

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

A DISCOVERY AND ANALYSIS OF
INFLUENCING FACTORS OF PAIR PROGRAMMING

by
Kyungsub Steve Choi

The exploration into the underlying psychosocial links of pair programming, a new and

unorthodox programming paradigm in which two programmers share one keyboard and

monitor during real-time programming sessions, is undertaken. These complex

psychosocial relationships, along with cognitive process exchanges, ultimately mold the

programming output as well as determine the level of communication, satisfaction,

confidence and compatibility. Laying the framework for this research, a through review

of traditional and contemporary paradigms with a special focus on their limitations and a

list of current software development problems are presented. Next, a detailed summary

of pair programming and related agile software paradigms, such as extreme

programming, which lists pair programming as one of its twelve principles, is given.

From earlier pair programming studies, a number of programming benefits have been

unveiled and these are listed and discussed. However, a lack of formal studies pertaining

to the psychosocial aspects of pair programming exists. Given this void, a field survey is

administered to a group of professional programmers and a resulting list of influencing

factors on pair programming emerges. From the list, the most popular factor, personality,

and two other factors, communication and gender, have been selected in order to study

their impact on pair programming product outcome and the level of communication,

satisfaction, confidence and compatibility. An experiment focusing on these factors is

designed and implemented. From the experimental findings, the personality of the two

partners in pair programming is found to have a significant impact on the pair

programming output. Also, it is discovered that same gender pairs exhibited an

unusually high level of communication, satisfaction and compatibility between each

other, especially among female-female pairs. A detailed statistical experiment result

based on research hypotheses is reported.

A DISCOVERY AND ANALYSIS OF
INFLUENCING FACTORS OF PAIR PROGRAMMING

by
Kyungsub Steve Choi

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Information Systems

Department of Information Systems

May 2004

Copyright © 2004 by Kyungsub Steve Choi
ALL RIGHTS RESERVED

APPROVAL PAGE

A DISCOVERY AND ANALYSIS OF
INFLUENCING FACTORS OF PAIR PROGRAMMING

Kyungsub Steve Choi

Dr. Fadi P. Deek, Dissertation Advisor	 Date
Professor of Information Systems, NJIT

Dr. II Im, Dissertation Co-Advisor 	 Date
Assistant Professor of Information Systems, NJIT

Dr. Murray TYuroff. Committee Member 	 Date
Distinguished ProfessOf of Information Systems, NJIT

Dr. Bartel Van De \Valle, Committee Member 	 Date
Assistant Professor of Information Systems and Management,
Tilburg University

Dr. Michael Ilinchey, Committee Member 	 Date
Director of the Software Engineering Laboratory
at NASA Goddard Space Flight Center

BIOGRAPHICAL SKETCH

Author:	 Kyungsub Steve Choi

Degree:	 Doctor of Philosophy

Date:	 May 2004

Undergraduate and Graduate Education:

• Doctor of Philosophy in Information Systems,
New Jersey Institute of Technology, Newark, NJ, 2004

• Master of Science in Management Information Systems,
New Jersey Institute of Technology, Newark, NJ, 1998

• Bachelor of Science in Management Information Systems,
New Jersey Institute of Technology, Newark, NJ, 1997

• Bachelor of Arts in Chemistry and Economics,
Rutgers College, Rutgers University, New Brunswick, NJ, 1992

Major:	 Information Systems

Presentations and Publications:

Choi, K. S., and Deek, F.P., "Extreme Programming, Too Extreme?," The Proceedings
Of the International Conference on Software Engineering Research and Practice
2002 (SERP'02), Las Vegas, USA, 2002.

Choi. K. S., "Imposing Computer Mediated Communication Theories on Virtual Reality",
The International Conference on Information Technology: Research and
Education, (ITRE2003) August 10-13, 2003, Newark, New Jersey, USA.

Choi, K. S., -A Discovery and Analysis of Influencing Factors of Pair Programming,"
The Software Engineering Research Symposium; NJIT and NASA,
January 29, 2003. Newark, New Jersey, USA.

iv

ACKNOWLEDGEMENT

Looking back in retrospect, the completion this work was not just the result of my efforts

but also those of many others. I am deeply indebted to numerous mentors and friends

who have helped make this accomplishment possible. I would first like to begin by

expressing my sincere gratitude to my advisor, Dr. Fadi P. Deek. He warmly welcomed

me under his guidance several years ago and has provided me with an overwhelming

amount of guidance and support ever since. He has not only allowed me to develop and

refine my ideas and skills in an academic research environment, but he has also been a

good friend who has provided the much needed encouragement and emotional support

which helped me to complete such a long and difficult journey.

I would also like to thank Dr. II Im, who is my co-advisor. His advice and help

during the creation of the statistical report and the final write up were invaluable and this

research effort could not have been completed without him. Despite countless emails

and office visits, Dr. Im always welcomed me with a smile and offered great insights

during the final stage of this work.

I am also grateful for my committee members, Dr. Murray Turoff, Dr. Bartel

Van de Walle, and Dr. Michael Hinchey, for all of their valuable time and words. By

sharing their expert advices, each member has helped me refine and polish this paper.

Also, the completion of my postgraduate career would not have been possible

without financial assistance. For that, I thank NJ I-Tower, who funded my research

assistantship.

I also must express my deep gratitude to a number of professionals who helped

me immensely in this effort. First, I sincerely thank Dr. Brian H. Spitzberg of School of

vi

Communication, San Diego State University, who had graciously afforded the use of his

communication skill measurement instruments to a PhD student who he has never met. Also, I

would like to express my heartfelt thanks to Dr. Bill Anderson for letting me use his valuable

instrument and to Dr. Ulla Bunz of School of Communication, Information and Library Studies,

Rutgers University for her kind suggestions and the introduction to Dr. Spitzberg. I would also

like to thank several other trusted friends who have contributed their time as either a problem

design contributor, an experiment subject supplier, a experiment space provider, or a judge; they

are Prof. Maura Deek, Dr. Robert Friedman, Dr. Joanna DeFranco-Tommarello, Prof. Ted

Nicholson, Prof. Morty Kwestel, Tom Cohn, Vikas Patel and Anika Raut. I also thank my

colleagues, professors, and the NJIT IS department for their guidance and support.

Finally, I would be remiss if I didn't mention a list of friends and family who have

offered their valuable time and friendship during this journey. Sincere thanks goes out to

James Yusko for his help in my writing and friendship, to Yoo-Nam Kim who not only

provided his friendship, but also his home when I needed one, and to Yong-Min Han for his

sincere friendship during some very difficult times. I am always grateful for my two brothers,

Kyung-Jo and Kyung-Ho, and my sister, Kyung-Mi. I love you all.

This journey was truly a struggle; a struggle that I shall remember for the rest of my life

and one that served to strengthen my character and resolve. There were three occasions when I

seriously contemplated quitting, but because of the love of my family and friends, I decided to

continue. My last thanks goes to the sport of marathon running, which has been a great outlet

for me and something that I consider to be a lifetime teacher and mentor.

vii

TABLE OF CONTENTS

Chapter 	 Page
1 INTRODUCTION 	 1

2 REVIEW OF SOFTWARE PROCESS PARADIGMS 	 5

2.1 Definitions Revisited 	 5

2.1.1 Software Process Model Defined 	 5

2.1.2 Model vs. Method 	 7

2.1.3 Software vs. System 	 9

2.1.4 The Stages of Model 	 10

2.2 The Traditional Paradigms 	 13

2.2.1 Linear Sequential 	 13

2.2.2 Spiral 	 16

2.2.3 Commercially-Off-The-Shelf (COTS) 	 18

2.2.4 Prototyping-Based 	 26

2.3 The Contemporary Paradigms 	 28

2.3.1 Agile Software Development Introduction 	 34

2.3.2 Extreme Programming (XP) 	 36

2.3.3 Feature Driven Development (FDD) 	 53

2.3.4 Adaptive Software Development (ASD) 	 55

2.3.5 SCRUM 	 58

2.3.6 Crystal 	 60

2.3.7 Dynamic Systems Development Method (DSDM) 	 63

2.3.8 Lean Programming 	 65

2.4 Problems in Today's Software Development 	 67

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page
2.5 Implications of Contemporary Paradigms 	 72

3 PAIR PROGRAMMING HYPOTHESES DEVELOPMENT 	 81

3.1 Pair Programming and Extreme Programming Defined 	 81

3.2 Pair Programming Literature Reviewed 	 84

3.3 Pair Programming Field Survey 	 87

3.3.1 The Survey Participants Profile 	 90

3.3.2 The Survey Result Analysis 	 93

3.3.3 The Survey Participants Comments 	 108

3.4 Ilypotheses Development 	 115

3.4.1 Personality Concept Review 	 116

3.4.2 Communication Concept Review 	 127

3.4.3 Independent Variables 	 128

3.4.4 Dependent Variables 	 131

3.4.5 Hypotheses 	 132

4 EXPERIMENT 	 139

4.1 Experiment Design 	 139

4.1.1 Preparing Experiment Materials 	 139

4.1.2 Experiment Procedure-First Part 	 143

4.1.3 Experiment Procedure-Second Part 	 146

ix

TABLE OF CONTENTS
(Continued)

Chapter	 Page
4.2 Experiment Result 	 147

4.2.1 Subjects Profile 	 147

4.2.2 Factor Analysis and Reliability Analysis 	 151

4.2.3 Hypotheses Evaluated 	 159

4.2.4 One-man Programming vs. Pair Programming 	 184

4.2.5 Interaction Effects 	 193

4.2.6 Hypotheses Summary 	 197

4.2.7 Discussion 	 199

5 CONCLUDING REMARKS AND FUTURE WORKS 	 204

5.1 Summary of Findings 	 204

5.2 Theoretical and Practical Implications 	 206

5.3 Limitations and Recommendations 	 207

5.4 Concluding Remarks 	 212

APPENDIX A SUBJECT CONSENT FORM 	 214

	

APPENDIX B SUBJECT PROG. BACKGROUND INFO 217

APPENDIX C POST PRONG. SESSION QUESTIONNAIRE 	 218

APPENDIX D PAIR PRONG. EXPERIMENT FIRST VISIT SCIlEDULE 	 225

APPENDIX E COMM. SKILL LEVEL MEASURING INST. I 	 226

APPENDIX F COMM. SKILL LEVEL MEASURING INST. II 	 228

APPENDIX G COMM. SKILL LEVEL MEASURING INST. III 	 229

APPENDIX H PROGRAMMING PROBLEM SET 	 233

TABLE OF CONTENTS
(Continued)

Chapter	 Page
APPENDIX I PROBLEM EVALUATION FORM 	 237

APPENDIX J INSTRUCTION SHEET FOR THE JUDGES 	 238

APPENDIX K ILLUSTRATION OF TWO JUDGES'S SCORES 	 239

APPENDIX L PAIR PROC. SURVEY QUESTIONNAIRE 	 243

APPENDIX M MBTI DISTRIBUTION AMONG DIFF. ACADEMIC MAJORS 	 245

APPENDIX N IlISTOGRAMS AND Q-Q PLOTS 	 247

APPENDIX 0 EXPERIMENT ENVIRONMENT SPECIFICATION 	 258

GLOSSARY AND INDEX 	 259

REFERENCES 	 261

xi

LIST OF TABLES
Table	 Page
2.1 Synonyms of Software Process Stages 	 11

2.2 Software Development Documents 	 12

2.3 Factors Displaying the Shortcomings of Established Models 	 30

2.4 Comparison Between XP and Linear Sequential 	 35

2.5 XP Work Flow Terms Description 	 37

2.6 XP Twelve Core Practices 	 39

2.7 ASD Adaptation of CAS Theory 	 56

2.8 ASD Speed and Change Relevancy 	 57

2.9 SCRUM Terms Description 	 58

2.10 Core Crystal Elements 	 62

2.11 Adaptation of The Manufacturing Principles 	 66

2.12 Agile Software Process Paradigm Characteristics 	 74

3.1 Survey Result Statistic Figures 	 107

3.2 'Big 5' Concept Defined 	 118

3.3 Personality Theories 	 121

3.4 Myers-Briggs Type Indicator (MBTI) from 'Big 5' 	 122

3.5 Eight Preferences of MBTI Type Indicator 	 124

3.6 The Dominant and Auxiliary Preferences of The MBTI Type 	 128

4.1 MBTI Test Materials 	 141

4.2 Subjects Profile- Course 	 147

4.3 MBTI Type Distribution 	 148

4.4 Communication Skill Level Distribution 	 149

xii

LIST OF TABLES
(Continued)

Table	 Page
4.5 MBTI Type Pairing 	 149

4.6 Communication Skill Pairing 	 150

4.7 Gender Pairing 	 150

4.8 Rotated Component Matrix I 	 153

4.9 Rotated Component Matrix II 	 154

4.10 Rotated Component Matrix III 	 156

4.11 Cronbach's Reliability Measurement 	 157

4.12 Inter-Judge Code Productivity Score Correlations 	 158

4.13 Inter-Judge Code Design Score Correlations 	 158

4.14 Normal Distribution of Dependent Variables 	 160

4.15 Tests of Normality of Dependent Variables 	 161

4.16 Descriptives of [pairtype] 	 163

4.17 Test Statistics of [pairtype] 	 164

4.18 Test Statistics of [divrs] vs. [opp] 	 164

4.19 Test Statistics of [divrs] vs. [alike] 	 165

4.20 Test Statistics of [opp] vs. [alike] 	 166

4.21 Descriptives of [paircomm] 	 167

4.22 Test Statistics of [paircomm] 	 168

4.23 Descriptives of [pairgender] 	 169

4.24 Test Statistics of [pairgender] 	 170

4.25 Descriptive of Constructs 	 171

LIST OF TABLES
(Continued)

Table	 Page
4.26 Tests of Normality of Constructs 	 172

4.27 Test Statistics of [pairtype] Constructs 	 173

4.28 Test Statistics of [paircomm] Constructs 	 175

4.29 Test Statistics [HH] vs. [HL]: [paircomm]-PP comma 	 176

4.30 Test Statistics [HH] vs. [LL]: [paircomm]-PP comm 	 176

4.31 Test Statistics [HL] vs. [LL]: [paircomml-PP comm 	 177

4.32 Test Statistics of [pairgender] Constructs 	 178

4.33 Test Statistics [MM] vs. [MF]:[pairgender]-PP comm 	 179

4.34 Test Statistics [MF] vs. [FF]:[pairgender]-PP comm 	 179

4.35 Test Statistics [MM] vs. [FF]:[pairgender]-PP comma 	 180

4.36 Test Statistics [MM] vs. [MF]:[pairgender]-PP satisf 	 180

4.37 Test Statistics [MF] vs. [FF]:[pairgender]-PP satisf 	 181

4.38 Test Statistics [MM] vs. [FF]:[pairgender]-PP satisf 	 181

4.39 Test Statistics [MM] vs. [MF]:[pairgender]-PP compat 	 182

4.40 Test Statistics [MF] vs. [FF]:[pairgender]-PP compat 	 182

4.41 Test Statistics [MM] vs. [FF]:[pairgender]-PP compat 	 183

4.42 Tests of Normality One-man Programming 	 184

4.43 Descriptives Statistics All [pairtype] Combined 	 184

4.44 Paired Samples Correlations All [pairtype] Combined 	 185

4.45 Paired Samples Test All [pairtype] Combined 	 185

4.46 Paired Samples Statistics [opp] Type 	 187

xiv

LIST OF TABLES
(Continued)

Table	 Page
4.47 Paired Samples Correlations [opp] Type 	 187

4.48 Paired Samples Test [opp] Type 	 188

4.49 Paired Samples Statistics [divrs] Type 	 189

4.50 Paired Samples Correlations [divers] Type 	 189

4.51 Paired Samples Test [divrs] Type 	 190

4.52 Paired Samples Statistics [alike] Type 	 191

4.53 Paired Samples Correlations [alike] Type 	 191

4.54 Paired Samples Test [alike] Type 	 192

4.55 Descriptive Statistics of [pairtype] and [pairgender] 	 193

4.56 Descriptive Statistics Dependent Variable: Code Design 	 195

4.57 Hypotheses 1-6 Summary 	 197

4.58 Hypotheses 7-12 Summary 	 198

Dv

LIST OF FIGURES

Figure	 Page
2.1 Agile software development in software process paradigms 	 33

2.2 XP work flow (friendlier version) 	 37

2.3 Feature driven development (FDD) work flow 	 53

2.4 ASD work flow 	 55

2.5 Crystal graph I 	 60

2.6 Crystal graph II 	 61

2.7 DSDM work flow 	 63

2.8 The shared path of agile paradigms 	 73

3.1 Career representation 	 90

3.2 Industry distribution 	 91

3.3 Professional programming experience 	 91

3.4 Pair programming experience 	 92

3.5 Ranking summary 	 95

3.6 10 or more programming years 	 98

3.7 Less than 10 programming years 	 99

3.8 Greater or equal to 12 months of PP 	 100

3.9 Less than 12 months of PP 	 101

3.10 Greater or equal to 10 years and greater or equal to 12 months of PP 	 102

3.11 Greater or equal to 10 years and less than 12 months of PP 	 103

3.12 Less than 10 years prog. and less than 12 months of PP 	 104

3.13 Less than 10 years prog. and greater and equal than 12 months of PP 	 105

3.14 'Big 5' illustrated 	 119

Dvi

LIST OF FIGURES
(Continued)

Figure	 Page
3.15 Linkage to 'Openness' and 'Agreeableness' scales 	 120

3.16 MBTI type theory to the survey variables 	 126

3.17 The preferences' strengths of MBTI type 	 129

3.18 Illustration of non-dominant & auxiliary preferences 	 129

3.19 The diverse pairs 	 133

3.20 Illustration of [alike] and [Copp] pairs 	 134

4.1 Experiment process flow 	 143

4.2 [pairtype] vs. [pairgender] by Code Productivity 	 194

4.3 [pairtype] vs. [pairgender] by Code Design 	 196

Dvii

CHAPTER 1

INTRODUCTION

Creating an efficient, risk-free, and prudent software development process has always been

the constant pursuit of software engineers (Boehm, 1976; Royce, 1987; Jones, 1994;

Highsmith, 2000; Cockburn, 2000; Eljabiri and Derek, 2001; Erdogmus, et al., 2002; Boehm

and Turner, 2003). However, despite many efforts, it is widely agreed that the results are

still far from satisfactory (Boehm and Basili, 2001). Throughout history, a number of

software development problems have been exposed which lead to a birth of one software

process paradigm after another (Royce, 1987; Boehm, 1988; Smith, 1991; Prowell, et al.,

1999; Cockburn, 2001). The problems may be categorized into two groups. One group

pertains to problems that arise from software process paradigms being unable to meet the

needs of the business drivers (Cockburn, 2000; Eljabiri and Deek, 2001) and the other group

includes problems that result from social inertia (Keen, 1981; Markus, 1983; Yourdon,

1997), which plays a large role in impeding the implementations. Along with these

problems, the wide spectrum of various situations and projects also demands flexibility and

availability from the software process paradigms (Davis, et al., 1988; Pressman, 1997a;

Pressman, 1997b).

Just as with many other elements in the volatile business terrain (Goldman, et al.,

1995), the software process development paradigms that ultimately produce the goods for

business must be flexible to any given requirements (Baskerville and Heje, 2001b). The

continuous cycle of shedding the old and fitting the new, exponential growth of e-

commerce, teamwork with customers and balance between theory and practice are all

becoming relevant concepts and influencing factors on the new standard (Boehm, 2002a).

1

2

But of all of these concepts, the most significant concept may be the 'time to market'

factor (El Sawy, 2001; Cusumano, and Yoffice, 1998; Cusumano, and Yoffice, 1999;

Stalk and Flout, 1990). Originating from the business ecosystem, it's definitely found a

role in software process paradigms (Cusumano, and Yoffice, 1999; Baskerville and

Pries-Heje, 2001a; Baskerville, et al., 2003). More than any other tools or mechanics of

a software process paradigm, the time factor is becoming the primary concern in

software process paradigms (Baskerville and Pries-Heje, 2001a; Baskerville and Pries-

Heje, 2001b; Highsmith and Cockburn, 2001). It is as equally significant as the level of

quality of the finished product. Cumulatively, the tools of traditional paradigms are

becoming inadequate in the face of this new tighter standard. All of these problems

coupled with continuously growing requirements have the software community desiring

other options.

As one of the possible solutions, a new movement has emerged. The "agile"

movement (www.agilemanifesto.org ; Cockburn and Highsmith, 2001; Highsmith and

Cockburn, 2001; Boehm, 2002b) defies the conventional logic with a set of unorthodox

tools (Beck, 2000; Cockburn, 2001; Abrahamsson, et al., 2003; McCauley, 2001)..

Among the agile software process paradigms is a bold new paradigm known as extreme

programming (XP) (Beck, 2000; Beck and Fowler, 2001). Included among XP's twelve

key principles is its implementation of pair programming (PP). Briefly, PP can be

defined as a new programming style in which two individuals physically or virtually

share one terminal and keyboard for collaborative programming purposes in real-time

(Williams and Kessler, 2002). Pair Programming presents many interesting research

questions such as what are PP's changes on productivity, quality, and satisfaction when

compared to that of the conventional one-man programming concept (Williams, et al.,

3

2000; Williams, 2000). There has been some research on XP and PP and their

implications (Williams, 2000; Williams and Upchurch, 2001, Williams and Kessler,

2000; Williams, et al., 2000), but there is a dearth of study pertaining to the human role

in XP and PP, an area that may be the most critical and important in PP. Therefore new

research that focuses more on the "engine" of PP, the human factor, is needed (Cockburn

and Highsmith, 2001).

This research addresses the human attributes or the psychosocia1 dimension of

PP. One primary research goal is to unearth the underlying psychosocial ties between the

two individuals of PP and further analyze the selected ties for better enhancement and

optimization of PP. In order to lay a framework for this research, a few preliminary

objectives have to be addressed. First, an attempt is made to alleviate confusions that

stem from the software process terms. And a visit to a list of relevant terms and their

corresponding definitions is arranged. A review of software process paradigms, both

traditional and contemporary is also presented. Only after a realization of the limitations

of the paradigms can a constructive analysis take a place. In addition to addressing the

paradigm limitations, some of today's software development problems are also

examined. By accurately assessing the contours of these problems, a keen vision for new

paradigms may develop. An overall implication of contemporary software process

paradigms needs to be discussed and also evaluate how this new concept is remedying

the problems.

In the second part of the research, PP experiment is focused. A field survey given

to a group of professional programmers with PP experience reveals a set of PP

influencing factors. The influencing factors would be further evaluated as they may

illustrate the boundaries of underlying psychosocial dimension and also serve as a

4

springboard for research questions. As an additional analysis, some of the influencing

factors may be further examined in order to determine their validity and degree of

strength. An analysis of PP teams versus one-man teams is also presented. The

experimental findings may provide a set of guidelines in dealing with those influencing

factors and how one can manipulate them in order to achieve a higher PP output.

CHAPTER 2

REVIEW OF SOFTWARE PROCESS PARADIGMS

2.1 Definitions Revisited

2.1.1 Software Process Model Defined

There have been many grandeur review literatures about the software process models and

methods (Pressman, 1997a; Sommerville, 2000; Behforooz & Hudson, 1996; Von

Mayrhauser, 1990; Pressman, 1997b). From the "Grand daddy" Waterfall (Royce, 1987)

model to the latest web-based model (Aoyama, 1998), the history of the software process

models marks the change of time in software engineering. The internal needs, such as the

model's own limitations, and the external factors, such as the factors of the business

ecosystem, have shaped and molded the history. From the early days of the software crisis

to today's race against time, the software community truly has elevated the knowledge and

competency in software production. Today, a numerous names and synonyms for the

models and the methods exist. Each is serving the exact need for a particular ecosystem, a

particular purpose, and a particular group of people. It's up to the users to decide the "where

and the how" for the usage, therefore the variety.

From the beginning, selecting a particular software process model for a project is a

gray area for the practitioners (Cockburn, 2000). In the software engineering realm, picking

out an ideal software process model or a method is not a scientific and logical process.

One's past personal work experience has a lot to do with the decision of which model and

method to use and why. With the efforts to address this area (Boehm & Belz, 1990; Eljabiri

& Deek, 2001; Sommerville, 2000), there is not an industry-accepted norm in reference to

this decision-making. It is perceived that many software development problems occur as a

5

6

result of the mismatch between the process model used by the project and the project's

real-world process drivers.

For the general software process models review, the prominent models are

selectively presented. They are: 1) linear sequential or Waterfall model, 2) prototyping

model, 3) spiral model, and 4) COTS model. All available models and their attributes are

initially classified and categorized. From this process one would surmise that the linear

sequential and prototyping models are the two "root" models from which many others

models are based. The spiral and COTS models are prominent models in that their

positions are at large among the models. Because of what each model brings and

contributes, the demand for each model is rising. With its salient feature of risk analysis,

the spiral model not only accommodates the business perspective, but the strong quality

emphasis in its core process as well (Boehm, 1988). The rising popularity of COTS is

startling, but it will probably continue in the foreseeable future. Today, it is common to

encounter systems that are either full CBS or a part CBS with some added in-house

components. The spiral and COTS models are explained with their attributes in detail

and presented with some associated limitations.

No methods (sometimes referred to as techniques), are covered in this paper.

Although methods are mentioned briefly and sporadically thorough out the paper, no

designated full section is devoted to just the methods. There is no specific reason behind

this omission, except that this paper's scope does not include a detailed section for the

methods.

Before the review of the named models and methods, it would be better served to

review the nature of the software process models, such as names, terms, synonyms,

stages, processes, and other associates. Many names, terms, and synonyms of the models

7

can be better "traffic controlled". It can be a bit confusing when such a situation exists.

Starting with the definitions, an attempt is made to address this question.

2.1.2 Model vs. Method

The confusing experience of the names and the terms is not surprising. Basically, the

names, terms, and definitions are the views of the originators. It's wholesome to have

different perspectives on an item among the researchers. Also, one may argue for the

little value of this discussion, but the confusion still exists in some and maybe in many.

Having said that, whatever the paper's concluding "verdicts" may be on the matters,

they are only the views of this paper. The following is the first group of terms that is to

be discussed for their appropriateness: `lifecycle model' (Behforooz & Hudson, 1996),

`paradigm' (Pressman, 1997a), 'process model,' (Sommerville, 2000; Kellner & Hansen,

1988), 'method,' and 'technique'. Largely, they are sorted into two different groups; one

group consists of the `lifecycle model,' `paradigm,' and 'process model', which have

definitions that are similar to each other, and the other group consist of 'method' and

`technique,' which also have similar definitions. The first group is referring to the

complete process of the software development, from the beginning to the end, the

requirement solicitation stage to the placement in the production stage. The other group

is referring to an effective tool or an approach that is interjected into a certain stage of

the software development. It's clear that 'method' and 'technique' are not the terms

referring to the complete process of the software development. Here are some definitions

for the first group:

8

"Software Process Model- A methodology that encompasses a

representation approach, comprehensive analysis capabilities, and

the capability to make predictions regarding the effects of changes

to a process". (Kellner & Hansen, 1988)

"System Development Life Cycle — A framework composed of a sequence

of distinct steps or phases in the development of a system".

(Anderson & Dorfman, 1991)

"Software Life Cycle - The period of time that begins when a software

product is conceived and ends when the software is no longer available

for use. The life cycle typically includes a concept phase, requirements

phase, design phase, implementation phase, test phase, installation and

checkout phase, operation and maintenance phase, and sometimes,

retirement phase ". (IEEE Std 610.12-1990, 1990)

Like the IEEE's definition, the complete process refers to the distinct stages and

it encompasses from the requirement gathering, designing, coding, testing, implementing,

maintaining, and retiring. The complete process is a "cradle to tomb" approach. Many

forget to include the maintenance stage and the retirement stage in the complete process.

There are equally important activities involved in those two stages. Based on the

literature definitions, lifecycle model', 'paradigm', and 'process model' are

interchangeable terms in the software engineering context. For the purpose of this paper,

the term 'model' for 'process model' is used. In summary, a software process model

9

earns the "cradle to tomb" process in the software engineering context. Any model that

did not exhibit the " cradle to tomb" concept was excluded from the model review list

and labeled as a method.

A method is, in contrast to a model, an effective catalyst for a stage or stages of

the software process model. One quick visual example is the prototyping utilization

during the requirement solicitation. The prototyping method is an extremely useful tool

during the requirement gathering stage, however it's only a method or a technique. A

clear separation exists, as the software process model is a lengthy process that

encompasses the stages from the requirement to the retirement, and a software process

method or technique is an effective tool that assists a software process model in

enhancing or bettering a stage or stages.

2.1.3 Software vs. System

Terms such as "xxx system" or "xxx software" are often heard when it actually is

referring to the system. Without any hesitation, both the speaker and the listener

interchangeably use either term. In fact, "xxx software" is used more often when it

should be "xxx system". The confusion hits when a need to refer to a system or a

software application arises. One might say, "You mean the software? Right?" Without

revealing the literal definitions of each, it's clear that the two are not the same. With

software and hardware comprising the final system, why does the term "xxx software" is

used more often and also use the terms interchangeably? Here are the possible

explanations:

1) Software is the only visible part and all of the visible parts to the eyes of the end
users.

10

2) It's a natural inclination to refer by the most "used" component

3) Our minds experience the software, not the hardware

4) Technically, the "little" hardware presence is incomparable to that of the
software's

There are published works regarding the nature of 'software' and 'system' that

speak of the differences (Thayer, 1997; Forsberg & Mooz, 1996; Boehm, 2000).

Sometimes it's necessary to clear up the difference in a document. As the phenomena of

the importance of software and hardware are headed in opposite directions, this

unclearness may stay for quite a while. This is also relative to the increasing software

engineering presence.

2.1.4 The Stages of Model

As the definitions of the models put all of them in the same path as the methods, the

internal intricacy and the structure of the stages of models make the models differ from

each other. Coming from the waterfall model, the generic order of the stages is

requirement gathering, designing, coding, testing, implementing, and maintaining

(Royce, 1987). The most vivid difference among the software process models has to do

with the stages. For some models, the order of the stages is different by the addition of a

new stage. The Evolutionary Incremental prototyping model and the Spiral model each

present a unique process different from that of the waterfall model. The Spiral model has

the risk analysis stage in every round cycle (Behforooz & Hudson, 1996). Department

of Defense (DoD) model has unit testing, integration testing and user acceptance testing

integrated with other stages (Boehm, 1988; Prowell et. al., 1999). The following Table is

a brief list of synonyms of the stages:

11

Just as the stage names vary, the document or documents that generate from each

stage are equally diverse. The role of documents is very important, as no system is a

system without its associated development documents. However, this is always changing

(Cockburn, 2001). Some industries, such as U.S. pharmaceuticals, are legally bound to a

generation of a set of clear, crisp, and error free development documents. The synonym

confusion may also exist in the document names. The following is a partial collection of

the development documents:

12

A different list of the stages may generate a different list of documents. Each

document confirms the validity and integrity of the corresponding stage. The document

or documents of a stage assure the completeness of the stage. However, due to the

document's inherent nature, continuous updates and modifications to the documents are

inevitable. Better document control and management has always been an object of study

(Budlong, and Stanko, 1993; Han 1994). The documents can also become a fine tool in

the development process (Lutsky, 1995; Borstler, J.and Janning, 1992). Each document

serves its purpose by providing an accurate account and record of what had taken place

in that particular stage, thereby software audit, inspection, and reverse engineering exist.

13

2.2 Traditional Paradigms

One of the reasons for the availability of many models is the dynamic and fast evolving

business drivers and environment. Regardless of what type or kind of model, one hears

the same voice; understand the requirements, design the solutions, code the solutions,

test the solutions, and the implement. The maintenance stage is added as an ongoing

process. In searching through and reviewing the various models, a fact reveals that some

model names are just synonyms for a particular model. Also, the different degrees of

subtle differences in the descriptions of the models were noted by the different

literatures. The different purpose, context, and usage may have been attributed to these

differences. One note on the prototyping is that when it's evolutionary or incremental

then it's a model, but if it's experimental or throwaway then it's a method or technique.

