 1 bit/s/Hz).

By fixing the SNR at 14 dB, and the theoretical BER versus the length of
observation interval N is shown in Figure 3.3. Since the computation complexity
increases exponentially with the increase of N, only the simulation result for a
moderate N = 2,3, 6, 8 is provided. The simulation results for coherent detection are
also illustrated. With increasing of N, the BER for MSDD of STBCs will converge
to the blue dotted line, which is the approximate BER for differential STBC with
coherent detection.

In Figure 3.4, the theoretical and simulated BERs versus the symbol SNR
(= E;/Ny) for N = 2,3,6 are plotted. The analysis and simulation results match
well when the SNR is large enough. Moreover, with a growing of the number of
observation interval blocks, the performance gets better and converges. When N
goes to infinity, the BER, of MSDD converges to the BER for differential STBC with

coherent detection.
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Figure 3.4 Theory and simulation result for MSDD of STBC.

3.6 Conclusions

A multiple-symbol differential detector was proposed for space-time block codes, in
which neither the transmitters nor the receiver know the channel state information. A
generalized decision metric for an observation interval of N blocks is derived. It was
shown that previously published differential STBC schemes can obtained as special
cases of MSDD. Simulation results demonstrated that MSDD can greatly improve
the performance of differential STBC. Previously proposed schemes utilizing a two
and three block observation interval incur a SNR performance loss of 3 and 2.5 dB,
respectively compared to related coherent detection for BPSK or QPSK modulations.

The performance analysis of multiple-symbol differential detection for MPSK
space-time block code was presented. Based on the generalized decision metric
for an observation interval of N blocks, a closed-form expression of pairwise error
probability was derived, and the approximate bit error rate for this scheme is analyzed.
Theoretical and simulation results showed that MSDD technique can greatly improve

the performance of differential STBC, and is much better than the conventional
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differential decoding approach, which has approximately 3 dB SNR loss compared
to related coherent detection. However, when N goes to infinity, the performance for
differential scheme with MSDD technique will converge to the BER for differential
STBC with coherent detection.



CHAPTER 4

BER PERFORMANCE OF STBC OVER A SPATIO-TEMPORAL
CORRELATED CHANNEL

4.1 Introduction
In Chapter 2, the BER performance of Alamouti’s space-time block code over a
2x N flat Rayleigh fading channel with coherent and noncoherent detection have been
analyzed, where no spatial and temporal correlations among channels are considered.
Since the transmission matrix for two transmit antennas is unitary matrix which
allows simple differential encoding with linear complexity, full spatial diversity is
obtained with both detections.

When the transmission paths are correlated due to limited antenna spacing,
there is some performance degradation due to loss in diversity. The idea of including
spatial correlation at the receiver has been discussed in Hart’s paper [31] for receive
diversity. It is shown that exploiting spatial correlation at the receiver does not
substantially improve the bit error rate (BER) compared to the receiver without it.

For a time-varying channel, a differential STBC using nonconstant quadrature
amplitude modulation (QAM) constellations, which increases the minimum distance
compared with that of the conventional differential STBC using PSK, was proposed in
Hwang’s paper [32]. The effect of temporal correlation on this scheme was illustrated
according to different temporal correlation. It is obvious that the performance of this
scheme is degraded over a fast fading channel with the change of Doppler frequency,
however, no spatial correlation was discussed.

This chapter concentrates on performance analysis for transmit diversity
employing Alamouti’s STBC when there are both temporal and spatial correlations

among the transmit antennas. Proposed by Abdi et al. [33], a general space-time

42
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correlation model is utilized in this chapter, where it is given a closed-form, easy-
to-use, and mathematically tractable expression for the space-time cross correlation
between the links of a frequency nonselective MIMO Rayleigh wireless fading channel.
Since this dissertation focuses primarily on performance analysis of communication
systems with transmit diversity, only a simple space-time 2 x 1 channel as a special

case of MIMO channel for simulation is considered.

4.2 The Spatial and Temporal Correlated MIMO Channel Model
For a wireless link between a base station (BS) and a user in marcrocells, depicted
in Figure 4.1, the BS, which is not surrounded by many local scatters, receives the
signal primarily from a particular direction through a narrow beamwidth. The local
scatterers around the user may give rise to different models of signal propagation
toward the user. In the general scenario of nonisotropic scattering, which corresponds
to directional signal reception, the user receives the signal only from particular
directions (See Figure 4.2). The special case of isotropic scattering is shown in Figure
4.3, where the user receives signals from all directions with equal probabilities. The
isotropic scattering model, also known as the Clarke’s model, corresponds to the
uniform distribution for the angle of arrival (AOA). However, empirical measurements
[34][35] have shown that the AOA distribution of waves impinging the user is more
likely to be nonuniform. The nonuniform distribution of the AOA can significantly
affect the performance of array based techniques, as the AOA statistics determine the
cross correlation among the array elements.

It what follows, a closed-form, easy-to-use, and mathematically tractable
expression for the space-time cross correlation between the links of a frequency
nonselective MIMO Rayleigh wireless fading channel with multielement transmit and

receive antennas is briefly derived, where nonisotropic scattering around the user is
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Figure 4.1 Geometrical configuration of a 2x2 channel with local scatterers around
the mobile user (two-element arrays at the BS and the user).

: A
~_" NS

Figure 4.2 Non-isotropic scattering in a narrow street.

modeled by the von Mises distribution [36], a nonuniform distribution of the AOA.
More details are shown in the paper [33].

Consider the multielement antenna system configuration shown in Figure 4.1,
first proposed in Shiu’s paper [37], where the BS and the user have nps and ny
omnidirectional antenna elements, respectively. There are uniform linear arrays with
nps = ny = 2 (@ 2 x 2 MIMO channel), which constitutes the basic structure of
multielement antenna systems with arbitrary array configurations. The convention
for numbering the antenna is such that 1 <! <m < ny and 1 < p < ¢ < ngs. The
BS receives the signal through the narrow beamwidth, while the user receives the
signal from a large number of surrounding local scatterers, impinging the user from

different directions. It is assumed that the waves are planar and only single scattering
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Ry
AR

Figure 4.3 Isotropic scattering in an open area (circles are scatterers).

occurs. The ith scatterer is represented by S;, D is the distance between the BS and
the user, and R is the radius of the ring of scatterers. Clearly, A, R, and D are
related through tan (A) = R/D.

For the frequency nonselective communication link between the element
BS,, and the element Uj, note that such a link comprises of many paths hy, (t) that can
be drawn from BS, to U; through the ring of local scatterers. Let H (¢) represents
a ny X nps channel matrix complex envelope such that [H (2)],, = hsy (t). The
dependence of H (t) on time is a result of user mobility (Doppler effect). This implies
that the effect of channel time selectivity has been taken into account. Needless to say,
the space selectivity of the channel is also considered through the realistic assumption
of nonisotropic scattering and nonuniform distribution of AOA [38].

In the channel model depicted in Figure 4.1, the ring of scatterers is assumed
to be fixed (independent of time), and the motion of the user is characterized by its
speed v and direction «. The assumptions are necessary for obtaining a stationary
space-time correlation model. Clearly, depending on the user’s speed, the spatio-
temporal correlation function obtained in the sequel will be accurate only over a time

duration that is much smaller than R/v.
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For a unit transmit power, suppose the power transferred through the BS, —U;
link is €y, ie. Qp = E [[hy (t)|2] < 1. The plane waves emitted from the array
element BS, travel over path with different length and after being scattered by the
local scatterers around the mobile user, impinge the array element U, from different
directions. Mathematical representation of this propagation mechanism results in the

following expressions

. o gor
hip (1) = \/@A],I_I& TN ;yi X exp {Jilli e (& (87) + & (8]
+j2n fp [cos (87 —v)] t} (4.1)

where N is the number of independent scatterers S; around the user, g;
represents the amplitude of the wave scattered by the ith scatterer toward the user
such that 37 FE[g?] =1 as N — 00, ¢; denotes the phase shift introduced
by the ith scatterer, (; and (;, are the distances shown in Figure 4.1 which are
function of ¢V, the AOA of the wave traveling from the ith scatterer toward the
user. )\ is the wavelength, j2 = —1, fp = v/ is the maximum Doppler shift. The
set {g;}:>, consists of independent and identically distributed (iid) random variables
with uniform distributions over [0,27). The model represents a MIMO frequency
nonselective Rayleigh fading channel, hy, (£) is a lowpass zero-mean complex Gaussian
process.

Let us define the space-time cross correlation between the gains of the two

arbitrary communication links hy, (t) and hmyg (t) as

Pipmq (T31) = E [hip () by (64 7)] /v/QupQimg (4.2)

where * is the complex conjugate. The approximations generally hold when D >>
R >> v > max(dy,, di,) which corresponds to the small values of A. According to
the experiments conducted at different locations and frequencies, the angle spread

A at the BS is generally small for macrocells in urban, suburban, and rural areas,
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most often less than 15°, and in some cases very small less than 5°. There empirical
observation justify the simple but useful approximate results for py, mq (7,1) derived
in the sequel.

Based on the statistical properties of {g;};>, and {¢;};2, , the space-time cross

correlation between hy, and hmg, according to Equation (4.1), can be written as

Pip,mq (r,t) = Pip;mq (1)
N

1 12
= lim — 2 E[g?] x exp{—]—/\71 (&p — Gig + &i — &mi)
—327nfp [cos (qﬁf] — fy)] ’T} (4.3)

The total power of the link BS, — U}, scattered by all the scatterers toward the user’s
Ith element is given by E [|hy (t)”] = Q. For large N, the small contribution of the
ith scatterer, out of the total €, is proportional to F [g?] /N. This is equal to the
infinitesimal power coming from the differential angle d¢V with probability f (¢/),
ie.E (@] /N = f(¢Y)d¢", where f (¢7) is the pdf of the AOA seen by the user.

Therefore, Equation (4.3) can be written in the following integral form.

pama ) = [ exp{ -5 x (e ~ oy + 60 — )

-7

—j27 fp [cos (¢U — fy)] 'r} x f (¢U) do? (4.4)

where v is the length of the path between the antenna element BS, and the point
on the ring of scatterers, determined by ¢V , and so on. For a given f (¢"), PDF of
which is given in the paper [36] , finally the following key results after some algebraic

manipulations are obtained

€x COS (v, .
Pip,mq (T) ~ p[Jcpq (K) ( pq) x Io ({K —a®— b%m - Cqu2 sin® (apq)

+26bis €08 (Bim — ) + 2¢pA sin? (0pq)
X [asin () — by sin (Bis)] — 72k [acos (1 — ) — by €08 (Bim — )

—cpAsin (apg)sin (1)]}'7?) . (4.5)
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where

a=2wfpT, bim =2Tdin/N, Cpg = 2m0pq/A

and I, (-) is the zero-order modified Bessel function, k > 0 controls the angle spread
at the MS.

