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ABSTRACT

Si-Si02 INTERFACE BEHAVIOR IN n-MOSFETS WITH SCREENING
POTENTIAL DURING HIGH-FIELD INJECTION

by

Purushothaman Srinivasan

This work investigates the screening of hot carrier stress degradation in n-channel

MOSFETs when the devices were exposed to plasma processing. Devices with various

antenna ratios were subjected to current stress (both gate injection and substrate injection)

while the source and drain terminals were reverse biased by a screening potential

followed by hot carrier stress. It was observed that screening of the drain edge was

effective for both gate injection and substrate injection at different screening potentials.

The hot carrier lifetime is directly related to interface state density (Dit), measured by

charge pumping method. The results suggest that hot electron degradation could be

severe or mild for devices affected by plasma damage depending on their exposure to the

level of screening potential.

This work also investigates the screening of Si-H bond concentration for polarity-

dependent high field electron injection under effective screening potentials. It was

observed that Si-H bond concentration varies based on the screening of the source and the

drain edges during current stress when a reverse bias potential is applied to the source

and drain terminals. The interface state density (Di t), measured by charge pumping

method, is found to have strong dependence on the concentration of the Si-H bonds. Hot

carrier stress that significantly contributes to Si-H bond breaking confirmed the effective

screening. The results also indicate that Si-H bond breaking mechanism during screening

is dependent on the polarity of the current stress and the screening potential applied.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The rapid progress in semiconductor integrated circuit technology is attributed to the

ability to scale the devices. Scaling of devices has various benefits in terms of device

dimensions, impurity concentrations, current density, capacitance, delay time, power

dissipation and power-delay product. A key concept in scaling, is that the various

structural parameters of the MOSFET should be scaled in concert if the device is to

function properly. For example, if the lateral dimensions W and L (channel length and

width) are reduced by a factor K, then the vertical dimensions such as the source/drain

junction depths and insulator thickness should also reduce by the same factor K. For ideal

scaling, power supply voltages should also be reduced to keep the electric field constant

which is not possible in practice due to system-related constraints. The longitudinal

electric fields in the pinch-off region and the transverse electric fields across the gate

oxide, increase with MOSFET scaling. A variety of problems arise which are generically

known as hot electron effects and short channel effects.

Plasma processing is widely used in manufacturing of such scaled VLSI devices for

etching of polysilicon, oxide and metal films, oxide deposition, sputter pre-clean,

photoresist stripping and even ion implantation. During plasma processing, devices

fabricated on wafers are directly exposed to plasma. The oxide of the MOSFET degrades

due to this processing. So it is important to understand this degradation in order to have

better devices.
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1.2 Objective of the Work

The objective of this work is to investigate and understand the Si-Si02 interface behavior

of the MOSFETs under the plasma processing conditions existing at the source and drain

antenna terminals. By applying a reverse biased potential which simulate the voltages

generated at the source and drain antenna due to plasma charging, with a subsequent high

field injection either at the gate or the substrate, the degradation can be studied. The

nature of degradation is studied by measuring the interface state density which estimates

the trap concentration. The life-time study of these devices helps to understand the

reliability of these devices. The effect of this high field injection is also studied by

investigating the Si-H bond concentration changes at the interface.

1.3 Organization of the Thesis

This thesis deals with the effect of reverse biased potential at source and drain terminals

termed as screening potential at the Si-Si0 2 interface, when the transistors are subjected

to DC stress and hot electron stress. It also deals with the Si-H bond concentration

variation due to these stresses at the interface.

Chapter 2 deals with the description of a general idea about the need for stresses,

the nature and the type of stresses, various injection mechanisms that are available, hot

electron effect on the devices.

The third chapter discusses about the experimental steps involved in the

measurement of various parameters of the devices at various stages. It also discusses in

detail, the measurement setup for the DC current stress and the hot electron stress. Also,

it describes the principle underlying the measurement of interface traps through charge
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pumping current setup. Interface state density calculations from the charge pumping

current are also discussed. Estimation of life time of the devices are also calculated and

described in detail.

The next chapter deals with the results obtained by these stresses in detail. The

performance of transistors for various antenna ratios is described through the device

parameters of the devices. Interface state density results are discussed in detail. The

reliability of the devices are then understood by studying the results of the hot carrier life

time of these devices.

The chapter on stress induced Si-H bond concentration discusses about the

changes in the concentration of Si-H bonds at the interface due to high field injection.



CHAPTER 2

STRESS CONDITIONS IN MOSFETs

2.1 Plasma Processing in Thin Gate Oxides

The degradation of gate oxides in MOS devices due to plasma processing has been

observed and attributed t o electrical charging. Since the damaged oxide may c ause I C

yield loss or become more vulnerable to hot-carrier induced degradation, it is important

to investigate the relationship of plasma damage and hot carrier effect.