2.2.1 Linear Sequential

• Description

To all software engineering minds, this linear sequential model (or Waterfall model) is

the icon to what a software process model is. It's the grandfather model to all software

process models, and it's the first software process model that every software

professionals taught. Although still going strong, today it mainly serves as a rudimentary

model for other models to spring off of. It's the first model to present the sequential

stages of the software process model. They are the 1) requirements elicitation, 2)

software designing, 3) software coding, 4) software testing, 5) implementing, 6)

maintaining, and lastly 7) retiring. This has been the bible for all those models that came

afterwards. The first notable work on the waterfall model is from Barry Boehm (Boehm,

14

1976) and W.W. Royce (Royce, 1987). It was the embryonic time of the software

ecosystem where no specified development guideline existed and people were more sold

to the hardware performance. Hardware was much more expensive then and the research

focused on the efficient utilization of hardware resources. Software was only looked as a

supporting piece and the human labor was cheap in the spotlight of hardware.

• Application

It's not an overstatement that the linear sequential model was the blue print for all

existing models. Because it contains the essential development stages, other models

simply took the stages and have arranged the stages differently, added new stages, or

modified the stages to suit their needs and purpose. The strongest point of this model is

the stability. Structured and pre-defined linear sequence gives security and assurance to

the team from the elicitation of requirement stage to the implementation. There's no

confusion here as each previous stage must be completed before going onto the next

following stage.

Generally, this model is a choice for a large project, such as the redevelopment of

a legacy system, and military applications. The key item is that the requirement is known

and it will stay as is during the process. Also knowing the risks and potential bugs ahead

of time allows the team to deal with them prior to beginning and manage them in the

most efficient manner. All the time-consuming fixes and the numerous re-corrections

can all be done at once. Given the time favor in this model, the team thinks and executes

with fine details. The notable members of the linear sequential model family are the V-

shaped model and Department of Defense (DoD) model, or NASA model.

15

The incentive of the V-shaped model is the accountability of the stages; coding

being the pivot point, the earlier stages (requirements, high-level design, low-level

design) are accounted for in the later corresponding stages (acceptance test, integration

test, unit testing). It's the linear sequential model with accuracy and reliability in mind.

The traceability of each defined task to its tests and implementation assures that the task

is done and done accordingly. In the unit testing, every small sub-module is tested before

it gets to be integrated into the next parent module, hence the error rate is extremely low

(Linger and Trammell, 1996).

The DoD model (DoD-Std-2167A), or NASA model, was exclusively created for

the military and NASA projects. These projects are in a different context than

commercial projects. They absolutely focus on the safety, reliability, and accuracy.

Dealing with human lives, a project's failure should not be the cause of it. There is

neither the market pressure nor the "moving target" of the requirements. A uniqueness of

the DoD model is that the DoD model does not engage in the user requirements

elicitation. Rather, they're gathered from the system design documents (Behforooz &

Hudson, 1996). Unlike the other models, there is no user involvement in this model. The

soldiers and astronauts have a very limited development input, if any at all.

• Limitations

As the software ecosystem matures, the limitations are more profound and revealing.

Many of the other models were born out of the linear sequential model's limitations.

Among many, the major limitations are: 1) inflexibility, 2) no generosity to the errors,

and 3) slowness. The inflexibility doesn't allow one to go back a stage or stages.

Because all of the required tasks of a stage are completed in that stage before going on to

16

the next sequence stage, it's just not feasible to go back. The consequences are

overwhelming. This stifles many software professionals because the software

development starts from an empty vacuum. The evolutionary model and incremental

model were mostly designed to fill this need. The no generosity to the errors limitation

attributes greatly to lengthening the project completion time. The ripple effect of the

corrections not only slows the project completion but also can bring a disaster to the

project. The tradeoffs of the slowness are the accuracy, abundance of various testing,

and appropriate safety measures. The linear sequential model is no longer the main

model in software development; it's being relegated to a role of reference for all

software process models.

2.2.2 Spiral

• Description

Originated by Boehm (1988), the spiral model is a hybrid model that is made of a

mixture of the prototyping, evolutionary, and incremental models along with

conventional management of evaluation and risk analysis (Boehm and Belz, 1990;

Behforooz and Hudson, 1996; Von Mayrhauser, 1990). Named after its 'spiral' process

flow, the spiral cycles execute in these four quadrants; they are: 1) determine objectives,

alternatives, and constraints 2) evaluative alternatives, and identify and resolve risks 3)

develop and verify next-level product and 4) plan next phases and back to the beginning

of the cycle again. The key incentive of the spiral model is the risk analysis. It gives the

team a process evaluation opportunity in each cycle. It's an opportunity for the team to

play devil's advocate weighs pros and cons of next cycle implementation, affirm their

process, and consider a possible project withdrawal.

17

• Application

The spiral model is applied: 1) in projects where the requirements are not

uniform, complete, or formal and that they carry certain risks, 2) in projects that seek in

eliminating errors and unattractive alternatives early and 3) in projects that may want to

add ad-hoc desired features (Boehm, 1988; Von Mayrhauser, 1990). It works similar to

the incremental and evolutionary models, in that in each spiral cycle a feature or a set of

features are added which allow the requirements to be partially completed or in-progress.

In doing this spiral cycle, the team can observe what works and what doesn't even

before the complete software project is done. Being able to see the effect of each

feature's performance allows the team to adjust or delete the ineffective feature. The

spiral model would be a good choice for risky projects that have unproven features and •

for projects that carry some generous time period.

• Limitation

The limitations are: 1) the project can be cancelled at any time, 2) it's a very time

consuming model, and 3) the finished product may not be the product that the

requirements expected. Because this is a risk analysis model, the project may be under a

larger probing and therefore there is a higher project cancellation risk. This may

challenge the model purpose. In every spiral risk analysis, the team meeting can last long

and there can be more questions and pondering to deal with, which causes the lengthy

project completion time. It's certainly not an ideal model for any project that has

pressing time constraints. Frequent risk analysis meetings may alter the whole face of

the project by eliminating many of the early pre-defined features. Again this increases

the project cancellation risk.

18

2.2.3 Commercially Off-The-Shelf (COTS)

• Description

COTS is a process model that entails the building of a finished product by integrating

"already-made" components for a specific need and use. Here, the applications such as

messenger or other "integration-free" applications are not considered; only software that

are well contained and may require integration to a proprietary environment (Boehm, et

al., 2003) are considered. For example, in a pharmaceutical organization, software called

Laboratory Information Systems (LIMS) is COTS. LIMS is software that collects,

processes, interprets, reports, and archives analytical laboratory data and results. It can

be integrated with a proprietary database, operating system, and other software. A

vendor provides LIMS to any pharmaceutical organization that wants to purchase it.

LIMS would be integrated and installed in the organization's proprietary environment.

The COTS model addresses the integration and installation of software such as LIMS.

Here COTS such as LIMS are being addressed.

One may argue that COTS is not a software process model but rather a software

management policy due to the fact that COTS constantly changes. This argument is

certainly understandable, but going back to the LIMS software example and the software

model definition in this paper, the authors support the view of COTS as a model rather

than a management policy.

The rising difficulties of the in-house development and the interest of the profit

seeking software vendors are the two factors that have given rise to this model. The

focus of the model is in the integration and implementation. The vendors provide the

ever-increasing variety components to every need of the customers. This gives the

software scalability and flexibility, which is difficult for any in-house developed

19

software to achieve. Also the increased time constraints have driven the developers to an

increased interest in COTS model. In reviewing all of the paradigms, the successful key

elements are: 1) the user satisfaction, where the user can participate and have a voice in

the development direction, 2) the ability to go back and correct things if necessary

without any severe penalty or a time delay, 3) scalability and 4) flexibility. Quality is

another key element that has other significant consequences such as a legal issue

(Cosgrove, 2001). In-house software development is difficult to comply with these.

Regardless of any quality measure such as CMM or ISO, it is difficult. The in-house

development insufficiencies may lead the team in a frantic mode where it's pressed for

time and resources and sometime stifled by office politics, thereby forcing issues where

there is no easy solution. COTS is probably one of the solutions here.

• Applications

With today's COTS, almost any type of software is possible. The incredibly deep

knowledge and business understanding of customer-centric vendor operations have

given the software professionals a freedom to build a product. The COTS model is

effective for developing software that is to be used in a non-critical but volatile

organizational operation. Volatile, in that it abruptly seeks scalability and flexibility.

Non-critical in that the component-based system is off-limits as a mission critical system.

In the dynamic business environment, the software for overhead operation or

administrative use is a good match with this model. Scalability and flexibility are

becoming important aspects in software and systems (Basili and Boehm, 2001).

Dynamic business requirements and external business factors demand legacy systems to

adopt the volatile environment and the supporting functions and infrastructure to be agile.

20

From the management's view, it's inconceivable to lose any business operation

or output due to a limited system capability. A full operation for the maximum output is

what's expected at all times. The "dynamic" business terrain demands "dynamic"

navigational tools. A multi-dimensional player who can play many positions and play

them at any level on an ad-hoc request is what's needed. Migrating legacy systems is not

a frugal choice. This effort is a very resource draining and time delayed intricate process.

There is also an internal demand. Getting the humans to adopt and grow with the

software requires a gradual and systematic introduction of the layers of software features.

Being able to interface with other software and peripherals at various levels is no longer

a selling feature but a basic requirement. The advent of XML and other data

manipulation tools attest to the significance of software scalability and flexibility.

• "Already-made"

Probably the most attractive point of COTS is that catch slogan. Regardless of

what the opposition may say about COTS, the undeniable fact is COTS's complete

elimination of design, code, and test of software itself. The well-made healthy features

resulted in the increasing dependency on COTS. The vendors' aggressive marketing and

customer-centric operation influenced many notable organizations to build their systems

with COTS. The bigger incentive of CBS comes in the maintenance stage. Change

control management and an ownership of the system for constant software updates and

troubleshooting may impede the customers. Answering this dilemma, the vendors

provide various service packages that include all necessary steps and remedies. An on-

site service man is a common service now.

21

• Scalability

In retrospect, many legacy systems were scrapped because they lacked the

performance and capacity to accommodate the increasing demands of processing and

new orders. Although still strong, IBM's mainframe is no longer the main horse carrying

the load. The "super" computer is no longer the super computer by today's standard.

Increasingly tougher business orders drive the performance expectation so that it is not

viewed as just a feature but as a basic necessity. The scalability is the strong point of

COTS. Depicted as stacking more blocks on the top of existing blocks, simply adding

more to the current performance is what COTS brings.

• Flexibility

Not only is the vertical dimension, the scalability, important to customers, but the

horizontal dimension of flexibility is equally as important. This is more challenging as

different tasks are to be processed. One real industry example is the chromatography

analyzer software. Heavily used in the pharmaceutical industry, the software is capable

of not only performing the many hierarchical layers of fine detailed analysis but it's also

capable of doing both gas chromatography and high-pressure liquid chromatography.

It's unquestionably advantageous to the customers to have a lesser number of systems

and yet still have performance capability. COTS is encapsulated and segmented

according to its features and performance. With COTS, customers can choose either to

go up vertically or horizontally according to their needs.

• Limitations

Currently, there is no industry "accepted" COTS process model (Fox et al.,

1997a; Fox et al., 1997b; Hirai, et al., 1998). Obviously even with the "already-made"

22

components, there needs to be a certain order to build the final product. One can face

many pitfalls in just following any conventional process model with no special

considerations given to COTS (Hirai, et al., 1998; Brownsword & Place, 1999; Hissam

& Plakosh, 1999). Many of COTS limitations are discussed in the COTS section later in

this paper. The problems and limitations of CBS are listed as follows (Oberndorf, et al.,

1997; Hissam & Plakosh, 1999; Brownsword& Place, 1999):

• COTS marketplace is in constant change

• Constant evaluation of COTS components

• Risk of building mission critical systems with COTS

• Extensive added cycles of prototyping for expected results validation

• Misunderstanding by management on the view of COTS

• Lack of COTS technical information

• Full dependency on vendor

• Uncertain future

• Security Issue

The constant evaluation of COTS for the updates is probably the most

challenging step in building a successful CBS and also maintaining one (Reifer, et al.,

2003). Evaluation is not a one-time step in the CBS. It's done continuously until system

retirement. Many vendors do host a series of user meetings to inform and discuss the

customers' feedback in an effort to incorporate the customers' voices in the updates and

next releases. The customers tend to upgrade their CBS if a newer version component

comes to market. It's hard not to upgrade as the new version component gives a higher

23

and more efficient system performance. This continuous evaluation not only reflects the

upgrade cycles of the COTS vendors, but it also provides a way of identifying new

technologies that can support the evolution of CBS. Nevertheless, these user meetings

are not all smiles and handshakes. It's a discussion forum where the disgruntled

customers bring their complaint lists. The strong influence from the customers in many

cases can shape the next release. This exhibits the "survival dependency relationship"

between the vendor and the customers. The vendors can't survive without the loyal

customers and the customers need CBS for their objectives.

With COTS, many professionals conjure up the difficulties in COTS integration.

The integration difficulties embody many of aforementioned bullet items. One restricted

area for CBS, although it's lessening, is the mission-critical system development. When

it has to be perfect as it can be in all aspects of system, the professionals are still hesitant

in CBS. It's the unsure feeling of "I-don't-know-what's-in-this-black-box." The benefits

of CBS lead to many other system developments, but not mission-critical development.

Adding more to the uncertainness are the lack of COTS technical information, the full

dependency on the vendors, the uncertain vendors' future thereby the CBS's future, and

the security Issue. In the integration and implementation, all these issues must be

satisfactorily resolved.

• Risk

Using 'pre-made' components raises the vendor reliability concern. Choosing

COTS, in many cases, would mean a life-long contract with the vendor. The life of the

vendor, the product, and the underlying relation with the vendor are the questions to be

addressed. Practitioners are voicing a concern for the COTS constant evaluation

24

(Oberndorf et al., 1997). A continuous version upgrading will give the better technology

to the organization but at the same time, it also cost time and resources in the

implementation. Data integrity and conversion, compatibility with other existing

interfaced software, and retraining are to be addressed. Scalability and expandability, led

by proprietary business drivers, sometimes require the CBS to be flexible to meet the

demand. The business drive wasn't foreseeable in the project feasibility in many cases.

Early termination of the product by the vendor is another risk. The vendor's sales

talk gets the sale but in some cases the vendor would terminate the production and

support of the software. This leaves the organization in a dilemma. For the vendor's

interest and profit, the vendor would push for the newer software. This leads to the

business relationship and trust with the vendors. It's only secure as walking on a thin ice.

In COTS, many organizations skip or limit the testing stage. However, some

organizations would perform 'white box' testing in firmly assuring the validity of the

components in a propriety environment. Smooth and uninterrupted technical support is

expected, but not always delivered as the software is well into production.

• Implementation

The expectation from management and users and the underestimation of COTS

implementation is an issue that needs to be addressed. In some cases, COTS may be

more to deal with than traditional in-house software development (Oberndorf et al.,

1997). Interfacing with associated software is the difficult part. Typically many

organizations deploy various different COTS from different vendors. One can have a

proprietary software, a brand X database, a brand Y operating system, a brand Z server,

and so on. All these must be synchronized to perform harmoniously toward one goal. A

25

feasibility study before the implementation is critical as is the role the vendors play

during the implementation stage.

• Impact on customers

A case where a CBS is simply replacing a manual process is where the most

COTS benefit is shown. While least disturbing the current business process, most end-

users are ready to use the software with minimal training. Being able to shop for the

desired components according to the current situation in hand is another benefit. Being

able to select the components based on their strengths and weaknesses can limit the

shortcomings of CBS (Balk and Kedia, 2000). "Defects or design issues can be rapidly

worked around by adding low level coding to the component interfaces." (Balk and

Kedia, 2000).

Probably the biggest advantage of COTS is the "no testing required." While

some may argue this point (Oberndorf et al., 1997) for the interface testing, generally

COTS itself doesn't require any functional testing. Economically, using COTS is one of

the cheapest ways of getting software. COTS costs only a fraction of the multi-million

dollars that an organization would spend for in-house software. On the other side of the

coin, there are some negative impacts. There is a growing voice that "COTS is more

work, not less work" (Oberndorf et al., 1997). Relative to in-house software, activities

such as integration, implementation, evaluation, updates, and customization is increased,

causing the customer to be more pro-active. Maintaining a healthy professional

relationship with the vendors is another concern. As COTS entails absolute vendor

dependency, a long-term trusting relationship must be maintained from both the vendors

and the customers.

26

• Web-based COTS Integration

COTS continues to draw a growing number of followers. With the traditional

software development challenged by agile software development, the ever-increasing

complexity of the software development practice has some organizations withdrawing

their resources from in-house development practice. The other route is COTS. With a

concentrated effort in integration and implementation, COTS eliminates the aches and

pains of designing, coding, and testing. With the rapidly growing spectrum of vendor

services, COTS is a tempting and viable option. Some research items are: 1) proposal of

a model for web-based COTS development focusing in integration and implementation,

and 2) measurement and assessment of the empirical results between CBS and non-CBS

in equal environment.

2.2.4 Prototyping-Based

• Description

Prototyping is probably the most widely used and accepted software development

practice. Prototyping has become the tool in requirements engineering (Dorfman, 1997;

Gomaa, 1997; Floyd, 1984; Rettig, 1994; Lichter, et al., 1994). Two things that conjure •

up interest are the quickness of prototyping and the user involvement. Prototyping is

defined as an approach based on an evolutionary view of software development,

affecting the development process as a whole (Lichter et al., 1994).

With the prototyping method, users experience more "control" in the project than

with other models. The birth of prototyping is largely a response to the waterfall model

limitations, slowness and no user involvement. The 'visualization' of the long and thick

requirement document frustrates the users. This 'visualizing' is where the benefit of

27

prototype model comes into play. The "hands-on" experience displays its uncanny

ability in defining and capturing the specifics and details of requirement. This is because

most users do not know exactly what they want and how they want it (Gomaa, 1997).

User involvement is such an inextricable activity of software development that

even the waterfall model recommends it (Royce, 1987). With the success and high user

satisfaction from prototyping, many developers gradually adopted the prototyping

process model in developing the entire software. The concept is equally effective as a

software process model as in the evolutionary model and the incremental model

(Sommerville, 2000). The evolutionary model is an incremental approach process that

incorporates each increment in every increment cycle. After each increment, it gets to be

put into use in production. Each earlier increment helps to define the requirements of

subsequent increments. The increments are done serially. Within each increment cycle,

the stages are similar to the linear sequential stages.

The incremental model is a model where the overall architecture is developed

first and then each feature has its own cycle where it gets to be incorporated at the end of

the cycle. A good example is the cleanroom model (Prowell et al., 1999), also known as

the cleanroom IBM model. It's an excellent quality model for reducing errors. When all

increment cycles are incorporated, the finished software is put into use in production.

• Applications

Due to its superlative effectiveness, it is widely used. There are a number of

various prototyping-based paradigms. Adhering to the scope of this paper, they are not

discussed in any detail.

28

Under the application, the two prototyping-based models are in the same

category as the spiral model. An ideal project is a large project that is the first of its kind,

unproven and risky. Quality-focused project is applicable as well. Each increment cycle

eliminates errors, and undesirables.

• Limitations

Ironic as it is, the reason for most prototyping project failures has to do with lack

of end user involvement (Lichter et al., 1994). 'How much' and 'what' are the questions

in dealing with the user involvement. Also, there is no explicit guideline in getting the

most out of the user involvement. The limitations can be listed (Sommerville, 2000): 1)

prototyping doesn't necessarily reduce the software development time, 2) sizing up the

initial increment and subsequent increment is very difficult, 3) the "endless" repeated

cycles of prototyping can get out of control, and 4) estimating the total project cost and

resources are difficult. The most stifling thing is the appropriate increment size and

level. A system must have minimal functions of all parts in order to be used. Questions

arise such as what gets included in initial increments and to what extent will they be

included. All these are serious questions to deal with.

2.3 The Contemporary Paradigms

From the early days of the software crisis, the importance of having a set of orders in the

development was recognized and respected. The increasing size and complexity of

developing an application sought for a structured framework that would lead to a more

organized and better-managed development practice (Royce, 1987). The linear •

29

sequential or waterfall model, along with its variations, and the famous prototype-based

models enter the scene and they appeared to manage the demand.

The advent of Internet and e-commerce has added yet another and probably the

most challenging task to the software engineering community (Baskerville, et al., 1992;

Cusumano and Yoffice, 1999; Baskerville and Pries-Heje, 2001a). The outside influence,

mainly the business ecosystem, has always been the leading and primary driver in the

trend of software development processes. One underlying technical factor that allows e-

commerce to enjoy its exponential growth is the direct link connection between the

primary supplier and the main consumer (Stalk and Hout, 1990). This interprets to a

much wider and diverse user base, a more effective and faster application, and a higher

demand for a newer and better version (Goldman, et al., 1993). The responsibility of

meeting and accommodating these issues would belong to many stakeholders but the

technical aspect belongs to the software engineers.

Here one sees a similar phenomenon comparing back to the early days of the

software crisis; a new order is required in meeting given business demands (Baskerville

and Pries-Heje, 2001a). The need and place for the established software development

process models such as linear sequential or incremental models are clearly understood.

What is being discussing here is one of many possible approaches in dealing with the

growing demands of small or mid-size (intemet-related) applications (Baskerville and

Heje, 2001b; Cusumano and Yoffice, 1999). The legacy systems or large transaction

Management Information Systems would be developed with more established or

structured software development process models.

30

Application type

• Small or mid-size (Internet-related) application

Two areas where established models are lacking;

• unpredictable market volatility and

• constantly changing user requirements

Having said these, an attempt is made in listing some of limitations and shortcomings of

the established software development process models

The table is not complete by any means, but it does share some of the main points.

• Speed — It may be the biggest reason why linear sequential model or other

established models cannot be an answer to today's dilemma in developing small

to mid-size intemet-related applications. The underlying fact is the fierce market

31

competition, "time-to-market." With the technical parity among organizations,

today's Internet business battles are heavily influenced by "who gets there first"

(Goldman, et al., 1995; Stalk and Hout, 1990) The newer business model dealing

with "time-to-market" demands or requires the same quickness from the required

software development and the established models can't do this.

• User Requirements — When the business market was predictable and conforming

to a forecast, the user requirements were pre-defined and well contained.

However, the ever-complex business terrain and the advent of c-commerce have

completely changed the way the user requirements document is being prepared.

In small or mid-size Internet application development, the user requirements

don't stop but continue until the last minute before the application release. This

behavior can be contributed to the users themselves but may largely be due to the

market volatility and growing demands of the customers. A last-minute new user

requirement should not be considered as an abbreviation but a norm in this

context.

• User Participation — The level of user participation in the software development

process has been increasing as more and newer software process models were

available, but the persistent users requirements problems desired more user

participation. The established models don't allow this to happen. The closest

practice is the prototype-based model such as the incremental model where users

are to review during scheduled review periods. This appears to not be enough in

the context of small or mid-size Internet application development.

• Bureaucracy — In the established models, many interest groups or their

representatives across organizations are present in the development team. This

32

leads to a well represented but large team that may be slow to respond to user

requirements and changing market demands.

• Frequent version release — As a common characteristic in small applications,

frequent version release satisfies the users and market changes. But using more

established models does not give this flexibility.

Again, the established models are still the main models and most mission critical

systems are being developing using these established models. But now a new breed of

models as a response to the changing business market has arrived.

Figure 2.1 Agile software development in software process paradigms.

It would be almost impossible to use a model for another target project. For

example, one cannot and maybe should not use XP in developing a mission critical

system or military system. On the same token, one would be wrong to use linear

34

sequential model in developing a small internet-related application that embodies

constantly changing user requirements and a critical "time-to-market" factor.

2.3.1 Agile Software Development Introduction

While it is also called "light" methodology or "eMethodology" (Baskerville & Pries-

Heje, 2001b; Nawrocki, et al., 2001), "agile" software development is the more popular

term (Cockburn, 2001). According to the Manifesto for Agile Software Development

(Agilemanifesto website), the shared values are:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

One can easily see that the values are completely opposite to the traditional

software development paradigms such as Linear Sequential. There is no "locked"

commitment (Abrahamsson, et al., 2003). Agile Software Development can be defined

as, by this paper, a collection of the unorthodox software development paradigms,

characterized as adaptive, result-oriented, and human-centered, that is extremely focused

in completing a premium quality software in the shortest time possible (Williams and

Cockburn, 2003). A more practical description is:

• Requirements are a "moving target"

• Customer satisfaction is my first goal, my second goal and also my last goal

• If my customer says "Jump!", I will ask "How high?"

• If I don't adapt, I will die the next day

35

The time is the key requirement as its primary objective is completing a job in

the shortest time possible. In achieving this objective, it eliminates any "time-

consuming" and "long-term value" activity such as generating a bulky, "hardly-used"

software document (Abrahamsson, et al., 2003). To illustrate the contrast between the

traditional and agile software paradigms, the following comparison between Linear

Sequential and XP is made.

The general perspective is that the traditional paradigms are structured, rigid, and

slow and the agile paradigms are unstructured, flexible, and fast. All other agile

paradigms share most of XP's characteristics. Probably the most profound item is the

"changing requirement." This really sets the tone on how the development will be

conducted: completely user-driven, user-focused, and for user's satisfaction (McCauley,

2001; Cockburn and Highsmith, 2001). How each paradigm brings the "shared value" is

carefully examined.

36

2.3.2 Extreme Programming (XP)

Extreme programming introduces a new paradigm that is off-the-wall, but yet is a

pragmatic approach (Schuh, 2001; Nawrocki, et al., 2002; Kircher, et al., 2001; Cohn

and Paul, 2001). Pair programming, no documentation, no formal requirement

engineering, no up-front design, and other anecdotal features manage to produce high

quality, frequent working releases, and high customer satisfaction.

Born in the mid 90's by a group led by Kent Beck (Beck, 2000), today XP is

becoming the debate in software engineering (Choi and Derek, 2002; Keefer, 2002).

According to XP experts, XP is perfect in "risky projects with dynamic requirements."

Extreme programming has eliminated the software process stages that are, in XP's view,

considered unnecessary. The formal requirement engineering is replaced by a few index

cards with user stories written behind the cards in plain English (Nawrocki, et al., 2002).

There is a designing stage that generates a stack of binders, and documentation is

optional. There is no "forward" coding allowed. In other words, only code what is asked

for at that time. Instead of the traditional one-man programming, pair programming is

exercised. Code review and unit testing are constantly done between the pair

programmers. A frequent release cycle is observed as working software is always in

production for feedback for the next release. A customer is on-site answering the

developers' questions and providing the subtle details of requirements. An acceptance

test by the customer confirms the requirements and approves the release. Following is a

simple pictorial XP workflow:

37

38

Extreme Programming not only yields high satisfaction from the programmers

but from the managers as well (Grenning, 2001). This is largely due to the frequent

releases and to the fact that a manager can actually "hold" a piece of a completed project.

The programmers love XP, as it has freed them from tedious documentation and other

relevant chores (McCauley, 2001). Extreme programming stands on twelve core

practices. Here are the complete twelve core practices of XP:

39

40

These twelve core practices yield the full benefit of BP only when they are used

together. However, as dramatic as these practices are, many are only in partial use

(Grenning, 2001). But such partial use may be a good introduction to an "BP-

unbelieving" organization. Extreme programming is mainly geared to the small to mid-

size application. Thus, the drastic practices are not so drastic to such application

development, especially for applications with a small number of users.

• Pair-Programming Introduction

In speaking of XP, a discussion of PP is inevitable. Pair programming is defined

as "a programming activity where two individuals sit next to each other sharing one

keyboard and one mouse." The high level of satisfaction is a known fact of BP as a

study showed a group of programmers overwhelmingly preferred PP over one-man

programming (Williams, 2000). Given the fact of two heads programming with just one

keyboard and monitor, which is still the fact that is difficult for some to accept, the

psychosocial probing deserves some consideration.

The "C3" team reported the first successful large-scale empirical work of PP that

was done in industry (Anderson, et al., 1998). It's a showcase of the strengths of XP and

PP. Under the real situation, the C3 team put the runaway project on the right track by

completing the project on time. For the empirical work, a 45-minute long "lab-

controlled" experiment (Nosek, 1998) was conducted where the programming

professionals were divided into either PP groups or one-man programming groups. The

"quick" experiment revealed that in comparison to the one-man programming groups,

the paired groups 1) generated a longer completion time, 2) generated a higher quality

work, 3) felt a higher enjoyment and confidence in the work, and 4) saw that the more

41

experienced programmers performed better. The experiment was conducted with only 15

subjects.

A few PP experiments in university settings using student subjects were

performed. A small scale (only one team, 4 subjects in the team) yearlong student BP

experiment reported a negative PP experience (Kivi, et al., 2000). Four months into the

experiment, PP was dropped by the subjects because "team members felt that paired

programming was a waste of time." The authors attributed the results to the subjects'

lack of prior software development experience and the difficulty of finding common

hours to pair-up. The subjects were given the freedom to pair-up at their discretion.

A more controlled experiment, which was done, consisted of 41 student subjects

(Williams & Upchurch, 2001). Initially, "jelling" sessions were held to allow each

partner to "settle in." The experiment also looked at what impacts the grade point

average, gender, and personality types could have on the outcome. In a comparison to

the one-man team, the results revealed: 1) a slightly longer (15%) completion time, 2) a

slightly lower (15%) defects rate, 3) a very high satisfaction (96%) from the subjects,

and 4) no "conclusive findings" on the possible impacts of grade point average, gender

and personality types. However, the experiment only had seven male-male teams, four

male-female teams, and one female-female team. Contrary to the common expectation

of "get the job done in the half of the time," most of the empirical works showed a

slightly longer completion time than one-man programming. Nonetheless, the PP group

did exhibit quality work (much lower error rate) and overwhelming programmer

satisfaction and confidence, which is significant factors in sustaining a long successful

project.

42

• Extreme programming, too extreme?

To complete the overall picture of BP, it would be an injustice not to discuss

BP's limitations. Recently, a growing number of BP skeptics have voiced their concerns

in both literatures and Internet newsgroups (Choi and Deek, 2002; Keefer, 2002;

Stephens, 2001; Saiedian, 2003). Any of the active BP debates are easy to spot on the

web at anytime (BP newsgroup; BP website). Aside from some ignorant opposing

comments, there are some earnest sentiments and legitimate concerns. In an effort to

better understand the opposition's validity and BP, some of them are presented in

following.

• Opposing views to BP

The sources of the opposition views are gathered through a search in literatures,

Internet newsgroups, and other online discussion forums. As is with the nature of

Internet newsgroups and online discussion forums, many postings were authored either

anonymously or in pseudonames. However, there were many postings with valid

personal names and professional affiliations, mostly from the BP authors and BPers. The

posts from mostly the BP opposition or anti-XP posts have been carefully evaluated and

analyzed.

The list is a categorized collection of the most common complaints that have

been gathered from the sources. Because of the vast amount of complaint posts and their

variety, the list is only a portion of them. The profile of a typical online discussion

participant is an experienced professional programmer who either did try BP or

encountered XP indirectly through published literatures or in a managerial capacity. It

was apparent that the legitimate posts were likely from the professionals who have

43

actually have tried BP, and this was found to be very important in understanding BP.

The following paragraphs are described per opposition views.

"Extreme programming is simply not a good method in producing high-reliability

software." (Stephens, 2001; Keefer, 2002)

A quote from the article (Keefer, 2002) says "however, in order to successfully develop

software we have to limit the degrees of freedom our nice languages, tools, and

personalities offer and select from all the practices and techniques available, and formal

quality models are useful guides." Everything about BP is at issue. Extreme

programming itself goes against all good software practices. The C3 project (Anderson,

et al., 1998), which is the showcase BP example, is misleading because the project was

cancelled after being nearly four years in BP mode (Keefer, 2002). BP, the "humanistic

method," (Martin, 2000) is risky and unaccountable. It is true that the human factor is

the key to success but by the same token, it can also be the key failure factor. Decades of

hard work and caring minds have established many prudent software process principles

and there is definitely a set of irreplaceable values, which cannot be undone by BP.

"Extreme programming is not good in systems that present many constraints and strong

security requirements." (Keefer, 2002; Online message forum on BP website)

Extreme programming's concept is "do it as simply as possible and do it fast." Extreme

programming is not a good match for a project that carries a bag of many interacting

constraints of other associated entities. If a project, such as a military missile guiding

system or a nuclear reactor controller system, where the security and specified constraint

requirements are of more value than the project, then BP is definitely not the choice.

Government regulated industries do not use XP at all as the features such as no

44

documentation and no up front design are completely unacceptable per government

inspection. This tells a lot about XP as a prudent software process method.

