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ABSTRACT

RANDOM SEARCH CONFORMATIONAL ANALYSIS OF PIPERAZINE
AND PIPERADINE ANALOGS OF GBR12909:
IMPLICIT AQUEOUS SOLVATION EFFECTS

by
William A. Roosma

The object of this work was to study the effect of solvent on the conformational

potential energy surface (PES) of GBR12909 analogs. Local minima on the PES's were

found by the Random Search algorithm using the Sybyl molecular modeling package

from Tripos, Inc., and an implicit solvent model. Two force-field/charge models were

employed in the analysis: the Tripos force field with Gasteiger-Hűckel charges and the

MMFF94 force field with MMFF94 charges.

The effect of solvent on the location of minima in multi-dimensional torsional

angle space was studied by comparison to the vacuum phase results. Minima were

plotted in torsional angle space using successive pairs of torsional angles. The results

showed that, at least for the simple implicit solvent model used here, solvation does not

significantly affect the location of the conformational minima for either of the two

analogs investigated. With the MMFF94 model, some of the conformational energy

minima were found in a narrower range of torsional angle space in the solvent

compared to the vacuum phase, while there were no consistent differences with the

Tripos model. One notable exception was the Tripos solvent phase results for the

piperadine analog where a cluster of minima was found in a region of torsional angle

space where no minima were present in the original vacuum phase results. This is

believed to be an anomaly arising from incomplete searching of the conformational PES

of the molecule. This was supported by the results of a second vacuum phase random



search, which were similar to those of the solvation case. Further study remains to be

performed employing other more sophisticated solvation models and conformational

search techniques.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to present the implications of water solvation on molecular

conformations of two analogs of GBR12909 (designated DM324 and TP250), employing

the implicit solvation model of the Sybyl molecular modeling program supplied by

Tripos, Inc.

This was accomplished by comparison of scatter plots for the aqueous solvation

case versus the vacuum phase case over multiple pairings of rotatable bond torsion angles

for the lowest-energy conformers of DM324 and TP250, as found by the Random Search

function of Sybyl. Two force field models included in Sybyl were used: Tripos with

Gasteiger-Hiickel charges and MMFF94 with MMFF94 charges.

1.2 Background Information

1.2.1 Problems Related to Cocaine Abuse

The allure of cocaine is the nearly instant (when smoked in the "crack" form) onset of the

desired stimulant effect of euphoria. In the short term, heart rate, blood pressure and

temperature increase while the vascular system contracts. Large doses can cause

volatile, possibly violent, conduct as well as paranoia, involuntary muscle movements,

anxiety and/or agitation. Rarely, death due to cardiac and respiratory arrest can occur'.

Long-term use can increase the prevalence of the symptoms noted. Additionally,

tolerance may develop, requiring larger doses for the same effect, and sensitivity to

1
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anesthetic and spasmodic effects may increase, becoming a hazard even at small doses.

Cocaine may disturb heart rhythms, and cause medical problems depending on the route

of ingestion. Often, due to the suppression of appetite, malnourishment can result s .

Sensitization to the stimulant effects of cocaine and associated stimuli may also

occur. In this scenario, the dopaminergic system adapts and helps generate the addictive

behavior in spite of lowered expectations of enjoyment, as well as threats to economic

and social well-being2 .

The effects do not end with the abuser; cocaine addiction continues to be a serious

problem for the nation. A major part of the problem is a strong tendency towards

continued use and abuse 2 '3 . There are serious implications for society as well as the

individuals involved in usage — crime, financial losses, reduced productivity, and

contribution to the spread of HIV/AIDS 3 '4 . One estimate of the cost to the nation is

above $100 billion for 1995 alone 4 .

1.2.2 Dopamine Hypothesis

The dopamine hypothesis, which has significant support in the research literature s-$, is

that cocaine acts indirectly by binding to the dopamine transporter (DAT) of neurons,

reducing reuptake of extracellular dopamine by the DATs. The resulting excess of

dopamine causes the pleasurable sensation that is the object of substance use, and

produces the reinforcement of the usage2 '3 . The structures can be seen below.
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Figure 1.1 Cocaine structure. Figure 1.2 Drawing of DAT 9 .

1.2.3 Candidate Substances for Treating Cocaine Addiction

No effective medication, analogous to methadone in the case of heroin, currently exists

for treatment of cocaine addiction. Desired characteristics for such a substitute are:

slow entry into the brain, long duration of its effects (relating to its binding affinity),

selectivity for its target and minimal side effects10. A likely possibility is a compound

that blocks cocaine from binding to the DAT, permitting dopamine (re)uptake. A

number of dopamine reuptake inhibitors have been proposed as possible drug candidates

to ameliorate the addiction; several representative structures can be viewed below:
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Figure 1.3 Examples of dopamine reuptake inhibitor?. Note that
several do not resemble cocaine.

The first two are derived from tropane, the third from the GBR class, the last

(BTCP) is a phencyclidine analog, and the others are from classes as labeled 3 . Another,

much different, possibility is an anti-cocaine antibody. Such a molecule binds to cocaine

and then breaks it down2 .