In plasma environment, ions and electrons are collected by metal or polysilicon

electrodes which serve as antennas. A steady-state voltage appears on the electrode due to

charge collection and resulting electrical stress can destroy the underlying gate oxide by

oxide breakdown or weaken it by charge trapping in the oxide as well as due to interface

trap generation at the Si-Si02 interface. Interface traps and charge trapping can be

determined from MOSFET characteristics such as subthreshold swing, threshold voltage

or mobility. Quantitative monitoring of the interface traps and charge trapping is

important since it involves in the degradation of MOSFET performance and reliability.

During plasma processes, the wafer surface collects conduction current from plasma

which is composed of ion current and an electron current. Figure 2.1 shows the ion

current and electron current as a function of time.

4
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Figure 2.1 Conduction currents during plasma discharge.

The ion current is constant with time and is determined by ion density. Since the

plasma potential is higher than the gate potential, the electron current flows only during

the short periods when the plasma potential is near its minimum. If the ion and electron

currents collected by an electrode balance each other perfectly over the cycle, plasma

charging would not be a problem. Charging occurs when the ion and electron currents do

not balance each other through the cycle. When the plasma is turned on, the gate voltage

increases or decreases over the cycles, depending on which component of the current is

larger, until a steady-state oxide voltage is reached when the Fowler-Nordheim (FN)

tunneling current through the oxide balances the net current collected by the antenna.

This tunneling current degrades the oxide and is always carried by electrons. In general,

plasma processing degrades the MOSFET characteristics through Fowler-Nordheim

electrical stress of oxide. For positive charging, when the ion current is larger than the

average electron current, injection of electrons from the substrate occurs and for negative

charging gate electron injection occurs. These electrons generate traps and interface states.

In a steady state condition, the gate voltage is a DC with small RF ripples having
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amplitudes less than 0.1 V. Therefore plasma charging can be modeled as a DC stress in

the oxides.

2.2 DC Stress

High electric field across the oxide leads to trap generation in the bulk of the oxide and at

the oxide/substrate interface. The trap generation in oxide and at the interface is a subject

of on-going investigations and most high field stress is performed with dc voltage/

current. The interface trap generation depends on various stress conditions applied like

stress voltage polarity, stress time, stress type (dc or dynamic). The interface trap

generation occurs at a voltage at which the Fowler-Nordheim tunneling of electrons into

the oxide starts to build up. This is the direct evidence between the interface trap

generation and FN tunneling.

2.2.1 Injection Mechanisms

Six types of injection modes exist for a MOSFET.

1. Channel hot-electron injection (CHE)

2. Drain avalanche hot-carrier (DAHC) injection.

3. Secondary generated hot-electron injection (SGHE).

4. Substrate hot-electron injection (SHE)

5. Fowler-Nordheim (F-N) tunneling injection and

6. Direct tunneling (DT) injection.

CHE injection is due to escape of "lucky" electrons from the channel, causing a

significant degradation of the oxide and the Si-Si02 interface, especially at low



7

temperature. DAHC injection results in both electron and hole gate currents due to impact

ionization caused by hot holes and hot electrons, giving rise to more severe degradation

in room temperature. SGHE injection is due to minority carriers from secondary impact

ionization. In F-N injection, the electrons "hop" along in the oxide while going from the

Si conduction band to the conduction band of Si02, generating F-N current. In DT

injection, the electrons in the conduction band of Si tunnels through gate oxide and

emerge in the gate, without having to go through the conduction band of the gate oxide.

2.2.2 Fowler-Nordheim Injection

The Fowler-Nordheim tunneling is through a triangular barrier and involves solving

Schrödinger equation for the electron wave function. The Fowler-Nordheim tunneling

current IFN can be expressed as a function of the electric field in the gate oxide.

Where B is a constant which depends on effective mass and the barrier height. The

energy band diagram of Fowler-Nordheim tunneling is shown in Fig. 2.2.



8

Also the plot of Fowler-Nordheim tunneling leakage current as a function of

electric field across the oxide is given in Fig 2.3

•

Figure 2.3 Fowler-Nordheim tunneling current.

2.2.3 Gate Injection and Substrate Injection

Based on the injection of electrons, it is classified into two categories as gate injection

and substrate injection. If the injection of electrons is from gate to substrate, it is gate

injection and if the injection is from substrate to gate then it is called as substrate

injection. Figure 2.4 explains these injection mechanisms in the form of energy band

diagram.



Figure 2.4 Gate injection and substrate injection.
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2.3 Hot Electron Effect

When an electron travels from the source to the drain along the channel, it gains kinetic

energy at the expense of electrostatic potential energy in the pinch-off region, and

becomes a "hot" electron. At the conduction band edge, the electron only has potential

energy and as it gains more kinetic energy it moves higher up in the conduction band.

A few of the electrons can become energetic enough to surmount the 3.1 eV potential

barrier between the Si channel and gate oxide. Some of these injected hot electrons can

go through the gate oxide and be collected as gate current as in Figure 2.5, thereby

reducing the input impedance. Some of these electrons can be trapped in the gate oxide as

fixed oxide charges. This increases the flatband voltage and therefore the threshold

voltage. These energetic hot carriers can break Si-H bonds that exist at the Si-Si02

interface, creating fast interface states that degrade MOSFET parameters such as
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transconductance and the subthreshold slope, with stress. The result of hot carrier

degradation is the increase of threshold voltage and decrease of transconductance. One

of the solutions to this problem is to modify the device structure of what is known as

Lightly Doped Drain (LDD). By reducing the doping concentration in the source/drain,

the depletion width at the reverse-biased drain-channel junction is decreased and the

electric field is reduced.