The corresponding power spectrum can be shown to be [33]

S () = P05l o0 (s (y — ) + 03] (17 S}

IACEN T
xcosh{[nsin(fy—u)wﬁﬂ - (f/fmf}, (456)
I <

where cosh (-) in the hyperbolic cosine and

91 = biy c0s (Bim) €08 (7) + [cpgA sin (pq) + bim sin (Bym )] sin (7),

93 = biy 08 (Bim) sin (7) — [epgA sin (apg) + bim sin (Bim )] cos (7) -

To simulate a 2 x 2 MIMO correlated channel gain sequences, from Equation
(4.5) and (4.6), a spectral representation method and a correlated channel simulator is
provided in Acolatse’s paper [39]. The Matlab files for the simulator are available at
http://web.njit.edu/  abdi.

Based on this model, the level crossing rate (LCR) and average fade durations

(AFD) for a mobile MIMO fading channel are studied in Appendix E.

4.3 A 2 x 1 Spatial and Temporal Correlated Rayleigh Fading Channel
Since this dissertation focuses primarily on performance analysis of communication
systems with transmit diversity, only a simple 2 x 1 special case of MIMO channel
for simulation is considered. The two channel gains hyk, hog,k = 1,2,... can be

generated by the simulator [39). To obtain the performance of Alamouti’s STBC over
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the correlated channel, the system model of Alamouti’s STBC, which was addressed
in Chapter 1, is still used. Note that only one receive antenna is employed here,
and channel gains are supposed not to be a constant during one frame anymore but
change according to the codeword index k.

For the 2 x 1 Rayleigh channel, based on the definition of [, m, p and ¢ in Section
42,1=1, p=1, m=1 and q = 2 are obtained. Let 7 =7, a = ay; and § = d13.

Since a7 = 0, ¢;; = 0 and dy; = 0, simplifying Equation (4.5) yields the correlations

prian (r) = [Io (] o ({? — 4n fr — jamwcos (10 — ) for}'”),  (47)

piz (1) = (Lo (k)] eF @2 ({2 — 4n? f272 — jAn® (8/X)? A?sin® (a)
+872(6/)) fprsin (o) sin (o)

— j2k 27 fpT cos (4 — o) — 2 (8/A) Asin (o) sin (u)]}l/z) ,  (4.8)

where u € [—m,m) accounts for the mean direction of AOA at the MS, = is the
direction of the motion of MS, fp denotes the maximum Doppler shift, a represents
the direction of the BS array, A is the wavelength, 4 stands for the element spacing
at the BS, and finally 2A is the spread of the angle of departure from the BS.
Based on the paper [33], the spatial correlation ¢ for hyjx and hsjy can be
obtained from Equation (4.8) by ¢ = |p11,12 (0)| . Moreover, it is shown that temporal
correlation for hyy or hsyy is reversely and nonlinearly proportional to Tj fp, where

T; is the symbol interval.

4.4 Simulation Results
Consider the transmit BS array, where the two elements are spaced by 9, is
perpendicular to the horizontal z axis, o = 90°, and the receive single MS antenna is

moving on the z axis, towards the transmit array, v, = 180°, with a constant speed.
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The angle spread at the BS is 2A = 4°, whereas at the MS is 66°, equivalent to K = 3,
around the mean AOA of y = 36° at the MS. The values k of i and are estimated
from measured data [40].

Fast fading and slow fading are usually defined as T,fp > 0.01 and T, fp <
0.01 respectively. Since most wireless communication systems over a MIMO channel
are applied on network links, the transmission rate is fairly high, more than 100
kbps will be available, and the symbol interval T} is less than 10~5. For a wireless
system with a carrier frequency of 1.9 GHz, the Doppler shift is 10 Hz and 1000
Hz when the speed of a vehicle is 5.7 and 570 km/h respectively, so T;fp will be
10~* and 10~2 responsively. Hence, for a high data rate more than 10° kbs wireless
system, fast fading does not occur due to the speed limit of a vehicle. To observe
how the fast fading effects the BER performance, a transmission rate 1 kbps is also
assumed to assign on this scheme during simulation. With the same assumption,
Ty fp will be 10~2 and 10° respectively when T} = 1073,

Simulations are performed to observe how the spatial and temporal correlation
of a 2 x 1 Rayleigh fading channel effects the performance of Alamouti’s STBC with
coherent and non-coherent detection. The frame length is 260 symbol intervals, and
BPSK modulation is employed. The simulation results are illustrated according to

four different cases.

4.4.1 Spatial Correlation

Case 1 For this case, it is observed how the spatial correlation of channels effects the
BER performance of Alamouti’s STBC via symbol SNR when temporal correlation is
fixed, for which BS element spacings of § = X and 5] are considered, and the maximum
Doppler shift fp is assumed to be fixed at 100 Hz, where T, = 1075 and Tp fp = 1073;
so it is a slow fading channel, and the spatial correlation ¢ = |p11,12 (0)| = 0.995 and

0.886, respectively. From Figure 4.4, due to the effect of spatial correlation, the BER
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= = no doppler shift and spatial corr(diff)
—— no doppler shift and spatial corr{coh)

6 8 10 12 14 16
SNR(dB)

Figure 4.4 BER performance of Alamouti’s STBCs for two channels with different
spatial correlation but fixed temporal correlation.

performance of Alamouti’s STBC with coherent and differential detection is obviously
degraded if compared to that for no spatial correlation circumstance, and the more
spatial correlation there is, the worse performance it is obtained. However, the BER
gap for coherent and differential detection is still approximately 3 dB. Note that " diff”

represents different detection and ”coh” denotes coherent detection in the figure.

Case 2 In this case, it is observed how the spatial correlation effects the BER
performance of Alamouti’s STBC via the BS element spacings 4/ at 15 dB SNR.
BS element spacings 6/ are set as 0.5, 1, 2, 3 and 5. Based on Equation (4.8), the
spatial correlation ¢ can be obtained as 0.995, 0.935, 0.885, 0.223 and 0.05 respectively.
Figure 4.5 illustrates the BER of Alamouti’s STBC with coherent and non-coherent
detection over a fast fading channel (7 fp = 107!) and a slow fading channel (T} fp =
1073) respectively, where the symbol SNR is fixed at 15 dB. Obviously, during the

simulation, the temporal correlation for the two different 2 X 1 channels still exists
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2 x1 mobile Rayleigh channel, STBC, 1 bits/s/Hz, =90°, v,=180°=3, 4=2° y=36°
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Figure 4.5 The effect of spatial correlation on BER performance of Alamouti’s
STBCs for a fast fading channel and a slow fading channel at 15 dB SNR.
but is a constant. With the increase of spatial correlation, the BER performance is

obviously degraded for both coherent and non-coherent detection.

4.4.2 Temporal Correlation

Case 1 For this case, it is observed how the temporal correlation effects the BER
performance of Alamouti’s STBC via symbol SNR, for which the author sets BS
element spacings of § at 5), and it is over a fast fading channel (7, fp = 10~"!) and
a slow fading channel (T;fp = 1073) respectively. Since the spatial correlation is
fixed, the effect of temporal correlation is clearly illustrated. From Figure 4.6, the
BER performance is greatly degraded with non-coherent detection, but it seems that
temporal correlation doesn’t effect performance of Alamouti’s STBC scheme with

coherent detection.
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— = no doppler shift and spatial corr{diff)
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Figure 4.6 BER performance of Alamouti’s STBCs for two channels with fixed
spatial correlation but different temporal correlation.

Case 2 In this case, it is observed how the temporal correlation effects the BER
performance of Alamouti’s STBC via T;fp, the parameter to describe temporal
correlation. Assume that the 2 x 1 channel is gradually changing from very slow
fading (Tyfp = 10~%) to pretty fast fading (73fp = 10°), and BS element spacings
of & is supposed to be ), and 5\ respectively. From Figure 4.7, with the decrease
of the temporal correlation or the increase of T,fp, the BER performance of
Alamouti’s STBCs with differential detection will be degraded greatly for a fast
fading channel (Tyfp > 10~2), but not for a slow fading channel (Tpfp < 1072),
and the degradation of BER performance from temporal correlation is not a linear
function of T} fp, which is identical to the simulation results shown in Hwang’s paper
[32]. Moreover, the temporal correlation has no effect to Alamouti’s STBC scheme
with coherent detection, since it is assumed that receivers always know the channel

state information perfectly when coherent detection is employed.
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2 x4 mobile Rayleigh channel STBC, 1 bits/s/Hz, =907, v,=180%=3, A=2°, =36"

Bit Error Rate

Figure 4.7 The effect of temporal correaltion on BER performance of Alamouti’s
STBCs for two channels with a fixed spatial correlation at 15 dB SNR.
4.5 Conclusions

The BER performance of STBC over a spatio-temporal correlated channel with
coherent and noncoherent detection have been illustrated, where a general space-time
correlation model was utilized. The simulation results demonstrated that spatial
correlation negatively effects the performance of the STBC scheme with differential
detection but temporal correlation does positively; the less spatial correlation and
more temporal correlation there are, the better performance is obtained. However,
with coherent detection, spatial correlation still has negative effect on the performance

but temporal correlation has no any impact on it.



CHAPTER 5

A DIFFERENTIAL SCHEME FOR DS/CDMA MIMO SYSTEM

5.1 Introduction
Multiple-input multiple-output (MIMO) links might play an important role in future
wireless networks. It has been shown that capacity of MIMO systems grows linearly
with the lower number of transmit or receive antennas. Hence, high transmission
data rates can be obtained by such systems.

Several papers have been published, which study the MIMO link based on known
channel parameters. Foschini proposed a layered space-time architecture, known as
BLAST, which can achieve a tight lower bound on the capacity [41]. Tarokh explored
an effective approach to increase data rate over wireless channels by combining array
processing and space-time coding {42].

However, the assumption that the channel is perfectly known is questionable
in a rapidly changing mobile environment, especially in MIMO systems. It might be
impractical to accurately estimate all the channel gains. In order to reduce the cost
and complexity of the system, it is of interest to search for methods, which do not
require the CSI.

For a single transmit antenna, frequency-shift keying (FSK) and differential
phase-shift keying (DPSK) can be demodulated without the use of channel
information. It is natural to consider extensions of these schemes to MIMO systems.