1.2.4 GBR 12909 and the Analogs Investigated

The dopamine reuptake inhibitor GBR 12909 is one of the most promising compounds

for treatment of cocaine addiction, as it has successfully passed the first phase of clinical

trials. GBR 12909 showed some affinity for the human DAT in vivo, and was found to

be safe and tolerable in those trials". Several surveys indicate desirable characteristics

of GBR 12909: high affinity for the DAT and selectivity for DAT over the serotonin

transporter (SERT) 12 and lowered cocaine self-dosage in monkeys along with little

suppression of food-seeking behavior 13 .
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In its structure, shown below, the "A side" (with respect to the central piperazine

ring) contains the single phenyl ring, while the "B side" is the bisphenyl side:

Figure 1.4 GBR 12909 structure. Note the
dissimilarity to cocaine. The "A Side" is on
the right; the "B side" is on the left.

In concert with medicinal chemists and pharmacologists at the National Institutes of

Health (NIH), the Venanzi group is investigating the behavior of analogs of GBR12909

with hypothesized pharmacophore elements similar to those of methylphenidate,

previously studied by the group. Two of the most important characteristics, binding and

selectivity, are outlined in the table below.

Table 1.1 Binding Affinities of GBR 12909 and Analogs at DAT and SERT Labeled

with [125I]RTI-55

Analog DAT^a SERI' SERT/DATb

GBR12909 12 3.7 (±0.4) 126 (±5) 34

DM324 12 8.0 (±0.3) 312 (±15) 39

TP250 14 0.71 (±0.6) 229 (±21) 323

aIC50 in nanomolar concentration OW standard deviation in parentheses.
bSERT/DAT = ratio of DAT binding affinity to SERT binding affinity.
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While these aspects alone do not determine efficacy, they may indicate the utility of these

analogs in understanding GBR12909 behavior.

Figure 1.5 Analogs of GBR12909 investigated in this study. Note that for both analogs,
the chain on the naphthalene "A" side is shorter than that for GBR12909. The analogs
differ only by a nitrogen substitution for the central ring carbon closest to the bisphenyl
side of the molecule. The rotatable bonds are labeled in blue on the A side and red on
the B side.

The analogs exhibit greater rigidity due to reduction in the number of rotatable

bonds as compared to GBR12909, facilitating the modeling process. The TP250 analog

includes a central piperadine ring that incorporates the nitrogen which Dutta et al 15 have

shown is required for binding. The DM324 analog differs from TP250 only by having a

central piperazine ring in place of piperadine.

1.2.5 Long-Range Goal

As was carried out previously for the vacuum phase, Comparative Molecular Field

Analysis (CoMFA) will be performed using representative conformations from the results

of random searches done for the solvation phase. Several clustering and multivariate

analysis methods are to be employed for the selection of conformations prospectively

representative of the bioactive conformation (i.e., the one in which the drug binds to the
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DAT). The bioactive conformation describes the pharmacophore, which is the set of

spatial orientations of the important chemical features that are required for biological

activity 16 . The ultimate goal is to aid in interpreting biological activity in terms of

molecular structure and properties such as binding affinity and selectivity, with

implications for more efficient drug design.

1.2.6 Focus of Current Study in Context

This study is part of an ongoing investigation by a group led by Dr. Carol Venanzi at

NJIT, in pursuit of medications for effective treatment of cocaine. The group employs

computational chemistry techniques to model drug characteristics. In particular, strong

binding to the DAT (dopamine transporter) and selectivity for the DAT over the SERT

(serotonin transporter) are the major characteristics desired 10.

While a solvent has important effects on the potential energy and conformation of

a molecule, it is often disregarded for the sake of expediency. If the solute contains

polar functional groups, a polar solvent can significantly affect conformational energy.

Since most experiments are carried out in solvents (most often water, a polar solvent),

and the case in vivo is an aqueous environment, it is desirable to investigate such effects

on a drug candidate. The current pilot study employs the implicit solvation capability

(i.e., resetting the dielectric constant) of the Sybyl modeling program as a simplified

preliminary method of observing the effects of aqueous solvation on the potential

representative conformations of the GBR12909 analogs.



CHAPTER 2

THEORETICAL BASIS OF SOLVENT MODELING AND RANDOM
CONFORMATIONAL SEARCHING

2.1 Modeling the Effects of Solvents

Solvation tends to reduce electrostatic interactions as compared to the vacuum phase.

This can be modeled in several ways. One is to change the permittivity E (Co is the

permittivity of a vacuum) in the equation for Coulomb's Law:

The related equation for potential energy (PE) is:

The charges are referred to as q1 and q2, while r is the distance separating them, and k is a

proportionality constant. The solvent permittivity E = ε0D, where D is a constant

dielectric value (usually designated "dielectric constant", changed here to avoid

confusion) of the solvent, can be substituted for Co. This is the simplest solvent-

modeling method 17-19 .