"On-site customer will not work " (Stephens, 2001; Online message forum on BP

website; Yahoo BP website A; Yahoo BP website B)

As the first on-site customer of the first BP project, C3 (Anderson, et al., 1998) was

burned out after only a few weeks into the project and was not adequately replaced

(Keefer, 2002). To relieve the load, a pair customer was tried, but the pair customers

would not help either, as they don't speak in "one voice" (Online message forum on BP

webiste). Human memory is bad and should not be used as an accurate account. The

requirements of software must be accurate and specific. On a more practical level, the

on-site customer would likely be a junior in his organization, which means his answers

to the programmers' questions may not be correct. No company would spare a senior

staff to a project that requires on-site for months or even more than a year. Furthermore,

who would take the job if the job requires nothing but answering random questions of

programmers whole day? (Stephens, 2001).

"No documentation is insane." (Stephens, 2001; XP newsgroup; Keefer, 2002; Online

message forum on BP website; Yahoo BP website A; Yahoo XP website B)

BPers insist that the code itself is a document. This is an oxymoron. The documents are

mainly there to explain what all those thousands of lines code mean. "Considering

maintenance and usage aspects, proposing 'no documentation' is clearly a professional

malpractice (Keefer, 2002)." Although exercising good programming practices such as

inserting full conforming code comments is helpful, it's still not a substitute for the

documentation.

45

According to BP, a large stack of binders of documentation is no short-term

value (Beck, 2000). This is completely incorrect. Software documents are not only for

the long-term value such as production maintenance, but the document itself is a part of

the software and is inseparable. How about the change control documentation? What got

fixed, what's outstanding, what's on standby, and more. There is a definite short-term

value. Exercising good programming practices such as inserting a long code comment, a

description in the beginning, appropriate readable code comments for each significant

piece of code, and indentations and "white spaces" for easy readability are what every

programmer must adhere to regardless of documentation or no-documentation.

In government-regulated industries, software is not complete software without its

complete set of documentation. After raising this no-documentation concern, BPers have

lowered their point to "optional or minimum documentation," but the true spirit of BP is

no documentation. Also, there is no such thing as optional or minimum documentation.

It's either you have it or not. Here, Extreme programming directly collides with the

traditional software process value.

"No up-front design will only frustrate the programmers if not give up." (Stephens,

2001; BP newsgroup; Keefer, 2002, Online message forum on XP website)

Just as with the absence of documentation, BPers do not exercise any formal design

stage either. After collecting the index cards of user stories, immediately they start to

code. A structured and careful design is again eliminated in favor of the spontaneous

pair collaboration, integration, and programming. Again, BPers explain that the design is

in the code itself. For an outsider, this is a hard one to accept in programming.

Programming without any up-front design has been epitomized as programming

46

ignorance. To many, this would be like a platoon going to a battle without any plan and

plan as they battle, who would survive?

"Extreme programming's pair programming is a double-edged sword:" (Stephens,

2001; Kivi, et al., 2000; Muller and Tichy, 2001; Yahoo BP website A; Yahoo XP

website B)

Pro BP articles are rushing to share the "good news" about BP, how great the pair

programming is and its wholesome results (Yahoo XP website A; Yahoo BP website B).

Is this always expected? The psychological aspect of pairing up with another individual

warrants a careful preparation. It is true that a good pair can bring the synergy (Barnes,

2001; Haungs, 2001) that XPers are boasting about, but on the other side of the coin it

can also bring a disaster. Possible reasons for a failure can be in differences of

personalities, work ethic, job satisfaction, personal agenda, the relationship with the

paired-partner, cognitive approach in problem solving, and some unfortunate social

issues such as political and power management.

In programming, "it takes a certain kind of programmer to want to work in

harness with another. Many prefer to work for bursts of creative time in isolation...

(Glass, 2001)." It's tough when one is trying to think and other is trying to talk. The

protocol of pair programming is vague as well because there is none, at least not an

official one yet. Some articles do suggest some general guidelines (Williams and Kessler,

2000), but enforcement is unlikely.

Many who are planning to try or have tried BP are mostly concerned about this

pair programming (Kivi, et al., 2000; Muller and Tichy, 2001; Yahoo XP website A;

Yahoo BP website B). As human nature has it and with the "Internet time" as the

47

primary driver for the business ecosystem, the time factor eventually forces the more

experienced programmer to drive the keyboard as the less experienced programmer

would "assist" in getting the job done quickly. This is what's happening to a typical pair

that is told to exercise XP with a project deadline hanging over their shoulders (BP

newsgroup; Yahoo XP website A; Yahoo XP website B).

• Discussion on the views

"Extreme programming is simply not a good method in producing high-reliability

software."

It's unfair to say that software developed by BP is not highly reliable software in general.

The aggressive unit testing practices of BP have been praised even by the skeptics and

some opponents (Glass, 2001; Saiedian, 2003; Yahoo BP website A; Yahoo BP website

B). Anecdotal as it is, the XP results (Williams, et al., 2000) are surprisingly high in

quality.

Despite the fact that the XP process is very questionable, the results are

promising, hence this XP euphoria. There is an effort (Nawrocki, et al., 2001) to bring

this strange and extreme method more into the software process practice mainstream. To

discuss the reliability issue in detail would be beyond the scope of the paper. However,

the issue may be accepted accordingly to one's background. In the software community,

the programmers tend to favor the code-centric BP, hence they do not agree with the

reliability issue. On the other hand, software inspectors and engineers completely agree

with regards to the reliability problem (McCormick, 2001).

48

"On-site customer will not work."

Here, the opponents' view is well founded and this is echoed repeatedly in a number of

posts (BP newsgroup; Online message forum on BP website; Yahoo XP website A;

Yahoo BP website B). In many real life cases, it would be lucky to have any willing

customer in a software development process. In the traditional way, only the requirement

engineering has the customer's involvement, but in BP the customer is on-site and in the

process from the very beginning to the actual delivery. This creates a very stressful

situation for the on-site customer. The on-site customer must make himself available to

the programmers' questions at anytime. Worse yet, this is all he does the whole day. If

this was known, undoubtedly no senior staff would want it.

This is another reason why BP must be used in a small project or else the poor

on-site customer will experience burnout just like the first on-site customer in the first

BP project, C3, did. Use it in a small software development project with a short life

cycle so that the on-site customer's job is shorter and less susceptible to burnout. Also,

this is a good example of how important the requirement engineering is for the success

of a project. The on-site customer is the most extreme case of requirement engineering

and it will not work. There is a suggested alternative (Keefer, 2002), but this will go as

the field of requirement engineering advances.

"No documentation is insane."

After massive opposition to this, BP lowered its standards to "optional or minimum" or

"as you wish" documentation. There are probably many reasons why the documentation

should exists, but BP's view to "only the long-term benefit" (Beck, 2000)

documentation is a lesser value than the code, the end product and delivering the

49

software on time. This view can be discussed, challenged, and rebutted endlessly

between the BPers and their opponents. The continuous pair review, pair integration,

unit testing, and the final customer acceptance test do not and cannot fill the void left by

the missing documents.

Coding is definitely not an isolated activity. All associated activities are involved

and interact with the coding activity and documentation is required in defining and

structuring this. The documentation has always been the map in telling how much

progress is made and where to go from here. "Document appropriately" but keep the BP

pace is what the debate is.

"No up-front design will only frustrate the programmers if not give up."

This really challenges the way most programmers are think and approach before coding

(Fowler, 2001). Without having any kind of architecture up front, it forces the

programmers to "design as you code." This really turns off many experienced

programmers (Glass, 2001; BP newsgroup; Keefer, 2002; Yahoo BP website A; Yahoo

BP website B). One alternative is to provide a written minimal but concise high-level

architecture that would lessen the frustration and then the programmers may "design as

they code" for the lower-level architecture. To many of these questions, the BPers'

attitude of "practice, practice, and more practice" certainly does not help to ease the

issue.

"Extreme programming's pair programming is a double-edged sword"

Besides all of the eyebrow raising features of BP, the pair programming is the most

intriguing part. Ever since man created the computer, programming was and still is a

50

one-man activity. It's one's world where he let go of his creative mind. Enter XP, and

now sharing is the key word. As BP itself is extreme, this certainly bills to it.

While pair programming yields the benefits of knowledge transfer, pair pressure,

and confidence building, pair programming can also introduce bad programming habits

under the name of "do it this way, it's much easier." The senior programmer may

influence the junior programmer on how to "cut corners" against the standards. With the

project completion due date hanging over their shoulders, this is a likely scenario. Also

in (Williams and Kessler, 2000), the authors make a point of the partner catching "the

most glaring errors, those errors that anyone else can see in an instant" (Weinberg, 1998)

but that the other partner just can't see. What if both partners can't? The pair has been

"synchronized" in their programming. They have worked long hours, maybe days,

together and maybe they both just can't see the glaring errors?

Despite some skepticism (Glass, 2001; Kivi, et al., 2000; Mueller and Tichy,

2001) and abhorrence (Stephens, 2001), some accept it well (Barnes, 2001) and the

empirical studies are promising (Anderson, et al., 1998; Williams and Kessler, 2000). A

quote from (Barnes, 2001) states "Sometimes if you're coding alone, you end up going

off on the wrong thing for a while, If you're pair programming,' that doesn't happen, or

it doesn't happen for very long...As soon as one person runs out of ideas, the other

person just picks up on them." The general idea of pair programming is catching on, but

practitioners are seeking more guidelines in pair programming (Kivi, et al., 2000; Muller

and Tichy, 2001; Yahoo BP website A; Yahoo XP website B).

Currently, there is no explicit guideline or set protocol for pair programming. A

quote from (Muller and Tichy, 2001) states "pair programming is adopted easily and an

enjoyable way to code. However, it is unclear what type of work not to do in pairs and

51

how best to structure pair interaction." Simply pairing two programmers and expecting

the result is certainly not achieving. In a pair, programming, but also review, integration,

design, and testing occur. This adds more to the pairing process and protocol.

• Summary

Extreme programming's principles, benefits, and lastly the opposition view have

been reviewed. BP, the humanistic approach and code-centric method, is viewed by

many to be in an intermediary state (Beck, 2000; Ripple, 2001). Extreme programming

is not complete; it's still in its infancy. Hence a large opposition body exists.

Nevertheless, it's refreshing and exciting for the agile software methodologies

(Cockburn, 2001), which will be significant in this "Internet time." BP's ultimate goal

of "do little as possible for only the required" has thrown out many of what have been

the essentials of good software process practices. Extreme programming is a pro-human

method that strongly believes in the human ability as the ultimate key to success (Martin,

2000). The ability to make sound judgments, "use appropriately," and keenly focus on

the goals are all human factors.

It appears that many who have tried BP voice that the initial implementation was

very difficult. Some of BP's features were adopted and some were not, but in the end all

have shown a positive feedback on the BP experience (Greening, 2001; Haungs, 2001;

Karisson, et al., 2000; Kivi, et al., 2000). The users are already customizing accordingly

and adopting selectively from BP's features (Karisson, et al., 2000). Despite the

"extremes," BP appears to be finding a niche in the ever rapidly evolving software

process field. A quote from (McCormick, 2001) states "a one-size-fits-all development

52

process does not exist. Software projects vary wildly in technology, size, complexity,

risk criticality, regulatory, and cultural constraints, and many other key variables.

there is a sweet spot where XP will flourish..." There is no right or wrong in BP today.

These debates continuously reveal the nuggets of XP and the "contribution" of XP shall

benefit all.

53

Figure 2.3 Feature Driven Development (FDD) workflow.

Just as with the other agile models, Feature Driven Development (FDD) preaches good

talents and the elimination of the complicated process execution. The efficiency comes

from the feature-grouping practice. FDD largely can be divided into four stages: 1)

Develop an Overall Model, 2) Build a Feature List, 3) Plan By Feature, and 4) Design

By Feature and Build By Feature (Palmer and Felsing, 2001). The leader, also called the

chief architect, leads the developing team in cognitive walkthroughs in the creation of

first draft overall software architecture. This is done similar to BP with user stories, but

FDD also accepts written specification documents. The repeated walkthroughs bring

many layers of architectures, from the lower level to the highest level. This gives the

team a "map."

54

A feature is defined as "a small piece of client-valued function expressed in the

form <action> the <result> <bylforlofito> a(n) <object>". However, it is arguable as to

what constitutes a "small piece." One can have an action and in that action there may be

many associated sub-action items. The important thing to remember is that the features

are the minimum features that are "needed for the system to be of value to the business."

This is similar to BP's "do only what you need for now." Plan by feature is where teams

of programmers are assigned to the defined feature groups. Usually, the programmers

are assigned to two or more teams. In object-oriented programming languages, like Java,

teams are also assigned to own particular classes identified in the overall object model.

The FDD efficiency shines in the last stage of design by feature and build by

stage. Here the actual releases come out every few weeks just like in the XP process.

The coding happens and the delivery of a working product occurs every few weeks.

Another benefit of FDD is the "Track by Feature" concept. It allows the team to

track and report the progress with an exact percentage. For example, a team decides on

the percentage distribution as follows:

After each completion of a feature, the percentage is filled in using color-coded

marks (green for 'complete,' blue for 'in progress,' and red for 'requiring attention').

This large, wall-posted visual progress chart allows the chief programmer to plan and

schedule on a forward basis. Like other agile paradigms, FDD uses strong user

involvement, iterative process, and constantly changing requirements. A salient point is

55

that it possesses a keen management plan, the 'Track by feature.' It's very detailed and

specific. Being able to perform with other agile paradigms is another strong point of

FDD. Largely for small to mid-size application development, FDD provides an

excellent project development framework and accurate development progress reports.

Figure 2.4 ASD workflow.

Adaptive Software Develpment is a diametric approach, believing in adaptation

rather than optimization (Highsmith, 2000). As the above figure depicts, it's a cycle

process of continuous collaboration, learning, and speculation. First, the development

team speculates on what is to be done. This process also takes into consideration the

lessons learned from earlier projects. Second, the distributed development team

collaborates on the items that are suggested from the speculation stage. This is where the

iterative cycles happen. Building by each component, it utilizes and adapts to any

56

feasible tools in meeting the goal. Finally the team would learn on the release for the

next release. In that "learning loop," the lessons that are learned from a particular project

are archived for use in the next project's" adaptive cycle planning."

This paradigm is not confined to any particular pre-defined technique, rather it

exercises laissez-faire, an "if it does the job then use it" approach. Theoretically, ASD is

born out of the Complex Adaptive Systems theory (CAS) (Holland, 1995; Dooley, 1996),

where the three key principles are: 1) order is emergent as opposed to predetermined, 2)

the system's history is irreversible, and 3) the system's future is often unpredictable.

An accurate account of ASD's imposition (Riehie, 2001) states "Highsmith transfers the

CAS model to software development, viewing the development organization as the

environment, its member as agents, and the product as the emergent result of

competition and cooperation." ASD presents a state of vacuum in the beginning of its

process. In other words, it doesn't set a specific tool to use. As it easily adopts, it drops.

The following is an analogy from the Complex Adaptive Theory to ASD.

ASD believes that a company is an environment and the developers are the

agents. In the competing and dynamic environment, where the agents, or the developers,

constantly interact and collaborate, a new product or the final project emerges. Just as

57

with other agile paradigms, ASD is largely based on RAD, but the iterative process is

much faster and active than RAD (Highsmith, 2000).

The high change and speed of ASD "adopts" to any tools or technique that will

bring the result. An example is ASD with XP's pair programming or ASD with SCRUM.

The last stage, 'Learn,' is the time to look back and evaluate the experience. Besides

being marketed for developing large systems, ASD is targeted to an environment that is

under extreme pressure for meeting the delivery time, and that is facing high volatility

and uncertainty. The result-driven rather than the process-driven is favored in the

context of when the deciding factor is time. The high-value results are based on rapid

adaptation to both external and internal events.

The key aspect in ASD is adaptation, and its nemesis is optimization. "Rather

than the focusing on optimizing process improvement techniques, Adaptive Software

Development emphasizes producing high-value results based on rapid adaptation to both

external and internal events"(Highsmith, 2000). ASD does not believe that there is any

value in optimization. The fundamentals of the traditional paradigms, techniques and

framework are no longer able to do what they used to. Unlike the other agile paradigms,

ASD is one agile paradigm that is suited for building large applications. Initially, ASD

was born to service large applications. However, the ASD philosophy is certainly

feasible in building mid to small size applications as well.

58

2.3.5 Scrum

Scrum is a hyper-productive development that achieves a very short product delivery

time through the empowerment of the development team (Schwaber and Beedle, 2001;

SCRUM website). Born out of a dissatisfaction of the waterfall model, the condensed

four stages of requirements, design, prototype, and acceptance are executed continuously

for each release, a sprint, in an average of thirty days or so. The term scrum is not an

acronym. It's a rugby term that describes an act whereby everybody in the pack acts

together with everyone else to move the ball down the field. The following is a Table

that is used in describing scrum (Rising and Janoff, 2000; SCRUM website).

59

A group of selected professionals are formed to deal with a project that is

typically in chaos or out of control. Given the fixed completion time, the team works

with a sense of urgency. Holding daily meetings and providing accountability for each

member generates a number of sprints along the management of objects, packets,

changes, and risks. At the end of each sprint there must be a visible and workable

product. A series of these products would eventually lead to the completed project.

The key activity is the daily 15-minute meeting. In that meeting every member is

responsible for delivering or reporting what he or she has promised the day before. In the

case where a sprint would not produce a workable product, the team may drop a few

functionalities instead of postponing the due date. Adhering to the due date is crucial.

The two core ideas of scrum are team empowerment and adaptability. With team

empowerment, the team realizes no obstacles in achieving its goal. If it sees any

obstacles, then the management is called in for their removal. This is where the term

"flip" comes in. It's the "flip" of the positions between the developers and management.

Instead of the developers periodically reporting on the progress of a project, it's the

management who comes to observe the progress and also supports the team

unconditionally in resources.

Adaptability refers to the team decision-making for the next iterative direction at

about every thirty days of the product release. This decision is based on what the team

has accomplished and what the environment dictates. Another way of depicting scrum is

that it's an exceedingly compressed waterfall model, utilizing incremental cycles and

having at least twice the speed of the waterfall model. scrum believes that this is

achievable when the empowered team, supported 100% by the management, is feeling

confident in reaching the goal. It is a very humanistic method. It relies strongly on the

60

human factor; the management is obliged to eliminate all obstacles and listen to all of

the team's requests.

2.3.6 Crystal

Crystal is a paradigm where one finds a project (from organized lists of projects sorted

by project size and the number of people involved) that is similar to his/her situation and

uses it by tweaking and modifying it. The idea originated from a software consultant

who was, as a result of many years of consulting experience, able to create a large

database of projects that is categorized per characteristics (Cockburn, 2001). Basically,

the pool of projects is divided into two categories: the criticality of project and the

number of people involved.

The name, 'Crystal' is a metaphor. Crystal's clear to opaque colors and the

mineral hardness scale metaphor help this paradigm to be easily remembered. The Y-

axis, the criticality factor, is compared to the hardness of crystal, and the B-axis, the

number of people involved factor, is compared to the color of crystal. Hence, the higher

61

the Y-axis value, the more critical the project is and the higher the X-axis, the more

people that are involved in the project. Each Y-axis row indicates the level of project

criticality by the project funding financial source. For example, 'discretionary money' is

likely a project that would be used within a department whereby the project funding is

managed within the department level. A cell reading "E80" refers to a significant and

high-level project that carries an average of 80 professionals involved in the project. A

friendlier graph is below.

In the business domain there is a case study. An organization's success or failure

is carefully studied for the lessons to remember. Crystal offers a similar pedagogic

approach. Each cell is a case study. By studying how that organization managed a

problem, one can learn from it and apply the lessons to his or her project. Each cell or

organization is displayed in the pool after a long series of in-depth interviews and

observations. A typical flow of Crystal would be 1) decide and select a cell that the

project may be a close fit for, 2) tailor and apply the techniques that were successful in

the sample project, and finally 3) adjust and fine tune the techniques "on-the-fly." The

key notion is "see what a successful project did and let's adapt it to our project".

62

Similar to other agile paradigms, the 'two values' indicate the flexibility, the

`two rules' indicate the iterative process, and the 'two base techniques' indicate the

adaptation and the learning step. According to (Crystal website), Crystal gathers

together a self-adapting family of "shrink-to-fit," human-powered software development

methodologies based on these understandings:

1. Every project needs a slightly different set of policies and conventions, or

methodology.

2. The workings of the project are sensitive to people issues, and improve as the

people issues improve; individuals get better, and their teamwork gets better.

3. Better communications and frequent deliveries communication reduce the

need for intermediate work products.

Living up to the agile paradigm principles, Crystal is a very flexible and carefree

paradigm that allows the team to control, adapts, and chooses its path.

63

2.3.7 Dynamic Systems Development Method (DSDM)

Claimed as a framework rather than a paradigm, the origin of Dynamic Systems

Development Method (DSDM) is traced back to Rapid Application Development (RAD)

(DSDM website). It shares its birth with ASD, as both are the offspring of RAD. The

explosive popularity of RAD led many organizations and consultants to jump on the

RAD "bandwagon" and create their own proprietary RAD version. This caused many

undesired problems and raised a number of concerns. After some assembly, DSDM, the

"high-level" framework was born. DSDM has elevated and refined many basics of RAD.

Figure 2.7 DSDM workflow.

Dynamic Systems Development Method consists of mainly four stages with each

stage having a pre and post project phase, making it seven stages all together. The

64

engine of DSDM is in the Functional Model Iteration, Design, and Build Iteration stage.

Like the RAD, this is where the continuous iteration happens. DSDM strategy is

completely opposite to traditional approaches, such as linear sequential.

A typical project operates with a fixed requirements document, but DSDM

operates with variable requirements documents, meaning the users may change or

modify the requirements. This aligns it with all other agile software paradigms. In

DSDM, the fixed items are the time and resources. Unlike the almost never-ending

supply of resource and time elements in the traditional paradigms, they are fixed at the

beginning of a project in DSDM. This is manifested in the following DSDM principles

(DSDM website): 1) active user involvement, 2) team empowerment, 3) frequent

delivery of products, 4) fitness for business purpose, 5) necessity of iterative and

incremental development, 6) reversible changes, 7) requirements that are baseline at a

high level, 8) integrated testing, and 9) collaboration and cooperation between all

stakeholders. The overall theme is user-focused. Just like the other agile software

paradigms, DSDM gives complete control to the users and accommodates

unconditionally. As a RAD characteristic, DSDM is typically deployed in small to mid-

size projects. A project is broken down for easy management and the iterative operation.

Like other agile software paradigms, DSDM may team up with other paradigms

for a synergistic effect (i.e. DSDM with BP). The limitation of DSDM is inappropriate

as it's still in its introductory state. However, based on the views of its principles, which

are completely user-focused, it does draw a concern from the software developers. With

more "ground" given to the users, there is less "ground" for the software developers to

"stand on" and "work on."

65

2.3.8 Lean Programming

Lean programming or development is a concept that is entirely borrowed from "smart"

manufacturing practices such as the Total Quality Management (TQM) and Just-In-Time

(JIT) (Lean Prog. website 1). The philosophy was to bring the excellent quality and

performance improvements that the manufacturing industry has enjoyed from TQM and

JIT to the software process. This "superimposing" is certainly not a perfect fit, but both

the manufacturing and software processes share common themes. To describe this, ten

principles of lean programming are listed (Lean Prog. website 1):

• Eliminate Waste

• Minimize Inventory

• Maximize Flow

• Pull From Demand

• Empower Workers

• Meet Customer Requirements

• Do it Right the First Time

• Abolish Local Optimization

• Partner With Suppliers

• Create a Culture of Continuous Improvement

To "eliminate waste," the manufacturing organization carefully examines each

step of its process for the elimination of non-value-added activity, which doesn't directly

add anything to the final product. The stacks of documents that are generated during a

software development may fit this bill. Similar to other agile software process paradigms,

the bulky documents are considered "nice to have but not a must." The final verdict is

that it simply doesn't have a direct line to the final product. In "minimizing inventory,"

the manufacturing organization's view is that the inventory consumes resources, slows

66

down response time, hides quality problems, gets lost, degrades, and becomes obsolete

(Lean prog. website 1). In the software process, the software architecture or design is

viewed as an inventory (Lean prog. website 2). For the complete analogy,

67

For each principle of manufacturing, Lean programming has its corresponding

principle. Again, similar to many other agile software paradigms such as ASD and

DSDM, Lean programming is an iterative development, but it doesn't have a workflow

as other paradigms do. There are no defined stages of Lean programming. Therefore,

Lean programming resembles more of a framework than a paradigm.

2.4 Problems in Today's Software Development

Typically, the advent of a new software process paradigm is a solution to the problem

that the previous paradigm is incapable of answering. Prototyping paradigm ease the

sequential software process problem posed by Waterfall paradigm and the V-shaped

software process paradigm alleviated the verification of the requirements problem. But,

despite the uniqueness of many of today's software development paradigms and

changing environment, time to time, a set of new problems surfaces along with the

persisting issues. A true comprppensive list of all of today's software development

problems and issues is definitely a challenge and treating it in here, just one section,

would not be a just. Adhering to the purpose of this research, only a list of relevant

problems and issues are addressed.

Requirements are a "moving target"

Maybe the most well-known and publicized problem in software development is that of

constantly changing requirements (Borstler and Janning, 1992; Dorfman, 1997; Thayer,

1997). As one requirements engineering definition states "the area of knowledge

concerned with communicating with organizational actors with respect to their visions,

intentions, and activities regarding their need for computer support, and developing and

68

maintaining an adequate requirements specification of an information system" (Bubenko,

1995), this "many" actors, or the wide broadness of requirements scope complicate the

problem. Ideally, when a final requirements document is signed off on, control of the

development process is passed on to the developers. However, a situation characterized

by continuous incoming requirements can severely hinder the progress of the developers

and puts the process in a limbo. Also, in such a situation, the users may not initially

know all of the features that they need and want in the new software (Gomaa, 1997). It

may be well into the development process when the users discover the need for a new

requirement.

Software Quality

Even with the implementation of software verification and validation (Wallace and

Ippolito, 1997), many final software packages still exhibit a lack of quality (Basili and

Boppm, 2001). One possible cause is the following. In many traditional software process

paradigms, a working version of software only becomes available in the testing phase.

Thus, in such software process paradigms, there is a greater probability that a major

problem will go unnoticed and by the time such a problem is discovered, it is too late to

recover in any economical sense (Sommerville, 2000; Von Mayrhauser, 1990; Gomaa,

1997).

Among the primary goals of testing is the evaluation of the software's overall

performance and the verification of the software's stability and accuracy when

integrated with other affiliated software or components. However, this single testing

phase, as comprppensive as it is, tends to miss out on some unit level testing, and this

can ultimately lead to an overall sub-optimal performance. Another possible cause for

69

poor software quality is that of poor documentation control (Han, 1994). In some cases,

some prescribed requirements are not being implemented or are implemented incorrectly

(Dorfman, 1997).

Difficulty understanding requirements document

Largely, this problem can result from either the document itself being poorly written or

from the developer's interpretation of the document (Scharer, 1997; Frosberg and Mooz,

1996). In designing the requirements process, one relevant consideration is who prepares

the document. In some cases, if a developer writes the document, he or she would

observe and discuss with the user group prior to completing the document, but an

inherent problem exists in that he or she is generating the requirements using a

developer's viewpoint. Conversely, if an expert user from the user group is assigned this

job, but he or she lacks the understanding of the developing tools' feasibilities and

functionalities, then an impractical requirements document may be born.

`Runaway' projects/ Late delivery date and cost and resource overrun

A 'runaway' project may refer to a project, which is inundated with managerial

problems and issues that there seems to be a vacuum in leadership and also, a low

project completion percentage with the imminent delivery date. This phenomenon

eventually leads to a non-linear cost reflecting the reworking of earlier phases of the

development effort. Such a cost can be manifested in a variety of forms such as the

exceeding of the project budget, the extension of the product delivery date, and reduced

product functionality. Additionally, while it is widely accepted that change requests,

whether trivial or mission critical, are an unavoidable component in the software

70

development process, the sheer number of change requests and the degree of their

impact is excessive in a runaway project.

Lack of User Involvement/Participation

The need for strong user involvement in software development is well known and

understood (Keen, 1981; Markus, 1983). However, the ability to practice it in every

software development context can be a challenge because of a variety of factors. These

include the characteristics of the user group, the organization's culture, the general

attitude and perception of the users toward software development, and the users' past

experience with regard to software development participation (Goguen, 1993). The two

key hurdles are how to foster greater user assertiveness in their participation and how to

structure the user participation in a user-friendlier manner so that the users can freely

voice their opinions and participate (Bubenko, 1995). The responsibility clearly lies with

both the users group and the developers group.

Social inertia/Resistance to change

In a software development context, social inertia refers to the difficulties of introducing

a new system because of sociopolitical, managerial, and end-user impediments. In

simpler terms, "no matter how hard you try, nothing seems to happen" (Keen, 1981) in

the efforts of obtaining the acceptance from all of the stakeholders. The resistance to

change may have several underlying motivations (Markus, 1983). Also, the resistance or

managerial problem may lay in the closeness of the correlation of business objectives

and software that supports the objectives (Bubenko and Wangler, 1993).

71

The steering committee 's role

In almost any new software development, there is an assembly of people known as a

steering committee who represent the interests of the groups that would be impacted by

the new system. The role of the steering committee is critical to the software

development process. The committee's responsibilities should include rendering

decisions regarding all incoming change requests, handling emergencies, and

coordinating all activities of the development (Kraut and Streeter, 1995). Problems may

arise, however, when the committee plays a more passive role and functions only as a

messenger whose sole responsibility is disseminating information among the affected

parties. This scenario may happen since the role of the steering committee is variable

and is influenced by the intricate links and relationships between the developers group,

the committee, and all of the involved parties. It is these links and relationships that

eventually mold what the role of the steering committee would be.

Standardization of tools

Software development operations continue to become more global but also must not lose

sight of local customer demand (Stalk & Hout, 1990; Taylor, 1992; Baffin, et al., 2001).

This forces organizations to adopt systems that can accommodate both central and local

operations (Carmel, 1997). However, this multi-site development can give rise to several

problems (Carmel and Agarvval, 2001). Problems involving managerial issues can occur

as well as problems with standardization of tools (Ebert and De Neve, 2001). The

preference of tools may vary according to different parts of the world. Moreover, the

availability of tools and resistance to certain tools by local developers may compound

the problem.

72

2.5 Implications of Contemporary Paradigms

All of agile software process paradigms exhibit the similar attributes that when they are

compared to the problems above, they all positively influence the problems. This is

because the agile paradigms were born from the same spirit and philosophy (Agile

software manifesto website; Cockburn, 2001; McCauley, 2001). They all have the same

common goals, which are no overhead, no baggage, flexibility, and the fastest possible

product delivery (Abrahamsson, et al., 2003).

The differences among the paradigms, which mostly center on the formation

differences in the cycle, do not alter the paradigms' goals. Only the document control

problem is perceived to be negatively influenced by all of the agile software process

paradigms. In contrast to the traditional paradigms, the agile paradigms view software

documents as being of low value. Also, the agile paradigms theme is "no baggage."

Conspicuously, the agile paradigms and the traditional paradigms sit at the

opposite ends of the software development paradigm spectrum. However, it is important

to also note that many agile software process paradigms are incapable in projects that

most of the traditional software process paradigms can (Abrahamsson, et al., 2003), i.e.

mission critical system or large management information system. Below, a more detailed

analysis of the agile software process paradigms is discussed.

73

74

75

All agile paradigms possess very similar themes. The most outstanding ones are

the iterative process, constantly changing requirements, and high tolerance level. They

are very forgiving and willing but with an extreme sense of urgency. A typical agile

paradigm project typically has a fixed time, limited resources, and constantly changing

requirements. At the end, the agile paradigms deliver the final product in time to the

very satisfied users. The software professionals are equally satisfied working with such

tolerable paradigms and with no documentation. Here is a summary of the

characteristics:

• Human factor is the key

• Collaboration, communication, and cooperation

• Adaptability is the life

• Fast and short iterative cycles

• No "division of labor," everyone does everything TOGETHER

• Direct Face-to-face contact (continuous feedback)

Following different dimensions of agile paradigms are discussed:

1) Newness of technology

2) Risk

3) Implementation

4) Impact on customers

76

• Newness of Technology

The newly discovered agile models are still being established. As manifested by the term

itself, the ideology of agile software development is being discussed and is still unsettled

formally (agile software manifesto website). While the theorists are busy defining and

figuring out the new wave of software development, the practitioners are already using

them (Beck and Fowler, 2001; Beck, 2000; Highsmith, 2000; Cockburn, 2001). As the

newness has it, each agile model is unique in its own way and different. They are

different in "how to," but the objectives are same. The shared objectives are: 1) focus on

the customers and interactions, 2) response to constant changes, 3) non-stop iterative

coding and testing, 4) and collaboration with customers in the whole process

(Abrahamsson, et al., 2003).

