

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

RELATIONSHIP ANALYSIS:
IMPROVING THE SYSTEMS ANALYSIS PROCESS

by
Joseph Thomas Catanio

A significant aspect of systems analysis involves discovering and representing entities

and their inter-relationships. Guidelines exist to identify entities but do not provide a

rigorous and comprehensive process to explicitly capture the relationship structure of the

problem domain. Whereas, other analysis techniques lightly address the relationship

discovery process, Relationship Analysis is the only systematic, domain-independent

analysis technique focusing exclusively on a domain's relationship structure.

The quality of design artifacts, such as class diagrams, and development time

necessary to generate these artifacts can be improved by first representing the complete

relationship structure of the problem domain. The Relationship Analysis Model is the

first theory-based taxonomy to classify relationships. A rigorous evaluation was

conducted, including a formal experiment comparing novice and experienced analysts

with and without Relationship Analysis. It was shown that the Relationship Analysis

Process based on the model does provide a fuller and richer systems analysis, resulting in

improved quality of and reduced time in generating class diagrams. It also was shown

that Relationship Analysis enables analysts of varying experience levels to achieve a

similar level of quality of class diagrams. Relationship Analysis significantly enhances

the systems analyst's effectiveness, especially in the area of relationship discovery and

documentation resulting in improved analysis and design artifacts.

RELATIONSHIP ANALYSIS:
IMPROVING THE SYSTEMS ANALYSIS PROCESS

by
Joseph Thomas Catanio

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Information Systems

Department of Information Systems

May 2004

Copyright © 2004 by Joseph Thomas Catanio

ALL RIGHTS RESERVED

APPROVAL PAGE

RELATIONSHIP ANALYSIS:
IMPROVING THE SYSTEMS ANALYSIS PROCESS

Joseph Thomas Catanio

Dichael P. Bieber, Dissertation Advisor 	 Date
Associate Professor of Information Systems, NJIT

Dr. Jane Cheng, Committee Meirr	

DateProfessor of Computer Informa Systems, Bloomfield College

Dr. Fadi P. Deek, Committee Member	 Date
Professor of Information Systems, NJIT

Dr. Ilk Im, Committee Member 	 Date
Assistant Professor of Information Systems, NJIT

Dr. Vassilka Kirova, Committee Member	 Date
Adjunct Professor Computer Science, NJIT

Dr. Ravi Paul, Committee Member	 Date
Assistant Professor of MIS, East Carolina University

BIOGRAPHICAL SKETCH

Author: 	 Joseph Thomas Catanio

Degree: 	 Doctor of Philosophy

Date: 	 May 2004

Undergraduate and Graduate Education:

• Doctor of Philosophy in Information Systems,
New Jersey Institute of Technology, Newark, NJ, 2004

• Masters of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1999

• Bachelor of Science in Electrical Engineering,
Rutgers University, New Brunswick, NJ, 1987

Major: 	 Information Systems

Presentations and Publications:

Catanio, J., & Bieber, M. (2004). Web Engineering: Principles and Techniques., Chapter
Entitled: Relationship Analysis: A Technique to Enhance Systems Analysis for
Web Development, Idea Group Publishing, (forthcoming).

Catanio, J., Galnares, R., Zhang, L., & Bieber, M. (2004). "Ubiquitous Metainformation
and the	 Principle," Journal of Digital Information, (forthcoming).

Catanio, J., Yoo, J., Bieber, M., & Paul, R. (2004). "Relationship Analysis in
Requirements Engineering," Requirements Engineering Journal, (forthcoming).

Catanio, J., & Bieber, M. (2003). "Relationship Analysis: A Plan to Enhance Systems
Analysis," 2nd Annual Symposium on Research on Systems Analysis and Design,
Florida International University.

Catanio, J., Bieber, M., Imp, I., Paul, R., Yoo, J., Ghoda, A., Pal, A., & Yetim, F. (2003).
"Relationship Analysis: A Research Plan for Enhancing Systems Analysis For
Web Development," Proceedings of the 36 th Hawaii International Conference on
System Sciences, IEEE Press, Washington, D.C.

iv

Dedicated to GOD

v

ACKNOWLEDGMENT

I would like to express my deepest and sincere appreciation to Dr. Michael Bieber, my

advisor, for his guidance, encouragement, friendship, time, and moral support throughout

this research. Special thanks are given to Dr. Jane Cheng, Dr. Fadi Deek, Dr. II Imp, Dr.

Vassilka Kirova, and Dr. Ravi Paul for actively participating in my committee. In

addition, I would like to thank both Dr. Roxanne Hiltz and Dr. Fadi Deek for their

financial assistance while I was a full-time student completing my dissertation.

Many thanks are extended to Dr. Michael Chimer, Professor Osama Eljabiri, and

Dr. Vassilka Kirova for allowing me to recruit students from their classes for the

experiment portion of my dissertation. Also, thanks to the students for their participation.

I also appreciate the time and effort of John Discepola and Ronald Lazeration, my

expert judges. Also, special thanks to Michael Gorman.

In addition, I thank both Dr. Yuanqiong (Kathy) Wang and Dr. Ilk Imp for their

guidance and expertise for the data analysis portion of my dissertation.

vi

TABLE OF CONTENTS

Chapter	 Page

1	 INTRODUCTION 	 1

1.1 Motivation 	 2

1.2 Dissertation Overview 	 3

1.3 Dissertation Outline 	 3

1.4 Contributions 	 4

1.5 Dissertation Boundaries 	 5

2 BACKGROUND LITERATURE 	 6

2.1 Software Engineering Development Process 	 7

2.1.1	 Iterative Software Development 	 9

2.1.2	 Agile Software Development 	 11

2.2 Software Project Management 	 17

2.3 Human Aspects 	 22

2.4 Analysis Framework 	 24

2.5 Structured Analysis 	 28

2.5.1	 Data Flow Diagrams 	 32

2.5.2	 Data Dictionary 	 33

2.5.3	 Mini-specifications 	 34

2.5.4	 Structured Walkthrough 	 35

2.5.5	 Deficiencies 	 35

2.5.6	 Summary 	 36

2.6 Object-oriented Analysis 	 37

2.6.1	 Characteristics 	 40

VII

TABLE OF CONTENTS
(Continued)

Chapter Page

2.6.2 Object Identification 	 42

2.6.3 Object Communications 	 45

2.6.4 Object Behavior 	 49

2.6.5 Object Operations 	 52

2.6.6 Summary 	 53

2.7 Use-case Analysis 	 55

2.7.1 Identification 	 57

2.7.2 Structuring a Use-case 	 59

2.7.3 Deficiencies 	 61

2.7.4 Summary 	 63

2.8 Domain Analysis 	 64

2.8.1 Feature Oriented Domain Analysis 	 66

2.8.2 Organization Domain Modeling 	 66

2.8.3 Standardizing Product Re-use 	 67

2.8.4 Summary 	 69

2.9 Requirements Analysis 	 70

2.9.1 Eliciting Requirements 	 73

2.9.2 Documenting Requirements 	 79

2.9.3 Verifying and Validating Requirements 	 82

2.9.4 Requirements Management 	 85

2.9.5 Summary 	 87

viii

TABLE OF CONTENTS
(Continued)

Chapter

2.10

2.11

Relationship Analysis 	

Analysis Quality 	

Page

88

94

2.11.1	 Quality Attributes of Natural Languages 	 94

2.11.2	 Generating a Quality Specification 	 100

2.11.3	 Quantifying the Specification Quality 	 102

2.12 Summary and Conclusion 	 106

3 RELATIONSHIP ANALYSIS THEORY 	 110

3.1 Creativity in Software Engineering 	 110

3.2 Conceptual Modeling 	 114

3.3 Existing Methodologies 	 117

3.4 Existing Theories 	 131

3.4.1	 Ontological Theory 	 132

3.4.2	 Classification Theory 	 136

3.4.3	 Speech Act Theory 	 138

3.4.4	 Structure of Intellect Theory (SI) 	 140

3.5 Relationship Analysis Model (RAM) 	 143

3.5.1	 Unit Focus 	 145

3.5.2	 Collection Focus 	 147

3.5.3	 Comparison Focus 	 150

3.5.4	 System Focus 	 152

3.5.5	 Transformation Focus 	 153

ix

TABLE OF CONTENTS
(Continued)

Chapter

3.6

3.5.6	 Implication Focus 	

3.5.7	 Relationships Among the Relationships 	

3.5.8	 Mapping RAM to RAF 	

Summary 	

Page

155

157

158

161

4 RELATIONSHIP ANALYSIS APPLIED 	 163

4.1 Relationship Analysis Process (RAP) 	 164

4.2 Relationship Analysis Template (RAT) 	 165

4.3 Relationship Analysis Diagram (RAD) 	 167

4.4 Summary 	 169

5 EXPERIMENTAL DESIGN 	 170

5.1 Overview 	 170

5.2 Hypotheses 	 171

5.3 Method 	 178

5.4 Subjects 	 179

5.5 Procedures 	 179

5.6 Measures 	 180

5.6.1	 Questionnaires 	 181

5.6.2	 Expert Judges 	 183

5.7 Task 	 184

6 EXPERIMENTAL RESULTS AND DATA ANALYSIS 	 188

6.1	 Subject Background Information 	 189

TABLE OF CONTENTS
(Continued)

Chapter Page

6.1.1	 Subject Pre-experiment Evaluation 	 189

6.1.2	 Subj ect Distribution 	 191

6.2 Expert Judge Reliability 	 193

6.3 Experiment Hypotheses Analysis 	 194

6.3.1	 Analysis Quality Grade Variable 	 195

6.3.2	 Class Diagram Analysis Time Generation Variable 	 199

6.3.3	 Total Analysis Time Generation Variable 	 202

6.3.4	 Relationship Analysis Time Variable 	 204

6.4 Post-experiment Questionnaire Evaluation 	 205

6.4.1	 Factor Analysis 	 205

6.4.2	 Satisfaction	 207

6.4.3	 Analysis Ability 	 211

6.4.4	 Task Comprehension 	 215

6.5 Summary of Hypotheses Analysis 	 218

7 DISCUSSION, CONCLUSIONS, AND FUTURE RESEARCH 	 219

7.1 Summary of Hypotheses Evaluation Results 	 219

7.2 Debrief Session Subject Comments 	 220

7.3 Experimentation Enhancements 	 221

7.4 Research Contributions 	 222

7.5 Future Research 	 223

xi

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

APPENDIX A CONSENT FORM 	 226

APPENDIX B TRAINING MATERIALS 	 229

APPENDIX C SURVEY INSTRUMENTS 	 250

APPENDIX D TASK LISTS 	 260

APPENDIX E COVER SHEETS 	 265

APPENDIX F PROBLEM STATEMENT 	 267

APPENDIX G PROBLEM STATEMENT SOLUTION 	 268

REFERENCES 	 271

XII

LIST OF TABLES

Table Page

2.1 Disciplines of Management 	 19

2.2 Categories of System Failures 	 20

2.3 Herzberg's Hygiene and Motivational Factors 	 23

2.4 Structured Analysis Framework Characteristics 	 37

2.5 Object-oriented Analysis Framework Characteristics 	 54

2.6 Use-case Recipe 	 58

2.7 Coleman's Use-case Template 	 61

2.8 Use-case Analysis Framework Characteristics 	 63

2.9 Domain and Re-useability Criterion 	 68

2.10 Domain Analysis Framework Characteristics 	 70

2.11 Relative Cost to Repair a Software Error in Different Stages 	 71

2.12 Major Software Verification and Validation Activities 	 82

2.13 Software Test Plan Structure 	 84

2.14 Requirements Analysis Framework Characteristics 	 88

2.15 Relationship Analysis Generic Relationships 	 89

2.16 Sample Brainstorming Questions 	 91

2.17 Relationship Analysis Framework Characteristics 	 93

2.18 Quality Attributes 	 96

2.19 Examples of Selected Quality Characteristics 	 99

2.20 Physical SRS Quality Attributes 	 103

2.21 Quality Attribute Metrics 	 105

3.1 Semantic Models 	 129

Om

LIST OF TABLES
(Continued)

Table Page

3.2 Mapping of Ontological Constructs to Conceptual Model Constructs 	 134

3.3 Relationship Analysis Model Using SI Nomenclature 	 144

3.4 Relationship Analysis Model (RAM) 	 145

3.5 Relationship Map Between Yoo's Categories and RAM 	 159

3.6 Relationship Determination Questions 	 159

4.1 Generic Relationship Analysis Template 	 166

5.1 Factorial Design Experiment 	 178

5.2 Dependent Variable Measurement Methods 	 181

5.3 Pilot Study Summary 	 186

6.1 Subject Experience Score Details 	 190

6.2 Subject Experience Score Mean and Standard Deviation Calculations 	 190

6.3 Summary of Subject Distribution 	 191

6.4 Group Identification Numbers per Condition 	 191

6.5 Summary of Total Number of Groups per Condition 	 192

6.6 Correlation Between Judges Before Meeting 	 193

6.7 Correlation Between Judges After Meeting 	 193

6.8 Results Overview 	 195

6.9 Quality Grade Details 	 196

6.10 Quality Grade Normality Test Details 	 196

6.11 Quality Grade Mean and Standard Deviation Calculations 	 197

6.12 Quality Grade Main Effect 1 (Analysis Tool) 	 197

Oiv

LIST OF TABLES
(Continued)

Table Page

6.13 Quality Grade Main Effect 2 (Experience Level) 	 197

6.14 Quality Grade Interaction Effect (Part 1) 	 198

6.15 Quality Grade Interaction Effect (Part 2) 	 198

6.16 Class Diagram Time Details 	 200

6.17 Class Diagram Time Normality Test Details 	 201

6.18 Class Diagram Time Mean and Standard Deviation Calculations 	 201

6.19 Total Analysis Time Details 	 202

6.20 Total Analysis Time Mean and Standard Deviation Calculations 	 203

6.21 Relationship Elicitation Time Details 	 204

6.22 Relationship Elicitation Time Mean and Standard Deviation Calculations 	 205

6.23 Summary of Cronbach's Alpha, Questions, and Factors 	 206

6.24 Satisfaction Normality Test Details 	 209

6.25 Satisfaction Mean and Standard Deviation Calculations 	 209

6.26 Satisfaction Main Effect 1 (Analysis Tool) 	 209

6.27 Satisfaction Main Effect 2 (Experience Level) 	 210

6.28 Satisfaction Interaction Effect (Part 1) 	 210

6.29 Satisfaction Interaction Effect (Part 2) 	 211

6.30 Analysis Ability Normality Test Details 	 212

6.31 Analysis Ability Mean and Standard Deviation Calculations 	 212

6.32 Analysis Ability Main Effect 1 (Analysis Tool) 	 212

6.33 Analysis Ability Main Effect 2 (Experience Level) 	 213

Ova

LIST OF TABLES
(Continued)

Table Page

6.34 Analysis Ability Interaction Effect (Part 1) 	 214

6.35 Analysis Ability Interaction Effect (Part 2) 	 214

6.36 Task Comprehension Normality Test Details 	 215

6.37 Task Comprehension Mean and Standard Deviation Calculations 	 215

6.38 Task Comprehension Main Effect 1 (Analysis Tool) 	 215

6.39 Task Comprehension Main Effect 2 (Experience Level) 	 216

6.40 Task Comprehension Interaction Effect (Part 1) 	 217

6.41 Task Comprehension Interaction Effect (Part 2) 	 217

6.42 Hypotheses Summary 	 218

B1.1 Order Training Unit Template 	 232

B1.2 Order Training Collection Template 	 233

B1.3 Order Training Comparison Template 	 234

B1.4 Order Training System Template 	 235

B1.5 Order Training Transformation Template 	 236

B1.6 Order Training Implication Template 	 237

B1.7 Customer Training Unit Template 	 240

B1.8 Customer Training Collection Template 	 241

B1.9 Customer Training Comparison Template 	 242

B1.10 Customer Training System Template 	 243

B1.11 Customer Training Transformation Template 	 244

B1.12 Customer Training Implication Template 	 245

Obi

LIST OF FIGURES

Figure 	 Page

2.1 The Waterfall Model 	 8

2.2 Component Interaction Characteristics 	 26

2.3 Component Interaction Analysis Framework 	 27

2.4 SADT Activity Diagram Constructs 	 30

2.5 DeMarco-Yourdon Constructs. 	 31

2.6 Object Structure 	 38

2.7 Sequence Diagram 	 46

2.8 Collaboration Diagram 	 47

2.9 Object Interaction Diagram (Less Detail) 	 48

2.10 Object Interaction Diagram (More Detail) 	 49

2.11 State-chart Diagram 	 51

2.12 Use-case (JML Notation) 	 60

3.1 The Role of a Conceptual Model in Systems Development 	 115

3.2 Guilford's Structure of Intellect Model 	 141

3.3 Unit Focus 	 146

3.4 Collection Focus 	 149

3.5 Comparison Focus 	 151

3.6 System Focus 	 153

3.7 Transformation Focus 	 155

3.8 Implication Focus 	 157

4.1 Generic Relationship Analysis Diagram (RAD) 	 168

6.1 Quality Grade for Groups 	 199

Ovii

LIST OF FIGURES
(Continued)

Figure 	 Page

B1.1 Use-case Analysis Training 	 230

B1.2 Order Training RAD 	 238

B1.3 Training Class Diagram 1 	 239

B1.4 Customer Training RAD 	 246

B1.5 Training Class Diagram 2 	 247

B1.6 Training Class Diagram Final 	 248

B1.7 Training Class Diagram Final Without Attributes 	 249

G1.1 Solution Use-case Analysis Diagram 	 268

G1.2 Solution Class Diagram Without Attributes 	 269

G1.3 Solution Class Diagram 	 270

CHAPTER 1

INTRODUCTION

The literature indicates that the best way to improve the software development life-cycle

is to improve it during the early stages of the process (Sommerville, 2001) (Faulk, 2000)

(Wieringa, 1998) (Booch et al., 1998); in particular, during the elicitation, analysis and

design phases. The literature describes that the more effective techniques to elicit

requirements of a computer or information system involve collaboration (Jurison, 1999)

(Gill & Pidduck, 2001) (Haywood, 1998) (Pare & Dube, 1999) and collaborative efforts

have been demonstrated to aid analysts by improving the problem solving process

(Wilson et al., 1993) (Sabin & Sabin, 1994) (Nosek, 1998) (Selvin, 1999). A technique

known as use-case analysis is a widely accepted method to eliciting requirements for

software systems. Use-case analysis is a scenario-based technique that captures the

desired system functionality from the user's perspective in a team-oriented, user-

inclusive strategy. Once the features of the system are identified, a more technical

description or analysis of the problem solution is performed. The research described in

the background literature chapter discusses various software engineering analysis

techniques. As a result, a gap in the system analysis process has been identified, namely

how to explicitly identify and document the relationship structure of a problem domain.

This dissertation presents a rigorous and systematic process based on theory to identify

and document the relationship structure of an application domain. While not an integral

aspect, the experiments will be conducted using groups of analysts.

1

2

1.1 Motibation

During the system analysis phase, components are determined through the identification

process of the system's entities and relationships. Informal guidelines exist to help

identify entities or objects (Chen, 1976) (Rumbaugh, 1991) (Booch, 1994). In addition,

prior to Yoo's dissertation on Relationship Analysis (RA), no guidelines existed to

analyze an application domain in terms of its relationship structure (Yoo, 2000). The

determination of an application domain relationship structure is an implicit process. No

defined processes, templates, or diagrams exist to explicitly and systematically assist in

eliciting relationships or documenting them in Class Diagrams or Entity-Relationship

(EIR) Diagrams (Beraha & Su, 1999). However, relationships constitute a large part of

an application domain's implicit structure. Completely understanding the domain relies

on knowing how all the entities are interconnected. Relationships are a key component

lightly addressed by EIR and class diagrams. These diagrams capture a limited subset of

relationships and leave much of the relationship structure out of the design and system

model. While analyses and models are meant to be a limited representation of a system,

the incomplete relationship specification is not by design, but rather a lack of any

methodology to determine them explicitly (Bieber & Yoo, 1999) (Bieber, 1998). As a

result, many analyses miss aspects of the systems they represent. RA addresses these

concerns. It provides a way of identifying the relationship structure of a problem domain

and helps fill a void in the systems analysis process.

However, RA has not yet been fully developed and exists as an informal process.

In addition, it is not based on a theoretical foundation. The motivations of this research

are to utilize the concepts learned from Yoo's studies and develop RA from the ground

3

up. This dissertation will create a rigorous and systematic process based on theory to

identify the relationship structure of an application domain.

1.2 Dissertation Oberview

My dissertation, Relationship Analysis: Improving the Systems Analysis Process, will

present a rigorous and systematic technique to identify and document the relationship

structure of an application domain.

This research addresses a major deficiency in today's software engineering

analysis techniques, namely a systematic process to identify and document relationships

in a system being modeled. A significant aspect of systems analysis and design involves

discovering and representing entities and their relationships. However, existing

techniques leave the relationship determination as an implicit process. The proposed

Relationship Analysis Process (RAP) provides a rigorous and systematic process to

explicitly identify and document the relationship structure of the application domain. In

support of the process, a Relationship Analysis Template (RAT) and Relationship

Analysis Diagram (RAD) are utilized.

1.3 Dissertation Outline

The dissertation includes seven chapters. Chapter 1 introduces the dissertation topic by

describing it in terms of motivation, contributions, and boundaries. Chapter 2 consists of

a literary review of various software engineering analysis techniques. This extensive

research identified a void in system analysis that is addressed in this dissertation.

4

Chapter 3 provides the theoretical background to RA by developing a new RA model

(RAM), grounded in theory, utilizing Guilford's Structure of Intellect Theory (Guilford,

1956) (Guilford, 1967). Chapter 4 describes the Relationship Analysis Process as a

rigorous and systematic technique. Chapter 5 outlines the experimental design to test

comparisons of system analysis with and without Relationship Analysis in a controlled

environment. Chapter 6 discusses the experimental results and data analysis. Chapter 7

describes the conclusions and future research. Consent forms, survey instruments, and

task lists are included in the Appendix sections followed by the references.

1.4 Contributions

The contributions provided by this dissertation are geared towards eventual widespread

use of Relationship Analysis and its incorporation into mainstream software engineering

methodologies. Relationship Analysis has the potential to become an invaluable

elicitation and analysis technique regardless of the software engineering approach taken

during the analysis process. As a result, a deeper understanding of the application

domain is expected. This dissertation builds from the concepts initiated by Yoo's

dissertation on identifying relationship structures of application domains. His work

provided a first cut to Relationship Analysis (RAF) and the proof-of-concept that

Relationship Analysis is both feasible and will provide a major contribution. This

dissertation will utilize concepts learned from RAF and develop it into a rigorous and

systematic process based on theory to identify and document the relationship structure of

an application domain.

5

The proposed Relationship Analysis Process (RAP) integrates into current object-

oriented analysis (00A) processes to fill an important gap of how to explicitly identify

and document the relationship structure of an application domain. The dissertation will

produce the following:

■ A Relationship Analysis Model (RAM) based on theory
■ A rigorous and systematic user-centered Relationship Analysis Process (RAP)
■ A domain-independent Relationship Analysis Template (RAT) for eliciting

information about the relationship structure of an application domain
■ A Relationship Analysis Diagram (RAD) that documents the relationship

structure of a domain, which would greatly assist in developing class diagrams

The RAP, RAT, and RAD should enhance the systems analyst's effectiveness,

especially in the area of relationship discovery and documentation. Further contributions

are presented in Chapter 7.

1.5 Dissertation Boundaries

Relationship Analysis is not a design technique. Rather, it is a method-independent

analysis technique, which provides useful input to the system's design phase. This

dissertation does not discuss how designers use the information provided by the RA

analysis technique. Instead, the dissertation shows how the explicitly identified

relationships help designers with varying experience levels to create class diagrams.

RA has been developed utilizing computer systems centric application domains.

Although it may be generic enough to apply to other problem domains, this dissertation

does not address those possibilities.

CHAPTER 2

BACKGROUND LITERATURE

The term Software Engineering evolved from the need to apply a systematic process to

the development, operation, and maintenance of a software product. To meet the need

for high quality, low cost software systems, delivered quickly, firms balance the issues of

quality, cycle time, and effort to determine tradeoffs to be managed and improved during

the software development life-cycle process (Harter et al., 1998). The development of

software systems generally requires a group effort utilizing specialized skills and

knowledge. This collaborative approach requires effective team management (Donnelly

et al., 1998). The best way for a group to share a common terminology is through formal

written specifications that describe the problem to be solved (IEEE, 1998) (Faulk, 2000)

(Thayer & Dorfman, 2000) (Sommerville, 2001). These documents outline the scope of

the project and the problem domain as well as capture the user requirements and overall

desired system functionality. The process of documenting the requirements is the first

step to the software development life-cycle. The primary reason why some software

systems are unsuccessful is that requirements analysis is poorly done or not performed at

all (Abdel-Hamid & Madnick, 1989). Therefore it stands to reason that analysis is a key

component to the software development life-cycle process and improving this phase

should help to improve the entire process. This chapter is a literary review of a wide

assortment of analysis techniques that can be used to help analyze and design software

systems. Although there are many techniques, the underlying commonality or objective

of different analysis techniques is to gain a better understanding of the problem domain.

6

7

2.1 Software Engineering Debelopment Process

The Institute of Electrical and Electronics Engineers, Inc. (IEEE) defined the term

software engineering in 1993 as the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software; that is, the

application of engineering to software. Software engineers have developed

methodologies that assist them to develop software products. These methodologies

encompass the entire software development life-cycle process. The software

development process or software life-cycle begins with a statement of software

requirements and ends with the product being retired (IEEE, 1998) (Blum, 1994).

Therefore, the software process is the progression from the identification of some

application specific domain need to the creation and delivery of a software product to

fulfill that need. To understand the need, one must first understand the application

domain. Analysis exists at the application domain level and conceptual models are used

to explain the application need and describe domain concepts. Models are prescriptive in

nature and are intended to provide clear and concise software requirements, which are

then utilized to construct the software system. The most fundamental software

development process activities are specification, development, validation, and evolution

(Sommerville, 2001). These activities can be realized using a varying number of

techniques and methods and the scope of this paper is to focus on the specification

activity of the software development process.

There are different paradigms or approaches that software engineers can use to

develop systems both effectively and efficiently. These paradigms organize the software

development process activities in different ways. However, regardless of the method

8

chosen, it involves the specification, development, validation, and evolution activities.

The baseline management paradigm strategy is used to coordinate and control the

software development process (Thayer & Dorfman, 2000). Baseline management is

based on the waterfall software development life-cycle model (Royce, 1970), which

partitions the project into manageable pieces.

Each component of the Waterfall model has its own process steps requiring

people with various levels of expertise to successfully develop the software product

solution. Taken verbatim, the Waterfall development model requires that the set of

system and software requirements be determined and remain static before design and

9

implementation begin. Following the steps of the Waterfall model in such a sequential

manner is too rigid and is a contributing factor to the software industry being plagued by

cost overruns, late deliveries, poor reliability, and user dissatisfaction (Abdel-Hamid &

Madnick, 1991). Therefore, variations to the Waterfall model have been created to be

more iterative in process and more incremental in tangible assets.

2.1.1 Iterative Software Debelopment

Most software engineering projects use the Waterfall model process steps as a guideline

to follow in the overall life-cycle to coordinate and control the software development

process. But instead of following a sequential developmental process, a more iterative

approach is utilized. The iterative development approach addresses the shortcomings of

the Waterfall model and provides an iterative process model to software development.

Other common names for the iterative process are: incremental, evolutionary, staged, and

spiral. The essence of the iterative process is that system and software specifications are

developed jointly with the software code (Sommerville, 2001). This approach fosters a

design for change attitude to software development. During the software development

process, requirements change. The literature indicates that requirements change because

users either do not know or find it difficult to describe the functionality needed in the

software system. In addition, users needs evolve over time resulting in system and

software requirements to also change to encompass these new needs. Changing users

needs alter the value of software features rapidly, therefore making the software life-

cycle process unpredictable. Since software development depends on requirements that

are constantly changing, it is difficult to create a predictable plan. Iterative development

10

is an adaptive process because it can handle changes in required features. This leads to a

style of planning and control where long-term plans are very fluid, and short-term plans

relating to an iteration are stable. Iterative development provides a firm foundation in

each iteration that is the basis for later plans.

When using incremental development, initial software releases contain limited

functionality but are constructed in a way to facilitate incorporating new requirements.

Davis argues that the incremental approach reduces the overall development time, allows

software to be easily enhanced, and helps to meet users needs (Davis, 1988). Both rapid

and evolutionary prototyping addresses the issue of ensuring the software development

product meets users needs (Gomaa, 1990) (Boehm, 1988). The approach is to construct a

series of partial implementations that can be used to elicit user feedback and provide

users with working models of limited functionality. The feedback is used to modify the

software requirements specification and incorporate these needs into the written

specification and software asset. The benefits of using an iterative software process are

(Gordon & Bieman, 1995):

■ Improves System Usability
■ Improves Match Between System Functionality and Users Needs
■ Improves Design Quality
■ Improves Maintainability
■ Reduces Development Effort

These advantages are due to the ability of the iterative life-cycle to adapt to

changing needs during the software development process. Consequently, higher quality

software systems that meet users needs result. Providing incremental software releases

affords the development team time to evolve and grow requirements, designs and

implementations. The concept of developing software systems in an iterative fashion,

11

producing incremental assets based on change, is an adaptive process (Highsmith, 1999).

Adaptive software development differentiates itself from the traditional process-oriented

methodologies in that it is a people-oriented process (Cockburn, 1999). Software

development that uses adaptive techniques is now known as an agile methodology.

2.1.2 Agile Software Debelopment

Agile software development is a people-oriented process and there is a constant

reworking of the management plan, requirements documents, design documents, and

implementations with each iteration. This approach helps to identify risk early on in the

development process instead of at the end. The earlier in the development process an

error occurs and the later the error is detected, the more expensive it is to correct (Faulk,

2000). The two most prominent methodologies that fall under the agile life-cycle concept

are Extreme Programming (XP) and The Rational Unified Process (RUP). It can be

argued that the RUP is a heavyweight process and not a lightweight agile process since

the RUP can also be used in a traditional waterfall style. The RUP is discussed in greater

detail in subsequent paragraphs of this section.

The XP approach addresses the values communication, simplicity, feedback, and

courage (Beck, 2000). XP can only work if people keep up the line of communication.

This takes the place of any formal product specification and forces user involvement and

user participation. Both are needed to ensure usage and acceptance (Barki & Hartwick,

1994) (Lederer et al., 1998) (Baroudi et al., 1986) (Saleem, 1996). Feedback facilitates

communication and provides the current state of the system. The very nature of feedback

nurtures open communication among all those involved in the project. Simplicity refers

12

to the development of the simple solution without worrying about thinking ahead. The

argument for this stance is that spending time to implement a complicated feature that has

not been requested and probably will not be used is a waste of time. As long as the

solution provided is component-oriented it should allow for extensibility, and these

features if requested in the future, can be incorporated. Both simplicity and

communication complement each other. The greater the communication the clearer the

overall picture of what the problem is and what has to be done to develop a solution. Just

as the simpler the solution the less communication necessary to make that picture clear.

Lastly, courage is an XP value that is more prevalent in this paradigm than others. This

is primarily due to the lack of a formal specification that can be used to measure against.

Management needs to have the courage to trust the team to get the job done. In addition,

the developers need to have the courage to refine and simplify complex designs.

XP achieves design differently than other software development methodologies.

Other methodologies stress rigorous up front design and analysis steps before coding

begins. XP on the other hand starts with coding as soon as possible. An XP solution is

comprised of the activities: coding, testing, listening, and designing (Beck, 2000). These

activities are realized using twelve XP practices: planning, small releases, metaphor,

simple design, testing, refactoring, pair programming, collective ownership, continuous

integration, 40-hour week, on-site customer, and coding standards. XP also recognizes

that no one person can possibly understand all components and all aspects of the entire

project, therefore ruling out centralized authority. Instead, XP institutes a decentralized

decision making posture. The manager runs the process but allows those who are

specialists in certain areas to make those decisions. The manager acts as a facilitator who

13

oversees the entire process and shares decision-making responsibilities with those who

are familiar with a concept. The XP management tool is a chart metric. The chart is

posted in a conspicuous location that tracks estimated development time and current

calendar time. This allows the team to track product development and ascertain if they

are on target or not. This approach allows the team to manage themselves without having

a manager to dictate what has to be done and by when. It also aids in sharing

responsibility with all team members and supports the idea that people want to do a good

job and fosters that mind set. One of the most appealing activities is XPs emphasis on

testing. Programmers write tests as they develop code. The tests are integrated into a

continuous integration and build process that results in a highly stable platform. The

platform evolves with successive iterations and yields a design process that is disciplined

and adaptable.

The RUP is also a disciplined process that provides a framework that can

accommodate a wide variety of processes. The process is iterative, object-oriented,

controlled and can be used for the traditional waterfall heavyweight style or an agile

manner of development depending on how it is tailored to the development environment

of the organization. At its core, the RUP consist of nine fundamental workflows.

■ Business Engineering: Understanding the needs of the business
■ Requirements: Translating business needs into the behaviors of a computer

system
■ Analysis and Design: Translating requirements into software architecture
■ Implementation: Developing software that fits within the architecture and

conforms to the required behaviors
■ Test: Ensuring that the required behaviors are correct
■ Configuration and Change Management: Keeping track of all the different

versions
■ Project Management: Managing schedules and resources
■ Environment: Setting up and maintaining the development environment
■ Deployment: Everything necessary to release the final product

14

In contrast to a sequential development environment model, these activities are

executed concurrently in an iterative fashion utilizing a phased approach throughout the

lifetime of a product. Inception, elaboration, construction, and transition comprise the

phases. In an iteration, all of the RUP activities are executed but as the project matures,

the emphasis on certain activities increases or decreases depending on the project phase

or stage. This permits change to be easily incorporated into the RUP iterative approach.

Whereas XP works best with a small project scope and small groups, RUP's framework

can accommodate both smaller and larger scale software projects. The literature

indicates that XP is a minimal RUP process used in an agile manner (Booch et al., 1998)

(Smith, 2001) (Martin, 2002). Similarly, Martin's dX (XP upside down) process fully

complies with RUP's framework in an agile manner. Both the XP and dX methodologies

utilize the RUP framework to software development but in an agile manner. Larman is

also a supporter of agile RUP and uses the Unified Modeling Language (UML) to sketch

out the design of work to be done during each iteration (Larman, 2001).

The UML is an industry-standard and accepted modeling language that is used to

specify and document the data and processes of software system development in an

object-oriented manner. It is unified because Grady Booch and James Rumbaugh merged

their individual object-oriented modeling techniques into a single method known as the

UML. In addition, they incorporated Ivar Jacobson's use-cases technique into the UM.

A use-case describes how users and the system work together to realize the identified

feature (Leffingwell, 2000). Booch, Rumbaugh, and Jacobson adopted fours goals in the

creation of the UM (Boggs & Boggs, 2002).

■ To represent complete systems using object-oriented concepts
■ To establish an explicit coupling between concepts and source code

15

■ To take into account scaling factors inherent to complex and critical systems
■ To create a modeling language usable by both humans and machines

These four overall design goals were at the heart of the first release in October

1995. It has evolved and expanded since, but the focus has always been on the object-

oriented modeling language rather than the object-oriented method. Modeling is a core

component of all the activities that lead up to the deployment of a good software system.

A successful software organization can consistently deploy a good quality software

system that meets the users needs and is usable. Therefore the best way to deploy a

software system that meets the users needs and expectations is to properly capture the

desired user requirements. In addition, to develop a quality software system it must have

a solid architecture that can handle change. This implies that the development process

used, must be systematic and adaptable to changing needs by users, business, and

technology. Modeling and in particular the UML helps organizations achieve and realize

this goal. Models provide the software system blueprints and are comprised of both

general and detailed plans. Modeling helps designers to visualize a system and

understand both static and dynamic behavioral characteristics. Models provide templates

that can be used in constructing a system as well as a way to document decisions (Booch

et al., 1998). The UML notation is platform independent and is designed to serve as an

object-oriented modeling language, no matter how it is deployed. The UML can be used

throughout the development life-cycle and across different implementation technologies.

Similar to the openness school of thought followed by the creators of Linux, the UML is

not a proprietary notation. Tool developers and training agencies may use it freely and

Rational Rose is an object-oriented developmental tool that utilizes the UML. A Rational

Rose model is a collection of diagrams that represent the software system from various

16

perspectives. The Rose model supports eight UIML diagrams: use-case, activity,

sequence, collaboration, class, state-chart, component, and deployment. These process

diagrams are a graphical representation of the software system. They aid both users and

developers in product planning and development and depict the system's static and

dynamic state.

Static Views:

■ Use-case Diagrams: Captures system functionality as seen by the users and is
built at the project start.

■ Class Diagrams: Outlines the vocabulary of the software system and are created
and modified throughout the development process. These diagrams show the
interactions between classes and their relationships amongst each other. It is
comprised of a section that shows the class name while the other shows the class's
attributes. Class diagrams are useful to people in different ways. Developers use
class diagrams to develop classes. Analysts use them to understand the system
details. Lastly, class diagrams depict the overall design of the system to
architects.

■ Component Diagrams: Describes the physical structure of the implementation and
aids in organization and release building. There are two types of components,
executable and library. A component diagram shows the compile-time and run-
time dependencies. These components are connected by dashed lines and show
their dependency relationships.

■ Deployment Diagrams: Depicts the system's platform configuration and are
useful to understand the physical layout of the system.

Dynamic Views:

■ Sequence Diagrams: Represents the time-oriented dynamic control flow by
showing the flow of functionality through a use-case.

■ Collaboration Diagrams: Shows the message-oriented dynamic control flow
between objects.

■ State-chart Diagrams: Shows the event-oriented dynamic software system
behavior. This provides a method to model the states in which an object exists.
The state start is depicted by a black dot and shows its initial state at creation.
The stop state is depicted as a black dot in a circle and shows the object's state
just before destruction.

■ Activity Diagrams: Shows the activity-oriented dynamic software system
behavior. These diagrams depict the workflow process. They show the workflow
start, end, and the order the activities occur.

17

Different people performing different roles on the project team use the static and

dynamic view diagrams. Thus, the Rational Rose tool can be used by the entire project

team and is a way for the team to systematically analyze and design a project.

Both XP and RUP are methodologies that utilize an agile software development

approach. Its processes are iterative and represent an adaptive approach to software

development that is people-oriented and rejects the assumption that people are

replaceable components. Treating people as replaceable resources has its origins in

Taylor's Scientific Management approach (Taylor, 1967). A Taylor model may be

appropriate in a factory type setting but software development is a creative process and to

hire and retain a competent staff requires a people-oriented management process.

2.2 Software Project Management

The initial process steps of the life-cycle process involves gathering and analyzing both

system and software requirements. This involves the collection of information from the

customer for whom the software engineering project is to be created. The collected

information is to describe and outline the basic functionality of the software system to be

designed. The description outlines what is to be designed based on criteria set forth by

the customer. Requirements gathering is one of the first steps in any software life-cycle

and builds the foundation that subsequent process steps rely. Some factors that affect the

quality of these requirements involve experience, effort, time, and domain knowledge.

Much of Boehm's research in this area has yielded interesting correlations between

schedule and effort (Boehm & Egyed, 1998). The primary observation was that the more

time spent creating a requirements document did not necessarily produce a high quality

18

document. His research has shown that a more important quality driver affecting a

requirements document was that of previous experience and domain knowledge. Since

subsequent software development process steps rely on the requirements phase, it seems

prudent for an experienced domain expert to spend the time upfront and carefully

generate meaningful, highly usable requirements documents. These documents are then

used as a basis to generate design documents, testing and evaluation plans, and user

guides. They are also used to produce a schedule used by the management team to track

progress.