Another method is to use a distance-dependent dielectric value, in which the

relative permittivity value (Er in this case) is proportional to the distance between the

charges. Substituting for Co, the following distance-dependent expression for potential

energy is obtained:

8
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This method has no physical basis, but can provide approximate information''. More

sophisticated models use a more complex non-linear distance dependency, such as a

sigmoid curve rising towards a bulk solvent value at larger distances20 . Some add a term

to the total potential energy (PE) equation to account for solvent effects. The most

precise models include solvent molecules explicitly in the computation of the PE

equation terms. However, the cost of the added complexity is a greater computational

cost21 .

2.2 General Modeling of Potential Energy in Solvent Phase

The potential energy for a molecule is the summation of the various components,

including electrostatic effects. Since energy information is empirically obtained, there

exist several formulas for modeling its value. One relatively simple possible equation

(from Leach22) is shown below:
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The first three terms refer to energy associated with stretching, bending and torsions of

bonds, respectively. The last two terms refer to energies not associated with bonding

interactions, which are summed over all atom pairs that either are separated by at least

three bonds or are in different molecules. The fourth term accounts for van der Waals

interactions using a Lennard-Jones model. The final term comprises the electrostatic

energy effects".

The potential energy for the solvation case can be modeled in a simple fashion by

adjusting the electrostatic term as noted above. Note that the εij term in the van der

Waals term refers to the depth of an energy well 23 , not permittivity.

2.3 Force Fields (Molecular Mechanics) and Charges

Force field models are empirically derived. There is a tradeoff between computational

efficiency and accuracy. An important consideration is "transferablility", or

"generalizability", at least between similar molecules, to avoid re-inventing the wheel for

each molecule studied24 .

In the current study, the grouped bonding terms are considered approximately

equivalent from one force field to the other (generally, terms cannot be compared on a

one-to-one basis). The main consideration is given to the non-bonding terms accounting

for van der Waals and electrostatic interactions. Only atoms separated by at least three

bonds are included in the non-bonding terms.
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2.3.1 Tripos Force Field

The potential energy for the Tripos force field is represented using the following general

equation25 :

The first four terms refer to energies due to bond stretching, bending, out-of-plane

bending of atoms, and torsion. The fifth accounts for van der Waals interactions:

Eij is the van der Waals constant in kcal/mol, equaling √ Ei,Eji , Ri is the van der Waals

radius (in A) of the ith atom, and rij is the distance between atoms i and j 25 .

The remaining terms are optional. The sixth term involves electrostatic

interactions, while the others deal with energies due to constraints (distance, angle,

torsion, and range), multifit and field fit. The torsion constraint term is employed only in

the initial minimizations. The only one included in this study is the electrostatic term,

shown below:
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Did is the value of dielectric function for atoms i and j, Qi is the resultant atomic charge at

the ith atom, and rij is the distance between atoms i and j. 332.17 is a conversion factor

for the units25 .

Several charge computation methods are available when using the Tripos force

field. The Gasteiger-Hűckel method uses the Gasteiger-Marsili method for calculations

of the a component and the Hűckel method for the it component, and then sums them to

obtain the total charge. The Hűckel method, a basic quantum mechanical approach, is

performed first; the Gasteiger-Marsili computation is partially based on the Hűckel

results. In the Gasteiger-Marsili process, charges from all bonds including an atom are

iteratively computed, beginning with the formal charge, and the charges are summed over

all the atoms26 .
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2.3.2 MMFF94 Force Field

The general equation describing the potential energy for the MMFF94 force field 27 is

given as:

The first five terms refer to energies due to bond stretching, bending, bending-stretching

interactions, out-of-plane bending of atoms, and torsion. The sixth accounts for van der

Waals interactions:

εij is the potential energy well depth in kcal/mol, R*ij is a buffering constant. This is

referred to as the buffered-14-7 form, due to the use of buffering constants and the 14th

and 7th power terms27 . Compare to the Tripos term, which employs 12 th and 6th power

terms.

The seventh term involves electrostatic interactions as shown below:
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D is the dielectric value ("constant"), qi is the partial atomic charge at the ith atom, and Rid

represents the distance between the atoms (in A). 332.07 is a conversion factor for the

units. The exponent n is set to 1 or 2, depending on whether a constant or distance-

dependent dielectric function is used. A buffer represented by 6 (5 >0, 0.05A here)

prevents the electrostatic term from overpowering the repulsive part of the van der Waals

term at very short range'. Note that buffering is not included in the Tripos electrostatic

term.

The MMFF94 charges are computed using the formula

where q,° is the formal charge, usually zero, and ωki is the bond charge increment of

partial charge at atom i due to the i-k bond (between atom i and attached atoms k) 26 '27 .

Note that MMFF94 charges are considerably larger than Gasteiger charges (typically

twice as large)28 .