As mentioned in Section 1.1, several space-time differential schemes were
proposed recently. However, the scheme [13] can not be applied when the number
of transmit antennas is more than two, unless the scheme is modified, thereby
incurring a rate penalty [43]. Moreover, although the two schemes [15] and [16]

can theoretically be applied to any number of transmit and receive antennas and any
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signal constellation, the constellation cardinality for the group codes approach equals
2RM where R represents data rate and M is the number of transmit antennas. By
their demodulation criterion, the computation complexity of the demodulation is
exponential in R and M. If 3 bits per second is transmitted over 3 transmit antennas
, group codes with a constellation of 512 should be found. Obviously, it is not trivial
in practical use.

In this chapter, a new scheme, which is combines differential detection with
orthogonal transmit diversity [44], is proposed. The proposed method can be used
with any phase shift keying signal constellation, any number of transmit and receive
antennas and without estimation of channel parameters. Full diversity gain is

obtained. Most importantly, its implementation is simple.

5.2 Coherent Detection for Known CSI
5.2.1 Orthogonal Transmit Diversity
Before presenting the scheme, let us review the orthogonal transmit diversity scheme
proposed in those papers [44] [45] [46] [47] for a known flat fading channel.

Two transmit antennas and one receive antenna for a K-user DS/CDMA
system are considered. For simplicity, no intersymbol interference or multiple access
interference are assumed to be present.

Assume that the channel is frequency non-selective and that the fading gain has
a Rayleigh distribution for its amplitude and a uniform distribution for its phase. The
point here is that the information bit is spread across the transmit antennas. The
power per symbol is E,/2, which means that the total transmit power per symbol
interval is E,. Two spreading codes are assigned to a single user. We restrict the
constellation of transmitted symbols of the kth user s; (k= 1,2,...K) to 20_PSK for
some b =1,2,3,..., but in reality only BPSK, QPSK and 8-PSK are of interest.
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A matrix representation of the transmitted symbols for the kth user is

sk(f)wey se(d+Dwy, (5.1)

sk()wra sk(j+Dwygs

where the matrix rows represent different antennas, the columns represent different
symbol intervals; wy ;,wy, are normalized spreading codes with a length L for the
kth user at the first and second antenna, respectively; s(j) and sx(j + 1) are the
jth and (5 + 1)th symbols, respectively.

The signal at the receiver is

r(j) = \/-‘I;EZ ("_UJc,lhl +ch,2hf2) sk(4) +20), (5.2)
k=1

for k = 1,2,..., K, where h; and hy are the fading gains from respectively, antenna
1 and antenna 2 to the receiver, z(j) is a noise vector with L elements, each of
which has complex Gaussian distribution with a zero mean and variance 2 on each
dimension, r(j) is the receive data vector with L elements.

Assuming orthogonality between users and between codes of the same user

assigned to different transmit antenna, after despreading,

Tk1(5) E ha 2k,1(7)
=4/22g + . (5.3)
Te,2(7) \/; ‘ ha 2k2(7)

Since fading gains are known and the signals from the different transmit antennas are
separated at the receiver, maximum ratio combining (MRC) at the receiver can be
used. Signals transmitted by antenna 1 and passing through the channel with gain

h, are processed with gain A%. Let h' = [h} h% ], then

/ h 2107
" (j) _ % s bt 1 +hi k,1 (J)
hs 2,2(7)

E 2
= /5 2 lhnse() + %0). (5.4)
m=1
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Hard or soft detection of si(j) may now be applied, and two-fold diversity gain

is obtained.

5.2.2 MIMO OTD
Consider a K-user DS/CDMA wireless link with N transmit and M receive antennas.

Then the signal received at the mth receive antenna is:

ra() = f S S ) + 20 ) (5.5)

k=1 n=1
m = Mg =1,2,.

Each user assigns IV spreading codes (wy; wj,..-w; y). for spreading across the

transmit antennas. After despreading,

re(j) = \/%Sk(j)h + 2, (j), (5.6)

where

r&(7) [7,1,1 () Th,21(5)5 woos TN ()]

h = [hi1,ho, e har]”

2 (5) (2,1, ()5 2.21.(5)5 wvor 20,0, (I -

Using MRC ht,

y(j) = h're(j) = \/:Sk(J)hfh + h'z(j), (5.7)

or equivalently,

N M
ue(j) = \/%Sk(j) Z Z lhm,nlz + Z;c(j)’ (5.8)

n=1m=1

where 2}(j) = h'z,(j).Since yx(j) and Ay, are known, the jth symbol of the kth user
can be detected and M N-fold spacial diversity gain is obtained.



59

5.3 Differential Detection
5.3.1 Single-Antenna System
Assume a single antenna system and a constellation S of transmitted symbols, which
is 20-PSK for some b = 1,2,3, ... Also assume that the channel gain A from the
transmitter to the receiver is unchanged during at least two symbol intervals. The
transmitter sends the differentially encoded symbol streams di(0), di(1) and di(2),

where

de(5) = s () (j — 1), (5.9)

for j =1,2,...and k=1,2,..., K. The first symbol d(0) is known.
Consider the desired kth user. Assuming orthogonality between users, after

despreading,

r:(j) = VEshdi(5) + z(j)-

At the receiver,
w() = rx0 — Dre(y)
= Eilds(j — DP2IR?s6 () + Ak(5)

+¥ () + Ze(5), (5.10)

where Ag(j), ¥x(4) and Zg(j) are noise terms as follows

Ax(G) = VEdi(j — DR 2(5),
() = VEsz£(G — Dhdi(y),

Zx(3) 2e(J — 1)2(5)- (5.11)

Il

Obviously, |dg(j — 1) =1, j = 1,2, .., hence

ye(5) = |h2sk(5) + De(5) + Pr(5) + Ze(5)- (5.12)
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Note that the last three terms of Expression (5.12) are noise terms. Even though
the three noise terms Ag(5), ¥4(4), Z(j) and the channel gain h are unknown, they
are constant. si(j) can be detected by selecting 5x(j) from the constellation A, the

value closest to y(j). This means

5k(j) = argg.:r(;i)relA 15k(3) — ye ()| (5.13)

5.3.2 MIMO System
Now, it is desired to combine differential detection with a system of N transmit and
M receive antennas.

Similar to Equation (5.5), for a K-user DS/CDMA system, the signal on the
mth receive antenna is:

() = \/%ZZwk,ﬂhm,ndk(j)um(j), (5.14)

k=1 n=1
m = 1,2,..M. j=1,2,...

here, by (m=1,2,..M, n=1,2,..N) is unknown.

After despreading, the received signal can be expresses as:

rx(j) = \/—%dk(j)h + z4(5), (5.15)
where
re() = 110 720 (G)Tr2,n (G- Trarn I
h = [hl,l h2,1--- hg,N...hM’N}T,
26(j) = [2110) 2621 ()- 2k 2,8 (5)-2ipen ()T - (5.16)

The signal di(j) is differentially encoded:

d(7) = se(f)de(G — 1), (5.17)
J = L2, d(O) =1,k=12,..K,
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At the receiver,
w() = 1 — Dir()
M
= 5 2 2 lhmaldi(G — 1)ds()

n=1m=1

+A¢(5) + () + Z(4), (5.18)

where Z;(j), Ax(j) and ¥,(j) are noise terms defined:
Ae(y) = Hfﬂ:(] = Dhyze(5),

() = \/%zz(j—l)dk(j)h,
Z() = 2.~ )70). (5.19)

Using condition (5.17), Equation (5.18) can be simplified as

E N M
ye(j) = (Ws Z Z }hmle) sk(4)

+Zk(5) + Ar(5) + Pe(4)s (5.20)

The last three terms of Expression (5.20) are noise terms. Moreover, the
coefficient Zs S°N M hmal? of sk(j) is unknown as well. However, all these

terms are assumed constant. si(j) can be detected by following criterion:
8k(j) = arg_min [5¢(5) — ye(5)!- (5.21)
Se(f)eA

5.3.3 Capacity Analysis
Let’s consider coherent detection first. From Equation (5.8), the variance for noise

term 2},(j) can be expressed as [45]

= (ZZ .

n=1m=1

2) o (5.22)
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Hence, the instantaneous SNR for s;(j) at the output should be

N
_P 2
SNR= 53 lhnal’, (5.23)

where p = E,/0? is the symbol SNR.
According to Shannon’s capacity formula, the capacity for the kth user is

N M
Cuw = log(1 + 23" |hmal?), (5.24)

n=1m=1
where the log is of base 2.
As to differential detection, from Equation (5.20), note that the noise term
Z(j) may be ignored since it is much smaller than the noise terms Ag(j) and
U,.(5) when p is large enough. The variance for the terms Ag(j) and W(5) is

N M
0? =2 (}: b |n,,,,n|2> o2 (5.25)

n=1m=1

Thus the capacity for the kth user is

N M
Cry =log(1+ 55503 lmal?). (5.26)

n=1m=1

Comparing Expression (5.22) with Expression (5.25), it is found that the noise
power for differential detection is two times that of coherent detection. This is
the reason for the 3dB difference in the performance of coherent and non-coherent

detection.

5.4 Numerical Results
In this section, the performance of the proposed scheme is assessed by simulation
results. In Figure 5.1, a group of curves is presented, which compare the performance
of the proposed scheme with that of coherent detection scheme in a multiple-input

single-output scenario. Figure 5.2 shows numerical results for the single-input
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multiple-output channel. Performance of a MIMO link with different number of
transmit and receive antennas is illustrated in Figure 5.3. The curves in Figure 5.1
and Figure 5.2 demonstrate the 3 dB penalty for differential detection.

Moreover, from Figure 5.1 and Figure 5.2, it can be seen that those curves for
differential detection are always parallel with those for coherent detection. Obviously,
even though 3 dB SNR loss is paid for differential detection compared to coherent
detection, the system provides the same spatial diversity both in differential detection
case and in coherent detection case.

Figure 5.4 illustrates 10% outage capacity for different MIMO cases for coherent
detection. Figure 5.5 shows the capacity in the differential detection case. Since the
noise power for differential detection is two times that of coherent detection, the
system has different capacity for the two cases. For instance, one user in a 4Trx4Re
system with coherent detection has capacity of 6.8 bits/sec/Hz at 16 dB (SNR) in
Figure 5.4. Interestingly, in Figure 5.5, the user with differential detection has the
capacity of 6.8 bits/sec/Hz at 19 dB, there is exactly 3 dB’s difference.

Since the transmit power is fixed independent of the number of transmit
antennas, while the total received power increases linearly with the number of receive
antennas, the figures reflect an advantage for multiple receive antennas over multiple

transmit antennas.