A project, software or some other type, needs to be planned and controlled

through some form of management process to increase the likelihood of its successful

completion. The management process binds and coordinates the activities surrounding a

project's life-cycle. Software project management is an extension to project management

in general and therefore shares the same characteristics and concerns. Thus, good

product management of software projects is vital to its successful implementation.

Project management involves planning, organizing, controlling, and leading a series of

activities realized in a group environment to accomplish a particular goal. These four

aspects of the project manager's role are known as the disciplines of management and are

listed in Table 2.1 (Donnelly et al., 1998). It is the responsibility of the project manager

to balance these disciplines within the atmosphere of the organization. Project

management acts in the best interests of the organization utilizing the available resources

to get the job done.

19

Mostly all software development projects involve a team effort to elicit user

requirements, document and analyze those requirements, implement a solution, test and

verify the solution, deliver the completed solution to the customer, and lastly, maintain

that system. Collaborative efforts have been demonstrated to aid analysts by improving

the problem solving process (Wilson et al., 1993) (Sabin & Sabin, 1994) (Nosek, 1998)

(Selvin, 1999). The benefits of the collaborative development environment are also

supported by Deek's research (Derek, 1999) (Derek et al., 2001).

During these collaborative activities it is possible for both business conditions and

technologies to change. These changes, coupled with the possibility that the customer

often changes the system requirements and basic functionality, has further complicated

the software development process. As a result, the software industry is plagued by cost

overruns, late deliveries, poor reliability, and user dissatisfaction (Abdel-Hamid &

Madnick, 1991). According to a Standish Group International report, approximately one

third of all information system projects failed, more than half completed over budget, and

20

only 16% were completed on time and within budget (Cafasso, 1994). Some causes of

project failures are technology related, however the more predominate causes are

communication issues and ineffective leadership. Block's analysis outlines twelve

categories to classify most software system failures and they are summarized in Table 2.2

(Block, 1983).

21

The purpose of project management is to provide focus for using resources to

achieve a specific objective within the constraints of time, cost, and performance. To

help achieve objectives, managers should understand that the predominate causes of

project failures are due to the human elements of communication issues and ineffective

leadership. Since the four disciplines of management are geared towards effective people

management skills, management can directly address the human aspects of project

failure. By addressing these human aspects component of the software project

management process, a manager can help reduce their effect on project failure and

increase the likelihood of a successful software project.

22

2.3 Human Aspects

One way to measure the success of a software project is through good client relations as

the ultimate measure of a project's success (Jurist, 1999). User involvement helps

acquire a good working relationship with the client. This is achieved with an open line of

communications with the client. Barki and Hartwick, Lederer, Baroudi, and Saleem have

all done research in the area of user involvement on software system acceptance. They

have all determined that user involvement enhances system usage, user satisfaction, and

ultimately system acceptance (Barki & Hartwick, 1994) (Lederer et al., 1998) (Baroudi et

al., 1986) (Saleem, 1996). Thus, effective communication skills can facilitate the process

leading to a successful project.

An individual with effective communication and people skills aids all members of

the team by acting as a facilitator between the software development team and the client

during all phases of the software development process. In addition, many organizations

face a staffing challenge. A manager also needs to facilitate communications among the

members of the development team in an effort to keep everyone on the same page.

Information technology workers of all types have realized that their skills are highly

transferable to different companies and industries (Gill & Pidduck, 2001). Employees

experiencing work exhaustion or job burnout have higher intentions of leaving their job

(Moore, 2000). To help prevent high turnover, a manager needs to find ways to retain

their professional work staff.

By understanding and utilizing the Herzberg motivation hygiene model of

management, a manager should be able to leverage this model and apply it to help

establish and retain a highly motivated project team.

23

The model states employee motivation is achieved with challenging enjoyable

work where achievement, growth, responsibility and advancement are encouraged and

recognized (Herzberg et al., 1959). This theory addresses the concerns of job security,

salary, working conditions, benefits, and others, which can affect an employee's

productivity. By addressing these concerns, managers can eliminate possible sources of

dissatisfaction, thereby increasing the chances of greater productivity.

Another way to improve the software development team is by utilizing

participative management. The participatory management style approach allows various

team members decision-making authority. The individual making a particular decision is

the team expert in that particular area. The manager remains actively involved by

facilitating the process. Field studies have shown that participation management has a

positive influence on productivity and job satisfaction (Chung & Guinan, 1994). These

are just some of the ways in which human aspects can be directly addressed and managed

for the benefit of the individuals, software development team, and organization.

24

Information technology has also brought about change in the fundamental

structure of the team concept. Communication technology has afforded organizations the

ability to create virtual teams. Consequently, these team types have added a new level of

complexity to team dynamics. Similar to the traditional approach, a virtual software team

is a group of people whom work together guided by a common purpose to develop a

software system. The difference, with respect to the traditional team, is that personnel

and resources may be distributed over many different geographical locations. This brings

new challenges to project management with regards to the social system. Organizational

inertia, politics, and culture can all have major impacts on current efforts to develop

effective virtual team dynamics (Haywood, 1998). Some of the key challenges facing the

virtual team manager are building a cohesive team, keeping the synergy flowing, and

monitoring the work of team members (Pare & Dube, 1999).

Therefore, a software project team manager must consider both the technical and

human components of the software development process during the life-cycle of a

software project. The remainder of this paper addresses the technical element of the

software development process, namely the analysis phase.

2.4 Analysis Framework

The analysis phase examines what the software system should do before subsequent

phases decide how it is actually realized. The analysis determines the scope of the

software system by completely describing what is to be created and techniques exist to

specify a system. This section presents a new analysis framework to help describe

various techniques used during the specification process. The goal of developing the

25

framework is to make it general enough to accommodate different analysis techniques

and provide the ability to describe each technique in a systematic, repeatable method.

Developing the framework in this manner makes it possible to describe issues,

limitations, problems, and opportunities with various analysis techniques.

The analysis framework is based upon the component-oriented approach to the

software system development process. Component-based development or component-

based software engineering is a re-use based approach to software systems development

(Sommerville, 2001). A component is an independent entity that provides services and

may be described at different levels of abstraction. The analysis phase views the system

at a high level of abstraction and identifies major system components. These components

interact with each other to create a useful system function that describes what is to be

done. The goal of the analysis is to describe the software system in its entirety by

decomposing it into its relevant high-level abstract components. It is possible to describe

a software system at different levels of abstraction and detail. The aggregate of all of

these components comprise the software system. A more refined description yields a

more detail-oriented software system description. There are many techniques and

methods available to perform this software system decomposition and the intent of this

paper is to compare and contrast the variety of techniques using a common analysis

framework.

The analysis framework presented views a software system as a collection of

components that interact with each other to accomplish a process leading to a particular

goal. The framework is based on the concept of component-based interactions. A

component interaction is described by function, communication, and behavior

26

characteristics (Wieringa, 1998) and can best be viewed graphically as depicted in Figure

2.2.

The function characteristic describes the actions or functionality of a component

interaction. Communication characteristics describe how information is exchanged.

Behavior, the third characteristic, describes how the component responds to an event.

Function, communication, and behavior characteristics can act either independently or

dependently with each other to describe a component interaction.

In my framework, I incorporate the dependent nature of the three characteristics

to yield three additional characteristics depicted in Figure 2.3. These additional

characteristics result from the intersection of the three primary characteristics.

27

A component interaction may consist of one or more functions that can

communicate and share information with each other. The way functions communicate

with each other helps to capture relationships among the functions. The fifth

characteristic, function & behavior, represents the time-ordered behavior of a function.

Lastly, the third combination, communication & behavior, describes the sharing of

information with respect to time. These six characteristics comprise a component

interaction and form the framework that will be used for comparison to describe each

analysis technique. The literature does not explicitly categorize systems using all these

characteristics in a framework. Wieringa's paper is an original approach that provides a

framework to compare analysis techniques. I extend the framework and explicitly add

three additional characteristics that describe the analysis technique in terms of its

interdependence among the original three characteristics. These six characteristics are

used to describe the static and dynamic features of an analysis technique. Therefore, the

28

varying analysis techniques will be described in terms of how well these characteristics

are addressed.

Analysis techniques can be compared and contrasted using the characteristics of

function, communication, or behavior either independently or in combination. For

example, to determine the effectiveness of how an analysis technique identifies major

software system functionality, the function characteristic can be utilized. This approach

permits comparisons between techniques to be made. A second example involves the

determination of how well the analysis technique identified the scope of work utilizing a

re-usability approach. In this case, the analysis technique should focus on the function

and communication characteristics of the framework since re-usability is most successful

when major system functionality can be encapsulated into a component that

communicates through an interface.

Both of these examples show how the framework could be used to compare and

contrast concepts utilizing various analysis techniques. This framework allows the

analysis techniques to be compared and contrasted in a variety of ways utilizing the

function, communication, and behavior system properties in either an independent or

dependent manner.

2.5 Structured Analysis

Structured analysis is a methodology that aids the practitioner during the analysis phase

of the software system development life-cycle. Structured analysis is a process-oriented

system definition approach to the description of the software system in a top-down

fashion. The top-down approach decomposes the software system in a leveled manner

29

whereby each level provides more details until a primitive, atomic level is reached. This

is a conceptual decomposition as opposed to a physical decomposition. A conceptual

decomposition partitions the software system in terms of components that correspond to

domain entities. In contrast, a physical decomposition is defined in terms of the actual

software system components and is realized during the implementation phase. The

conceptual decomposition is a way to make the demands of external functionality explicit

without yet worrying about implementation decisions (Wieringa, 1998). Therefore, the

conceptual decomposition is a top-down leveled approach that organizes views of the

software system into a hierarchical structure. This structure defines the software system

based on the system functionality and behavior, emphasizing both data and control flow.

The structured analysis perspective is to generate a detailed, logical description of tasks

and operations by focusing on the control flow and data processing of information.

Within the context of structured analysis, there are many prominent variants to

analyze information flows. These variants suggest different ways to approach analysis in

a structured manner, sharing the common goal of improving the understanding of the

software system. Ross developed the "Structured Analysis and Design Technique"

(SADT), which begins the process of analysis by determining the why and what of the

software system components before progressing to the implementation or how phase.

The SADT graphically depicts interactions of data and activities by utilizing activity

diagrams whose constructs are depicted in the Figure 2.4.

30

There were other developments of structured analysis techniques around the same

time period. For example, DeMarco's technique for analyzing information flow is based

upon the process flow chart developed by Taylor and Gilbreth (Couger, J. 1973). These

process flow charts graphically depict the movement of materials in a manufacturing or

service-oriented capacity. The process flow chart is an abstraction and defines the key

points and activities of the system processes. DeMarco and Yourdon extended the

process flow chart concept to include the analysis component of the software engineering

process. The constructs of their structured analysis technique are listed in Figure 2.5

(DeMarco & Yordon, 1978). Gane and Sarson developed a method similar to DeMarco's

process and data flow oriented-technique but it focuses more on the data view by

emphasizing the identification of the data components of the software system (Gane &

Sarson, 1979). To this end, their technique utilizes data access diagrams to describe the

contents of the software system data stores. These data access diagrams depict the entities

and links of a data store. This data centric technique builds from Chen's unified view of

data concept (Chen, 1976). Chen identifies major data components of the system by

utilizing the characteristics of entities, attributes, and relationships. The characteristics of

31

these components are captured in an entity-relationship-attribute (ERA) model. These

entity relationship (EIR) diagrams have become the basic building blocks to database

design techniques and model the characteristics of the database system to be designed.

Models and structural analysis techniques can be used to produce software system

specifications that describe the software system. All versions of structured analysis

32

utilize a top-down decomposition approach to develop conceptual abstractions that lead

to concrete software components. These structural analysis techniques can produce

software system specifications by utilizing the constructs previously described. The

specifications consist of various diagrams depicting the systems processes and data flow

in both a static and dynamic nature. Traditional structured analysis of business-oriented

software systems utilizes data flow diagrams, data dictionary, mini-specifications, and

structured walkthrough components to identify the requirements (Svoboda, 1990).

2.5.1 Data Flow Diagrams

A data flow diagram (DFD) is a labeled directed graph in which the nodes represent

functions and the edges data flows between functions (Wieringa, 1998). These diagrams

show the way in which data is processed and describe the overall behavior of the

software system. The DFD specifies the data and control processes of a software system

utilizing the constructs described in the previous section. A data process describes the

data as it progresses through a process, while a control process describes the behavior of

the process. Both the data and control perspectives help to identify the requirements of

the software system.

These diagrams are created to represent different levels of the software system.

The highest and most abstract view of the system is called the data context diagram

(DCD). This context level data flow diagram depicts the software system as a collection

of external entities or sub-systems that represent major system functionality. The DCD

helps to show the overall scope of the software system by representing each sub-system

as an independent entity. Identifying the data process interaction in finer detail then

33

further decomposes each sub-system. These subsequent decompositions are performed in

a top-down hierarchical leveled approach. Each intermediate level shows more detail

than its predecessor until a primitive level is reached. The processes, data stores, and

data flows depicted in the data flow diagrams are from a functional viewpoint and the

communications perspective is also addressed by the input and output data contained

within the DFD. Each process, entity, and data store of the decomposition depicts the

input and output data to the construct. This permits a hierarchical trace ability of

information flow through all the diagrams. Therefore, the DFD component of structured

analysis addresses the function and communication aspects of the proposed comparative

analysis framework. In addition, there are variants of the DFD that represent varying

software system states of activity. These types of diagrams represent the dynamic state

of the machine and model the behavior of the software system in response to internal or

external events (Sommerville, 2001). Consequently, these state diagrams identify the

software system dynamics. Thus, the various types of data flow diagrams depict both the

functional aspects and system dynamics of the software system. These diagrams

graphically depict both data and control flow utilizing pictorial constructs. To further

enhance the meaning of these diagrams, structured analysis techniques produce a

narrative textual description.

2.5.2 Data Dictionary

The data dictionary is a textual description of each data flow diagram and defines all the

names, processes, data flows, and data stores. The data dictionary is a repository, manual

or computer-based, containing information about the various data objects appearing on

34

each data flow diagram (Svoboda, 1990). It acts as a central location so that the textual

description information is contained in a single location. Much of Hitchcock's research

is based on the premise of processing information contained in a central location

(Hitchcock, 1980). Hitchcock argues that data dictionaries form the basis of

understanding the software system in its entirety. This description is comprehensive and

each element identified on the data flow diagram should also have an entry in the data

dictionary. These descriptions encompass all but the actual primitive processes.

2.5.3 Mini-specifications

The mini-specifications are also called the primitive process specifications and contain

information concerning the actual primitive processes. A mini specification should

describe the actual steps required to carry out the primitive process. These primitive

processes represent a description that cannot be further decomposed into additional

subcomponents. The four most common ways to realize a mini specification are: text-

based narrative, decision tree, decision table, and procedure definition language (PDL)

(Svoboda, 1990). Regardless of the method chosen, the focus of the description is on

what steps the primitive process must perform. The ability to adequately describe what is

to be performed aids in comprehending the functionality required by the software system.

The creation of the mini-specifications is the last step of the structural analysis before the

analysis is reviewed and critiqued in its entirety.

35

2.5.4 Structured Walkthrough

The inspection process or structured walkthrough review follows the completion of the

structured analysis and its primary function is to verify the accuracy of the analysis. This

review takes the form of a formal meeting in which the participants should consist of all

the stack-holders of the proposed software system. This meeting allows all participants

to verify that the analysis actually captured the problem that the proposed software

system is to solve. Since one of the primary reasons why projects fail is because

requirements analysis is not performed (Abdel-Hamid & Madnick, 1989), it is crucial that

all participants reach consensus concerning the software system before design and

implementation begins. Thus, the goal of the structured walkthrough review is to have all

stack-holders understand and agree on the requirements of the software system.

2.5.5 Deficiencies

Although structured analysis aids in describing the requirements, it also has many

shortcomings. These deficiencies encompass both the technical and human aspects

concerning structural analysis. With respect to the human element, the process of

structured analysis does not distinguish between the way people act and the way

machines function and represents a functionalistic or system-structural approach (Astley

& Van de Ven, 1983). Bansler describes how this highly structured technique treats

workers as machines causing dissatisfaction to increase and motivation to decrease,

resulting in the following deficiencies (Bansler & Bødker, 1993).

■ Underrates the skills and ingenuity of the workers since problem-solving skills
cannot be reduced to structured analysis rules.

■ Ignores the significance of informal communication among workers to coordinate
their tasks and to cooperate in group-problem solving.

36

■ Underestimates the frequency and significance of errors and exceptions.
■ Does not consider resistance from individuals or groups of users to the

development and introduction of a new software system.
■ Contains no concepts for modeling organizational units or resources.
■ Offers no help in specifying relations of authority and responsibility.
■ The role of the users in this process is passive.

In addition to structured analysis deficiencies concerning the human aspects, the

following list outlines some of the technical deficiencies (Sommerville, 2001).

■ They do not provide effective support for understanding or modeling non-
functional system requirements.

■ They do not usually include guidelines to help users decide whether or not a
method is appropriate for a particular problem.

■ They are not developed for the concept of re-use.
■ They often produce too much documentation.
■ The models are very detailed and users find them difficult to understand.

The aforementioned lists describe both the technical and human component

deficiencies associated with structured analysis. Most of the literature dealing with

structured analysis does not mention human aspects, only the technical aspects. However,

the study of any information system topic should encompass both the technical and

human component since they coexist and should not be considered mutually exclusive.

2.5.6 Summary

Structured analysis is a technically oriented technique that takes a functionalistic

approach to problem solving. The approach utilizes constructs and rules to break down a

problem in a highly structured top-down approach. In doing so, the goal of the analysis is

to decompose the software system into its basic components utilizing a systematic

method. Table 2.4 summarizes the structured analysis technique utilizing the

characteristics of the analysis framework.

37

Structured analysis does address the six characteristics of the analysis framework

discussed and the results are listed in Table 2.4. In particular, the system entities and

relationships among them are identified by data flow diagrams. As the name implies the

nature of the relationships among entities are data flow centric. These relationships are

tightly coupled with corresponding functions thus making relationship identification

dependent on function identification. This relationship identification is solely based upon

the ability of the development team to identify system functions. However, many

functions are not identified until the implementation phase causing many relationships to

be missed during the analysis phase. This could lead to inadequate problem domain

understanding and an incomplete analysis process.

2.6 Object-oriented Analysis

Object-oriented analysis (BOA) is a method of analysis that examines requirements from

the perspective of the classes and objects found in the vocabulary of the problem domain

(Booch, 1994). With respect to software systems, BOA is a method that develops

software engineering requirements and specifications utilizing an object model approach.

38

An object model represents the software system by providing a description of the major

software components or objects comprising the system. An object is a real world concept

or abstraction that represents a portion of the problem that is to be solved. An object is

an entity that has a state and a set of operations that access the state and is depicted

graphically in Figure 2.6.

The object is comprised of two sets of components: state information and

operations. An object's state is defined by a set of attributes and the operations

performed on that state are called methods. Consequently, the object model is a

collection of interacting objects that maintain their own state and provide operations that

permit access to this state information. These objects help to encapsulate an abstract

concept into a self-contained unit. This unit or component-based approach provides

object-oriented analysis powerful modeling techniques. Therefore, the principle behind

object modeling is encapsulation and abstraction (Booch, 1996) (Rumbaugh, 1991).

Booch defines a spectrum of abstraction for objects that closely model problem domain

entities:

■ Entity abstraction is an object that represents a useful model of a problem domain
or solution-domain entity.

39

■ Action abstraction provides a generalized set of operations, all of which perform
the same kind of function.

■ Virtual-Machine abstraction is an object that groups together control operations.
■ Coincidental abstraction is an object that packages a set of operations that have no

relation to each other.

These types of objects are the building blocks of the object-oriented paradigm,

which incorporate the object-oriented strategy throughout the software development

process. Sommerville breaks the object-oriented development process into three main

components: analysis, design, and implementation (Sommerville, 2001).

■ Object-oriented analysis develops an object-oriented model of the application
domain.

■ Object-oriented design develops an object-oriented model of a software system to
implement the identified requirements.

■ Object-oriented programming realizes a software design using an object-oriented
programming language.

Each stage of the object-oriented development process uses the same notation,

thereby eliminating transition gaps. These uniform principles apply throughout the

software development process. Objects identified during the analysis phase map directly

into the design and implementation phases. This similar notation dependency has both

positive and negative aspects. Since objects encapsulate a portion of the problem to be

solved, tracing requirements become easier since manipulation of object entities is a more

natural approach to problem solving (Verson, 1992). Conversely, if during the analysis

phase the objects are incorrectly created, it negatively impacts the design and

implementation phases. Ultimately this result in a final architecture that reflects the poor

decisions made during the analysis phase.

The object-oriented analysis problem solving method differs from the structured

analysis process-oriented method in two major respects (Bailin, 2000):

40

■ The method in which a software system is portioned into subsystems and
components.

■ The way in which the interactions between these subsystems or components are
described.

The object-oriented (00) paradigm takes the data and procedure components,

discussed in structured analysis, but de-emphasizes the procedures, stressing instead the

encapsulation of data and procedural features together. A fundamental goal in defining

objects is to group data items together with methods that read and write to these data

items. This kind of grouping makes each object a cohesive set of methods and data

thereby helping to encapsulate problem domain concepts into a collection of self-

contained units.

Encapsulation and abstraction are the principles behind object-oriented data

modeling encompassing the fundamental abstraction concepts of :

■ Classification: Grouping entities that share common characteristics
■ Generalization: Extracting from one or more objects the description of a more

general object that captures the commonalities but suppresses the differences
■ Aggregation: Treating a collection of objects as a single object
■ Association: Considering set of member objects as an object
■ Attribution: Identification of properties or attributes of an object

Therefore, encapsulation helps to decentralize object-oriented architectures

resulting in software systems to be more understandable, reliable, and easier to maintain

(Anderson, 1989) (Sun, 2002) (Booch, 1994) (Rumbaugh, 1991).

2.6.1 Characteristics

In addition to abstraction and encapsulation, there are several other characteristics

common to all variants of object-oriented analysis methods. This section introduces the

following terms:

41

■ Class
■ Inheritance
■ Information hiding
■ Polymorphism

A class is a way of organizing objects in terms of their similarities and differences

(Bailin, 2000) (Booch, 1994) (Rumbaugh, 1991). An object class describes a group of

objects that have the same attributes and behavior patterns. This grouping of objects

supports the concept of abstraction and affords modeling the ability to generalize a real

world concept, as a single class comprised of a collection of interacting objects.

Operations that are shared by different objects can be written once for the class instead of

once for each object. This fosters the concept of re-use. Software code re-use has been

identified as the key to improving software development and productivity due to its trait

of reducing product cycle time, which in turn reduces both cost and risk during the

product development process (Arango, 1994).

Inheritance has become synonymous with code re-use within the object-oriented

programming community (Rumbaugh, 1991). Inheritance defines a relationship among

classes by grouping similar classes together to re-use common code. The predicate "is-a"

is used to determine these relationships. Each member of a sub-class "is-a" member of

the parent class and inherits characteristics from the parent class. These characteristics

are methods and variables of the parent class, which are accessible to the sub-classes,

thereby allowing these sub-classes to re-use code from the parent class. This "whole-

part" or "part-of' relationship identification is aggregation. Aggregation is the "whole-

part" or "part-of' relationship in which objects representing the individual components,

when combined, represents the entire component.

42

Classes also have the ability to hide information from its sub-classes. This

information could be some or all of the methods or attributes. However, the focus of the

analysis phase is on what methods and attributes are needed to describe a problem

domain concept and information hiding begins to enter the area of how the class is to be

implemented. Polymorphism is also a concept that borders between the analysis and

implementation phases. Polymorphism is the ability of classes related through

inheritance to respond differently to the same method call due to late dynamic binding.

This occurs at run-time and permits the same operation to take different forms in different

classes. For the purpose of analysis considerations, it suffices to say that both

information hiding and polymorphism aid to abstract and encapsulate a problem domain

concept.

By understanding the concepts of abstraction, encapsulation, object, class,

information hiding, inheritance, and polymorphism at the analysis phase, it helps to

ensure their proper use and incorporation into the software system during the design and

implementation phases. These concepts are used to develop the following four views in

the description of the software system:

■ Object Identification
■ Obj ect Communications
■ Object Behavior
■ Object Operations

2.6.2 Object Identification

One of the first steps in any object-oriented analysis is to identify all the objects of the

problem domain. Object-oriented analysis identifies the types of objects that map into

components of the application domain that is being modeled. To identify these

43

components, Booch adopted Abbott's method of object identification by the

differentiation of noun phrases contained within the problem domain narrative

description (Abbott, 1983). This is an intuitive process thereby making the process

difficult to describe and document (Verson, 1992) (Henderson-Sellers & Edwards, 1990)

(Booch, 1994). Some guidelines exist to perform this noun decoupling and the goal is to

define relationships between the software system components. This is a multi-step

process whereby the problem domain is first decomposed into a collection of individual

domains. These domains are self-contained and are comprised of a collection of sub-

systems. These sub-systems are highly cohesive and loosely coupled and are two

software quality characteristics that help to indicate a good analysis and design

(Sommerville, 2001). The sub-systems are then further decomposed into a collection of

interacting objects. The ability to describe a complex object as a structure of interacting

simpler objects is a key benefit of the object-oriented approach (Bailin, 2000) and

provides a static information model overview.

Shlaer and Mellor view this information model as a way to identify and capture

objects, relationships, and attributes in an entity-relationship (E/R) diagram derived from

Chen's view of data concept (Chen, 1976). Their extension improves on Chen's entity-

relationship-attribute (ERA) diagram in two ways (Shlaer & Mellor, 1992):

■ The information model helps to organize the entities, attributes, and relationships
of the information model.

■ The information model provides a rich set of graphical constructs to represent
entities, attributes, and relationships. The graphical symbols provide a more
efficient way to describe the information model by utilizing a unique set of
symbols and identifiers.

The entity relationship diagram is a conceptual decomposition and represents the

structure of the software system and is graphically depicted by class diagrams (Booch,

44

1994). These class diagrams depict the descriptive attributes and properties of an object.

There are many variations to the class diagram concept, but all object-oriented analysis

methods use the class diagram technique as part of their method. Some examples of the

first generation class diagram variations are: object model (Rumbaugh, 1991) (Martin &

Odell, 1995), information model (Shlaer & Mellor, 1992), object-relationship model

(Embley et al., 1992), static object model (DeChampeaux et al., 1993), general semantic

net (Firesmith, 1993), and object/class model (Henderson-Sellers & Edwards, 1994).

The various first generation class diagrams each provide an independent set of

rules and graphical constructs to depict the entities, relationships, and attributes of the

software system objects. These class diagrams depict the classification, generalization,

aggregation, association, and attribution of the software system problem domain.

Regardless of the graphical constructs used, the creation of the class diagram should

follow a seven-step specification process (Booch, 1994) (Rumbaugh, 1991) (Martin &

Odell, 1995) (Shlaer & Mellor, 1992) (Embley et al., 1992) (DeChampeaux et al., 1993)

(Firesmith, 1993) (Henderson-Sellers & Edwards, 1994) (Goad & Yourdon, 1990)

(Jacobson et al., 1992):

■ Identification of key problem domain objects
■ Distinguish between active and passive objects
■ Establish data flows between active objects
■ Decompose objects into sub-objects
■ Check for new objects
■ Group functions under new objects
■ Assign new objects to appropriate domains

These steps are performed during the analysis phase to create the class diagram

and represent the architecture's conceptual decomposition of the software system

problem domain.

45

2.6.3 Object Communications

Others have extended the use of the class diagram to depict object communications (Goad

& Yourdon, 1990) (Graham, 1994) (Selic et al., 1994). In addition to representing the

software system's conceptual decomposition, their implementation of class diagrams also

depicts the operations or services performed by the objects. However, the literature

reviewed did not indicate that this was a widely accepted approach due to its tendency to

clutter the class diagram. Instead the literature did indicate that the bulk of the object-

oriented analysis practitioners prefer to utilize two kinds of diagrams to represent

communications:

■ Communication Sequence: Sequence and Collaboration Diagrams
■ Communication Only: Object Communication and Interaction Diagrams

Most of the object-oriented analyses techniques prefer to describe object

communications utilizing sequence and collaboration diagrams. A sequence diagram

represents a particular sequence of messages exchanged between entities or objects and is

used to show the flow of functionality or process flow. In the telecommunications

community, sequence diagrams have been standardized as message sequence charts (ITU,

1994). The Objectory technique introduced sequence diagrams into object-oriented

modeling (Jacobson et al., 1992). Vertical lines represent entities or objects and the

horizontal arrows represent the messages (Booch, 1994) (Rumbaugh, 1991) (Jacobson et

al., 1992) and are depicted in Figure 2.7.

46

Sequence diagrams focus on events as opposed to operations, and help to define

the boundaries of the software system. These diagrams also aid to view the passing of

messages in order, thereby enhancing the dynamic description of the software system

with respect to time. These timing diagrams describe a sequence of interactions over

time (Firesmith, 1993).

Whereas sequence diagrams illustrate the objects and interactions over time,

collaboration diagrams show the objects and interactions using a different set of graphical

constructs. A collaboration diagram is a directed graph in which the nodes represent

entities or objects and the edges represent communications. The edges are numbered to

represent the ordering of communications in time (Wirfs-Brock, 1990). Therefore,

collaboration diagrams show the same information as sequence diagrams, but utilize a

directed graph form.

47

This directed graph form offers a different view of the software system when

compared to the sequence diagram. This view helps to see the overall processing and

sequencing between objects.

The alternate type of diagram shows communications only. These object

communication and interaction diagrams show communications without indicating any

sequence. These diagrams are directed graphs in which the nodes represent object classes

and the edges represent object communications. These types of diagrams show only the

communication and not the behavior of the software system and are depicted in Figure

2.9.

48

Different levels of detail can be displayed on these object interaction diagrams.

An interaction diagram with the most detail will display the messages passed between

objects by depicting the methods. Shlaer and Mellor provide the object communication

model (0CM) and the object access model (OAM) to describe object communications in

detail. The OCM shows the messages sent and received by the state machines of the

objects and the OAM shows accesses to object data stores made by object processes

(Shlaer & Mellor, 1992). Both of these models summarize all of the interaction among

the objects in the software system and provide a system-wide overview of object

interaction.

49

The directed graph technique has been embraced by many others to represent

communications between components in which the nodes represent activities or processes

and the edges depict the communications (Martin & Odell, 1995) (Embley et al., 1992)

(DeChampeaux et al., 1993) (Firesmith, 1993). However, object communications are

usually coupled with its behavior and other diagrams exist to depict object behavior.

2.6.4 Object Behabior

0bject behavior is how an object acts and reacts to its state changes and message passing.

These aspects of the software system deal with time and are represented by a dynamic

model. The major dynamic modeling concepts are events, which represent external

stimuli; and states, which represent values of objects (Rumbaugh, 1991). The dynamic

model is comprised of multiple state diagrams and shows the pattern of activity for the

50

entire software system. A state diagram shows the life-cycle of an object, from the time

it is created until it is destroyed and depicts its pattern of events, states, and state

transitions. This collection of software system state diagrams depicts the dynamic

behavior of the objects comprising the software system. Objects are typically modeled as

finite state-machines, which means that there are only a finite number of states in which

the object can exist (Bailin, 2000). A state diagram or state machine can be specified in

either a graphical or tabular form. The literature did not indicate that the tabular form,

represented by a transition matrix, was utilized in object-oriented analysis techniques.

Instead practitioners of object-oriented analysis prefer to use state-transition diagrams

using state-chart notation to model the dynamic behavior of the software system (Booch,

1994) (Rumbaugh, 1991) (Shlaer & Mellor, 1992) (Embley et al., 1992) (DeChampeaux

et al., 1993) (Firesmith, 1993) (Henderson-Sellers & Edwards, 1994) (Jacobson et al.,

1992) (Graham, 1994) (Selic, 1994).

There is a great deal of similarity between the different notations of state-

transition diagrams but all notations use a directed graph form. The nodes of the directed

graph represent states and the edges represent transitions. For example, the Mealy state

machine distinguishes input events from output actions. These input events are

associated with a transition, meaning that an input event occurrence triggers the transition

(Wieringa, 1998). This is depicted in the state-transition diagram by separating the input

events from the output events of a transition by a solid horizontal line or by a slash. In

contrast, the Moore state machine shows that outputs are associated with states. This

means that actions are performed upon entry of a state and all transitions entering a state

51

will generate the same output. Both the Mealy and Moore state machine models

represent the same information, but utilize a different approach using similar notation.

State-charts incorporate the information provided by the Mealy and Moore state

machine into its directed graph as well as additional type of information. A state-chart

uses the same notation as the other state machines in which the nodes represent states and

the edges represent state transitions. In addition to these features, actions can be

specified along transitions, upon entry and exits of states. The state-chart specifies the

state sequence caused by an event sequence.

State-chart diagrams have become the standard way to model the dynamic

behavior of the software system and have been integrated into the Unified Process

developed by Booch, Rumbaugh, and Jacobson.

52

2.6.5 Object Operations

The events depicted in the state diagrams trigger object operations. These operations are

identified to respond to the data and control flow of the software system. An object

operation performs a service and are actions associated with a state. Each action is

specified by means of executable code associated with the object's state (Bailin, 2000).

The executable code or function is executed when the software system is in some state

and may leave the software system in a different state. The effect of the function can be

specified textually in two ways, declaratively or imperatively (Wieringa, 2000).

Declarative specifications describe pre and post-condition states. A pre-condition is a

condition on the input and system state at the start of executing the function and a post-

condition is a condition on the output and the system state after the execution of the

function. Shlaer summarizes the process by stating that an action may read or update the

state of any object in the subsystem, it may create an object, and it may send an event to

any object or to an entity outside the subsystem (Shlaer & Mellor, 1992).

Some object-oriented analysis techniques represent these actions by an action

dataflow model (Rumbaugh, 1991) (Shlaer & Mellor, 1992) (DeChampeaux et al., 1993)

(Coleman et al., 1992). The purpose of the action dataflow model is to specify the data

processing performed by an action and is comprised of the data store and data processing

components. An action dataflow diagram is a directed graph in which the nodes

represent objects and the edges represent attributes that are read or written by an

operation. In addition, the diagram depicts the data-flows between the operations. These

flows may cross object boundaries and helps to improve the definition of the relationship

between the functional model and the object model (Wieringa, 1998). Although the

53

techniques used differ slightly, the goal is to define a functional decomposition for each

action. This approach attempts to connect the static model to the dynamic model by

providing dynamic action decomposition.

In contrast, other object-oriented analysis techniques specify object operations

informally by means of text-based object specifications (Booch, 1994) (Jacobson et al.,

1992) (Henderson-Sellers & Edwards, 1994). The elements contained in the

specifications may be written in a given implementation language or in narrative form.

The literature did not indicate that there was a standardized way to specify the operations

in text format. The literature does indicate, however, that the Unified Process does not

support the action dataflow diagrams to depict object operations but instead incorporates

operations on the class diagram (Booch et al., 1998) (Boggs & Boggs, 2002).

2.6.6 Summary

0bject-oriented analysis views the software system as a collection of interacting objects.

These objects are part of the object-oriented model that features an approach based on

abstraction, encapsulation, classification, and inheritance. This approach identifies

objects and encapsulates data and operations together. In addition, similar objects are

grouped together to form classes. This type of decomposition of a problem into objects

and classes depends on judgment and the nature of the problem. There is no one correct

representation. All of the variants :of object-oriented analysis methods discussed were

developed to represent or view the software system in terms of object identification,

communication, behavior, and operations. These views help to outline the static

architectural structure of the software system as well as the system's dynamic behavior.

54

Booch, Rumbaugh, and Jacobson have unified their object-oriented analysis and

design techniques and provide a method to describe the development of a software

system's static and dynamic architecture in detail. The systems development life-cycle is

titled the Rational Unified Process (RUP) and uses an iterative method development

process as opposed to the traditional sequential development process offered by the

Waterfall model (Boehm, 1988) (Sommerville, 2001) (Booch et al., 1998). The iterative

development process treats the project as a series of small Waterfalls. Each one is

designed to encompass a subset of the entire project. Each subset or project piece is large

enough to mark the completion of an integral component of the project, but small enough

to minimize the need for backtracking. The RUP process provides specific process steps,

guidelines, and workflows that can be used during the development process. These steps

have helped support the iterative approach to the development of a system using object-

oriented techniques. The RUP life-cycle approach helps to break a problem into smaller

more manageable pieces, which in turn makes these components more re-usable,

maintainable, and extensible.

Table 2.5 summarizes the object-oriented analysis technique utilizing the

characteristics of the analysis framework.

55

0bject-oriented analysis does address the six characteristics of the analysis

framework discussed and the results are listed in Table 2.5. In particular, the system

objects or entities are identified through the use of object identification techniques. The

concepts of classification, generalization, aggregation, association, and attribution are key

principles behind object-oriented modeling. Object identification is an intuitive process

in which entities and relationships are determined by examining the noun phrases

contained within the problem domain narrative description. Once objects are identified,

they are grouped together to form a class, which is a collection of interacting objects.

The interaction among the objects represents the relationship structure. As with object

identification, relationships among the objects comprising a class as well as the

relationships among different classes are also determined by examining the narrative

description of the problem domain. Determining the entity and relationship structure of a

problem domain using object-oriented analysis is an implicit process. As with structured

analysis, an implicit process can cause many relationships to be missed during the

analysis phase. This could lead to an inadequate problem domain understanding and an

incomplete analysis process. However, the object-oriented paradigm graphically

represents entities and relationships. These visual aids help to provide communication

tools among members of the development team.

2.7 Use-case Analysis

Use-case analysis is a scenario-based technique for requirements elicitation and was first

introduced in the Objectory object-oriented analysis methodology (Jacobson et al., 1992).

Use-case analysis is the process of capturing requirements from the user's point of view

56

and helps describe what functionality is contained within the system. This perspective is

not implementation-oriented but stresses instead what the user expects from the system.

Use-cases and actors define the scope of the system being designed. A use-case

illustrates how someone might use the system and represents a piece of system

functionality. An actor is anyone or anything that interacts with the system being

designed. A primary actor is one having a goal requiring the assistance of the system and

a secondary actor is one from which the system needs assistance to satisfy that goal

(Cockburn, 1997). There are three types of actors (Boggs & Boggs, 2002).

■ System users
■ Other systems that interact with the system being built, an external application
■ Time triggered events that interact with the system at a particular interval

Each kind of actor uses the system in different ways and each way of using the

system is called a use-case. A use-case represents a portion of functionality that the

system will provide and are a way of specifying system functionality in a manageable

way. Boggs provides four questions to determine the functionality each actor expects

from the system (Boggs & Boggs, 2002):

■ What will the actor need to do with the system?
■ Will the actor need to maintain any information (create, read, update, delete)?
■ Does the actor need to inform the system about any external events?
■ Does the system need to notify the actor about certain changes or events?

In general, end-user needs identify the issues and features associated with the

problem that is to be solved and help to define the problem domain. Use-case analysis

extends the problem description by mapping how end-users interact with the system to

realize the various features.