2.4 Potential Energy Surfaces

A potential energy surface (PES) is a multidimensional surface describing potential

energies for all possible molecular conformations 29 . Minima on the surface correspond

to energetically favorable arrangements. For non-trivial molecules, the amount of

computation required becomes large very quickly. Various approaches such as

systematic and random search methods have been employed to surmount this problem.
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2.5 Random Searches

A random search changes either the torsion angles of rotatable bonds or the spatial

orientation of the atoms in a molecule in a random rather than systematic fashion. In

such as search, a given conformation is changed (e.g., the torsion angles of the specified

rotatable bonds are randomly modified), then energetically minimized, and then

compared to previously-found conformations to see if it is unique 30 . The definition of

uniqueness is an RMS fit value greater than the chosen RMS threshold for the heavy

(i.e., non-hydrogen) atoms between the current and previously found conformers 31 .

This process is repeated a specified number of times. Figure 3.1 shows a flow diagram

of the process for torsion angles.

The random search procedure by its nature is not guaranteed to find all

conformations30 . An approximate formula for the probability that all conformations

have been found that meet specified conditions has been given as (1-( 1/2)n), with n

representing the minimum number of times any conformer has been found 32. For

example, if each conformation was found at least twice, but not all were found three or

more times, n = 2 and therefore, the probability is 0.75 that all conformations have been

found.



Figure 2.1 Random search process. (Adapted from Leach 30.)
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CHAPTER 3

METHODS USED FOR RANDOM CONFORMATIONAL SEARCHING

3.1 Hardware and Software

The minimizations and random searches were performed using Sybyl version 6.9, a

molecular modeling package from Tripos, Inc. Sybyl was run on dedicated Silicon

Graphics workstations using the Unix operating system in the Venanzi laboratory at New

Jersey Institute of Technology. PCs utilizing Microsoft Windows operating systems and

Microsoft Excel were used to produce the graphical displays of the data obtained from

the random searches.

3.2 Choice of GBR12909 Analogs

DM324 is an analog of GBR12909 that differs in two respects: the substitution of a

naphthyl fused ring pair for the single phenyl ring on the so-called "A" side of the

molecule, and the deletion of two rotatable C-C bonds, also on the A side. The "B"

(bisphenyl) side is identical to that of GBR12909. This results in a molecule with very

nearly the same extended length as GBR12909, but with more rigidity supplied by the

extra fused ring of the naphthalene substituent. TP250 differs from DM324 only in

replacement of the B-side nitrogen by a -CH group, producing a piperadine ring in place

of the piperazine ring.

17
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3.3 State of Protonation of Analogs

The literature indicates that dopamine probably binds to the DAT in protonated form33 ,

but that a cocaine analog (WIN 35,428) shows little difference in binding between the

neutral and protonated cases 34 . The Venanzi group pharmacophore modeling of

methylphenidate and a rigid analog (see figure below) found fewer conformations in the

Figure 3.1 Structures of methylphenidate and a rigid analog.

protonated state as compared with the neutral state, although they were in approximately

the same conformational space 35 . This indicated that the computational load might be

reduced by investigating the protonated state only.

It is not known in which state the GBR analogs exist upon binding. Quantum

mechanical calculations done by the Venanzi group found that in GBR12909,

protonation is favored at the A-side nitrogen36 (i.e., closer to the naphthalene). For this

reason, and for purposes of comparison between the DM324 and TP250, which lacks the

B-side nitrogen of DM324, protonation at the A-side nitrogen was chosen for modeling.
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3.4 Random Searches

The minimization/random search process was performed for the cases indicated in bold

type in Table 3.1, in order to compare to the vacuum phase results of Deepangi Pandit

and Milind Misra, other Venanzi group members.

Table 3.1 Investigation in Context of Related Studies

Analog DM324 TP250

Force

Field
Tripos MMFF94 Tripos MMFF94

Charges Gasteiger-Hűckel MMFF94 Gasteiger-Hűckel MMFF94

Dielectric

Function
Distance- Dependent Constantt Distance- Dependent Constantt

State
vacuum

phase

aqueous

solvation

vacuum

phase

aqueous

solvation

vacuum

phase

aqueous

solvation

vacuum

phase

aqueous

solvation

Further

Analysis

Macromodel,

multivariate and/or clustering methods,

CoMFA

Macromodel,

multivariate and/or clustering methods,

CoMFA

t Default setting for MMFF94.

The phenyl rings and the naphthalene moiety were treated as active aggregates in

all cases to simplify computation and prevent undesirable ring opening37 . The molecular

description (".mol2") files pertaining to the analogs were obtained from previous work

done by Milind Misra. Details can be found in Appendix C. Prior to doing random

searches, the molecular configuration was set to a local energy minimum by using the
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Maximin2 function of Sybyl. For the minimization process, the piperadine or piperazine

ring was not treated as an aggregate, but torsion angle constraints were included (refer to

Appendix A for details).

Random searches were then run using the RandomSearch function of the Sybyl

program. For the random searches, torsion constraints were inactivated, and the

piperadine or piperazine ring was treated as an aggregate to maintain rigidity and avoid

ring inversion from the energetically favorable chair/equatorial configuration. The

simplification and ring-opening considerations noted above for the other rings also apply.