Hot carrier effects are less pronounced in p-channel MOSFETs than for electrons

in n-channel devices due to lower channel mobility of holes and hence reduced number of

hot holes for the same applied electric field. The lower hole mobility is also responsible

for lower drive currents in p-channel rather than n-channel.

One "signature" for hot electron effects is substrate current. As the electron

travels towards the drain and become hot, they can create secondary-hole pairs by impact

ionization. The secondary electrons are collected at the drain and cause the drain current

in the saturation to increase with drain bias at high voltages leading to a decrease of the

output impedance. The secondary holes are collected at the substrate as substrate current.

This current can create circuit problems such as noise or latch-up in CMOS circuits. As

shown, in the Figure 2.6, the substrate current initially increases with gate bias, goes

through a peak and then decreases. The reason for this behavior is that, initially, as the

gate bias increases, the drain current increases and thereby provides more primary

carriers into the p inch-off region for i mpact i onization. F or even higher g ate b ias, the

MOSFET goes from saturation region into the linear region when the fixed Vd drops

below the saturation drain voltage. The longitudinal electric field in the pinch-off region

drops, thereby reducing the impact ionization rates. Hot e lectron reliability studies are



always done under "worst case" conditions of peak substrate current.
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Figure 2.6 Substrate current in a MOSFET.

Hot carrier degradation results from injection of carriers into the gate oxide,

which results in a localized and non-uniform buildup of interface states and oxide charges

near the drain junction of the transistor. The generated defects produce threshold voltage

shift, transconductance degradation, drain current reduction etc. and eventually lead to

device failure. Hot carrier degradation is a strong function of internal electric field

distributions of the MOSFET. While the lateral electric field near the drain junction is

responsible for carrier heating and avalanche, the transverse electric field influence

carrier injection into the gate oxide. The reduction of channel length and oxide thickness

of the transistor affects the internal electric field distributions and hence the carrier
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injection processes. The damage creation and the resulting device degradation thus

become a strong function of device dimensions and hence necessary attention is required.

Several attempts have been made to understand the effects of MOSFET scaling on Hot

Carrier Degradation. The reduction of MOSFET channel length worsens the degradation

process. With the reduction in oxide thickness, lesser degradation in terms of charge

trapping occurs but carrier heating and avalanche was reported at lower oxide thicknesses.

Figure 2.7 Hot electron degradation in MOSFETs.

2.3 Charges at the Si-Si02 Interface

There are four general types of charges associated with Si-Si02 system shown in the

Figure 2.8. They are fixed oxide charges, mobile oxide charges, oxide trapped charges

and interface trapped charges.

Figure 2.8 Charges at the interface.
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2.3.1 Fixed oxide charges

These are positive charges, primarily created due to structural defects in the oxide layer.

They are immobile under an applied electric field and does not exchange charge with the

silicon when gate bias is varied. This charge ordinarily is dispersed randomly across the

interface. The origin is related to the oxidation process and cannot be determined

unambiguously in the presence of moderate densities of interface trapped charge. They

exist very near to the Si-Si0 2 interface though not exactly at the interface.

2.3.2. Oxide trapped charges

These charges may be either positive or negative due to holes or electrons trapped in the

bulk of the oxide. Trapping may result from ionizing radiation, a valanche injection or

other similar processes. Unlike fixed charge, oxide trapped charge is generally annealed

by low temperature treatments, although neutral traps remain.

2.3.3. Interface trapped charges

They may be either positive or negative charges induced due to structural, oxidation-

induced defects, metal impurities or other defects caused by radiation or similar bond

breaking processes such as hot electron degradation. The interface trapped charge is

located at the Si-Si02 interface. Unlike other charges mentioned above, it is in electrical

communication with the underlying silicon and can thus be charged or discharged

depending on the surface potential. The interface traps change occupancy with gate bias

changes and have energy levels distributed throughout the band gap.
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2.3.4 Mobile ionic charges

These charges are primarily due to ionic impurities such as sodium, potassium, lithium

and possibly hydrogen. Negative ions and heavy metals may contribute to this charge

even though they are not mobile below 500 C.

2.4 Si-H Bonds at the Interface

MOSFET degradation is dominated by the generation of acceptor-type interface traps

which are localized in a narrow band near the drain and reduce local mobile carrier

density. The interface traps responsible for device degradation are generated by hot

electrons having energies larger than 3.7 eV. A possible mechanism is that a hot electron

breaks a Silicon-Hydrogen bond. If the resultant trivalent silicon atoms recombine with

hydrogen, no interface trap is generated. The concentration of Si-H bonds at the interface

is in the order of 10 12 /cm.