57

2.7.1 Identification

Each use-case identifies the actors involved in an interaction and names the type of

interaction (Sommerville, 2001). In addition, use-cases describe the sequences of system

interactions and actors in response to some event. Therefore, the theoretical sum or

collection of all use-cases represents all of the possible interactions that will be

represented in the system requirements for a particular interaction. However, it is not

likely, nor necessary to capture all possible interactions comprising a functional

component. Use-cases are designed to capture requirements from the user's point of

view and helps describe what functionality is contained within the system. To identify

the use-cases, one should review all documentation of the proposed project and list the

scenarios that are fundamental to the system's operation. The collection of scenarios

describes the system functions of the application. Each scenario is then analyzed using

storyboarding techniques similar to practices in the television and movie industry

(Zahniseer, 1990). This technique involves identifying the objects that participate in the

scenario. The first pass outlines the use-cases primary behavior. Subsequent passes

consider exceptional conditions and secondary system behaviors. Rumbaugh suggests

capturing use-cases at the beginning of the analysis using the following approach

(Rumbaugh, 1994):

■ Identify the boundary of the proposed application.
■ Identify the objects just outside the boundary that interact directly with the system

objects.
■ Classify the outside objects by the roles that they play in the application. Each

role defines an actor.
■ Make a list of actors. State the purpose of each actor in using the system.
■ For each actor, think of the fundamentally different ways in which the actor uses

the system. Each way of using the system is a use-case.
■ Group different scenarios into the same use-case if they appear to be variations of

the same theme.

58

■ Determine the interaction sequences. For each use-case, identify the event from
the actor that initiates the use-case. Determine if there are preconditions that must
be true before the use-case can begin. Determine the logical conclusion of the
transaction.

■ Write a prose description of the use-case. Identify the sequence of interactions
that occur in a normal transaction together with the system operations that are
invoked.

■ Consider all the exceptions that can occur in handling a transaction and specify
how they affect the use-case.

■ Look for common fragments among different use-cases and factor them out into
base cases and additions. Determine if the additions are optional or mandatory,
and specify where they go in the main sequence.

Kentworthy has refined the process to eight steps (Kentworthy, 1997):

The following questions help to determine if all the use-cases have been identified

(Jacobson et al., 1992) (Boggs & Boggs, 2002):

■ Is each functional requirement in at least one use-case?
■ Have you considered how each stakeholder will be using the system?
■ What information will each stakeholder be providing for the system?
■ What information will each stakeholder be receiving from the system?
■ Have you considered maintenance issues?
■ Have you identified all of the external systems with which the system will need to

interact?
■ What information will each external system be providing to the system?
■ What information will each external system be receiving from the system?

59

The use-case analysis approach focuses on what the system should do, not how it

is realized. Use-cases are written as natural language text descriptions that express what

happens from the user's point of view. Use-case diagrams supplement textual

descriptions by providing graphical representations of the use-cases. The details of how

the system works internally are not contained in either the textual or graphical

representation of the use-case. Instead, the details are addressed during the

implementation phase. Therefore, use-case analysis represents an end user perspective of

the system to be designed. This approach helps the customer understand the functionality

that will be provided by the system. In addition, use-case analysis provides a means of

describing the scope of the system to be designed at the start of the development life-

cycle process.

2.7.2 Structuring a Use-case

Use-case analysis has been incorporated into the Unified Modeling Language (UML),

which provides association, generalization, include, and extend relationships to structure

use-cases (Booch et al., 1998). An association relationship depicts the relationship

between an actor and a use-case. A generalized relationship shows the commonality

between actors or use-cases. The include relationship is similar to the concept of

inheritance, whereby one use-case can re-use the functionality provided by another use-

case. In contrast, an extend relationship captures a variant of the base use-case and

extends its functionality to capture specialized behavior. Figure 2.12 depicts a use-case

utilizing the UML notation. Solid lines with arrow indicate an association relationship

between an actor and a use-case. A dotted line with arrow represents either an includes

60

or extends relationship and is specified by the phrases <<include>> or <<exclude>>

respectfully.

Although use-cases are an integral part of the UM, there is no template for

writing a use-case textual description. Coleman proposes the following use-case template

(Coleman, 1998):

61

Both the graphical and textual ways to represent use-cases are designed to identify

the possible interactions between the system components and the actors to realize a

particular goal. Although goals are a normal part of software engineering, there is no

formal methodology to capture goals (Cockburn, 2000). Use-case analysis attempts to

address the void by its approach to goal-oriented analysis.

2.7.3 Deficiencies

One of the difficulties with use-cases is how to capture goals at the appropriate level of

abstraction. Inexperienced teams may generate numerous use-cases to represent all

62

aspects of system functionality. However, it can be argued that use-cases were not

designed to capture all types of system descriptions. Instead they were designed to

describe what functionality is contained within the system from the user's point of view

(Booch et al., 1998). Use-cases represent a high-level view of what the system will do,

without worrying about the details of how it is realized.

Another area of confusion is about whether or not a use-case is a scenario on its

own or, as suggested by Fowler, a use-case encapsulates a set of scenarios where each

scenario is a single thread through the use-case (Fowler & Scott, 1997). In this case, there

would be a scenario for the normal interaction plus scenarios for each possible exception.

Cockburn describes a scenario as a sequence of interactions happening under certain

conditions, to achieve the primary actor's goal, and having a particular result to that goal

(Cockburn, 1997). The literature does support the definition of a use-case as a collection

of possible scenarios between the system and the actors to achieve some goal. Although

the scenarios may exist under different conditions, they are grouped together since they

share a common goal.

A confusing part of use-case analysis is how to write the textual narrative since

there is not a formal structure. Coleman, Jacobson, and Rumbaugh provide similar semi-

formal templates in many of their writings, but by design the process has remained

informal. This affords people the opportunity to use their own prose and lets them

communicate the way they think best for the desired project (Cockburn, 1997). This

permits use-case analysis to remain flexible in its approach to describe what functionality

is contained within the system from the user's point of view.

63

2.7.4 Summary

Use-case analysis helps to capture the functional requirements of the product being

developed from the user's point of view. Use-cases and actors help to define the scope of

the system to be built by identifying the sequences of system interactions. The collection

of possible sequences is what constitutes system behavior. Use-cases describe the goals

to be achieved by identifying the possible interactions between the actors and system

components from a user-centric perspective. Use-cases are implementation independent

stressing instead goal-oriented functionality. The goal-oriented nature of use-case

analysis helps to define the problem domain by describing the scope of the system. This

approach to problem description helps to track the project by goals. In addition, use-case

analysis increases the chances that the system being developed meets user needs and

expectations thereby increasing user satisfaction and acceptance.

Table 2.8 summarizes the use-case analysis technique utilizing the characteristics

of the analysis framework.

Use-case analysis does address the six characteristics of the analysis framework

discussed and the results are listed in Table 2.8. In particular, the system entities are

determined by capturing functionality from the user's perspective. In addition, the use-

64

case diagrams capture the relationship structure among the entities utilizing

generalization, association, include and extend concepts. The generation of use-case

diagrams is an explicit process using well-defined process steps and desired user-

determined system functionality. Use-case diagrams provide excellent communication

tools among members of the development team and end-users. In addition, use-case

diagrams help to provide a deeper understanding of the problem domain as seen by the

end-users by explicitly identifying its relationship structure. However, use-case analysis

falls short when describing the dynamic nature of the system. Much of the system's

dynamic behavior is described in written format. In contrast, both structured and object-

oriented analysis techniques provide various types of state transition diagrams to

explicitly capture the dynamic nature of the problem domain. Since both structured and

object-oriented analysis do not address the problem domain from an end-user perspective,

use-case analysis can be incorporated at the front end of these software development life-

cycle paradigms. This is exactly the approach taken by Rational in their creation of the

Rational Unified Process (RUP). The RUP uses Jacobson's use-case analysis as it first

step to identify desired user functionality expected from the proposed system.

Subsequent steps of the software development process are realized using the object-

oriented paradigm. This approach has been very successful and incorporated into the

development process by many software engineering companies.

2.8 Domain Analysis

Domain analysis is the process by which information used in developing systems in a

domain is identified, captured, and organized with the purpose of making it re-usable

65

when creating new systems (Prieto-Diaz, 1991). The ability to develop software within a

particular application domain relies on a comprehensive understanding of that domain.

To understand the domain, an analyst gathers all relevant information from various

sources and synthesizes it into a domain model. Problem solving skills are essential to

understand what is to be solved. Problem solving is best realized utilizing a highly

structured strategic method (Svoboda, 1990). This is accomplished through eliciting,

verifying, and formalizing software requirements and specifications (Iscoe, 1993). A

successful usable domain analysis is dependent upon how well the process is performed

and should answer the fundamental questions:

■ Who is the customer?
■ Who are the stakeholders in the domain?
■ What are the software assets comprising the total software solution for that

domain?
■ What is the domain boundary?
■ How can existing system assets be leveraged to the current domain?

Two examples of domain analysis methods to answer the above questions are

Feature Oriented Domain Analysis (F0DA) and Organizational Domain Modeling

(0DM) techniques. The focus of both techniques is to:

■ Gather domain information to define the scope and boundary of the domain
■ Describe the data and variables needed to support the system
■ Identify the system's relationships
■ Determine if existing system component assets can be re-used
■ Develop re-usable assets

Both techniques are designed to improve maintainability, understandability, and

re-usability, thereby improving the software development life-cycle. These quality

measures allow improvements utilizing domain analysis to be measured.

66

2.8.1 Feature Oriented Domain Analysis

Feature 0riented Domain Analysis (F0DA) was one of the first domain analysis methods

and is based upon identifying the features of a class of systems. FODA is based upon

abstraction and refinement to develop re-usable software assets by abstracting away

variables that differentiate related applications. Consequently, applications comprising

the domain exist at a high level within the overall system. Specific applications are

refined from these generalized assets to develop the specialization needed for the specific

application domain.

F0DA defines three basic activities: context analysis, domain modeling, and

architectural modeling (Kang, 1990). Context analysis defines the domain scope by

determining the relationships that exist within the domain. Secondly, the domain-

modeling phase creates a model by analyzing both similarities and differences of the

applications comprising the domain. Lastly, the architectural modeling phase provides

the software solution for the applications contained within the domain. It defines the

process for allocating the features, functions, and data objects defined in the domain

models to the processes and modules (Cohen, 1992). Simply stated, this feature oriented

analysis technique facilitates the re-use of a software asset. Its process steps are geared to

this end. A re-usable software asset helps to reduce product cycle time, cost, and risk

during the product development process.

2.8.2 Organization Domain Modeling

0rganizational domain modeling (0DM) integrates organizational and strategic aspects

of domain planning, domain modeling, architectural engineering, and asset base

67

engineering (Simos, 1995). Simos developed a configurable domain analysis process

model, useful for diverse organizations and domains, and amendable to integration with a

variety of implementation technologies. The ODM process model is comprised of a

descriptive and prescriptive phase. Descriptive modeling uses knowledge and past

experience from existing models and extends it to the new system. This is realized by

documenting the similarities in system structure and functionality of those systems. The

prescriptive phase binds the decisions and commitments concerning both the system

functionality and implementation. The most common problem with the 0DM approach

deals with its two-phase approach and its potential inability to limit overlap of

responsibility and scope between these phases. The primary benefit of utilizing the ODM

process is to gain a better understanding of the problem domain. A complete

understanding of problem domain scope aids in the development of the software solution.

2.8.3 Standardizing Product Re-use

Another feature of domain analysis is that it also facilitates the concept of re-use by

examining existing solutions and leveraging these known solutions to new problems

(Lung & Urban, 1995). The ability to transfer knowledge from an existing solution to a

new problem helps construct re-usable solutions. Consequently, domain analysis

emphasizes both re-usability and the study of pertinent information to the solution of a

new problem. 0ne advantage of re-usability is that less time is needed to develop a

component. Consequently, needed delivery time can be reduced. Re-usability is an

established principle in engineering and applies previous successful solutions to new

problems. In addition to reducing product cycle time, the strategy is aimed at reducing

68

both cost and risk during the product development process (Arango, 1994). Thus, re-use

has been identified as the key to improving software development and productivity.

Since the 1980s, software engineering has attempted to create a software

component industry based on a repository model of components that could be accessed

by many different kinds of applications (Favaro, 1997). Favaro notes that components

are best produced in the context of a domain such as a banking or telecommunications

system instead of a fit-all generic component development approach. These more

specific domain architectures facilitate the development of more re-usable domain

components. However, not all applications benefit from the re-usable component-

oriented approach to software production. Table 2.9 shows an analysis of typical

domains according to criterion (Favaro, 1997).

69

The values of Table 2.9 describe the degree of the column's attribute in these

domains. An application domain with high marks in the degree of standardization

category indicates that this type of application domain may benefit through domain

analysis more so than others with low marks. Favaro suggests that high marks generally

indicate that the technology is well established. In contrast, the application domain that

would benefit the least through domain analysis is multimedia. The multimedia

application domain has not yet reached a sufficient level of maturity. The high rate of

technical evolution has impeded the degree of standardization. To help reach a sufficient

level of maturity, the application domain needs to be understood from various

perspectives and levels. The Unified Modeling Language (UM) (Booch et al., 1998) is

a tool that aids in the development of domain models utilizing process diagrams that

outline the domain from different perspectives. UML's widespread acceptance into the

software business community has helped foster the acceptance of the domain analysis

component approach.

2.8.4 Summary

Domain analysis stresses the creation of a software system utilizing a re-usable

component-based approach. Components are referred to as assets, which domain

analysis attempts to leverage from existing systems to be incorporated into future

software systems. Incorporating re-usable software assets into a new system reduces

product cycle time, cost, and risk during the product development process. Table 2.10

summarizes the domain analysis technique utilizing the characteristics of the analysis

framework.

70

Domain analysis does address the six characteristics of the analysis framework

discussed and the results are listed in Table 2.10. In particular, the system entities are

determined by capturing system functionality. In addition, the relationship structure is

also determined by examining the desired functionality of the system.

Similar to use-case analysis, domain analysis does consider the end-users an

integral component of the process and elicits their input at the onset of the system

development process. In addition, proponents of domain analysis argue that the ability to

develop software within a particular application domain relies on a comprehensive

understanding of that domain. Incorporating end-user requirements into the process at

the start of a project does help in the successful acceptance of the delivered system.

Therefore, domain analysis endeavors to provide a comprehensive application domain

analysis prior to subsequent phases of the system development life-cycle.

2.9 Requirements Analysis

Requirements analysis, as it relates to software projects, is the process of studying,

determining and documenting user needs and expectations of the software system to be

71

designed that solves a particular problem. The process is referred to as requirements

engineering and entails feasibility studies, elicitation, specification, and validation

process steps. The process generates software requirement documents that capture what

is to be implemented by fully describing the software system's functionality,

performance, design constraints, and quality attributes. Precisely documenting what to

build helps to reduce uncertainty and equivocality (Daft & Lengel, 1986). Determining

and documenting the requirements of an information system, is arguably the key to

developing successful information systems (Vessey & Conger, 1994). Not getting the

correct final software system requirements at the project onset is largely responsible for

the cost and schedule overruns plaguing the information system development process

(Boehm, 1981) (Abdel-Hamid & Madnick, 1991) (Vessey & Conger, 1994). Table 2.11

shows that the earlier in the development process an error occurs and the later the error is

detected, the more expensive it is to correct (Faulk, 2000).

Thus, performing software requirements analysis at the project onset helps to

identify and correct problems early. Consequently, the relative repair cost is low and

reduces the chances of project cost overruns.

Much of the literature describes the requirements analysis process as three sub-

processes and compares it to an engineering methodology (Thayer & Dorfman, 2000)

72

(Loucopoulos & Karakostas, 1995) (Macaulay, 1996) (Vessey & Conger, 1994)

(Sommerville, 2001):

■ Elicitation
■ Specification
■ Validation & Verification

Each sub-process addresses the problem definition aspects from different angles

during the requirements creation process to collectively describe the software system to

be built. The software specification documents generated, as a result of the analysis,

captures the user needs and describes the operation of the proposed software system. The

software system description is generally comprised of three types of documents

(Leffingwell, 1999) (Thayer & Dorfman, 2000) (Sommerville, 2001).

■ Functional Requirements
■ Non-functional Requirements
■ Design Constraints

Functional requirements describe what the software system should provide and

how it should behave. In contrast, non-functional requirements are not concerned with

specific functionality delivered by the system. Instead non-functional requirements relate

to system properties such as reliability, response time, memory space, portability,

maintainability, ease-of-use, robustness, security, and re-usability (Mylopoulos et al.,

1999) (Sommerville, 2001). Design constraints describe the requirements that are

specific to characteristics of the problem domain that do not easily categorize into the

other two types of documents.

The hardest single part of building a software system is determining and

documenting precisely what to build (Brooks, 1987). The difficulties of documenting

and specifying software requirements are primarily due to human problem-solving

73

limitations (Davis, 1982). Davis also points out that these limitations are because human

beings have a limited ability to process information. Much of the time humans leave or

filter out information to prevent information overload (Davis & Olson, 1985). To help

include all the available information, methodologies have been developed to provide a

systematic repeatable approach to the description and development of software

requirements and systems (Demarco, 1978) (Gane & Sarson, 1979) (Jackson, 1983)

(Rumbaugh,1991) (Booch, 1994). Methodologies help to structure the problem and

solution domain into a collection of smaller sub-problems. These subproblems are then

individually described and eventually implemented. The aggregate of all the

components, describe the entire problem domain. This approach helps to divide large

complex problems into smaller, more manageable components. In addition, complexity

is reduced since the amount of information that a sub-component must consider is also

reduced. Therefore, the documentation of sub-problems help achieve a goal of

requirements analysis, namely to understand and capture what is to be solved in a

component-oriented manner using all available information.

2.9.1 Eliciting Requirements

Requirements elicitation is the process of identifying the application domain by

determining the desired software system functionality. This activity should involve many

different kinds of people that have a stake in the system being built. These stakeholders

work together to define and scope out the application domain. Each participant is a

stakeholder and represents a different interest in the project. These interests are

dependent upon the role the individual performs. Therefore, the elicitation process

74

should include all people that are either directly involved with the project or indirectly

affected. Once the stakeholders are identified, the process enters the problem domain

description phase. The description is realized either in an independent or a team-oriented

collaborative manner. Gause points out that many organizations reinforce a negative

image of cooperative work, encouraging instead competition among employees by such

devices as individual achievement awards (Gause & Weinberg, 1989). However,

software development projects should not be realized alone and need the diversity and

ability that a collaborative team approach can provide. Much of the literature supports

the concept that groups generate more and better solutions to identifying, describing, and

solving a problem (Baroudi et al., 1986) (DeSanctis & Gallupe, 1987) (Gallupe et al.,

1988) (Connolly et al., 1990). The general consensus is that problem definition is likely

to be more complete when realized by participation in a collaborative team environment.

The literature identifies many different techniques that are possible to elicit

requirements of a computer or information system in both a group team and single person

team approach (Goguen & Linde, 1993) (Rumbaugh, 1994) (Kotonya & Sommerville,

1996) (Sommerville, 2001). Some examples of a non-group approach are:

■ Introspection
■ Questionnaires
■ Interviews
■ Protocol Analysis
■ Ethnography

The introspection technique attempts to elicit requirements of the desired

computer or information system by having the development team members individually

imagine the system they want. Thus, many perspectives and interpretations will result

from introspection. Many viewpoints help to identify all aspects of the problem domain,

75

but these do not necessarily reflect the needs of the end-users of the system. The

literature does not consider this technique a practical way to elicit requirements due to its

apparent lack of end-user involvement.

Similar to introspection, questionnaires and interviews attempt to elicit

requirements by asking questions in a non-group oriented fashion. Questions are

presented to individuals in either a written or verbal format, and the answers recorded.

Although this is a systematic process Suchman argues that these approaches lead to

multiple interpretations in both the questions and the answers (Suchman & Jordon, 1990).

To reduce misinterpretations, the interview technique can be extended to permit dialog

between the interviewer and interviewee. However, the literature indicates that the

interview process usually involves assumptions concerning the interaction among

participants. Goguen strongly argues that assumptions and misinterpretations that can

result from questionnaires and interviews make this technique impractical to elicit

computer and information systems requirements (Goguen & Linde, 1993).

Protocol analysis is a process in which a person performing a task does so aloud

while his or her thought processes are observed and recorded. This represents direct

verbalization of specific cognitive processes (Simon, 1984). This technique helps to

understand an individual's approach to problem solving. Therein lies the problem; it is

not a team-oriented approach. The project team consists of many different kinds of

people operating in different roles. Some of these individuals have knowledge about the

business and organizational needs, while others have technical knowledge. The process

of eliciting requirements from these different types of people possessing different types

of knowledge is a social endeavor requiring group communications. Protocol analysis is

76

an individual process, not a social interaction method. Although protocol analysis has

greatly influenced cognitive psychology it is inappropriate for the requirements analysis

and elicitation process (Goguen & Linde, 1983).

Ethnography is an observational technique to develop an understanding of work

processes through observing as opposed to interviews in which people act differently than

they say. These observations help to understand the social and organizational

requirements. This is a time consuming process but contains much depth by helping to

identify implicit system requirements. Implicit requirements are more easily identified

by a third party observer because workers often perform tasks out of habit and rarely

consider these tasks as part of their work process. The literature describes many

ethnographic studies that showed a worker's actual work practices were much more

detailed and complex than these individuals were able to describe (Suchman, 1983)

(Simonsen & Kensing, 1997) (Myers, 1999). Thus, ethnography has been shown to be

very effective at discovering the way in which people actually work rather than the way

in which process definitions say they should work (Sommerville, 2001). In software

system project development, ethnography may be best suited to determine how to modify

an existing system to make it more effective as opposed to at the onset of a completely

new project.

The aforementioned techniques are non-collaborative and tend to be inaccurate,

inflexible, costly, time consuming, and do not represent natural interactions among

people. The literature does indicate that more effective techniques to elicit requirements

of a computer or information system are collaborative by design. Three such techniques

are:

77

■ Rapid Application Development (RAD) Focus Groups
■ Viewpoint-oriented Requirements Definition (V0RD)
■ Use-case Scenarios

Rapid application development focus groups are a type of group interview that

permits interactions among people to discuss requirements of the desired system. These

interactions are both formal and informal depending on the organization performing the

RAD and can reduce the cycle-time by 50% in the definition and development of the

system (Engler, 1996). RAD is an iterative process that employs interactive sessions of

developer, customer and end-user to identify and define the requirements of the desired

system. This collaborative effort affords the project team the ability to openly discuss the

system that is to be built. The successes of RAD have been attributed to the inclusion of

the end-users during the system definition process (Gonzales & Wolf, 1996).

In addition to end-users, viewpoint-oriented elicitation also includes other

stakeholders in the viewpoint-oriented requirements definition (VORD) approach to

identify requirements. A viewpoint represents a certain perspective of the system. The

V0RD process recognizes the different viewpoints provided by the different stakeholders

and incorporates their perspectives into the requirements specification process

(Sommerville, 2001). The V0RD method includes four steps (Kotonya & Sommerville,

1996) (Sommerville, 2001):

■ Viewpoint Identification
■ Viewpoint Structuring
■ Viewpoint Determination
■ Viewpoint-System Mapping

These four steps utilize a highly structured text-based method to document a

viewpoint's attributes, events, and scenarios during brainstorming sessions. These

viewpoints are documented using viewpoint and service templates that help to identify

78

both the functional and non-functional requirements. Nuseibeh uses a similar approach

but augments the process by allowing incomplete scenarios to exist during elicitation

(Nuseibeh et al., 1994). As the process of determining the desired system to be built

continues, the incomplete scenarios are more rigorously defined, specified, and resolved

by final specification.

Use-case analysis is a scenario-based technique for requirements elicitation. Use-

cases capture requirements from the user's point of view and helps describe what

functionality is contained within the system. The literature indicates that use-case

analysis is the most widely accepted method to eliciting requirements for software

systems. Section 2.7 of this paper describes use-case analysis in detail.

These three techniques are more successful than other techniques because they adopt

a team-oriented user-inclusive strategy. It is important to include the eventual end-users

of the system since they make or break the product. Therefore, the team should consist of

the customers, developers, and end-users. However, it should be noted that the inclusion

of customers, developers and end-user stakeholders during the elicitation process does

have six primary difficulties (Sommerville, 2001).

■ Stakeholders often do not know what they want from the computer system except
in the most general terms, finding it difficult to articulate what they want from the
system.

■ Stakeholders make unrealistic demands because they are unaware of the cost of
their requests.

■ Stakeholders in a system naturally express requirements in their own terms and
with implicit knowledge of their own work. Others must try to understand these
terms and relate them to the application domain.

■ Different stakeholders have different requirements and may express them in
different ways. Requirement engineers have to discover all potential sources of
requirements and discover commonalities and conflict.

■ Political factors may influence the requirements of the system. These may come
from managers who demand specific system requirements because these allow
them to increase their influence in the organization.

79

■ The economic and business environment is dynamic, which can lead to inevitable
changes during the process. The importance of particular requirements may
change. New requirements may emerge from new stakeholders who were not
originally consulted.

Regardless of these difficulties, the literature suggests that the most effective way

to elicit requirements is utilizing a team-oriented user-inclusive strategy.

2.9.2 Documenting Requirements

During the software system elicitation process, software requirements must be captured

in a written format to help stakeholders clarify the operational needs of the software

system. A document, known as the concept of operations document (ConOps), provides

a well-defined operational concept definition of system goals, missions, functions, and

components. Thayer lists the essential elements to be included in a ConOps document as

(Thayer & Dorfman, 2000):

■ Description of current system or situation
■ Description of needs that motivate development of a new system or the

modification of an existing system
■ Modes of operation
■ User classes and characteristics
■ Operational features
■ Priorities among operational features
■ 0perational scenarios for each operational mode and class of user
■ Limitations
■ Impact analysis

The ConOps document represents a bridge between the description of the user

needs and the technical specifications of the software system specification process

(Thayer & Dorfman, 2000). Both the U.S. Department of Defense and the IEEE support

the creation of the ConOps document when developing or modifying a software system.

80

The document serves as a framework to guide the analysis and provides the foundation

document for all subsequent system development activities.

The literature indicates that the ConOps document can be developed anytime during the

system life-cycle but is most beneficial at the beginning of the software development

process (IEEE, 1998) (Faulk, 2000) (Thayer & Dorfman, 2000). Developing the

document at the onset of the development process affords all parties involved the

opportunity to repeatedly review and revise the document until all stakeholders agree on

the content. This iterative process helps bring to the surface many viewpoints, needs,

wants, and scenarios that might otherwise be overlooked. In addition, the creation of

formal specifications forces a detailed system analysis that could reveal errors and

inconsistencies. This error detection is perhaps the most powerful argument for

developing a formal system specification (Hall, 1990).

Developers utilize the ConOps document to create a Software Requirements

Specification (SRS). The SRS describes exactly what is to be built by capturing the

software solution. This represents a transition from the problem analysis to the technical

analysis. Faulk outlines the roles of the SRS document (Faulk, 2000).

■ Customers: Provide a contractual basis for the software project
■ Managers: Provide a basis for scheduling and measuring progress
■ Designers: Provide a basis for what to design to
■ Coders: Provide tangible outputs that must be produced
■ Quality Assurance: Provide a basis for test planning and verification
■ Marketing: Provide a basis for marketing plans and advertising

A properly written SRS satisfies both the semantic and packaging properties

(Faulk, 2000). An SRS satisfies the semantic properties if it is complete, implementation

independent, unambiguous, precise, and verifiable. To satisfy the packaging properties,

the SRS must be readable, modifiable, and organized for reference and review. There is

81

not a specific.industry-wide system specification standard. The literature indicates that

the IEEE Std. 830-1998 is widely accepted at documenting the SRS (IEEE, 1998) (Faulk,

2000) (Thayer & Dorfman, 2000) (Sommerville, 2001). The IEEE Std 830-1998 format

is as follows:

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1.5 Overview

2. Overall Description
2.1 Product Perspective
2.2 Product Functions
2.3 Constraints
2.4 Assumptions and Dependencies

3. Specific Requirements
3.1 External Interface Requirements

3.1.1 User Interfaces
3.1.2 Hardware Interfaces
3.1.3 Software Interfaces
3.1.4 Communications Interfaces

3.2 Functional Requirements
... Description 0rganized by Functional Requirements ...

OR
3.2 Classes / Objects

... Description Organized by Objects ...
OR
3.2 System Features

... Description Organized by Features ...
3.3 Performance Requirements
3.4 Design Constraints
3.5 Software System Attributes
3.6 Other Requirements

Regardless of the format chosen for the SRS, the information provided by the

aforementioned IEEE Std 830-1998 should be contained within the requirements

document describing the system to be built.

82

2.9.3 Verifying and Validating Requirements

Verification and validation (V&V) is the process that determines if the software conforms

to the specifications and meets the needs of the customer. Verification involves checking

that the software conforms to the specifications. Validation checks that the software

meets the expectations of the users (Sommerville, 2001). Boehm expresses this subtle

difference as follows (Boehm, 1981):

■ Verification: Are we building the product right?
■ Validation: Are we building the right product?

The V&V process of system checking is realized using two techniques, namely

software documentation inspection and software system testing. The major software

V&V activities are outlined in Table 2.12 (Wallace & Ippolito, 1996).

83

Static, dynamic, and formal verification techniques can be performed to fulfill the

requirements of the V&V process activities (Gause & Weinberg, 1989) (Wallace &

Ippolito, 2000) (Sommerville, 2001).

■ Static analysis reviews the structure of the software product prior to its execution.
The analysis is performed on the requirements documents, design documents, and
source code utilizing review and inspection oriented techniques.

■ Dynamic analysis detects errors by executing the software and testing the actual
outputs against the expected outputs as outlined in the SRS documents.

■ Formal analysis is the use of rigorous mathematical techniques to analyze the
algorithms of a software solution (Sommerville, 2001).

The software V&V process should begin at the onset of the project and continue

throughout the entire software development life-cycle process. Prior to software

construction, the V&V process should examine preliminary documents such as the

ConOps document to help determine if the system to be built is feasible. Subsequently,

the V&V process examines the SRS to ensure that the requirements are complete,

consistent, accurate, readable, and testable. The approach helps to find errors in the

software requirements before the software implementation phase. Also, the software

84

requirements analysis conducted is necessary in order to develop relevant test plans. This

early error detection helps to reduce cost overruns, late deliveries, poor reliability, and

user dissatisfaction (Abdel-Hamid & Madnick, 1991). However, the predominant V&V

technique is software testing. Software testing involves executing the software product

and examining its operational behavior. Testing is used to find discrepancies between the

software program and the corresponding specifications and is referred to as defect testing.

In contrast, statistical testing determines the software's performance and reliability by

noting the number of system failures (Musa & Ackerman, 1989) (Butler & Finelli, 1991).

Test management organizes the testing process and utilizes test plans to determine

the objectives for unit, integration, and system testing. Table 2.13 outlines the structure

of a software test plan (Frewin & Hatton, 1986) (Sommerville, 2001):

The test plan document is dynamic and may change to support the dynamic nature

of the software life-cycle process. As changes are made to the software requirements,

management of all documents, including the test plan document, becomes crucial. The

85

V&V process must determine how software requirement changes affect the overall

testing plans, which may also affect the deliverables schedule. Thus, managing the

documents is crucial to incorporating change into the overall software development life-

cycle process.

2.9.4 Requirements Management

Requirements management is a life-cycle process that attempts to understand and control

change to software system requirements. Change to requirements is constant due to the

inability to fully define the problem upfront, therefore creating incomplete software

requirements and specifications. As the software development process progresses the

understanding of the problem also changes. These changes cause modifications to the

original desired software system. These changes must be incorporated into the

requirements and specifications in a systematic and traceable manner. The requirements

change management process coordinates change requests and must ensure that the

modifications are performed at all levels. Changes affect requirements, specifications,

design documentation, implementation, verification & validation test plans, and

operational procedures.

The change management process assesses the cost of changes and consists of

three stages (Hooks, 2001) (Sommerville, 2001).

■ Problem Analysis and Change Specification: The change proposal is analyzed to
determine if the request is necessary, attainable, and verifiable.

■ Change Analysis and Costing: The cost of making the change is estimated in
terms of modifications to the requirements documents, specification documents,
design documents, test plans and implementation.

■ Change Implementation: Modifications to the requirements documents,
specification documents, design documents, test plans, and implementation are
scheduled and performed.

86

The ability to effectively trace changes in the baseline documents help to link

requirements to stakeholders resulting in decision-making accountability (Ng & Yeh,

1990). Traceability provides an audit trail as to what changes were requested by whom

and for what purpose. The traceability process helps to ensure accountability, which

generally results in modification requests that are necessary, attainable, and verifiable.

The current state of the practice of traceability management is realized using

Computer Aided Software Engineering (CASE) tools that support a change and version

control system. Cadre TeamWork for Real-Time Structured Analysis (CADRE),

Requirements Traceability Manager (RTM), SLATE, D0ORS, Requirements Driven

Design (RDD), Foresight, Software Requirements Methodology (SREM), Problem

Statement Language / Problem Statement Analyzer (PSLIPSA), and Requirement

Networks (R-Nets) are some of the more widely used software industry CASE tools

(Nallon, 1994) (Rundley & Miller, 1994) (Vertal, 1994) (Palmer, 2000). These

automated tools help to maintain a history of all the changes by capturing the following

requirement attributes:

■ Document Name
■ Version Number
■ Creation Date
■ Modification Date
■ Author
■ Responsible Manager
■ Approval
■ S ign-Off
■ Change Description
■ Priority

These attributes help requirements management establish version control, change

control, and traceability process procedures. These activities help to create a well-

defined requirement definition process. These processes should be incorporated into the

87

software life-cycle to help ensure that the documents describing the software product

contain all features and operational behaviors of the released software product.

Version and release management are the processes of identifying and tracking

different versions and releases of the software system (Sommerville, 2001). CASE tools

provide version numbering management and ensure that each version is uniquely

identifiable. This type of configuration control generally uses some type of check-

in/check-out procedures to help aid both developers and coordinators manage the process.

Whereas version management identifies each component version, release management

handles all the steps that are necessary to package the software solution to the customer.

This packaging includes executable code, configuration files, data files, installation

program, and documentation. Configuration management (CM) is the term used to

identify configuration control processes. CM is separate from developmental procedures

and helps to coordinate the release process. Thus, version control, change control, and

traceability are intertwined and are essential components of the requirements

management process.

2.9.5 Summary

Requirements analysis is the process of studying, determining and documenting user

needs and expectations of the software system to be designed that solves a particular

problem. The process generates software requirements documents that capture what is to

be implemented by fully describing the software system's functionality, performance,

design constraints, and quality attributes. The software system attributes are fully

described in the functional requirements, non-functional requirements, and design

88

constraints documents. In addition to defining the static and dynamic features of the

system, these documents describe end-user system needs. Table 2.14 summarizes the

requirements analysis technique utilizing the characteristics of the analysis framework.

Requirements analysis does address the six characteristics of the analysis

framework discussed as listed in Table 2.14. Requirements analysis is flexible in its

approach of how to capture and properly document both end-user needs and system

functionality. Precisely documenting the system to be built helps to ensure that final

delivery of the system meets end-user expectations and functionality needs. Studying,

determining, and documenting desired system functionality helps provide a fuller, richer

application domain analysis.

2.10 Relationship Analysis

Relationship Analysis (RA) is an elicitation technique that identifies entities and their

inter-relationships of a problem. domain (Yoo, 2000). RA is an extension of Bieber's

89

original research work on hypermedia (Bieber, 1998) (Bieber & Yoo, 1999). The concept

of hypermedia structures information as a collection of nodes and interrelating links.

These interrelationships permit information to be accessed directly, as opposed to an

indirect sequential structure. Bieber argues that hypermedia is a theoretical and practical

means to facilitate information access both efficiently and effectively. Yoo's RA concept

helps to determine the interrelationships of a problem domain using an informal

technique performed during the analysis stage of the development cycle.

The RA technique explicitly identifies a domain's relationship structure, and in

doing so, increases the understanding of that domain. A complete understanding of a

domain relies on knowing how all the entities are interconnected (Yoo, 2000). In his

dissertation, Yoo developed a thorough general relationship taxonomy listed in Table

2.15.

These relationship categories were developed based on a very extensive literature

and strenuous trial-and-adjustment prototyping review (Yoo, 2000). Yoo compares RA's

90

taxonomy with ten domain-specific taxonomies in detail and over twenty additional

comparisons. RA's categories encompass all of these taxonomies' relationships. This

includes object-oriented analysis, which provides RA's generalization/specialization,

whole-part, classification/instantiation and association relationship classifications (Martin

& 0dell, 1995). Generalization/specialization relationships concern the relationships

between objects in a taxonomy (Borgida et al., 1984) (Brachman, 1983) (Smith & Smith,

1977). Self-relationships include characteristic, descriptive, and occurrence relationships.

Whole-part/composition relationships include configuration/aggregation relationships

based on configuration aspects of the whole-part relationships, and membership/grouping

relationships (Brodie, 1981) (Motschnig-Pitrik & Storey, 1995) based on membership

aspect of the whole-part relationships (Henderson-Sellers, 1997) (Odell, 1994).

Classification relationships connect an item of interest and its class or its instance.

Comparison relationships break down into similar/dissimilar and equivalence

relationships, involving such relationships as in thesaurus or information retrieval (Belkin

& Croft, 1987) (Neelameghan & Maitra, 1978). Association/dependency relationships

break down into ordering, activity, influence, intentional, socio-organizational, spatial

and temporal relationships. The term association and dependency could be used

interchangeably, because every association involves some concept of dependency

(Henderson-Sellers, 1998). Because association is defined as a relationship that is defined

by users, there could be no fixed taxonomy for it. The association relationship taxonomy

is fluid compared with other relationships. The current association relationship taxonomy

is based on observations, analyses, ontologies (Mylopoulos, 1998), and the existing

classifications (Henderson-Sellers, 1998). Ordering relationships involve some kind of

91

sequence among items. Activity relationships are created by combining SADT activity

diagrams (Mylopoulos, 1998) and case relationships (Fillmore, 1968). Activity

relationships deal with relationships associated with activities or actions abstractly. This

relationship could cover any activities that involve input or output, and deal with agents

and objects involved in the activities. Influence relationships exist when one item has

some power over the other items. Intentional and Socio-organizational relationships

could be identified in intentional and social ontologies respectively. Temporal (Allen,

1983) (Frank, 1998) and spatial (Cobb & Petry, 1998) (Egenhofer & Herring, 1990)

(Rodriguez et al., 1999) relationships deal with temporal and spatial perspectives,

respectively. Each relationship category can be further broken down into lower levels of

detail and Yoo's dissertation describes each of these and the literature from which each is

derived (Yoo 2000).

Each of the taxonomy's sixteen categories has a series of brainstorming questions

to help elicit a set of relationships that exist for a desired problem domain. Table 2.16

depicts a series of generic brainstorming questions that can be used to elicit domain

information (Yoo, 2000).

92

These questions are highly generic and should be tailored to the desired problem

domain to be more meaningful. However, the literature does not indicate how to realize a

more specific question set.

Yoo has demonstrated initial success to the proposed two-step RA process. The

two steps are:

■ Perform a stakeholder and item of interest analysis
■ For each item of interest ask questions to identify relationships

Both steps are an informal process and once the initial items of interests are

identified, the analyst isolates each item of interest and asks questions. The questions are

93

formulated to help explicitly determine relationships relevant to a particular item of

interest. The process continues for each item of interest and the collection of explicit

relationships comprises the relationship structure of the problem domain.

In regards to the analysis framework, RA directly addresses the identification of

entities and relationships as illustrated in Table 2.17.

RA provides a deeper understanding of the problem domain by explicitly

determining its relationship structure. The resulting relationship structure helps analysts

gain a deeper understanding of the problem domain during the analysis phase of the

software development process. In turn, subsequent software development activities

should also benefit from the initial, more complete problem analysis. In addition,

documentation and specification should also be more complete and meaningful. Thus,

RA enhances the system analyst's effectiveness, which should result in the development

of higher quality software applications.