5.5 Conclusions
A differential detection scheme for a MIMO DS/CDMA link was proposed, which
can provide full spatial diversity (both transmit diversity and receive diversity). The
scheme is simple to implement, and can be applied to any phase shift keying signal
constellation, and any number of transmit and receive antennas without estimation

of channel parameters.
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Figure 5.1 Performance of Differential Detection (DD) and Coherent Detection
(CD) for one user in multiple-input and one-output case.
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Figure 5.2 Performance of Differential Detection (DD) and Coherent Detection
(CD) for one user in one-input and multiple-output case.
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Figure 5.3 Performance of Differential Detection (DD) for one user in multiple-
input and multiple-output case.
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Figure 5.4 Capacity of one user for coherent detection.
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Figure 5.5 Capacity of one user for differential detection.

Even though 3 dB SNR loss is paid for differential detection compared to
coherent detection, the noncoherent system has the same spatial diversity as the
coherent system. The 3 dB penalty for non-coherent differential detection can be
demonstrated from the capacity analysis. Provided that the total transmit power
is fixed, a system with multiple antennas at the receiver site is advantageous over
the system with multiple antennas at the transmitter site. For the former, fewer

spreading codes for one user are needed.



CHAPTER 6

SUMMARY AND COMMENTS

In this dissertation, four aspects of transmit diversity have been studied:

1. Closed-form expressions of BER were derived for STBC based on Alamouti’s
scheme and utilizing M-ary phase shift keying (MPSK) modulation. The analysis
was carried out for the slow, flat Rayleigh fading channel with coherent detection and
with non-coherent differential encoding/decoding.

2. A MSDD technique was proposed for MPSK STBCs, which greatly reduces
the performance loss by extending the observation interval for decoding. The
technique uses maximum likelihood block sequence detection instead of the traditional
block-by-block detection and was carried out on the slow, flat Rayleigh fading channel.
A generalized decision metric for an observation interval of N blocks was derived. In
addition, a closed-form pairwise error probability for differential BPSK STBC at N
blocks of observation interval was derived, and an approximate BER was obtained to
evaluate the performance.

3. The BER performance of Alamouti’s STBCs over a spatio-temporal
correlated channel with coherent and noncoherent detection was illustrated, where
a general space-time correlation model was utilized. The simulation results
demonstrated that spatial correlation negatively effects the performance of the STBC
scheme with differential detection but temporal correlation positively impacts it.
However, with coherent detection, spatial correlation still has negative effect on the
performance but temporal correlation has no any impact on it.

4. A differential detection scheme for the DS/CDMA MIMO link was presented.

The transmission provides for full transmit and receive diversity gain using a simple
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detection scheme, which is a natural extension of differential detection combined with
an Orthogonal Transmit Diversity approach.

For Item 1, even though the BER analysis in this dissertation is only for
Alamouti’s STBC scheme, the approach can also be utilized for a generalized STBC
scheme with more than two transmit antennae. Moreover, comparing the BER
expressions for 2T x1R Alamouti’s STBC scheme with that for the 1Tx2R receive
diversity scheme in Proakis’ book [18], it was found that the results are the same,
although different analysis approaches were used.

In Item 2, it was assumed that the fading channels are flat and the path
gains are modeled as quasi-static over some frame of arbitrary length. However,
the statistic characteristic for fading channels are sometimes more complex. For
example, Bhukania et al. [24] expanded the MSDD idea to Hochwald’s STBC scheme
[15] for 3 blocks and incorporated knowledge of the fading correlation, assuming that
the channel changes once per block. Therefore, it would be interesting to use the
MSDD technique for MPSK STBCs in the case that the channel fading is not flat
but frequency selective with fast fading. However, it would be quite difficult to get
the approximate BER expressions for this case.

In Item 3, some simulations for Alamouti’s STBCs over a spatio-temporal
correlated channel have been showed. Based those results, it will be an ideal choice
for Alamouti’s scheme to be employed on a high date rate wireless link over a MIMO
channel if spatial correlation of the channel can be reduced to a very low level. Since
fast fading never occurs because of the speed limit of a vehicle, temporal correlation
has no impact on the performance of this scheme even with differential detection.

For Item 4, it is essential to consider MAI and ISI for a practical DS/CDMA
system. Thus it would be of interest to explore the proposed scheme in a practical

DS/CDMA system, and analyze how the performance is affected by MAI and ISI.



APPENDIX A

EVALUATION OF THE VARIANCE OF Retr(A)

Let’s first divide Re tr(A) into two parts.

Define

2
-

—1 §—

A = {ChsHe ;9] QuQl, + W HL_CLQQL )}, (AD)
=1
-1

~

-0

o

N
Ay = Z {Ck—ij—j‘I’L_iCk—iCL_j+‘I’k_jH;'c_,.CZ_iCk_,;C,Z_j}, (A.2)

i=1 j=0

then

Retr (A) = Retr (A1) — Retr (Ag). (A.3)

Now, the variance of Retr(A) consists of three parts: the variance of Retr (Aq), the
variance of Retr (As), and the cross-correlation between Retr (A1) and Retr(Az).

Namely
Var [Retr (A)] =

Var [Retr (A1)] + Var [Retr (A2)] — 2cov (Retr (A1), Retr (A2)). (A4)

Var [Retr(A;)], Var[Retr(Az)] and the cross-correlation of Retr(A;) and

Retr (A2) will be evaluated respectively in the following subsections.

A.1 Evaluation of Var [Retr (A1)], Var [Retr (Az)]
Since Retr (A1) and Re tr (A2) have similar structures. If the variance of Re tr (Ay)is

obtained, the variance of Re tr (Az) is straight forward.
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AY = CeHe ;9 Qe iQf;+ Ve H CL,QeiQL_,

- c,c_,.H,c_,.\Izk_,.ck_ick_]. + \Ix,c_jH,c_ick_,,ck_ic;_j.

.
.
|

Then

Var|Retr (Aq)] = V1 + 20,

where the auto-correlation of Var [Retr (A4)] is expressed as

N-1i-1

= Z Z Var [Re tr (AS,IJ))] >

i=1 j=0

and the cross-correlation of Var [Retr (Ay)] is

o= o (S Soner (1) £ 5 e (13

i=1 j=0 i'=1 §'=0

i'#iand j'#j
Similarly, the variance of Retr (A2) can be divided into two parts:

Var [Retr (A)] = Vo + 29,

where the auto-correlation of Retr (A2) is

N-11i-1

Z ZVar [Retr ( (2))]

i=1 j=0

and the cross-correlation of Re tr (A2) can be expressed as

N-1i-1 N-1i-1
= cov (Z Z Retr (Afi)) ) Z Z Retr (Af?’;,))

i=1 j=0 =1 j'=0

i'#iand j'#j
Finally,

Var [Retr (A1)] + Var [Retr (A2)] =

Vi+Va+2(0+0).
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(A.11)
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In the following, V3, V3, ©, and €2 will be evaluated respectively.

A.1.1 Evaluation of V; and 1,

V4 and V5 are auto-correlation terms. From Theorem 2 and 4 ,

N-1i-1

_ o
Vi ; Jz:; Var [Re tr (Aw )]
N-1i-1

_ Z Z {VCLT [Re tr (Qk_iQL_jCk_ij—j‘I‘;—i)] +

i=1 j=0

Var [Retr (Qu;QL,CrHei9) ;) |- (A.14)

For BPSK messages, Qi and Cj are orthogonal real matrices, so Qk_iQZ_]’Ck—j,

Q:_;jQL_,Cy_; are orthogonal real matrices thus also (Theorem 3). From Theorem

3,
N-1i-1
W = Z 24 (Jh1a* + |h2,1\2) No
=1 j=0
= 2N(N —1) (Jh11/* + [h2.1[*) No. (A.15)
Similarly,
N—1i-1
Vo = Z Z Var [Re tr (Afi))]
=1 §=0
= 2N(N — 1) (jha ) + |hoal*) No. (A.16)

A.1.2 Ewvaluation of cross-correlation © and O

The cross-correlation of Retr (A1) can be expressed as
© = Retr (Al) =Cov ((51, (52)
= (N =2)No (|’ + b [*) *

N—-1i-1
Retr {Z Z (Dk-—jDk—j—l-~-Dk—i+1)} ) (A17)

i=1 j=0
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where

N—-1i-1

6 = 33 Retr (CoyHi ;¥ Q@)+
i=1 j=0
+0,H] L .Q:QL,), (A.18)
N-1i-1

0y = Z Z Retr (Ck"j'Hk—j‘I’.lt:—i’Qb—i’Q};;_jl
/=1 §'=0

1.
+Wk—j’HZ—i' Ck-i/ Qp-» Q}:,_j/) dotiond ik (A.lg)
Proof:

Since C, Hg, and Qy, are constant matrices, the cross-correlation © is related
to the N noise matrices ¥y, ¥i_q, ... Ur_ni2, ¥r_ny1 only. Meanwhile, these
noise matrices are mutually independent of each other. From Theorem 7, any
cross-correlation between two terms with different noise matrices is zero. Hence
© only consists of the cross-correlation between the terms with the same noise matrix.