Figure 2.9 Si-H bond breaking at the interface.

More significant types of behavior are being associated with hydrogen at or near the

Si-5i02 interface.

1. Hydrogen can cross the interface without reaction and passivate dopant atoms in
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the Si.

2. If the interface is annealed using FGA (forming gas anneal), introduction of H can

passivate defects at the interface via the reaction



CHAPTER 3

EXPERIMENTAL SETUP

3.1 Measurement Steps

MOSFET devices processed using 0.25 lima technology were used as test devices. Three

types of devices based on the nature of pre-existing traps were considered for the stress

experiments. Devices parameters (threshold voltage and transconductance) and charge

pumping current were measured experimentally based of the setup as explained in

following paragraphs. The basic flow in which the stress experiments were conducted is

given below in the form of a flowchart.
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The experiments were classified based on nature of pre-existing traps, nature of injection,

nature of stress. The flow in which these experiments and the subsequent measurements

that were performed is summarized in the form of tree diagram as below:

3.2 Threshold Voltage and Transconductance (Vt and gm) Measurement

The basic device parameters — threshold voltage A t and transconductance gm are being

measured on transistors, before and after subjecting them to current stress and hot

electron stress. This measurement is done using the GO-NOGO program of HP41 56B —

Precision Semiconductor Parameter Analyzer. The measurement of threshold voltage and

transconductance parameter of a transistor is shown in the Figure 3.1
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3.3 Peak Substrate Current Measurement

In order to inflict maximum damage to the transistor during hot electron stress, the peak

gate voltage at which the maximum substrate current occurs needs to be measured. This

experiment measures the peak substrate current for various of gate voltages. This is done

using lbAsAg program. This program measures the substrate current when it sweeps for a

range of gate voltage.

3.4 DC Current Stress Measurement

Since the plasma-induced damage is primarily due to electrical charging, the damage to

the gate oxide should be identical to that produced by applying a constant current to the

gate electrode of an unstressed device for duration equal to the process time. The current

necessary to reproduce the plasma-charging damage would correspond to that collected

by the antenna during plasma processing. In the experiment, the transistors were

subjected to current stress of 10 nA for a period of 3 secs. The polarity of the current

stress was based on the type of injection i.e. gate injection or substrate injection. During

gate injection, the value is given as -10 nA and was 10 nA during substrate injection.

When gate current injection was carried out, the source and drain of the transistor was

reverse biased with a potential from 0 A to 3 A. The setup was operated under L ab-

Aiew environment as shown in the Figure 3.3. Both types were of F-N injection.



3.5 Measurement of Interface Traps

The charge pumping principle for MOSFET devices has been successfully applied to

characterize the fast interface traps in MOS transistors. This technique is adequate for the

evaluation of the type of degradation of MOSFET devices due to hot-carrier injection,

Fowler-Nordheim tunneling, radiation damage etc.

3.5.1 Physics of Charge Pumping

In the charge pumping method, the MOSFET is used as a test structure. The method is

suitable for interface trap measurements on small-geometry MOSFET's rather than large-

diameter MOS capacitors. The source and the drain of the MOSFET are tied together and

slightly reverse biased with a voltage V,. The square wave voltage is applied which has

sufficient amplitude for the surface below the gate to be driven into inversion or

accumulation (Fig 3.4). The pulse train can also be triangular or trapezoidal.



Figure 3.5 Physics of charge pumping.

13

Consider that the MOSFET is in heavy inversion shown in the Figure 3.5(a) as a

result of positive gate voltage. The corresponding semiconductor band diagram from the
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Si surface into the substrate is shown in the Figure 3.5(c). The interface traps,

continuously distributed through the band gap, are represented by filled circles

representing electrons occupying interface traps. When the voltage changes from positive

to negative potential, the surface changes from inversion to accumulation and finally ends

up as in Figure 3.5(b) and 3.5(f). The important processes take place during the transition

from inversion to accumulation and from accumulation to inversion.

When the gate pulse falls from its positive to its negative value during its finite

transition time, electrons in the inversion layer drift to both source and drain. In addition,

electrons captured by those interface traps near the conduction band are thermally emitted

into the conduction band and also drift to source and drain. Those electrons on the

interface traps deeper within the band gap do not have sufficient time to be emitted and

will remain captured on interface traps. Once the hole barrier is reduced holes flow to the

surface where some are captured by those interface traps still filled with the electrons.

Holes are indicated by the open circles on the band diagrams. Finally, most traps are

filled with holes as shown in the Figure 3.5(f). When the gate returns to its positive

voltage, the inverse process begins, and electrons flow into the interface to be captured.