94

2.11 Analysis Quality

The processes used in the development of a software product influences the quality of

that software product. The software development process involves intermediate steps

leading up to the final software product. To help measure the quality of the end software

product, it is possible to measure the quality of the intermediate steps in the development

process. The development process begins with requirements gathering and analysis. The

focus of this section will be on analysis quality.

The analysis process results in the creation of requirements specifications and in

particular the Software Requirements Specification (SRS). Determining and

documenting the requirements for a software system is, arguably, the key to developing

successful information systems (Vessey & Conger, 1994). Reports show that up to 56%

of all errors made on a software development effort can be traced to errors in the SRS

(Boehm, 1975) (DeMarco & Yourdon, 1978). The implications, if SRS quality is

ignored, are (Gause & Weinberg, 1989) (Davis, 1993) (Sommerville, 2001):

■ The resulting software may not satisfy user needs
■ Multiple interpretations may cause disagreements
■ It may be impossible to thoroughly test
■ The wrong system may be built

Therefore, developing a high quality SRS should help to contribute to a

successful, cost-effective software system that solves end-user needs (Davis, 1993).

2.11.1 Quality Attributes of Natural Languages

The literature indicates many different software evaluation criteria (Boehm, 1976)

(Gause, 1989) (Rombach, 1990) (Davis, 1993) (Sommerville, 2001). Boehm, for

example, identified over sixty quality factors that affect total software quality. From this

95

study, software quality metrics (SQM) was developed (Murine, 1984). Software Quality

Metrics (SQM) deals with how to measure the quality of the entire software development

process or the intermediate steps comprising the software solution. SQM measures

attributes of the software development process and evaluates software from multiple

viewpoints.

The quality of an SRS is correlated to the successful implementation of the

desired system. Quality can be an elusive and abstract concept to quantify. The ability to

identify and evaluate those factors influencing and defining quality helps to mitigate the

risk of generating an ineffective SRS. The use of natural language to prescribe complex,

dynamic systems has at least three severe problems: ambiguity, inaccuracy and

inconsistency (Wilson et al., 1997). To identify the quality of a written specification, a

list of characteristics must be created. No industry-sanctioned set of quality attributes

exists. The ACM, IEEE, ANSI and other organizations have yet to create a prescribed

list of official characteristics that should be used to evaluate the quality of an SRS. Any

organization implementing a software development project must determine a set of

quality factors they deem appropriate for the software effort. Furthermore, on any

project, requirements writers need to agree as to which quality attributes are most

important, and strive for those attributes (Davis, 1993). Davis proposes the twenty-four

attributes that help to determine a quality SRS listed in Table 2.18 (Davis, 1993).

OK

97

98

This list of quality attributes considers several things: customer requirements,

internal policies, problem domain, and personal preferences. The customer may specify

that the requirements must be written using a given standard such as IEEE 830. The

internal policies of an organization may require the use of specific tools to facilitate

99

modifiability, indexing and versioning. The problem domain may introduce specific

quality requirements. For example, a system that interfaces to other systems should

include traceability to other interface specifications. It is important to note that there is

an art to writing requirements, which entails a certain degree of personal preference.

Table 2.19 depicts examples of selected quality characteristics and shows how

two different organizations selected different subsets of Table 2.18 (Davis, 1993) (Wilson

et al., 1997). The first column is a list of attributes collected from a formal IEEE research

paper addressing the measurement of quality. The second column is a list of attributes

collected from a series of papers written by NASA describing their Software Assurance

Technology Center's (SATC) automated system for evaluating the quality of NASA

technical documents.

100

Table 2.19 reinforces the earlier findings that no list of universally accepted

characteristics exists. Instead, organizations determine their own set of quality factors

they deem appropriate for the software effort.

2.11.2 Generating a Quality Specification

The generation of an SRS containing desirable quality attributes is a three-tier process:

■ Identification
■ Generation
■ Measurement

The value an organization assigns to an SRS can be evaluated by how well the

tiers are realized. The methodologies for generating a quality SRS exist at the second

tier. At this tier, an organization tailors its requirements generation approach to improve

their quality. Three primary factors influence quality:

■ Structure
■ Process
■ Tools

When Ericsson Eurolab evaluated their SRS documentation, they were

dissatisfied with quality and resolved to improve their methodology. Ericsson found that

their process to define and organize requirements was ineffective. They also determined

that a new tool, a changed process, or another policy would not have solved the problem.

A massive effort was required to effect a change of culture and behavior (Jacobs, 1999).

The specification and generation of requirements documentation is not simply a process

in the software life-cycle, but as Jacobs implies, it is part of the culture of an

organization. Quality documentation is expensive and time consuming. In a cost and

schedule focused industry, it can be difficult to justify resolving problems before they

101

exist. Identifying the structure of an SRS provides guidance to the author of the

document. It should provide a partitioned list of subjects and definitions as to the content

that each partition should contain. Several standardized structures exist. IEEE 830 is a

well-accepted format that is widely used. The department of defense (D0D) uses Mil

Std-498 and Mil Std-2167A, which both contain data item descriptions (DIDs) for

software requirements specifications. Organizations that provide software for the

military are typically required to use these documents. The VOLERE requirements

process template is another popular format described by The Atlantic Systems Guild Inc.

that when completed, represents a requirements specification. A requirements template is

used as a guide to discovering requirements and building the specification (Nusibeh &

Robertson, 1997).

A process of specifying requirements may be used to improve the quality

attributes of the SRS. One such process is the Gib Style, which implements the following

steps: structuring information, quantification, and sourcing (Jacobs, 1999). Three types

of information should appear in an SRS: assumptions, requirements and a glossary. The

SRS is based on the premise that all of the assumptions are correct. The Gib style then

divides requirements into functional requirements, quality requirements, constraints and

cost requirements. The glossary is used to insure that the meaning of words and concepts

are clear and unambiguous. To quantify requirements, the approach identifies the

following forms of measurement: gist, scale, meter, past/record, and must/plan/wish. The

gist of a requirement is a rough approximate of what will be used to measure the

requirement. The scale is used to define the units used to measure the requirement. A

meter is used to measure the requirement against the scale. The past record is used to

102

compare the requirement to similar requirements in previous or similar projects, and what

the user will expect from that requirement. The must/planlwish defines the success

criteria for that requirement. Gib also suggests appending the following information to

every requirement: author, and the author's role. While these are all well accepted

engineering practices, Ericsson found that when all stakeholders agree to a common,

well-established process, the quality of the product improved.

The use of tools to generate requirements has exploded in the past several years.

The advent of CASE tools for object-oriented analysis and design has benefited all

methods of design. The literature advocates the use of use-cases as a functional

requirement-triggering tool. Literally dozens of documentation management,

configuration management, collaborative, multi-user, requirement specification, etc.,

tools exist and with each passing month more are created. While a tool will certainly not

insure a quality SRS, it can provide a skilled engineer a valuable set of services. These

services, when used appropriately, will contribute to the overall quality of the SRS.

2.11.3 Quantifying the Specification Quality

Many approaches can be used to quantify the quality of an SRS. The ability to recognize

and measure quality attributes in an SRS helps to detect errors in the SRS, which in turn

helps to develop a successful software system. The structure and attributes of the

document, natural language, and specific requirements can be evaluated. In NASA's

SATC (Huffman & Rosenberg, 1998) software system emphasis is placed on the

attributes of the document, and natural language. The result is a set of metrics used to

describe the SRS. These can be used to infer the quality of the SRS. The software

103

searches each line of text for specific words and phrases that are indicated by previous

SATC's studies to be an indicator of the document's requirements specification quality.

NASA's SATC uses counts of the items identified in Table 2.20 to help quantify

specification quality (Wilson et al., 1997).

Table 2.20 describes the physical SRS quality attributes to quantify the quality of

the documentation. The number of lines of text in a document is a blunt measure of size.

It provides no direct indication of quality. The number of imperatives provides an

indication of the number of explicit requirements in a specification. NASA found that

SRS documents with the majority of their imperatives at high levels of functional

abstraction were the most explicit. The use of continuances provides an indication of the

traceability of the document. A significant number of continuances suggested a

document that emphasized traceability. However, an excess of continuances indicates

overly complex and detailed requirements. The greater the level of traceability, the more

104

difficult it is to maintain the document. Each change will require that references to that

section be verified. NASA found that a high ratio of directives compared to total lines of

text is an indication of how precisely requirements are specified. They identified that the

number of options in an SRS is proportional to cost and schedule overruns (Wilson et al.,

1997). An option may indicate that the scope has not clearly been identified and may be

uncontrolled. Weak phrases are associated with ambiguity within an SRS. A large

number of weak phrases suggest an SRS that may be misinterpreted.

Another technique for evaluating the quality of a SRS is to explore the document's

structure. Functional requirements documents are typically divided into paragraphs. Each

paragraph in turn contains sub-paragraphs. High-level requirement documents rarely had

numbered statements below a structural depth of four (Wilson et al., 1997). It is simple

to evaluate the level of depth in a specification. While, it is not necessarily inappropriate

to use more then four levels of depth in a high-level requirements specification, NASA

has found that their engineers typically do not. This measurement can be used as an

indicator to potential problems within the SRS. The text structure of documents, well

organized and having a consistent level of detail, were found to have a pyramidal shape.

Davis provides mathematical equations to extrapolate metrics and evaluate the

inherent quality of the SRS requirements and a subset of those are defined in Table 2.21

(Davis, 1993) and admits that this is just a beginning and hopes that others will be able to

expand the list of quality attributes and provide other means of measurement.

105

This section has described techniques used to quantify requirements specifications

quality ranging from evaluation of words, phrases, and document structure to actual

mathematical equations. The primary goal of the various evaluations is to help generate

comprehensive documents that fully describe the software system to be designed and

subsequently implemented.

106

2.12 Summary and Conclusion

The software development process is the progression from the identification of some

application-specific domain need to the creation and delivery of a software product to

fulfill that need. To understand the need, one must first understand the application

domain. Analysis helps to identify and define application domain details. Software

engineers have a wide assortment of analysis techniques that can be used to help analyze

and design software systems. The underlying commonality or objective of different

analysis techniques is to gain a better understanding of the problem domain by

identifying entities and relationships.

The analysis component of the software development process determines the

scope of the software system by completely describing what is to be created. The

literature indicates that the current trend is to approach analysis and design of a software

system in a component-oriented re-usable fashion. Components represent fully

encapsulated entities of software system functionality that can interact with each other to

provide a service. The aggregate of all components comprise the software system. The

component-based approach represents a shift from the traditional process and data-

oriented way of thinking to the object-oriented software development paradigm.

Structured analysis and design uses the top-down approach to decompose the software

system and represents a functionalistic approach to problem solving. In contrast, object-

oriented analysis and design concepts utilize an object model approach to problem

solving by encapsulating a related set of data and actions to be performed on that data

into an object. The object-oriented paradigm uses common terminology throughout all

phases of the software development life-cycle. This terminology uses objects as its basic

107

building blocks and helps to encapsulate an abstract concept into a self-contained unit.

The object-oriented techniques are used throughout all phases of the software

development process, from project definition to implementation phases. That is, objects

identified during project specification are grouped and mapped directly into classes that

can be implemented and coded. The resulting objects represent a self-contained, re-

usable software component.

The component-based approach provides object-oriented analysis and design

powerful modeling techniques. The Unified Modeling Language (UML) is an industry-

standard and accepted modeling language that is used to specify and document the data

and processes of software system development in an object-oriented manner. It is unified

because Grady Booch, James Rumbaugh, and Ivar Jacobson merged their individual

object-oriented modeling techniques into a single modeling technique known as the

UML, which is part of their overall Rational Unified Process (RUP) software

development methodology. Modeling can improve all the activities that lead up to the

deployment of a good software system. A successful software organization can

consistently deploy a good quality software system that meets user needs and is usable.

Therefore, the best way to deploy a software system that meets user needs and

expectations is to properly capture the desired user requirements. In addition, to develop

a quality software system it must have a solid architecture that can handle change. This

implies that the development process used must be systematic and adaptable to changing

needs by users, business, and technology. Modeling and in particular the UML helps

organizations achieve and realize this goal. The UML provides eight process diagrams

that graphically represent both the static and dynamic views of the software system.

108

These views help to describe the software system from multiple stakeholder perspectives.

Some diagrams depict the system functionality requirements as seen by the users, while

other diagrams outline the component attributes, relationships, and behavior from a more

technical point of view. These diagrams aid analysis of the requirements and permit a

common point of reference and language to be used among all stakeholders when

discussing the software development project.

Requirements Engineering (RE) and Requirements Analysis is the process of

studying, determining, and documenting user requirements and expectations of the

software system to be designed and implemented. The process generates software

requirement documents that capture what is to be implemented by fully describing the

software system's functionality, performance, design constraints, and quality attributes.

RE gets the users involved early on and throughout the entire software development life-

cycle process. RE and in particular Requirements Analysis are supported in the object-

oriented way of thinking and has further helped to evolve the object-oriented paradigm of

software development to encompass a goal-oriented mindset. The focus of goal-oriented

analysis is on the description and evaluation of alternatives and their relationship to the

organizational objectives (Mylopoulos et al., 1999). Organizational objectives involve

doing what is best for the company, which ultimately means developing a software

system that both the customer and end-user expect. The goal-oriented way of thinking is

to get the users involved by documenting and understanding their point of view or

perspective. User participation increases the chances of their acceptance of the software

system.

109

Relationship Analysis (RA), a relatively new elicitation technique, can help

stakeholders gain a better understanding of the problem domain by its approach in

identifying entities and their relationships. Although in its infancy, RA promises to be a

technique that can be utilized at the project onset during the analysis phase. Yoo

developed the preliminary RA elicitation process but it still needs to be refined into a

well-defined process. An issue concerning RA is that its relationship taxonomy is not

based on a theoretical model. To address this limitation RA should develop a new

relationship taxonomy grounded in theory. Also, the current taxonomy's categories are

not distinct enough and identical relationships are often discovered in multiple categories.

A more thorough understanding of relationship identification spillover is needed. In

addition, RA questions are highly generic and should be tailored to the desired problem

domain. Therefore, it is necessary to study and formulate a way to describe how to

realize a more specific question set. A facilitator performs the RA process and asks

questions to a domain expert and records the results. However, there is no prescribed

way to record the results. The RA process needs to be expanded to describe how the

identified relationships are to be recorded. As previously mentioned a single facilitator

performs the RA process with a domain expert, another area of study is to perform RA in

a collaborative effort. Software development is a team effort from the problem definition

through to its implementation phases. Since the intention is to make RA part of software

development process, namely during the analysis phase, perhaps it best to perform RA

utilizing a collaborative team effort.

CHAPTER 3

RELATIONSHIP ANALYSIS THEORY

Techniques exist to identity system entities and attributes, but provide a weak

representation of relationships. There are two approaches to analyzing the relationship

structure of a domain: the first is by using existing methodologies in practice, and the

second is by using existing theories. These approaches are used within systems analysis

and knowledge elicitation techniques to acquire information. The focus of this review is

to describe the multitude of ways a domain's relationships are classified and identified.

The chapter begins by describing creativity in software engineering because

analysis and relationship identification inherently is a creative process. Next, conceptual

modeling in systems analysis is discussed. Following this, the chapter reviews existing

methodologies and existing theories. This leads into the proposed semantic model to

classify relationships and provides the theoretical background to the Relationship

Analysis Model (RAM). The last section is a summary. Throughout the various

sections, rationale is provided as to why the RAM is more appropriate than existing

methodologies and theories.

3.1 Creatibity in Software Engineering

Systems analysis consists of collecting, organizing, and evaluating facts about a system

and the environment in which it operates. The objective of systems analysis is to

examine all aspects of a system to establish a basis for designing and implementing the

110

111

system (Gouger, 1973). Computer-oriented system analysis techniques have attempted to

build more structure to the process. For example, Time Automated Grid (TAG) system,

Problem Statement Language (PSL), and Problem Statement Analyzer (PSA) are early

examples of semi-automated techniques to facilitate the process of mapping inputs,

outputs, and data flow. These mappings provided an overview of the system and

provided ways to show the relationships of all data in the system. Reports were

generated that documented input, analyzed data requirements, data flow definitions, time-

grid analysis, and database requirements. However, the process is still manually driven

(Gouger, 1973) and the individual or group is still responsible for defining the overall

framework and structure of the problem. How does one go about defining, analyzing,

and designing the structure of a software system's abstract concepts? The literature

indicates that software analysis and design is just as much a creative process as it is an

engineering process (Gomes et al., 2001) (Gero, 1994) (Partridge & Rowe, 1994).

Creativity involves a combination of originality and usefulness in producing

outcomes. The choices made during a creative process are not necessarily the most

obvious and often surprise observers due the originality of the innovative solution

(Couger, 1994). Creativity in software engineering is a cognitive process that analysts

use to generate products to satisfy certain kinds of properties. Software product creation

involves identifying what is needed to solve a problem. The ability to creatively generate

software products consists of three primary components, namely creative person, creative

process, and creative product (Gouger, 1990). Brown adds a fourth component, creative

situation and argues that without a situation, there is no need for creativity (Brown,

1989). The creative process is used in both new idea generation and the transfer of ideas

112

or product re-use. The skills needed for both new and re-use product development is

regarded as a type of reasoning ability associated with creative thinking in software

analysis and design (Sycara & Navinchandra, 1991). Although component re-use is

highly desirable, much of the time software engineers cannot use components without

modification. Adapting existing components to newer systems requires creative

reasoning. Re-use of ideas and components from other domains provides analysts the

opportunity to find creative solutions.

Gero identified the following five main reasoning processes involved in creative

software designs (Gero, 1994), which are inherently incorporated into analysis techniques

including relationship analysis (RA).

■ Mutation
■ Combination
■ Analogy
■ Reasoning from Principles
■ Emergence

Mutation is the modification of an existing design in order to generate a new

design. The ability to transfer knowledge from an existing solution to a new problem

helps construct re-usable solutions. One advantage of re-usability is that less time is

needed to develop a component. Consequently, needed delivery time can be reduced.

Re-usability is an established principle in engineering and applies previous successful

solutions to new problems. In addition to reducing product cycle time, the strategy is

aimed at reducing both cost and risk during the product development process (Arango,

1994). Thus, re-use has been identified as the key to improving software development

and productivity. Another way for generation of new solutions is the combination of

multiple pieces from different software product designs. Analyst's creativity is used to

113

determine whether and how multiple components can be leveraged into new software

products.

Analogy is regarded as one of the more important processes in the creative design

process because intellectual reasoning abilities are needed to determine whether a

previous solution can be leveraged and re-used, to some degree, and incorporated into a

new system (Gero, 1994). It comprises mapping between a source and target design

(Gomes et al., 2001). Analogy reasoning is a mechanism for transfer of ideas across

different domains and goes beyond component re-use by extending the scope into a

different domain. Reasoning from principles makes use of domain models in order to

generate new designs. Analysts use knowledge and past experience from existing models

and extend it to the new system. This is realized by documenting the similarities in

system structure and functionality of those systems.

Emergence is a process in which additional attributes are identified besides the

intentional attributes. This reasoning mechanism represents the ability to view things in

new ways, which is a characteristic of creative reasoning (Partridge & Rowe, 1994).

Guilford categorizes emergence types of reasoning abilities as fluency and flexibility of

thinking (Guilford, 1967) (Guilford, 1950). Guilford's Structure of Intellect theory

captures creative reasoning through emergence utilizing divergent properties. These

properties represent the ability to produce new ideas to the given information.

During the course of the System Development Life Cycle (SDLC), developers

tend to focus on a relatively small aspect of a larger problem. Consequently, developers

develop tunnel vision and lose sight of the larger issues being addressed. Sometimes, a

systematic analysis process helps generate a breakthrough, often referred to as creative

114

inspiration (Nagasundaram & Bostrom, 1995). There are techniques that help stimulate

creativity, and fundamental to these creativity techniques are the concepts of divergence

and convergence (Couger, 1993). Divergence implies expanding the field of possibilities,

and convergence implies reducing a field to one or a few for further consideration. The

most widely known divergent technique is brainstorming. Others include excursion and

wishful thinking. The more popular techniques for convergence are check listing,

highlighting, clustering, and criteria grid. The use of these creative techniques in the

information system development process can best be applied at four different points,

namely near the conclusion of requirements definition, logical design, physical design,

and program design (Couger, 1990). RA is a brainstorming technique and this

dissertation applies RA at the logical design or analysis phase to systematically embrace

the creative process in relationship discovery.

Developing and applying technology is both a creative and engineering process.

The newer agile software methodologies described in Chapter 2, view collaborative

approaches as an essential component to the creative process. Assembling a dynamic

project team of individuals with complementary backgrounds and skills is a powerful

ingredient to innovation and collaborative thinking (Capps, 2002), which fosters creative

software development. Therefore, one aspect of the RA approach to relationship

identification is to perform RA in a team environment.

3.2 Conceptual Modeling

A mental model is a conceptual representation of an abstract concept. A conceptual

model provides an accurate and complete representation of a target system. Conceptual

115

models are used as tools for understanding the system. Therefore, conceptual models can

aid human beings in developing an accurate mental model for an information system. As

such, conceptual modeling or semantic modeling in systems analysis and development is

designed to capture the meaning of an application domain. Human beings conceive of

things in terms of models of things and form mental models utilizing their own unique

style of information processing (Wu et al., 1998). The way people perceive and process

information forms the uniqueness of their own cognitive learning style (Kolb, 1984). The

value of conceptual models is their abilities to identify and capture the relevant

knowledge about a domain. The literature refers to the conceptual model as a way to

represent certain aspects of human perceptions of the real world so that these aspects can

be incorporated into an information system (Wand, 1999) and is depicted in Figure 3.1.

Conceptual models provide four roles (Chung & Solvberg, 1986):

■ A way for developers and users to communicate
■ Increase analysts' understanding
■ Serve as a basis for design
■ Serve as a means of documentation

Conceptual models are concerned with things or entities and relationships among

these entities (Brodie, 1984). "Entity" is the term used in structured analysis (SA) and

"object" is the term used in object-oriented analysis (BOA). Both SA and OOA are

116

established methodologies used in software engineering. While entities and relationships

are fundamental concepts to conceptual modeling, of the two, relationships are more

difficult to identify (Prietula & March, 1991) (Batra et al., 1990) (Goldstein & Storey,

1990). This is due to the fact that the meaning of a relationship is unclear. Modeling

techniques provide three basic relationship categories, namely

generalization/specialization, aggregation, and association (Booch, 1994) (Rumbaugh,

1991) (Martin-Odell, 1995) (Shiver & Mellor, 1992) (Goad & Yourdon, 1990) (Jacobson,

1992) (Embley, 1992) (DeChampeaux, 1993) (Firesmith, 1993) (Henderson-Sellers,

1994). Whereas researchers agree that the meaning of generalization/specialization and

aggregation is clear, what is the meaning of an association? Any dependency between

two or more entities or objects is an association. An association only denotes a semantic

dependency and does not exactly state the way in which one class relates to another. The

type of relationship is not explicitly identified, instead it is implied by naming the role

each class plays in the relationship (Booch, 1994). Teorey concurs and argues that

relationships have some type of semantic meaning (Teorey, 1986).

Therefore, present day conceptual models do not adequately convey the

relationship structure of the problem domain. This dissertation presents a semantic data

model, based on theory, that does identify and document the relationship structure of the

problem domain. However, prior to the description of the model, this chapter reviews

existing practical and theoretical approaches to relationship classification.

117

3.3 EOisting Methodologies

The analysis phase of the Software Development Life-Cycle strives to precisely and

comprehensively isolate and understand the problem domain, and document what is to be

built. Software engineering has several established methodologies to support the

activities during the analysis phase. These methodologies are functional decomposition,

structured analysis (SA), and object-oriented analysis (00A). This section describes the

techniques used by the methodologies and concludes by describing how RA could

support (supplement) the analysis phase of the two most common life-cycle

methodologies - Structured Analysis and Object-oriented Analysis.

Relationships within information systems are organized using modeling

techniques. These techniques identify system components and properties to help

represent the static and dynamic views of the problem domain. In particular, popular

modeling techniques used in today's software engineering product development are:

■ Entity-Relationship Modeling
■ 0bject-oriented Modeling
■ Unified Modeling

The remainder of this section will focus on describing these three popular

modeling techniques in its method of classifying relationships. In addition, other

semantic models: TAXIS, SDM, FDM, TM, SAM, Event Model, and SHM are also

discussed and compared.

Entity-Relationship (EIR) modeling is one of the best known semantic data

modeling approaches and is often used to represent the conceptual schema of the problem

domain by identifying its entities, properties, and relationships. Conceptual modeling is

an important phase to analyze and design database applications (Elmasri & Navathe,

118

2000). The concepts in a data model are usually represented in a diagrammatic form. A

conceptual schema diagram must be powerful enough in its semantic expressiveness and

easily comprehensible, as it serves as a communication medium between professional

designers and users who interact with it during the stage of requirements analysis and

modeling (Shoval & Frumermann, 1994) (Topi & Ramesh, 2002). E/R modeling is used

extensively in database design. Prior to the creation of database tables, a domain's

entities, properties, and relationships are graphically depicted using a diagramming

technique known as an E/R diagram (Chen, 1976). An EIR diagram represents the

logical structure of a database and provides a means of depicting the salient features of

the design of the database. Each entity is shown as a rectangle containing the name of the

entity type. Properties are shown as ellipses containing the name of the property and

attached to the relevant entity or relationship via a solid line. Each relationship is shown

as a diamond containing its name. Subsequent steps map the E/R diagram into a specific

database management system (DBMS), depending on the data model and DBMS used for

implementation (Shoval & Shiran, 1997). Within the DBMS, the concepts of entity and

properties are represented via tables and attributes, while relationships are represented

using primary and foreign key constraints. The main problem, however, is to create a

good conceptual schema that is semantically correct, easy to use, and comprehensible.

The quality of the database schema thus depends critically on the quality of the original

conceptual schema.

The EIR model helps provide a high quality schema, by classifying relationships

among entities as binary, nary, or recursive.

■ Binary: Relationship between two entities
■ N-ary: Relationship between more than two entities

119

■ Recursive: Relationship between one entity and itself

The relationship classification is further extended to include cardinality facts

among entities. Cardinality describes how many entities can be associated with one

occurrence of the other entity in a relationship. Entities may have a one-to-one, one-to-

many, or many-to-many cardinality relationship and are represented on the EIR diagram

using simple notation. EIR modeling provides a very good method to graphically depict

entities and their attributes and maps very well to DBMS implementation. Although

relationships are also depicted on the EIR diagram, the amount of information these

relationships convey is rather limited and depicts primarily the cardinality among entities.

Also, each relationship is depicted by a single word, which helps to avoid a cluttered

diagram depicting too much detail, but only provides minimal information describing the

relationship.

Other researchers have extended and refined the E/R model to capture both entity

and relationship representation by a clustering technique (Jaeschke et al., 1993) (Feldman

& Miller, 1986) (Teorey et al., 1989) (Rauh & Stickel, 1992). The technique produces

different levels of abstractions that group entities and relationships into a cluster.

Relationships are identified in an iterative fashion and a new EIR diagram is generated

that reflects these newer relationships. At the end of the process the top-most abstraction

layer details the set of relationships existing in the data model. However, the major

weakness is that the data model becomes more complex with each iterative refinement

and the highest-level cluster, which represents the complete conceptual schema, is very

complex.

120

Gandhi et al. developed a Leveled Entity Relationship Model (LER) that

associates two entities, similar to an EIR entity, and also associates sub-entities (Gandhi

et al., 1994). A sub-entity depicts a lower level of main entity abstraction. Moody

enhanced the LER model by dividing the data model into subject areas (Moody, 1996).

Each subject area is a portion of the EIR diagram. Each portion depicts sub-entities and

their corresponding relationships. A top-level diagram, context data model (CDM), is

used to depict all the subject-areas and the main relationships among them. The main

limitations of this technique are that cardinality and nary relationships are not supported.

In addition, sub-entity diagrams differ significantly from traditional EIR diagrams.

Overall, the various forms of EIR modeling provide a strong representation of

entities and attributes, but provide a weak representation of relationships. Main

relationships are depicted on the high level model in limited textual form, but important

relationships among low-level constructs are not depicted. In contrast, RA identifies and

documents relationships at all levels.

The Transaction And eXception handling Interactive database System (TAXIS) is

a modeling technique that places emphasis on generalization/specialization abstraction

hierarchies (Borgida et al., 1984) (Mylopoulos et al., 1980) (Nixon, et al., 1987)

(O'Brien, 1983). The model combines ideas from programming language and database

theory to support a semantic data model that utilizes the class concept. In TAXIS, a class

is comprised of data and operations. The collection of classes represents conceptual

abstractions depicted by an "is-a" hierarchy. This approach is extended to the system's

dynamic features by creating hierarchies of operation invocation and exception

occurrences. Such a modeling approach depicts relationships among classes by the

121

operations contained therein. Therefore, semantic relationships are determined by the

operations each class can perform and are depicted in a hierarchical format. Whereas

TAXIS exclusively models database systems utilizing the class concept, RA extends

beyond database systems. In addition, RA is not bound by the class concept nor is the

technique methodology dependent and can be used with other modeling techniques that

do not use classes, such as structured analysis.

The Semantic Data Model (SDM) (Hammer & McLeod, 1981) also incorporates

semantic modeling constructs into a collection of class abstractions. However, in contrast

to TAXIS, the focus of an SDM model is upon the definition of the class itself and not its

links or relationships to other classes via operations. SDM supports generalization,

aggregation, and association relationships by defining members, attributes, interclass

connections, and derivations of each class abstraction. Interclass connections are defined

by sub-type and group constructs using generalization and association. SDM employs

class abstractions to conceptually model entities. Relationships are embodied in the

interclass connections that are specified as part of the class definition. A distinguishing

feature of the SDM technique is the focus of the specification of the class without the

development of hierarchies to depict relationships among classes (Peckham &

Maryanski, 1988). SDM is similar to TAXIS in that it uses the class concept, RA does

not have this restriction. In addition, SDM does not focus on relationship identification

instead relationships are implicit in the class description. In contrast, RA explicitly

identifies relationships among items.

The Functional Data Model (FDM) (Shipman, 1981) was constructed with the

DAPLEX data definition language. The FDM model provides constructs to depict

122

entities and functions, but does not classify relationships nor represent generalization.

Functions are used to define aggregation of attributes used to form the entity abstractions.

Functions implicitly depict the relationships among entities (Buneman & Nikhil, 1984)

and are used to show that an entity is comprised of an aggregate of disparate components.

In contrast, RA is independent of the functions identified in the system. Instead, RA

classifies relationships that exist for the entities and not just the aggregation relationships.

Once the relationships are established, it could be used to help identify the functions of

the system, in this case the aggregation relationships.

The Tasmanian Model (TM) is an extension to Codd's Relational Model and

Temporal data (RMIT) (Codd, 1979) and captures the semantics of relationships through

integrity rules. Relationships among database tables are dynamically formed based on

the data in the tables. For example, if the same data exists in different tables, a

relationship is established. Each entity type is defined by a single E-relation and one or

more P-relations, which define the properties or attributes of the entity type. P-relations

are directly associated with E-relations and represent a means of enhancing the semantic

expressiveness of the model. RMIT provides integrity rules for the various entity types

(Codd, 1979) (Davis, 1983) and explicit support for type hierarchies and is viewed as an

enhanced EIR model. Although the TM is an improved EIR model, relationships are only

made between data elements that exist in two or more tables through integrity rules. This

works well for database tables and RA can also identify these types of relationships

through its comparison focus. However, if data exists uniquely in a single table and

nowhere else, no database relationships for that table will be identified. RA identifies

relationships of all the data elements.

123

The Semantic Association Model (SAM) is a semantic model designed originally

for scientific-statistical databases (Su, 1983). The technique provides a well-structured

and semantically consistent approach to entity definition by classifying seven types of

relationships among entities. The seven relationship types are: membership, aggregation,

interaction, generalization, composition, cross product, and summarization. Su based

these seven modeling constructs on evaluation of the requirements of the conceptual

modeling needs of the CADICAM environment (Krishnamurthy et al., 1987). Whereas

SAM's relationships are based on the modeling needs of CADICAM, RA is not restricted

by a specific modeling environment. Instead it is based on theory to identify the complete

set of relationships of a domain.

The event model provides support for generalization via functions and

aggregation through attributes (King & McLeod, 1984). This model addresses both the

static and dynamic properties of an application. A subtype relationship is used to

organize the static schema into a set of hierarchies. Membership in a subtype is defined

using predicates evaluated on attributes. Thus, the semantics of an attribute depend on

the constraints imposed by the designer in the definition of the attribute type. The

dynamic properties are determined through a sequence of design phases that create

diagrams, similar to state diagrams, to depict dynamic behavior. This process models

dynamic behavior better than other modeling techniques previously discussed due to the

explicit identification of dynamic events. This differs from the RA approach in that the

event model determines relationships during the design phase of the development

process. In contrast, RA identifies the relationships during the analysis phase prior to

124

design. Therefore, RA improves the analysis phase and facilitates the design process in a

more systematic manner.

Similar to the event model, the Semantic Hierarchy Model (SHM) (Brodie, 1984)

models both the static and dynamic properties of an application. Object and behavior

schemes are used to capture system properties. Structural relationships of data objects

are captured via aggregation and generalization properties. These structural relationships

model the static structure of the application. Connecting main entities to operations

explicitly depicts behavior or dynamic relationship representation or association. The

graphical representation of these control abstractions is identical to that used to represent

the structural abstractions of aggregation and generalization. The similarity of constructs

provides commonality to modeling semantic relationships (Peckham & Maryanski,

1988). Thus, SHM provides a unified modeling technique for both static and dynamic

objects. This is a limited semantic model in which only generalization and aggregation

relationships are identified. In contrast, RA provides a more complete set of relationships

that model the domain more accurately and provides analysts a deeper understanding of

the domain.

Within the object-oriented methodology, conceptual models of a problem domain

are represented as a collection of interacting objects. These objects help to encapsulate an

abstract concept into a self-contained unit. This unit or component-based approach is the

foundation of object-oriented modeling (Booch, 1986) (Rumbaugh, 1991). 0bjects are

organized by their similarities into classes. An object class describes a group of objects

that have the same attributes and behavior patterns. This grouping of objects supports the

concept of abstraction and affords modeling the ability to generalize a real-world

125

concept, as a single class comprised of a collection of interacting objects. Classes do not

exist in isolation, rather for a particular problem domain, key abstractions are usually

related in a variety of ways (Booch, 1994). Therefore, within the object-oriented

methodology, relationship classification caters towards class representation. As a result,

relationships of object-oriented conceptual models depict class relationships. There is no

prescribed way to determine classes nor relationships, however techniques have emerged

that offer recommended practices and rules of thumb for identifying classes and objects

germane to a problem domain.

For example, Shlaer and Mellor suggest that candidate classes and objects usually

come from one of the following sources (Shlaer & Mellor, 1992):

■ Tangible Things: houses, cars, trees
■ Roles: professor, manager, dean
■ Events: request, response, eating
■ Interactions: meeting, intersection

Ross offers a similar list (Ross, 1986):

■ People: Humans who perform some function
■ Places: Areas for people or things
■ Things: Tangible physical objects
■ Organizations: Formally organized collections of people, resources, facilities, and

capabilities having a defined mission
■ Concepts: Ideas that are not tangible
■ Events: Things that occur at a given time or in a particular ordered sequence

Coad and Yourdon suggest yet another set of sources of potential objects (Coad &

Yourdon, 1990):

■ Structure: "Is-a" and "Part-of' relationships
■ Other Systems: External systems in which the system interacts
■ Devices: Devices with which the application interacts
■ Events Remembered: An event that is recorded
■ Roles Played: The different roles users play in interacting with an application
■ Locations: Physical places, offices, and sites accessed by the application
■ Organizational Units: Groups comprised of users

126

From these various ways of object classification, links and associations are used

to depict relationships among classes and objects. Links are the conceptual connections

between object instances. Associations are groups of links with common semantics and

describe a set of links in the same manner that a class describes a collection of objects.

Object-oriented modeling techniques provide three basic relationship categories:

(Booch, 1994) (Rumbaugh, 1991) (Martin-Odell, 1995) (Shlaer & Mellor, 1992) (Coad &

Yourdon, 1990) (Jacobson, 1992) (Embley, 1992) (DeChampeaux, 1993) (Firesmith,

1993) (Henderson-Sellers, 1994).

■ Generalization/Specialization/Inheritance: Denotes an "is-a" relationship
■ Whole-Part/Aggregation: Denotes a "part-of' relationship
■ Association: Denotes some semantic dependency among otherwise unrelated

classes

Inheritance describes class relationships in the context of their similarities while

preserving their differences. Inheritance defines class relationships, whereby a particular

class shares the attributes or behavior in one or more other classes and represents a

hierarchy of abstractions, in which a sub-class inherits from one or more super-classes.

Sub-classes also contain their own unique features or differences not found in their super-

classes. Semantically, inheritance denotes an "is-a" relationship since a sub-class "is-a"

type of its super-classes. Without inheritance, every class would be a separate unit

developed from the ground up. Inheritance makes it possible to define new software, by

comparing it with something that is already familiar.

In contrast, aggregation denotes a "part-of" relationship among class objects and

permits the grouping of logically related components. For example, a sentence is "part-

e' a paragraph. Aggregation is a type of association but specializes relationships using

the "part-of' connotation.

127

Any dependency between two or more classes is an association. An association

only denotes a semantic dependency and does not exactly state the way in which one

class relates to another. The type of relationship is not explicitly stated, instead it is

implied by naming the role each class plays in the relationship (Booch, 1994).

Similar to EIR modeling, object-oriented modeling provides a strong

representation of entities represented as classes and their attributes. Whereas the EIR

model depicts the data model of the system so as to map the EIR diagram directly into a

specific database management system (DBMS), an object-oriented model portions the

system into a collection of sub-systems and classes. Inheritance and aggregation types of

relationships are strongly defined among classes. However, all other types of

relationships that exist in the problem domain are lumped into the association category

and depicted by a name connecting the classes. These names only indicate that a

dependency exists but does not explicitly indicate how. Thus, association relationships

are identified more implicitly than explicitly. In addition, the processes of relationship

discovery are not defined and low-level relationships that exist among class objects are

not identified.

The Unified Modeling Language (UML) approach to relationship classification is

similar to object-oriented relationship categories. Both support generalization,

association, and aggregation relationships categories. However, the UML more explicitly

supports dependency and realizes relationship categories and specifies five types of

relationships between classes (Kobryn, 2000) (Booch, et al., 1998):

■ Associations
■ Dependencies
■ Aggregations
■ Realizes

128

■ Generalizations

Association, aggregation, and generalization relationship types are defined exactly

the same as in object-oriented modeling. This is to be expected since the UML creators

used object-oriented concepts from Booch, Rumbaugh, and Jacobson. Dependencies

connect two classes but only in one direction and depict that one class can send a

message to another class. A realize relationship is used to show the relationship between

a class, package, or component, and its interface. The relationship connects a publicly

visible interface such as an interface class or use-case to the detailed implementation and

helps separate an interface from its implementation.