For ¥} only, the cross-correlation terms can be obtained when j = 0, 7 =
1,2,..N — 1 in Equation (A.18). There are a total of N — 1 terms with noise

matrix ¥, so

N-1

6y = Z Retr (‘I’kHZ—iCL—iQk—"QL)

=0

, (A.20)
i#0

and

N-1

bp=Y Retr (‘I’kHL_i'C;—i'Qk-"’QL)

=0

, (A.21)

7' #0,3

hence the cross-correlation for ¥y is

©y = E[616]
N-1i-1

= Ny (|h1,1i2 + |h2,1|2) Z Z Retr (C};_iCk_ij_,-QLj)

i=1 j=0

. (A.22)

1,j#0
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For U,_;, the cross-correlation terms may be obtained from Equation (A.18) j =

1,i=2,3..N—1andj =0, i=1, and has a total of N — 1 terms. Hence

N-1
5 = S Retr(¥HL C} Qi QL) +Reur (CiH,8{ Qi 1Q})
=2
N-1
= Y Retr (¥ 1H] C}Qi-iQ) ) +Retr (u.HclQual )
=2
N-1
= Y Retr (¥, H[ Cl .Qc.Qf,) (A.23)
=0 i#£1
Maoreover
N-1
5 =Y Retr (\pk_lH;_i,cz_,.,qk_i,qjc_l) (A.24)
=0 i#£1,
The cross-correlation for Wy_; is
©; = E[6:6)]
N-11i-1
= No((haa + h2a) 30 S Retr (CL.ChjQuiQL ;)| - (A25)
i=1 j=0

ij#1
For ¥,_,, the cross-correlation terms can be obtained by j =2, i =3, 4.. N—1and

i=2, =0, 1. Hence

N-1

0 = Z Retr (\I/k_gHz_iC,:_iQk—iQ};—2)

=3

1
+3 " Retr (CpjHe—; ¥} 1Qu2Q} )
j=0

N-1

- Z Retr (\Ilk_gH,t_,-CL_iQk—iQL—2)

=3

1
+ Z Retr (\I’k_QHL_,-CI;_iQk—iQ;—Q)
=0
N1
= Z Retr (‘I’k_2H}C_iC;_iQk~iQL—2)

=0

, (A.26)
i#2
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and
N-1
5= Retr (\I!k_zH};_,.,C};_i,Qk_,-,Q};_2) (A.27)
#=0 #2,4
The cross-correlation is
0, = FE|[616)
N-1i-1
= No (el +1h2a?) D) Retr (C};_ick-ij—iQ};_j) - (A.28)
=1 =0 2

For W;_n.1, there are two cases, 1 = N — 1, j =0, 1, N — 2 which is equivalent to

j=1,i=0,1, 3.. N—1. Hence

N-1
o = Z Retr (Ck—ich—-i‘I’L_N+1Qk—N+lQ};_i) , (A.29)
i=0 i£AN-1
and
N-1
by = Z Retr (Ck—i’Hk—i"I’L_N+1Qk—-N+1Q};—il) s (A.3D)
#=0 P#N-1,3
s0
eN..l = E [61 62]
N-1i-1
= No(lhaa* +1haa®) 303 Retr (CLLCejQuiQf ;)| (A3D)
=1 j=0 i j#N—1
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Oy +61+..6n_4

N-1i-1
No (11l + lhe,?) { Z Z Retr (Cz_ick—ij—iQL_j)
im1 =0 10
N-11i-1
+3" 3 Retr (C};_iCk_ij_,;Q};_ J.)
i=1 j=0 i1
N-11i-1
+ 33 Retr (C}_CryQrQL ;)
i=1 =0 it
N-11i-1
+...+ Z ZRetI' (C};_iCk_ij_,;Q;'c_j) }
=1 j=0 i jAN-1

No ((ha,1]? + lhe1|?) {(Dg=1 + Dg—p + ... + Dg1Djpz + ...
+Dg_1Dg—2..Dg_n1+1)

+ (Dg—2 + Dg—3 + .. + DD + ... + Dg_2Dp_3..Dg_n41)

+ D +Dg3+..+Dr1Dg o+ ... + Dp_3Dg4.Dp_ni1) + ...

+ (Dg + Dg—1 + oo + DgDg—q + Dg—1Dg—g + ... + DeDg2.Dn12)}

(N = 2)Ng (|h1,a]” + o, [*) *

N—-1i-1
Retr {Z > (Dk_jDk_j_l...Dk_,»H)} i (A.32)

i=1 j=0

Similarly, if all the Qy, are replaced with Cy, in (A.32), the cross-correlation coefficient

{2 can be easily obtained as

N-11i-1
Q = (N = 2)N (Ihy,1? + b2 [?) Retr {Z Z (12)} , (A.33)

i=1 j=0
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where

N-1i-1

51 = Z Z Retr (Ck—_’in~j\I’};_ick-—iC£_]’+
i=1 j=0
‘I’k—jHL,-CZ_,-Ck—iCZ_J«) ; (A.34)
N-1#-1

by = Z Z Re tr (Ck—j'Hk-—le’};__ile—i’Clt;_.j"*'

=1 j'=0

\I"k—j’H;rc—i' C;-—,‘lck—i’ CL_J'/) (A.35)

##iand jiAj
Hence, substituting Expression (A.15) (A.16) (A.17) and (A.33) into Equation (A.13),

Var [Retr (Ay)] + Var [Retr (Ag)] = 4N(N — 1) (|h1|* + |h2|*) EsNo

+2(N — 2)E,No (|ha]? + |ho[*) *

N—-1 -1
Retr { Z Z (Dk_jDk_j_.l...Dk_,'+1 + IQ)} . (A36)

i=1 j=0

A.2 Evaluation of cov (Retr (A1), Retr (A2))

The cross-correlation cov (Re tr (A1), Retr (A2)) can be expressed as

® = cov(Retr(A1), Retr(Ag))
= cov (51, 52)

= 2N —1)No (Jha + o) »

N-1i-1
Re tr { > (Dk_jDk_j_l...Dk_,-H)} , (A.37)

i=1 j=0
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where

N-1i-1

b1 = 3> Retr (CijHe UL QuiQi;+
i=1 j=0
We—j Hf—icf-iQk—iQkH.j) ) (A.38)
N—-1i'—1

62 = Z Z Retr (Ck-—j'Hk—j‘l’g—ilck—i’cf_jl+
=1 j'=0
Uy HY ,Cf /CrvCiLy) (A.39)
N-1i'—-1

= 3> Retr (Hp ;% yCrv + ¥y HY ,CYLy) - (A.40)
=1 /=0
Proof:

Since Cg, Hi, and Q; are constant matrices, the cross-correlation @ is related

to the N noise matrices

Up, U gy Wponi2, Up-ni1 (A.41)

only. Moreover, these noise matrices are mutually independent of each other. From
Theorem 7, any cross-correlation between two terms with different noise matrices is
zero. Hence ® only consists of the cross-correlation between the terms with the same
noise matrix.

For ¥, only, the cross-correlation terms can be obtained when j = 0, 7 =
1, 2, .. N — 1 in Expression (A.18), there are a total of N — 1 terms with noise

maitrix ¥, so

N-1

6 = Y Retr (:H ,C/.Q:.QY) (A.42)
=0 i#0
N-1

8 = 3 Retr (WHf ,C/) = (N —1)Retr (2,H'CY). (A.43)

=1
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Hence, the cross-correlation for ¥y is

Dy = E |66
N—-1
= (N —1) N (|h11* + |ha1l?) Z Retr (CxCr_;Qe—QF )
i=0 i#0,
N-1
= (N=-1)Ny (|h1,1I2 + !hz,ﬂz) Z Retr (DgDg—1...Dg—it1) (A.44)
i=0 i#0

For ¥_4, the cross-correlation terms may be obtained by j =1,71=2, 3.. N—

land j =0, ¢ =1, and has a total of N — 1 terms. Hence

N-1
6 = Z Retr (¥4 1Hf ,CH ,Qie—iQf 1) +Retr (CxHeVf ;Qi-1QF)
=2
N-1
= 3 Retr (¥4 HY ,CI,QiQI",) +Retr (¥, HICIQ:QL))
=2
N-1
= ) Retr (¥,HICIQeiQ )| (A.45)
=0 i#1
and
N-1i-1
(52 = Z Z Retr (Hkq’f_ilck_i/ + \I’k_]‘HECkH_j/)
#=1 j/=0

= Retr (Hx¥f ,Ci—1) + (N — 2) Retr (¥4 HF CI,)
= (N —1)Retr (¥,H{C])). (A.46)
The cross-correlation for ¥y is

&, = E5, 6

N-1
= No(N —1) (|h11l* + h2al?) Y Retr (CkCF Qs Qf

i=0 i£1
= No(N —1) (lhia* + [ho,1|?) *
N-1
(Re tr (Dg) + Z Retr (Dk—le—2---Dk—i+1)) (AA47)
i=2 i#1
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For ¥,_s, the cross-correlation terms can be obtained by j =2, i=3, 4.. N —
land 1 =2, j =0, 1. Hence
N-1 1
5 = Y Retr (TeoH CJQr Q) + ) Retr (CijHiry ¥ ,Qe2Qk ;)
i=3 =0
N-1 1
= Z Retr (¥oHy ,CHL Qs Qf ) + Z Retr (¥x_oHY ,CL Qe Qi )
i=3 i=0
N-1
= Z Retr (‘I’k—2H£I-in—iQk—iQf—2) ) (A.48)
i=0 i#2
and
N-1i'—1
& = 3.3 Retr (Hy¥ ,Cy s + ¥ jHICLL ;)
i'=1 5/=0

= 2Retr (H,¥7 ,Ct5) + (N — 3) Retr (¥4_2H{ C}l,)

= (N —1)Retr (¥4,H{C{,).

Thus, the cross-correlation is

<D2 =
For ¥,_n
1
d2

E 6 62]
N-1
No (|h11 + h2a[?) D Retr (CF,Ci—;Qr—iQi_;)
=0 1#2

=0

No(N = 1) (|haal* + [h2a ) (Z Re tr (Dg—iDg—i—1.--Dr-1) +

N-1
> Retr (Dk_QDk_g...Dk_,-H)) (A.49)
1=3 i#2
11, there are two cases, i =N —1, j =0, 1, N — 2. Hence
N-1
= Y Retr (CojHiy ¥f y11Qe-n1QL;) , (A.50)
j=0 i#N—1
N-14-1
= Y Retr (He¥/ ,Cpv + ¥, ;H{CLL)
i'=1j/=0
N-2
= Y Retr (He¥ y,1Ceni1) 5 (A.51)

7'=0
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and

Oy_1 = E[b; 9]
N-1
= No(N —1) (Jhnl® + lh2a’) D Retr (C},Ci;Qr—iQf_;)
i=0 i#£N—1
= No(N —1) (Jhaf* + lhoal*) »

N-2
(Z Retr (Dk—ka—-i—l---Dk—N+2)) (A.52)
i—0 i#N—1
Therefore,
d® = g+ P+ .. Py
N-1
= No(N —1) (lhinf* + h2,1/*) ¢ D Retr (DgDg—1...Dgis1)
i=0 i#0
N-1
+ (Re tr (Dk) + Z Retr (Dk_le_Q...Dk_i+1))
=2 i#1
1 N-1
+ (Z Retr (Dk—ka—z’—l-"Dk—l) + Z Retr (Dk_sz_g...Dk_,‘+1)>
=0 =3 i#2

N-2
ot (Z Re tr (Dk_ka_i_l...Dk_N+2))

=0

-i;éN——l}
= 2N = )N (|hual® + Iho?) *

N-1 i—1
Retr { Z Z (Dk_jDk_.j_l...Dk_i+1)} (A.53)

i=1 j=0

Finally, substituting Expression (A.36) and (A.37) into Equation (A.4), Expression
(3.45) is obtained.