For a s quare w ave o f frequency f, the time a vailable for e lectron e mission i s half the

period Te = '/2 f. The energy interval over which the electrons are emitted is from the

equation

During the reverse cycle when the surface changes from accumulation to inversion, the

opposite process occurs. Holes within an energy interval
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are emitted into the valence band, and the remainder combine with the electrons flowing

in from source and drain. Those electrons on interface traps within the energy interval

Q„ /q electrons/cm2 flow into the inversion layer from source/drain but only (Q„ /q — Dit/E)

electrons/cm2 flowing back into the source/drain. Di et A E electrons/cm2 , the difference,

recombines with holes. For each electron-hole pair recombination event, an electron and

a hole must be supplied. Hence Diet A E holes/cm2 also recombines. In other words, more

holes flow into the semiconductor than leave, giving rise to the charge pumping current

Iced.The capacitor in parallel with the ammeter averages the ac current to dc current. DietA

E holes being supplied a t rate of f H z to a MOSFET with gate area A g give rise to a

current Icp = q Ag f Diet A E. Iced is in the order of 10-8 to 10 -11 A. Iced has been found to be

proportional to both gate area and pump frequency.

The gate of the MOS transistor is connected to the pulse generator and a reverse bias is

applied to the source and the drain diodes, while the substrate current is measured. This

current is caused by the repetitive recombination at the interface traps of minority carriers

coming from the source and the drain with the majority carriers coming from the

substrate when the gate pulses the channel between inversion and accumulation.

Therefore, the substrate current is directly proportional to the interface state density, the

gate area and the frequency of gate pulses.
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3.5.2 Description and Analysis of the Charge Pumping Technique

Five operation regions can be distinguished in the behavior of the substrate current as a

function of the base level of gate pulses, as illustrated in Figure 3.6

Figure 3.6 Regions of operation of MOSFET under charge pumping experiment.

These regions will now be briefly discussed.

REGION 1 (Iced = Ice max): When the base level (Abase) is lower than the flatband voltage

(Vtb) while the top level of the pulse (Atone) is higher than the threshold voltage (A i), the

conventional charge pumping effect occurs. This means that a net amount of charge is
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pumped from the source and the drain to the substrate via the fast interface traps each

time the transistor is pulsed from inversion toward accumulation and back.

REGION 2 & 3 (Iced = 0) In region 2, the top and base levels of the gate pulse train are

below the flat-band voltage. Therefore, the fast interface traps are permanently filled with

holes and consequently no recombination current is measured. In region 3, the channel is

permanently in inversion, so no holes reach the surface at any time. For both the cases,

the measured substrate current consists of only the source and drain leakage currents.

REGION 4 & 5 (0 < Iced < Iceman): In region 4, the charge pumping current increases from

0 to a saturation level. The recombination process disappears when going from region 1

to region 2 because the electron concentration at the interface during the inversion part

drastically reduces when the top level does not reach Ate. Therefore the rising edge of the

charge pumping current Iced Vs. base characteristic is located at A te — A Vac, where A V a is

the amplitude of the gate pulse. Therefore the transition zone is determined by the

recombination process in weak inversion.

3.5.3 Charge Pumping Current Measurement

The measurement was carried o ut b ased o n t he t est setup a s shown i n the Figure 3.7.
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Charge pumping experiment

1. Short the drain and source of the transistor or apply small reverse bias voltage.

2. Apply a varying pulse base width (using HP 8013B pulse generator) at the gate

(Sweep the gate voltage) - DC bias superimposed on a pulse.

3. Adjust the value of the frequency > 10 KHz.

4. Make sure that the pulse height and pulse width are to the required levels ( no less

than 0.5 V and no greater than 3 V)

5. Measure the current at the substrate which gives the charge pumping current.

6. Plot the current with respect to the gate bias voltage.

The charge pumping current varies based on the settings. Various values of pulse width,

pulse amplitude, frequency and reverse biasing were done and the results are summarised

as follows:

3.5.4 Effect of Reverse Bias Voltage of Source/ Drain on Charge Pumping Current
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The reverse bias at the source and drain affects the threshold voltage level limiting the

scanning into the source and drain regions of the transistor. Hence it decreases the

maximum charge pumping current as the reverse bias voltage is increased.

3.5.5 Effect of Pulse Width on Charge Pumping Current

Figure 3.9 Charge pumping current values for various pulse widths.

Fig 3.9 explains the effect of pulse width on the charge pumping current of the transistor.

The time at which the top and the base levels of pulse change, influencing the threshold

voltage level of the transistor. This varies the recombination current of holes and

electrons, affecting the charge pumping current. When the pulse width is smaller, the

recombination current is significantly less due to which there is an increased charge

pumping current.
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Figure 3.10 Charge pumping current values for various pulse amplitude values.

From Figure 3.10 it is seen that the effect of increasing the pulse amplitude is two-fold.

Increasing the amplitude of the pulse allows to sense interface traps further into the

source and the drain regions, due to which there is a tailing effect. Also, the charge

pumping current increases with increasing pulse amplitude, since the distance from the

source and channel junction increases with increasing amplitude.