Similar to the object-oriented analysis, the UML provides syntax to depict

generalization and aggregation relationship types. As with object-oriented relationship

classification, generalization and aggregation types of relationships are strongly defined

among classes. However, association, dependency, and realize relationships are

identified by looking at the sequence and collaboration diagrams. The literature does not

address the fact that in order to depict relationships on the class diagram static view, it is

necessary to extract information from the dynamic view using sequence and collaboration

diagrams. Also, only a label is used to indicate that an association, dependency, or

realize relationship exists but does not explicitly indicate how. Thus, these relationships

are identified more implicitly than explicitly. In addition, the processes of relationship

discovery are not defined and low-level relationships that exist among class objects are

not identified.

To summarize, semantic classification within information systems strongly

categorizes main system entities or components but poorly classifies how they are

129

related. Table 3.1 summarizes the semantic modeling techniques discussed. These

techniques model both the static and dynamic view of a desired system. The different

views identify the problem and solution domain from different perspectives and map out

the functional requirements. To this end, modeling techniques focus on identifying main

system components but loosely identify how components are related and interrelated.

These semantic models offer the modeler a small set of the fundamental abstractions

needed to identify the relationships structure of the application domain.

SA is the most popular approach to problem analysis and although SA is process

and data oriented, its primary focus is to determine what data needs to be transformed by

the system while maintaining a degree of separation between process and data. SA uses

functional decomposition to map from problem domains to functions and sub-functions.

Because of the emphasis on data, SA extensively makes use of analysis tools such as data

130

flow diagrams, which do not capture relationships, and entity-relationship diagrams,

which capture merely a subset of relationships. SA techniques at best provide general

guidelines for discovering relationships as opposed to providing a systematic approach.

The EIR diagram deals primarily with entities, their attributes and relationships

(Chen, 1976). An EIR diagram maps from the real world into entities, attributes and

relationships. It provides a way to express problem domain understanding by direct

mapping. EIR diagrams for the most part allow for only a single relationship to connect

two entities. Also, the analysis techniques for developing EIR diagrams provide, at most,

ad hoc approaches for determining the relationships. Often it is assumed that the

relationships are obvious between any two entities, and that an analyst will see them

intuitively.

While SA is still widely used, especially in the United States, OOA rapidly is

gaining popularity around the world. The development of BOA was realized by

combining the concepts of semantic data modeling and object-oriented programming

languages. BOA methodologies focus on objects and recommend the modeling of object

classes including their attributes and behaviors as well as their relationships through the

mechanism of message passing.

BOA uses popular tools such as use-cases and class diagrams extensively to

document the processes and objects and make it easier to move from the analysis stage to

design and then onto development. They provide, however, at most an ad hoc approach

to documenting relationships, the focus being more on objects and their interactions via

messages. The systematic nature of RA makes it an accessible approach to analysts of

varying experience levels.

131

None of the existing methodologies explicitly helps the analyst in determining the

detailed relationship structure of the application domain, and therefore they are not as

comprehensive as analysts treat them. For any analysis methodology truly to be

effective, it needs to be systematic, controlled and comprehensive. RA is a systematic,

controlled technique that can supplement and "complete" the existing approaches.

3.4 EOisting Theories

Conceptual models or semantic data models in systems analysis and development are

designed to capture the meaning of an application domain. The value of conceptual

models is their abilities to identify and capture the relevant knowledge about a domain.

In order to categorically say that the model is complete, it should be based on a

theoretical model. Wand promotes the idea that theories related to human knowledge can

be used as foundations for conceptual modeling in systems analysis and development in

general (Wand et al., 1995). This section describes three theories that have been used to

develop conceptual models in the context of systems analysis, namely ontological theory,

classification theory, and speech act theory. In addition, The Structure of Intellect (SI)

theory is described in the context of classifying the complete range of intellectual ability.

Guilford designed SI with a focus on measuring creativity (Guilford, 1950), which is an

integral aspect of systems analysis and brainstorming activities in general. The latter

theory has been adopted and applied to the Relationship Analysis Model (RAM) and

arguments are made throughout this section as to why this is the best approach.

132

3.4.1 Ontological Theory

There is a need to share meaning of terms in a given domain. Achieving a shared

understanding is accomplished by agreeing on an appropriate way to conceptualize the

domain, and then to make it explicit in some language. The result, an ontology, can be

applied in a wide variety of contexts for various purposes and may take a variety of

forms, but necessarily it will include a vocabulary of terms, and some specification of

their meaning (Uschold, 1998).

0ntology is a branch of metaphysics concerned with the nature and relations of

being or existing. Since an information system represents a perceived real-world system,

relationships can be viewed as constructs that model certain kinds of real-world

phenomena (Wand et al., 1999). Therefore, it may be possible to derive the meaning of

relationships via ontological theories. Fundamentally, ontologies are used to improve

communication between either humans or computers (Jasper & Uschold, 1999) and can

broadly be grouped into communication, inter-operability, and systems engineering

benefits. The focus of the latter is to improve the process and/or quality of engineering

information systems to encompass the following six areas (Uschold, 1998):

■ Re-usability: The ontology is the basis for a formal encoding of the important
entities, attributes, processes and their relationships in the domain of interest.
This formal representation may be a particular component of a software system
that meets specific requirements and certain criteria of a proposed software
component of another software system. Therefore the existing component can be
re-used in another software system.

■ Search: An ontology may be used as meta-data serving as an index into a
repository of information.

■ Reliability: A formal representation makes it possible to systematically reproduce
results, thereby providing more reliable software.

■ Specification: The ontology can assist the process of identifying requirements and
defining a specification for an IT system by providing a vocabulary of terms, and
some explanation of their meaning.

133

■ Maintenance: The use of ontologies in systems development, or as part of an end
application, can render maintenance easier in two primary ways. The first is
systems built using explicit ontologies serve to improve documentation of the
software by providing a vocabulary of terms, and some specification of their
meaning. This documentation can be used by those responsible to maintain the
software to help gain a faster comprehension of the software, which helps to
reduce maintenance costs. The second is if an ontology is used with multiple
target languages, it only has to be maintained in one place because of its
extensibility properties.

■ Knowledge Acquisition: Using an existing ontology as the starting point may
increase the speed in which knowledge is acquired since the existing ontology
already provides a vocabulary of terms and their meaning.

In general, the accepted industrial meaning of "ontology" makes it synonymous

with "conceptual model". There is a slight differentiation between the terms. A

conceptual model is an actual implementation of an ontology. Taxonomies are a central

part of most conceptual models. Properly structured taxonomies help bring substantial

order to elements of a model, are particularly useful in presenting limited views of a

model for human interpretation, and play a critical role in reuse and integration tasks

(Goldstein & Storey, 1999).

Given the diverse applications of ontologies from the literature, and the various

dimensions by which they can be classified, four main categories emerge, namely neutral

authoring, ontology as specification, common access to information, and ontology-based

search (Jasper & Uschold, 1999). The commonality among the categories is the need for

sharing the meaning of terms in a given domain, which is the central role of ontologies.

0f these four, ontology as specification has been used to model application domains in

terms of systems analysis. Ontology as specification and has been further subdivided into

four ontologies concerned with conceptual modeling in the context of relationships

(Mylopoulos, 1998), namely dynamic ontology, intentional ontology, social ontology,

and static ontology. Dynamic ontology includes occurrence (state transition), temporal,

134

and influence relationships. Intentional ontology includes intentional relationships.

Social ontology includes socio-organizational relationships. Static ontology includes all

other types of relationships.

Bunge applies ontology to systems analysis and outlines ten ontological

constructs to analyze the meaning of a relationship (Bunged, 1979), (Wand et al., 1999)

(Weber & Zhange, 1996). These ten ontological constructs are:

■ Thing: A thing is anything perceived as a specific object of the system, whether it
exists in physical reality or in an analyst's mind.

■ Property: Properties are attached to things either intrinsically or mutually. An
intrinsic property is dependent only on one thing. A mutual property depends on
two or more things.

■ Attribute: Attributes are the properties of things and are characteristics assigned to
things according to human perceptions.

■ Class: A set of things possessing common properties.
■ Kind: A thing defined by a set of properties.
■ Functional Schema: A finite sequence of attributes defined on a certain domain.
■ State: A state is a description of what a thing may change into.
■ Law: Laws are restrictions of how a thing may change.
■ Interaction: Things can interact, which may cause other things to change.
■ Composition of Things: Fundamental ontological concept which addresses the

notion that a thing is made of other things.

Table 3.2 shows how ontological constructs map to conceptual modeling
constructs.

135

These ten constructs encompass static and dynamic ontology. Three types of

models related to systems analysis have been developed based on Bunge's ontology

(Wand & Weber, 1995), namely the representation model, state tracking model, and

system model. A representation model deals with the mapping between ontological

constructs and information systems constructs. The state tracking model views an

information system as an artifact that changes state to reflect the changes of state of the

represented real world system. The system model analyzes the structure and behavior of

a system as a whole in terms of the states and laws of its components.

Of the three model types, the literature indicates that only the representation

model has been used in systems analysis practice. For example, the entity-relationship

(EIR) model (Chen, 1976) maps an entity to a thing, an entity type maps to a functional

schema, and a relationship maps to a property or interaction. Thus, the application of

ontology to the E/R model results in rules for the use of entities, relationships and

attributes (Wand et al., 1995). Bunge's ontology has also been used in object-oriented

analysis (00A) to propose a model of objects as representation constructs. The resulting

model was used as the basis for an object-oriented (00) conceptual model approach

(Takagaki & Wand, 1991) and serves to propose guidelines for 00 modeling (Parsons &

Wand, 1991).

However, there are two main problems with an ontological approach as the basis

to systems analysis. First, there is no generally accepted ontology (Wand et al., 1995).

Bunge's ten ontological constructs is the only ontology relevant to systems analysis. A

different ontology may utilize different constructs, thereby possibly leading to different

outcomes. Therefore, how does one know what constructs should be employed? Second,

136

although Bunge's ontology is the only ontology specific to systems analysis, it does not

deal with organizational and behavioral aspects of information systems. In contrast, the

proposed relationship analysis model (RAM) encompasses the static, dynamic,

intentional, and social ontologies in its classification and analysis of relationships.

3.4.2 Classification Theory

The terms classification, taxonomy, ontology, and morphology are often confused and

used interchangeably. Classification is a systematic arrangement of information in groups

or categories according to established criteria. Taxonomy is the orderly classification of

plants and animals according to their natural relationships. Ontology is a branch of

metaphysics concerned with the nature and relations of being or existing. Morphology is

the study of structure or form. Simply stated, these are all ways of organizing

information (things or animals) into categories. For example, the Linnaean system of

classification used in the biological sciences to describe and categorize all living things in

terms of genus and species is a classical taxonomy we are all familiar with today.

Similarly, both the Dewey Decimal System and Colon Classification System describe the

way libraries categorize and catalog information (Daniels & Martin, 2000) (Ranganathan,

1965). Information placed in categories based on common characteristics helps to break

down information into smaller more manageable pieces. The aggregate of these

organized components comprise the totality of what is being classified. Classification

theory extends beyond the traditional biological and library sciences. Environments such

as the World Wide Web and digital libraries face classification challenges. These

challenges encompass effective information presentation, retrieval, and use (Giles et al.,

137

1998). Classification of information is as much an art form as it is a science. Successful

information organization is to a large extent a function of the mental abilities that the

performer brings to the task (Bloomberg & Weber, 1976). There seems to be a universal

level at which humans name things. This level at the broader term is the genus level and

for the narrower term, species level (Kay et al., 1991). The RA model also has broader

and narrower levels. The broader term describes the focus or aspects of the relationship

being classified, while narrower levels describe relationship types.

Concept theory is a type of classification theory that has been applied to systems

analysis and involves the notion of a class as its fundamental concept. Classification

theory defines a class as a well-defined set of properties that determines membership in a

class. Therefore, a class is the way classification theory categorizes information. In

essence, a class is the implementation of groupings. In concept theory, a class structure is

a set of properties satisfying four conditions (Wand et al, 1995):

■ Each class must be able to have instances
■ Each class must contain every property common to all instances
■ Every known property of an object must be included in the definition of at least

one class in the class structure
■ No class in a class structure is defined as the union of the properties of any other

classes

A class organizes information in terms of cognitive economy and inference.

Cognitive economy translates to instances of a class as being the same and provides a

way to represent all the instances by a single class. Classes are unique when its instances

contain meaningful differences (Rosch, 1978) with instances of other classes. Wand

argues that meaningfulness can only be determined with respect to some use of

knowledge (Wand et al., 1995) and meaningfulness differs among people. Therefore, the

use of concept theory cannot always generate a set of classes to uniquely model a

138

domain. Instead, the generated classes are dependent upon the human being performing

the task. Inference is the second way a class organizes information and it is the ability to

derive conclusions on unobserved properties of class instances by classifying them based

on other observed properties (Wand et al., 1995).

A concern in using classification theory in developing a conceptual model in

systems analysis is which theory to use. Only the concept theory of classification theory

has been described in potentially being useful in systems analysis (Wand et al., 1995).

Other classification theories exist, but have not been applied to conceptual modeling in

systems analysis. Finally, similar to ontological theory, classification theory does not

consider beliefs, goals, organizational, and behavioral aspects of information systems in

its classification schema. In contrast, the proposed relationship analysis model (RAM)

encompasses these aspects in its classification and analysis of relationships. More

research is needed in the area of applying conceptual modeling in systems analysis before

it is possible to say that classification theory is or is not a worthwhile approach.

3.4.3 Speech Act Theory

Another interesting theory that has been applied to conceptual modeling in information

systems is Speech Act Theory (SAT). SAT can be used to analyze the activities in a

modeled domain and is widely accepted in linguistics and philosophy in the study of how

language understanding and communication work (Forbear & Lolonbetti, 2003) (Tosca,

2000). Speech acts (SALTS) are symbolic deeds that result in linguistic expressions

having a meaning and always involve at least two agents, speaker and hearer. SALTS

form conversations or discourses, which exhibit systematic regularities that can be

139

studied and analyzed. A speech act is the basic unit of communication and the premise of

SAT is that every speech act can be analyzed as consisting of the following four distinct

actions (Austin, 1962) (Searle & Vanderveken, 1985) (Auramäki et al., 1988):

■ Utterance Act: Act that a speaker performs by uttering an expression.
■ Illocutionary Act: A basic unit of meaningful human communication. It is always

performed when one utters certain expressions with an intention.
■ Propositional Act: Act of denotation and predication.
■ Perlocutionary Act: Act involved in uttering that produces effects on the feelings,

attitudes, and subsequent behaviors of the hearers.

Although there is no generally accepted description of the theory, the application

of SAT deals with the classification of these four communication acts according to their

intentions and possible effects. Sequences of SALTS form an ordered sequence or

logical pattern. These patterns can be grouped into larger discourse segments. Segments

share a common topic and have a goal that is relevant to achieving the purpose of the

discourse type (Fornara & Lolonbetti, 2003). SALTS can be analyzed to determine

system relationships in the context of human-to-human relationships, human to system

component relationships, and system component to system component relationships.

SAT has been used by different researchers to model different aspects of

interactions (Wand et al., 1995). One of the most popular applications is Speech Act

based office Modeling aPprOach (SAMPO) (Auramaki et al., 1988), which models office

functions. The SAMPO systems analysis technique provides several tabular tools to

describe a discourse in office information systems. The table is constructed by defining

the discourse type on the basis of prerequisites and possibilities, thereby specifying the

semantics of each unit of information as it passes among people and/or processes. These

characterizations reveal features of the discourse. The literature indicates that SAMPO

provides insights into observing and understanding information flows by specifying the

140

flow semantics in terms of social and nonsocial communication. However, the results

were difficult to interpret and often ambiguous.

Current applications of SAT have drawbacks ranging from a lack of an overall

picture of how actions relate among each other to ambiguous classification (Wand et al.,

1995). It can be argued that the primary reason for problems associated with the

application of SAT is its lack of an accepted description of the theory. Wand suggests

that other techniques and theories should be used jointly with the application of SAT. In

contrast, RA is a stand-alone technique, which provides unambiguous relationship

classification categories. In addition, RA is based on theory to identify the complete

relationship structure of a domain thereby improving the overall picture of the system and

its relationships.

3.4.4 Structure of Intellect Theory (SI)

The Structure of Intellect (SI) theory is a general theory of human intelligence, thus

forming a basis for comparing and classifying the complete range of intellectual ability.

Guilford designed SI with a focus on measuring creativity (Guilford, 1950), which is an

integral aspect of systems analysis and brainstorming activities in general. The SI model

classifies intellectual abilities into a cross-classification independent three-plane system

comprised of contents, products, and operations (Guilford 1956).

Figure 3.2 Guilford's Structure of Intellect Model

141

Figure 3.2 shows SI includes five kinds of contents, six kinds of products, and

five kinds of operations. Due to the three independent planes, there are theoretically 150

different components of intelligence. The three dimensions of the model specify first, the

operation, second the content, and third, the product of a given kind of intellectual act.

Every intellectual ability in the structure is characterized in terms of the type of operation

employed, the content involved, and the sort of resulting product. The convention

(Operations, Contents, Products) is used to specify each factor. For example, (Lognition,

SeMantic, Unit) or (CMU) represents cognition of a semantic unit. In this way the SI

theory represents the major kinds of intellectual activities or processes as an interrelated

three-dimensional model.

Turoff et al. apply SI to the computer application domain (Turoff et al., 1991) and

argue that not all of the SI components are necessary for classifying computer application

domains, they reduce it to two dimensions by classifying all SI types of content as one,

namely semantic. The four SI contents; visual, auditory, symbolic, and behavioral are

useful in classifying tests of intellect, but are not necessary for classifying application

142

domains. In addition, the SI operations, evaluation and memory are also not necessary

for classifying application domains (Turoff et al., 1991).

Extending from these aforementioned models, the Relationship Analysis Model

(RAM) approach in classifying relationships of computer application domains is to

develop a semantic classification model. Therefore, the resulting model is a two-

dimensional model, products vs. operations.

A product represents the organization that information takes in the analyst's

processing of it (Guilford, 1967) (Meeker, 1969).

■ Units: Most basic item. Things to which nouns are normally applied. Described
units of information.

■ Classes: Sets of items of information grouped by virtue of their common
properties.

■ Relations: Connections between items of information based on variables or points
of contact that apply to them.

■ Systems: Organized or structured aggregates of items of information.
■ Transformations: Lhanges, redefinition, shifts, or modifications of existing

information or in its function.
■ Implications: Extrapolations of information.	 Emphasizes expectancies,

anticipations, and predictions.

0perations represent major kinds of intellectual activities or processes that

analysts perform with information (Guilford, 1967) (Meeker, 1969).

■ Lognition: Discovery, awareness, or recognition of information by
comprehension or understanding. Guilford views the cognition process as the
classification of an object. Turoff et al. extend this concept to hypertext whereby
cognition is represented by a node that classifies all the linked objects as related to
a common concept or characteristic. Hypertext, at its core, concerns nodes
(elements-of-interest) and links (relationships). These links or relationships
among nodes are classified under convergent and divergent production properties.
The RAM differentiates itself from the HMIM in its application of cognition. The
HMM represents cognition by a node and in hypertext terms: a node is an
endpoint, and relationships exist among nodes or endpoints. In contrast, the
relationships of each element-of-interest in the RAM represent by six cognitive
focus perspectives.

■ Convergent Production: Generation of information from the given information,
where the emphasis is on achieving unique best outcomes. The given information

143

fully determines the response. Guilford views convergent production as when the
input information is sufficient to determine a unique answer. Turoff et al. extend
this concept and a convergent link is a relationship that follows a major train of
thought. This is referred to as a convergent relationship in the RAM.

■ Divergent Production: Generation of information from the given information,
where the emphasis is on variety and quality of output from the given
information. Guilford views divergent production as fluency of thinking and
flexibility of thinking. Turoff et al. extend this concept and a divergent link is a
relationship that starts a new train of thought. This is referred to as a divergent
relationship in the RAM.

The RAM uses Guilford's categories from SI, condenses them in the same

manner as Turoff et al., and re-labels several to reflect the goal of relationship discovery

and documentation. The differences between the HMIM and RAM are semantically

metaphoric. The HMM, interprets the "products" as nodes or endpoints, while the RAM

interprets "products" to represent the six possible cognitive foci of the current artifact or

"element of interest" being analyzed. (Guilford views the cognition process as object

classification.) The "operations" now represent relationships that either conceptually

converge or diverge within this focus. (Guilford views convergent production as when

the input information is sufficient to determine a unique answer. Turoff et al. extend this

concept to a convergent link that follows a major train of thought. Guilford views

divergent production as fluency and flexibility of thinking. Turoff et al. extend this

concept to a divergent link that starts a new train of thought.) The following section

applies the aforementioned concepts and describes the RAM in detail.

3.5 Relationship Analysis Model (RAM)

The Relationship Analysis Model (RAM) applies these three operations to the six

products defined in the previous section to categorize relationships. Similar to Turnoff s

144

Hypertext Morphology Model (HMM), each cognitive product becomes a focus point

that classifies all the linked relationships pertaining to the particular cognitive focus.

Thus, relationships of an element of interest are described by six cognitive focal points.

Relationships of each focal point are classified under convergent and divergent operation

properties. Therefore it is possible to classify the relationships of an element of interest

in terms of six products each of which has convergent and divergent relationships. Table

3.3 depicts the cells of the model using SI nomenclature.

During the analysis process, documents and dialogue provide analysts

descriptions of desired system functionality. From these documents it is possible to

extract elements of interest. Our goal is to fully describe the relationships of desired

elements of interest using the meanings of the cells outlined in Table 3.3. As such, the

following sub-sections describe the six focal aspects of the classification of relationships

based on the SI theory and is depicted in Table 3.4.

145

3.5.1 Unit Focus

Guilford views a unit as relatively described items of information (Guilford, 1967). One

thinks of items of information as units or definitions, first, before they form collections or

groupings. Guilford views the cognition process as the classification of an object

(Guilford, 1967) and as such, cognition of a unit takes the form as defining the object.

These descriptions or definitions can be explicit or implicit. Explicit descriptions yield

specific relationship types. In contrast, implicit relationships are uncovered as

descriptions are further elaborated. Descriptions provide characteristics of items of

information, which are attributes, also known as metadata. Thus, metadata relationships

are identified within unit focus.

Guilford views convergence as when the input information is sufficient to

determine a unique answer (Guilford, 1967). Therefore, unit or definition convergent

relationships are explicitly specified in the description of the element of interest. The

following list is an example of questions to determine specific convergent relationships

(Yoo, 2000).

■ Does the item have a description?
■ Does the item have a definition?
■ Does the item have an explanation?
■ Does the item have a set of instructions?
■ Does the item have an illustration?

146

In contrast, divergent relationships are determined as descriptions are further

elaborated. Guilford views divergence as flexibility of thinking (Guilford, 1967). These

types of relationships are generally found just below the surface of the description and

not within the description of the element of interest. The following list is an example of

questions to determine elaborated divergent relationships.

■ Does the description fully describe the item?
■ Does the definition fully encompass the item?
■ Does the explanation make assumptions?
■ Are the set of instructions complete?
■ How can this item be expanded or broadened?

Both structured and object-oriented analysis utilizes functional definitions to help

perform the analysis (Martin & Odell, 1995) (Borgida et al., 1984) (Brachman, 1983)

(Smith & Smith, 1977). Jacobson's use-case analysis technique has made the process

more explicit by generating descriptions of the use-cases (Booch et al., 1998). Use-case

descriptions are narratives that describe a functional aspect of the desired system. From

these narratives it is possible to extract both explicit and implicit relationships. Unit or

definition focus is depicted in Figure 3.3.

For example consider the following brief description. The software operates on

both an Intel x86 and Motorola 68x000 architecture base computer and the results of the

software are displayed on a monitor. Does the base computer have a description? Yes, a

147

specification relationship would be that between the computer and its Intel processor

type, namely an Intel x86 and Motorola 68x000. However, what type of monitor? An

elaboration relationship is determined by inquiring about the type of monitor desired.

Does the description fully describe the monitor? No, the original description does not

contain monitor specific information or a description, but can be determined by

elaboration. In this case lets assume a flat-panel display.

The next example identifies a specification and elaboration relationship from the

task problem statement of Appendix F. Does a course have a definition? A course is

defined by three items: the professor teaching the course, the department offering the

course, and the prerequisites required to enroll in the course. Does the description fully

describe the item? No, additional information is needed to more fully describe a course.

Some of this information includes the days of the week the course is offered, the time of

day the course is held, the location of the course, the number of course credits, the course

number, the course section number. These types of questions asked during the analysis

phase helps to more fully describe the problem and aids to document the relationships of

the system components. The result is a more comprehensive understanding of the

domain.

3.5.2 Collection Focus

Collections are recognized sets of information grouped by virtue of their common

properties (Guilford, 1967). Lollections are derived from the previously determined

definitions or units. It is valid to suppose that before one can make collections around a

unit, one would have to perceive the unit already defined (Meeker, 1969). At the time of

148

Guilford's writing of the SI theory, analysis, as it pertains to software systems

development, did not exist. The term class has a different connation in present day

software engineering methodologies. As in Guilford's definition, a class is a grouping of

information or a collection of information. To prevent confusion with the term class in

software engineering methodologies, the term collection is used in place of class.

Therefore, collection (class) focus emphasizes group or collection relationships of units

of information.

Guilford views convergent production of semantic collection as the ability to

produce meaningful collections or groups under specific conditions and restrictions

(Guilford, 1967). Therefore, collection convergent relationships represent groupings or

membership properties. Membership relationships of collections are based on aspects of

the whole-put properties (Henderson-Sellers, 1997) (Odell, 1994). Its intent is to

represent an element of interest as a member of a collection. Membership connects a

member of a collection to other members or to a whole collection or class. The following

questions determine membership relationships (Yoo, 2000).

■ Is this item a segment of a whole item?
■ Is this item a member of a collection?
■ What is this item a part-of?
■ What components consist of this item?
■ What phrases are in this whole activity?

In contrast, Guilford views divergent production of semantic collection as the

ability to produce meaningful sub-categories of ideas appropriate to a given collection

(Guilford, 1967) (Meeker, 1969). Therefore, collection divergent relationships represent

the components or aggregates of collection members. Aggregation relationships are

determined for the collection members or whole-part composition (Boggs & Boggs,

149

2002) (Booch et al., 1998) (Brodie, 1981) (Motschnig-Pitrik & Storey, 1995). Its intent

is to represent an element's members as part-of the whole. The following list is an

example of questions to help determine aggregation relationships (Yoo, 2000).

■ Which components comprise this item?
■ What materials are used to make this item?
■ What is part-of this item?

The collection focus is depicted in Figure 3.4 and represents membership

relationships as looking outside the element and aggregation relationships as looking

inside a collection. The premise is that membership converges to whole collection and

aggregation diverges into the disparate components.

Extending the computer brand example, one can describe a membership

relationship as that among processors. What is the Motorola 68x000 architecture base

computer a part-of? The Motorola 68x000 and Intel x86 processors are part of computer

systems that can both run the same software package. Aggregation relationships

determine components of the computer system. What is part-of the computer system?

The computer is comprised of the aggregate of base unit, monitor, keyboard, mouse,

speakers, and LDIDVD R/W.

The next example identifies a membership and aggregation relationship from the

task problem statement of Appendix F. What are a professor's publications a part-of?

150

Publications are part of a list of a professor's projects and research interests. What is

part-of a professor's publication list? Publications are comprised of publication type,

title, date of publication, and co-authors.

3.5.3 Comparison Focus

The comparison focus, which is equivalent to Guilford's term relation, is defined as

recognized connections between items of information based upon variables or points of

contact that apply to them (Guilford, 1967). To prevent confusion with the term

relationship in RA, the term comparison is used in place of relation.

Guilford views convergent production of semantic relation (comparison) as the

ability to produce an idea that conforms to specific relationship requirements (Guilford,

1967) (Meeker, 1969). The ability to specify from a general meaning to a more specific

or specialized meaning represents a way to represent commonality among concepts

(Boggs & Boggs, 2002) (Booch et al., 1998). In terms of analysis,

generalizationIspecialization are the terms used to describe commonality among

components and the phrases "is-a" or "a-kind-of' are used to relate objects (Booch, 1994)

(Rumbaugh, 1991). The following questions help determine generalizationIspecialization

relationships (Yoo, 2000).

■ Is the item a kind of parent item?
■ Does the item completely include or encompass other items?
■ Is there a broader term for this item?
■ Is there a narrower term for this item?

In contrast, Guilford views divergent production of semantic relation

(comparison) as the ability to produce many relationships appropriate in meaning to a

given idea (Guilford, 1967). The identification of appropriate meaning among

151

information represents similarity characteristics between information components. In

addition, dissimilar characters are also determined as a natural result of components not

being similar. Therefore, comparison divergent relationships represent both similarity

and dissimilarity among elements of interest. Characteristics or attributes become criteria

to determine the degree of similarity present with other elements (Booch et al., 1998)

(Belkin & Croft, 1987) (Neelameghan & Maitra, 1978). The following questions help

determine similar and dissimilar relationships (Yoo, 2000).

■ Which other items are similar to this item?
■ What serves the same purposes as this item?
■ Which others items are opposite to this item?

Comparison focus is depicted in Figure 3.5.

An example of generalizationIspecialization relationships exists for shapes. A

rectangle, ellipse, and triangle are all types of shapes. A square is a type of rectangle and

a circle is a type of ellipse.

An example of a generalizationIspecialization relationship from the task problem

statement of Appendix F exists for publication types. Is a journal a kind of publication?

Yes. Is a book a kind of publication? Yes.

152

An example of similarIdissimilar relationships from the task problem statement of

Appendix F exists for students and professors. Which other items are similar to freshman

students? Other students of different rankings such as sophomore, junior and senior are

similar to freshman students since they are register and take courses. Which others items

are opposite to this freshman students? Professors are opposite to freshman students

since professors teach courses and students take courses.

3.5.4 System Focus

Guilford defines a system as organized or structured items of information, a complex of

interrelated parts (Guilford, 1967). Cognition of a semantic system shows

comprehension of meaning derived from a system of components.

Guilford views convergent production of semantic system as the ability to order or

structure information into a meaningful sequence (Guilford, 1967) (Meeker, 1969).

Structure identifies how an item fits into the framework of a system and includes spatial

perspective concepts of before, after (Cobb & Petry, 1998) (Egenhofer & Herring, 1990)

(Rodriquez et al., 1999), above and below. The following list is an example of questions

to help determine structure relationships (Yoo, 2000).

■ What prerequisites or preconditions exist for this item?
■ What follows this item for a given purpose?
■ What precedes this item for a given purpose?
■ Which items are close to this item?

Guilford views divergent production of semantic system as the ability to organize

information in various complex ideas (Guilford, 1967) (Meeker, 1969). Its intent is to

represent an item within the context of its appearances and uses at different places and

can be viewed as occurrence relationships based on the temporal attributes of before,

153

during, and after (Allen, 1983) (Frank, 1998) (Cobb & Petry, 1998) (Egenhofer &

Herring, 1990) (Rodriquez et al., 1999). The following questions are examples to help

determine occurrence relationships (Yoo, 2000).

■ Where else does this item appear in the domain?
■ Where else is this item used in this system and in other systems?
■ What are all uses of this item?
■ Where was this item used before?
■ Where else is the item used now?
■ Where will this item be used later?

The system focus is depicted in Figure 3.6.

An example of structure and system relationships from the task problem statement of

Appendix F exists for course registration. What follows the course registration for a

given purpose? Following the registration process, outstanding course assignment

conflicts are resolved. What are all uses of course registration? Course registration

informs professors about student enrollment. Course registration is used as the feeder

into the bill generation process. As a semester progresses, students must be able to

access the on-line system to add or drop courses.

3.5.5 Transformation Focus

Transformations are changes of various kinds, of existing or known information in its

attributes, meaning, role, or use (Guilford, 1967). A transformation is a matter of

redefinition of an element. In essence, it is the ability to see potential changes of

154

interpretations of elements and situations dependent upon a particular activity (Meeker,

1969). Therefore, it represents an element in the context of its activities.

Activity relationships are created by combining SADT activity diagrams

(Mylopoulos, 1998) and case relationships (Fillmore, 1968). These relationship types

cover activities that involve input or output, and deal with agents and elements involved

in the activities.

Guilford defines convergent production of semantic transformation as the ability

to produce new uses for elements by taking them out of their given context and

redefining them (Guilford, 1967). Convergent transformation is how an item can be

modified focusing on the item itself and how it can change. As such, information is acted

upon and modified. The following questions are examples to help determine modify

relationships.

■ What can this item change into?
■ What output results from the item's inputs?
■ What resources and mechanisms are required to modify this item?
■ Who can modify this item?

Guilford views divergent production of semantic transformation as the ability to

produce responses involving reinterpretations or new emphasis on some aspect of an

element or situation (Guilford, 1967). Meeker extends this definition and argues that it is

the ability to produce responses remote in time, remote in space, and remote in sequence

(Meeker, 1969). Divergent transformations are those that reuse the item in different

contexts or view the item in different ways. This is a transpose relationship, which is to

change in form or nature, or to re-conceptualize the item. The following list is an

example of questions to help determine transpose relationships.

155

■ How can this item be reused?
■ How can this item be viewed differently?
■ Can this item be used in a different context?

Transformation focus is depicted in Figure 3.7 and depicts how an item can be

modified or changed. In addition, Figure 3.7 depicts one shape being squeezed or

transposed into another, in this case a square being squeezed into a circle.

An example of a modify and transpose relationship from the task problem

statement of Appendix F exists for student's course schedules. What output results from

the student's course schedule inputs? A bill is generated based on a student registering

for courses. Who can modify a list of courses? The registrar can modify the course list.

How can the courses selected by the students be reused? The most highly selected

courses are those of most interest and perhaps need more than a single section.

3.5.6 Implication Focus

Implication emphasizes expectancies, anticipations, and predictions, the fact that one

item of information leads naturally to another (Guilford, 1967). Meeker argues that

cognition of semantic implication is the ability to anticipate consequences of a given

situation in meaningful terms (Meeker, 1969). In essence, it is the ability to anticipate

consequences of an item of interest in an organization or a social setting.

156

Convergent production of semantic implication is the ability to deduce

meaningful information in the given information (Guilford, 1967) (Meeker, 1969).

Convergent implication is dependence and control relationships both on an element and

by an element and exhibits some type of influence on other elements. It is how an

element of information influences, controls, impacts, or if conscience thinks about other

people or things in the social environment. The following questions are examples to help

determine influence relationships (Yoo, 2000).

■ What items or people cause this item to be created, changed, or deleted?
■ What items or people have control over this item?
■ What is this item dependent on?
■ What is dependent on this item?

Divergent production of semantic implication is the ability to produce many

antecedents, concurrents, or consequents of given information (Guilford, 1967) (Meeker,

1969). In contrast, to influence relationships, there is more freedom to produce

information in divergent production of semantic implications. In context of a social

setting, relationships are extrapolated from the given information. Divergent implication

is impacts, consequences, extrapolations, rationale, deductions, and opinions both on an

element and by an element. The following questions are examples to help determine

extrapolate relationships (Yoo, 2000).

■ Which goals, issues, and arguments involve this item?
■ What are the positions and statements on the item?
■ What are the comments on this item?
■ What are the opinions on this item?
■ What is the rationale for this decision?

Implication focus is depicted in Figure 3.8.

157

An example of an influence and extrapolate relationship from the task problem

statement of Appendix F exists for University courses. What items or people cause a

course to be created, changed, or deleted? The registrar can create, change or delete a

course. What is the rationale for the decision to delete a course? Insufficient enrollment

is the reason to cancel a course. Excess enrollment is the reason another section of a

course is offered.

3.5.7 Relationships Among the Relationships

Interrelationships are relationships between relationships and can exist among the

primary relationship categories. Determining the interrelationships of a domain further

helps analysts understand the domain by identifying its interconnections. In addition,

interrelationships often appear as overlaps when analysts discover relationships during

brainstorming sessions. For example, it is intuitive to assume that members of a

collection may have an ordering or path association. Another example involves the way

a component can influence an aggregation or a system containing it. So the question is,

how does one determine interrelationships?

Understanding the order of Guilford's original model, which has logical reasoning

behind it, best identifies the types of interrelationships. Units are regarded as basic and

appear at the top. Units enter collections and collections are sets of elements with one or

more common properties. A comparison is some kind of connection between the two

158

things.	 Systems are complexes, patterns, or organizations of interacting parts.

Transformations are changes, revisions, redefinitions, or modifications, by which any

element in one state goes into another state. Finally, an implication is something

expected, anticipated, or predicted from the given information. These definitions and the

characteristics of the relationship categories themselves yield the following types of

interrelationships:

■ The aggregation relationship can become the membership relationship if the
dependency between the parts or the parts and the whole disappears.

■ The occurrence relationship can become the transpose relationship if two or more
occurrences of the same item can be treated as a null transformation.

■ The generalizationIspecialization relationship can also be viewed as a transpose
relationship since the generalization can be considered a broader view of an item.

■ The structure relationship can be viewed as membership if the collection
constitutes a system.

■ The elaboration relationship can become the extrapolate relationship when
descriptions are intention related.

■ The extrapolate relationship can become the modify relationship through an
activity performed.

■ The modify relationship can become influence relationship through control.
■ The influence relationship can become the occurrence relationship through

control.
■ The membership relationship can become a structure relationship based on

ordering characteristics.

3.5.8 Mapping RAM to RAF

Table 3.5 maps the RAM relationships to the relationships determined by Yoo (Yoo,

2000) to classify an application domain. Yoo's dissertation presents a taxonomy that

encompasses many existing modeling languages, theories, models, and existing

taxonomies. Therefore, since the RAM incorporates Yoo's taxonomy, it is possible to

conclude that the RAM also identifies all the relationships of these existing methods.

159

160

To summarize, the RAM provides a theoretical foundation to classify the

complete set of relationships around any component or element within an information

system. The model applies Guilford's SI theory to the computer application domain and

identifies relationships utilizing a question-based elicitation technique. Chapter 4

161

presents a process to utilize the RAM, and provides a systematic and rigorous technique

to explicitly identify and document the relationship structure of an application domain.

3.6 Summary

Software analysis and design is just as much a creative process as it is an engineering

process. (Gomes et al., 2001) (Gero, 1994) (Partridge & Rowe, 1994). Creativity in

software engineering is a cognitive process that analysts use to generate products to

satisfy certain kinds of properties. An aspect of software product creation involves

identifying what is needed to solve a problem. The ability to creatively generate a

software product is a difficult process facilitated by modeling techniques. Conceptual or

semantic modeling techniques discussed in this chapter (Chen, 1976) (Booch et al., 1998)

(Schlaer & Mellor, 1992) (Coad & Yourdon, 1990) (Kobryn, 2000) (Boggs & Boggs,

2002) provide a strong representation of entities and attributes, but provide a weak

representation of relationships. Semantic models express relationships better than

traditional relational and network models due to its expressiveness of relationship

constructs supported by the model (Jarvenpaa & Machessky, 1989) (Burt & Kinnuean,

1990). Although the need for models with richer semantics is widely recognized, no

single approach has won general acceptance (Peckham & Maryanski, 1998). To

standardize the type of relationships a semantic model should represent, a classification

system of relationship types is needed.

The Relationship Analysis Model (RAM) fills this need by supplying a semantic

model to classify relationships. As such, the RAM classifies all the relationships of the

domain organized by focus and relationship type. Why is RAM the best semantic model

162

to identify the relationship structure of a problem domain? It is better than other models

because it classifies the complete set of relationships, whereas other models only identify

a limited subset of relationships as listed in Table 3.1 and discussed in Section 3.4.

Although a limited subset is useful, one cannot say that it is categorically complete.

Also, the RAM has its foundations in Guilford's Structure of Intellect (SIB) (Guilford,

1967) theory to develop a classification model that encompasses the scope of human

intellectual abilities in forming concepts and the relationships among concepts. In doing

so, it provides a foundation to improve the process of relationship discovery and

classification.