The agile models are in a par with the business mission of today's time, focusing

on the customers. "Customer-friendly" has become the mission statement for many

organizations regardless of the industry type. Led by e-commerce, the software

development process is obliged to be ever more customer-friendly in its product and the

process. The traditional software development models embraced customers only during

the feasibility study and the requirements solicitation. Newness is indicated through the

volume of new publications of agile models (Beck, 2000; Cockburn, 2001; Beck and

Fowler, 2001; Williams, et al., 2000; Riehle, 2001; Highsmith, 2000), which tells that

there is a significant market demand and desire to adopt agile models.

• Risk

Among the protruding characteristics of agile models, following is a list of the general

risk areas: 1) negotiated quality, 2) early coding, 3) frequent releases, 4) parallel

77

development, and 5) out of control. With the quality concern (Baker, 2001), the

"negotiated quality" (Baskerville, et al., 2001) is a win-win situation for both the

customer and the developers.

Extreme programming exemplifies this "negotiated quality" with the on-site

customer. The customer's demand of quick product release matches the developer's goal

of customer satisfaction. But maybe the actual product end-users are lost in this

negotiation. Driven by the "time-to-market" phenomenon and the blazing speed of e-

commerce, this risky practice is likely to continue. However, there is the consequence of

low quality (Cosgrove, 2001). The dilemma is finding the optimal and maximal quality

level.

Early coding is only a problem if people's perception of the requirements

gathering process is unchanged. Frequent releases are a way to meet the fast growing

customer demands and responding to the shortcomings or the quality issues of the end

products. This may downgrade the significance of each release. Demanding customers

can be somewhat harnessed and "controlled" and the developers' productivity is justified,

thus providing the ground for the developers' escape route such as "well, we'll put it in

the next release" or "we'll just fix it in the next release." Parallel development is an ideal

concept, but "how" is the question.

In Extreme programming, it features pair programming, but this may threaten the

very factors that make the programming such a rewarding and enjoyable task (Glass,

2001). Another risk would be the "no documentation" or minimal documentation. This

refers to the elaborate user requirements, software and system requirements, test

protocol, and other relevant documentation. The development cycle isn't completed

when the final product is delivered into the hands of the users. Maintenance and care

78

taking certainly take equal, if not more, effort. With no development document such as

software architecture, design and detailed user requirements, it is a challenge to

complete any maintenance or modifications. Being able to read the "agile-version"

document (BP's documentation is the code itself) and complete an assignment is still a

question to be answered.

• Implementation

The implementation is probably the most challenging part in this new wave of paradigm.

Everyone wants to find out how to implement BP, ASD, SCRUM, or Crystal, because

they are so new. Organizational structure is one thing, but the complete new schooling of

this new approach in the minds of traditional developers is not an easy task. It's almost

as drastic as teaching a left-hander how to do it as a right-hander. No pre-defined

requirements, continuous testing, and early coding are hard practices to absorb for the

developers.

For the implementation, a whole new change in working environment is

inevitable. Extreme programming asks for an open working space. The rigid, structured,

and pre-defined boundaries no longer exist, and there is more freedom and flexibility to

experience the spirit of agile models. Usually, this translates into a small size team, a

team that is composed of creative minds, and well-trained and able personnel. The key

concept of the agile model is customer satisfaction. But it's also the most difficult thing.

The agile model attitude on customer satisfaction is to let the customer "build

everything" and to let the developers just "give a hand." The customer must be on site

with the developers, as all works must be done according to the customer's view as

exampled in extreme programming (Beck, 2000). Manifested by the attributes, the

79

products' most concerned factor is the customer satisfaction. ASD (Highsmith, 2000),

which deals with developing such product, adopts the philosophy of "speculate,

collaborate, and learn."

• Impact on customers

Agile models probably deliver the most customer interaction. Driven by the customer,

the agile model's spirit of "quick-to-market" pervades all agile model features. Extreme

programming (Beck and Fowler, 2001; Beck, 2000) has a customer on-site; listening to

the customer is one of BP's "four basic activities." It would not be an overstatement if

the development is led by the customer. ASD (Highsmith, 2000), mostly based on RAD

and evolutionary prototyping, also embodies heavy customer interaction through

iterative cycles. The final software product that comes out of an agile model differs from

the software products from the traditional software development channel in terms of the

development experience. The attitude is different, the process is different, and the

perception is different. The customer-focused agile model tries to incorporate the

customer's requirements into the product as much as possible.

Each paradigm is reviewed for its uniqueness and dramatic differences from the

traditional paradigms. Propelled by their agility, the benefits and results are refreshingly

striking. Initially, the obstacle is to gain the confidence of users, especially the senior

level professionals who have spent many years with the traditional paradigms. Because

they are new, the models' long-term values can be reassessed. For example, Extreme

programming said documents do not carry any value, at least in the short-term. What can

happen if BP developed software requires re-work or troubleshooting and there are no

documents? To make the situation worse, what if the original developers are no longer

80

with the company? How can BP explain this? From the management viewpoint, what

can be observed to be different in using an agile paradigm? Will the difference in the

product delivery cause a change in the environmental factors? How about the

developers' perception? Where is the new bottleneck? The ripple effect of agile models

will certainly make the surrounding environment be noticed.

The emergence of agile models undoubtedly made the traditional models less

visible. Adding to that phenomenon is the market. Led by e-commerce, the software

market demands quick, easy, and short-life software. What does this tells about the

traditional models? What is the future with them? How will they evolve or diminish?

Unquestionably, many traditional models are still robust in places like the military and

other government-regulated industries. Yet, the software community is embracing agile

software development as one of its main staples. As new as the models are, the inner

world of agile models presents unlimited research opportunities. Each model is "in-

progress" in terms of reaching its full potential. Each fine inner point of an agile model

carries its implications to the surrounding underlying factors.

CHAPTER 3

PAIR PROGRAMMING HYPOTHESES DEVELOPMENT

3.1 Pair Programming and Extreme Programming Defined

Pair-Programming (PP) can be defined as a programming paradigm where two individuals

program sit next to each other sharing one PC, one monitor, one keyboard and one mouse.

This is different than 'mutual programming.' Mutual programming can be described as a

programming practice where a programming task is divided among the programmers and

each programmer programs his or her share on a separate computer.

It would be a common scene in mutual programming for two programmers looking

over a monitor and discuss and collaborate but not during the entire task. PP truly asks two

programmers to work as one; PP can be pictured as "two-headed one body" programming.

Conveniently, the programmer who is behind the keyboard is label the "driver" and

the other programmer the "navigator." However, other terms or labels can also be used to

describe. Intentionally and conspicuously, the roles of both programmers are not clearly

defined nor separated, but typically the "driver" drives or types the keyboard for coding and

the "navigator" communicates and collaborates with the "driver" in designing, coding,

debugging and testing.

Defining the exact role definitions would traverse the XP and PP spirit (Beck, 2000).

The list of PP benefits are quality, morale, trust and teamwork, knowledge of transfer,

enhanced learning and more (Williams and Kessler, 2002), but probably the biggest

immediate benefit would be another set of eyes looking over acting as the double "net"

catching any flaws and debugging. The role switches and the switch frequency are to the

two programmers discretion.

81

82

Pair programming is mainly used for a small or maybe up to a mid-size

application development that are risky projects with dynamic requirements. Used in

extreme programming (BP), PP stretches the coding task to incorporate code designing,

debugging and testing. PP is not a software development process like a linear sequential

paradigm, rather it's considered to be a stage. It's an extensive stage where many

activities are spontaneously performed as mentioned above. All these anecdotal and

unconventional characteristics make what PP is and why it is so effective.

User participation is a significant issue in software and system development,

however one must clarify that the programmers of PP are not the users nor end-users. In

this work, the PP programmers are the software development professionals or engineers

who are devoted solely to developing and delivering software or systems to the targeted

users. The programmers are simply paired for the purpose of practicing PP and attaining

its benefits.

The area of programming support tools is another significant area that impacts

and also complements the programming activity (DeFranco-Tommarello and Deek,

2003). The presence of these programming support tools is illuminated in many

collaboration projects. In the PP domain, the programming supporting tools allow two

individuals of geographically different locations to perform PP. This virtual PP mode

benefits organizations with global operations of software and system development.

In the light of recent streams of agile software development approaches

(Cockburn, 2001), PP of extreme programming (Beck, 2000) brings surprising and

promising result (Nosek, 1998; Williams, et al., 2000; Williams & Upchurch, 2001;

Williams, 2000; Williams & Kessler, 2002). A study shows a very high level of

practitioners' satisfaction (Williams, 2000).

83

Given these favorable results, an inevitable question comes to one's mind; "Can

we make it better?" In order to continue this push of PP, a further study is needed. Given

the fact that two heads programming with just one keyboard and one monitor, which is

still the fact that is difficult to accept by some people, the psychosocial probing deserve

some consideration for meeting the objective. Besides a general work of psychology of

programming (Weinberg, 1998), the specific 'pair' phenomenon of PP is being focused.

Therefore, the objective is an effort to gain an deeper understanding of the facts that

underlie the 'pair' phenomenon and influence PP productivity.

In this section, a careful review is scheduled on what prior PP research has been

done; description of the details of PP preliminary field survey that was conducted in

collecting substantial evidence; and lastly personality and communication concepts that

are consequence of the survey result. Most importantly, a clear understanding of the

prior PP researches would lay a good solid ground to keep this experiment in track.

The field survey is a complement and supplement to the prior PP works. The fact

that the survey is from a group of very experienced practitioners, adds more value to the

cause. A review of personality and communication concepts is a direct result of the

survey. As the details would be covered in its appropriate section, personality and

communication among many other factors appear to have significant effect to PP

productivity.

84

3.2 Pair Programming Literature Review

Currently, known as one of twelve core practices of BP, PP has been around

(Constantine, 1995) and not a BP invention. However, PP rose to the spotlight in the

wave of BP and other promising agile software process paradigms (Cockburn, 2001).

There had not been a whole lot of studies in PP general until recently. Even now,

the effort is just beginning (Williams and Kessler, 2002). The first successful large-scale

empirical work of PP, and also the showcase of BP, is "C3" team of Chrysler project

(Anderson, et al., 1998). In a real situation of chaos, by deploying PP, C3 team has

managed to put a runaway project on the right track within the expected completing time.

This case study is significant as it's a very large subject pool and a real industrial

situation. Another experiment with professionals, a 45-minutes long lab-controlled

experiment (Nosek, 1998) was conducted where the fifteen programming professionals

were divided into either PP groups or one-man programming groups. In the experiment,

PP groups have generated 1) a longer completion time, 2) a higher quality work, 3) a

higher enjoyment and confidence in the work, and 4) experienced programmers

performed better.

Using university students as subjects, a few BP controlled-experiments (Muller

and Tichy, 2001; Kivi, et al., 2000) in university environment were performed. A small

scale (only one team, 4 subjects in a team) a year long lasting student BP controlled-

experiment reported a negative PP experience (Kivi, et al., 2000); four months into the

experiment, PP was dropped by the subjects because "team members felt that paired

programming was a waste of time". The authors contributed the reason to subjects' no

prior software development experience and the difficulty of finding common hours to

pair-up. The subjects were also given a freedom to pair-up at their discretion.

85

A more controlled PP experiment consisted of 41 student subjects (Williams,

2000; Williams, 2001) was conducted. Besides the main objectives, the experiment also

looked at possible impacts of grade point average, gender, and personality types to the

outcome. The experiment had seven male-male combination teams, four male-female

combination teams, and one female-female combination team. Contrary to the common

expectation of "get the job done in half of the time," most empirical works showed

slightly longer completion time than one-man programming mode. Nonetheless, PP did

exhibit a high level of quality (much lower error rate), programmers' satisfaction and

confidence, which are significant factors in sustaining and completing long successful

projects. A discussion of pairs with different levels of programming skill and pairs of

different combinations of extroverts and introverts were observed, but with no

conclusive evidence of empirical data (Williams and Kessler, 2002) are available.

86

In an attempt to classify PP, the team-programming concept is briefly visited.

There are many different team concepts, just to name a few: 1) decentralized (egoless)

team, 2) centralized (chief programmer or surgical) team, and 3) controlled decentralized.

The decentralized team (Weinberg, 1998), characterized by generally having ten

or fewer programmers in a team, shares coding activity, decision-making, leadership,

problem solving, communication, or any other group activities. It is reported that the

decentralized team is an ideal programming team for long-term projects with minimal

time constraints, but not for urgent projects (Mantei, 1981; Shneiderman, 1980). It also

enjoys a high level of satisfaction (Shaw, 1971) with shared decision-making and open

communication, but exhibits riskier bppavior because of the dispersion of failure (Mantei,

1981).

The centralized team, or popularly referred to as the 'surgical team,' transports

all team activities by the linear up-and-down channel (Jurison, 1999; Rettig and Simons,

1993; Mantei, 1981; Unger and Walker, 1977) Typically three members, the chief

programmer, programmer, and program librarian, form the centralized team. However,

additional members can be included per specific project needs. The centralized team is

more suited for projects with time constraints and is more capable than decentralized

team of meeting the final product delivery date. Some of its limitations are low

satisfaction, morale, and group cohesiveness (Shneiderman, 1980).

A concept that falls between decentralized and centralized teams is that of the

controlled-decentralized team (Mantei, 1981). It consists of a project leader, senior

programmers, and groups of programmers. A senior programmer manages a group of

programmers, and the senior programmer reports to the project leader. There are also

many senior programmers. The team is structured like a centralized team, but functions

87

and bppaves like a decentralized team. The controlled-decentralized team is best suited

for short term, large-scale projects.

3.3 Pair-Programming Field Survey

Along with a literature review, information obtained from a field study brings substantial

value to a study. This preliminary survey addresses the discovery of influencing factors

of PP productivity from a group of very experienced PP professionals. It's their personal

accounts, experiences within their capacities and perspectives that makeup the survey

result.

Searching for the widest breadth of the various careers, positions, experiences

and industries of PP professionals, Internet was selected and used. Most online groups

were under BP topic category and were named either by their geographic locations or

XP applications. For example, typical group names were "chicago-agile-dev" for Agile

Development group in Chicago, "xptoronto" for an BP interest group in Toronto,

Canada, and "xp-at-school for BP in classroom. Message thread asking survey

participation was posted. In creating the survey questions, besides being a brief one, the

expectation was to solicit the professionals' opinions. A short list of possible PP

productivity maximization success factors (or impact variables) and provisions for any

new additional variables that the participants may want to enter were given and provided.

Beginning with a set of career profile questions, the main section of the survey is the

variable list. In making up the list, a set of common variables is put together. They are as

follows;

88

• Gender

• Programming skill

• Cognitive/Programming style

• Personality

• Familiarity

• Fluency in English (Communication)

• Pair Protocol

Following is the explanation of the variables. 'Gender' - Some earlier works

speak of "cross-cultural communication" between men and women (Stewart, et al.,

1996; Tannen, 1991). The belief is that there is an intrinsic difference in communication

between men and women, largely because "from early childhood, girls play with a best

friend or in a small group and use language to seek confirmation and reinforce intimacy,

whereas boys use language to protect their independence and negotiate status in large-

group activities" (Tannen, 1991). This variable choice is to see how a professional

perceives the gender variable as a difference in PP productivity based on his or her own

PP experience.

`Programming skill' - An obvious choice, this is to observe what degree of

impact does this variable bring in PP productivity. `Cognitive/Programming style' -

Programming is perceived to be an individual's creation that is very reflective of his or

her problem solving approach (Wiedenbeck and Ramalingam, 1999; Corritore and

Wiedenbeck, 1999; Brooks, 1999; Engebretson and Wiedenbeck, 2002; Fix, et al., 1993;

Mosemann and Wiedenbeck, 2001; Deek and McHugh, 2000; Derek, et al., 2000). With

89

its subjectivity, the collaboration of two very different or very similar styles of

individuals in PP context is an interesting research question.

`Personality' — Pair programming is not only a programming activity, but a

social activity as well (Yourdon, 1997; DeMarco and Lister, 1999). The general

consensus is that a typical programmer is 'detached' personality type (Weinberg, 1998).

In PP where collaboration and "pulling for each other" are essences, it would be

interesting how this 'detached' personality interact or be 'attached.' It just might be that

psychosocial aspect is a greater influence in PP. In this survey definition, personality not

only includes the cognitive aspect, but it also includes other dimensions such as

temperament, demeanor, personal values, and attitudes.

`Familiarity - This addresses the comfort level that is generated by two

programmers. It can be defined broad as being "buddies," worked together many years,

and have similar background. 'Fluency in English' or Communication - The face-to-face

communication between a pair is perceived to be, maybe the single most important

factor in creating collaborated good. 'Fluency in English' variable is chosen because the

questionnaire is done in English and mostly English speaking professionals in English-

speaking countries would participate the survey. However, the true underlying meaning

is communication. The question is how much of and significantly does communication

factor impacts PP productivity.

`Pair Protocol' - This refers to a set of structured or semi-structured guideline for

pair programmers to conduct during PP besides the continuous designing, coding, and

reviewing. Executed in an unsubtle manner, it would be a list of action items that directs

the pair to adhere besides the continuous designing, coding and reviewing. One example

is how long one should "drive" the terminal and mouse and how often the pair should

90

switch being the "driver." In previous few empirical XP studies (Kiwi, et al., 2000;

Muller and Tichy, 2001) a desire to have a set of guideline of "how to" in pair conduct

was hinted. Appending the variable list, a provision was made for the participants to

enter any variable(s) that they believe it makes an impact.

3.3.1 The Survey Participants Profile

All together, 44 responses were received either through email or as posted messages in

the online message board. With a confidentiality concern, most of responses came in via

email and only two responses were posted as message thread. Reading by the names of

the groups and email addresses, vaguely but a good estimation is that the responses came

in from many different parts of the world, from nearby Canada to far from Europe. The

diversity of participant pool certainly has meet one of the survey's objectives. Following

summary charts of participants' profile are provided.

91

92

On average, over 15 years of programming experience and 21 months of PP gives a very

experienced group. In the career representation, software developers or engineers and a

share of management are mostly represented. Probably the most diverse area of the

profile is the industry distribution. Lead by the software development and manufacturing

industry, a considerable financial, mainly banking, industry and a long list of various

industries round up the distribution. Cumulatively, a typical participant is depicted as a

software developer working in a software development organization possessing a near

two years of PP and 15 years of professional programming experience. The gender

distribution is predominantly male as only five females are represented out of total 44

participants. Out of all responses, two responses only completed the comment section.

93

Many have indicated an interest of this survey's outcome, which shows the survey's

appropriateness.

3.3.2 The Survey Result Analysis

In decoding the submitted data, there were some difficulties. One example is a case

where the participant deployed his own ranking system by assigning "High Impact,"

"Medium Impact," and "Low Impact" instead of assigning algebraic number one

through seven or higher. A couple of responses ranked 'gender' variable with a number

99 and 1000 each, as an exhibition of a strong disagreement with the 'gender' variable.

Assigning same ranking number to two or more variables was observed. In many cases,

some variables were not ranked at all. Along with the ranking, a high interest was new

variables from the participants. In the questionnaire, a blank provision is provided where

the participants would fill them out with new variables. Following is the new added

variable list;

• Technical knowledge

• Business domain knowledge

• "Keyboard switch"

• Ability to work with others

• Willingness to communicate

• Personal hygiene

• Working environment

• Coding conventions/Platform

• Time constraint

• Availability of snacks

94

• Open to new ideas

• Experience

• Common expectation

• Tiredness

• Desire to learn

Every survey participant did not review these new variables which have been

added by some of the survey participants. In other words, not everyone had an

opportunity to review these new variables and rank them. However, the importance of

the survey is reflected more in the collection of a list of influencing variables, and not in

the variable ranking order.

Interestingly, many psychosocial variables such as "open to new ideas,"

"common expectation," "desire to learn," "ability to work with others," and "willingness

to communication" appeared and they outnumbered the explicit variables such as

"coding convention," "same operating system platform," and "working environment."

The following chart is the summary ranking result.

The legend of 1st place, 2nd place and 3rd place means how many 1st, 2nd, and

3rd place votes for that variable. Some variables that have no bar graph would mean that

it received 4th place vote or beyond. Again, A to G variables are the original variables

and H to V variables are the added variables by the participants. From the result, D,

`personality' variable is the most influencing variable which received 14 1 st place votes,

seven 2nd place votes and seven 3 rd place votes. This is followed by C,

`cognitive/programming style,' G, 'fluency in English, and B, 'programming skill.' K,

`ability to work with others' is an interesting appended variable which received six 1 st

place votes and one 2nd place vote. In a larger picture, a close relationship between

96

`personality' and 'ability to work with others' can be assumed. There are total 12

variables that received at least one 1 st place vote, 12 variables that received at least one

2nd place vote, and 10 variables that received at least 1 third place vote. There were five

variables that did not receive any top place vote (1st, 2nd, and 3" 1 place). The overall

picture of the ranking summary suggests that there is rather a large issue of teamwork

(trust, willingness, and open-minded). The popular variables that most professionals

chose as the PP productivity influencing variables are mostly psychosocial variables. It

wasn't any controllable physical factor, rather it was "how much WE can put our efforts

together" to reach a goal. That "effort" is manifested through variables such as `open-

minded,' `willingness to communication,' `ability to work with others,' `common

expectation,' `desire to learn,' and 'personality.'

The number one choice of 'personality' reinforces the view of "you have to be

nice to your playmate" (Williams & Kessler, 2000). Every programmer has his or her

own programming style and habit, hence compromising and reconciling this personal

inclination within PP environment is a constant challenge. The 'gender' variable

consistently has been voted to be the last or be the least influencing variable.

Surprisingly, 'personal hygiene' received one 2nd place vote and one 3rd place vote.

Being almost lap-to-lap for the whole day, a certain courtesy level of personal hygiene

deemed to be a requirement in PP.

A very diverse participant pool as this is, a further data breakdown and analysis

may uncover more hidden facts. Where experience influences judgment, an observation

is made on what kind of pictures is drawn if the data is further broken down under two

sectors of "more experienced" and "less experienced." The difficult part is that what

constitutes "more" and "less" as these terms are very subjective and a context specific.

97

But for this research's purpose and based on the profile, a group of ten or more years of

programming experience as "more experienced" and less than ten years for "less

experienced" are chosen. Similarly, twelve or more months in PP is labeled as "more

experienced" and less than twelve months in PP as "less experienced." As a step further,

four additional ones are selectively grouped as the following figure is depicted. These

four additional groups are to observe any saliencies from the association of PP and

general programming experience in a relation to the PP productivity maximization.

98

99

In both groups, the variables 'programming skill,"cognitive/programming

style,"personality,"fluency in English' are popular choices with 'personality'

receiving the most votes for first place. Contrast to "less experienced" group, the "more

experienced" group shows the 'personality' variable dominating the 1 St place votes along

with the 'ability to work with others' variable. The "more experienced" group also had

more added variables and many of them received 1st, 2nd or 3rd place votes. 'Ability to

work with others' variable has five 1st place votes. A possible explanation of this

observation is that the "more experienced" professionals have a deeper root

100

understanding and insights of PP and also their maturity level allows them to

comprehend the surrounding environment of PP better.

101

In "<12 mon. PP" group, the variable 'personality' outstands with its 1st place

votes. Except 'ability to work with others,' no third place-and-up votes for the additional

variables. This is a contrast to the ">12 mon. PP" group where the votes are spread out

throughout all variables. A cautious attempt in explaining the most first place votes for

`personality' in "<12 mon. PP" group would be the early learning curve of PP. The

spontaneous and demanding PP requires one to quickly adjust to or be synchronized

with the partner. In meeting this requirement, dealing with partner's incompatible

personality can be a challenge in an early learning stage of PP.

102

103

104

105

Opposite to the anticipation, in the four groups, no notable relations of association are

observed. The results of all four subgroups more or less have replicated the results of the

previous four groups. Going by the 1st place votes, 'personality' has dominated in all

four groups, followed by 'cognitive/programming style,' `fluency in English' and

106

`programming skill' variables. Although statistically can be questionable with only six

participants, the "< 10 yrs prong. and > 12 mon. PP" has one 1st place vote for the

`personality' where it received three 1st place votes in "< 10 yrs prong and < 12 mon PP."

In "> 10 yrs prog and > 12 mon. PP" group, 'programming skill' did not receive any 1st

place vote where in all other groups, it did with at least one 1st place vote each. One

interesting observation is that the generally more experienced group values 'fluency in

English,' the communication factor ahead of 'programming skill' and it is the opposite

with less experienced group.

A comparison of "management" versus "non-management" was added in an

effort to observe, if any, a difference in the perspectives of both. Here, the

"management" is defined purely by the job titles such as Vice President, Senior Director,

and Chief Technical Officer, and "non-management" with titles such as software

engineer, software developers, consultant, and team partner. However, all have indicated

that they themselves have either practiced or currently are practicing PP.

All groups more or less have replicated the summary result. One interesting

observation is that the "more experienced" professionals value 'fluency in English,' the

communication factor, ahead of 'programming skill' and it's the opposite with the "less

experienced" professionals.

107

Table 3.2 displays the average ranking of each variable in its respective group. For

example, 3.90 under B column means 'programming skill' is ranked 3.90 in the group

who have ten or more years of professional programming experience. Under responses

column, 28 means there are 28 persons in the group who have ten or more years of

professional programming experience. The 'differences' row indicates the difference

between the two above values, i.e. —0.18 = 3.90 — 4.08. Only B, C, D, E, F, and G

variables are considered here because all variables after G do not carry enough data

points to be considered. A, 'gender' variable, is omitted because it has consistently

received the "rock bottom" lowest vote in all conditions. In the PP experience group (12

mon. PP) comparison, almost all average rank differences are one full rank different. B,

`programming skill', shows the largest difference with (1.58) which explains the

108

difference of the perspective. A possible explanation is that for the "more experienced"

professionals the programming skill is no longer an obstacle whereas for the "less

experienced" professionals it is. In the programming years, the second largest difference

is D, 'personality' (0.71). In a similar fashion, an ability or attitude in dealing with

different personalities of different PP partners is a bigger load for the "less experienced"

professionals than the "more experienced."

In the management versus non-management sectors, one to three head ratio of

management to non-management is shown. E, 'Pair protocol', is the largest difference,

followed by B, 'Programming skill', and G, 'Communication'. For 'Pair protocol', one

can only estimate that the management prefers the mode of "control and maintain" with

a set of pair conducting protocols, but with the ranks of (5.00) and (6.38), it's hard to

argue for its importance.

Through these ranking comparisons one ascertains the perspective differences

and that the differences are mainly stemming from the group's characteristic. It is also

observed that many psychosocial variables do play a rather large role in influencing PP

productivity.

3.3.3 The Survey Participants' Comments

Besides the ranking, another rich piece of information is the participants' comments.

Many comments illustrate the frontline PP experiences with one's subjective words. It

has "color painted" the survey result. The comment section is a place where the

participants can "add" to their variable choices and also express their personal views

towards PP in general or towards this survey. The comments are very informative,

insightful, and most of all very personal.

109

After voting 'personality' the number one variable, many went on to give more

detailed comments as a support of the choice.

"Personality types are extremely important." Kent Beck (Beck, 2000) is

describing, "Watching another person program is like watching grass die in

a desert" in Extreme Programming Explained. "Both programmers must

be 'driving "

"Personality conflicts seem to be the biggest issue I've encountered during

my experiences, and can really hinder productivity."

"The most impact was personality. We had one guy who did not really

work well with others, did not like others changing HIS code, and did not

want 'the spec' (user stories) to change!. "

"The worst thing that can happen is when you alert your partner to a

mistake and he starts to defend himself "

As expected, many comments emphasized the humanistic dimension of the pair

interaction; "open to new ideas," "desire to learn," "ability to work with others," and

"willingness to communicate" were echoed.

"The key parameter is to have an open mind. I have found from experience

that working with beginners can be as enriching as working with

experienced persons. Listening to the other person, and respecting him/her

are the only two ingredient for success".

"Pair prog. takes patience and a desire to make it work on the part of both

parties. The faster more facile one must realize that he/she will make it

farther with the help of the weaker programmer, and be able to see the

advantage of that: "courage" ".

"Pairs have to understand each other and communicate well. They have to

be able to "get along" with each other, but they don't have to be "buddies"

or have the same culture".

"I think the most important thing to do with the productivity of the pairs

would have to be each pairs willingness and ability to compromise and

grasp concepts that the other member of the pair is espousing. Else, there is

no point".

"I have worked with some real ******** who think they know everything

and pairing means "do it my way". I have worked with some real great

people where I have learned a lot from them and I know they have learned

from me".

"Pair that listens to one another and are willing to try new ideas seems to

achieve more. Explaining things to one another (without being patronizing)

when one member of the pair doesn't understand a concept, is also helpful in

increasing knowledge for the team".

"If the team has respect for each other, and enjoy working with each other

they will do well. Protocols, Gender and Skills will be completely eclipsed by

110

111

a willingness to share ideas, and a desire to have conversations in voice and

code at the same time".

They may have expressed the views differently, but they are collectively voicing

teamwork and openness, which appear to be significant more so in PP environment than

an ordinary software development team. There were also a number of comments that

were convinced of the effectiveness of BP and PP. Most mentioned the code quality and

the knowledge transfer as the common benefits. Reducing the tedious code debugging

and the knowledge transferring between the senior programmers and junior

programmers without setting aside additional training time was also praised.

"The one thing that needs to be present is an open-mindedness and a

willingness to try PP the first time. After that, I think anyone who gives it an

honest try can see the real value in it, and truly believes that it is better (i.e.

more productive, more fun, more rewarding, and results in higher quality

designs) than 2 people working separately".

"Extreme programming is great, increases productivity and especially

quality, distributes knowledge among team".

"We had a mix of skill levels (Lisp novice to very-skilled practitioners). In

our experience the weak got strong and the strong got stronger. We put out

the highest code quality and had the highest programmer productivity I have

seen in 20 years of software development".

"If the time is managed well, with sufficient breaks, pair programming can

be very successful. The software product is at a much higher quality than it

112

would have been because of the peer pressure. The timesaving isn't half as

long as a single programmer but maybe 75% of what a single programmer

would do. The biggest benefit is pairing junior programmers with senior

programmer and getting the transfer of knowledge. It doesn't slow the senior

down very much, but the junior gets a huge boost in understanding the

problem area and programming knowledge. It reduces the time for a new

programmer to be a contributor to a project".

As most responses were favorable of XP and PP, but in all fairness these

comments are from likely BP proponents, coming from BP favored discussion groups.

Maybe the most challenging part of PP is the "introduction." Breaking the stereotype

and dealing with one's stubbornness of insisting one-man programming are truly a tough

task for any manager. Whatever the reasons are, the introduction of PP appears to be the

most stifling step in the adopting process.

"One of the critical issues with pair programming is getting people to

actually start doing it. After some time, people will value it and use,

but getting them to this point is the problem I'm still struggling

with this step. It might be interesting to also investigate the factors to

better facilitate initial adoption of pair programming".

For 'gender' issue, it was found to be insignificant from this survey. The

following comments typify the consensus;

113

"I really don't have any experience pair programming with a female,

but I don't know think gender should matter".

A female professional, has commented;

"Note I am female working in a team of males I think that this is

sometimes an issue when pairing".

Unfortunately, no conclusive data is available at this time to elaborate in gender

issue, but with the last place finishing in all conditions, 'gender' appears to be the least

influencing variable in PP productivity.

Even with the "40 hrs a week/ 8hrs a day" schedule (Beck, 2000), the condition

of PP constantly challenges the programmers. It appears that there are physical and

psychological issues. Physically, the programmers face the mental fatigue or the "burn

out." The mental fatigue may lead to a possible deterioration in code quality and lowers

productivity as well as the pair's quality relationship.