APPENDIX B

THE MINIMUM MSDD DISTANCE OF p FOR N BLOCKS

For BPSK messages, the constellation of S is

1/vV2 1/v/2 1/V2 —1/v2 -1/vV2 1/V2 -1/v2 —1/V2
e el e Ve || cave Ve Ve e

(B.1)
If message matrix S¢ is transmitted only, where
1/vV2 1/V2
se= | MVEVEL (B2)
-1/v2 1/V2
the constellation of Dy is
10 0 —1 0 1 -1 0
) ) ; . (B.3)
01 1 0 -1 0 0 -1

Therefore, the constellation of Re tr(Io — Dy) is {0, 2,4}, which represents no-symbol
error, one-symbol error and two-symbol error respectively. Note that the MSDD
distance between message matrices Sg, Sg_1,...Sg_ N2 to error message matrices E,

Ej_1, ... Ex_n2 is defined in Expression (3.42).

B.1 Two Blocks
For N = 2, there is only one transmitted message matrix S, so

p=Retr{I, — Di}. (B.4)
If error happens, for one-symbol error, p = 2, and for two-symbol error p = 4, hence
Pmin=2(N—-1)=2.
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B.2 Three Blocks

For N = 3, there are two transmitted matrices Si, Sg_, therefore,

p=Retr{I — Dg+ 1o — Dg_qy + I — DeDy1}- (B.5)

If error definitely happens, then

1-sym. error Retr(Dg) =0 |Retr(Dg—1)=2 | pmin=4

1-sym. error Retr (Dg) =2 | Retr(Dg-1) =0 | pmin =4
2-sym.,Dy # Dy_y | Retr (D) =0 | Retr(Dg—1) =0 | pmin =4

2-sym.,Dy = Dy_; | Retr(Dg) =0 | Retr(Dg—q) =0 |p=38
3-sym. error Retr(Dg) =0 |Retr(Dg1)=-2|p=38
3-sym. error Retr (Dg) = —2 | Retr (Dg—1) =0 | p=38
4-sym. error Retr(Dg) = —2 | Retr(Dg—1) =—2 | p=8

Obviously, for this case

pmin = 2(N — 1) =4 (B.6)

B.3 N Blocks
For an observation interval of N blocks, there are N — 1 message matrices

Sk, Sk—1, ---Sk—N+2, S0 there are N — 1 code distance matrices Dy, Dg_1,...Dg_n 2.

B.3.1 One-symbol error
For one-symbol error, only one message matrix has one-symbol error and all other
message matrices are correct. If the error matrix is Sk_¢, (0 < E < N —2), then

RBtI‘(Dk_g) =0,and Dy_; =15, 0<: < N—2buti#¢&.
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If S, or Sp_n.2 is in error, then

N—-1 -1
p = Retr {Z Z (I — Dk—jDk-—j—lka—Hl)}

i=1 j=0

= Retr {NZ_I Iy — Dk)} =2(N—1). (B.7)

i=1

If S;_1 or Sg_n.3is in error, then

N—-1 -1
p = Retr {Z Z (I — Dk—jDk—j—1-~-Dk—i+1)}

i=1 j=0
N—2
= Retr(Io — D;)+2Retr {Z (I, — Dk)} + Retr (I — Dy)
= 4(N -2)>2(N-1). - (B.8)

If Sp_o or Sg_n.41isin error, then

N—1i-1
p = Retr {Z Z (I — Dk—jDk—j—l---Dk—i+1)}

i=1 5=0
N-3
= Retr (I — Dg_3) + 2Retr (I — Dg—2) + 3Retr { Z (I — Dk_z)}
=3

+2Retr (IQ - Dk_g) + Retr (12 - Dk_z)

= 6(N —3)>4(N —2). (B.9)

If Sg_; or Sg_nia4s (1> 3)is in error,

p>...>6(N—-3)>4(N—-2)>2(N-1). (B.10)

Obviously, for one-symbol error

Pmin = 2(N — 1). (B.11)

B.3.2 Two-symbol error

For two-symbol error, there are two cases: two-symbol error in one matrix or two-

symbol error in two different matrices.
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Two-symbol error in one block For this case, two-symbol error happens
in one matrix and there is no error in other matrices. If the error matrix is
Sk—¢, (0 < € < N —2), then Retr (Dg_¢) = —2,and Dg_; =1, 0 <4 < N — 2 but
i #&.

If Si or S;_n42 is in error, then

N—1i-1
p = Retr {Z Z (I — Dk—jDk—j—l---Dk—H—l)}

i=1 j=0

N—
Re tr {Zl (I — Dk)} =4(N —1). (B.12)
i=1

If Sp_1 or Si_n.3 is wrong, then

N—-1i-1
p = Retr {Z Z (I — Dk—jDk—j—l---Dk—iJrl)}

i=1 j=0
N-2
= Retr(Io— D;)+2Retr {Z (Io — Dk)} + Retr (I — Dy)

i=2

= 8(N—2)>4(N-1). (B.13)
If Sy_; or Sp_n42.: (1> 2)isin error,
p>...>8(N—2)>4(N-1). (B.14)
Obviously, for this case

Pmin = 4(N — 1). (B.15)

Two-symbol error in two different blocks For this case, two-symbol error
happens in two different matrices and there is no error in other matrices. If the
two error matrices are Sg_¢, Sk (0 <E<n< N —2), then Retr(Dg—¢) = 0,

Retr(Dk_,,) =0,and Dy_; =1, 0<i< N —2but : #&,1.



If S, and S;_; are in error, and Ej and F;_; are different, then

N—-1 i—1
p = Retr {Z Z (I - Dk—jDk—j—l---Dk—i+l)}

i=1 j=0

Retr {NZ—I(IQ - Dk)} = 2(N— 1)

i=1

If S and Si_; are in error, and Ej and F)._;are the same, then

N—-1i-1
p = Retr {Z Z (Iz — Dk—jDk—j—l---Dk—i+1)}

i=1 j=0
= 4(N-1).

For other cases,

p>...>4(N—-1)>2(N-1).

Obviously, for this case

Pmin = 2(N - 1).

B.3.3 Three-symbol error or more errors
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(B.16)

(B.17)

(B.18)

(B.19)

For three-symbol error or more errors, it can be shown that p > 2(N — 1). Finally,

(B.20)



APPENDIX C

PROPERTIES OF THE MSDD DISTANCE p

The pairwise error probability is

where

Let a = py/2N, then

Hence

Pow

BV UALE (C.1)

= _(p/2N)y (C.2)

2

for a > 1. (C.3)

|

|
=
+
B |
=

Il

DO = DO = BN = D =D

P Y N R

M(3— a-T-2)
“(3~ 1+l2/a>

u3 - (1-2/a). (C4)

1l

R

¢4
=
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Ifa > 1, then

1 1 1
Pow ~ 5-7 (1— 5) (2+2/a)
~ L
~ 2a?
1 1
~ 55 (C.5)
2 () 7
Since pmin = 2 (N — 1) [Appendix B], when N and <y are large enough and fixed,
C_ pminy _2(N-1)7y
Hence,
1
Ppw ~ (07)



APPENDIX D

APPROXIMATE BER FOR DIFFERENTIAL STBC WITH
COHERENT DETECTION

Based on decision metric (3.9), the decision value for a correct decision can be

expressed as

G = Retr {H'CJL SRy +HI I Ry 1}, (0.1)

and the decision value for an erroneous decision can be obtained from

¢ = Retr {H{ Q[ E,R:+H;" Q| Ry 1} . (D.2)

where
Riy1 = CpqHp1 4+ Niy, (D.3)
Ry = Cr_1SiHi + Ng. (D.4)

Moreover, Q-1 and E are the erroneous matrices of C;_; and S, respectively.
Let Ay = (. — (.. Since Ay can be simplified as an approximately Gaussian

variable, similar to A in Equation (3.41), its mean and variance are

E[Ag] = —E, (I + |hal) pa, (D.5)
Var[As] = 2Ep, (|haf* + |haf?) No, (D.6)

where
p2 = Retr {2I,—D;_1D; — Di_1}, (D.7)

and Dy = EkS,t, Dy = Qk_lC};_l.Note that it is assumed that Cj_; and S; have

the same constellation here, so D;_; and D must also have the same constellation.
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Using Equation (3.39),
P(S— E|S) = P(ne —Ne > OIS)
= P(Ag > 0)
= @ (Vhon (" + 1aP) 2). (D8)

Using the same approach in Section 3.4, the closed-form pairwise probability for
differential STBC with coherent detection can be obtained as

1 1
PL(S — BIS)ep = 1 ok — gt (1~ 1) 09)

where

2
b = [ L (D.10)
Assuming that BSPK message is employed, there are then a total of 4
information bits for an observation interval of two blocks with coherent detection.
Since an approximate BER is dominated by the minimum value of g, which is 2
here, and there are two options for one-symbol error and two options for three-symbol
error, based on Equation (3.54), the approximate BER can be expressed as

1%x2
4

1 1 1
= 3%3 [1 ~ Hooh — S Hooh (1 —uioh)]
§ 1

Pb(l) + 3 % 2Pb(3)

P, ~
b 4

1
-G-2 *5 [1 ~ Hooh ~ 5 lhcoh (1- Il?;oh)]
1 1
= 2x3 [1 ~ Heoh ~ Glhcon (1- Mgoh):l ) (D.11)
where
Y
=, /——. D.12
Heoh » +2 ( )



APPENDIX E

LCR AND AFD IN MIMO MOBILE FADING CHANNELS

E.1 Introducation

The concepts of level crossing rate (LCR) and average fade durations (AFD) for
MIMO fading channels have not yet been defined and analyzed, and most of the LCR-
and AFD-related research has been carried out in the context of SISO systems. The
recent works on LCR and AFD for receive diversity combiners [48] [49] [50], which
eventually boil down to the crossing theory of a scalar process, appear in MIMO
channels, as what will see in the sequel. However, in general, for an M-transmit
N-receive multiantenna system, the joint dynamic behavior of M N correlated random
signals is of interest (which has not been addressed in the literature). This requires
a multidimensional approach to LCR and AFD problems.

To show the utility of the theoretical results derived in this chapter, adaptive
modulation, Markov modeling, the block fading model, and the concept of vector
AFD in MIMO systems are briefly discussed. In the first two cases, there is a scalar

crossing problem, whereas the last two require a vector crossing approach.

E.2 Scalar Crossing in MIMO Systems
In this section, first the mathematical formulation of the problem and its solution is

presented, followed by a numerical example. Then the applications are highlighted.