Chapter 4 applies the RAM and develops a systematic technique to relationship

elicitation. A systematic process is an essential element to process improvement

(Becker-Komstaedt, 2001). A systematic approach to knowledge elicitation makes

requirements gathering and problem understanding less dependent on the experience

level of the process engineer (Bandinelli, 1995). A systematic approach to requirements

elicitation helps to improve accuracy and provide a greater level of detail. Relationships

are systematically identified and classified by applying a question-based elicitation

technique (Yoo, 2000). The RAM is the only systematic approach that classifies the

complete set of relationships.

CHAPTER 4

RELATIONSHIP ANALYSIS APPLIED

A significant aspect of systems analysis and design involves discovering and representing

entities and their relationships. However, existing techniques leave relationship

determination implicit; they are suppose to appear as a byproduct of other analysis

activities. This chapter describes how to apply the Relationship Analysis Model (RAM),

described in Chapter 3, to systematically elicit and document the relationship structure of

an application domain. The presented technique addresses a major void in today's

software engineering analysis techniques, namely relationship discovery.

Although Relationship Analysis (RA) is methodology independent, this

dissertation shows the technique's effectiveness utilizing object-oriented analysis.

0bject-oriented analysis depicts interactions between use-cases and the actors utilizing

use-case diagrams. Subsequently, class diagrams are developed to depict the

relationships between the classes that implement the use-cases. However, a step is

missing and the transition is too abrupt. The existing techniques leave the relationship

determination implicit. RA fills this void by providing a systematic technique to

determine and document the relationship structure of an application. The RA technique

can be integrated into object-oriented analysis between the use-case and class diagram

identification steps (Catanio & Bieber, 2003). Thus, RA adds a step to the process, but

provides a technique to explicitly determine and depict the application's relationship

structure, thereby enhancing the analysis process.

163

164

4.1 Relationship Analysis Process (RAP)

The Relationship Analysis Process (RAP) is a rigorous and systematic technique to

identify the relationship structure of an application domain. A systematic process is an

essential element to process improvement (Becker-Kornstaedt, 2001). A systematic

approach to knowledge elicitation makes requirements gathering and problem

understanding less dependent on the experience level of the process engineer (Bandinelli,

1995). A systematic approach to requirements elicitation helps to improve accuracy and

provide a greater level of detail. Process elicitation should be performed in two stages

(Becker-Kornstaedt, 2001), the first stage is process familiarization and the second stage

is detailed elicitation. The aim of familiarization is to obtain an overview of the general

structure and is mainly used for knowledge elicitation. Detailed elicitation obtains in-

depth more detailed information.

The RAP also uses two primary steps in its elicitation process. The first step

utilizes use-case analysis as a way to acquire system familiarity. The process then

acquires detailed knowledge from information obtained from use-cases by explicitly

identifying the relationships of the system using a Relationship Analysis Template

(RAT). The resulting relationship information is then depicted in a Relationship Analysis

Diagram (RAD). The process consists of the following four process steps:

■ Perform a use-case analysis to identify items of interest
■ Isolate items of interest
■ Identify the Relationship Structure utilizing the Relationship Analysis Templates

(RAT)
■ Graphically depict the relationships utilizing the Relationship Analysis Diagrams

(RAD)

The RAP is best-realized utilizing expertise from different team members in a

collaborative fashion. System analysts work collaboratively to identify the system's main

165

use-cases and other items of interest. As described in the use-case analysis section of the

background literature, it is the process of capturing requirements from the user's point of

view and helps describe what functionality is contained within the system. The identified

actors and use-cases represent the high-level items of interest and in addition, use-case

descriptions provide narratives in which low-level items of interest can be selected.

Booch describes the identification of objects by a process of noun extraction (Booch,

1994). This technique can be employed to identify low-level items of interest. This

perspective is not implementation-oriented but stresses instead what the user expects

from the system. This approach to problem description helps to track the project by

goals. In addition, use-case analysis increases the chances that the system being

developed meets user needs and expectations thereby increasing user satisfaction and

acceptance.

The identified use-cases are the feeder into the RAP. The resulting analysis

explicitly identifies the relationship structure of the domain and results in a more

complete and helpful analysis. As a result, the domain is thoroughly described in terms

of its entities and relationships. The RAP explicitly identifies the relationship structure of

an application domain and provides more information than use-case analysis alone and

helps in the creation of class diagrams.

4.2 Relationship Analysis Template (RAT)

Each item of interest can be described in terms of relationships based on the RAM

described in Chapter 3. Each relationship focus has its own template, outlined in Table

4.1, that can be used to document the relationships discovered during the elicitation

166

process. Each RAT is used to record the results of the analysis and help to track

decisions (Booch et al., 1998).

It is important to note that the template provides a way for analysts to

communicate and document the process of discovering relationships. To this end, the

template provides cells that contain brainstorming questions to help elicit and identify

specific relationships. In particular, the template contains a cell that captures domain

independent generic questions. These generic questions can be used to help create more

domain dependent specific questions, which are also captured in the template. The

167

results are recorded in the template thereby systematically documenting the process and

the relationships.

4.3 Relationship Analysis Diagram (RAD)

In addition to capturing the relationship structure in the aforementioned templates, it is

also possible to present the information in a graphical representation. Although graphical

diagrams and tabular representations may contain the same information, they present that

information in fundamentally different ways. Graphical diagram representations

emphasize spatial information, while tables emphasize symbolic information (Vessey,

1991). Some studies have demonstrated that information extraction is best-realized

utilizing graphical diagrams instead of tables (Benbasat & Schroeder, 1977) (Tullis,

1981). Yet another study found that tables are superior to graphical diagrams at

information extraction (Lucas, 1981). However, other studies have shown no

performance differences when using either graphical diagrams or tabular representations

of information (DeSanctis, 1984) (Jarvenpaa & Dickson, 1988). These confusing results

may be due to the variability of task environment. The literature describes that the

graphical diagram versus table controversy is due to task effects causing the unexpected

results (Benbasat & Dexter, 1986) (DeSanctis, 1984) (Dickson et al., 1986) (Jarvenpaa &

Dickson, 1988) (Jarvenpaa et al., 1985). Vessey points out that tasks can be divided into

two types, spatial and symbolic, based on the type of information that facilitates their

solution (Vessey, 1991). Performance on a task will be enhanced when there is cognitive

fit between the information emphasized in the representation type and that required by

168

the task type; that is, when graphs support spatial tasks and when tables support symbolic

tasks.

The UML toolkit supports both textual and graphical representations of

information. An eventual goal is to incorporate the Relationship Analysis Process into

the UML process. Therefore, both the RAT and RAD can be leveraged as the first step to

that end. Whereas, the RAT is text-based, RAD will utilize boxes, connection lines, and

textual descriptions to indicate the relationships and is illustrated in Figure 4.1. Both the

RAT and RAD represent a new way to document the relationship structure of a domain,

which will greatly assist in developing class diagrams.

Since the purpose of the RAD is to capture the relationship structure of a specific

item of interest, abbreviations are used. These abbreviations map one-to-one with RA

169

descriptions provided in previous sections. The relationships of each item of interest are

documented in six templates and one diagram. The collection of all RAT and RAD

components comprise the relationship structure of the problem domain. The RAD

provides an information rich graphic, while more details can be accessed via the

information recorded in the templates. Utilizing the collection of RADs of a problem

domain, which depict the discovered relationships, should enhance the generation of class

diagrams.

4.4 Summary

This chapter describes the components of RA, namely RAP, RAT and RAD. In addition,

an example of how to perform the RAP is provided in Appendix B. The RAP is a

technique to systematically and explicitly determine the relationship structure of a

problem domain. The templates provide a mechanism that permits the results of the

process to be documented. The diagrams generated from the information contained

within the templates, provides an information rich graphic to depict the relationship

structure of an item of interest. The RAP enhances the system analyst's effectiveness in

the area of relationship discovery and documentation. As a result, the RAP affords

analysts the opportunity to develop higher quality software applications by providing a

deeper and broader understanding of the domain.

CHAPTER 5

EXPERIMENTAL DESIGN

5.1 Oberview

A significant aspect of Systems Analysis and Design involves discovering and

representing entities and their relationships. Guidelines exist to help identify system

entities. However, no defined processes, templates, or diagrams exist to explicitly and

systematically assist in eliciting and documenting relationships (Catanio & Bieber, 2003).

The existing techniques leave relationship determination as an implicit process, which are

supposed to appear as a byproduct of the other analysis activities. Relationships

constitute a large part of a domain's implicit structure. Completely understanding a

domain relies on knowing how all the entities are interconnected (Bieber & Yoo, 1999)

(Yoo, 2000). The experiment is designed to test if Relationship Analysis (RA) improves

the process of system understanding by explicitly identifying the relationship structure of

a problem domain. RA enhances the system analyst's effectiveness by providing a

procedure to identify and document system relationships during the analysis phase.

The literature indicates that the object-oriented paradigm has replaced the

traditional structured analysis process-oriented approach to software development (Booch

et al., 1998) (Rumbaugh, 1991) (Sommerville, 2001) (Bailin, 2000). In particular, the

Rational Unified Process (RUP) is the premier software development life-cycle platform

for projects using object-oriented techniques (Booch et al., 1998) (Sommerville, 2001)

(Boggs & Boggs, 2002). The literature also indicates that groups generate better

solutions than individual solutions (Baroudi et al., 1986) (DeSanctis & Gallupe, 1987)

170

171

(Connolly et al., 1990) (Gallupe et al., 1988) (Sommerville, 2001) (Kontonya &

Sommerville, 1996) (Rumbaugh, 1994) (Goguen & Linde, 1993). The experiment should

show that the proposed Relationship Analysis Process (RAP), Relationship Analysis

Templates (RAT), and Relationship Analysis Diagrams (RAD) are an effective technique

to explicitly and systematically elicit and document relationships. The technique could

be integrated into current object-oriented analysis processes to fill a gap in the current

approach to identifying relationships. Neither the software engineering books (Goad &

Yourdon, 1990) (Martin & Odell, 1995) (Larman, 2001) nor the comprehensive RUP

(Booch et al., 1998) provide a well-defined process for relationship discovery. The RA

technique fills this gap.

The beginning step to problem solving using the RUP object-oriented analysis

and design technique is to perform use-case analysis. The generated use-case diagrams

describe the desired functionality of the system from the user's point of view. Class

diagrams are then generated from the use-case diagrams. However, the transition is too

abrupt. RA helps to bridge this gap by providing a rigorous and systematic process to

explicitly identify and document relationships. Knowing the domain's relationship

structure will improve the effectiveness of class diagram generation.

5.2 Hypotheses

The hypotheses are designed to assess whether RA is an effective technique to explicitly

identify the relationship structure of a problem domain. RA is geared at improving the

analysis phase of the software development life-cycle process. Software product

development is a team effort. Teams have been shown to generate better solutions than

172

individual solutions (Baroudi et al., 1986) (DeSanctis & Gallupe, 1987) (Connolly et al.,

1990) (Gallupe et al., 1988) (Sommerville, 2001) (Kontonya & Sommerville, 1996)

(Rumbaugh, 1994) (Goguen & Linde, 1993). While not an integral aspect of this study,

the experiments will be conducted using groups of analysts.

In addition, the hypotheses are designed to assess whether a rigorous and

systematic process helps low experienced groups achieve a similar level of quality as

high experienced groups process (Amento et al., 2000) (Schenk et al., 1998) (Saleem,

1996) (Spence & Brucks, 1997) (Hillerbrand & Claiborn, 1990) (Carter et al., 1988)

(Becker-Kornstaedt, 2001) (Bandinelli, 1995).

The dissertation hypotheses were derived from previous research based upon

Communication Satisfaction, Solution Satisfaction, Process Satisfaction, Perceived

Analysis Ability, Speed of Problem Solving, and Analysis Quality (Moody et al., 2003)

(Schenk et al., 1998) (Spence & Brucks, 1997) (Hillerbrand & Claiborne, 1990) (Nosek,

1998) (Ocker et al., 1998) (Shaft & Vessey, 1998) (Cockburn, 1998) (Coleman, 1998)

(Booch, 1998) (Becker-Kornstaedt, 2001) (Bandinelli, 1995) (Vessey, 1985).

The hypotheses will be tested using Pearson's r, factor analysis, Cronbach's

Alpha, normality test, data transformation, non-parametric Kruskal-Wallis ANOVA, and

Factorial ANOVA, which are standard statistical analysis methods to test differences of

two groups (Rosenthal & Rosnow, 1991).

Hypothesis 1: Analysis Quality

a. The class diagram generated by performing a Relationship Analysis will be more
accurate and complete than groups using use-case analysis alone.

b. The groups with high experience will generate more accurate and complete class
diagrams than low experience groups.

173

c. The high experience groups utilizing Relationship Analysis will generate the most
accurate and complete class diagrams.

Analysis quality measures the quality of the class diagram generated by all group

subjects that accomplished the same task utilizing different means. This hypothesis is

based on Schenk's et al. findings that novices exhibited less detail in problem-solving

tasks than did experts, resulting in lower quality (Schenk et al., 1998). In addition, a

study of novice and expert programmers found that novices tended to employ weak

methods for their tasks (Vessey, 1985). The results indicate that novices were unable to

formulate an overall structure to the task. However, these experiments did not include a

model or process to follow. This dissertation speculates that low experience groups

utilizing the systematic RA process will produce documents of equal quality as high

experience groups. This speculation is supported by Spence & Bricks, whom provide

convincing empirical evidence that the benefits of expertise are less pronounced when

analyzing and solving a problem with a well-defined technique (Spence & Brucks, 1997).

In addition, another study concluded that experts, compared to novices make qualitatively

different inferences in their reasoning, focus on different problem features, and thereby

reason to different conclusions (Hillenbrand & Claiborn, 1990). This dissertation

speculates that the very nature of a well-defined process, namely RA, will permit novices

to reach the same conclusions as experts.

Hypothesis 2: Class Diagram Analysis Time

a. The class diagram generated by first performing a Relationship Analysis will take
less time to complete than groups using use-case analysis alone.

b. The groups with high experience will need less time to generate the class diagram
than low experience groups.

174

c. The high experience groups utilizing Relationship Analysis will generate a class
diagram in the least amount of time.

Time to generate the class diagram after the relationships are elicited measures

speed of problem solving using the RA technique. This hypothesis is based on findings

that experts evoke a knowledge framework that is based on prior experience that

expedites problem solving (Spence & Brucks, 1997). However, Spence and Brucks have

also shown that solving a problem in a more structured way can cause the performance,

quality and speed of problem solving, of novices to improve significantly. Therefore, the

benefits of expertise are less pronounced when solving a problem in a structured manner.

It is speculated that although RA is an additional process step in the analysis

phase, it will not significantly increase the time necessary to complete the overall

assignment. This is due to a highly structured series of steps to be followed. A

systematic approach to knowledge elicitation makes requirements gathering, analysis,

and problem understanding less dependent on the experience level of the process

engineer (Bandinelli, 1995).

Hypothesis 3: Total Analysis Time

a. The total analysis time by first performing a Relationship Analysis will take more
time to complete than groups using use-case analysis alone.

b. The groups with high experience will need less total analysis time than low
experience groups.

c. The high experience groups utilizing Relationship Analysis will need less time
than low experience groups utilizing Relationship Analysis.

Similar to hypothesis 2, the total analysis time measures speed of problem solving

using the RA technique. This hypothesis is based on findings that experts evoke a

knowledge framework that is based on prior experience that expedites problem solving

175

(Spence & Brucks, 1997). However, Spence and Brucks have also shown that solving a

problem in a more structured way can cause the performance, quality and speed of

problem solving, of novices to improve significantly. Therefore, the benefits of expertise

are less pronounced when solving a problem in a structured manner.

It is speculated that although RA is an additional process step in the analysis

phase, it will not significantly increase the time necessary to complete the overall

assignment. This is due to a highly structured series of steps to be followed. A

systematic approach to knowledge elicitation makes requirements gathering, analysis,

and problem understanding less dependent on the experience level of the process

engineer (Bandinelli, 1995).

Hypothesis 4: Perceived Analysis Ability

a. Subjects performing a Relationship Analysis will have a higher perception of their
analysis ability than subjects using use-case analysis alone.

b. Subjects with high experience will have a higher perception of their analysis
ability than low experience subjects.

c. The high experience subjects utilizing Relationship Analysis will have the highest
perception of their analysis ability.

Perceived analysis ability measures how the subjects feel about their analysis

ability. This hypothesis is based on prior findings that a subject's perceived ability

directly impacts their intention to use a method (Moody et al., 2003). The experiment

conducted by Moody et al. was to define and train all subjects on an evaluation model.

The model was an extended entity relationship model called referent modeling language.

Afterwards, each subject was given a problem statement case and had two weeks to

develop an information model to meet the requirements of the problem case. However,

176

Moody's et al. experiment utilized twenty-one different problem statement cases. This

dissertation used one problem statement and speculates that subjects performing the RA

will have a higher level of perceived analysis ability.

Hypothesis 5: Process Satisfaction

a. Subjects performing Relationship Analysis will be more satisfied with the
analysis process than those using use-case analysis alone.

b. Subjects with high experience will be more satisfied with the analysis process
than low experience subjects.

c. The high experience subjects utilizing Relationship Analysis will be the most
satisfied with the analysis process.

Process satisfaction measures the satisfaction experienced by all group subjects

that accomplished the same task utilizing different means. This measure is based upon

Ocker's et al. measurement of process satisfaction with respect to modes of

communication (Ocker et al., 1998). The results indicate that there were no significant

differences between different modes of communication. 0cker's et al. experiment did

not include a model or process to follow. This dissertation speculates that subjects

utilizing a systematic process will be more satisfied with the process than subjects not

using an explicit systematic process.

Hypothesis 6: Team Communication Satisfaction

a. Subjects performing a Relationship Analysis will be more satisfied with their
team communications due to the Relationship Analysis Templates than subjects
using use-case analysis alone.

b. Subjects with high experience will be more satisfied with their team
communications than low experience subjects.

177

c. The high experience subjects utilizing Relationship Analysis will be more
satisfied with their team communications than low experience subjects utilizing
Relationship Analysis.

This hypothesis is based on the adoption of use-case templates to facilitate

knowledge elicitation and document that knowledge (Cockburn, 1998) (Coleman, 1998)

(Booch, 1998). In addition, templates help to create a systematic process, which is an

essential element to process improvement (Becker-Kornstaedt, 2001). A systematic

approach to knowledge elicitation makes requirements gathering, analysis, and problem

understanding less dependent on the experience level of the process engineer (Bandinelli,

1995). A systematic approach to requirements elicitation and analysis helps to improve

communication and accuracy thereby improving the process. This dissertation speculates

that subjects will communicate more effectively with their team members by the use of a

template to facilitate the relationship elicitation process.

Hypothesis 7: Class Diagram Solution Satisfaction

a. Subjects performing a Relationship Analysis will be more satisfied with their
generated class diagram than subjects using use-case analysis alone.

b. Subjects with high experience will be more satisfied with their generated class
diagram than low experience subjects.

c. The high experience subjects utilizing Relationship Analysis will be more
satisfied with their generated class diagram than low experience subjects utilizing
Relationship Analysis.

Solution satisfaction measures the satisfaction experienced by all group subjects

with respect to the final class diagram that represents the solution to the assignment. The

hypothesis is based upon the results of a collaborative experiment with software

engineers, which indicate that experienced software engineers were personally satisfied

and confident with their solution (Nosek, 1998). Also, Ocker's et al. measured solution

178

satisfaction between different collaborative modes of communication (Ocker et al.,

1998). However, Ocker's et al. experiment did not include a model or process to follow.

This dissertation speculates that subjects utilizing a systematic process will be more

satisfied with their solution than subjects not using an explicit systematic process.

Therefore, the four conditions in this experiment are:

■ Use-case, low experience
■ Use-case & RA, low experience
■ Use-case, high experience
■ Use-case & RA, high experience

The use-case analysis tool represents the control group category and the treatment

group represents the use-case & RA category. Thus, it is possible to measure the effects

of the RA technique.

Experience has been used extensively to determine its effect on the learning

process (Amento et al., 2000) (Schenk et al., 1998) (Saleem, 1996) (Spence & Brucks,

1997) (Hillenbrand & Claiborne, 1990) (Larter et al., 1988). To determine experience

level, subjects completed a pre-experiment questionnaire that identified academic

background, software background, and professional work experience relating to software

179

system analysis and design. The pre-experiment questionnaire is listed in Appendix C.

Experts, John Discepola and Ronald Lazeration, divided the subjects into low and high

experience based upon the criteria determined from the pre-experiment questionnaire.

The low experience subjects were randomly selected and placed in a team consisting of a

total of three low experience individuals. Similarly, high experience subjects were

randomly selected and placed in a team consisting of a total of three high experience

individuals. Therefore, each class can consist of groups of both low and high experience.

5.4 Subjects

The subjects in the experiment consisted of both undergraduate and graduate students

enrolled in the College of Computing Science Department at the New Jersey Institute of

Technology. Undergraduate students from CIS 390 (Analysis and System Design), CIS

490 (Design in Software Engineering), and graduate students from CIS 673 (Software

Design and Production Methodology) were used. As part of the course curriculum, all

students were taught how to perform use-case analysis and generate class diagrams. The

subjects in the treatment group were taught Relationship Analysis.

5.5 Procedures

The experiment was conducted at the end of the semester so all subjects had some level

of modeling experience. All subjects were taught how to develop use-case analysis

diagrams and generate class diagrams prior to the experiment. The treatment groups

were trained in Relationship Analysis. To eliminate any training effect, the control

180

groups were provided an equivalent enrichment topic, namely entity relationship (E/R)

analysis. After the training, all groups were provided the same task to solve with their

team members. All groups had one hour to create the use-case analysis diagram. This

will provide all groups time to familiarize themselves with the problem domain. At the

conclusion of the session, all groups were provided with an expert generated use-case

analysis diagram to the problem statement. All groups used this as a basis to complete

the remaining experimental steps. The control groups generated class diagrams after use-

case analysis. The treatment groups performed Relationship Analysis and then generated

class diagrams. This allows the effect of Relationships Analysis to be measured. All

groups had one week to complete the task and submit all analysis documents and class

diagrams. At the completion of the experiment, all subjects completed a post experiment

questionnaire and were debriefed.

5.6 Measures

The data collected from the experiment was from post-task questionnaires elicited from

the subjects. Also, each team recorded the time needed to complete the assignment. In

addition, expert judges provided the quantitative quality assessment measure. Table 5.2

summarizes the measurements used for the dependent variables. These measures were

derived from previous research discussed in Section 5.2.

181

Each group was required to submit their analysis documents, which the expert

judges will use to rate each group's analysis. In order to measure team communication

satisfaction, group members only communicated among each other. This helps to ensure

that the analyst's understanding of the domain is through communicating with only their

group members.

At the completion of the process, groups submitted the following documents

depending on their experimental condition.

■ Relationship Analysis Template (RAT) Document
A collection of six templates for each item of interest discovered during the
analysis.

■ Relationship Analysis Diagram (RAD) Document
Corresponding to the six templates for each item of interest discovered during the
analysis, a single graphical based diagram depicting the combined information
provided by the six templates for each item of interest was generated. Therefore,
the RAD document is a collection of diagrams, one for each item of interest
discovered during the analysis.

■ Class Diagram Document
Depicts the existence of classes and their relationships of the system. The class
diagram document represents the complete class structure of the system.

5.6.1 Questionnaires

At the completion of the experimental task, a questionnaire to elicit the perception

measures was administered. The post-task questionnaire elicited the perceived analysis

ability, communication satisfaction, solution satisfaction, and satisfaction with the

182

analysis process (Moody et al., 2003) (Ocker et al., 1998). The questionnaire also

measured for prior domain knowledge of the assigned task and validity of the task. In

addition, each group tracked and documented the time spent creating each type of

analysis document.

Software Systems Analysis Ability Questionnaire Items:
1. I am confident in my software system analysis abilities.
7. I do not use analysis techniques to develop software systems.
13. I understand the software systems analysis process.
18. I do not feel that software systems analysis is needed to develop software.

Team Communication Satisfaction Questionnaire Items:
2. Communication with my group members helped me to solve the problem.
8. I did not need to communicate with my group to solve the problem.
14. My group members communicated clearly.
19. I feel that communicating with my group did not help me to better solve the problem.
23. Performing the analysis did help me to communicate more effectively.

Llass Diagram Solution Satisfaction Questionnaire Items:
3. I am satisfied with the quality of my group's class diagram document.
9. I am not confident in the group's final class diagram document.
15. I am committed to my group's final class diagram document.
20. The final class diagram document does not reflect my inputs.
24. I feel I had an equal part in my group's final class diagram document.

Process Satisfaction Questionnaire Items:
4. My group's problem solving process was efficient.
10. My group's problem solving process was coordinated.
16. My group's problem solving process was unfair.
21. My group's problem solving process was confusing.
25. My group's problem solving process was satisfying.

Prior Domain Knowledge Questionnaire Items:
5. I have already analyzed an on-line registration system for my job.
11. I have not analyzed an on-line registration system for my college studies.

Task Comprehension Questionnaire Items:
6. I feel the task was too difficult.
12. I understood the task.
17. I feel there wasn't enough time to complete the task.
22. I feel that everyone on my team understood the task.

183

5.6.2 EOpert Judges

Two experts (John Discepola and Ronald Lazeration), who are professional software

engineers, judged the quality of each group's systems analysis project. Expert judges

have been used in many studies to evaluate quality of system design and decision-making

(Shaft & Vessey, 1998) (Ocker et al., 1998). The expert judges rated the generated class

diagram of all the groups.

The expert judges had their own training session to ensure that their evaluations

are compatible. The expert judges used a 10-point scale whereby a 10 represents a

perfect score. In order to eliminate potential bias of individual experts, each expert judge

evaluated each group's class diagrams independently and the average evaluation will be

computed and used as the final score. Whenever the difference in their evaluations

exceeded 1 point (an acceptable 10% threshold), the two experts meet to resolve the

issues and cooperatively assigned a final score.

Analysis Quality:
The system analysis quality was based on expert judges rating each group's

generated class diagrams based on a 10-point scale, whereby a 10 represents a perfect

score.

184

5.7 Task

Prior to the main experiment, three rounds of pilot studies were conducted. The goals of

pilot testing are to:

■ Evaluate and refine the training material
■ Evaluate and refine the RAT, RAD, and RAP to ensure they are usable in an

actual analysis and design environment
■ Develop and evaluate the systems analysis task for the main experiment
■ Validate performance measures

The first pilot test took place during the Spring 2003 semester to evaluate the

training material. Students from CIS 490 (Design in Software Engineering) and CIS 491

(Lomputer Science Project) courses totaling 18 participants were utilized. All

participants had experience with object-oriented analysis and design techniques. All 18

participants were trained on both use-case and RA techniques through hands-on

exercises. The training materials are listed in Appendix B. After training, feedback from

the participants was collected through small group interviews and individual

questionnaires. The questionnaires are contained in Appendix C. RAT, RAD, and RAP

tools and procedures were revised based on the feedback provided.

The second pilot test also took place during the Spring 2003 semester to evaluate

the revised training material. Students from Bloomfield College's CMP 328 (Object-

oriented Analysis and Design) course totaling 6 participants were utilized. All

participants had experience with object-oriented analysis and design techniques. All 6

participants were trained on both use-case and RA techniques utilizing the revised

training material. The training materials are listed in Appendix B. After training,

feedback from the subjects was collected through a group interview and individual

185

questionnaires. The questionnaires are contained in Appendix C. The feedback indicated

that RAT, RAD, RAP, tools and procedures were satisfactory.

The third pilot test was conducted during the Summer 2003 semester to evaluate

the systems analysis experimental task and performance measures. Students from CIS

390 (Analysis & System Design) totaling 42 subjects were utilized. All subjects were

trained on use-case analysis and class diagram creation through hands-on exercises as

part of the course curriculum. In addition, all subjects were trained in RA through hands-

on exercises. The training materials are listed in Appendix B. After training, the subjects

were assigned to a team of 3 members. Each team will solve the experimental task listed

in Appendix F. At the conclusion of the experiment, feedback from the subjects was

collected through small group interviews and individual questionnaires. To validate the

questionnaire, the subjects were asked to mark any unclear questions. The experimenter

utilized an open-ended interview to validate the experimental task. The feedback and

results indicated that the questionnaire and experimental task were satisfactory. Table 5.3

summarizes the three pilot studies.

186

RA's effectiveness was tested using an experimental task in the main experiment

that was conducted during the Fall 2003 semester. The courses utilized were LIS 390

(Analysis and System Design), LIS 490 (Design in Software Engineering), and LIS 673

(Software Design and Production Methodology). All subjects worked on exactly the

same systems analysis task, namely the systems analysis of an on-line registration

system. The details are listed in Appendix F. The subjects were trained prior to

187

performing the experiment. The training materials are listed in Appendix B. There was

one training session scheduled for the treatment groups that were taught the RA

technique. The control groups were provided an enrichment topic to eliminate any

training effect. All teams had one week to generate the treatment dependent documents

and class diagram to the task. All teams kept track of how much time they spent

performing each section of the analysis. At the second-class meeting, all teams submitted

their analysis documents. All subjects completed a post-experiment questionnaire.

Immediate following, all subjects were debriefed. Therefore, the entire experiment

spanned a 1-week time period. To facilitate the process, the subjects assigned to the

treatment condition group were able to download the RA templates from the WebBoard.

The number of subjects was 171 and divided into groups of 3, resulting in 57

groups. The low experience subjects were assigned to low experience groups randomly.

The high experience subjects were assigned to high experience groups randomly. Each

group, from the 4 different group types, performed the same task. This permits the pure

effect of the treatments to be isolated because the difference in tasks is controlled. This

will increase the internal validity of the research (Straub, 1989).

CHAPTER 6

EXPERIMENTAL RESULTS AND DATA ANALYSIS

This chapter describes the results of an experiment to measure RA's effectiveness. RA is

a technique that can be used during the computer systems analysis phase to explicitly

discover and document the relationship structure of a problem domain. The analysis

performed was compared against a set of hypotheses to determine if the RA technique

enhances the analysis process.

The main experiment took place in the Fall 2003 semester utilizing evening

sections of CIS 390 (Analysis and System Design), CIS 490 (Design in Software

Engineering), and CIS 673 (Software Design and Production Methodology) at the New

Jersey Institute of Technology and lasted one week, whereby the first day included a

training session. One week prior to the experiment, the subjects completed a pre-

experiment questionnaire to determine analysis experience level. Experts then divided

the subjects into high and low experience levels. The low experience subjects were

randomly selected and placed in a team consisting of three low experience individuals.

Similarly, high experience subjects were randomly selected and placed in a team

consisting of three high experience individuals. Then each group was placed in one of

the four conditions. Each team, from the four different group types, performed the same

task. This permits the pure effect of the treatments to be isolated because the difference

in tasks is controlled. This will increase the internal validity of the research (Straub,

1989).

188

189

Data was collected from experts who rated the quality of the class diagram

generated by each group and a post-experiment questionnaire completed by the subjects.

In addition, each grouped recorded the time they spent on completing the assignment.

The analysis of this data, using statistical procedures in SAS release 8.02, is presented in

this chapter.

6.1 Subject Background Information

There were a total of 171 subjects who participated in the experiment. To determine

experience level, all subjects completed a pre-experiment questionnaire listed in

Appendix C. The questionnaire was adopted from Prof. Eljabiri's CIS 491 (Computer

Science Project) experience questionnaire. To determine experience level, experts used a

decision criteria determination sheet also adopted from Prof. Eljabiri's CIS 491 course,

listed in Appendix C, to rate academic background, general software background,

software development background, and software engineering professional background.

This section analyzes the results from the pre-experiment questionnaire and provides the

details to the subject distribution.

6.1.1 Subject Pre-eOperiment Ebaluation

The range of subject scores possible was from 26 to 203. Those below 100 were placed

in low experience groups, while those above 100 were placed in high experience groups.

Table 6.1 shows the scores for all subjects, grouped by course number, and the conditions

in which they were placed.

190

191

The mean scores of low experience subjects in the UC and UL&RA conditions

were 62.13 and 58.98 respectively. In contrast, the mean scores of high experience

subjects in the UC and UC&RA conditions were 127.36 and 122.33 respectively. These

mean scores indicate proper subject distribution.

192

193

6.2 EOpert Judge Reliability

The two expert judges were unaware of the experimental conditions. They were both

given each group's generated class diagram document and the ideal solution to the

problem statement. Both judges independently evaluated each group's class diagram and

assigned a score from 1 to 10, whereby 10 represented a perfect score. Afterwards,

judges meet and compared the scores assigned, whenever the difference in their

evaluations exceeded 1 point, the two experts resolved the issues and cooperatively

assigned a final score. Thereby, the judges evaluated the quality of the class diagram

generated by each group.

The results from both judges were evaluated to determine if they were trained

properly and to determine the reliability of their quality grade, a dependent variable. An

inter-judge reliability check was performed using a bivariate Pearson's r test both before

and after the judge's meet. The results indicate a significant correlation of 0.858 at the

0.0001 level before meeting (Table 6.6) and a significant correlation of 0.943 at the

0.0001 level after meeting (Table 6.7).

194

6.3 EOperiment Hypotheses Analysis

This section describes the evaluation of the data collected. The evaluation involved

factor analysis, Cronbach's Alpha, normality test, data transformation, non-parametric

Kruskal-Wallis ANOVA, and Factorial ANOVA. The results were compared against the

hypotheses described in Chapter 5.

To determine if the data is normally distributed, we used SAS to run the

Kolmogorov-Smirnov normality test. If the test results in p>0.05, then the data is

normally distributed. SAS offers five transform functions that can be used to normalize

the data. To be comprehensive, each transform function was tried to normalize the data

and the results are listed in the sub-sections that analyze and describe each dependent

variable.

The results of data transformation did not normalize all the data. In those cases,

to determine the interaction effect among the two experience level groups, we divide the

data into two groups, namely low and high, and apply a non-parametric method to both

groups. In other words, this compares the difference between UL and UC&RA in low

and high experience groups separately. If the "differences" are significantly different,

then there is an interaction effect. For example, suppose the difference between UC and

UC&RA in the low experience groups is 4 and the difference between UC and UC&RA

in high experience groups is 1. Then, the effect of UC/UC&RA is bigger in low

experience groups than high experience groups, which means that the two variables

(Analysis Tool: UCIUC&RA and Experience: LowIHigh) interact with each other. The

details are listed in the various sub-sections.

195

Table 6.8 provides an overview of the results. The sub-sections describe the

details of these results.

Abbreviations to Table 6.8:

UC: use-case
UC&RA: use case and relationship analysis
M: mean
a: standard deviation

6.3.1 Analysis Quality Grade Variable

Hypothesis 1 involved analysis quality. The hypotheses of the main and interaction

effects are:

1 a. The class diagram generated by performing a Relationship Analysis will be more
accurate and complete than groups using use-case analysis alone.

196

lb. The groups with high experience will generate more accurate and complete class
diagrams than low experience groups.

lc. The high experience groups utilizing Relationship Analysis will generate the most
accurate and complete class diagrams.

Table 6.9 provides the details of quality grades determined by the expert judges.

The zero scores are not dropout, but the group's actual quality score.

Table 6.11 provides the mean and standard deviation calculations for each of the

conditions.

197

The results shown in Table 6.12 support H la and indicate that this variable is

statistically significant at alpha = 0.05 level. The mean score of those using RA (38.36)

is much better than not using RA (19.30) and indicate that RA significantly improves

analysis quality.

Main Effect 2:
The experience level independent variable (N2) main effect does not show a

significant effect at alpha = 0.05 level (p=0.5892) and mean scores of 30.27 and 27.94

(Table 6.13) for high and low experience respectively.

198

The results shown in Table 6.13 do not support H lb and indicate that this

variable is not statistically significant at alpha = 0.05 level. This is very good because the

mean scores of Table 6.11 show that UC&RA with low experience (7.78) is higher than

the mean score of UC with high experience (6.81) indicting an interaction effect.

Although this finding is inclusive, it suggests that low experience analysts utilizing RA

could be more effective than experience analysts without RA.

Interaction Effect:
The interaction effect between analysis tool and low experience level does show a

significant effect at the alpha = 0.05 level (p=0.0003).

The results shown in Tables 6.14 and 6.15 support H lc and indicate that this

variable is statistically significant at the alpha = 0.05 level. The mean score difference

between UC and UC&RA in low experience groups is 10.79 (21.22-10.43 from Table

199

6.14). In contrast, the mean score difference between UC and UC&RA in high

experience groups is 8.62 (17.81-9.19 from Table 6.15). Thus, the effect of UC and

UC&RA is bigger in low experience groups than high experience groups. Also, the mean

score of those using RA is much better than not using RA for both groups. This

represents a positive synergistic effect and suggests that low experience analysts utilizing

RA could be more effective than high experience analysts without RA. Figure 6.1

depicts the quality grade for the high and low experience level groups.

6.3.2 Class Diagram Analysis Time Generation Variable

Hypothesis 2 involves time needed to create the class diagram from the analysis. The

hypotheses of the main and interaction effects are:

2a. The class diagram generated by first performing a Relationship Analysis will take
less time to complete than groups using use-case analysis alone.

2b. The groups with high experience will need less time to generate the class diagram
than low experience groups.

200

2c. The high experience groups utilizing Relationship Analysis will generate a class
diagram in the least amount of time.

Table 6.16 provides the details of time needed in minutes for each group to

complete the class diagram as indicated by the groups. Each group recorded the time

spent developing the class diagram and provided the time on the cover sheet of the

project submission.

The class diagram analysis time data is normalized using the Sqrt(Y)

transformation as indicated in Table 6.17.

201

The results shown in Table 6.18 do not support H 2a, H 2b, and H 2c and indicate

that this variable is not significant at the alpha = 0.05 level. Although not significant, it is

still interesting to compare the means of Table 6.18. The mean times of the UC&RA for

low (11.39) and high (11.90) experience groups are lower than the mean times of UC for

low (11.97) and high (14.29) experience groups respectively. Therefore, it suggests that

first performing RA does decrease the time needed to generate the class diagram.

However, the results are inconclusive since the results have no significance.

202

6.3.3 Total Analysis Time Generation Variable

Hypothesis 3 involves total analysis time to complete the assignment. The hypotheses of

the main and interaction effects are:

3a.The total analysis time by first performing a Relationship Analysis will take more
time to complete than groups using use-case analysis alone.

3b. The groups with high experience will need less total analysis time than low
experience groups.

3c. The high experience groups utilizing Relationship Analysis will need less time
than low experience groups utilizing Relationship Analysis.

Table 6.19 provides the details of total analysis time to complete the assignment

as indicated by the groups. Each group recorded the total time spent to complete the

analysis assignment and provided the time on the cover sheet of the project submission.

The total time variable has a Kolmogorov-Smirnov p value of 0.13 indicating

normal data distribution.

203

Table 6.20 depicts the mean and standard deviation calculations for each of the

conditions.

The results shown in Table 6.20 support the main effect, hypothesis H 3a and

indicate that this variable is statistically significant at the alpha = 0.05 level. The mean

scores indicate that the UC&RA low and high experience groups took significantly more

time to complete the analysis that the UC low and high experience groups, specifically in

minutes 362 vs. 161 and 374 vs. 214. This is also a good indicator that the groups

actually performed the RA.

However, the results shown in Table 6.20 do not support H 3b and H 3c and

indicate that this variable is not statistically significant at the alpha = 0.05 level. It is still

interesting to compare the mean scores in minutes of UC&RA for low and high

experience. These are 362 and 374 respectively. This indicates that the time to perform

the analysis was about the same and independent of experience. This is actually good

204

because it indicates that the RAP can be equally applied regardless of experience level.