"Since people cannot effectively work at such high-intensity

for extended periods without break, it is essential that the

human needs of the pair-team individual also be paid

`extreme' attention".

"Pair programming can be very tiring over extended

periods of time. It is very difficult to pair program 8 hours

a day 5 days a week It is very intense. When two people are

114

concentrated working on a solution there are a lot of ideas

and discussion that require a lot of mental energy. You program

at a faster pace when pairing and don't take breaks when you

normally would since you're normally involved programming

or discussing something while you pair. You have to force yourself

to take regular breaks so that you don't burn out. You can tell

when you have been pairing too long because you become

impatient with one another, argue more, and feel extremely tired "

Psychologically, the programmers deal with personal favoritism,

preferences, and politics. Although this is thought to be minimal, the survey

result indicates it's more than minimal. Today's current practice of PP is "simply

pair up" without any pre-consideration. A worse case scenario is the result of

low morale as the following comment shows:

"If the selection of an extreme programming partner for the

expert is based on his or her personal preference, then this may

demoralize other members in the group. Why should a person be

chosen for learning an expertise not because of the ability to

learn and the desire to learn, but rather because of the personal

prejudice of the partner."

Given these issues, the role of management is important here. These physical and

psychological concerns can only be alleviated by the management's assertive

115

involvement. Instead of saying "team up with one who you want to work with," the

management needs to direct and "fairly officiate" the process. There are projects that

can be done with teams of "buddies", but then there are projects that are not. Most

management looks for the project's importance, size, time requirement, the

programmers' programming skills, and other explicit characteristics. But the smart

management will also consider these physical and psychological issues and deal with

them appropriately.

Through the survey, the factors that the professionals think impact PP

productivity have been revealed. The result tells that it's the humanistic variables over

technical variables that are viewed more significantly by the professionals. Lead by

`personality,' psychooocial aspect appears to be more than a mere factor and merits more

research.

3.4 Hypotheses Development

Based on the survey result, one may now understand what factors are being considered,

at least from a group of very experienced programmers and management. Given the non-

existence of prior psychosocial PP studies, this "opinions" or personal accounts may be a

good hint to start a study. The psychosocial fact has shown that it is far more important

in PP than one-man programming.

In one-man programming, the psychosocial term implies to group collaboration

or teamwork that consist of two or more programmers (Weinberg, 1998). But the two-

programmers team is mutual programming, not pair programming. Here, mutual

programming can be defined as two programmers collaborate in an assignment by

116

programming individually. Physically they are not sitting "lap-to-lap" like pair

programming.

Cognitively, this is completely different than in pair programming. It's like a

two-headed monster, one body but two heads, one PC, monitor, keyboard, but two

programmers. Maybe this is why `personality,' `communication,'

`cognitive/programming style,' `ability to work with other' and other many psychosocial

variables were surfaced from the field survey. Looking at the top choices, among others

`personality' and 'communication' the 1 st and 3"1 choices, present very old and familiar

topics in social psychology. But in PP context, they are new topics. For the success of

PP and its future, it just maybe that how active research of these topics would decide that.

The difficulties of lack of programming skill and other technical know-how can be

overcome administratively, but the difficulties of incompatible or "mad-bomber"

(Weinberg, 1998) like personalities may have no solution.

In this experiment, the 'personality' and 'communication' factors were selected

to study. However, other variables are equal in value for experiment as well. The task of

reviewing two variables is certainly a tall order and this is not a place for it, but an

attempt of a basic review according to PP experiment objective is made.

3.4.1 Personality Concept Review

In no comparison to the robust personality researches in social psychology, the

experiments involving personality in programming context is very limited and in PP

context, it's virtually non-existent. There are literatures that deal with psychology in

systems, in a more general sense, (Weinberg, 1998; Shneiderman, 1998; Shaft and

Vessey, 1998), but definitely no literatures with any PP specificity. In programming, one

117

generally believe that a typical programmer personality profile is "detached" and

modifiable through "attempts at adaptation" (Weinberg, 1998). Yet, this is a contrary to

some personality views in social psychology.

The two sides of personality, temperament and character where temperament is

predisposition and character is disposition, tells that temperament is what a person is

born with, it can't be changed (Keirsey, 1998). Regardless of changing environment,

there is a part of individual that won't change. With this in mind, studies in knowing that

predisposition continue. In early, there were attempts to profile programmer personality

for a hiring purpose, but with a little success.

In social psychology, a typical personality theory may be described by using 3 to

7 dimensions (Revelle, website A; Pervin, 1989). Most common ones are 'Big 3' and

`Big 5' models. In 'Big 3' model (Revelle, website B), the 3 dimensions are 1) Approach

- Instigation of Behavior, 2) Avoidance - Inhibition of Bppavior, and 3) Aggression. The

"detached" personality corresponds to avoidance, inhibition of behavior. Increasing the

number of dimensions, today, 'Big 5' is better accepted and used model (Pervin, 1989).

Big 5 has 1) Extraversion, 2) Agreeableness, 3) Conscientiousness, 4) Neuroticism, and

5) Openness.

118

In each dimension, there are two extreme ends: one end is the most positive side

and the other is most negative side. On a scale, an individual with a higher score is said

to have the positive end of the dimension. Following figure illustrates both negative and

positive sides of all five dimensions.

Figure 3.14 'Big 5' illustrated.

Conscientiousness	 unreliable,
lazy, careless,
negligent

According to the 'personality' variables and other relevant qualities (or the

variables) that were obtained from the survey, they indicate a closer link to the positive

sides of 'Openness' and 'Agreeableness.'

Extraversion

Openness

Agreeableness

119

Negative side of the scale

Nervous,
► Tense,

anxious

Positive side of the scale

NeuroticismPoised, calm,
composed

organized,
reliable, neat,
ambitious

good-natured,
cooperative,
helpful

talkative,
optimistic,
adventurous

creative,
original,
curious,
imaginative

rude,
uncooperative,
irritable

Silent,
Secretive,
Cautious,

uncreative,
conventional,
unadventurous

411 Al• elk

Debatable, but reasonable, one can make the careful ties between the survey

variables and the positive sides of 'Openness,' and 'Agreeableness' scales. In summary,

one may say that a person who scores high on the scale, possessing positive qualities of

`Openness,' and 'Agreeableness' is the likely the person who fits the description of the

list from the survey. Following quote puts it well:

"When I ask clients about their best experiences of being part of

a team, the most often cited memory is that it was like a family-a family

around Thanksgiving time. Everybody makes something and brings

it to the table, where they can all share and celebrate. I think another

attribute of a healthy team is that it can perpetuate itself. It can help

a member break off and start and support a new team that will share

the same values and customs." (Weinberg, 1998)

The next task is selecting appropriate personality theory for the experiment.

Following 'Big 5' Table shows a list of personality theories described in its five

dimensions.

121

122

In the table 3.3, each personality inventory has been carefully analyzed against the five

dimensions and labeled accordingly. However, one must caution in interpreting the

table; it would be risky to assume that a particular dimension of a personality theory has

an exact "one-to-one" relationship with the corresponding dimension of the big five

dimensions. A more appropriate way to address this is that the particular characteristic of

the personality is a "closer" match to that dimension.

Reviewing the Table, one that is most widely used and familiar to public is

focused on. One that fits the billing is Myers-Briggs Type Indicator (MTBI) (Bayne,

1995; Keirsey, 1998; Myers & Myers, 1995) as it's used in 84 of the Fortune 100

companies and more than 50 different countries according to CCP Inc., the official

MBTI material distributor (CCP website 1). According to the five dimensions of 'Big 5,'

MTBI fit into four of five dimensions.

123

For 'Openness' and 'Agreeableness,' MBTI has 'Intuition vs. Sensing' and

`Feeling vs. Thinking.' `Intuition vs. Sensing' - Simply put, sensing is where a person is

paying attention to the stimulus of surrounding environments and intuition is where the

person listens to "inner voice." Everyone has both tendencies, but one dominates other.

Everyone tends to have one dominant character over the other. But at the same time, the

two tendencies are not mutually exclusive; meaning a person with strong intuition

tendency often observes his environment and vice versa with a person with sensing

tendency. For sensing, the qualities are creative, original, curious, imaginative and more,

for intuition, the qualities are unartistic, conventional and more. This measurement is

structured so that a high score on this scale indicates sensing, and a low score indicates

intuition. Therefore, if individual scored high on this scale means he has stronger

tendency of sensing over intuition.

`Feeling vs. Thinking' — For feeling one may use words such as "tender-

minded," "friendly" and for thinking one may use "tough-minded." All have thoughts

and feelings but there are individuals who do more of one over the other. The common

stereotype is that one is sensitive, warm-hearted, and cooperative and the other is cold-

blooded and insensitive, but the truth is that both react in same intensity. The difference

comes from how it's being displayed. The "tender-minded" is very expressive in

revealing his or her feeling whereas the "tough-minded" completely hides his or her

feelings. Hence, in summary, both react emotionally in same intensity, but the display of

emotions is different. One may describe the feeling in words such as good-natured,

trusting, and helpful, for the thinking one may use words such as uncooperative and

irritable. This measurement is structured so that a high score on this scale indicates

124

feeling, and a low score indicates thinking. Therefore, if individual scored high on this

scale means he has stronger tendency of feeling over thinking.

In MBTI, a person is given a four-letter type indication such as ENFP where each letter

is coming from each of the four scales or preferences of MBTI. The E is from

Extraversion (E) vs. Introversion (I) scale, N is from Intuition (N) vs. Sensing (S) scale,

F is from Feeling (F) vs. Thinking (T) scale, and P is from Judging (J) vs. Perception (P).

Except the ones who are in the field of psychology one typically know about MBTI up

to this point, the four-letter type, but the 'type theory' reveals the true meaning of the

four-letter type.

125

The type theory generally says that one character, type or preference of the four

preferences (Sensing, Intuition, Thinking or Feeling) usually dominates the others. A

person uses this dominant type the most and feels most comfortable; it is an essential

part of the person at his or her best (Bayne, 1995). A person uses the dominant type in

his or her daily life, enjoy it, and trust it more. Adding it to the dominant type, there is

auxiliary or secondary type. An auxiliary type is the second dominant type that a person

uses it most next to the dominant type. It complements and supplements the dominant

type. Along with the dominant type, the auxiliary type is readily used and a person

frequently shifts back and forth between the dominant and auxiliary type without one's

realization. This leads to following possible combinations; ST, SF, NF, and NT.

After the dominant and auxiliary types, xNFx, only the outer preferences remains,

ExxP. For the extraverts and introverts, "the extraverts use their dominant function

mostly in the external world, because by definition that is where they are most

comfortable, and introverts use theirs mostly in their inner world, for the same reason"

(Bayne, 1995). Extraversion vs. Introversion indicates one's preference in displaying

and directing his or her dominant and auxiliary types. Thus, contrary to what many have

believed, extravert is not always loud or happy smiley person and introvert is not always

quiet or withdrawn person.

For the perception and judgment, they are the attitudes that one uses in dealing

with the outer world. Some are quick to judge things or some are slowly and carefully

listen and evaluate things. Typically, a person starts with a set of particular preferences

(Keirsey, 1998), but one can effort to, if he or she decides, develops a particular weak or

less used preference, which is called 'type development' (Bayne, 1995; Myers & Myers,

1995). Therefore, it's clear now that a person is who he or she is by the dominant and

126

auxiliary types. This fact closely matches the list of survey results to the 'Openness' and

`Agreeableness' dimensions or intuition (N) vs. sensing (S) scale and feeling (F) vs.

thinking (T) scale.

Through the type theory, the link between the list of survey variables to the four

possible combinations of dominant and auxiliary types substantiates a validation by an

empirical work. To some, personality issue in programming may not all that significant,

but in PP it just may mean everything just as this survey result indicates. It would not be

an overstatement if one says that PP is more of a social activity than a programming

127

activity. The psychosocial dimension of programming is certainly not one of a top

discussion topic, but now one understands its role and effect.

"Thus, all other things being equal, certain people will find the job of

product test programmer easier psychologically." (Weinberg, 1998)

3.4.2 Communication Concept Review

Increasingly, communication is valued as one of the core competencies in many

organizations (O'Neil, et al., 1997). Communication is probably the most used word in

teamwork and collaboration, most used because it's that important. In PP context,

communication can be viewed as either very easy or very difficult because of "side-by-

side," yet want to be "alone and be creative." Within communication theories and

concepts (Spitzberg, 2002; Spitzberg 1997), efficient communication methods and

evaluations are observed in various contexts. Communication is such a broad term that

it's difficult to put it in one or two sentences. The communication or "exchange" can

happen explicitly and implicitly, physically and psychologically, visually and audibly, or

through other means of channels. Everyone communicates, but a communication skill

may come as a vague and new item to some people. The 'skill' is defined as

"intentionally repeatable, goal-directed behaviors and behavior sequences" (Spitzberg

& Cupach, 1984). Anyone can communicate, but doing it in a manner that achieves a

goal is considered a skill. This 'skill' concept is much more impact in PP context as

demanding real-time non-stop cognitive pair collaboration is waits.

Just as the personalities are differ by the different combinations of dominant and

auxiliary types, communication also appears to behave the same fashion (Thompson,

2000). In a similar manner communication also adheres to the type theory in shaping

128

what a person is most comfortable with. It's celled "type dialects" and the basic idea is

that a group of individuals with at least one common either dominant or auxiliary type

speak their "own" language, it is subtle yet definite. For example, a ENFP person with N

as the dominant and F as the auxiliary types communicates in a dialect with a person

who possesses either N or F as a dominant or auxiliary types. This aligns with the type

theory of personality. The relationship between the communication dialects of type

theory and communication 'skill' is unknown. One does not know whether one's

communication skill has any effect on the communication dialect or that a certain

combination of dominant and auxiliary type possesses high level of communication

`skill.' It is one of the objectives of this experiment to investigate the effect.

3.4.3 Independent Variables

The three main independent variables are: 1) the dominant and auxiliary preferences of

the MBTI type, 2) the communication skill level, and 3) gender.

129

The bars on the graph below illustrate a person's MBTI preference clarity. The

length of each bar shows how consistently the person chooses one pole of a preference

over its opposite. A longer bar suggests that he is quite sure that he prefers that pole; a

shorter bar suggests that he is less sure about his preference for that pole.

In MBTI, there are all together 16 types (Table 18). As an independent variable, the

focus is on just the dominant and auxiliary preferences, [sensing (S) vs. intuition (N)]

130

and [feeling (F) vs. thinking (T)], the two inner preferences. In Table 18, the possible

combinations are ST, SF, NF, and NT and there are 16 MBTI types. From these one can

derive the with following three distinct groups:

These three groups are used as the independent variable.

The Communication Skill Level

In determining a subject's communication skill level, we have the process illustrated in

the preparing experiment material section, and appendix E, F, and G. Qualified subject is

labeled with either 'High', or 'Low' for his or her communication skill level. For the

pairing, 'High' and 'Low' groups are paired to High-High (HH), High-Low (HL), and

Low-Low (LL). These three groups are used as an independent variable.

131

Gender

For gender, three groups are formed: Male-Male, Male-Female, and Female-Female.

These three groups are used as an independent variable.

Other variable consideration is the subject's class performance. With the

subjects' consent, each subject's current programming class performance is obtained. To

eliminate or minimize the subject's class performance, the subjects are to be paired

according to their class performance.

3.4.4 Dependent Variables

Scoring is done in two categories; the code productivity and code design. Under the

umbrella of the code design, the code efficiency and code readability are included as

well. For the design and efficiency, one can choose structured, modular, or object-

oriented approach, With regards to readability, perfect readability can be measured by a

scenario in which a third person should not have any difficulty understanding and

reproducing the code at another time.

The subjects were asked to print and submit hardcopies of everything that they

have generated, even the error messages. Contextually, the code productivity consists of

codes and code output that are produced by subjects. For the code design, depend on the

nature of problems, one can choose structured, modular, or object-oriented programming

technique. Also code efficiency and code readability are considered for code design. In

summary, the code design is qualitative measurement whereas the code productivity is

quantitative measurement. After complete review of the submitted printouts by subjects,

the judges were instructed to give each score for code productivity and code design,

from a scale of 0 to 10.

132

At the end of each visit. a post-session questionnaire is given and collected.

Items interested are PP communication, PP confidence, PP compatibility, and PP

satisfaction.

3.4.5 Hypotheses

In this experiment, the hypotheses are designed to test three areas. They are 1) optimal

MBTI type pairing 2) communication skill and 3) gender pairing.

Optimal MBTI type pairing — This hypotheses is the main contribution of this

experiment. Based on the survey result, 'personality' is voted as the most influential

factor to PP productivity. From a productivity perspective, a mixed MBTI type will

produce better. As one of the MBTI founders, Isbel Briggs Myers (1995) said, "two

people, alike in their kind of perception or their kind of judgment but not both, have the

makings of a good working relationship. Their shared preferences gives them common

ground and their dissimilar preference gives them, as a team, a wider range of

expertness than either has alone". 'Expertness' also infers to insight or inquiry. Two

complementing programmers, each with its own unique perception (sensing vs. intuition

scale) or judgment (feeling vs. thinking scale) would produce a higher output in the PP

environment. As in all cases, diversity is always better. Also, for communication, a

number of evidences (Thompson, 2000; Bayne, 1995; Myers & Myers, 1995) suggest

that complete opposites in both perception and judgment will hinder communication.

133

H 1: The pairs who are alike in their kind of perception or judgment (dominant and

auxiliary types only) but not both, [divers], would achieve significantly higher

[score] than the pairs who are alike in both, [alike]:

H 1.1: [score] — code productivity, P

H 1.2: [score] — code design, D

134

H 2: The pairs who are alike in their kind of perception or judgment (dominant and

auxiliary types only) but not both, [divers], would achieve significantly higher

[score] than the pairs who are opposite in both [Copp]:

H 2.1: [score] — code productivity

H 2.2: [score] — code design

135

H 3: The high communication skill level pairs, [EH], would yield a significantly

higher [score] than the mixed communication skill level pairs, [HL].

H 3.1: [score] — code productivity

H 3.2: [score] — code design

H 4: The high communication skill level pairs, [EH], would yield a significantly

higher [score] than the low communication skill level pairs, [LL].

H 4.1: [score] — code productivity

H 4.2: [score] — code design

Gender pairing — From the survey result and also the works from others

(Williams, 2000; Williams & Kessler, 2002), no significant observations are made in the

gender factor. However, the perception is that males and females are "different"

cognitively and socially (Stewart, et al., 1996; Tannen, 1991), but complement each

other in a team setting.

H 5: Male-Female pairs, [IF], would significantly achieve a higher [score] than

Male- Male pairs, [MM].

H 5.1: [score] — code productivity

H 5.2: [score] — code design

136

H 6: Male-Female pairs, [IF], would significantly achieve a higher [score] than

Female-Female pairs, [FA].

H 6.1: [score] — code productivity

H 6.2: [score] — code design

H 7: The pairs who are alike in their kind of perception or their kind of

judgment (dominant and auxiliary types) but not both, [divrs], would achieve a

significantly higher level than the pairs who are alike in both, [alike] from

following constructs:

H 7.1: level - PP communication

H 7.2: level - PP satisfaction

H 7.3: level - PP confidence

H 7.4: level - PP compatibility

H 8: The pairs who are alike in their kind of perception or their kind of

judgment (dominant and auxiliary types) but not both, [divrs], would achieve a

significantly higher level than the pairs who are opposite in both, [opp], from

following constructs:

H 8.1: level - PP communication

H 8.2: level - PP satisfaction

H 8.3: level - PP confidence

H 8.4: level - PP compatibility

137

H 9: The high communication skill pairs, [HH], would yield a significantly higher

level than the mixed communication skill pairs, [HL], from following

constructs:

H 9.1: level - PP communication

H 9.2: level - PP satisfaction

H 9.3: level - PP confidence

H 9.4: level - PP compatibility

H 10: The high communication skill pairs, [HH], would yield a significantly higher

level than the low communication skill pairs, [LL], from following constructs:

H 10.1: level - PP communication

H 10.2: level - PP satisfaction

H 10.3: level - PP confidence

H 10.4: level - PP compatibility

H 11: Male-Female pairs, [MF], would significantly achieve a significantly higher level

than Male-Male pairs, [MM], from following constructs:

H 11.1: level - PP communication

H 11.2: level - PP satisfaction

H 11.3: level - PP confidence

H 11.4: level - PP compatibility

138

H 12: Male-Female pairs, [MFI], would significantly achieve a higher level than

Female-Female pairs, [FF], from following constructs:

H 12.1: level - PP communication

H 12.2: level - PP satisfaction

H 12.3: level - PP confidence

H 12.4: level - PP compatibility

CHAPTER 4

EXPERIMENT

4.1 EDperiment Design

4.1.1 Preparing Experiment Materials

[Experiment Location] — This experiment is to take place in a room located in the

Guttenberg Information and Technology Center (GITC) Building, New Jersey Institute of

Technology (NJIT) where noise and distractions are completely excluded or at least

controllable.

[Participation of the subjects] — Inducing active or full participation from all

qualified subjects is essential for a obtaining a reasonable sample size. A few visits to

perspective subject classes were made to inform the subjects of the experiment's

background and benefits. Moreover, in exchange for their participation, and with help from

the course instructor, a course credit was given. The subjects' background and work

experience were also reviewed for a consideration (Appendix B).

[Subject Consent Form] — A subject consent form is distributed which stipulates the

rules and policies of the NJIT 'Protection for Human Subjects' committee (Appendix A). A

detailed list of items and procedures are addressed as well as the subjects' rights during the

experiment. Also, the notion of non-participating qualified subjects not being penalized in

anyway is emphasized.

[Experiment Task] — After a review of the subject's programming experience, a set

of four programming problems is designed by a panel of professional programmers,

programming instructors and authors for the purpose of this experiment. The programming

difficulty level of the four problems is set to challenge both undergraduate and graduate

139

140

subjects. And the parity of all problems is all equal as they have been reviewed and

validated by three expert professional programmers (Appendix I).

[Communication Skill Measurement] — Measuring one's communication skill

can be a difficult task. Hence, assessing one's communication skill is carefully

approached and at the same time, accurately as possible. A few measuring instruments

that had been used in previous research (Spitzberg, 2002; Spitzberg, 1997; Spitzberg and

Cupach, 1984) was utilized in this experiment. During the first information session with

the subjects, these instruments are used (Appendix E, F, and G). After a self-introduction,

the pairs started the discussions on these topics. At the end, each was asked to fill out the

Conversational Skills Rating Scale (CSRS) form (Spitzberg, 1997) (Appendix E) in

which serves to evaluate the partner's communication skill. In labeling a person's

communication skill level, the subjects were divided into percentiles, 40% and 60%, in

order to create low (< 40%) and high (.>. 60%) competency groups.

[Personality Profile Measurement] — Myers-Briggs Type Indicator (MBTI)

measurement was administered to the subjects. The site address is

(http://www.skillsone.com/), and the Consulting Psychologists Press Inc. (CPP Inc.), the

official MBTI distribution organization, operates it. The online version is selected over

pencil and paper version, not only for the convenience but also for accuracy in scoring.

In a case where a switch from the online version to the manual version is required, one

may do so without any loss of test integrity and validity. According to CCP Inc., only

the certified MBTI personnel can administer MBTI test. However, this requirement may

be waived by CCP Inc. by having a PhD student researcher completing the qualification

form and having it co-signed by the advising professor. In order to administer the

manual version, the following materials must be ordered from CCP Inc. and used:

[Fixed time for programming session] — During the pilot experiment, one of the

parameters being evaluated was the assigned time for each problem. This is critical as

the given time should not be too short or too long in conforming to the objective of this

experiment. Based on the pilot experiment result and observation, 45 minutes for each

problem are allocated.

[Judges] — Two qualified independent programmers are asked to participate as

the judges. One judge is an Information Systems department graduate student, who is

also a teaching assistant to a programming course and the other judge is a programmer

who holds B. S. in computer engineering, and B. S. in Computer Science. Both judges

141

142

and the authors have discussed about the experiment and the programming problem set

(Appendix H). The judges were given the scoring instruction (Appendix J) and received

full explanations for any of their questions. The judges reviewed and graded the

subjects' work in two categories: 1) quantitative measurement (code productivity) and 2)

qualitative measurement (code design). The grading scales are 0 to 10 with 0 being the

lowest score and 10 being the highest score. Also, if there is a difference in an item's

scoring of more than 1 between the two judges then they are asked to reconcile for

adjustment.

143

144

The experiment largely consists of two parts. The first part consists of 1) holding an

information/training session, 2) completing the subject consent form, 3) completing

online MBTI profile measurement, 4) evaluating the subjects' profiles for pairing 5)

scheduling the programming session dates and lastly 6) notifying the dates to the

corresponding subjects.

[Information Session & Subject Consent Form] - Subjects will be asked to attend

an information session and sign the subject consent form. The investigator gives an

overall but brief background of the experiment and other PP research efforts. In verbatim,

the subject consent form is read before the subjects and answers any concerns and

questions from the subjects. The subjects are reminded of their freedom to withdraw

from the experiment at anytime. At the end of session, he or she signs the consent form.

This is also a training session. As has been documented in previous university

experiments (Kivi, et al., 2000; Mueller and Tichy, 2001), the existence of no prior BP

or PP training or knowledge is very risky to the experiment. The subjects in both

experiments did not fully understand nor experience the true value and benefits of PP.

However, realistically no subject can immediately turn into an experienced pair

programmer after just one training session, but it does merit its place in this context.

During the training session, the subjects are coached and lectured on the basics of PP

(Williams and Kessler, 2000).

[Online MBTI personality profile measurement] — The subjects are introduced on

MBTI background and its use. After a round of questions and answers, each subject is

seated at a terminal and asked to complete the measurement. The analysis and profile

result is executed by the site provider (http://www.skillsone.com/), the Consulting

Psychologists Press Inc. (CPP Inc.), the official MBTI material distributor.

145

[Evaluating the subjects' profiles for pairing] — For the evaluation, the following

data are to be assembled: course number, class performance, gender, programming

experience, MBTI profile, the strength of each four preferences of MBTI, and

communication skill result. The work experience of the subjects was carefully evaluated.

A list of questions was presented to the subjects in order to obtain the subjects'

programming backgrounds (Appendix B). On average, the professional programming

experience is less than a half-year. For BP and PP experiences, only three subjects have

stated that they have tried BP or PP for a brief period of time. Based on these results, it

would be tenable to say that the programming experience of the subjects is minimal to

none. Hence, the work experience of the subjects would not be considered as a factor in

this experiment. According to the hypotheses and along with these data, all subjects are

paired.

[Scheduling the programming session dates & notifying the corresponding

subjects of the dates] — Barring any unforeseeable emergency, a total of three visits with

the subjects is expected. In the real world, a software development effort goes on for

months or sometimes for years. In this experiment context, three visits are made instead

of one visit in an effort to more closely resemble a regular software project development

effort. A semester long option was considered, however because of the large sample size

and several administrative reasons, this was not feasible in this experiment. Once the

pairs are identified, the three scheduled sessions are arranged, preferably in three

consecutive weeks, one session per week.

146

4.1.3 Experiment Procedure - Second Part

The second or last part consists of the following steps:

- Two visits: each visit consists of a 90 minute programming session, 45

minutes in which the subject programs alone and another 45 minutes in which

the subject programs in a PP environment.

- The order of programming alone and PP is alternated in two visits. Also, 50%

of the sample pool starts with programming alone and the other 50% starts

with PP.

- In the last visit, the subjects are provided with the information that had been

hidden from them. Lastly, they are thanked for their participation.

[Programming Alone] — Each subject is given one of the four problems for

programming alone. The subjects are instructed of the 45-minute time limit and that they

are to turn in hard copies of their work at the end.

[Pair Programming] — The pair of assigned partners is given another problem out

of the four problems that neither partner has done. Again, the subjects are told that 45

minutes are assigned and at the end that they are to turn in hard copies of their work. At

the end of each visit, a post-session questionnaire is given to subjects.

[Exit information session & thank the subjects] — At the end of last visit, after the

subjects have satisfactorily completed the entire task, they are given the information that

they were being experimented on such as what type of MBTI group that they were in,

which group of communication skill level that they were in, and what were the things

that this experiment is observing. Also, any questions from the subjects are to be

answered and a final thanks is given for their participation.

147

4.2 Experiment Result

4.2.1 Subjects Profile

For the experiment, the sample population is drawn from students in four programming

courses: two on-campus undergraduate courses, and one online graduate course, and one

on-campus course. However, all participating subjects have completed the experiment

on campus. The students were given a course credit for their participation. The number

of subjects represents those who have completed the experiment. . Except for the one

course, the female students were scarce, thus the low participating female subjects.

The MBTI types of all participated subjects (Table. 21) illustrate that most

common type in computer field are ISTJ and ESTJ, in other words, people whose

dominant and auxiliary preferences are sensing (S) and thinking (T) outnumber other

combinations. This also confirms similar finding in other studies (Capretz, 2003). In the

graduate course II, which may most resemble close to a real world with many working

professionals or with prior experiences, ISTJ was most common. Introvert (I) preference

appears to be common which is also a stereotypical in computer field (Weinberg, 1998).

148

149

150

151

4.2.2 Factor Analysis and Reliability Analysis

Generally, the emphasis of validating instruments in IS research is not publicized

enough (Boudreau, et al., 2001; Straub, 1989). In fact, the instrument validation is

always hidden bppind the spotlight of research findings. By validating the instruments

that one can substantiate the findings. In this experiment, factor analysis and Cronbach

reliability measurement are the methods used for instrument validation (Straub, 1989;

Rosenthal and Rosnow, 1991; Cohen and Swerdlik, 2002).

Through an extensive literature review, only a handful researches with a focus on

the psychosocial aspect of PP (Williams, 2000) are found. Consequently, the

questionnaire items had to be originally designed for this experiment (Appendix C). For

this experiment, the interested constructs are PP satisfaction, PP compatibility, PP

communication, and PP confidence. In scoring the answers the pro- (satisfaction,

compatibility, communication and confidence) would be weighted from seven ("strongly

disagree") to one ("strongly disagree"). For the anti- (satisfaction, compatibility,

communication and confidence) questions (4,6,7, 8, 13, 15, 16, 20, 21, 25, 26, 27, 28, 30,

31, 34, 35) the weighting is reversed. Lastly, four short answer items are developed.

The 37 Likert scale question items are checked for validity and reliability by

performing factor analysis and Cronbach reliability measurement. The questionnaires

from all participated subjects are collected and the results are manually recorded into

Microsoft Excel worksheet. The factor analysis was used by means of principal

components analysis with varimax rotation. The parameters are 1) eigenvalues greater

than one and 2) maximum iteration for convergence was set to be 25. Typically, factor

analysis is repeated until all item values are acceptable. For example, after a factor

152

analysis, any item's value with less than 0.500 is discarded (Straub, 1989) as is any

construct with less than minimum three items as well. Only after all item values are

0.500 or higher and all constructs possess a minimum of three questions is the factor

analysis complete. Cronbach reliability measurement indicates how well a set of items

measures a single latent construct. Typically, 0.700 is viewed as the acceptable minimal

value and the higher the value, the more reliable the set is (Cohen and Swerdlik, 2002).

The following Table is the matrix after the first round of factor analysis.

153

In validating the constructs, the first exploratory factor analysis is performed on

all 37 items and determines which items load together for how many factors (constructs).

From the above Table, ten factors are shown. Of those, items that carry a value of less

than 0.500 and situations where only two items load together are discarded.

154

• Items 28, 16, 21, 25 — These items are discarded because they have no value with

0.500 or higher

• Items 24, 22, 37, 36, 27, 35, 5 — These items are discarded because each item

doesn't satisfy to the condition of having a minimum of three items that are

required to form a set (construct).

This leaves the six factors (factor 1, 2, 3, 4, 5, 8). A second round of factor

analysis is performed.

155

From the second round of factor analysis, Items 15, 18, 17, 23 are discarded for

the following reasons;

• Items 15, 23 — These items are discarded because they have no value with 0.500

or higher

• Items 18, 17 — These items are discarded because each item doesn't satisfy the

condition of having a minimum of three items that are required to form a set

(construct).

This leaves five factors (factor 1, 2, 3, 4, 5). A third round of factor analysis is

performed.