31

3.5.7 Effect of High Field Injection and Hot Electron Injection on Charge Pumping

Current

Fig 3.11 explains the effect on the charge pumping current after the application of current

and hot electron stress. Since DC stress and hot electron stress on the transistor create

interface traps, the charge pumping current increases. It is known that the charge

pumping current signifies the amount of interface traps present at the interface of the

transistor.
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3.8 Estimation of Hot Carrier Lifetime

Hot carrier lifetime is defined as the time that the transistor takes to degrade to 10% from

its initial transconductance gnu, value. The lifetime is estimated by extrapolating the values
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of gm obtained during hot electron stress for 10% of its original value. A typical graph

calculating the life time of hot carriers is shown in the Figure 3.14.
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3.9 NMOS Devices and Current Stress

The wafers studied consisted of nMOS transistors processed using 0.25 inn CMOS

technology. Transistors had a channel area of 0.35 p.m and thickness of the gate oxide

was 6 nm. Threshold voltage and transconductance values measured before stress were

quite uniform. The schematic in Figure 3.15(a) shows a typical injection mode used to

evaluate the oxide integrity where all the terminals are connected together to form a

common ground. Transistors with three types of antenna ratios 2009:1, 10060:1 and

50050:1 were subjected to about 30 mA/cm 2 constant current stresses for 3 secs using

gate injection and substrate injection mode. Screening effect at the junctions were studied

by applying voltages of 0 V, 1 V, 1.5 V, 2 V and 3 V at the source and the drain using a

set up described in Figure 3.15(b). These voltages were chosen inorder to simulate the

plasma voltages that could possibly get generated during the plasma processing

conditions. Following the current stress the devices were subjected to hot carrier aging

stress using maximum substrate current. The interface trap density Diet was measured

before and after the high field injection and after the hot electron stress by measuring the

charge pumping current Iced using the charge pumping technique. Each type of stress

measurement was done on a separate group of devices. The values that degrade due to the

stress, namely, threshold voltage At and transconductance gm were obtained using a

HP4156 Precision Semiconductor Parameter Analyzer setup operated under an automated

Lab View environment.
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Figure 3.15 The cross-sectional view of n-MOSFET (a) in a stressing condition (b) with
source and drain at a screening potential.



CHAPTER 4

STRESS INDUCED INTERFACE STATES

4.1 Threshold Voltage Degradation

Figure 4.1 shows the variation in threshold voltage, V t immediately after the current

stress at different conditions for gate and substrate injection. It is clearly seen that there is

reduced device degradation around 1.5 to 2 V. This suggests that oxide charges trapped in

the bulk may recombine with the opposite charges, improving the Hatband voltage.

37
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Figure 4.2 Variation in threshold voltage for various groups of devices. Dark spots refer
to gate type injection and light spots refer to substrate type injection.

Figure 4.2 shows the variation in threshold voltage, A t immediately after the current

stress at different conditions for various antenna ratios. The latent damage in larger

antenna ratio shows an increased spread of A te shift after stress. There is an increase in A t

after current stress suggesting an enhanced electron trapping in the oxide for devices with

larger antenna ratio. It is expected because devices with larger antenna ratios are

damaged more due to exposure to plasma processing. It is known that plasma damaged

devices have higher concentration of electron traps in the oxide.
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Figure 4.3 Transconductance degradation of transistors subjected to gate and substrate
injection.

Figure 4.3 shows the gm degradation for all groups of transistors, immediately after the

devices were subjected to current stress. The transconductance degradation for devices of

gate injection is minimum when the screening potential is around 1.5 V. At lower

screening potential, it is seen that the transconductance degradation is high due to

ineffective screening of the drain and the source edges.

Also note that the degradation is maximum at the near-breakdown potential. The

same argument may be applied for the devices subjected to substrate injection. The

damage is again approximately low at 1.5 — 2.0 V.
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Figure 4.4 Variation in interface state density of all the three antenna ratios for various
screening potentials for first set of experiments.

Figure 4.4 and Figure 4.5 shows the variation in interface state density, measured by

charge pumping experiment, of various transistors after being exposed to a current stress

with the applied screening potential under gate injection and a subsequent hot carrier

stress for two groups of devices respectively. It is seen that the screening effect is

prominent for a wider range of screening voltage for transistors with the smallest antenna

ratio (2009) and most effective (lowest Di et) at 2 V approximately. The most effective

screening potential gradually decreases, as the antenna ratio becomes larger. For antenna

ratios 10060 and 50050 the most effective screening potentials are 1.7 V and 1.5 V

respectively. Diet at these screening potentials goes through a significant reduction

compared to lower voltages. Considering that the doping concentration of the n + region of

the drain and the channel is constant, the lateral depletion width will vary accordingly to



screen the source and drain edges.
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At lower potential the depletion width is not significant enough to screen the drain edge

whereas at higher screening potentials the field reaches a near-breakdown of the oxide.

This near-breakdown potential causes an increase in Diet and the trapped charges near the

drain edges. Below this breakdown potential, the channel is effectively screened reducing

the interface states. For a larger antenna ratio, the near-breakdown screening potential is

comparatively low, because the transistors have pre-existing charges trapped at the

interface. The noticeable increase in Diet at lower screening potentials that does not screen

the drainlsource edges effectively (around 1V), is believed to be due to field-enhanced

degradation.



4.3.2 Substrate Injection
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Figure 4.6 Variation in interface state density of all the three antenna ratios for various
screening potentials for substrate injection for first set of experiments.