However, the results are inconclusive since the results have no significance.

6.3.4 Relationship Analysis Time Variable

The subjects were also asked to record the time needed to elicit relationships using the

templates. The objective was to determine, if both low and high experience level groups

need approximately the same time to identify and document the relationships. There is

no hypothesis to this measure since there is no control. Table 6.21 provides the details of

time needed to complete the RA as indicated by the groups.

The total time variable has a Kolmogorov-Smirnov p value of 0.15 indicating

normal data distribution.

Table 6.22 depicts the mean and standard deviation calculations for each of the

conditions.

205

The mean scores in minutes of low and high experience level groups are 220 and

217 respectively. This indicates that both groups need approximately the same time to

identify and document the relationships of the problem domain. Therefore, the time to

perform the analysis was about the same and independent of experience. This is actually

good because it indicates that the RAP can be equally applied regardless of experience

level. However, the results shown in Table 6.22 indicate that this variable is not

statistically significant at alpha = 0.05 level.

6.4 Post-eOperiment Questionnaire Ebaluation

The post-experiment questionnaire, Appendix C, was evaluated using Factor Analysis

and Cronbach's Alpha to determine the factors. The resulting factors were further

analyzed using normality test, data transformation, and non-parametric Kruskal-Wallis

ANOVA.

6.4.1 Factor Analysis

The results from Factor Analysis using the principal components factoring method and

varimax rotation method yielded three factors.

206

■ Factor 1 measured satisfaction and included questions 2,3,4,10,14,15,23,24,25.
This contains 9 of the 15 satisfaction questions and no other question types.

■ Factor 2 measured perceived analysis ability and included questions 7,18. This
contains 2 of the 4 perceived analysis ability questions and no other question
types.

■ Factor 3 measured task comprehension and included questions 12,22. This
contains 2 of the 4 task comprehension questions and no other question types.

Calculating Cronbach's Alpha for them tested the reliabilities of these factors.

Satisfaction achieved a Cronbach's Alpha of .917 and indicates a high internal

consistency for the satisfaction questions of the questionnaire. Perceived analysis ability

achieved a Cronbach's Alpha of .486 and indicates a very low internal consistency for the

perceived analysis ability questions of the questionnaire. Task validation achieved a

Cronbach's Alpha of .667 and indicates good internal consistency for the task

comprehension questions of the questionnaire. A Cronbach's Alpha of 0.65 and above

has been used by other researchers as a measure of good internal consistency for sets of

factored items (Lederer et al., 1998) (Barki & Hartwick, 1994). Table 6.23 is a summary

of the results.

207

To complete the analysis, each of the factors was further analyzed using normality

test, data, transformation, and non-parametric Kruskal-Wallis ANOVA. The results were

compared against the hypotheses described in Chapter 5.

6.4.2 Satisfaction

The original hypotheses included the following three that measured satisfaction.

Hypothesis 5: Process Satisfaction

5a. Subjects performing Relationship Analysis will be more satisfied with the analysis
process than those using use-case analysis alone.

5b. Subjects with high experience will be more satisfied with the analysis process
than low experience subjects.

5c. The high experience subjects utilizing Relationship Analysis will be the most
satisfied with the analysis process.

208

Hypothesis 6: Team Communication Satisfaction

6a. Subjects performing a Relationship Analysis will be more satisfied with their
team communications due to the Relationship Analysis Templates than subjects using
use-case analysis alone.

6b. Subjects with high experience will be more satisfied with their team
communications than low experience subjects.

6c. The high experience subjects utilizing Relationship Analysis will be more
satisfied with their team communications than low experience subjects utilizing
Relationship Analysis.

Hypothesis 7: Class Diagram Solution Satisfaction

7a. Subjects performing a Relationship Analysis will be more satisfied with their
generated class diagram than subjects using use-case analysis alone.

7b. Subjects with high experience will be more satisfied with their generated class
diagram than low experience subjects.

7c. The high experience subjects utilizing Relationship Analysis will be more
satisfied with their generated class diagram than low experience subjects utilizing
Relationship Analysis.

However, using the results from factor analysis, it is only possible to use process

satisfaction factor for the "satisfaction" variable, namely satisfied with the analysis

process. This makes sense because the nature of the satisfaction questions focus on

process satisfaction. For example, satisfied with the communications process and

satisfied with the generated class diagram process are similar to process satisfaction in

general. This is why the factor analysis process merged these questions together to form

a single factor. Therefore, the results were compared against the process satisfaction

hypotheses. Therefore, the questionnaire did not provide data on team communication

satisfaction or class diagram solution satisfaction. The resulting satisfaction variable is

not normally distributed as indicated in Table 6.24.

209

The results shown in Table 6.26 do not support H 5a and indicate that this

variable is not statistically significant at alpha = 0.05 level. However, it is still interesting

to compare the means of Table 6.26. The mean score of UC&RA is 86.39 and the mean

score of UC only is 85.60 indicating that subjects performing RA were more satisfied.

210

Although this finding is inconclusive, it suggests that subjects using RA have a higher

level of process satisfaction than subjects using use-case alone.

Main Effect 2:
The experience level independent variable (1V2) main effect does show a

significant effect at the alpha = 0.05 level (p=0.0536) and mean score of 92.65 and 80.42

for high and low experience respectfully.

The results shown in Table 6.27 do support H 5b and indicate that this variable is

statistically significant at the alpha = 0.05 level, when rounded to the nearest hundredths.

Table 6.27 shows the mean scores of high and low experience are 92.65 and 80.42

respectively. These results indicate that high experience subjects are more satisfied with

the process than low experience groups.

Interaction Effect:
The interaction effect between analysis tool and low experience level does not

show a significant effect at the alpha = 0.05 level (p=0.0624).

The interaction effect between analysis tool and high experience level does not

show a significant effect at the alpha = 0.05 level (p=0.0673).

211

The results shown in Tables 6.28 and 6.29 do not support H 5c and indicate that

this variable is not statistically significant at alpha = 0.05 level. However, it is still

interesting to compare the mean scores. The mean score difference between UC and

UC&RA in low experience subjects is 8.59 (51.16-42.57 from Table 6.28). In contrast,

the mean score difference between UC and UC&RA in high experience subjects is 7.66

(43.33-35.67 from Table 6.29). Thus, the effect of UC and UC&RA is bigger in low

experience subjects than high experience subjects. Although this finding is inconclusive,

it suggests that low experience analysts utilizing RA could be more satisfied than high

experience analysts without RA. This could be due to the systematic process afforded by

the RA process.

6.4.3 Analysis Ability

Hypothesis 4 involves perceived analysis ability, measured after the experiment. As

discussed in Section 6.4.2, perceived analysis ability earned a very low Cronbach's

Alpha, namely .486. Consequently, the results should not be considered significant. The

hypotheses of the main and interaction effects are:

4a. Subjects performing a Relationship Analysis will have a higher perception of their
analysis ability than subjects using use-case analysis alone.

4b. Subjects with high experience will have a higher perception of their analysis
ability than low experience subjects.

212

4c. The high experience subjects utilizing Relationship Analysis will have the highest
perception of their analysis ability.

The perceived analysis ability variable is not normally distributed as indicated in

Table 6.30.

213

The results shown in Table 6.32 do not support H 4a and indicate that this

variable is not statistically significant at alpha = 0.05 level. However, Table 6.32 shows

the mean score of subjects performing UC&RA is 89.86 and the mean score of subjects

performing UC only is 82.01 indicating that subjects performing RA had a higher level of

perceived analysis ability. Although this finding is inconclusive, it suggests that subjects

using RA have a higher level of perceived ability than those using use-case alone.

Main Effect 2:
The experience level independent variable (1V2) main effect does show

significant effect at the alpha = 0.05 level (p=0.0015).

The results shown in Table 6.33 indicate that this variable is statistically

significant at alpha = 0.05 level. However H 4b is not supported because Table 6.33

shows the mean scores high experience subjects and low experience subjects are 73.77

and 96.26 respectively. The mean scores indicate that low experience subjects are more

confident in their perceived analysis ability than high experience subjects. This is

counter-intuitive and perhaps due to the systematic process provided by RA, which could

cause low experience subjects to be confident in their analysis abilities. Analyzing the

interaction effect may provide further insight and is described next.

Interaction Effect:
The interaction effect between analysis tool and low experience level does not

show a significant effect at the alpha = 0.05 level (p=0.2025).

214

The results shown in Tables 6.34 and 6.35 do not support H 4c and indicate that

this variable is not statistically significant at alpha = 0.05 level. However, it is still

interesting to compare the means. The mean score difference between UC and UC&RA

in low experience subjects is 4.63 (49.24-44.61 from Table 6.34). In contrast, the mean

score difference between UC and UC&RA in high experience subjects is 3.44 (41.22-

37.78 from Table 6.35). Thus, the effect of UC and UC&RA is slightly bigger in low

experience subjects than high experience subjects. Although this finding is inconclusive,

it suggests that low experience analysts using RA could be more confident with their

analysis ability than high experience analysts without RA. This could be due to the

systematic process provided by the RA process.

215

6.4.4 Task Comprehension

Further analysis was performed on task comprehension questions (12,22) of the

questionnaire to measure whether all subjects understood the task equally.

The task validation variable is not normally distributed as indicated in Table 6.36.

216

The results shown in Table 6.38 indicate that this variable is statistically

significant at alpha = 0.05 level, when rounded to the nearest hundredths. Table 6.38

shows the mean score of UC&RA is 91.93 and the mean score of UC only is 79.86

indicating that the subjects using RA understood the task more than subjects not using

RA. This could be due to the systematic process provided by the RA process.

Main Effect 2:
The experience level tool independent variable (W2) main effect does show a

significant effect at the alpha 0.05 level (p=0.0012).

The results shown in Table 6.39 indicate that this variable is statistically

significant at alpha = 0.05 level. Table 6.39 shows the mean score of high experience

subjects is 98.38 and the mean score of low experience subjects is 75.62 indicating that

the subjects with high experience understood the task more than low experience subjects.

This finding suggests experience level can affect problem understanding.

Interaction Effect:
The interaction effect between analysis tool and low experience level does not

show a significant effect at the alpha = 0.05 level (p=0.1607).

217

The results shown in Tables 6.40 and 6.41 indicate that this variable is not

statistically significant at alpha = 0.05 level. However, it is still interesting to compare

the means. The mean score difference between UC and UC&RA in low experience

subjects is 5.51 (49.67-44.16 from Table 6.40). In contrast, the mean score difference

between UC and UC&RA in high experience subjects is 6.66 (42.83-36.17 from Table

6.41). Thus, the effect of UC and UC&RA is slightly bigger in high experience subjects

than low experience subjects. Although this finding is inconclusive, it suggests that high

experience analysts have a higher level of problem understanding.

6.5 Summary of Hypotheses Analysis

Table 6.42 shows a summary of the hypotheses results of the experiment.

218

CHAPTER 7

DISCUSSION, CONCLUSIONS, AND FUTURE RESEARCH

This chapter provides a summary of evaluation results and their implication on the

hypotheses. This is then followed by a summary of subject comments during the

debriefing sessions. Next a discussion on an experimentation enhancement is provided.

This is then followed by a discussion on the contributions provided by this dissertation.

Lastly, future research and next steps are discussed.

7.1 Summary of Hypotheses Ebaluation Results

0ne goal of Relationship Analysis (RA) is to provide the software community a usable

technique that improves an analyst's effectiveness in relationship discovery and

documentation. The first step in this direction is to show that RA improves analysis

quality. In addition, if a technique is to be accepted, users must show satisfaction with its

process. To this end, this dissertation provides experimental results on RA in terms of

analysis quality, process satisfaction, perceived analysis ability and implementation time.

The most significant finding of the experiment involves analysis quality. The

results of the experiment do significantly show that RA improves analysis quality.

Subjects using RA achieved a higher level of analysis quality than those not using RA.

This finding further suggests that low experience analysts utilizing RA could be more

effective than high experience analysts without RA.

219

220

Another important factor to any analysis process is time to perform the analysis.

One of my original arguments was that RA fills the void in the analysis process with

respect to explicitly identifying relationships. Consequently, this step will help generate

a class diagram without adding to the overall analysis time needed to construct a task

specific class diagram. My hypotheses concerning the time construct was based on the

fact that although the process takes time to perform, it should not effect the overall total

process time. The results indicate that RA does add to the overall analysis time.

However, this could be a task dependent variable. It may be that a systematic process

does help to improve quality without adding to the overall analysis time for more

complex tasks. More research is needed in this area.

Also, it may be possible to increase analysts' perceived analysis ability by

providing them a well-defined systematic process. There is a growing body of literature

that suggests that the benefits of expertise are less pronounced when solving a problem in

a well-structured manner. The results of the experiment were inconclusive as to whether

RA increases confidence in analysts' ability due to the RA process.

Lastly, the final supported hypothesis was that high experience groups were

satisfied with the RA process. The results were inconclusive as to whether low

experience groups using RA were as satisfied as high experience groups. It can therefore

be stated that RA did not make either low or high experience groups less satisfied.

7.2 Debrief Session Subject Comments

During the debriefing sessions performed at the conclusion of the experiment, the

following comments (paraphrased) deserve mention.

221

■ I am not able to draw class diagrams by looking at use-case diagrams. I would
have preferred to be in a group that did the RA.

■ It is difficult to create class diagrams and I agree that something is missing to help
do this. The technique was helpful, but very long.

■ After our group did one, the process was pretty straightforward.
■ I liked the way the final class diagram was developed by the previous pieces.
■ The technique was helpful in creating the class diagram, but I saw the solution

about half way through.
■ It would have been nice to have a computer tool to help generate the templates

and the diagrams instead of doing it on paper.

From the discussion of the debriefing sessions a conclusion that can be drawn is

that the RA process does aid in class diagram generation. The subjects also felt that the

templates were easy to use to elicit and document the relationships. However, most

subjects expressed that the time needed to perform the analysis was too long and required

too much paper. Therefore, a way must be found to reduce the time needed to perform

the analysis without reducing the effectiveness of the technique. These comments helped

to formulate future research discussed in Section 7.5.

7.3 EOperimentation Enhancements

The time results of the experiment could be reduced if the subjects performed the process

themselves after the training session but before the start of the experiment. This has to do

with the learning curve associated with learning a new technique. In addition, it ensures

that all subjects fully understand the process before they start the experiment. This could

be realized utilizing an interim homework assignment. This would ensure that all

subjects fully understand the process before the start of the experiment, thereby reducing

the learning curve effect, which may affect the time results.

222

7.4 Research Contributions

The accomplishments provided by this dissertation offer both theoretical and practical

contributions. The contributions encompass a theory-based systematic discovery process

to classify, identify, and document the complete relationship structure of an application

domain.

The Relationship Analysis Model (RAM) presented is the first theory-based

taxonomy to classify relationships. The model, based on Guilford's Structure of Intellect

(SI) Theory provides a strong foundation to categorically classify the complete range of

relationships of a problem domain.

The model was applied and a technique developed to explicitly identify and

document the relationship structure of an application domain, thereby filling a void in the

systems analysis process. The Relationship Analysis Process (RAP) is a systematic

analysis technique to explicitly identify and document relationships. Supporting the

process are the Relationship Analysis Template (RAT) and Relationship Analysis

Diagram (RAD) to facilitate the relationship discovery and documentation process.

A rigorous evaluation was conducted, including a formal experiment comparing

novice and experienced analysts with and without Relationship Analysis. It was shown

that the RAP based on the model does provide a fuller and richer systems analysis,

resulting in improved quality of and reduced time in generating class diagrams. It also

was shown that Relationship Analysis enables analysts of varying experience levels to

achieve a similar level of quality of class diagrams. Relationship Analysis significantly

enhances the systems analyst's effectiveness, especially in the area of relationship

discovery and documentation resulting in improved analysis and design artifacts.

223

7.5 Future Research

A significant finding of this research showed empirically that RA improves analysis

quality. However, if any analysis technique is to be accepted, users must show

satisfaction with its process. The empirical results of the experiment were inconclusive

as to measured satisfaction. Ease of use impacts user satisfaction. Therefore, one way to

make the process easier is to provide computer support tools to facilitate the process. To

this end, a logical next step is to provide a computer based application program to

facilitate the process and that computerizes the RA templates and provides a mechanism

to draw the RA diagram.

In addition, the templates are based on the RA model that explicitly classifies all

the relationships of an application domain based upon elicitation questions. However, are

all the relationships necessary to understand the application domain and feed into the

design phase? Future research should determine if a limited subset is useful and if so,

which subsets would best serve which domains? The effects of a limited process may

decrease the time needed to perform the analysis, which may also impact satisfaction.

The templates provide generic questions that should be catered to the application domain.

Another research area is how to best cater the questions to the particular domain?

The empirical results of this experiment were based on teams comprised of

individuals of either low or high experience level. What about mixed experience level

teams? Would mixed experience level teams cause analysis quality and process

satisfaction to be improved? This is also an area of future research.

The experiment was performed on NJ1T students. Since the subjects were chosen

from evening courses, many had practical industry based experience developing software

224

applications using structured analysis and object-oriented analysis techniques. The

experiment should also be performed as a field study in a corporation.

Although RA is a methodology independent technique, it seamlessly fits within

the object-oriented development phases. RA can be positioned between the use-case

analysis and class diagram generation steps. It should be possible to fold RA within the

Rational Unified Process and the UML toolkit. This research should be presented to

Rational Rose Corporation to acquire support and possible funding. The best way to

accomplish this is to provide positive empirical results of the RA technique from field

studies performed in software corporations. Therefore, a series of RA experiments are

needed at various types of corporations that implement software solutions using the RUP

and the UML to develop software systems, especially in the area of analysis and design.

If it can be shown that the RA technique improves the process and that practitioners are

satisfied and accept the technique, then an argument can be made to its inclusion into the

RUP and the UML toolkit.

The RA technique can also support structured analysis (SA) techniques. The

background literature indicates that SA techniques explicitly identify entities but leave

relationship identification as an implicit process. In particular, RA could enhance the

way entity relationship (EIR) diagrams are generated. An experiment can be designed to

test the effectiveness of RA with respect to the generation of E/R diagrams.

Many websites implement hypertext functionality. As such, hypertext endpoints

form relationships among the corresponding pieces of information. Can these

relationships provide clues to improve website design? Therefore, another area of study

is to determine if RA is useful in website design.

225

In addition, this dissertation inserts RA at the analysis phase of the software

development life-cycle model. Is it possible to use RA at the requirements definition

phase? Feedback from other analysis researchers acquired from conferences and

submitted publications are that some prefer to identify all aspects of the problem domain

before the analysis phase, namely in the requirements definition phase. Future research

can empirically establish the best phase in which to perform RA or show that it is equally

effective at either phase.

The previous areas of future research all concerned the computer application

domain. Can the RA taxonomy be applied to other domains such as medical systems or

transportation systems? Future research is needed to determine RA applicability outside

information systems development.

APPENDIX A CONSENT FORM

Appendix A contains a consent and release form.

NEW JERSEY INSTITUTE OF TECHNOLOGY
323 MARTIN LUTHER KING BLVD.
NEWARK, NJ 07102

CONSENT TO PARTICIPATE IN A RESEARCH STUDY FORM

TITLE OF STUDY:

RESEARCH STUDY:

	, have been asked to
participate in a research study under the direction of Joseph Thomas Catanio.
Other professional persons who work with him as study staff may assist to act for
him.

PURPOSE:

To test the effectiveness of a systems analysis tool.

DURATION:

My participation in this study will last for 1 week.

PROCEDURES:

I have been told that, during the course of this study, the following will occur:

I will be trained in analysis techniques.

I will be placed in a team.

The team will be given a problem statement to analyze using analysis techniques.
I will be able to communicate with my team members to complete the assignment.

My team will be required to submit all generated analysis documents and record
the time spent completing the assignment.

I am required to fill out a questionnaire and participate in a debriefing session at
the conclusion of the experiment.

226

227

I was given a choice of either participating in this experiment or working on a
similar project.

PARTICIPANTS:

I will be one of about 180 participants to participate in this trial.

EXCLUSIONS:

I will inform the researcher if any of the following apply to me: N/A

RISK/DISCOMFORTS:

I have been told that the study described above may involve the following risks
and/or discomforts:

There are no known risks or discomforts.

There also may be risks and discomforts that are not yet known.

CONFIDENTIALITY:

Every effort will be made to maintain the confidentiality of my study records.
Officials of NJ1T will be allowed to inspect sections of my research records
related to this study. If the findings from the study are published, I will not be
identified by name. My identity will remain confidential unless disclosure is
required by law.

PAYMENT FOR PARTICIPATION:

I have been told that I will receive $0 compensation for my participation in this
study.

CONSENT AND RELEASE:

I fully recognize that there are risks that I might be exposed to by volunteering in
this study which are inherent in participating in any study; I understand that I am
not covered by NJ1T's insurance policy for any injury or loss I might sustain in
the course of participating in the study.

RIGHT TO REFUSE OR WITHDRAW:

I understand that my participation is voluntary and I may refuse to participate, or
may discontinue my participation at any time with no adverse consequence. I also
understand that the investigator has the right to withdraw me from the study at
any time.

228

INDIVIDUAL TO CONTACT:

If I have any questions about my treatment or research procedures that I discuss
them with the principle investigator. If I have any addition questions about my
rights as a research subject, I may contact:

Richard Greene, M.D., Ph.D., Chair, 1RB (973) 596-3281.

SIGNATURE OF PARTICIPANT

I have read this entire form, or it has been read to me, and I understand it
completely. All of my questions regarding this form or this study have been
answered to my complete satisfaction. I agree to participate in this research
study.

APPENDIX B TRAINING MATERIALS

Appendix B contains the training material example on how to perform a Use-case
Analysis and a Relationship Analysis to generate class diagrams to the given problem
statement.

PROBLEM STATEMENT: Inventory Control System

A store is setup to fill customer and vendor orders. To fill these orders products are
maintained in a warehouse. These products are not given directly to the customer instead
they are packaged and shipped to the customer. Once an order is placed, the order
fulfillment employee fills the order by locating and packaging the products in the
warehouse. As the ordered is filled, the fulfillment employee updates the inventory list to
reflect the fact that the particular product item was taken from inventory. Once all the
items of the order are packaged, the order-processing department is notified that the order
has been filled.

The package is then prepared for shipping. The shipping employee updates the inventory
list to reflect the date items of an order were shipped and notifies the order-processing
department that the order has been shipped.

The stock clerks handle stocking the warehouse. The products may come from cancelled
orders, returned orders, or vendor shipments. The products are placed in the warehouse
in predefined locations. 0nce a product is stocked, the stock clerk updates the inventory
list to reflect location and quantity.

The receiving clerks receive incoming shipments by matching purchase orders against the
shipment stock. The receiving clerk informs the accounts payable department when
purchase order items are received. To help offset the stocking department workload, the
receiving clerks may directly stock the product in the warehouse and update the inventory
list.

Step 1: Identify the actors.

Actors are people or sub-systems that communicate with the inventory control system.

Customer
Vendor
Order Fulfillment Clerk
Order Processing Department (system type actor)
Shipping Clerk
Stocking Clerk
Receiving Clerk
Accounts Payable Department (system type actor)

229

Step 3: Build use-case narratives to sublimate the diagram. These narratives describe
what the user expects from the use-case. The focus is on what not how.

Place Order
Customers and vendors place orders to a sales representative either in person or over the
telephone. Orders consist of 1 or more products that the customers or vendors wish to
purchase. To place an order the sales representative creates a unique order number that
contains customer or vendor information and ordered products. In addition, since the
order is to be packaged and shipped, delivery information is also recorded on the order
process form. This is the first step in the process and order forms are used to start the

230

231

inventory system. A future system enhancement will be the ability to place orders on-
line to feed the inventory system directly.

Fill 0rder
Fill order clerks are provided order forms. It is assumed that these order forms are
completed properly and that the order number is valid. It is also assumed that all
products are available in inventory at the warehouse. Fill order clerks collect the
products required to fill the order form the warehouse. As products are removed from
storage shelves, the clerks update the inventory list. All products are packaged, placed in
boxes, and placed in the shipment department with the original order form.

Ship Order
Shipping clerks assume that the package contains all the products listed on the order
form. The clerk marks the package with the destination address listed on the order form
and updates the inventory list. The packaged is then loaded into a truck for delivery.

Stock Product
The task of stocking the warehouse falls on the stock clerks. Products are placed in
predefined shelf locations. As products are stocked, stock clerks update the inventory list
to reflect the new quantity.

Receive Product
To replenish the warehouse inventory, products are received from various distributors. It
is assumed that products are properly ordered and sent to receiving so that the products
contained in the inventory list are always available. As an item is received, the receiving
clerk updates the inventory list and placed in the stock department. Receiving clerks may
also stock the product directly.

Update Inventory
Update inventory allows clerks to mark the status of inventory products. It is assumed
that update inventory users have permission to update the inventory list. Products in the
inventory list can be marked as filled, shipped, received or stocked with the date recorded
for each action. This permits products to be tracked.

Step 4: Identify items of interest and their relationships.

What is an item of interest? Anything in the system you want to know more about.

Identify and document the relationships using six templates.

Item if interest = 0rder

Unit Template

The unit template determines specification and elaboration relationships.

232

233

234

Comparison Template

The comparison template determines generalizationIspecialization and similarIdissimilar
relationships.

System Template

The system template determines structure and occurrence relationships.

235

Transformation Template

The transformation template determines modify and transpose relationships.

236

Implication Template

The implication template determines influence and extrapolate relationships.

237

238

Step 5: Depict the Relationships Utilizing the Relationship Analysis Diagram

Extracting the resulting template information into a graphical representation yields the
following RAD for the item of interest, namely "order".

Step 6: Create a Class Diagram

A class diagram represents main system objects and their relationships.

239

Repeat the process for other items of interest and refine the class diagram.

Item of interest = customer

Unit Template

The unit template determines specification and elaboration relationships.

240

Collection Template

The collection template determines membership and aggregation relationships.

241

242

Comparison Template

The comparison template determines the generalizationIspecialization and
similarIdissimilar relationships.

System Template

The system template determines structure and occurrence relationships.

243

Transformation Template

The transformation template determines modify and transpose relationships.

244

Implication Template

The implication template determines influence and extrapolate relationships.

245

246

Figure B1.5 Training Class Diagram 2

247

248

Final class diagram without the attributes.

249

APPENDIX C SURVEY INSTRUMENTS

Appendix C contains four questionnaires. The use-case and Relationship Analysis
training questionnaires were used to validate the training material. The experience
questionnaire will be used to determine experience level prior to team creation. The post
experiment questionnaire will be used for perception measures.

250

251

POST RELATIONSHIP ANALYSIS TRAINING QUESTIONNAIRE

I -4. A ALT:f "f wnvir Cif•

252

253

EXPERIENCE QUESTIONNAIRE

	

Name: 	

	

Last 4 digits of your SS#: 	

	

Course #: 	

Section #:

254

255

Software Development Bac round: ' lease indicate our skill lebel in the following
areas
1. Software development life-cycle models (waterfall, spiral, iterative, RUP, etc.)

High Skill F 7 6 5 4 3 2 1 4 Low Skill

2. Software Economics (cost-benefit analysis, software cost estimation, feasibility
studies, etc.)

High Skill 7 6 5 4 3 2 1 4 Low Skill

3. Generating software system analysis documents.

High Skill E- 1 2 3 4 5 6 7 4 Low Skill

4. Generating software system design documents.

High Skill F 1 2 3 4 5 6 7 4 Low Skill

5. Generating software system class diagrams.

High Skill <— 7 6 5 4 3 2 1 4 Low Skill

6. Developing software code.

High Skill F 7 6 5 4 3 2 1 4 Low Skill

7. Jsing Modeling Languages and Techniques (UML, etc.)

High Skill 1 2 3 4 5 6 7 4 Low Skill

Work Related Experience: (Please indicate your skill level in the following areas
1. Working as a software engineer.

High Skill <— 7 	6	 5 	 4 3 2 1	 Low Skill

2. Working as a software developer.

High Skill <— 1 	2	 3 	 4 5 6 7 —> Low Skill

3. Working as a system analyst.

High Skill F 7 	6	 5	 4 3 2 1 4 Low Skill

End of Experience Questionnaire

256

DECISION CRITERION

The score possible ranges from 26 to 203 points, lowest to highest respectfully.

The cutoff point was 100, those below were classified as low experience and those above
were classified as high experience.

Criterion Possible Points Earned Points

Academic
Performance

0 to 21

General
Software
Background

16 to 112

Software
Development
Background

7 to 49

Software
Engineering
Professional
Background

3 to 21

Total

257

Ilk OW A

259

APPENDIX D TASK LISTS

Appendix D contains three different task lists and assignment instructions. Task 1 is for
the control category. Task 2 is for the treatment category. Task 3 is the alternate task for
those whom choose not to participate in the experiment. Assignment instructions are to
be given to the subjects.

Prior to the day of the experiment, all subjects will have been taught use-case analysis
and how to generate class diagrams as part of the requirements to the course. In addition,
all subjects will have completed an experience questionnaire that will be used by an
expert to determine low and high experience individuals. The low experience subjects
will be randomly selected and placed in a team consisting of a total of three low
experience individuals. Similarly, high experience subjects will be randomly selected
and placed in a team consisting of a total of three high experience individuals.

Task 1

Day 1:11/OO/2003

1. Complete and submit the consent form.
2. Subjects divided into teams based on pre-experiment questionnaire.
3. Team selects a group leader.

(Leader will record time spent on project.)
(Leader will submit all project documents.)

4. Enrichment topic provided to prevent confounding of variables.
5. Experimenter hands out problem assignment to each team.
6. Teams perform a use-case analysis in class for 1 hour.
7. Teams provided with an expert generated use-case analysis to the problem

statement.
8. Teams have 1 week to complete assignment.

Week 1: 11/xxJ2003 to 11/xx/2003

1. Team generates class diagrams.
2. Leader records time to complete class diagram generation.
3. Leader assembles documents and completes cover sheet to project submission.

Day 7: 11/xx/2003

1. Team leaders will submit final class diagrams document.
2. All subjects complete a post-task questionnaire.
3. Experimenter debriefs all subjects.

260

261

Task 2

Day 1: 11/OOJ2003

1. Complete and submit the consent form.
2. Subjects divided into teams based on pre-experiment questionnaire.
3. Team selects a team leader.

(Leader will record time spent on project.)
(Leader will submit all project documents.)

4. Subjects trained in Relationship Analysis.
5. Experimenter hands out problem assignment to each team.
6. Teams perform a use-case analysis in class for 1 hour.
7. Teams provided with an expert generated use-case analysis to the problem

statement.
8. Teams have 1 week to complete assignment.

Week 1: 11/xxJ2003 to 11/xxJ2003

1. Group performs Relationship Analysis.
2. Leader records time to complete Relationship Analysis.
3. Group generates class diagrams.
4. Leader records time to complete class diagram generation.
5. Leader assembles documents and completes cover sheet to project submission.

Day 7: 11/OO/2003

1. Team leaders will submit final Relationship Analysis document, and class
diagrams document.

2. All subjects complete a post-task questionnaire.
3. Experimenter debriefs all subjects.

262

Task 3

The alternate task is the same problem statement that the experimental groups are to
solve.

Rules:
1. You will have 1 week to complete this project.
2. The project consists of performing a series of techniques to analyze the given

problem statement.
3. Your grade will be based on the quality of the analysis documents you generate.
4. Documents to be submitted:

a. Use-case Analysis Document
b. Relationship Analysis Document
c. Class Diagrams Document
d. A list of problems encountered during the analysis process
e. A description of how you solved the problems encountered.
f. Cover Sheet Outlining the time spent on each part.

5. To create the Use-case Analysis Document, determine all the stakeholders of the
web-based document archival software system. For each of these stakeholders,
determine how they intend and are required to use the on-line registration system.
Describe any problems encountered you had performing the use-case analysis.
Describe how you solved each problem. Discuss the limitations of each
stakeholder. Discuss the limitations of each intended use. Record the time spent
on determining the use-cases.

6. To create the Relationship-Analysis Document, determine all the relationships of
the systems.	 These relationships must include on an individual basis;
stakeholders, desired system use, desired system functionality, system entities. In
addition, you will need to describe how all of the individual entities are
interrelated. Describe any problems encountered you had developing the
relationship model. Describe how you solved each problem. Discuss the
limitations of the relationship model. Record the time spent on performing the
Relationship Analysis.

7. To create the Class Diagrams Document, use the information provided by the use-
case analysis and relationship analysis. These class diagrams must include all
classes and attributes of the on-line registration system. Describe any problems
encountered you had developing the class diagrams. Describe how you solved
each problem. Discuss the limitations of the class diagram. Record the time
spent on generating the class diagrams.

8. Describe ways to improve each of the analysis processes.
9. Describe the relevance of each of the analysis techniques in describing the system

to be solved.

263

Instructions: Control Group

Please follow the instructions to complete the assignment. The assignment is due 1 week
from today and must be handed in on time for credit. The assignment is worth 30 points
and grading is based on the quality of your team's submitted work. Please accurately
record the amount of time you spend on the various assignment sections. Time will not
be used as grading criteria! Please work with your team members only. Do not share
information with other teams.

Email Address: 	 JosephCatanio@att.net
WebBoard Address: http://webboard.njit.edu
Board:	 RA Team Study

Day 1: 11/xx/2003

1. Complete and submit the consent form so that you may participate in the experiment.
2. You have already been placed in a team with others of similar experience.
3. As a team select a team leader.

(Leader will record time spent on project.)
(Leader will submit all project documents.)

4. Work as a team to solve the problem statement.
5. Use the guidelines below to coordinate your activities.
6. A sample cover sheet is available from the above WebBoard Address.

Week 1: 11/xxJ2003 to 11/xx/2003

1. As a team generate class diagrams to the problem statement.
2. Team leader records time to complete class diagram generation.
3. Team leader assembles class diagrams document and completes cover sheet to project
submission.

Day 7: 11/xxJ2003

1. Team leaders will submit class diagrams document, and cover sheet.
2. All team members individually complete a post-task questionnaire.

264

Instructions: Treatment Group

Please follow the instructions to complete the assignment. The assignment is due 1 week
from today and must be handed in on time for credit. The assignment is worth 30 points
and grading is based on the quality of your team's submitted work. Please accurately
record the amount of time you spend on the various assignment sections. Time will not
be used as grading criteria! Please work with your team members only. Do not share
information with other teams.

Email Address:	 JosephCatanio@att.net
WebBoard Address: http://webboard.njit.edu
Board:	 RA Team Study

Day 1: 11/xx/2003

1. Complete and submit the consent form so that you may participate in the experiment.
2. You have already been placed in a team with others of similar experience.
3. As a team select a team leader.

(Leader will record time spent on project.)
(Leader will submit all project documents.)

4. Work as a team to solve the problem statement.
5. Use the guidelines below to coordinate your activities.
6. A sample cover sheet is available from the above WebBoard Address.
7. Relationship Analysis Templates are available from the above WebBoard Address.

Week 1: 11/xx/2003 to 11/xx/2003

1. As a team perform Relationship Analysis and generate Relationship Analysis
Templates to the problem statement.
2. Generate the Relationship Analysis Diagram utilizing the information recorded in the
Relationship Analysis Templates.
3. Team leader records time to complete Relationship Analysis.
4 As a team generate class diagrams to the problem statement.
5. Team leader records time to complete class diagram generation.
6. Team leader assembles Relationship Analysis document, class diagrams document and
completes cover sheet to project submission.

Day 7: 11/xx/2003

1. Team leaders will submit Relationship Analysis document, class diagrams document,
and cover sheet.
2. All team members individually complete a post-task questionnaire.

APPENDIX E COVER SHEETS

Appendix E contains two different cover sheets. Cover sheet 1 is for the control
category. Cover sheet 2 is for the treatment category.

265

266

APPENDIX F PROBLEM STATEMENT

Appendix F contains the problem statement used in the main experiment.

Topic: University On-Line Registration System

At the beginning of each semester, the registrar's office will provide a list of courses to
students through a new on-line registration system. Information about each course, such
as professor, department, and prerequisites will be included to help students make
informed decisions.

The new system will allow students to review available courses and select four of them
for the coming semester. In addition, each student will indicate two alternative choices in
case a course becomes filled or canceled. No course will have more than ten students.
No course will have fewer than three students. A course with fewer than three students
will be canceled. If there is enough interest in a course, then a second session will be
established.

Professors must be able to access the on-line system to indicate which courses they will
be teaching. They will also need to see which students have signed up for their courses.
Professors are expected to maintain a list of their research interests and projects as well as
a list of publications. All students have access to each professor's research interests and
projects lists. Each professor has access rights to their own publications list and can
assign individual students permission rights to view these publications.

The registration process will last for three days. The first day will be freshman
orientation and registration. All other students will arrive on the second day of the
semester to register. The third day will be used to resolve any outstanding course
assignment conflicts.

0nce the course registration process is completed for a student, the registration system
sends information to the billing system, so the student can be billed for the semester.

As a semester progresses, students must be able to access the on-line system to add or
drop courses.

267

APPENDIX G PROBLEM STATEMENT SOLUTION

Appendix G contains the use-case analysis and class diagram to the problem statement of
the main experiment listed in Appendix F.

268

269

270

REFERENCES

Abbott, R. (1983). "Program Design By Informal English Descriptions,"
Communications of the ACM, Vol. 26, No.11, pp. 882-895.

Abdel-Hamid, T., & Madnick, S. (1989). "Lessons Learned from Modeling the Dynamics
of Software Development," Communications of the ACM, Vol. 32, No.12, pp.
1426-1438.

Abdel-Hamid, T., & Madnick, S. (1991). Software Project Dynamics, Prentice Hall,
Englewood Cliffs, New Jersey.

Allen, J. (1983). "Maintaining Knowledge About Temporal Intervals," Communication
of the ACM, Vol. 26, No. 11, pp. 832-843.

Amento, B., Terveen, L., & Hill, W. (2000). "Does Authority Mean Quality? Predicting
Expert Quality Ratings of Web Documents," AT&T Shannon Laboratories.

Anderson, J. (1989). "Automated Object-Oriented Requirements Analysis and Design,"
The Association for Computing Machinery, pp. 265-271.

Arango, G. (1994). "A Brief Introduction to Domain Analysis," 1EEE Computer Society
Press, pp. 42-46.

Astley, W., & Van de Ven, A. (1983). "Central Perspectives and Debates in Organization
Theory," Administration Science Quarterly, Vol. 28, No. 2, pp. 245-273.

Auramaki, E., Lehtinen, E., & Lyytinen, K. (1988). "A Speech-Act-Based 0ffice
Modeling Approach," ACM Transactions on Office Information Systems, Vol. 6,
No. 2, pp. 126-152.

Austin, J.L. (1962). How to Do Things with Words, Clarendon Press, London.

Bailin, S. (2000). "Object-Oriented Requirements Analysis," Software Requirements
Engineering, Second Edition, IEEE, Los Alamitos, California, pp. 334-355.

Bandinelli, S. (1995). "Modeling and Improving an Industrial Software Process," 1EEE
Transactions on Software Engineering, Vol. 21, No. 5, pp. 440-454.

Bansler, J., & &Aker, K. (1993). "A Reappraisal of Structured Analysis: Design in an
0rganizational Context," ACM Transactions on Information Systems, Vol. 11,
No. 2, pp. 165-193.

Barki, H., & Hartwick, J. (1994). "Measuring User Participation, User Involvement, and
User Attitude," M1S Quarterly, pp. 59-82.