Random searches were performed by the implicit solvation method, using a distance-

dependent dielectric value of 80 to represent more closely the aqueous environment that a

medication would encounter in vivo, in place of the default dielectric value of 1

associated with a vacuum.

The RandomSearch function randomly alters the torsion angles of all eight

(selected) rotatable bonds, minimizes the structure via Maximin2, and saves the

conformation in a database if it is unique. The definition of uniqueness is an RMS fit

value greater than the chosen RMS threshold (in these studies, the Sybyl default value:

0.2A) for the heavy (i.e., non-hydrogen) atoms between the current and previously-found

conformers31 . In the case of a duplicate, RandomSearch increments the count (i.e., the

number of times the conformer was encountered) for the previously found conformation.

Only conformations that had energies less than a 20 kcal/mol cutoff over the energy

corresponding to the result of the original minimization were recorded. A maximum of

1000 iterations was set. The chirality function of RandomSearch was activated to ensure

the energetically-favorable equatorial positions of the naphthyl and phenyl rings with
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respect to the central piperazine or piperadine ring. The symmetry function was

activated to account for the symmetry of the two phenyl rings on the B side of the each

analog. Other parameters used in minimization and random searches can be found in

Appendix A.

All the searches in this study were performed for solvent phase, with one

exception. Due to discrepancies found between vacuum and solvent phase random

search results for DM324 using the Tripos force field, a second random search was

carried out for the vacuum phase as a check

3.5 Processing of Random Search Results

3.5.1 Scatterplots

The information produced by RandomSearch was used to construct a text file containing

the torsion angles (specifics can be found in Appendix A) of rotatable bonds associated

with each conformation found. The count (as described previously) and energy for each

conformation were also included. The text files were exported to a PC for processing

with the Microsoft Excel spreadsheet program. The conformations were sorted

according to energy level, and relative energies were computed as compared to the

minimum energy of all conformation energies found. The conformations were sorted

into bins of relative energy (RE) 0 <= RE < 4, 4 <= RE < 8, 8 <= RE < 12, 12 <= RE < 16, and

16 <= RE <= 20 kcal/mol.

Since the potential energy surface was multi-dimensional, a method of analysis

was needed. One way of analyzing results is to plot conformational minima in torsional

angle space. Scatterplots of conformational minima were created for selected torsion
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angle pairs that were considered likely to give indications of the pharmacophore

characteristics of the analogs, and therefore of GBR12909. The relative energies of the

conformational minima were indicated by color-coding according to bin. The pairings

included adjacent bonds as well as A-to-B-side interrelationships (refer to Figure 1.5 for

locations of rotatable bonds). Particularly considered were bonds at the likely

pharmacophore elements (Al, A2), substituents required for GBR12909 binding (B5, B6)

and those of interest in hydrogen bonding considerations (Al, B1 (in the case of DM324),

B3, B4)

Since the phenyl rings are symmetrical about the axis of B5 or B6, a second, 180-

degree opposite side torsion angle, was obtained from Sybyl. The smaller (negative)

value was chosen for representation in the relevant scatterplots. The results were

compared on a qualitative visual basis to those from random searches conducted under

the same conditions excepting the dielectric value, to determine the effect of the solvent

on the locations of energy minima.

3.5.2 Shape Analysis

Conformations were classified into shape categories according to the smallest distance

between the A and B sides of the molecules. Centroids were defined for each ring of the

naphthalene substituent as well as both phenyl rings. Distances from each of the phenyl

(B-side) centroids to each of the naphthyl ring (A-side) centroids were computed using

Sybyl. The smallest of these four measurements was used to classify the conformation

into the categories shown in the table below:
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Table 3.2 Conformation Shape Category

Shape D (Distance in A)

C (Cup) 0<D<4.5

I (Intermediate)* 4.5 <= D < 5.0

V (V-shaped) 5.0 <= D < 7.0

E (Extended) 7.0 <= D

* Intermediate between C and V shapes

Additionally, a virtual torsion angle was defined by four points (refer to Figure

3.2 below): 1) the centroid of the naphthalene ring which is closer to the nearer phenyl

ring (as defined previously) 2) the nitrogen of the piperazine or piperadine ring that is

nearer the naphthalene moiety; 3) the nitrogen (for DM324) or carbon (for TP250) which

is attached to the alkyl chain linked to the phenyl rings; and 4) the centroid of the phenyl

ring which is closer to the nearer naphthalene ring centroid. The virtual torsion angle

refers to how far (in degrees) the A side is rotated away from the B side for the given

conformation.
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Figure 3.2 Points defining virtual torsion angle. (TP250 is shown.) A-side reference
points are in blue, B-side points are in red. Torsion angle is indicated by the light lines
connecting the reference points — 4b and la are included here since they would be used to
classify the shape of the conformation.



CHAPTER 4

RESULTS OF RANDOM CONFORMATIONAL SEARCHES AND DISCUSSION

4.1 Overview

There were considerable differences in the numbers of conformations found in the various

random searches (refer to the table below). The conformations all met the requirement of

having relative energies of no greater than a cutoff of 20 kcal/mol compared to the initial

local minimum for each search.