For substrate injection as shown in Figure 4.6 and Figure 4.7, it is seen that the interface

state density Diet decreases approximately for the same potentials as in the gate injection.

For antenna ratios 2009, 10060 and 50050 the most effective screening potentials are

approximately 2.1 V, 2.0 V and 1.5 V respectively. The minimal increase of the most

effective screening potentials compared to gate injection is mainly due to the injection of

thermally generated electrons from the substrate. In the c ase of g ate injection, on the

other hand, more electrons are available at the poly Si-Si02 interface as compared to

substrate injection. The lower screening potential that causes an increase in interface

states remains around 1.0 V identical to gate injection.
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Figure 4.7 Variation in interface state density of all the three antenna ratios for various
screening potentials for substrate injection for second set of experiments.

4.4. Hot Carrier Lifetime

4.4.1 Hot Carrier Lifetime for Gate Injection

Figure 4.8 shows the hot carrier lifetime of transistors estimated by transconductance

degradation. The hot carrier aging was performed after the transistors were subjected to

gate injection under different screening potentials for all the three types of antenna ratios.

It is seen that the hot carrier lifetime of these transistors varies almost in accordance with

the interface states generated.



Figure 4.8 Hot carrier lifetime of transistors for gate injection.

A small fraction of hot electrons at the drain edge create damage at the Si-Si02 interface,

which manifests itself as an increase in interface state density Diet and yet another small

fraction become trapped in the oxide. Once the device is degraded by the current stress,

the hot carrier lifetime goes down as the hot electrons typically fill the traps created

during the current stress. However, if the drain edges are screened during the current

stress the hot carrier lifetime improves. Since the hot carrier lifetime characteristics, as a

function of screening potential, follow the interface state characteristics, it further

conforms that at certain screening potentials the drain edges are effectively screened from

the damage induced by the current stress.
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4.4.2 Hot Carrier Lifetime for Substrate Injection

In the case of substrate injection, as shown in Figure 4.9, the lifetime is maximum when

the screening potential is approximately at 1.5 V, which is nearly in accordance with the

number of interface states created as referred in Figure 4.6 and 4.7. Also in this case, the

transistors with larger antenna ratio suffer maximum damage. It is also noticed that the

hot carrier life time of these devices are an order of magnitude lower when compared to

the devices subjected to gate injection, indicating strongly that substrate injection is more

damaging.



CHAPTER 5

STRESS INDUCED Si-H BOND CONCENTRATION

5.1 Theoretical Background on Si-H Bond Concentration

Hydrogen plays a critical role in the fabrication of high quality Si-Si02 interface where

the dangling bonds are compensated by hydrogen atoms. The trap formation at Si-Si02

interface is an electrochemical process where the hydrogen of Si-H bonds is released and

the appearing Si dangling bonds represent interface traps. Interface state density D i t is

proportional to the concentration of silicon dangling bonds at the interface N-n where N

is the total concentration of Si bonds which appear as dangling bonds and n is the

concentration of Si-H bonds at the interface.

5.2 Estimation of Si-H Bond Concentration

The concentration of Si-H bonds are estimated based on a simple power law and kinetic

equation

Where Nit and Naito are final and initial interface state densities, no is the initial

concentration of Si-H bonds for the time dependence trap generation t, k is the reaction

constant and a is a constant. It is also noted that a > 0.5 for negative gate biases and a <

0.5 for positive biases. Evaluation of the reaction constant k is based on the nature of the

stress i.e. DC stress or hot carrier stress. Reaction constant k is given by the formula
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kl = 1 + &CACTI PAC

Expression for ea is evaluated based on the formula

Ea = Ea° + 18 . kBT in (NitNito) for high field and

Ea = Ea0 + 6 1F1 P + /3 * kBT In (Nit/Nito) for hot carrier injection.

Prefactor /3 is approximately assumed to be less than twice of a for high field injection

while it is evaluated to be /3= /+ /31F1 where F1 is the polarity dependent perpendicular

component of the electric field at the interface for hot carrier stress and (5, p are fitting

parameters. Extracted values of fi = 0.6 for negative gate bias, 1.2 for positive bias, 1.23

for hot carrier stress, kl = 1.006 , IHC = 10 nA, 8 IFIP = 0.245 were calculated from

experiments while the values of k= 8 X 10-10 sec1, 6= 1.95 X 10 -3 ( Vlcm) -P, p= 0.33,

6HC = 6.0 X 105 ( AJcm2 ), and plc = 1 were used in the above calculations. All

calculations were based on the room temperature 300K. Activation energy (SA of 2 eV

that dissociates hydrogen from the interface was used in our estimation.



5.3. Si-H Bond Concentration after Current Stress

5.3.1 Gate Injection
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Figure 5.1 Concentration of Si-H bonds for gate injection after DC stress.

Figure 5.1 shows the concentration of Si-H bonds along with ADit/Dit as a function of

screening potential immediately after the DC stress for g ate injection. As per ADitlDit,

effective screening potential is found to be in the order of 1.5 V to 2 V for gate injection.