271

272

Baroudi, J., Olson, M., & Ives, B. (1986). "An Empirical Study of the Impact of User
Involvement on System Usage and Information Satisfaction," Communications of
the ACM, pp. 232-238.

Batra, D., Horner, J.A., & Bostrom, R.P. (1990). "Comparing Representations with
Relational and EER Models," Communications of the ACM, Vol. 33, No. 2, pp.
126-139.

Beck, K. (2000). Extreme Programming Explained, USA: Addison-Wesley,
Massachusetts.

Becker-Kornstaedt, J. (2001). "Towards Systematic Knowledge Elicitation for
Descriptive Software Process Modeling," Proceedings of PROFES, pp. 1-18.

Belkin, N., & Croft, W. (1987). "Retrieval Techniques," Annual Review of Information
Science and Technology (AR1ST), Vol. 22, Chapter 4, pp. 109-131.

Benbasat, I., & Schroeder, R. (1977). "An Experimental Investigation of Some M1S
Design Variables," M1S Quarterly Vol.1, No. 1, pp. 37-50.

Benbasat, I., & Dexter, A. (1986). "An Investigation of the Effectiveness of Color and
Graphical Information Presentation Under Varying Time Constraints," M1S
Quarterly, Vol. 10, No.1, pp. 59-83.

Bertha, S., & Su, J. (1999). "Support for Modeling Relationships in 0bject-Oriented
Databases," Data & Knowledge Engineering, Vol. 29, No. 3, pp. 227-257.

Bieber, M. (1998). "Hypertext and Web Engineering," Proceedings of the Ninth ACM
Conference on Hypertext and Hypermedia, ACM Press, pp. 277-278.

Bieber, M., & Yoo., J. (1999). "Hypermedia: A Design Philosophy," ACM Computing
Surveys 31(4es).

Block, R. (1983). The Politics of Projects, Yourdon PressIPrentice-Hall, Englewood
Cliffs, New Jersey.

Bloomberg, M., & Weber, H. (1976). An Introduction to Classification and Number
Building in Dewey, 19th Edition, Libraries Unlimited, Inc., Littleton, Colorado.

Blum, B. (1994). "A Taxonomy of Software Development Methods," Communications of
the ACM, Vol. 37, No. 11, pp. 82-94.

Boehm, B. (1975). "Some Experience with Automated Aids to the Design of Large-Scale
Reliable Software," 1EEE Transactions on Software Engineering, Vol. 1, No. 1,
pp. 125-133.

273

Boehm, B. (1976). "Quantitative Evaluation of Software Quality," 2 nd International
Conference on Software Engineering, Vol. 2, pp. 592-605.

Boehm, B. (1981). Software Engineering Economics, Prentice-Hall, Englewood Cliffs,
New Jersey.

Boehm, B. (1988). "A Spiral Model of Software Development and Enhancement," 1EEE
Computer, Vol. 21, No. 5, pp. 61-72.

Boehm, B., & Egyed, A. (1998). "Software Requirements Negotiation: Some Lessons
Learned," 1EEE Transactions on Software Engineering, pp. 503-506.

Boggs, W., & Boggs, M. (2002). UML with Rational Rose 2002, SYBEX Inc.,
California.

Booch, G., Martin, R.C., & Newkirk, J. (1998). Object-Oriented Analysis and Design
with Applications, Addison Wesley, Massachusetts.

Booch, G. (1994). Object-Oriented Analysis and Design, Second Edition,
BenjaminICummings Publishing Company, California.

Booch, G. (1996). "Object-Oriented Development," 1EEE Transactions on Software
Engineering, SE-12, 2, pp. 211-221.

Booch, G., Jacobson, I., & Rumbaugh, J. (1998). The Unified Modeling Language Users
Guide, Addison Wesley, Massachusetts.

Borgida, A., Mylopoulos, J., & Wong, H. (1984). "GeneralizationISpecialization as a
Basis for Software Specification," On Conceptual Modeling: Perspectives from
Artificial Intelligence, Databases, and Programming Languages, pp. 87-117.

Brachman, R. (1983). "What 1S-A Is and Isn't: An Analysis of Taxonomic Links in
Semantic Networks," 1EEE Computer, pp. 30-36.

Brodie, M. (1981). "Association: A Database Abstraction for Semantic Modeling,"
Entity-Relationship Approach to Information Modeling and Analysis, P.P. Chen
(ed.), ER Institute, pp. 583-608.

Brodie, M. (1984). 0n Conceptual Modeling, Springer-Verlag, New York.

Brooks, F. (1987). "No Silver Bullet: Essence and Accidents of Software Engineering,"
Computer, pp. 10-19.

Brown, R. (1989) "Creativity: What are We to Measure?," Handbook of Creativity,
Plenum Press, New York.

274

Buneman, 0.P., & Mikhail, R. (1984). "The Functional Data Model as its Uses for
Interaction with Databases, " In On Conceptual Modeling, Perspectives, from
Artificial Intelligence, Databases, and Programming Languages, M.L. Brodie, J.
Mylopoulos, and J.W. Schmidt, Eds. Springer-Verlag, New York, pp. 359-380.

Bunge, M. (1979). Treatise on Basic Philosophy: Vol. 4: 0ntology 1I: A World of
Systems, Reidel Publishing Co., Inc., New York.

Burt, P.V, & Kinnucan, M.T. (1990). "Information Models and Modeling Techniques for
InformationSystems," Annual Review of Information Science and Technology,
Vol. 25, pp. 175-208.

Butler, R., & Finelli, G. (1991). "The Infeasibility of Experimental Quantified Life-
Critical Software Reliability," Proc. S1GSOFT.

Cafasso, R. (1994). "Few 1S Projects Come In On Time, On Budget," Computerworid,
Vol. 28,No.50, page 20.

Capps, L. (2002). "Toward Pervasive Computing: Managing for Creativity,"
http://wvvw.DMReview.com , (21 July 2002).

Carter, K., Cushing, K., Sabers, D., Stein, P., & Berliner, D. (1988). "Expert-Novice
Differences in Perceiving and Processing Visual Classroom Information," Journal
of Teacher Education, pp. 25-31.

Catanio, J., & Bieber, M. (2003) "Relationship Analysis: A Technique to Explicitly
Identify the Relationship Structure," Symposium on Research in Systems
Analysis and Design, Miami, Florida.

Chen, P. (1976). "The Entity-Relationship Model - Toward a Jnified View of Data,"
ACM Transactions on Database Systems, Vol. 1, No. 1.

Chung, W., & Guinan, P. (1994). "Effects of Participative Management on the
Performance of Software Development Teams," S1GCPR, Alexandria, Virginia,
pp. 252-260.

Coad, P., & Yourdon, E. (1990). Object-Oriented Analysis, Yourdon Press / Prentice-
Hall, Englewood Cliffs, New Jersey.

Cobb, M., & Petry, F. (1998). "Modeling Spatial Relationships within a Fuzzy
Framework," Journal of the American Society for Information Science, Vol. 49,
No. 3, pp. 253-266.

Cockburn, A. (1999). "Characterizing People as Non-Linear, First-Order Components in
Software Development," Humans and Technology Report, TR 99.05, pp. 1-19.

275

Cockburn, A. (1997). "Structuring Use-Cases with Goals," Journal of Object-Oriented
Programming, pp. 1-18.

Cockburn, A. (2000). Writing Effective Use Cases, Addison-Wesley, Massachusetts.

Cockburn, A. (1998). "Software Development and Process," ECOOP.

Codd, E.F. (1979). "Extending the Database Relational Model to Capture More
Meaning," ACM Trans. Database Systems, Vol. 4, No. 4, pp. 397-434.

Cohen, S. (1992). "Application of Feature-Oriented Domain Analysis to the Army
Movement Control Domain," CMUISEI-91-TR-28, Carnegie Mellon University.

Coleman, D. (1998). "A Use-Case Template: Draft for Discussion," Fusion Newsletter.

Coleman, D., Hayes, F., & Bear, S. (1992). "Introducing Objectcharts or How to Use
Statecharts in 0bject-Oriented Design," 1EEE Transactions in Software
Engineering Vol. 18, No. 1, pp. 9-18.

Connolly, T., Jessup, L., & Valacich, J. (1990). "Effects of Anonymity and Evaluation
Tone on Idea Generation in Computer-Mediated Groups," Management Science,
Vol. 36, No. 6, pp. 305-319.

Couger, J.D. (1973). "Evolution of Business System Analysis Techniques," Comput.
Surv., Vol. 5, No. 3, pp. 167-198.

Couger, J.D. (1990). "Ensuring Creative Approaches in Information System Design,"
Journal of Information Systems Management, Vol. 4, pp. 36-41.

Couger, J.D. (1993). "Unstructured Creativity in Information Systems Organization,"
M1S Quarterly, Vol. 17, No. 4, pp. 375-398.

Couger, J.D. (1994). "Enhancing the Climate for Creativity for Software Designers,"
Journal of Creativity and Innovation Management, Vol. 3, Issue 1, pp. 54-59.

Daft, R., & Lengel, R. (1986). "Organizational Information Requirements, Media
Richness, and Structural Design," Management Science, Vol. 32, No. 5, pp. 554-
571.

Daniels, W., & Martin, C. (2000). "Dewey Applications for the Simple Arrangement of a
Link Library: The Case of ScienceNet," Journal of Internet Cataloging, Vol. 3,
No. 1, pp. 67-77.

Davis, A. (1988). "A Strategy for Comparing Alternative Software Development Life
Cycle Models," 1EEE Trans. Software Engineering, Vol. 14, No. 10, pp. 1453-
1461.

276

Davis, A. (1993). "Identifying and Measuring Quality in a Software Requirements
Specification," Proceedings of the 1St International Software Metrics Symposium,
pp. 141-152.

Davis, G. (1982). "Strategies for Information Requirements Determinations," 1BM
Systems Journal, Vol. 21, No. 1, pp. 4-30.

Davis, G., & 0lson, M. (1985). Management Information Systems -, Conceptual
Foundations, Structure, and Development, McGraw-Hill, Boston, Massachusetts.

DeChampeaux, D., Lea, D., & Faure, P. (1993). Object-Oriented System Development,
Addison-Wesley, Reading, Massachusetts.

Deek, F. P. (1999). "The Software Process: A Parallel Approach through Problem
Solving and Program Development," Journal of Computer Science Education,
Volume 9, Number 1, pp. 43-70.

Deek, F.P., DeFranco-Tommarello, J., & McHugh, J. (2001). "A Model for a
Collaborative Technologies in Manufacturing," In Review for the International
Journal of Computer Integrated Manufacturing.

DeMarco, T. (1978). Structured Analysis and System Specification, Yourdon Press, New
York.

DeSanctis, G. (1984). "Graphs as Decision Aids," Decision Sciences, Vol. 15, pp. 463-
487.

DeSanctis, G., & Gallupe, B. (1987). "A Foundation for the Study of Group Decision
Support Systems," Management Science, Vol. 33, No. 5, pp. 589-609.

Dickson, G.W., DeSanctis, G., & McBride, D.J. (1986). "Understanding the
Effectiveness of Computer Graphics for Decision Support: A Cumulative
Experimental Approach," Communications of the ACM, Vol. 29, No. 1, pp. 40-
47.

Donnelly, J., Gibson, J., & Ivancevich, J. (1998). Fundamentals of Management, Tenth
Edition, McGraw-Hill, Boston, Massachusetts.

Egenhofer, M., & Herring, J. (1990). "Categorizing Binary Topological Relations
Between Regions, Lines, and Points in Geographic Databases," Technical Report,
Department of Surveying Engineering, University of Maine.

Elmasri, R., & Navathe, S. (2000). Fundamental of Database Systems, Addison-Wesley,
Reading, Massachusetts.

277

Embley, D., Kurtz, B., & Woodfield, S. (1992). Object-Oriented Systems Analysis: A
Model-Driven Approach, Prentice-Hall, Englewood Cliffs, New Jersey.

Engler, N. (1996). "Bringing in the Users," Computerworld.

Faulk, S. (2000). "Software Requirements: A Tutorial," Software Requirements
Engineering, Second Edition, IEEE, Los Alamitos, California, pp. 158-179.

Favaro, J. (1997). "Standardizing Production of Domain Components," Standard View,
Vol.5, No. 2, pp. 66-69.

Feldman, P. & Miller, D. (1986). "Entity Model Clustering: a Data Model by
Abstraction," Computer Journal, Vol. 29, No.4, pp. 348-360.

Fillmore, C.J. (1968). "The Case for Case," Universals in Linguistic Theory.

Firesmith, D. (1993). 0bject-Oriented Requirements Analysis and Logical Design: A
Software Engineering Approach, Wiley, New York.

Fornara, N., & Colombetti, M. (2003). "Defining Interaction Protocols using a
Commitment-Based Agent Communication Language," AAMAS, Melbourne,
Australia, pp. 520-527.

Fowler, M. & Scott, K. (1997). UML Distilled: Applying the Standard Object Modeling
Language, Addison-Wesley, Reading, Massachusetts.

Frank, A. (1998). "Different Types of Times in G1S," Spatial and Temporal Reasoning in
Geographic Information Systems, Eds. Egenhofer, M., and Golledge, R., Chapter
3, pp. 41-62.

Frewin, G., & Hatton, B. (1986). "Quality Management: Procedures and Practices,"
Journal of Software Engineering, Vol. 1, No. 1, pp. 29-38.

Gallupe, B., DeSanctis, G., & Dickson, G. (1988). "Computer-Based Support for Group
Problem-Finding: An Experimental Investigation," M1S Quarterly, Vol.12, No. 2,
pp. 277-296.

Gandhi, M., Robertson, E.L., & Gucht, D.V. (1994). "Leveled Entity Relationship
Model," Proceedings of the 13th International Conference on the Entity-
Relationship Approach, Manchester, Jnited Kingdom, pp. 420-433.

Gane, C., & Sarson, T. (1979). Structured Systems Analysis: Tools and Techniques,
Prentice-Hall, Englewood Cliffs, New Jersey.

Gause, D., & Weinberg, G. (1989). Exploring Requirements: Quality Before Design,
Dorset House Publishing, New York.

278

Gero, J. (1994). Introduction: Creativity and Design, Kluwer Academic Publishers.

Giles, C.L., Bollacker, K., & Lawrence, S. (1998). "CiteSeer: An Automatic Citation
Indexing System," Digital Libraries 98: Third ACM Conf. on Digital Libraries,
ACM Press, New York, pp. 89-98.

Gill, B., & Pidduck, A. (2001). "IT Staffing and Retention: A Success Story," ACM 1-
58113-363-1/01/04, pp. 87-92.

Goguen, J., & Linde, C. (1993). "Techniques for Requirements Elicitation," Proceedings
from the International Symposium on Requirements Engineering, pp. 152-164.

Goldstein, R.C., & Storey, V. (1999). "Data Abstractions: Why and How?," Data and
Knowledge Engineering, Vol. 29, pp. 293-311.

Goldstein, R.C., & Storey, V. (1990). "Some Findings on the Intuitiveness of Entity-
Relationship Constructs," Proceedings of the 8 th International Conference on
Entity-Relationship Approach to Database Design and Querying, Toronto,
Canada, pp. 9-23.

Gomaa, H. (1990). "The Impact of Prototyping on Software System Engineering,"
System and Software Requirements Engineering, 1EEE, Los Alamitos, California
pp. 479-488.

Gomes, P., Pereira, F., Seco, N., Ferreira, J., & Bento, C. (2001). "Supporting Creativity
in Software Design," C1SUC.

Gonzales, R., & Wolf, A. (1996). "A Facilitator Method for Upstream Design Activities
with Diverse Stakeholders," Proceedings of the International Conference on
Requirements Engineering, 1EEE Computer Society, pp. 190-197.

Gordon, V.S., & Bieman, J.M. (1995). "Rapid Prototyping: Lessons Learned," 1EEE
Software, Vol. 12, No. 1, pp. 85-95.

Graham, I. (1994). Migrating to 0bject Technology, Addison-Wesley, Reading,
Massachusetts.

Guilford, J.P. (1950). "Creativity," American Psychologist, 5, pp. 444-454.

Guilford, J.P. (1956). "The Structure of Intellect," Psychological Bulletin 53(4), pp. 267-
293.

Guilford, J.P. (1967). The Nature of Human Intelligence, McGraw-Hill, New York.

Hall, A. (1990). "Seven Myths of Formal Methods," 1EEE Software, Vol. 7, No. 5, pp.
11-20.

279

Hammer, M., & McLeod, D. (1981). "Database Description with SDM: A Semantic
Database Model," ACM Trans. Database Systems, Vol. 6, No. 3, pp. 351-386.

Harter, D., Slaughter, S. & Krishnan, M. (1998). "The Life Cycle Effects of Software
Process Improvement: A Longitudinal Analysis," A Carnegie Mellon University
Article, pp. 346-351.

Haywood, M. (1998). Managing Virtual Teams: Practical Techniques for High-
Technology Project Managers, Artech House, Boston, Massachusetts.

Henderson-Sellers, B & Edwards, J. (1990). "The Object-Oriented Systems Life Cycle,"
Communications of the ACM, Vol. 33, No. 9, pp. 142-159.

Henderson-Sellers, B & Edwards, J. (1994). Book Two of Object-Oriented Knowledge,
Englewood Cliffs, New Jersey.

Henderson-Sellers, B. (1997). "OPEN Relationships-Compositions and Containments,"
Journal of Object-Oriented Programming, pp. 51-72.

Henderson-Sellers, B. (1998). "OPEN Relationships-Associations, Mappings,
Dependencies, and Uses" Journal of Object-Oriented Programming, pp. 49-57.

Herzberg, F., Mausner, B., & Snyderman,B. (1959). The Motivation to Work, Second
Edition, Wiley, New York.

Highsmith, J. (1999). Adaptive Software Development, Dorset House.

Hillerbrand, E., & Claiborne, C. (1990). "Examining Reasoning Skill Differences Between
Expert and Novice Counselors," Journal of Counseling & Development, Vol. 68 ,
pp. 684-691.

Hitchcock, P. (1980). "Data Dictionaries in Open System Communication," 1EEE
Transaction On Software Engineering, pp. 133-134.

Hooks, I. (2001). "Managing Requirements," NJ1T Requirements Engineering Handout,
pp. 1-8.

Huffman, L., & Rosenberg, H. (1998). "Doing Requirements Right the First Time,"
CrossTalk, The Journal of Defense Software Engineering.

1EEE, (1998). "IEEE Guide for Information Technology-System Definition-Concept of
Operations (ConOps) Document," 1EEE-SA Standards Board.

1TU (1994). "Criteria for the Use and Applicability of Formal Descriptive
Techniques: Message Sequence Charts (MSC)," International Telecommunication
Union, Z 120, pp. 1-7.

280

Jaephke P., 0berweis, A. & Stucky, W. (1993). "Extending ER Model Clustering by
Relationship Clustering," Proceedings of the 12th International Conference on the
Entity-Relationship Approach, Berlin, Germany, pp. 451-462.

Jackson, M. (1983). System Development, Prentice-Hall, Englewood Cliffs, New Jersey.

Jacobs, S. (1999). "Introducing Measurable Quality Requirements: A Case Study," 1EEE
International Symposium on Requirements Engineering.

Jacobson, I., Christerson, M., Johnsson, P., & Overgaard, G. (1992). Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley, Reading,
Massachusetts.

Jarvenpaa, S., & Machessky, J. (1989). "Data Analysis and Learning: An Experimental
Study of Data Modeling Tools," International Journal of Man-Machine Studies,
Vol. 31, pp. 367-391.

Jarvenpaa, S., & Dickson, G.W. (1988). "Graphics and Managerial Decision Making:
Research Based Guidelines," Communications of the ACM, Vol. 31, No. 6, pp.
764-774.

Jarvenpaa, S., Dickson, G.W., & DeSanctis, G. (1985). "Methodological Issues in
Experimental 1S Research: Experiences and Recommendation," M1S Quarterly,
Vol. 9, No. 2, pp. 141-156.

Jasper, R., & Uphold, M. (1999). "A Framework for Understanding and Classifying
Ontology Applications," Proceeding of the UCAI-99 Ontology Workshop.

Kang, K. (1990). "Feature-Oriented Domain Analysis Feasibility Study," CMUISEI-90-
TR-21, Software Engineering Institute, Carnegie-Mellon University.

Kay, P., Berlin, P., & Merrifield, W. (1991). "Bicultural Implications of Systems of
Color Naming," Journal of Linguistic Anthropology 1(1), pp. 12-25.

Kentworthy, E. (1997). "Use-Case Modeling: Capturing User Requirements," pp. 1-11.

King, R., & McLeod, D. (1984). "A Unified Model and Methodology for Conceptual
Database Design," In On Conceptual Modeling, Perspectives from Artificial
Intelligence, Databases, and Programming Languages, M.L. Brodie, J.
Mylopoulos, and J.W. Schmidt, Eds. Springer-Verlag, New York, pp. 313-327.

Kobryn, C. (2000). "Modeling Components and Frameworks with UML,"
Communications of the ACM, Vol. 43, No. 1, pp. 31-38.

Kolb, D.A. (1984). Experiential Learning, Prentice Hall, Englewood Cliffs, NJ.

281

Kotonya, G., & Sommerville, I. (1996). "Requirements Engineering with Viewpoints,"
Software Engineering Journal Vol. 11, No. 1, pp. 5-18.

Krishnamurthy, V., Su, S., Lam, H., Mitchell, Z., & Bancmeyer, E. (1987). "A
Distributed Database Architecture for an Integrated Manufacturing Facility,"
Proceedings of International Conference on Data and Knowledge Systems for
Manufacturing and Engineering, 1EEE, New York, pp. 4-13.

Larman, C. (2001). Applying UIML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process (2nd Edition), Prentice Hall,
Englewood Cliffs, New Jersey.

Lederer, A., Maupin, D., Sena, M., & Zhuang, Y. (1998). "The Role of Ease of Use,
Usefulness and Attitude in the Prediction of World Wide Web Usage," ACM, pp.
195-204.

Leffingwell, D. (2000). "Features, Use-Cases, Requirements, Oh My!," The Rational
Edge, December, pp. 1-13.

Leffingwell, D., & Widrig, D. (1999). Managing Software Requirements: A Unified
Approach, Addison-Wesley, Reading, Massachusetts.

Loucopoulos, P., & Karakostas, V. (1995). Systems Requirements Engineering,
McGraw-Hill, Boston, Massachusetts.

Lucas, H.C. (1981). "An Experimental Investigation of the Use of Computer Based
Graphics in Decision Making," Management Science, Vol. 27, No. 7., pp. 757-
768.

Lung, C., & Urban, J. (1995). "An Approach To The Classification Of Domain Models In
Support for Analogical Reuse," SSR, Seattle, Washington, pp. 169-178.

Macaulay, L. (1996). Requirements Engineering, Springer-Verlag, New York, NY.

Martin, R.C. (2002). Agile Software Development, Principles, Patterns, and Practices,
Prentice Hall, Englewood Cliffs, New Jersey.

Martin, J., & Odell, J. (1995). Object-Oriented Methods: A Foundation, Prentice Hall,
Englewood Cliffs, New Jersey.

Meeker, M. (1969). The Structure of Intellect: Its Interpretations and Uses, Merrill
Publishing, Columbus, Ohio.

282

Moody, D.L., Sindre, G., Brasethvik, T., & Solvberg, A. (2003). "Evaluating the Quality
of Information Models: Empirical Testing of a Conceptual Model Quality
Framework," Proceedings of the 25 th International Conference on Software
Engineering (ICSE'03), pp. 295-305.

Moody, D.L. (1996). "Graphical Entity Relationship Models: Toward More User
Understanding Representation of Data," Proceedings of the 15th International
Conference on Conceptual Modeling Cottbus, Germany, pp. 227-244.

Moore, J. (2000). "One Road to Turnover: An Examination of Work Exhaustion in
Technology Professionals," M1S Quarterly, Vol. 42, No. 1, pp. 87-92.

Motschnig-Pitrik, R., & Storey, V. (1995). "Modeling of Set Membership: The Notion
and the Issues," Data & Knowledge Engineering, Vol. 16, pp. 147-185.

Murine, G. (1984). "Measuring Software Product Quality," Quality Progress, Vol. 17,
No. 5, pp. 16-20.

Musa, J., & Ackerman , A. (1989). "Quantifying Software Validation: When to Stop
Testing?," IEEE Software, Vol. 6, No. 3, pp. 19-27.

Myers, M. (1999). "Investigating Information Systems with Ethnographic Research,"
Communications of the Associations for Information Systems.

Mylopoulos, J., Bernstein, P.A., & Wong, H.K.T. (1980). "A Language Facility for
Designing Database Intensive Applications," ACM Transactions Database
Systems, Vol. 5, No. 2, pp. 186-207.

Mylopoulos, J. (1998). "Information Modeling in the Time of the Revolution,"
Information System, Vol. 23, No. 3/4, pp. 127-155.

Mylopoulos, J., Chung, L., & Yu, E. (1999). "From Object-Oriented To Goal-Oriented
Requirements Analysis," Communications of the ACM, Vol. 42, No. 1, pp. 31-37.

Nagasundaram, M., & Bostrom, R.P. (1995). "The Structuring of Creative Processes
Using GSS: A Framework for Research," Journal of Management Information
Systems, Vol. 11, No. 3, pp. 89-116.

Nallon, J. (1994). "Implementation of NSWC Requirements Traceability Models," 1EEE
Transaction on Software Engineering, pp. 15-22.

Neelameghan, A., & Maitra, R. (2000). "Non-Hierarchical Associative Relationships
Among Concepts: Identification and Typology," Part A of F1D/CR report No. 18,
Bangalore: FIDICR Secretariat Document Research and Training Center.

283

Nerson, J. (1992). "Applying Object-Oriented Analysis and Design," Communications of
the ACM, Vol. 35, No. 9, pp. 63-74.

Ng, P. & Yeh, R. (1990). "Software Requirements: A Management Perspective," System
and Software Requirements Engineering, 1EEE, Los Alamitos, California, pp.
450-461.

Nixon, B., Chung, L., Lauzen, I., Borgida, A., Mylopoulos, J., & Stanley, M. (1987).
"Implementation of a Compiler for a Semantic Data Model: Experience with
Taxis," Proceedings of the ACM S1GMOD Conferences (San Francipo,
California.), ACM, New York, pp. 118-131.

Nosek, J. (1998). "The Case for Collaborative Programming," Communications of the
ACM, Vol. 41, No. 3, pp. 105-108.

Nuseibeh, B., Kramer, J., & Finkelstein, A. (1994). "A Framework for Expressing the
Relationships Between Multiple Views in Requirements Specification," 1EEE
Transactions on Software Engineering, Vol. 20, No. 10, pp. 760-773.

O'Brien, P. (1983). "An Integrated Interactive Design Environment for Taxis,"
Proceedings of SOFTFA1R: A Conference on Software Development Tools,
Techniques, and Alternatives (Silver Spring, Maryland.), 1EEE, New York, pp.
298-306.

Ocker, R., Fjermestad, J., Hiltz, S.R., & Johnson, K. (1998). "Effects of Four Modes of
Group Communication on the Outcomes of Software Requirements
Determination," Journal of Management Information Systems.

Odell, J. (1994). "Six Different Kinds of Composition," Journal of Object-Oriented
Programming, pp. 10-15.

Palmer, J. (2000). "Traceability," Software Requirements Engineering, Second Edition,
1EEE, Los Alamitos, California, pp. 412-422.

Parsons, J., & Wand, Y. (1997). "Choosing Classes in Conceptual Modeling,"
Communications of the ACM Vol. 40, No. 6, pp. 63-69.

Partridge, D., & Rowe, J. (1994). Computers and Creativity, Intellect Books.

Pare, G., & Dube, L. (1999). "Virtual Teams: An Exploratory Study of Key Challenges
and Strategies," Proceedings of the 206 International Conference on Information
Systems, pp. 479-483.

Peckham, J., & Maryanski, F. (1988). "Semantic Data Models," ACM Computing
Surveys, Vol. 20, No. 3, pp. 153-189.

284

Prieto-Diaz, R. (1991). "Domain Analysis and Software Systems Modeling," 1EEE
Computer Society Press.

Prietula, M.J., & March, S.T. (1991). "Form and Substance in Physical Database Design:
An Empirical Study," Inf. Syst. Res., Vol. 2, No. 4, pp. 287-314.

Ranganathan, S.R. (1965). The Colon Classification, Vol. 1V, The Rutgers Series on
Systems for the Intellectual Organization of Information, New Brunswick, New
Jersey.

Rauh, 0., & Stickel, E. (1992). "Entity Tree Clustering- A Method for Simplifying ER
Design," Proceedings of the 11th International Conference on the Entity-
Relationship Approach, pp. 62-78.

Rodriguez, M., Egenhofer, M., & Rugg, R. (1999). "Assessing Semantic Similarities
Among Geospatial Feature Class Definitions," Interop 1999, Zurich, Switzerland,
in: A. Vckovski (editor), Lecture Notes in Computer Science, New York.

Rombach, H. (1990). "Software Specifications: A Framework Curriculum Model," SEI-
CM-11-2-1, Software Engineering Institute, Pittsburgh, Pennsylvania.

Roph, E. (1978). Cognition and Categorization, Eribaum, Hillsdale, New Jersey.

Rosenthal, R. & Rosnow, R. (1991). Essentials of Behavior Research Methods and Data
Analysis, Second Edition, McGraw-Hill, New York.

Ross, D. (1986). "Classifying Ada Packages," Ada Letters, Vol. 6, No. 4.

Royce, W. (1970). "Managing The Development Of Large Software Systems: Concepts
and Techniques," Wepon.

Rumbaugh, J. (1991). Object-Oriented Modeling and Design, Prentice-Hall, New Jersey.

Rumbaugh, J. (1994). "Getting Started: Using Use Cases to Capture Requirements,"
Object-Oriented Programming, pp. 8-12.

Rundley, N., & Miller, W. (1994). "DOORS to the Digitized Battlefield: Managing
Requirements Dipovery and Traceability," CSESAW, pp. 23-28.

Sabin, R. E., & Sabin, E. (1994). "Collaborative Learning in an Introductory Computer
Science Course," S1GCSE Symposium on Computer Science Education, pp. 304
—308.

Saleem, N. (1996). "An Empirical Test of the Contingency Approach to User
Participation in Information Systems Development," Journal of Management
Information Systems, Vol. 13, No. 1, pp. 145-166.

285

Schenk, K.D., Vitalari, N., & Davis, K. (1998). "Differences Between Novice and Expert
Systems Analysts: What Do We Know and What Do We Do?," Journal of
Management Information Systems, Vol. 15, No. 1, pp. 9-50.

Searle, J.R., and Vanderveken, D. (1985). Foundations of Illocutionary Logic, Cambridge
University Press, London, 1985.

Selic, B., Gullekson, G. & Ward, P. (1994). Real Time Object-Oriented Modeling, Wiley,
New York.

Selvin, A. (1999). "Supporting Collaborative Analysis and Design with Hypertext
Functionality," Journal of Digital Information, Vol. 1, Issue 4, pp. 1-20.

Shaft, T. M. & Vessey, I. (1998). "The Relevance of Application Domain Knowledge:
Characterizing the Computer Program Comprehension Process," Journal of
Management Information Systems, Vol. 15 No. 1, pp. 51-78.

Shipman, D.W. (1981). "The Functional Data Model and the Data Language DAPLEX,"
ACM Trans. Database Systems, Vol. 6, No. 1, pp.140-173.

Shlaer, S., & Mellor, S. (1992). Object Life-Cycles: Modeling the World in States,
Prentice-Hall, Englewood Cliffs, New Jersey.

Shoval, P., & Frumermann, I. (1994). "00 and EER Conceptual Schemas: A Comparison
of User Comprehension," Journal of Database Management, Vol. 5, No. 4, pp. 28-
38.

Shoval, P., & Shiran, S. (1997). "Entity-Relationship and Object-Oriented Data Modeling
- An Experimental Comparison of design Quality," Data & Knowledge
Engineering, Vol. 21, pp. 297-315.

Simon, H.A., and Ericson, K. (1984). "Protocol Analysis: Verbal Reports as Data," M1T.

Simos, M. (1995). "Organization Domain Modeling (0DM): Formalizing the Core
Domain Modeling Life Cycle," SSR, Seattle, Washington, pp. 196-205.

Simonson, S., & Kensing, F. (1997). "Using Ethnography in Contextual Design,"
Communications of the ACM, Vol. 40, No., 7, pp. 82-88.

Smith, J. (2001). "A Comparison of RUP and XP," Rational Software White Paper, pp. 1-
21.

Smith, J., & Smith, D. (1977). "Database Abstractions: Aggregation and Generalization,"
ACM Transactions on Database Systems, Vol. 2, No. 2, pp. 105- 133.

286

Sommerville, I. (2001). Software Engineering, Sixth Edition, Addison-Wesley
Publishers, Massachusetts.

Spence, M. T., & Brucks, M. (1997). "The Moderating Effects of Problem Characteristics
on Experts' and Novices' Judgements," Journal of Marketing Research, Vol.
XXX1V, pp. 233-247.

Straub, D. W. (1989). "Validating Instruments in M1S Research," M1S Quarterly, pp.
147-169.

Su, S.Y.W. (1983). "SAM: A Semantic Association Model for Corporate and Scientific-
Statistical Databases," Information Science, Vol. 29, pp. 151-199.

Suchman, L. (1983). "Office Procedures as Practical Action," ACM Transaction on
Office Information Systems, Vol. 1, No. 3, pp. 320-328.

Suchman, L., & Jordan, B. (1990). "Interactional Troubles in Face-To-Face Survey
Interviews," Journal of the American Statistical Association, Vol. 89, No. 409, pp.
232-241.

Sun, L. (2002). "An Experimental Comparison of the Maintainability of Structured
Analysis and Object-Oriented Analysis," Department of Information and
Software Engineering Archive, George Mason Jniversity, pp. 1-11.

Svoboda, C. (1990). "Structured Analysis," System and Software Requirements
Engineering, 1EEE, Los Alamitos, California, pp. 218-237.

Sycara, K., & Navinchandra, D. (1991). "Influences: A Thematic Abstraction for
Creative Use of Multiple Cases," First European Workshop on Case-Based
Reasoning.

Takagaki, K., & Wand, Y. (1991). "An 0bject-Oriented Information System Model
Bases on Ontology," Proceedings of the 1FIP Working Group 8.1 Conference,
Quebec.

Taylor, F.W. (1967). The Principles of Scientific Management, W.W. Norton &
Company.

Teorey, T., Yang, D., & Fry, J.P. (1986). "A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model," ACM Comput. Surv.,
Vol. 18, No. 2, pp. 197-222.

Teorey, T., Wei, G., Bolton, D., & Koenig, J. (1989). "ER Model Clustering as an Aid for
User Communication and Documentation in Database Design," Communication
of the ACM, Vol. 32, No. 8, pp. 975-987.

287

Thayer, R., & Dorfman, M. (2000). "Software System Engineering Process Models,"
Software Requirements Engineering, Second Edition, 1EEE, Los Alamitos,
California, pp. 453-455.

Topi, H., & Ramesh, V. (2002). "Human Factors Research on Data Modeling: A Review
of Prior Research, an Extended Framework and Future Research Directions,"
Journal of Database Management, Vol. 13, No. 2, pp. 3-19.

Topa, S.P. (2000). "A Pragmatics of Links," Hypertext, San Antonio, Texas, pp. 77-84.

Tullis, T.S. (1981). "An Evaluation of Alphanumeric, Graphic, and Color Displays,"
Human Factors, Vol. 23, No. 5, pp. 541-550.

Turoff, M., Rao, J., & Hiltz, S.R. (1991). "Collaborative Hypertext in Computer
Mediated Communications," Proceedings of the 24 th Annual Hawaii International
Conference on System Sciences, Vol. 1V.

Uphold, M. (1998). "Knowledge Level Modeling: Concepts and Terminology,"
Knowledge Engineering Review, Vol. 13, No. 1.

Vertal, M. (1994). "Extending 1DEF: Improving Complex Systems with Executable
Modeling," Proc. Ann. Conf. for Business Re-engineering.

Vessey, I. (1991). "Cognitive Fit: A Theory-Based Analysis of the Graphs Versus Tables
Literature," Decision Sciences, Vol. 22, pp. 219-240.

Vessey, I. & Conger, S. (1994). "Requirements Specification: Learning Object, Process,
and Data Methodologies," Communications of the ACM, Vol. 37, No. 5, pp. 102-
113.

Vessey, I. (1985). "Expertise in Debugging Computer Programs: A Process Analysis,"
Journal of Man-Machine Studies, Vol. 23, pp. 459-494.

Wallace, D., & Ippolito, L. (2000). "Verifying and Validating Software Requirements
Specifications," Software Requirements Engineering, Second Edition, IEEE, Los
Alamitos, California pp. 437-452.

Wand, Y., Storey, V., & Weber, R. (1999). "An Ontological Analysis of the Relationship
Construct in Conceptual Modeling," ACM Transactions on Database Systems,
Vol. 24, No. 4, pp. 494-528.

Wand, Y., Monarchi, D., Parsons, J., & Woo, C.C. (1995). "Theoretical Foundations for
Conceptual Modeling in Information Systems Development," Decision Support
Systems, Vol. 15, pp. 285-304.

288

Wand, Y., & Weber, R. (1995). "On the Deep Structure of Information Systems," Eur. J.
Inf. Syst., Vol. 5, pp. 203-223.

Weber, R., & Zhang, Y. (1996). "An 0ntological Evaluation of N1AM's Grammar for
Conceptual Schema Diagrams," Eur. J. Inf. Syst., Vol. 6, No. 2, pp. 147-170.

Wieringa, R. (1998). "A Survey of Structured and Object-Oriented Software
Specification Methods and Techniques," ACM Computing Surveys, Vol.30, No.
4, pp. 459-527.

Wilson, J., Hoskin, N., & Nosek, J. (1993). "The Benefits of Collaboration for Student
Programmers," 24th S1GCSE Technical Symposium on Computer Science
Education, pp. 160-164.

Wilson, W., Rosenberg, L. & Hyatt, L. (1997). "Automated Analysis of Requirement
Specifications," Proceedings of the International Conference on Software
Engineering.

Wirfs-Brock, R. (1990). "Tutorial Notes for Responsibility-Driven Design," BOPSLA,
pp. 1-8.

Wu, C.C., Dale, N.B., & Bethel, L.J. (1998). "Conceptual Models and Cognitive
Learning Styles in Teaching Recursion," S1GSCE, Atlanta, Georgia, pp. 292-296.

Yoo, J. (2000). "Relationship Analysis," Ph.D. Dissertation, Rutgers University.

Zahniseer, R. (1990). "Building Software in Groups," American Programmer, Vol. 3, pp.
1-8.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Dedication
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 6)
	Table of Contents (2 of 6)
	Table of Contents (3 of 6)
	Table of Contents (4 of 6)
	Table of Contents (5 of 6)
	Table of Contents (6 of 6)
	Chapter 1: Introduction
	Chapter 2: Background Literature
	Chapter 3: Relationship Analysis Theory
	Chapter 4: Relationship Analysis Applied
	Chapter 5: Experimental Design
	Chapter 6: Experimental Resulst and Data Analysis
	Chapter 7: Discussion, Conclusions, and Future Research
	Appendix A: Consent Form
	Appendix B: Training Materials
	Appendix C: Survey Instruments
	Appendix D: Task Lists
	Appendix E: Cover Sheets
	Appendix F: Problem Statement
	Appendix G: Problem Statement Solution
	References

	List of Tables (1 of 4)
	List of Tables (2 of 4)
	List of Tables (3 of 4)
	List of Tables (4 of 4)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