Table 4.1 Number of Conformations Found by Set of Conditions

Analog DM324 TP250

Force

Field
Tripos MMFF94 Tripos MMFF94

State vacuum solvent vacuum solvent vacuum solvent vacuum solvent

Number of

conformers
728 735 643 791 718 733 632 780

The reasons for this are not clear, although the type of force field may be relevant, since

the MMFF94 force field tended to produce a larger number of conformers than the Tripos

force field for the solvent phase. The state (vacuum or solvent) made little difference for

the Tripos results, but a large difference was observed in the MMFF94 results. The

numbers for the vacuum state were significantly lower than for the Tripos results, but

25
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significantly higher for the solvent state. There was no significant difference found in

comparing DM324 to TP250.

Histograms that display the distribution of conformations among the relative

energy (RE) bins (0 < RE < 4, 4 <= RE < 8, 8 <= RE < 12, 12 <= RE < 16, and 16 <= RE <= 20

kcal/mol) are shown below. Each histogram represents the results of one random search.

Vacuum phase is represented in the left column; solvent phase is on the right. Tripos

force field cases are in the first two rows — first DM324, then TP250; similarly, MMFF94

cases are shown in the lower two rows.

Note that in every instance, there is a shift to the lower relative energy bins for the

solvent cases compared to vacuum cases. The effect is more prominent in the MMFF94

situations. In the Tripos instances, TP250 relative energy results were significantly less

spread out (i.e., more concentrated in the lower relative energy bins) compared to the

DM324 results. Little difference between the analogs was observed for the MMFF94

cases. Comparing between force fields, an inverted relationship was seen between the

analogs. DM324 showed little difference for the vacuum phase, but a large shift to lower

energy bins for the MMFF94 force field relative to Tripos. Meanwhile, for TP250, the

vacuum cases showed a large shift to higher energy bins for the MMFF94 force field

relative to Tripos, but little difference existed in the solvation cases.

The following sections include some of the more detailed results shown

graphically in scatterplots. 	 Full sets of scatterplots can be found in Appendix D.



• 0-4 kcal/mol In 4-8 kcal/mol ♦ 8-12 kcal/mol 0 12-16 kcal/mol o 16-20 kcal/mol

Figure 4.1 Histograms for the eight cases considered.
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4.2 Tripos to Tripos Force Field Comparison

For the most part, there were few differences in the Tripos results. Typical results,

demonstrating a moderate amount of clustering, are shown below.

Figure 4.2 Typical Tripos scatterplot results.
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The major discrepancy found, involving the presence or absence of relatively large

clusters of data points representing conformations found, is noted below. Comparison of

Figure 4.2 (a) and (b) shows a cluster of data points around the +60 degree line of B4, and

between —180 and —140 degrees on the B5 axis, which appear in (b) but not in (a). A

second random search was performed, with the result shown in (c). Note that the cluster

of (b) previously discussed appears in (c), but is less dense, representing a smaller number

of conformations found in that section of torsional angle space.
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Figure 4.3 Results of random searches for torsion angles B4 and B5 of DM324 using the
Tripos force field. Plot (a) includes the initial vacuum phase results; (b) shows the results
for aqueous salvation; (c) shows the results of a second vacuum phase search.
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4.3 MMFF94 to MMFF94 Force Field Comparison

Very few differences were found between the MMFF94 results (refer to the figure

below). The solvent phase tended to produce more compact clusters of data points

(conformations) compared to the vacuum phase.

Protonated DM-324 (MMFF, vacuum) 	 Protonated TP250 (MMFF,vacuum)
A2 with B1 Torsion Angle A2 with B1 Torsion Angle

Figure 4.4 Typical MMFF94 scatterplot results.
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4.4 Tripos to MMFF94 Force Field Comparison

In general, there were no large differences between the Tripos and MMFF94 results.

The typical examples previously noted can be compared to demonstrate this.

One anomalous result was observed for the B4 torsion angle. 	 This was

particularly clear for the B5 vs. B4 scatterplots, as shown below.

Figure 4.5 Comparison of B5 vs. B4 scatterplots. On left are Tripos results (a) and on
right are MMFF94 results (b). Both are for DM324 and solvent phase.



The graphical representations of the B4 distributions are shown below.
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Figure 4.6 Graphical representations of B4 torsion angle ranges. The view is along the
B4 bond axis (into the plane of the paper). Each 0 stands for a phenyl group in the
bisphenyl fragment. Tripos case is on left (a), MMFF94 case is on right (b). Zero
position, defined by the hydrogen atom, is shown by red dashed lines.