During the negative current stress (gate injection), electron-hole pairs are being generated

at the Si-Si02 interface (anode), which react with Si-H bonds. In this reaction, hydrogen

(H: atom and H+ : ion) is released breaking the Si-H bonds creating interface traps as

described in the following equation.

where Si* represents the dangling Si bond. It is seen that under effective screening, when

Dietreduces, the Si-H bond concentration increases. Therefore, Dietis strongly related to

Si-H bond breaking during gate injection. Similar trends were noticed for other groups of
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transistors with antenna ratios, 10060 and 50050. Figure 4.2 and Figure 4.3 plot the

concentration of Si-H bonds with ADit/Dit as a function of screening potential for the

antenna ratios 10060 and 50050 respectively.

Figure 5.2 Concentration of Si-H bonds for gate injection after DC stress for antenna
ratio 10060.
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Figure 5.4 shows the concentration of Si-H bonds along with ADitlDit as a function of

screening potential immediately after the DC stress for substrate injection. As per ApitlDit,

effective screening potential is found to be in the order of 1 to 1.5 V for substrate

injection. The Si-H bond concentration does not follow Di et during screening. The

electron-hole pairs are generated at the gate-Si02 interface (anode) and hence there is no

direct impact on the Si-H bond concentration at the Si-Si02 interface. At screening,

therefore, the dominant mechanism that contributes to Diet is the creation of electrically

active sites rather than Si-H bond breaking. At higher screening potentials, creation of

electrically active sites close to interface and in bulk Si02 becomes dominant. These sites

contribute significantly to Di et rather than breaking the Si-H bonds. Similar trends were

noticed for other groups of transistors with antenna ratios, 10060 and 50050. Figure 5.5

and Figure 5.6 plot the concentration of Si-H bonds with ADit/Dit as a function of

screening potential for the antenna ratios 10060 and 50050 respectively.



Figure 5.7 Effect of hot electron stress time on Si-H bonds.
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Figure 5.7 shows the effect of hot electron stress time on the concentration of Si-

H bonds. It is seen that the concentration of the bonds at the interface decrease as the

stress time is increased, indicating the effect on Si-H bonds to be an exponential function

of time.

Figure 5.8 Concentration of Si-H bonds after hot electron stress time of antenna ratio
2009.

To confirm the screening of Si-H bonds during gate injection, devices were

subjected to hot carrier stress during which two dominant mechanisms play key roles at

the interface - the donor or the acceptor sites are being neutralized in the oxide affecting

the interface trap generation and release of interfacial hydrogen that contributes to

interface traps. Figure 5.8 shows the change in concentration of the Si-H bonds on the

transistors earlier subjected to DC stress under applied screening potentials in gate

injection mode. It is seen that under effective screening, the interface near drain junctions

are protected which helps to reduce the Si-H bond-breaking phenomenon.
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Figure 5.9 Impact on the depletion layer widths of the transistor due to the impact of
high field and screening potential.

The protection of drain and source edges are possible due to the extended

depletion layer near the Si-Si02 interface when the screening potential is applied during

gate injection. For example, if 1,0 is the as drawn length of a transistor, then with

depletion regions formed due to reverse biased voltages at source and drain 1,0 is reduced

by (Ws + WD) where Ws and WD are the drain and source depletion lengths. Ws or WD is

given by [{2Eogs (Vbi + + V VD,s - 2kT/q)}/qN,d1/2 where so is the free space permittivity,

es, is the silicon dielectric constant, Vbl is the built-in potential between the source/drain

and substrate junction, Ills is the surface potential, VDUs is the screening potential, k is

Boltzmann's constant, T is the temperature, q is electronic charge and NA is the substrate

doping. The effective channel length Leff is then given by Leff = L0 -(Ws WD). Because

of the variation of surface potential during gate injection, the extended depletion layer for

lower screening potentials was unable to screen the drain edge. The extended depletion

region to the interface under the effective screening potentials (1.5-2 V), therefore,

influences the concentration of the Si-H bonds.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Potential problems occurring from the antenna connected to source and drain during the

plasma processing has b een discussed. The floating p otentials developed a t the s ource

and drain can screen the hot carrier lifetime in plasma-processed devices. The screening

effect depends on various parameters, namely, the size of the antenna ratios, the polarity

of the stress involved and the oxide quality. This effect has been found to have a

significant impact on the hot carrier lifetime of the transistor, indicating as an important

factor t hat n eeds to be c onsidered during V LSI ( plasma) processing. The screening o f

Si-H bonds during high field injection suggest that Si-H bond breaking mechanism

during interface state generation is dependent on the polarity of the current stress and the

screening potential applied. Hot carrier stress further confirmed the results.

Since the hot carrier reliability could limit the performance of devices with alternate

high-k-dielectric materials, this work can elucidate further some of the reliability issues

in devices with high-k dielectrics. This scope of research can also be extended to the

study of Si-D bonds at Si-Si02 interface, in deuterium annealed/implanted devices.
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