156

157

In this third round of factor analysis, all items are meeting the requirements. As

the matrix Table illustrates, items 32, 34, 33, 30, 31, 29, 19 load to factor 1, items 7, 6, 8,

4, 12 load to factor 2, items 10, 9, 11, 14 load to factor 3, items 3, 1, 2 load to factor 4,

and items 13, 26, 20 to factor 5. From the 5 factors or 5 constructs, the appropriate

construct names are PP communication for factor 1, PP satisfaction for factor 2, PP

confidence for factor 3, programming alone confidence for factor 4, and PP

compatibility for factor 5. One-Man Prog. confidence construct is dropped before further

analysis. All items conform to their construct name. But item 19 doesn't quite correlate

with its construct name, PP communication. Item 19 in the PP communication construct

is kept as it's factor analysis and reliability values belong to the construct. The

Crobach's Alpha measurement for each set displays above 0.700. One-man prog.

confidence construct was advertently not analyzed for any further because only the PP

construct items are interested for now. Following is the result;

158

For the inter-judge reliability, a bivariate correlation is performed to assess the

inter-judge reliability.

As the results show the two judges are highly agreeable with values 0.963 and

0.967 in their scoring in both code productivity and code design.

159

4.2.3 Hypotheses Evaluated

Before the quantitative analysis begins, determining whether the data qualifies for the

parametric tests assumptions or not is imperative (Rosenthal and Rosnow, 1991). There

are four criteria that must be checked. They are: 1) Normally distributed data, 2)

Homogeneity of variance, 3) Interval data, and 4) Independence (Rowntree, 2003;

Wright, 1998; Rosenthal and Rosnow, 1991). The normal distribution refers to the "bell-

shaped" distribution of data. Any skewed shaped data will not qualify for the parametric

test. The homogeneity of variance means that the variances should not change

systematically throughout the data. Interval data means data should be measured at least

at the interval level. Independence means that data from different subjects are

independent, the behavior of one participant does not influence the behavior of another.

Both interval data and independence are analyzed by common sense or visual

examination.

For the normally distributed data and homogeneity of variance, there are more

scientific ways for analysis. As is the practice with many researchers, the most common

method of checking normality is, and unfortunately still is, by visual examination of

either a histogram or a Q-Q graph. This subjective practice may discredit the

experimental findings and also present challenges. Striving for more accurate analysis,

two normality tests, Kolmogorov-Smirnov and Shapiro-Wilk tests can be used. These

tests compare the set of scores in the sample to a normally distributed set of scores with

the same mean and standard deviation. If the test results are non-significant (p > 0.05),

then the sample data is normally distributed. The following is the normality test result of

code productivity and code design of [pairtype].

160

The negative Skewness values of both code productivity (-0.320) and code

design (-0.388) indicate an overabundance of scores on the right side of the distribution.

For a normal distribution, the Skewness value should be zero.

161

Here, K-S test shows code productivity is significant (p < 0.001) and code design

is also significant (p < 0.001). Therefore code productivity and code design are not

normally distributed. But from the histogram and normal Q-Q plots of both dependent

variables (Appendix N), code productivity and code design do not exhibit any significant

deviations from normality. However, the K-S test result shows otherwise.

The K-S test result (p < 0.001) clearly indicates that the data is not fit for

parametric tests. However, there is an option of data transformation.

In an effort to transform the data, the authors have tried following list of transformation

options:

162

However, the results were not normally distributed. This failure of normality on

for both dependent variables directs to further analysis using non-parametric tests. The

most appropriate non-parametric test for this situation appears to be the Kruskal-Wallis

H (K-W) test. The K-W test, an extension of the Mann-Whitney U test, is the

nonparametric analog of a one-way analysis of variance (ANOVA) and detects

differences in distribution location. It also assumes that there is no a priori ordering of

the k populations from which the samples are drawn. For the statistics computer

software analysis tool, SPSS statistics software application version 9.0 for windows

(www.spss.com) is used.

163

[Pairtype]

H 1: The pairs who are alike in their kind of perception or judgment (dominant and

auxiliary types only) but not both, [divrs], would achieve significantly higher

[score] than the pairs who are alike in both, [alike]:

H 1.1: [score] — code productivity

H 1.2: [score] — code design

H 2: The pairs who are alike in their kind of perception or judgment (dominant and

auxiliary types only) but not both, [divers], would achieve significantly higher

[score] than the pairs who are opposite in both [oppj]:

H 2.1: [score] — code productivity

H 2.2: [score] — code design

164

From Table 4.16, [divers] shows the highest mean values (6.46, 6.49) with the

lowest standard deviation values (2.43, 2.35).

From Table 4.17, both code productivity (p < 0.05) and code design (p < 0.05)

show significance. However, this does not show which groups are significantly different

from which of the others. To find out, Mann-Whitney test is performed between [divers]

vs. [Epp], [divrs] vs. [alike], and [opp] vs. [alike].

165

From Table 4.18, two-tailed significance value is shown. However, this needs to

be changed to one-tailed significance value. The two-tailed significance value is can be

used as it is when no prediction has been made about which group will differ from which

(Wright, 1998, Rowntree, 2003). However, hypothesis 1 states that [divrs] would

achieve significantly higher mean than [alike], therefore using one-tailed probability is

appropriate (Field, 2003). This value can be obtained by taking the two-tailed value and

dividing it by two. By 5% significance level, [divrs] is not significantly higher than

[opp] in code productivity mean. But [divers] is significantly higher than [Copp] in code

design mean. By 10% significance level, [divers] is significantly higher than [opp] in both

code productivity and code design means.

From Table 4.19, [divrs] is significantly higher than [alike] in both code

productivity and code design means. . Not included in the hypotheses, yet [opp] vs.

[alike] is performed below.

166

167

[Paircommi]

H 3: The high communication skill level pairs, [HHJ], would yield a significantly

higher [score] than the mixed communication skill level pairs, [HL].

H 3.1: [score] — code productivity

H 3.2: [score] — code design

H 4: The high communication skill level pairs, [HH], would yield a significantly

higher [score] than the low communication skill level pairs, [LL].

H 4.1: [score] — code productivity

H 4.2: [score] — code design

168

From the K-W test, the result shows that there are no significant differences

between the means of the three groups in both code productivity (p = 0.514) and code

design (p = 0.832). Therefore, further group contrasts are insignificant.

H 3.1: [score] — code productivity	 Not Supported

H 3.2: [score] — code design	 Not Supported

H 4.1: [score] — code productivity	 Not Supported

H 4.2: [score] — code design	 Not Supported

169

[IPairgender]

H 5: Male-Female pairs, [MF], would significantly achieve a higher [score] than

Male-Male pairs, [MM].

H 5.1: [score] — code productivity

H 5.2: [score] — code design

H 6: Male-Female pairs, [MF], would significantly achieve a higher [score] than

Female-Female pairs, [FF].

H 6.1: [score] — code productivity

H 6.2: [score] — code design

170

Again from the K-W test, the result shows that there are no significant

differences between the means of the three groups in both code productivity (p = 0.579)

and code design (p = 0.443). Further group contrasts are not performed.

H 5.1: [score] — code productivity	 Not Supported

H 5.2: [score] — code design	 Not Supported

H 6.1: [score] — code productivity	 Not Supported

H 6.2: [score] — code design	 Not Supported

Similar to the normal data distribution check on the quantitative result, the

questionnaire result is also checked for its normal data distribution.

171

The negative Skewness values (-0.966, -0.298, -0.646, and -0.879) indicate an

overabundance of scores on the right side of the distribution. Again, for a normal

distribution, the Skewness value should be zero.

172

Based on the normality test, Table 4.26, only PP confidence is showing normal

distribution (p = 0.076). However, all constructs are to analyze by non-parametric test

for a consistency.

H 7: The pairs who are alike in their kind of perception or their kind of

judgment (dominant and auxiliary types) but not both, [divers], would achieve a

significantly higher level than the pairs who are alike in both, [alike] from

following constructs:

173

H 8: The pairs who are alike in their kind of perception or their kind of

judgment (dominant and auxiliary types) but not both, [divrs], would achieve a

significantly higher level than the pairs who are opposite in both, [opp] from

following constructs:

H 8.1: PP communication

H 8.2: PP satisfaction

H 8.3: PP confidence

H 8.4: PP compatibility

From the K-W test, the result shows that there are no significant differences

between the means of the three groups in PP communication (p = 0.312), PP satisfaction

(p = 0.109), PP confidence (p = 0.136), and PP compatibility (p = 305). Therefore group

contrasts are not performed.

174

175

H 10:	 The high communication skill pairs, [HH], would yield a significantly higher

level than the low communication skill pairs, [LL] from following constructs;

From the K-W test, Table 4.28, with regards to PP satisfaction (p = 0.217), PP

confidence (p = 0.671), and PP compatibility (p = 0.643) the means of the three groups

are not significantly different from each other, while with PP communication does they

are (p < 0.05). In order to determine which ones are significantly different from which

others, a Mann-Whitney test is performed on [paircomm] groups.

176

From Table 4.30, again [HH] exhibits significantly higher mean (p(1-tailed) <

0.01) than [LL] from PP comm. construct.

177

From Table 4.31, [HL] do not exhibit significantly difference (p = 0.115) from

[LL] in mean.

178

H 11:	 Male-Female pairs, [IF], would significantly achieve a higher level than

Male-Male pairs, [MM] from following constructs;

H 11.1: PP communication

H 11.2: PP satisfaction

H 11.3: PP confidence

H 11.4: PP compatibility

H 12:	 Male-Female pairs, [MF], would significantly achieve a higher level than

Female-Female pairs, [FF1] from following constructs;

H 12.1: PP communication

H 12.2: PP satisfaction

H 12.3: PP confidence

H 12.4: PP compatibility

179

From Table 4.32, K-W test, PP communication (p < 0.05), PP satisfaction (p

< 0.1), and PP compatibility (p < 0.001) show significant differences among the three

groups of [pairgender]. For each construct, following group contrasts are performed.

180

1Q1

182

183

From Table 4.41, [OFF] and [MM] do not show significant difference (p = 0.210)

to each other.

H 11.1: PP communication	 Not Supported

H 11.2: PP satisfaction 	 Not Supported

H 11.3: PP confidence	 Not Supported

H 11.4: PP compatibility	 Not Supported

H 12.1: PP communication	 Not Supported

H 12.2: PP satisfaction	 Not Supported

H 12.3: PP confidence	 Not Supported

H 12.4: PP compatibility	 Not Supported

4.2.4 One-man Programming vs. Pair Programming

The analysis of one-man programming versus pair programming is set forth in the

following.

184

Here, K-S test shows code productivity is insignificant (p > 0.05) and code

design is also insignificant (p > 0.05). Therefore code productivity and code design are

normally distributed. Parametric test (t-test) is used for further analysis.

185

In comparing the mean values of one-man programming and PP, the PP mean

value shows higher value in both code productivity (+0.31) and code design (+0.97).

In the code productivity comparison, a fairly large correlation coefficient (r =

0.409) indicates the one-man programming and PP are significantly correlated (p < 0.05)

in code productivity. However, in code design, no sign of correlation is shown (r = 0.276,

p > 0.05).

186

The devalue of one-man programming versus PP code productivity comparison (-

1.23) indicates that one-man programming had a smaller mean than PP, and the

difference is not significant (p > 0.05). However, the devalue code design comparison (-

2.99) shows that the difference between the mean values is significant (p < 0.05). In

other words, the qualitative measure between one-man programming and PP shows that

the PP team exhibits a significant higher score, or performed significantly better in code

design, code efficiency and code readability than one-man programming.

187

Opposite Type [opp]

The analysis of one-man programming versus pair programming of [opp] type is set

forth in the following.

For the opposite type matched pairs, the comparison of mean values of one-man

programming and PP shows mixed results. In the code productivity, one-man

programming showed a higher mean value (+0.48) than PP, but in the code design, PP

showed a higher mean value (+0.22) than one-man programming.

188

In the code productivity comparison, a fairly large correlation coefficient (r =

0.663) indicates the one-man programming and PP are significantly correlated (p < 0.05)

in code productivity. However, in code design, no sign of correlation is shown (r = 0.279,

p > 0.05).

The t value of code productivity comparison (t = 0.985) indicates that one-man

programming's higher mean value than PP, but not significant (p > 0.05). The t value of

code design comparison (-0.350) indicates that PP shows a higher mean value than one-

man programming, and again, not significant (p > 0.05).

189

Diverse Type [divrs]

The analysis of one-man programming versus pair programming of [divrs] type is set

forth in the following.

For the diverse type matched pairs, the mean value of PP is convincingly higher

than one-man programming in both code productivity (+1.77) and code design (+2.22).

190

The large correlation coefficients of both code productivity (r = 0.402) and code

design (r = 0.430) indicate no sign of correlation between one-man programming (p >

0.05) and PP (p > 0.05).

The t values of both code productivity and code design indicate that PP shows

higher mean values than one-man programming. Furthermore, these mean values of PP

are significantly higher than one-man programming in both code productivity (p < 0.05)

and code design (p < 0.05).

191

Alike Type [alike]

The analysis of one-man programming versus pair programming of [alike] type is set

forth in the following.

For the alike type matched pairs, the mean value of PP is higher than one-man

programming in both code productivity (+0.21) and code design (+0.86).

192

The large correlation coefficients of both code productivity (r = 0.416) and code

design (r = 0.440) indicate no sign of correlation between one-man programming (p >

0.05) and PP (p > 0.05).

The t values of both code productivity (t = -0.475) and code design (t = -1.856)

indicate that PP shows higher mean values than one-man programming. However, these

differences are not significant in both code productivity (p > 0.05) and code design (p >

0.05).

193

4.2.5 Interaction Effects

The interaction effects between the independent variables were also checked for any

saliencies. Following is the [pairtype] vs [pairgender] interaction analysis.

194

From Figure 4.2, the pairs that are [divrs] and either [MM] or [MF] show the

highest mean and pairs that are [alike] and [FF1] show the lowest mean. However, the

low N of [FF1] cautions the finding. One interesting observation is that [FF1] tops [MM]

and [MF] when they are [opp], but they drastically drop in their performance when they

are [divrs] and [alike]. Also, only the [FF] curve is showing a decline from left to right,

[opp] to [alike]. In summary, one would achieve the highest productivity from either

[divrs] and [MM] or [divrs] and [MF]. Also, overall, [FF1] tends to produce a lower

output than the other two.

195

196

Figure 4.3 [pairtype] and [pairgender] by code design

Again, a very similar representation to the productivity dependent variable

occurs, as the pairs with [divrs] and either [MM] or [MF] show the highest mean, while

the pairs with [alike] and [FF1] show the lowest mean. The difference between the pairs

with [divrs] and [MM] and also [divrs] and [MF] to the pairs with [divers] and [FF1] in

code design is shorter than the same pairs in code productivity. The [opp] and [FF] pairs

are almost equal in mean to the [opp] and [MM] pairs. Unlike with the code productivity,

the [FF] curve does not quite show the declination here. For the interaction effects of

[pairgender] vs. [paircomm] and [pairtype] vs. [paircomm], not enough samples are

available for the analysis. For example, there are no samples that fall under [divrs] and

also [HH]. Therefore these interaction analyses are not available.

197

198

199

4.2.7 Discussion

Based on the results for hypotheses 1 and 2, the theory on "diversity for better design

and higher productivity" appears to hold up well in the PP context. The clear differences

between the groups' output show that the MBTI type indicator is a significant factor that

one may manipulate and optimize in cognitive-intensive tasks. Interestingly, in the

comparison between [opp] vs. [alike], the mean difference is not significant and this fact

further substantiates the "diversity for better design and productivity" theory. However,

in the PP experience measurement, there are no clear differences among the groups. This

finding may lead to an assumption that there is a separation between cognitive

interaction and one's emotional experience. Or in other words, a propitious cognitive

interaction on a job between two individuals or groups does not always lead to or reach a

high level of satisfaction, compatibility, communication, and confidence.

With regards to communication skill level measurement, design and productivity

were not impacted. As expected, the [HH] pairs exhibited significantly different results

and a higher level of communication than [HL] and [LL], but did not show differences

with regards to satisfaction, confidence and compatibility. This result contradicts both

today's common belief and the field survey result which establish that clear and well-

delivered message exchanges and communication between two individuals do not

always assure better design, higher productivity, a high level of satisfaction, confidence

and compatibility. Conversely, a pair having a high level of communication between

them does not necessarily experience a high level of satisfaction, compatibility or

confidence on a job completed.

Similar to the survey result, gender appears not to be a factor in design and

productivity. However, contrary to the result of [pairtype], the level of experience does

200

show significant differences in communication, satisfaction and compatibility. Both

[MM] and [FF1] showed higher levels of communication, satisfaction and compatibility

than [MF]. This is an interesting finding on gender factor. Most professionals and even

some researchers, believe that gender factor has absolutely no impact nor influences in

situations such as PP. But this experiment's finding shows a different version. Based on

this experiment, the gender factor exhibited no impact on design and productivity, but its

highly significant differences in both communication, satisfaction and compatibility

illustrate a substantial affinity between same gender pairs. [MM] and [FF] enjoy each

other as a partner in situations such as PP much more than [MF], but they both do not

necessarily produce better design and higher productivity nor have a high level of

confidence of their finished product.

As a part of the questionnaire, comments were also collected from the subjects.

A number of profound comments were noticed from female subjects. The following are

some comments from the female subjects of [FF]:

"My partner was of the same sex (we are both female). I think this really

helped because it made us feel more comfortable around each other.

I really think that i f I had worked with a guy, there would have been

some initial awkwardness. Whether this would have been

counterproductive or not would depend on the person and maybe

if they came from a background that doesn't respect a woman's opinion".

"I think it would have been more difficult i f I were paired with

a male instead. Some men like to monopolize a project like this.

201

Also, some males make assumptions about your level before they get

to see first hand so I was happy to get paired with a female".

"My first partner was a male who I previously knew and was friendly with,

and though I felt comfortable with him, he made one mistake and I insisted

it was a mistake and he insisted it wasn't, so I went along with him,

and upon compile time I was correct. I feel my current partner, would

have been more apt to take my advice, so maybe gender plays a role".

"Gender is somewhat a factor. Since we are both females, it was easier

to talk to and trust. If my partner was of the opposite sex, it may cause

conflict. I may not be able to voice my suggestions or be too distracted".

"I think gender probably would play a role in this experiment

and I felt more comfortable programming with another female".

But interestingly, on the contrary, there were no similar comments found from

the male subjects from [II].

The following are the comments from the female partners from [IF]:

"my partner was male, and tended to not explain what he was

thinking or doing which was sometimes frustrating."

202

"I think gender caused us to be a little more reserved around

each other. If I programmed with a female I probably would

have been more open."

"I think men in general tend to view women as inferior in the

technological arena, whether it is intentional or unintentional.

I, myself, have had to prove myself on many occasions to my

male counterparts. It is when the grades are announced that

they "accept" me, so to speak, as one of "them." I think this

may have contributed to my partner's distrust. If I were male,

I do think he would felt as though I was incompetent, but just

may have thought that I was having a bad day or really needed

a book for assistance. However, he made me feel as though

even i f I had a book, I still may not have known what to do.

Of course this is speculation, and I do not think he meant it

intentionally, but, I felt, his thoughts presented themselves

unconsciously in his actions."

Based on the collected comments, [FF] shows a very strong level of affinity to

each other. However, this appears to take away their ability to yield a better design and

produce a higher productivity in situations such as PP.

203

Another interesting observation of this experiment is the quantitative measurement of

one-man programming output versus pair programming output. From an overall

assessment, the Iyers's view (Iyers and Iyers, 1995) of ".... their shared preferences

gives them common ground and their dissimilar preference gives them, as a team, a

wider range of insights than either has alone" stands up very well to this experiment's

findings. The key phrase is "a wider range of insights."

In the grand result, both code productivity (quantitative measurement) and code

design (qualitative measurement) mean values were higher in PP teams than in one-man

programming teams. The mean code design value showed no correlation between one-

man programming and PP, and also exhibited a significantly higher PP value than in

one-man programming. This infers that a PP team of two individuals with diverse IBTI

personality types performs significantly better than two individuals in qualitative aspects

of programming such as code design, code efficiency, and code readability. This grand

result, again, supports the Iyers's view.

Upon evaluating the results of three separate groups, opposite type, diverse type,

and alike type, the results generally revealed that the mean values of both code

productivity and code design yielded in a PP environment are higher than those obtained

in a one-man programming environment.

One significant observation is the fact that the diverse type group's mean values

of both code productivity and code design showed largest differences between PP teams

and one-man programming teams. This further supports the Iyers's view.

CHAPTER 5

CONCLUDING REMARKS AND FUTURE WORK

5.1 Summary of Findings

The following is a summary of experimental data and conclusions based on results from this

study:

• The diversely MBT1 type matched pairs outperformed the oppositely IBT1 type
matched pairs by 18% in productivity and by 19% in design.

• The diversely MBT1 type matched pairs outperformed the similarly MBT1 type
matched pairs by 28% in both productivity and design.

• There are no significant differences between all three differently MBT1 type
matched groups in the levels of communication, satisfaction, confidence and
compatibility

• The pairs that are diversely MBT1 type paired and also male-male paired showed to
be the best performing (productivity and design) teams.

• The pairs that exhibited a high level of communication between partners, did not
necessarily experience a high level of satisfaction or exhibit compatibility between
partners, nor did they have a high level of confidence regarding the finished product.

• Overall, female-female pairs tended to produce a lower output when compared to the
male-male or male-female pairs.

• The communication skill level of each partner did not have any impact on the pair's
performance with regards to design, productivity, satisfaction, confidence, and
compatibility. The communication skill level seemed to have an impact on
communication only.

204

205

• The gender factor had no impact on the pair's performance in design and
productivity, however the level of communication, satisfaction and compatibility
of male-male and female-female pairs was significantly higher than male-female
pairs, with a much higher degree being exhibited by the female-female pairs.

• The PP teams generally have reported higher mean values of code productivity
and code design than one-man teams.

• The PP teams of the diversely IBTI type matched pairs show significantly
higher level of quantitative and qualitative coding work than one-man teams of
diversely IBTI type matched pairs.

There were no interaction effects between MBTI type and gender, MBTI type

and communication skill level, and communication skill level and gender.

206

5.2 Theoretical and Practical Implications

A list of theoretical and practical implications can be derived from the results of the

experiment. Theoretical implications include the notion that MBTI personality type has a

significant impact on PP. Different combinations of MBTI personality type clearly

illustrate different levels of influences on PP as evidence in the areas of code

productivity and code design. When examining the gender factor, same gender pairs

show a higher level of communication, satisfaction, and compatibility while engaged in

PP, with female and female pairs showing the strongest response. Other implications are

that confidence on a job completed is not correlated to communication skill level,

satisfaction, compatibility, IBTI personality type, or gender. Lastly, given the fact that

measuring one's communication skill level is a difficult task, the instrument that was

used to measure this attribute proved to be an effective and valid one. Many practical

implications from this experiment can also be seen. One notable suggestion is for

programming shop managers to pair the programmers according to one's personality

profile, or IBTI personality type. Also a higher level of communication, satisfaction,

and compatibility between the programmers can be achieved through same gender

pairing. Additionally, it can be inferred that an appropriate level of managerial

intervention and support in the pairing process is needed to alleviate the very fast and

demanding pace of PP and also minimize any non-work related motives such as personal

favoritism or office politics.

207

5.3 Limitations and Recommendations

One visible limitation with this experiment lied in the result analysis, whereby

parametric tests were not used due to abnormal data distribution. This has limited the use

of fine probing and analysis techniques such as multivariate analysis of variance

(IANOVA). Where there are two or more dependent variables and also highly

correlated to each other, as was the case in this experiment, it is highly recommended to

use IANOVA (Niedrich, et al., 2001; Novak, 1995; Peter, et al.; 1975). This is because

MANOVA is sensitive not only to mean differences but also to the direction and size of

correlations among the dependents. Also due to this, no compounding variables such as

grade point average (GPA) were tested. It's tenable that GPA may have had an influence

on the pairs' outcome.

Another experimental limitation was that the number of female subjects may be

not adequate enough to represent a statistically acceptable size. It was very difficult to

allocate the size while still adhering to the testing hypotheses. For example, the number

of female-female pairs for similarly IBTI type matched and same gender pairs in this

experiment were only two. In general, locating an ample number of female students

enrolled in software or programming courses or having computer science as a major may

be difficult in an undergraduate level, although it tends to be less of a challenge at the

graduate level.

Within this experiment, two specific recommendations are suggested. One is to

expand this experiment to a longitudinal study. A semester long study (Muller and Tichy,

2001, Williams, 2000) would reveal more underlying psychosocial phenomena or maybe

even contrasts some of the results of this experiment. Increasing the duration of the PP

projects would simulate real-world projects whereby a typical project may last months or

208

years. It is during this extended period that various and unforeseeable psychosocial

attributes and saliencies of cognitive interaction between two individuals may arise and

thus provide a more true representation.

The other suggestion is to apply this experiment's findings to a group with more

than just two individuals. Beyond the programming context, there are other cognitive-

intensive tasks that would benefit from this experiment's findings (Deek and IcHugh,

2003; Kwon, et al., 2002; Derek and IcHugh, 2000; Wright and Cockburn, 2002).

Ideally, a team of four to six persons working on a software development project could

be experimented on to validate this experiment's findings (DeFranco-Tommarello and

Derek, 2003; DeFranco-Tommarello, et al., 2003).

For agile software process paradigms, they will continue to develop, optimize,

refine and evolve; the following areas deserve further research:

• Long-term validation

• Economical value (cost, benefits and tradeoffs)

• Dynamics of the underlying factors (a new business model?)

• Expansion to a distributed environment

• Changes and adaptations of existing tools

• Software Process Paradigm Framework

• Ianagement issues

Long-term validation - As many of the agile paradigms are fairly new in their

applications, the results are continuously observed and evaluated. The concept and

framework are sound, but their practical sturdiness is to be observed (Abrahamsson, et

209

al., 2003). To skeptics, the long-term validation would allow them to gradually accept

and adapt.

Economical value - Iaybe the most expected point in using the agile paradigms

is the economical value. If one values the time as priceless, then the fast and quick

processes of the agile paradigms are unquestionably the choice. However, there is more

involved in a software development process than just the time factor. A traditional model

user may need to understand not only what he's getting, but also what he'll lose, such as

a set of descriptively written software documents. Understanding the cost, benefit, and

tradeoffs between the traditional models and the agile paradigms would allow an

organization to better accept and migrate appropriately to one of the agile paradigms

(Erdogmus, et al., 2002). The exchange also occurs among the stages of a model. The

conventional order of the stages are rearranged or recreated in the agile paradigms.

These economical perspectives are not only based on the economical values, but also on

the efficiency of the process as well.

Dynamics of the underlying factors — Besides the explicit characteristics of the

agile paradigms, there are the driving factors which makes the agile paradigms what they

are and these factors ultimately touch on other relevant business issues and one may

need to reevaluate the business process as well. If a business process has been

embodying a linear sequential model then it certainly needs a new business process if

XP replaces the linear sequential model.

Expansion to a distributed environment — Witnessing the exponential growth of

globally dispersed software development (Carmel, 1997; Carmel and Agarwal, 2001),

one may wonder how this concept will play a role in agile software process paradigms.

In PP, virtual PP, a flavor of PP whereby two individuals, each from different

210

geographical location, virtually pair program using collaborative tools, is the subject of

current experimentation. The question can be raised as to whether this concept of

"virtuality" can apply to other agile paradigms. The future business ecosystem will

inevitably shift faster and faster to the distributed environment.

Changes and adaptations of existing tools — Inevitably many existing practices

and tools would have to change or evolve to fit into the agile paradigms. Being able to

work without any upfront design documents, being able to accept last minute

requirements, and having to deal with a fixed development time are all challenges that

lead to change and adapt to new ways.

A framework for comparing and contrasting paradigms — A framework that

provides bases and measurements for both traditional and non-traditional software

process paradigms is expected. This framework compares and contrasts both traditional

and non-traditional paradigms by common variables. The findings would reveal each

paradigm's effectiveness and efficiency such as quality and productivity. This would

allow one to estimate or forecast appropriate business application and usage for each

paradigm. Also, the framework can determine whether the common variables or

characteristics are present or not in a paradigm.

Management issues — From the survey results, there were voices of concern

pertaining to the refining of PP in terms of appropriate management. The mental fatigue

and "fair" pairing process have surfaced as issues to deal with. The demanding paired

situation brings mental fatigue, causing deterioration in code quality and the pair

relationship. The "fair" pairing process is also required to supercede any programmer's

personal pair preference or objectives. For these and for other management issues, an

assertive management's role or involvement must be studied and implemented.

211

Although the proposed future works are, in a broad sense, relevant to each other,

each proposal requires distinct domain knowledge in order to provide a finer analysis. It

is the authors' desire to analyze a majority of the proposals. However, considering the

required time and resources, a number of collaborated researches with other interested

researchers is expected.

For the immediate future, the authors will attempt to investigate two selected

proposed future works: 1) expand this experiment's result into a longitudinal (semester

long) study for the purpose of revealing more underlying psychosocial phenomena, and

2) integrate this experiment's result into a software development project team

formulation process. As is with most team "jelling" processes, each member of a team is

inclined to take up a particular role such as team leader or team facilitator. This natural

phenomenon can be attributed to many factors such as one's past project experience or

one's expertise in a particular field. Also, it can be attributed to intrinsic attributes, such

as one's IBTI profile, as well (Yourdon, 1997). Based on the experimental findings of

these two proposed future works, a substantial understanding can be acquired as to: 1)

the impacts of psychosocial factors on software project team performance, and 2) the

strategy of software project team forming.

212

5.4 Concluding Remarks

The software development community is at a crossroads today. The question that they

are pondering over is whether to join the "agile" group or stay with the "established"

methods of software development (Abrahamsson, et al., 2003; Boehm and Turner, 2003;

Kent and Boppm, 2003). Despite the fact that the agile paradigms embody some

anecdotal and forbidden practices, there is evidence of promising results. With the "no

baggage" approach, the agile paradigms have given a new vehicle to react to the

"Internet speed." The time factor has evolved into the most critical factor, followed by

the increased software functionalities.

Through this research work, a visit to the process of software development is

made, including a look at traditional development paradigms as well as some

contemporary paradigms. Through this and other related research, a greater importance

and significance of the human role are found in today's contemporary software

development paradigms (Paulk, et al., 1993; Constantine, 1995; Yourdon, 1997;

DeIarco and Lister, 1999; Cockburn, 2001; Cockburn and Highsmith, 2001). This may

be due to the fact that humans can easily and instantaneously shift, change, and manage

multi-tasks whereas a set of pre-defined procedures or protocols may actually impede

the creativity and also the speed of delivering goods to an internededriven market.

This notion of human importance aligns itself well with the spirit of the 'agile

movement' of contemporary paradigms. PP is a fine example of how much of an impact

the human factor can bring to the overall outcome. Each individual is different not only

in their extrinsic attributes such as professional experience, programming skill or

education, but also in their intrinsic attributes such as personality, cognitive process, and

problem solving approach (Iyers and Iyers, 1995; Bayne, 1995; Deek, et al., 2000;

213

Derek and McHugh, 2000). It's common to have a pair of programmers who are exactly

alike in their extrinsic attributes but completely different with regards to their intrinsic

attributes. And this is what's being overlooked. It is the author's strong desire that many

software shop managers who employ XP or PP benefit from this experiment's findings.

APPENDIX A

SUBJECT CONSENT FORM

NEW JERSEY INSTITUTE OF TECHNOLOGY
323 MARTIN LUTHER KING BLVD.
NEWARK, NJ 07102

CONSENT TO PARTICIPATE IN A RESEARCH STUDY

TITLE OF STUDY: Discovery and Analysis of Influencing Factors of Pair Programming

RESEARCH STUDY:

I, 	 , have been asked to participate in a research study under the
direction of Kyungsub Steve Choi and other professional persons who work with
them as study staff may assist to act for them.

PURPOSE:

To better understand the impacts of factors such as personality, communication skill
level and gender in pair programming.

DURATION:

My participation in this study will last for one semester.

PROCEDURES:

I have been told that, during the course of this study, the following will occur:
a. Attend the introduction information session and read and sign the subject

consent form
b. Complete Myers-Briggs Type Indicator (MBTI) online personality assessment.
c. Engage in discussions with another subject for measuring communication skill

level and complete Conversational Skills Rating Skill (CSRS) form.
d. Attempt sets of programming problems alone for two sessions and in a pair for

three sessions (one pair session is a training session).
e. Complete the post session questionnaire.