4.5 Shape Analysis Results

The table below shows the distribution of conformational minima among the four shapes:

The large majority of conformations were found in the extended ("E") shape for all

combinations of variables. The V-shaped ("V") category was the second most

populated, with few instances in the cup-shaped ("C") and intermediate ("I")

configurations. This was less so for the DM324 analog in the Tripos force field, since it

exhibited moderately more conformations in the C and V shapes compared to the other

cases. In all cases, there were significant shifts to the lower energy bins for the solvent

state relative to the vacuum state
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The MMFF94 force field exhibited a shift away from the 0-4 kcal/mol relative

energy bin relative to the Tripos force field for the TP250 analog. The shift was larger

for the vacuum case than the solvation case. The trend was the opposite for DM324 in

the solvent case, with little difference seen in the vacuum case.

There were substantially more conformational minima in the 0-4 kcal/mol energy

bin for TP250 than for DM324 using the Tripos force field. Also in the Tripos case,

there were a moderately smaller number of conformational minima in the "C" and "I"

shapes for TP250 as compared to DM324. Regarding the MMFF94 force field, there

were no significant differences between the analogs.
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Table 4.2 Energy Distributions of Shapes

0-4 4-8 8-12 12-16 16-20 Tota/Shape

DM324 (Tripos, vacuum)

C(0<D<4.5) 15  6 0 0 0 21

I (4.5 	 D < 5.0) 5 10 1 0 0 16

V (5.0 5_ D < 7.0) 4 38 9 4 0 55

E (7.0 5 D) 10 257 297 67 5 636
Tota/bin 34 311 307 71 5 TOTAL: 728

DM324 (Tripos, solvent)

C(0<D<4.5) 22 2 0 0 0 24

I (4.5 	 D < 5.0) 7 10 0 0 0 17

V (5.0 <= D < 7.0) 21 25 9  2 0 57

E (7.0 	 121) 27 405 165 38 2 637

Total/bin 77 442 174  40 2 TOTAL: 735

DM324 (MMFF94, vacuum)

C(0<D<4.5) 0 0 0 0 0 0—

I (4.5 <= D < 5.0) 0 3 0 0 0 3

V (5.0 5 D < 7.0) 22 32 12 8 0 74

E (7.0 513) 26 162 210 150 18 566

Total/bin 48 197 222 158 18 TOTAL: 643

DM324 (MMFF94, solvent)

C(0<D<4.5) 0 0 0 0 0 0

I (4.5 513 < 5.0) 0 0 0 0 0 0

V (5.0 5_ D < 7.0) 15 25 3 6 1 50

E (7.0 	 1:',) 213 292 172 63 1 741

Total/bin 228 317 175 69 2 TOTAL: 791
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Table 4.2 Energy Distributions of Shapes (continued)

0-4 4-8 8-12 12-16 16-20 Total/shape

TP250 (Tripos, vacuum)

C(0<D<4.5) 2 0 0 0 0 2

1 (4..5<=D < 5.0) 1 0 0 0 0 1

V (5.0 	 1-_) < 7.0) 30 6 3 1 0 40

E (7.0 	 D) 214 329 118 14 0 675

Total/bin 247 335 121 15 0 TOTAL: 718

TP250 (Tripos, solvent)

C(0<D<4.5) 0 0  0 0 0 0

I (4.5 	 D < 5.0) 1 2 0 0 0 3

V (5.0 	 D< 7.0) 31 9 3 0 0 43

E (7.0 5 D) 335 264 83 5 0 687

Total/bin 367 275 86 5 0 TOTAL: 735

TP250 (MMFF94, vacuum)

C(0<D<4.5) 0 0 0 0 0 0

I (4.5 	 D < 5.0) 0 0 0 0 0 0

V (5.0 	 D < 7.0) 30 22 6 2 0 60

E (7.0 <D 49 209 190 114 10 572

Tota/bin 79 231 196 116 10 TOTAL: 632

TP250 (MMFF94, solvent)

C(0<D<4.5) 0 0 0 0 0 0

I (4.5 	 D < 5.0) 0 0 0 0 0 0

V (5.0 5_ D < 7.0) 26 22 5 1 0 54

E (7.0 	 121) 203 295 184 33 11 726

Total/bin 229 317 189 34 11 TOTAL: 780

In the figure below, the virtual torsion angles are plotted versus the minimum

distances. No significant differences were noted among the various cases.



Figure 4.7 Minimum distance versus virtual torsion angle for the various cases.
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4.6 Discussion

Several factors may have contributed to discrepancies: the relatively small number of

iterations performed during the Sybyl random searches; the use of multiple aggregates;

use of a constant vs. distance-dependent dielectric values between Tripos and MMFF94

force fields; omission of Bickel it charges in the Tripos searches; and differences in the

van der Waals and electrostatic terms between the two force fields.

The considerations involved with the number of iterations performed in Sybyl

RandomSearch have been discussed previously in this chapter (Section 4.2). Refer also

to section 2.5 in Chapter 2.

The Tripos user manuals note that errors may be induced by using more than one

aggregate simultaneously38 . No description was provided, but such errors may explain

some of the differences found, since four aggregates were present in the random searches

conducted for both vacuum and solvent phases.

The default dielectric function settings that were employed in the vacuum phase

random searches were also used for the solvent-phase searches, since comparability was

desired between phases. The difficulty arises from the differences in the dielectric

function — constant for MMFF94, distance-dependent for Tripos. The distance

dependency appears in the denominator of the electrostatic term (refer to section 2.1).