E.2.1 Mathematical Formulation

Consider a time-selective narrowband M x N channel, with MN complex Gaussian
processes, correlated in both space and time, and coﬁupted by a spatio-temporal
white Gaussian noise. Obviously, depending on the presence or absence of line-of-sight

(LOS), the envelope of subchannels could be Rice or Rayleigh, respectively. The
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instantaneous received signal-to-noise ratio (SNR) per symbol over the subchannel
from the p-th transmitter to the [-th receiver is proportional to |hy, (t)|2, assuming
perfect channel estimation at the receiver. The total instantaneous received SNR per
symbol, -y (t) , is therefore proportional to 3,  |hsy (t)], and is a useful measure for
Markov modeling of diversity systems [51], MIMO channel characterization [52] [53],
and design of MIMO systems [54] [55].

Now it is desired to determine the average stay duration (ASD) of v (¢) within
the region [y1, 7], ASD{v (t),[y1,72]}, defined as the average time over which v; <
74 (t) < 2. The concept of ASD is applicable to both scalar processes such as 7 (%),
as well as vector processes, discussed later, and includes AFD as the special case
where 4; = —oo. Similar to AFD, the ASD of «y (¢) within the region [y;,7s] can be
calculated by

ASD 0 0), ) = T o e &)

where Pr[.] is the probability and the denominator is the incrossing rate (ICR), i.e.,
the average number of times that crosses one of the two borders and enters the
region [y1,7,]. The numerator can be calculated via the Euler method [56]. For the
denominator the result of Hasofer’s paper [57] is used.

Specifically, let z(t) = 327, u2(t), where u;(t)s are correlated nonzero mean real
Gaussian processes. Also let u = [u; uy ... us]" and u' = [ u} ... u]T, where prime
denotes differentiation with respect to time ¢ and *T” is the transpose operator. The

mean vector and the covariance matrix of [u” u'"| are respectively given by

r = 7 o77, (E.2)

i ¥
¢ _ 11 212 ’ (B.3)

Z:21 222



92

where nis a J x 1 vector, 0 is a J X 1 zero vector, and ¥5; = XT,. The following

transformations are also needed:

u = vzcos(b)...cos(0;), (E.4)
Uy = \/ECOS (91) ... COS (01_2) COoS (91_1) , (E5)
U; = \/ECOS (01) ... COS (Hj_l) COoS (OJ—i+l) 5 (Eﬁ)
uy = +/zcos(f), (E.7)

where 0; € [-7/2,7/2), i=1,2,...,J — 2, and 0;_; € [0,27). Then the upcrossing

rate (UCR) of z(t) with respect to the threshold zo can be written as [57]

UCR{z(t),ze} = (2m) "D [det (Byy)] 22§27

S Lo e () e [-o ()]}

1
X exp [_§A (x07 O1,--- 91—1)] B (91, <e 91—2) db, ---db;_4, (ES)

where det(-) is the determinant and

0 = 4u” (S — Ty S) u, (E.9)
9 = 20"Ty N (u—17p), (E.10)
d(y) = (2m)~ 2 fy exp (—22/2) dz, (E.11)
e
A(zo,01,-+-0;1) = (u—n)" I3 (u—n), (E.12)
B(0y,---05) = %COSH (01) cos™3 (8)---cos (0y_5).  (E.13)

When w; (t)s are identically-distributed and correlated zero-mean real Gaussian
processes, a compact form is given in Lindgren’s paper [58] for UC R {z(t), zo}. Note
that DCR{z(t),zo} = UCR{x(t), 2o}, where DC R stands for the downcrossing rate.
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Obviously, ICR{y(t),[n1,%2]} = UCR{x(t),71} + DCR{y(t),%}. In an
M x N MIMO system, J = 2MN. Therefore, to calculate ICR{v(t),[v1,72]},
two (2M N — 1)-fold finite-range integrals need to be calculated. This could be very
cumbersome even for a simple 2 x 2 system, which entails two seven-fold integrals. A
technique, which has much less computational complexity, will be dissertationed in

another paper.

E.2.2 Numerical Example
Consider a 2 x 1 Rayleigh channel, i.e., M = 2 and N = 1. Then total instantaneous

received SNR per symbol is given by

Y(t) = (Ea/No) (Ihus* + h12?) , (E.14)

where E,, /N, is the average SNR per symbol. Let E [1h11|2] =F [[h12|2] = 1.
Therefore the average received SNR per symbol over each subchannel is given by

711 = E5/No. Now the total instantaneous received SNR per symbol is rewroten as

v(®) =7 (lhul* + |he2f?) . (E.15)

The temporal autocorrelation is also defined

P (1) = Elhiy (t) A3y (E + 7)) = pro,12 (1), (E.16)

and spatio-temporal crosscorrelation

puaz (1) = E[hy (t) hiy (4 7)]. (E.17)

To calculate the AFD of v(¢) below the threshold vy, , AF'D {v(t), v}, it is needed

to calculate Pr [y < ;] and DCR {7(t), i }- For the former the result given in Lee’s
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paper [59] is used, p. 368

Priy<qm] = 1— I [+ ) exp {—vm [ A+ 1))

— (1~ ¢l exp {—yen 7 (1 — KDY (E.18)

where ¢ = pi11,12 (0), and for the latter expression (E.8) is computed, numerically.
To compute Expression (E.8), u; (t)s are defined such that hy (t) = uy (2) +
Jus (t) and hqs () = us (£)+juy (t), in which j? = —1. For mathematical convenience,
the vector u is defined as u =[u; us u3 u4]T. Such a definition makes X1, X5 and
Y9 in Equation (E.3), block matrices. Due to Rayleigh fading n = E[u] = 0
To build the covariance matrix in Equation (E.3), it is necessary to express

Elu; () w (t +7)), 4,k = 1,---4, in terms of py1,11 (1) and py1,12 (7). It is easy to

verify that
Elut)u; t+7)] = % Re[p11,11 ()], i=1,2,---4, (E.19)
Bl us(t+7)] = Flug(t)us(t+7)] = —% Imlpun ()],  (F-20)
EluiQ)us(t+7)] = Elua(Qua(t+7)] = % Re[p11,12 (7)], (E.21)
F [Ul (t) Uy (t —+ 'T)] = —-F [’LL2 (t) U3 (t + T)] = —% Im [pn,u (T)] , (E.22)

where Re[-] and Im[-] give the real and imaginary parts, respectively. In deriving
the equations in (E.19)7(E.22), the class of widely-used rotation invariant [60] (also
called proper [61]) complex random vectors and processes have been considered. This

translates into

E [h1, (8)] = E [h, ()] = E [hi1 (8) haa ()] = 0. (E.23)

Based on Equation (E.19)7(E.22), it is easy to construct ;;, which is a symmetric

matrix. To calculate the elements of the other two covariance matrices in Equation
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(E.3), define

Ry, (1) =E[y () z(t+1)], (E.24)

where y () and z (¢) are two real processes. Then it is easy to verify [62]

Ely®)2 (t+7)] = Ry (1) (E.25)
E[z@)y (t+7)] = Ry (1) = Ry (—7) (E.26)
Ely @)2 (t+7)] = —Ry (1) (E.27)

where dot denotes differentiation with respect to 7. Based on Equation (E.25)7(E.27),

Y12 and Yy , antisymmetric and symmetric matrices are built, respectively, as follows

Re [5 Re g —Im g “Im M ]
Y = e e [C ] e :é: o C i [5] (E.28)
Im [&_ Im[¢] Re [g] Re [g]
| m[¢] ml¢] —Re[d] Rel]] |
[ _ Re [§ —Re [C] Im kf_ Im [(] ]
Sy = L | Re [&J ~Re [5] ~Im [C] tm [5] (E.29)
Im [{] —Im [g’} —Re [{

ne[g
|

]
m[¢] m[f —Re €] —Relé

in which the shorthand notations & = py; 1, (0), ¢ = py145 (0), € = pyy.11(0), € =
11,12 (0)have been used.

In the numerical example, the macrocell space-time correlation model of [9] is
used. Macrocells are chosen because the correlation among subchannels is particularly
high within macrocells, where the angle spread at the elevated base station (BS) is

normally small, say, less than 10 degrees (see references in [33]), and the distribution
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of angle of arrival (AOA) at the mobile station (MS) could be far from uniform [36]
[63]. Both of these induce high nonnegligible correlations. For a 2 x 1 Rayleigh

channel, Equation (12) of [33] yields these correlations

pr (1) = o (o)™ o ({* — 4n®f37° — jamscos (yo — ) for}'"?)  (B.30)
prige (1) = [Io (k)] efeos@2mé/Apg ({x* — 4n2f3r% — jan? (6/ )2 A%sin® (o)
+87%(8/)) fprsin (@) sin (v)

— j2k 27 forcos (1 — o) — 27 (6/X) Asin () sin (u)]}lﬂ) (E.31)

where I, (-) is the zero-order modified Bessel function, £ > 0 controls the angle
spread at the MS, u € [—m,7) accounts for the mean direction of AOA at the MS,
%o is the direction of the motion of MS (not to be confused with SNR in this chapter),
fp denotes the maximum Doppler shift, o represents the direction of the BS array,
A is the wavelength, ¢ stands for the element spacing at the BS, and finally 2A is the
spread of the angle of departure from the BS.

Consider the transmit BS array, where the two elements are spaced by 4, is
perpendicular to the horizontal x axis, & = 90°, and the receive single MS antenna is
moving on the z axis, towards the transmit array, v, = 180°, with a constant speed
such fp = 20Hz. The angle spread at the BS is 2A = 4° whereas at the MS is
66°, equivalent to k = 3, around the mean AOA of y = 36° at the MS. The values
k of u and are estimated from measured data [40]. In Figure E.1 and Figure E.2
the author has plotted the DCR and AFD of «y () with respect to the threshold ~yy,,
obtained via Expression (E.8) and (E.18) divided by Expression (E.8), respectively, as
a function of the normalized power threshold 7y, /7;;. In both figures, two BS element
spacings of 6 = A and 5\ are considered, which correspond, respectively, to these
spatial correlations: |¢| = |p11,12 (0)] = 0.995 and 0.886. Close agreement between

the simulation results, given in both figures for 4 = 5\, and the theoretical curves
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verifies the accuracy of the analytic calculations. The spatio-temporally correlated
MIMO channel is simulated using the spectral representation method [64].