PARTICIPANTS:

I will be one of about 150 participants to participate in this trial.

214

215

EXCLUSIONS:

I will inform the researcher if any of the following apply to me: None

RISK/D1SCOMFORTS:

I have been told that the study described above may involve the following risks
and/or discomforts:

NO risks and/or discomforts involved.

I fully recognize that there are risks that I may be exposed to by volunteering in
this study which are inherent in participating in any study; I understand that I am
not covered by NJIT's insurance policy for any injury or loss I might sustain in
the course of participating in the study.

CONFIDENTIALITY:

Every effort will be made to maintain the confidentiality of my study records.
Officials of NJIT will be allowed to inspect sections of my research records
related to this study. If the findings from the study are published, I will not be
identified by name. Iy identity will remain confidential unless disclosure is
required by law.

PAYMENT FOR PARTICIPATION:

I have been told that I will receive $ 0 compensation for my participation in this
study.

RIGHT TO REFUSE OR WITHDRAW:

I understand that my participation is voluntary and I may refuse to participate, or
may discontinue my participation at any time with no adverse consequence. I
also understand that the investigator has the right to withdraw me from the study
at any time.

INDIVIDUAL TO CONTACT:

If I have any questions about my treatment or research procedures that I discuss
them with the principal investigator. If I have any addition questions about my
rights as a research subject, I may contact:

Richard Greene, I.D., Ph.D., Chair, IRB (973) 596-3281

216

SIGNATURE OF PARTICIPANT

I have read this entire form, or it has been read to me, and I understand it
completely. All of my questions regarding this form or this study have been
answered to my complete satisfaction. I agree to participate in this research
study.

Subject: Name:

Signature:

Date:

SIGNATURE OF READER/TRANSLATOR IF THE PARTICIPANT DOES NOT
READ ENGLISH WELL

The person who has signed above,
	 , does not read
English well, I read English well and am fluent in (name of the language)
	 , a language the subject
understands well. I have translated for the subject the entire content of this form.
To the best of my knowledge, the participant understands the content of this form
and has had an opportunity to ask questions regarding the consent form and the
study, and these questions have been answered to the complete satisfaction of the
participant (his/her parent/legal guardian).

Reader/
Translator: Name:
Signature:
Date:

SIGNATURE OF INVESTIGATOR OR RESPONSIBLE INDIVIDUAL

To the best of my knowledge, the participant,
	 , has
understood the entire content of the above consent form, and comprehends the
study. The participants and those of his/her parent/legal guardian have been
accurately answered to his/her/their complete satisfaction.

Investigator's Name:

Signature:

Date:

APPENDIX B

SUBJECT PROGRAMMING BACKGROUND INFORMATION

This form is used to collect the programming experience and background from the
subjects.

Your Name:

Your ID:

School Year:

Major:

Your current programming course:

List all programming courses that you have taken (college level)

List all your professional programming experiences (Jobs, How long)

Have you practiced extreme programming before? If so, where and how long?

Have you practiced pair programming before? If so, where and how long?

217

218

219

220

221

52 3

Not sure

4

Strongly
Agree

6	 7

52 3

Not sure

4

Strongly
Disagree

1

Strongly
Agree

6	 7

52 3

Not sure

4

Strongly
Agree

6	 7

52 3

Not sure

4

Strongly
Disagree

1

Strongly
Agree

6	 7

28. I don't think I can achieve a higher productivity next time if I'm paired with my
partner again

Strongly
Disagree

1

29. In PP, my partner described his or her point very well and I was able to fully
understand

30. In PP, my partner did not express nor communicated much (too quiet) which made
PP very difficult

Strongly
Disagree

1

31. In PP, my partner's message delivery was unclear which made PP very difficult

222

26. In PP, there were times when I was withdrawn (or maybe upset) because of the
disagreements from the partner

Strongly
Disagree

1
	

2
	

3

27. I think PP is a form of cheating as PP takes away the opportunity of one to truly
learn on his or her own.

Strongly	 Strongly
Disagree	

Not sure	 Agree
1	 2	 3	 4	 5	 6	 7

Not sure

4 5

Strongly
Agree

6	 7

532

Not sure

4

Strongly
Disagree

1

Strongly
Agree

6	 7

532

Not sure

4

Strongly
Disagree

1

Strongly
Agree

6	 7

532

Not sure

4

Strongly
Disagree

Strongly
Agree

6	 7

532

Not sure

4

Strongly
Agree

6	 7

34. In PP, my partner's hand gestures, eye gaze, body positions and other
communication cues were NOT used adequately and poorly managed in our
communication.

35. In PP, the gender of my partner did not influence my PP experience at all

36. In PP, the fact that my partner was male/female it allowed me to focus more on the
problems

Strongly
Disagree

1

Not sure

543

37. In PP, I think the gender can be an issue

Strongly
Disagree

1	 2

Strongly
Agree

6	 7

223

32. In PP, my partner's active communication to me allowed me to be more active in
expressing my views as well.

Strongly
Disagree

1
	

2

33. In PP, my partner's voice tone was loud and clear which helped our communication.

3

Not sure

4 5

Strongly
Agree

6	 7

224

38. Describe any conflicts or negative impacts from your partner that you have
experienced during the pair programming which you think it (or they) influenced or
caused the programming productivity. (Talk about what specifically happened in YOUR
PP session)

39. Describe any positive impacts from your partner that you have experienced during
the pair programming which you think it (or they) influenced or caused the
programming productivity. (Talk about what specifically happened in YOUR PP
session)

40. Discuss the compatibility (personality, communication or others) of you and your
partner. If good, why? If not, why not? Do you think you can achieve a high productivity
with your partner again? (Talk about what specifically happened in YOUR PP session)

41. Besides your partner's programming skill, How did the personality factor played a
role in your and your partner's collaboration? Was the personality compatible or NOT?
Describe. (Talk about what specifically happened in YOUR PP session)

42. Besides your partner's programming skill, How did the communication skill factor
played a role in your and your partner's collaboration? The level of communication skill
that your partner exhibited, Did that bring on a positive (or negative) feeling and impact
to your collaboration back to your partner? Describe. (Talk about what specifically
happened in YOUR PP session)

43. Besides your partner's programming skill, How did the gender factor played a role in
your and your partner's collaboration? Your partner being male or female, Did that
influence to your collaboration back to your partner? Do you think that you would had a
different pair programming experience if your partner was the opposite sex? Describe.
(Talk about what specifically happened in YOUR PP session)

APPENDIX D

PAIR PROGRAMMING EXPERIMENT FIRST VISIT SCHEDULE

These were the items that were covered during the I St visit by the subjects.

1) PP background

• Give an informal talk to introduce and present PP concept and practice.

2) Subject consent form

• Go over the form and discuss any issues. Obtain the signatures and
collect the form

3) Comm. skill eval

• Give a background on level of communication skill measurement
• Pair up two students and give the first topic (appendix F)
• Give a 20 minutes for the pair discussion
• After the pair discussion, briefly hold a class discussion
• Give the second topic (appendix G)
• Give a 20 minutes for the pair discussion
• After the pair discussion, briefly hold a class discussion
• Split up the pairs and have a partner sit apart from his or her partner
• Give the CRCS form (appendix E)
• After the forms are filled out, collect them.

4) MBTI personality assessment

• Give a background on MBTI and its objective in this experiment
• Assist each subject to take the online IBTI assessment
• During the assessment, assist the subjects with any requests or questions

5) PP session

• Ask the subjects to pair up and find a terminal
• Remind the subjects about the PP concept and the purpose of this training

session
• Give a set of simple problems from their textbook
• After each subject had a few opportunities to drive the keyboard and

complete a few problems, they are to be told that they may stop and leave
• The subjects are reminded of the second visit information

225

APPENDIX E

COMMUNICATION SKILL LEVEL MEASURING INSTRUMENT I

This is Conversational Skills Rating Scale (CSRS) form that is used by the subjects to judge
his or her partner's level of communication skill.

Your ID: 	 Partner's ID:

Rate your partner according to how skillfully he or she used, or didn't use, the following
communicative behaviors in the conversation, where:
1 = INADEQUATE 	 -use was awkward, disruptive or resulted in a negative

impression communicative skills
2 = SOMEWHAT INADEQUATE -occasionally awkward or disruptive, occasionally adequate
3 = ADEQUATE

	

	 -use was sufficient but neither very noticeable nor excellent.
produced neither positive or negative impression

4 = GOOD 	 -use was better than adequate but not outstanding
5 = EXCELLENT 	 -use was smooth, controlled, and resulted in positive impression
of 	 communicative skills
Circle the single most accurate response for each behavior:

1 2 3 4 5 1	 Speaking rate (neither too slow nor too fast)
1 2 3 4 5 2 	 Speaking fluency (avoided pauses, silences, "uh", etc.)
1 2 3 4 5 3 	 Vocal confidence (neither tense nor nervous sounding)
1 2 3 4 5 4 	 Articulation (language clearly pronounced and understood)
1 2 3 4 5 5 	 Vocal variety (avoided monotone voice)
1 2 3 4 5 6 	 Volume (neither too soft nor too loud)
1 2 3 4 5 7 	 Posture (neither too closed/formal nor too open/informal)
1 2 3 4 5 8 	 Lean toward partner (neither too far forward nor too far back)
1 2 3 4 5 9 	 Shaking or nervous twitches (weren't noticeable)
1 2 3 4 5 10 	 Unmotivated movements or fidgeting (e.g., pencil, rings, hair, fingers, etc.)
1 2 3 4 5 11 	 Use of eye contact
1 2 3 4 5 12 	 Facial expressiveness (neither blank nor exaggerated)
1 2 3 4 5 13 	 Nodding of head in response to partner's statements
1 2 3 4 5 14 Use of gestures to emphasize what was being said
1 2 3 4 5 15 	 Smiling and/or laughing
1 2 3 4 5 16. Use of humor and/or stories
1 2 3 4 5 17.Asking questions
1 2 3 4 5 18. Encouragements or agreements (encouraged partner to talk)
1 2 3 4 5 19 	 Speaking about partner or partner's interests (involved partner as topic of

conversation)
1 2 3 4 5 20. Speaking about self (didn't talk too much about self/own interests)
1 2 3 4 5 21. Expression of personal opinions (neither too passive or aggressive)
1 2 3 4 5 22. Initiation of new topics
1 2 3 4 5 23. Maintenance of topics and follow up comments
1 2 3 4 5 24. Interruption of partner's speaking turns
1 2 3 4 5 25. Use of time speaking relative to partner

For the next 5 items, rate the person's overall conversational performance:

(26) 	 POOR CONVERSATIONALIST :1 2 3 4 5 6 7: 	 EXCELLENT
CONVERSATIONALIST

226

227

APPENDIX F

COMMUNICATION SKILL LEVEL MEASURING INSTRUMENT II

This is one of two tasks that are given to the subjects for the purpose of measuring
communication skill level.

Instruction: You and your partner are given a question (see below). After a few minutes
of reflection, face your partner, engage in an active discussion, and arrive at a final
answer that both you and your partner agree on. You are asked to fully present your
views to your partner.

Question: New Jersey Institute of Technology (NJIT) is currently in talks of merger with
other local major universities. As a student to your university how do you feel about this
merger talk? Do you believe there are more benefits to gain for your university? If not, why
not? How about for yourself?

228

APPENDIX G

COMMUNICATION SKILL LEVEL MEASURING INSTRUMENT III

This is one of two tasks that are given to the subjects for measuring communication skill
level.

Individual Ranking: Read the Noble Industries case, Employee Profile, and Supervisor's
Comments below and rank the employees per instruction.

Directions: Read the case below and discuss it with your partner in completing the
ranking. Below you will find the names of the ten (10) employees who may be laid off.
In the table below place a number from 1-10 in the column next to the name of each
individual. Assign number 1 to the first person you think should be laid off, then
number 2 and so on. The last person to be laid off should be assigned number 10. Ties
are not permitted.

NOBLE INDUSTRIES

Noble Industries is a mid-sized, diversified manufacturing firm with corporate
headquarters located in Columbus, Ohio. The company was founded in 1958 and has
experienced steady and continuous growth for most of its forty-year history. Eight
manufacturing facilities are located in different parts of the United States and each plant
employs approximately 250 people. Gross revenues for Noble Industries in 1997 were
$105 million.

The Information Systems Division (ISD) at Noble Industries is functionally distributed
throughout the organization. Each plant is responsible for developing and supporting its
own local 1S operations (for example, ordering, production scheduling, quality assurance,
decision support, etc.). All corporate-wide systems (human resources, sales forecasting,
research, executive information, etc.) are managed from the central Information Systems
Division at corporate headquarters. A total of 150 people are employed in the
Information Systems Division (ISD).

After graduating from college in 1988 you were hired as a junior programmer at the
Columbus, Ohio site. Five years later you were promoted to the position of systems
analyst. Now you are a senior systems analyst in ISD. Your group is responsible for
application development and software support for the Research and Development

229

230

Division (RDD). There are two systems analysts, four applications programmers, and 2
clerical support staff who report directly to you.
This morning, you and the other senior systems analysts at corporate headquarters met
with Bob Thompson, Vice President for Information Systems. He explained, "At
yesterday's Executive Ianagement meeting it was announced that some of our durable
goods customers have found new suppliers. Based on the loss in sales, our V.P. for
Finance has projected a 3-6% decline in gross revenue this year. The CEO said that
unless sales increase very soon we will have to make staff reductions. All Division Vice
Presidents have been asked to develop a preliminary list of people who would be laid off.
For ISD, at least one and perhaps as many as ten staff members could be terminated.
The final decision will be made next week."

Bob then distributed envelopes marked "Confidential". He said, "In each envelope you
will find profile information on ten information systems employees. I want you to take
the envelopes back to your office, read the profile and supervisor's comments, then rank
the employees in the order that you think they should be laid off. The employees' real
names don't appear on the profile page because I don't want you to have to make a
decision about someone you know. As these are all good employees who have been
performing well, management felt it wanted a rating by an impartial group of technical
peers as input to their final decision. Use your best judgment. Then I want you to get
together with your partner discuss your individual rankings, and submit a final ranking
to me by the end of the day."

Bob concluded the meeting by saying, "I understand this is not an easy task, but given
the current situation we don't have any other choice". At that point, you and the other
senior systems analysts went back to your offices to work on the ranking assignment.

231

Supervisors' Comments

Barbara: "Barbara is very ambitious and always asks for the most challenging
assignments. She believes that hard work should be recognized and rewarded.
For example, at both annual performance evaluations Barbara has wanted to
know when she will be considered for a promotion. She defines success in
terms of position and salary. Barbara is very competitive and I suspect that
she will move up in the management ranks. Iy only concern is that
sometimes she can be too assertive."

Chris: "Of all the people in my department, Chris responds the quickest when I give
him an assignment and he never asks why I want something done. Chris
respects authority and understands that everyone needs to know their place in
the organizational hierarchy. He doesn't mind bureaucracy because he knows
it improves efficiency. Maybe that's why Chris enjoyed being in the army for
eight years."

Fred: "Fred has been with us for a long time. He enjoys his work and is grateful for
the job security he's had here all these years. Fred gets along with everyone
and gets a lot of satisfaction out of helping others, especially some of the
newer employees when they have questions. He recognizes that it's important
for people who work together to agree on things. Fred doesn't like
controversy, so he is willing to compromise when others disagree with him."

Harry: "Harry is the most technically competent guy in my department. He reads
every technical report he can get his hands on. However, Harry likes doing
things his own way and prefers to work alone. In this way, Harry believes that
it will be easier for me, his supervisor, to reward him for the work he does
without anyone else getting any credit. His priorities are very clear, he puts
himself and his family above everything else in his life."

Joanne: "Joanne has excellent organizational skills. She understands that we need to
have rules and the rules need to be followed. Joanne is the department's
quality assurance leader (QAL) because she believes that order and structure
are necessary for productivity. She doesn't take any unnecessary risks, and
thoroughly researches something before making a recommendation to me."

Lois: "Lois is a real team player. She really enjoys working with others and always
puts the group's interests ahead of her own. In fact, when the new database
conversion was completed she suggested that the whole group be recognized
for the achievement even though I knew that Lois did most of the work. I
know that community service is also important to Lois. She is a volunteer at
the local shelter for the homeless."

232

Phil: "Although he's only twenty-six years old, Phil tends to live his life as if he
were much older. He likes to study history and the way people lived in the
past. Last year when Phil's mother became ill he moved back home to tack
care of her. Phil has a great respect for other people and will defend them
when they are being criticized, whether the criticism is justified or not."

Sharon: "Sharon is very dedicated. She comes to work early, usually stays late, and
always completes every assignment no matter how long it takes. Sharon
places a great deal of emphasis on her relationships with others. Her long-
term goal is to retire in Florida, so she tries to save as much money as she
can."

Susan: "I have known Susan for about seven years, ever since she started working
here. She gets her work done and thinks that everyone should do their fair
share. In fact, Susan once told an assistant plant supervisor who was visiting
our plant that he should try doing her job for a day. I give Susan a lot of
credit, she speaks her mind and doesn't care if you're the CEO or the mail
room clerk. To her, no one is any better than anybody else."

Tom: "Tom is always the first to try something new. It doesn't make any difference
whether it's a radio station, a place to vacation, or a style of clothes. Tom
does things his own way and he's not afraid to break the rules. With me, Tom
is the same way. So I generally give him the assignments that have a big risk,
but potentially a big payoff."

APPENDIX H

PROGRAMMING PROBLEM SET

Following four problems are used in the experiment.

Problem: Life Insurance

The insurance company offers three plans; Plan A - $100,000, Plan B - $500,000, Plan C
- $ I,000,000. For the Plan A the standard monthly premium (stdrt) is $10, plan B is $20,
and plan C is $50.

Write a program, which calculates the health insurance monthly premium. The user
inputs name, age, gender, medical history, marital status, smoking/non-smoking,
exercise/no-exercise, years with the plan, availability to change option and whether it's
new or renewal. The program outputs the customer's name, age, gender and the
recalculated monthly premium.

If the customer has been with the plan for 5 or more years the customer has an option to
change to a different plan at every fifth year. However, if the customer wants to change
when he/she is on a year that is not a fifth year, he/she may do so with a penalty of 1.05
factor. For example, if it's fifth, tenth, fifteenth, etc...with the plan, he/she may change it
w/o a penalty, but if he/she wants to change it on seventh, thirteenth, seventeenth, he/she
may with a penalty (1.05). If the customer has been with the plan less than 5 years, this
option is not available.

Plan B is the most profitable product, if an organization with 150 employees or more
chooses Plan B for all their employees, then each employee receives a 0.95 factor.

The factors are cumulative, so if a customer is "37 years old, male, medical "high" risk,
married, Exercises regularly, non-smoker" and also changing the plan with a penalty
then the recalculated premium would be (I.2*1.0*1.5*0.8*0.7*I.0*1.05)*stdrt. For a
condition that is not listed in the table use 1.0 (i.e. male, non-smoker)

233

234

Problem: Online Supermarket

Your team is asked to create a program that is to be used by an online supermarket.
You need to observe the following;

1. Each item in the store has a standard price that is up to two decimal places in
precision.

2. A state sales tax (7%) is charged on all items except: bottled water, toilet paper,
and fresh fruit.

3. A customer must buy at least 5 items, which includes 2 or 3 promo items and one
non-taxed item.

4. A customer may buy more than one quantity per item.
5. The extended price (unit price * qty) for an item shall never be less then zero.
6. The store may run a promotion where the customer can buy three for a special

price. If the customer buys less than three while the promotion is in effect the
price is equal to the special price divided by the quantity rounded down to two
decimal places.

A shopper would take the printout and go to the supermarket to pay and pick up the
grocery items.

235

Problem: Emergency Iedic

During a time of war, the number of field surgeons and medic staff is always in a shortage. As a
remedy to this, the department of defense is testing an idea where a junior medic soldier can be
deployed. To help the junior medic soldier, a PDA containing special program is to be used. It is
to give a minimal but life-saving emergency treatment on the spot to save the soldiers' lives.
With the help of the PDA, the medic soldier assesses the wounded soldier and performs an
appropriate treatment. As the lead developer, you are asked to create the program. For this pair
programming experiment purpose, please use your common sense regarding to the uses and
types of treatments.

The program asks the following questions and depending on the answers a treatment plan will be
output.

r Type of wounds
o abdominal wound
o head wound
o shattered bone
o broken bone
o burn injury
o Injury from explosive devices fragments
o Bio-Chemical injury

• Pulse rate
• Body temperature
• Conscious or unconscious
• Severe bleeding or not
• Experiencing difficulty breathing

Output will be the solider name, solider military ID, the list of all inputted entries, and the list of
appropriate treatments.

Treatments
• Remove the large/noticeable fragment pieces
• Tightly wrap the wounded area with a roll of gauze
• Apply antibiotic cream
• Protect and shield the wounded area with a flexi-support beam
• Wash the wounded area
• Perform a pain-killing shot
• Perform an antibiotic shot
• Place a medic-band-aid
• Immediate transport to a field hospital required
• Elevate legs

As a medical note, following conditions applies;
1) Any head wounds and unconsciousness require an immediate transport to a field

hospital as a final step
2) If the body temperature is above 105 F or below 90 F, do not perform the pain-killing

shot.
3) Shattered bone injury receives 1.5 times dosage of painkiller.
4) Regular bleeding may get the medic-band-aid, but severe bleeding does not.
5) For biochemical injury, do not wash with water on the area.

236

Problem: Employee Pay

Write a program called Pay, which calculates the pay for an employee's. Assume the
user inputs employee name, status (i.e., full/part time), number of hours worked and
payrate on the command line in that order.

Your program should output the employee name, number of hours worked and pay.

When the employee worked 40 hours or less he/she should get regular pay

When the employee worked between 40 and 60 hours (from 41 to 60) and he/she is a
full time employee he/she should get doubleovertime, if he/she is a partite
employee then
he/she should get time and a half.

When the employee worked between 60 and 80 hours (from 61 to 80) and he/she is a
fulltime employee he/she should get triple overtime, if he/she is partime then
he/she should get double overtime.

When he works more than 80 hours, nothing is calculated and your program should
print an error message that states, "meet with employee".

APPENDIX I

PROBLEM EVALUTION FORM

Background:
Four programming problems are developed for the purpose of assessing the
compatibility, level of collaboration, and teamwork in a pair programming context. The
focus of the problems is not to challenge or test the subjects' limits with regards to their
programming skills, but to provide enough of a challenge in code requirements and
design so that a pair of subjects actively discusses and collaborates for the solutions to
the problems. In order to achieve this in the four problems, it is important that all of the
four problems present the same level of programming difficult. Three programming
experts are asked to verify this.

	 was asked by Kyungsub Steve Choi to review the four
problems (problem names: life insurance, online supermarket, emergency medic, and
employee pay) and give my judgment. After a careful review of the four problems I
agree that the four problems present the same level of programming difficulty.

Evaluator Name (Print):

Evaluator Signature:

Reviewed Date:

237

APPENDIX J

INSTRUCTION SHEET FOR THE JUDGES

Instruction for the Judges:

There are two categories; quantitative measure (How much of coding was done?) and
qualitative measure (How are the codes?). The scale is 0 —10, 10 being the highest score
that a judge can give.

❑ Quantitative Measurement — Assign an appropriate score based on code
productivity

• Coding activity that shows the programmers) has attempted to solve the
problem. However one or two lines are not acceptable.

• Coding activity that shows the programmer(s) has completed almost half
of the coding work

• Coding activity that shows the programmer(s) has either completed all
the coding work (including output) or close to completing the coding
work

❑ Qualitative Measurement — Assess an appropriate score based on code design
(structured, modular, or object-oriented approach), code efficiency, and code
readability

*****Please contact the experiment investigator if this instruction is NOT clear*****

238

239

240

241

'Online Supermarket' Quantitative Measurement (Code
Productivity)

1 0

9

8

7

. • 	 . 	 •	 . 	 . • . 	 • • . 	 ..	 •	 • 	 • 	 • 	 • 	 . 	 : 	 •	 •	 • • • 	 .: .	 ..• 	 • 	 . 	 . 	 •	 . 	 •	 : 	 • 	 ..
. 	

: • 	 •	 -;
• 	 •	 • 	 •	 .

6

5
-o

4

3

2 	

1 	

0 	

0 	 1 	 2 	 3 	 4	 5 	 6 	 7 	 8 	 9

Judge A

Figure K.5 'Online Supermarket' Quantitative Ieasurement (Code Productivity)

10

	

9 	

	

8 	

	

7 	

	m 6 	
a)

cry,5

4

	

3 	

	

2 	

	

1 	

	

0 	
0

'Online Supermarket' Qualitative Measurement (Code Design)

1 	 2 	 3 	 4 	 5 	 6 	 7 	 8 	 9 	 10

Judge A

Figure K.6 'Online Supermarket' Qualitative Ieasurement (Code Design)

11

10

9 —

8

7

cu 6
cc

5

10 2 	 3 	 4 	 5 	 6

Judge A

7 	 8 	 9 	 10 	 11

4

3

2

0

242

'Employee Pay' Quantitative Measurement (Code Productivity)

0 	 1 	 2 	 3 	 4 	 5 	 6 	 7 	 8 	 9 	 10 	 11

Judge A

11

10

9

8

7
03 6a)

5

4

3 	

2

1 	

0 	

'Employee Pay' Qualitative Measurement (Code Design)

Figure K.7 'Employee Pay' Quantitative Ieasurement (Code Productivity)

Figure K.8 *Employee Pay' Qualitative Ieasurement (Code Design)

APPENDIX L

PAIR PROGRAMMING SURVEY QUESTIONNAIRE

Preliminary Pair Programming Questionnaire

Experiment Title: Discovering and analyzing the success factors of maximization of
pair programming productivity

Investigator: K. Steve Choi, PhD candidate, Information Systems
Department, New Jersey Institute of Technology

1. Your Job Title: 	

2. Type of Industry: 	

3. Gender:	 Male 	 Female

4. I have been programming for 	 year(s), and 	 month(s)

5. I have been practicing (or have practiced) pair programming for
	 year(s), and 	 month(s)

6. The list below is the possible variables that may impact the pair programming
productivity. Blank fields with * mark are where you enter any variable(s) that you feel
it belongs in the list, but you do not see it from the current list. After that, rank the
following variables (including the ones that you have entered) where number 1 being the
most impact variable. (The variable ranked #1 is most impact variable to the
pair programming productivity)

Direction: I) You may add any variable(s) that you feel it belongs in the list but do not
see. 2) You are then asked to rank the variables, 1 being the most impact variable.

Rank	 Variables

	 Gender (Male/Female),

	 Programming skill level (Low/Med/High)

	 Cognitive/Programming style (i.e. sequential/ objecdeoriented)

	 Personality (i.e. Meyers-Briggs personality types)

	 A discrete step by step pair protocol (present/absent)

243

244

	Familiarity (friends, same culture, etc)

	 Fluency in English (Communication)

*
*

7. In the following text lines, please enter ANY comments that you may have to the
variable list or to this experiment.

APPENDIX M

MBTI DISTRIBUTION AMONG DIFFERENT ACADEMIC MAJORS

Pair Programming Experiment Subjects
MBTI Profile Distribution

(Majors: Computer Science, Information Systems, and IIS)

245

246

APPENDIX N

HISTOGRAMS AND Q-Q PLOTS FOR NORMAL DISTRIBUTION CHECK

247

248

249

250

One-man Programming

Figure N.10 Histogram of one-man programming code design dependent
variable

251

252

Figure N.12 Detrended Normal Q-Q Plot of one-man programming code
design dependent variable

253

254

255

256

257

Table 0.1 Experiment Environment Specification

Categories Specifications Comments

Location
Leaning Systems
Laboratory

ITC Bldg.

11 Personal Computers on
a U-shaped table

Restricted area and only accessible by
authorized personnel

Hardware Personal Computer

Manufacturer: Dell
CPU: Pentium BI 1.6 GHz
RAM 512 MB
Display: 17' Dell Monitor

None

Software*

Operating System

Microsoft

Windows 2000
Professional

None

Programming
Languages

JAVA(TM) 2 Software
Development Kit (J2SDK),
Standard Edition,
Version 1.4.2 03

Downloaded from
Java home page
http :lljava. sun. com52 se/1 .4 .2/downlo ad.html

C-H-
Microsoft Visual Studio 6

Installed by University Computing Systems
Services

*No special editor (auxiliary) software application is used.

GLOSSARY AND INDEX

Alike pair — A pair where two persons are alike in both their kind of perception and
judgment, the two inner preferences (i.e. ENTP + INTO). Pg 130.

[alike] — see alike pair.

Auxiliary type — Used concomitantly with dominant type, auxiliary type is a person's
secondary preference. It is readily and frequently used as needed by the person.
Again, the four preferences are sensing (S), intuition (N), thinking (T), and
feeling (F). The person uses the dominant and auxiliary types freely and
interchangeably according to a changing situation. Pg 125.

code design — An area that involves appropriate selection between structured, modular,
and objecdeoriented programming, and attaining a high level of code efficiency and
code readability. Pg 131.

code productivity — An area that quantitatively measures how much coding a subject did in
completing a programming task which includes generating a code output.
Pg 131.

Communication Skill - intentionally repeatable, goal-directed behaviors and behavior
sequences in conveying one's messages. Pg 127.

Diverse pair — A pair where two persons are alike in their kind of perception or
judgment, the two inner preferences, but not both (i.e. ENTP + INFO). Pg 130.

[divrs] — see diverse pair.

Dominant type - According to MBTI theory, every person has one of four possible
dominant preferences which he or she uses the most and is best at . The four
preference areas are sensing (S), intuition (N), thinking (T), and feeling (F).
Pg 125.

FF —	 Female-Female pair. Pg 131.

[FF1] — see FF.

HI — 	 A pair of individuals who both possess a high level of communication skill.
Pg 130.

[HIDl] — see HIl.

HL — 	 A pair of individuals where one possesses a high level of communication skill and
the other possesses a low level of communication skill. Pg 130.

259

260

[HL] — see HL.

LL —	 A pair of individuals who both possess low levels of communication skill.
Pg 130.

[LL] — see LL.

MBTI — Iyers-Briggs Type Indicator (IBTI). Created by Isabel Briggs Iyers and
Katharine Briggs, it is the most widely used personality inventory instrument
for measuring a person's preferences. It uses four basic scales with opposite
poles. Kg 122.

MM — Iale-Iale pair. Kg 131.

[IM] — Iale-Iale pair.

MF —	 Iale-Female pair. Pg 131.

[MFI] — Iale-Female pair.

Opposite pair — A pair where two persons are opposite in both their kind of perception
and judgment, the two inner preferences (i.e. ENTP + ESFJ). Pg 130.

[oppj] — see opposite pair.

[paircommi] — The group of pairs where each pair is paired according to the
person's communication skill level, There are a total of three groups:
High-High [HH], High-Low [HL], and Low-Low [LL]. Pg 167.

[pairgender] — The group of pairs where each pair is paired according to the
person's gender. There are a total of three groups: Iale-Iale [II],
Iale-Female [IF], and Female-Female [FF1]. Kg 168.

[pairtype] — The group of pairs where two persons are paired according to the
person's dominant and auxiliary preferences of IBTI type. There are a total
of three groups: [Copp], [divrs], and [alike]. Kg 163, 164.

REFERENCES

1.	 Agile software development manifesto website: http://agilemanifesto.org/,
Date retrieved Nov-26-2003.

2	 Abrahamsson, P., Warsta, O., Siponen, M. T., and Ronkainen, J., (2003) "New
directions on agile methods: a comparative analysis", Proceedings of the
25th international conference on Software engineering, Portland, Oregon,
2003, pp. 244-254.

3.	 Anderson, A., Bettie, R., and Beck, K., (1998) "Chrysler goes to Extreme",
Distributed computing, Oct 1998, pp. 24-28.

4	 Anderson, C., and Dorfman, M., (1991) Aerospace software engineering: a
collection of concepts, Anderson, C. and Dorfman, M., Eds. Washington,
DC: American Institute of Aeronautics and Astronautics, 1991.

5. Aoyama, M., (1998) "Agile Software Engineering Environment over the
Internet", 1CSE 98 Workshop on Software Engineering over the Internet,
April 25, 1998, Calgary, Canada.
http://sern.cpsc.ucalgary.ca/—maurer/ICSE98WS/Submissions/Aoyama/IC
SE98-InternedeMikio.ps., Date retrieved Nov-25-2003.

6. Balk, D. L., and Kedia, A., (2000) "PPT: a COTS integration case study",
Proceedings of the 22nd International conference on software engineering,
Limerick, Ireland, 2000, pp. 42-49.

7. Baker, E. R., (2001) "Which Way, SQA?", IEEE Software, January/Feburary
2001, pp. 16-18.

8. Barnes, C., (2001) More programmers going "Extreme," CNET News.com , April
3, 2001, http://news.com.com/2100-1040-255167.html?legacy=cnet
Date retrieved Nov-25-2003.

9	 Basili, V.R. and Boehm, B., (2001) "COTS-based systems top 10 list",
Computer, 34(5), May 2001, pp. 91 — 95.

10. Baskerville, R., Levine, L., Pries-Heje, J., and Slaughter, S., (2001) "How
Internet software companies negotiate quality", Computer, 34(5), May 2001,
pp. 51 — 57.

11. Baskerville, R., and Pries-Heje, J., (200Ia) "Racing the E-Bomb: How the
Internet Is Redefining Information Systems Development Methodology",
Realigning Research and Practice in IS Development: The Social and
Organisational Perspective, pp. 49-68, 2001.

261

262

12. Baskerville, R., and Heje, J. K., (2001b) "EIethodology: Towards a systems
development methodology for e-business and e-commerce applications",
Elliot, S, Anderen, K. V., Swatman, K., and Reich, S., (Eds.), Developing a
Dynamic, Integrative, Multidisciplinary Research Agenda in E- Commerce/E-
Business. Newcastle, Austalia: BICE Press.2001. pp. 145-159.

13 Baskerville, R., Travis, J., and Truex, D. P., (1992) "Systems Without Iethod:
The Impact of New Technologies on Information Systems Development
Krojects", Kroceedings of the International Federation for Information
Krocessing (IFIK), Working Conference on The Impact of Computer
Supported Technologies in Information Systems Development, June 14-17,
1992. pp. 241-269.

14 Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., and Slaughter, S., (2003)
"Is internedespeed software development different?" Software, IEEE, 20(6),
Nov/Dec. 2003, pp. 70 — 77.

15. Battin, R.D., Crocker, R., Kreidler, J., and Subramanian, K., (2001) "Leveraging
resources in global software development", IEEE Software, 18(2),
Iarch/April 2001, pp. 70 — 77.

16. Bayne, R., (1995) The Iyers-Briggs type indicator: a critical review and
practical guide. Ist ed. Singular Pub., 1995.

17. Beck, K., (2000) Extreme Krogramming eXplained: embrace change, Reading,
IA: Addison-Wesley, 2000.

18. Beck, K., and Fowler, I., (2001) Planning extreme programming, Boston, IA:
Addison-Wesley, 2001.

19. Behforooz, A., and Hudson, F. J., (1996) Software engineering fundamentals,
New York, Oxford University Kress, 1996.

20 Boehm, B., (2002a) "Software engineering is a value-based contact sport",
Software, IEEE, Vol. 19, Issue 5, Sept.-Oct. 2002, pp. 95 — 96.

21 Boehm, B., (2002b) "Get ready for agile methods, with care", Computer, 35(I),
Jan. 2002, pp. 64 — 69.

22. Boehm, B., (1988) "A Spiral Iodel of Software Development and
Enhancement", Computer, 21(5), Iay 1988, pp. 61 — 72.

23. Boehm, B., (1976) "Software Engineering," IEEE Transactions on Computers,
C-25(12), December 1976, pp. 1226 — 1241.

24 Boehm, B., (2000) "Unifying software engineering and systems engineering",
Computer, 33(3), Iarch 2000, pp. 114 —116.

263

25 Boehm, B. and Basili, V.R., (2001) "Top 10 list software development",
Computer, 34(1), Jan. 2001, pp. 135 — 137.

26. Boehm, B., and Belz, F., (1990) "Experiences with the spiral model as a process
model generator", Proceedings of the 5th international software process
workshop on Experience with software process models, 1990, pp. 43 — 45,
http://www.acm.org/pubs/articles/proceedings/soft/317498/p43-boehm/p43-
boehm.pdf. Date retrieved, Nov-25-2003.

27 Boehm, B., Port, D., Ye Yang, Bhuta, O., and Abts, C., (2003) "Composable
process elements for developing COTS-based applications", Empirical
Software Engineering, 2003. 1SESE 2003. Proceedings. 2003 International
Symposium on, 30 Sept. - 1 Oct. 2003, pp. 8 — 17.

28 Boehm, B. and Turner, R., (2003) "Observations on balancing discipline and
agility", Agile Development Conference, 2003. ADC 2003. Proceedings of
the, 25-28 Jun 2003, pp. 32 — 39.

29. Borstier, J.and Janning, T., (1992) "Traceability between requirements and
design: a transformational approach", Computer Software and Applications
Conference, 1992. COMPSAC '92. Proceedings., Sixteenth Annual
International , 1992, pp. 362 — 368.

30 Boudreau, I., Gefen, D., and Straub, D. W., (2001) "Validation in Information
Systems Research: A State-of-the-Art Assessment", Ianagement
Information Systems Quarterly, Mar 2001, 25(I), pp. I-16.

31. Brownsword, L., and Place, P., (1999) Lessons learned applying Commercial
Off-the-shelf products, 1999,
http://www.sei.cmu.edu/pub/documents/99.reports/pdf/99tn015.pdf . Date
retrieved, Nov-25-2003.

32 Brooks, R., (1999) "Towards a theory of the cognitive processes in computer
programming", International Journal of Human-Computer Studies, 51(2),
August 1999, pp. 197-211.

33. Bubenko, J.A., Jr., (1995) "Challenges in requirements engineering, Requirements
Engineering", Proceedings of the Second IEEE International Symposium,
27-29 March 1995, pp. 160 —162.

34 Bubenko, J.A., Jr., and Wangler, B., (1993) "Objectives driven capture of
business rules and of information systems requirements, Systems, Man and
Cybernetics", 'Systems Engineering in the Service of Humans', Conference
Proceedings, International Conference on, 17-20 Oct. 1993, Vol.1.
pp. 670 — 677.

264

35. Budlong, F.C.and Stanko, J.J., (1993) "Using software document evaluations to
enhance software supportability", Digital Avionics Systems Conference,
1993. 12th DASC., AIAAIIEEE , 1993, pp. 433 — 438.

36. Carmel, E., (1997) "Thirteen assertions for globally dispersed software
development research", System Sciences, Proceedings of the Thirtieth
Hawaii International Conference on, Vol. 3, 1997, pp. 445 — 452.

37 Capretz, L. F., (2003) Kersonality Types in Software Engineering, International
Journal of Human-Computer Studies, 58(2), Feb.2003, pp.207-214.

38. Carmel, E. and Agarwal, R., (2001) "Tactical approaches for alleviating distance
in global software development", 1EEE Software, 18(2), March/April 2001,
pp. 22 — 29.

39. CCP website I, http://wwwl.cpp.com/press/brandstrategy.asp . Date retrieved,
Nov-25-2003.

40. Choi, K. S., and Derek, F.P., (2002) "Extreme Krogramming, Too Extreme?",
Proceedings of the International Conference on Software Engineering
Research and Practice 2002 (SERP'02), Las Vegas, USA, 2002.

41. Cockburn, A., (2001) Agile Software Development, Addison-Wesley, 2001.

42 Cockburn, A., (2000) "Selecting a Project's Methodology", IEEE Software, 17(4),
pp. 64-71, July 2000.

43 Cockburn, A. and Highsmith, J., (2001) "Agile software development, the people
factor", Computer, 34(11), Nov. 2001, pp. 131 — 133.

44 Cohen, R. J., and Swerdlik, M. E., (2002) Psychological testing and assessment:
an introduction to tests and measurement, 5th ed., Boston: McGraw-Hill,
2002.

45. Cohn, T.I., and Kaul, R.C., (2001) "A Comparison of Requirements
Engineering in Extreme Programming (XP) and Conventional Software
Development Methodologies", Seventh Americas Conference on Information
Systems, 2001, pp. 1327- 1331.

46 Constantine, L. L., (1995) Constantine On Peopleware, Yourdon Press, 1995.

47 Corritore, C. L., and Wiedenbeck, S., (1999) "Mental representations of expert
procedural and objecdeoriented programmers in a software maintenance task",
International Journal of Human-Computer Studies, 50(I), January 1999,
pp. 61-83.

265

48. Cosgrove, J., (2001) "Software engineering and the law", IEEE Software, 18(3),
May/June 2001, pp. 14 -16.

49. Crystal website: http://crystalmethodologies.org . Date retrieved, Nov-25-2003.

50. Cusumano, M., and Yoffice, D. (1998) Competing on Internet Time: Lessons
from Netscape and Its Battle with Microsoft. New York, NY: Free Press,
1998.

51 Cusumano, M. A., and Yoffie, D. B., (1999) "Software Development on Internet
Time", Computer, 32(10), October 1999, pp. 60 - 69.

52. Davis, A.M., Bersoff, E.H., Comer, E.R, (1988) "A strategy for comparing
alternative software development life cycle models", Software Engineering,
IEEE Transactions on, 14(10), Oct. 1988, pp. 1453 - 1461.

53 Deek, F.P., and McHugh, J., (2003) "A Case Study in an Integrated Development
and Problem Solving Environment", to appear in Journal of Interactive
Learning Research, 2003.

54 Deek, F.P., Elliot, N., Coppola, N., and O'Daniel, N., (2000) "Cognitive
Characteristics of Web-Developers: Creativity, Meaning Construction, and
Problem Solving", WebNet Journal: Internet Technologies, Applications
and Issues, 2(2), pp. 36-50, April-June 2000.

55 Deek, F. P., and McHugh, O., (2000) "Problem Solving and the Development of
Critical Thinking Skills", Journal of Computer Science Education - ISTE
SIGCS, 14(I/2), pp. 6-12, April 2000.

56 DeFranco-Tommarello, J., and Deek, F. P., (2003) "A Review and Analysis of
Collaborative Problem Solving and Groupware for Software
Development", to appear in Journal of Information Systems Management,
2003.

57 DeFranco-Tommarello, J., Deek, F. P., Hiltz, S. R., Keenan, J., and Perez, C.,
(2003) "Collaborative Software Development: Experimental Results", to
appear in the Proceedings of the Hawaii International Conference on
System Sciences (HICSS 36), Big Island, Hawaii, USA, 2003.

58. DeMarco, T., and Lister, T., (1999) Keopleware: Productive Krojects and Teams.
2nci ed. New York, NY: Dorset House Publishing, 1999.

59. Dooley, K., (1996) Complex Adaptive Systems: A Nominal Definition, 1996
website http://www.eas.asu.edui-kdooley/casopdef. html. Date retrieved,
Nov-25-2003.

266

60. Dorfman, I., (1997) "Requirements Engineering", Software Requirements
Engineering 2 nd ed., Thayer, RAH., and Dorfman, I., (Eds.), Los Alamitos,
CA: IEEE Computer Society Press, 1997, pp. 11-12.

61. DSDI website http://na.dsdm.org/na/default.asp . Date retrieved, Nov-25-2003.

62. Eljabiri, 0., and Deek, F., P., (2001) "Toward a Comprehensive Framework for
Software Process Iodeling Evolution", Proceedings of the ACS/IEEE
International Conference on Computer Systems and Applications
(AICCSA), Beirut, Lebanon, 2001.

63. El Saw, 0., (2001) Redesigning Enterprise Processes for e-Business, New York,
McGraw-Hill, 2001.

64. Ebert, C. and De Neve, P., (2001) "Surviving global software development",
IEEE Software, Vol 18, Issue 2, Iarch/April 2001, pp. 62 — 69.

65 Engebretson, A.and Wiedenbeck, S., (2002) "Novice comprehension of
programs using task-specific and non-task-specific constructs", Human
Centric Computing Languages and Environments, 2002. Proceedings. IEEE
2002 Symposia on, 3-6 Sept. 2002, pp. 11 — 18.

66 Erdogmus, H., Boehm, B.W., Harrison, W., Reifer, D.J., and Sullivan, K.J., (2002)
"Software engineering economics: background, current practices, and future
directions", Software Engineering, 2002. ICSE 2002. Proceedings of the 24th
International Conference on, 19-25 Iay 2002, pp. 683 — 684.

67 Field, A., (2003) Discovering Statistics: using SPSS for windows, Sage
Kublications, 2003.

68 Fix, V., Wiedenbeck, S., and Scholtz, J., (1993) "Iental Representations of
Krograms by Novices and Experts", INTERCHP93, Kroceedings, April 24-
29 1993, pp. 74-79.

69. Floyd, C., (19884) "A Systematic look at prototyping", Approaches to
Krototyping, Hedidelberg, Germany: Springer-Verlag, 1984, pp. 105-122.

70. Frosberg, K., and Iooz, H., (1996) System Engineering Overview, Center for
Systems Ianagement, Cupertino CA.1996.

71. Fowler, I., (2001) "Is Design Dead?", Extreme Programming examined, Succi,
G., and Iarchesi, I., (Eds.), Boston, IA: Addison-Wesley, 2001.

267

72. Fox, G., Lantner, K., and Marcom, S., (1997a) "A Software Development
Process for COTS-Based Information System Infrastructure: Part I",
IEEEISEI-sponsored Fifth International Symposium on Assessment of
Software Tools and Technologies, Pittsburgh, Pa. held June 3-5,1997, pp.
133-142.

73. Fox, G., Marcom, S., and Lantner, K. W., (1997b) "A Software Development
Process for COTS-Based Information System Infrastructure Part II,
Lessons Learned", 1EEEISEI-sponsored Fifth International Symposium on
Assessment of Software Tools and Technologies, Pittsburgh, Pa., June 3-
5,1997, pp. 8 - 10.

74. Glass, R.L., (2001) "Extreme programming: the good, the bad, and the bottom
line", 1EEE Software, 18(6), Nov/Dec 2001, pp. 112 — 111.

75. Goguen, J.A., (1993) "Social issues in requirements engineering, Requirements
Engineering", Proceedings of IEEE International Symposium, Jan. 1993,
4th-6th, pp. 194 — 195.

76. Goldman, S, L., Nagle, R., and Preiss, K., (1995) Agile competitors and virtual
organizations: strategies for enriching the customer, Wiley & Sons, New
York, NY, 1995.

77. Gomaa, H., (1997) "The impact of prototyping on software system engineering",
Software requirements engineering 2 nd edition, Thayer, R.H., and Dorfman,
M., (Eds.), Los Alamitos, CA: IEEE computer society press, 1997, pp. 479 -
488.

78. Grenning, J. (2001) "Launching extreme programming at a process-intensive
company", 1EEE Software, 18(6), Nov.-Dec. 2001, pp. 27 — 33.

79. Han, J., (1994) "Software documents, their relationships and properties",
Software Engineering Conference, Proceedings., 1994 First Asia-Pacific,
1994, pp. 102 — 111.

80. Haungs, J., (2001) "Pair programming on the C3 project", Computer, Feb 2001,
pp. 118 — 119.

81. Highsmith, J. A., (2000) Adaptive software development: a collaborative
approach to managing complex systems, Orr. K., foreword, New York: Dorset
House, 2000.

82 Highsmith, J. and Cockburn, A., (2001) "Agile software development: the
business of innovation", Computer, 34(9), Sept. 2001, pp. 120 — 127.

268

83. Hirai, C., Saeki, N., and Nakano, T., (1998) "A proposal of an Internedebased
software development process model for COTS-Based systems development",
International Conference of Software Engineering -1998 Workshop on
Software Engineering over the Internet, Kyoto, Japan, April 19-25, 1998,
http://sern.cpsc.ucalgary.cat—maurer/ICSE98WS/Submissions/Hirai/hirai.h
tml. Date retrieved, Nov-25-2003.

84. Holland, J. H., (1995) Hidden order: how adaptation builds complexity, Reading,
Iass.: Addison-Wesley, 1995.

85. IEEE Std 610.12-1990, IEEE standard glossary of software engineering
terminology, 10 Dec. 1990.

86 Jones, Capers. (1994) Assessment and control of software risks, Englewood Cliffs,
N.J.: Yourdon Kress, 1994.

87. Carlsson, E. .A.,. Andersson, L. G., Leion, P., (2000) "Daily build and feature
development in large distributed projects", Software Engineering, 2000.
Kroceedings of the 2000 International Conference on, 2000, pp. 649 —658.

88. Keefer, G., (2002) Extreme programming considered harmful for reliable
software development, 2002, http://www.avoca-vsm.com/Dateien-
Download/ExtremeProgramming.pdf. Date retrieved, Nov-25-2003.

89. Keen, K., (1981) "Information systems and organizational change", Comm. of
ACM, 24(I), 1981, pp. 24-33.

90. Keirsey, D., (1998) Klease understand me II: temperament, character,
intelligence., Ist ed. Del Iar, CA: Prometheus Nemesis, 1998.

91 Kellner, I. I., and Hansen, G. A., (1998) "Software Process Iodeling",
Technical Report, Software Engineering Institute, Carnegie Mellon
University, Iay 1988.
http://www.sei.cmu.edu/pub/documents/88.reports/pdf/tr09.88.pdf. Date
retrieved, Nov-25-2003.

92. Kircher, I., Jain, K., Corsaro, A., and D. Levine, (2001) "Distributed Extreme
Krogramming," 2001 - eXtreme Krogramming and Flexible Krocesses in
Software Engineering, Villasimius, Sardinia, Italy, Iay 21-23, 2001.

93. Kivi, J., Haydon, D., Hayes, J., Schneider, R., and Succi, G. (2000) "Extreme
programming: a university team design experience", Electrical and
Computer Engineering, 2000 Canadian Conference on, Vol. 2, 2000, pp.
816 — 820.

94. Kraut, R.E., and Streeter, L. A., (1995) "Coordination in Software
Development" in Comm. Of ACI, 38(3), Iarch 1995 pp. 69 - 81.

269

95 Kwon, K., Im, I., and Van de Walle, B., (2002) "Are you thinking what I am
thinking? A comparison of decision makers' cognitive maps by means of a
new similarity measure", System Sciences, 2002. HICSS. Proceedings of
the 35th Annual Hawaii International Conference on, 7-10 Jan. 2002,
pp. 1328 — 1337.

96. Lean Programming website 1
http://www.aanpo.org/articles/articles/LeanProgramming.htm . Date
retrieved, Nov-25-2003.

97. Lean Programming website 2
http://c2.com/cgi/wiki?LeanProgramming . Date retrieved, Nov-25-2003.

98. Lichter, H., M. Schneider-Hufschmidt, and H. Zullighoven, (1994) "Prototyping
in industrial software projects — Bridging the gap between theory and
practice", IEEE Transaction on Software Engineering, 20(11), 1994,
pp. 825-832.

99 Linger, R.C., and Trammell, C.O., Cleanroom Software Engineering Reference
Model Version I.0, 1996.
http://www.sei.cmu.edu/pub/documatlents/96.reports/pdf/tr022.96.pdf. Date
retrieved, Nov-25-2003.

100. Lutsky, P., (1995) "Automating testing by reverse engineering of software
documentation", Reverse Engineering, 1995., Proceedings of 2nd Working
Conference on , 1995, pp. 8 — 12.

101. Martin, R.C. (2000) "eXtreme Programming development through dialog", IEEE
Software, 17(4), July-Aug. 2000, pp. 12 — 13.

102. Markus, M.L., (1983) "Power, Politics, and MIS implementation", Comm of
ACM, 26(6), 1983, pp. 430 — 444.

103 McCauley, R., (2001) "Agile development methods poised to upset status quo",
December 2001, ACM SIG Computer Science Education (SIGCSE)
Bulletin, 33(4),

104. McCormick, M., (2001) "Technical opinion: Programming extremism", Comm.
of ACM. 44(6), June 2001, pp. 109-119.

105 Mosemann, R., and Wiedenbeck, S., (2001) "Navigation and comprehension of
programs by novice programmers", Program Comprehension, 2001. IWPC
2001. Proceedings. 9th International Workshop on, 12-13 May 2001,
pp. 79 — 88.

270

106. Iuller, M.M. and Tichy, W.F. (2001) "Case study: extreme programming in a
university environment", Software Engineering, 2001. ICSE 2001.
Proceedings of the 23rd International Conference on, 2001, pp. 537 — 544.

107. Myers, I. B. and Myers, P. B., (1995) Gifts differing: understanding personality
type, Davies-Black Pub., 1995.

108 Nawrocki, J., Jasinski, M., Walter, B., and Wojciechowski, A., (2002) "Extreme
programming modified: embrace requirements engineering practices",
Requirements Engineering, 2002. Proceedings. IEEE Joint International
Conference on, 9-13 Sept. 2002, pp. 303 — 310.

109 Nawrocki, J., Walter, B., and Wojciechowski, A., (2001) "Toward maturity model
for extreme programming", Euromicro Conference, 2001. Proceedings. 27th,
4-6 Sept. 2001, pp. 233 — 239.

110 Niedrich, R. W., Sharma, S., and Wedell, D. H., (2001) "Reference Price and
Price Perceptions: A Comparison of Alternative Iodels", Journal of
Consumer Research, Dec., 2001, 28(3), pp. 339 - 354.

111. Nosek, J., (1998) "The Case for Collaborative Programming," Comm. Of ACM,
March 1998, 41(3), pp.105 — 108.

112 Novak, T. P., (1995) "MANOVAMAP: Graphical Representation of MANOVA
in Marketing Research", Journal of Marketing Research, Aug., 1995, 32(3),
Issue 3, pp. 357 — 368.

113. O'Neil, H. F., Jr., Allred, K., and Baker, E. L. (1997) "Review of workforce
readiness theoretical frameworks." Workforce readiness: Competencies and
assessment. Mahwah, NJ: Erlbaum. 1997.

114. Online message forum on XP website: http://www.bad-
managers.com/js.matt/com.maff.forum.ForumServlet?key=XPGen . Date
retrieved, Nov-25-2003.

115 Palmer, S. R., and Felsing, M., A (2001) Practical Guide to Feature-Driven
Development, 1st edition, Pearson Education, 2001.

116. Paulk, M., Curtis. B., Chrissis, I., and Weber, C., (1993) Capability Maturity
Model for Software (Version I.I), 1993,
http://wwvv.sei.cmu.edu/pub/documents/93.reports/pdf/tr24.93.pdf. Date
retrieved, Nov-25-2003.

117. Pervin, L. A., (1989) Personality: Theory and Research, 5th ed. Wiley & Sons,
Inc., 1989.

271

118 Peter, J. K., Ryan, I. J., and Hughes, R. E., (1975) "A IANOVA approach to
disentangling correlated dependent variables in organizational research",
Academy of Ianagement Oournal, Dec. 1975, 18(4), pp. 904 — 911.

119. Pressman, R.S., (1997a) Software engineering, Dorfman, I., and Thayer, R.H.,
(Eds.), IEEE Computer Society Kress, Los Alamitos, CA, 1997.

120. Pressman, R.S., (1997b) Software engineering; a practitioner's approach, 4th ed.,
New York: IcGraw-Hill, 1997.

121. Prowell, S., J., Trammell, C., J., Linger, R., C., and Koore J., H., (1999)
Cleanroom Software Engineering, technology and process, Reading, IA.
Addison-Wesley, 1999.

122 Reifer, D.J., Basili, V.R., Boehm, B.W., and Clark, B., (2003) "Eight lessons
learned during COTS-based systems maintenance", Software, IEEE, 20(5),
Sept.-Oct. 2003, pp. 94 — 96.

123. Rettig, I., (1994) Prototyping for tiny fingers", Comm of ACI, 37(4), 1994,
pp.21 -27.

124. Revelle, W., website A,
http://pmc.psych.nwu.edu/perproj/readings.html#readings . Date retrieved,
Nov-25-2003.

125. Revelle, W., website B, http://pmc.psych.nwu.edu/perproj/theory/big3.table.html.,
Date retrieved, Nov-25-2003.

126. Riehle, D., (2001) "A Comparison of the value systems of adaptive software
development and extreme programming: How methodologies may learn
from each other", Extreme Krogramming examined, Succi, G., and Iarchesi,
I., (Eds.), Boston: Addison-Wesley, 2001.

127. Rising, L., and Janoff, N. S., (2000) "The Scrum Software Development Krocess
for Small Teams," IEEE Software, July/August 2000 pp. 2 - 8.

128 Rosenthal, R., and Rosnow, R., L., (1991) Essentials of Behavioral Research:
methods and data analysis, 2 nd ed., IcGraw-Hill, 1991.

128 Rowntree, D., (2003) Statistics Without Tears: A Krimer for Non-
Mathematicians, Kearson Kublication, 2003.

129. Royce, W.W. (1987) "Ianaging the development of large software systems:
concepts and techniques", Kroceedings of the 9th International Conference
on Software Engineering, 1987, pp. 328 — 338
http://www.acm.org/pubs/articles/proceedings/soft/41765/p328-royce/p328-
royce.pdf. Date retrieved, Nov-25-2003.

272

130 Saiedian, H., (2003) "Panel: eXtreme programming: helpful or harmful?"
Software Engineering, 2003. Proceedings. 25th International Conference on,
3-10 May 2003, pp. 718 — 718.

131. Scharer, L., (1997) "Pinpointing Requirements", Software Requirements
Engineering, 2nd edition, Thayer, R.H., and Dorfman, M., (Eds.), Los
Alamitos, CA.: IEEE Computer Society Press, 1997, pp. 30-35, 1997.

132 Schuh, P., (2001) "Recovery, Redemption, and Extreme Programming", IEEE
Software, 18(6), pp. 34-41, November 2001.

133. Schwaber, K., and Beedle, M., (2001) Agile software development with scrum,
Upper Saddle River, NJ: Prentice Hall, 2001.

134. SCRUI website http://www.controlchaos.com/, Date retrieved, Nov-25-2003.

135. Shaft, T. M., and Vessey, I., (1998) "The Relevance of Application Domain
Knowledge: Characterizing the Computer Program Comprehension Process,"
Journal of Management Information Systems, Summer 1998, 15(1), pp. 51-78.

136. Shneiderman, B., (1998) Designing the user interface: strategies for effective
human-computer-interaction, 3rd ed. Reading, Mass: Addison Wesley
Longman, 1998.

137. Shneiderman, B., (1980) Software psychology : human factors in computer and
information systems. Winthrop Pub., Cambridge, MA.

138. Smith, I. F. (1991) Software prototyping: adoption, practice, and management
London; New York: McGraw-Hill, 1991.

139. Sommerville, I., (2000) Software Engineering 6th ed. Harlow, England; New
York: Addison-Wesley, 2000.

140. Spitzberg, B. H., (2002) "Methods of Interpersonal Skill Assessment," The
handbook of communication and social interaction skills. Mahwah, NJ:
Eribaum. 2002, pp. 93-134.

141. Spitzberg, B. H., (1997) A User's Guide to Relational Competence and Related
Measures, unpublished., 1997.

142. Spitzberg, B. H., and Cupach, W. R. (1984) Interpersonal communication
competence. Beverly Hills, CA: Sage, 1984.

143. Stalk., G, and Hout., T. I., (1990) Competing against time : how time-based
competition is reshaping global markets, New York : Free Kress ; London :
Collier Macmillan, 1990.

273

144 Straub, D. W., (1989) Validating Instruments in MIS Research, MIS Quarterly,
June 1989, 13(2).

145. Stephens, M., (2001) "The Case Against Extreme Programming," 2001, website
http://www.bad-managers.com/Features/xp/case_against_xp.shtml . Date
retrieved, Nov-25-2003.

146. Stewart, L. P., Cooper, P. J., Stewart, A. D., and Friedley, S. A., (1996)
Communication and gender, 3rd ed. Scottsdale, AZ: Gorsuch
Scarisbrick.1996.

147. Tannen, D., (1991) You just don't understand: women and men in conversation,
New York: Ballantine Books, 1991.

148. Taylor, D., (1992) Global Software: Developing Applications for the
International Market, New York: Springer-Verlag, 1992.

149. Thayer, R. H., (1997) "Software System Engineering: An Engineering Process"
Software Requirements Engineering, 2' edition, Thayer, R.H., and Dorfman,
M., (Eds.), Los Alamitos, CA.: 1EEE Computer Society Press, 1997, pp. 11-
12, 1997.

150. Thompson, H. L., (2000) Introduction to the CommunicationWheel, Wormhole
Publishing, 2000.

151. Von Mayrhauser, A., (1990) Software engineering: methods and management
Boston, MA: Academic Press, 1990.

152. Wallace, D. R., and Ippolito, L.M., (1997) "Verifying and Validating Software
Requirements Specifications", Software Requirements Engineering, 2"
edition, Thayer, R.H., and Dorfman, M., (Eds.), Los Alamitos, CA.: IEEE
Computer Society Press, 1997, pp. 437-452, 1997.

153. Weinberg, G. M., (1998) The psychology of computer programming, Silver
anniversary edition. New York: Dorset House Pub., 1998.

154 Williams, L. and Cockburn, A., (2003) "Agile software development: it's about
feedback and change" Computer, 36(6), June 2003, pp. 39 — 43.

155. Williams, L., Kessler, R.R., Cunningham, W., and Jeffries, R., (2000)
"Strengthening the case for pair programming", 1EEE Software, 17(4),
July-Aug. 2000, pp.19 — 25.

274

156. Williams, L., and Kessler, R. R., (2000) "All I really need to know about pair
programming I learned in kindergarten" in Communications of the ACM,
43(5), May 2000, pp. 108 — 114.

157. Williams, L, and Kessler, R. R., (2002) Pair programming illuminated, Addison-
Wesley, 2002.

158. Williams, L., and Upchurch, R., (2001) "In Support of Student Pair
Programming," 2001 SIGCSE Conference on Computer Science Education,
Charlotte, NC, February 2001.
http://collaboration.csc.ncsu.edu/laurie/Papers/WilliamsUpchurch.pdf . Date
retrieved, Nov-25-2003.

159. Williams, L., (2000) Collaborative Software Process, PhD Thesis 2000,
http://www.cs.utah.edu/-4william/Papers/dissertation.pdf., Date retrieved,
Nov-25-2003.

160 Wiedenbeck, S. and Ramalingam, V., (1999) Novice comprehension of small
programs written in the procedural and objecdeoriented styles, International
Journal of Human-Computer Studies, 51(I), July 1999, pp. 71-87.

161 Wright, D. B., (1998) Understanding Statistics: An Introduction for the Social
Sciences, Sage Publications, 1998.

162 Wright, T., and Cockburn, A., (2002) "Evaluating computer-supported
collaboration for a problem-solving task", Computers in Education, 2002.
Proceedings. International Conference on, 3-6 Dec. 2002, pp. 266 —267,
Vol.1.

163. XP newsgroup; comp.software.extreme-programming.

164. XP website http://www.extremeprogramming.org . Date retrieved, Nov-25-2003.

165. Yahoo XP user group website A: http://groups.yahoo.com/group/xpusergroups/,
Date retrieved, Nov-25-2003.

166. Yahoo XP user group website B:
http://groups.yahoo.com/group/extremeprogramming., Date retrieved, Nov-
25-2003.

167 Yourdon, E., (1997) Death March, Upper Saddle River, N.J. Prentice-Hall.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Acknowledgement (1 of 2)
	Acknowledgement (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Review of Software Process Paradigms
	Chapter 3: Pair Programming Hypotheses Development
	Chapter 4: Experiment
	Chapter 5: Concluding Remarks and Future Work
	Appendix A: Subject Consent Form
	Appendix B: Subject Programming Background Information
	Appendix C: Post Programming Session Questinnaire
	Appendix D: Pair Programming Experiment First Visit Schedule
	Appendix E: Communication Skill Level Measuring Instrument I
	Appendix F: Communication Skill Level Measuring Instrument II
	Appendix G: Communication Skill Level Measuring Instrument III
	Appendix H: Programming Problem Set
	Appendix I: Problem Evaluation Form
	Appendix J: Instruction Sheet for the Judges
	Appendix K: Illustration of Two Judge's Scores
	Appendix L: Pair Programming Survey Questionnaire
	Appendix M: MBTI Distribution Among Different Academic Majors
	Appendix N: Histograms and Q-Q Plots for Normal Distribution Check
	Appendix O: Experiment Environment Specification
	Glossary and Index
	References

	List of Tables (1 of 4)
	List of Tables (2 of 4)
	List of Tables (3 of 4)
	List of Tables (4 of 4)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