Also in Figure E.1 and Figure E.2 the DCR and AFD have been plotted if the
spatial correlation is ignored, i.e., incorrect assumption of independent subchannels
hi1 (t) and hyy (t). To do this, Equation (15) and (17) of the paper [56] have been

used, which after minor corrections result in

DCR{y(t) v} = \/i%(“’—t"—)mexp (22) (%_%)m, (E.32)

T T
= ~ -1/
AFD{v(t), v} = \/”_l'[exp (’th(t’/yll/l—f)y _)3/2_ (’Yth/')’ll)] (%z_ _ %) 2 ,(E.33)
b1/b() = 27l'fDT cos ()U,) I1 (K,) [I() (I‘&)]—l ; (E.34)
ba/bo = 21f3 [T (k) + I (1) cos (24)] [To (&))" (E.35)

Note that b, /by and by /by in Equation (E.34) and (E.35) have been calculated
according to py1,11 (1) in Equation (E.30) and (E.31), whereas pj112 (1) = 0 due
to neglecting the existing spatial correlation. As Figure E.1 shows, high spatial
correlations introduce large deviations from the case where there is no correlation
between the two subchannels. On the other hand, according to Figure E.2, AFD
increases as the spatial correlation increases. This was expected since the correlation
reduces the amount of diversity. As a numerical example, to have an AFD of 10 msec.
below a fixed threshold, one needs a 2.6 dB increase in 7;; = E,/N, , the average
received SNR per symbol over each subchannel, for a spatial correlation of 0.995.

This increase for the 0.886 spatial correlation is 2 dB.

E.2.3 Applications of Scalar ASD
In adaptive modulation schemes for MIMO channels, the total received (post-

processing) SNR is a good measure of channel quality as it captures the impacts of
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many parameters involved such as the space-time coding/decoding used, constellation
size /shape, antenna correlations and polarizations, etc. [53]. The entire range of total
received SNR,[0, 0c], needs to be discretized into k + 1 regions [0,71], [y1,72], -+,
[Yk—1, V), and [vx, 00]. The ASD of each individual region can be used to determine,
for example, the tradeoff between power/rate adaptation policies and the number of
regions, as well as the thresholds {v;,v2,+ -y }.

There is a growing interest in representing fading channels with finite state
Markov models [65] [66]-[67] as they significantly facilitate the performance analysis
of complex communication protocols over channels with memory. Development of a
Markov model for MIMO fading channels can be done using the approach taken for
receive diversity combiners [51], i.e., partitioning the entire range of total received
SNR, and treating each subregion as a state. The transition probability v (t) of
from one state to another can be determined using the ICR of 7y (t). The ASD of
7 (t) can be employed for choosing the thresholds in order to obtain, for example, an

equal-duration partitioning, or other types of partitioning.

E.3 Vector Crossing in MIMO Systems
Here first the problem is formulated and the solution is discussed. Since the solution
in the most general case is rather complicated, the author considers a special situation

and then apply it to two cases of interest.

E.3.1 Mathematical Formulation

Consider a time-selective narrowband M x N matrix channel, composed of M N
complex zero-mean Gaussian processes, correlated in both space and time. Obviously
the envelope of subchannels are Rayleigh distributed. As before, hy, (t) denotes the
complex gain of the subchannel connecting the p-th transmitter to the [-th receiver.

Suppose at ¢ = tp, all the subchannel gains are observed. Now it is needed to
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determine for how long, in average, the maximum absolute deviation of all the M N
processes from their observed values at ¢ = iy, simultaneously, does not exceed a
certain bound . In other words, starting at ¢ = #, this is the average time over
which |Re [hy, ()] — Re [hyp (t0)]| < € and [Im [y, (2)] — Im [Ay, (f0)]] < &, for all I’s
and p’s. Mathematically speaking, this is equivalent to the average stay time of
a vector Gaussian process consisting of 2M N real correlated processes, within a
hypercube with equal sides of length 2. For M = N = 1, a SISO channel, the
idea is depicted in Figure E.3, where Ty, is the stay time of the real and imaginary
parts of hqq (t) within the 2e-square, centered on the process at ¢t = ;. Obviously it
is interesting to calculate F [Ty, |, the ASD.

To compute this vector ASD, similar to the scalar ASD of the previous section,
it is needed to divide the probability of falling this Gaussian vector into the 2e-
hypercube, by the associated outcrossing rate (OCR) of the vector process. For the
numerator, many techniques are available [68], whereas the OCR can be derived from
Equation (3.1) of [69], in the form of a multidimensional surface integral (one can also
derive (3) from Equation (3.1) of [69]). More specifically, let H (t) represents the M x
N matrix channel. Also let hg. () = vec(Re[H (¢)]) and hyy, (t) = vec (Im [H (2)]),
two M N X1 real vectors, where vec(:) gives a column vector, constructed by stacking
the columns of its matrix argument. The ASD of the 2M N x 1 real vector process
h(t) = [hm ®7, him (t)T]T within the hypercube of side 2e, centered at h (%),
HC [h (), 2¢], is given by

ASD {h(t), HC[h (to), 2]} = —+10() € HC[h (to) , 2¢]]

= OCR{h (), AC b (i), 2]} (E.36)

E.3.2 Special Case of Isotropic Scattering and No Spatial Correlation
To come up with a simple solution for Equation (E.36) to obtain some intuition,
assume that there is no spatial correlation between the M N subchannels. Isotropic

scattering is further assumed , i.e., uniform distribution of AOA at the receiver,
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which entails Clarke’s correlation 2.J; (27 fpT) for each individual complex subchannel,
where Jp (-) is the zero-order Bessel function. Under theses conditions it is easy
to verify that all the elements of h(¢) are independent processes, with zero mean
and unit variance. Let h (%) = 61, where 6 is a real number and 1 is an all one
vector. Obviously it is interesting to observe the case where at time ¢ , the real and
imaginary parts of all the subchannels have taken the same value 8. It is easy to show
that the numerator of Equation (E.36) is given by [® (6 +¢) — ® (0 — &)]*". The

denominator from Equation (19) of the paper [70] is derived as

2V2MN fpexp [— (6° + 62) /2] cos (Be) [® (0 +&) — @ (0 — )M |

where cosh(-) is the hyperbolic cosine. This gives us

[®(0+¢)— D (0— )] exp (02 +&2) /2]

ASD{h(t), HC[01,2¢]} = 2v2M N fp cos (6e)

(E.37)

E.3.3 Application: Analysis of the Block Fading Model

In many wireless communication scenarios, due to the low mobility of the users
and also the quasi-stationarity of the environment, it is common to assume that
the channel remains constant over a long block of symbols, and then jumps to
another random constant for the next block. This gives rise to the so-called block
fading model [71], which has been used extensively for coding/information-theoretic
studies in fading channels [72]. Besides the physical motivation just described, this
piecewise-constant approximation of the continuously time-varying random fading
facilitates the theoretical analysis [73]. The block fading model also appears in the
context of differential detection schemes, which are devised to bypass the channel
estimation at the receiver [14] [16]. However, error floors appear at high SNR
when the time-varying nature of the channel dominates, i.e., the piecewise-constant
approximation of block fading model becomes less accurate [74] [24], which in turn

degrades the performance of the associated designs. So, in general, it is important
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2 x 1 mobile Rayleigh channel, e=90°, y,=180°, f,=20 Hz, A=2°, x=3, =36
12,

—— 5=, spatial com=0.995 (th) : : :
— - 5=5), spatial cor=0.886 (th) | : : Q@
O §=5), spatial com=0.886 (sim) | : \
- — - no spatial corr (th) ; A\

10/

Downcrossing rate of 1(t)
D

- -

Nommalized power threshold v, /7,,

Figure E.1 Downcrossing rate of total instantaneous SNR in a 2x1 channel, with
and without spatial correlation (th: theory, sim: simulation).

to quantify the conditions under which the block fading model is a reasonable
approximation to the continuously varying MIMO fading channel.

For M = N, the normalized ASD, fpb ASD{h(t), HC[01,2¢]} , is plotted in
Figure E.4 with respect to 8, with as a parameter £. Some simulation results are
also included, to verify the theory. Interestingly, for any fixed £, ASD decreases as
M increases. This means that the block fading model remains accurate for a shorter
period, as the number of transmitters and/or receivers increases. On the other hand,
when M is fixed, ASD decreases as £ decreases. This was expected as it should take
less time for a vector process to exit a small region than a large one. Finally note that
for any M and e, ASD decreases when 6 increases. This implies that the zero-mean
vector Gaussian process tends to stay more often around small values, rather than

large values.
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2 x 1 mobite Rayleigh channel, 0=90°, 10=180°, 15=20 Hz, A=2°, x=3, u=36°

10

—— 3=, spatial comr=0.995 (th)

— - =5, spatial com=0.886 () |-:
Q §=5), spatial cor=0.886 (sim) "

- —« no spatial corr (th) ol

Average fada duration of y(t)

Nommalized power threshoid v, /v,

Figure E.2 Average fade duration of total instantaneous SNR in a 2 x 1 channel,
with and without spatial correlation (th: theory, sim: simulation).

ImfA; (5]

— Re[#,(t)]

Figure E.3 Graphical representation of the concept of the stay duration of a single
complex process, a SISO channel, within a square region.
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1 M transmitters and N receivers

ity - em2(th) :
— - ¢=1.50(th) |
] — e=1{th)
1 & e=2(sim)
v £=1.50(sim) |]
© _e=1(sim)

Nommalized MIMO ASD

Figure E4 Normalized average stay duration in a MIMO channel with the same
number of transmit and receive antennas (th: theory, sim: simulation).

E.3.4 Application: Vector AFD in MIMO Channels

In the numerical example of Section 5.2.2, the scalar AFD in MIMO channels is
focused on, where the AFD was defined for the total instantaneous received SNR per
symbol, y () oc 3, [hup (t)|?, a scalar process. Now the vector AFD is defined as the
average stay duration inside a hypercube with equal sides of size 2¢, centered at the

origin, i.e.,0 = 0 . Then Equation (E.37) gives the vector AFD as

-1
(2\/§MN fD) [1 - 28 (—¢)] exp [¢/2) .
Obviously the vector AFD tends to zero and infinity as ¢ — 0 and oo, respectively.

E.4 Conclusion
The concepts of level crossing rate (LCR) and average fade duration (AFD) are well
understood for single-input single-output fading channels. However, apparently they

have not been studied so far, in the context of multiple-input multiple-output (MIMO)
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channels. In this chapter it has been addressed at a variety of possible approaches
and definitions for MIMO LCR and AFD. When feasible, closed-from solutions are
provided, and illustrated by numerical examples and simulations. Applications of
MIMO LCR and AFD to adaptive modulation in MIMO channels, Markov modeling,

and block fading approximation of MIMO channels are discussed as well.
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