This would produce reductions in the size of the electrostatic term, as the distances were

greater than unity. This would tend to favor the closed over the extended conformations

to a greater degree in the Tripos force field model than in MMFF94.

The secondary purpose of this study was to compare the two force fields. Since

both force field models are empirical, it is difficult to decide which is more "correct". In
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the validation article for the Tripos force field 39, it was noted that electrostatic

considerations were omitted due to variability. Nevertheless, the electrostatic effects

make up a large part of the absolute energy values. Although absolute energies have no

physical meaning, variations in them will likely have a proportional effect on the relative

energies. Additionally, the electrostatic and van der Waals terms were computed

differently between the models. For instance, in the MMFF94 electrostatic term, the use

of a buffer effectively increases the distances, if only slightly, reducing the size of that

term. The difference in dielectric function, as previously noted, makes comparison more

difficult.

Despite these considerations, some tendencies can be noted and explained. As

previously noted, TP250 relative energy results were typically less spread out (i.e., more

concentrated in the lower relative energy bins) compared to the DM324 results. This is

likely due to the restriction of energetically favorable conformations to a smaller PES due

to steric effects owing to the hydrogen at the carbon atom at position 1 (on the piperadine

ring) for TP250 in place of the lone pair of the DM324 nitrogen atom (on the piperadine

ring).

The cause of the ("missing cluster") discrepancy in the Tripos-Tripos

comparisons is believed to be due to the relatively small number of iterations of the Sybyl

RandomSearch procedure. This is supported by the variability of the results noted. In

both the vacuum and solvent phase cases conducted (in which the minimum number of

occurrences of any conformer was one) there was a 50% likelihood that all conformers

had been found (refer to section 2.5)32.
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The difference between Tripos and MMFF94 results at the B4 bond may be due to

differences in the handling of the lone pairs of the oxygen at one end of the rotatable

bond. Using the MMFF94 model, conformations were found at and near the 0-degree

B4 torsion angle, despite poor steric interactions for the eclipsed (rather than staggered)

configuration. The difference can be seen in the relevant B3-B4, B4-B6, and A2-B4

scatterplots in Appendix D, as they are all based on the same B4 data as the

corresponding B4-B5 plots. However, no such effect occurs for rotatable bond B3, which

also includes the same oxygen. The major difference is the presence of the phenyl rings

one bond away from B4 but not B3. How steric effects between the phenyl rings and the

lone pairs of the oxygen can occur is unclear.

Overall, the previous considerations aside, the solvent modeling done in this

study shows no significant difference in the distribution of locations of conformational

minima in comparison to the vacuum phase.



CHAPTER 5

CONCLUSION

The results leave a number of questions unanswered, as well as raising others. However,

the purpose of the current project was to provide preliminary guidelines only, pending

more rigorous modeling using more sophisticated software packages. The importance of

the final applications would justify the effort expended. In addition, the methods may be

applied to studies other than ones concerned with finding a medication to treat cocaine

addiction. The primary purpose of the investigation - observing gross qualitative

differences between vacuum and solvent phases — showed that there were no major

differences.

Future investigators employing the Sybyl RandomSearch software would be well

advised to note the limitations previously cited in order to produce more accurate results,

or at least to keep the concerns noted in the discussion section (4.6) in mind. In this

study, the purpose was primarily comparison between the previously accomplished

vacuum phase results and the current implicit solvent phase results. Therefore, these

issues were not as relevant as they might be in other situations. In fact, they were more

necessary for facilitating such comparisons. It may be the case that Sybyl is better suited

to such preliminary qualitative investigations than more explicit or quantitative ones,

producing useful gross qualitative results. There exist more rigorous solvation models;

however, time and efficiency are often considerations. This is especially true in the case

of large molecules, which have considerable potential energy spaces, requiring a large
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amount of search effort. A slightly more rigorous model may be the best choice based

on those considerations.



APPENDIX A

SPECIFICATIONS FOR RANDOM SEARCHES

This Appendix provides details used for the Sybyl Random Search procedures.

Minimization details:

Method: Powell

Max. Iterations: 1000

Max. Displacement: 0.01

Min Energy Change: 0.05

Simplex threshold: 1000

LS Accuracy: 0.001

LS Step Size: 0.001

Status Update: 1

Graphics Update: 1

Initial Optimization: Simplex

Termination: Gradient

Non-bonded reset: 10

RMS Displacement: 0.001

Gradient: 0.05

Simplex Iterations: On; 20

Derivative Reset: 100

Color Option: Potential

Checkpoint Interval: 0

List Terms: Off
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Energy setup details:

Force field: Tripos or MMFF94

Charges: Gasteiger-Hűckel or MMFF94

Force Field Details:

One-Four Scaling: 1

H-Bond Radius Scaling: 0.7

Boundary Conditions [...]:

PBC' s (current): 0 A (all 3 cases)

Dielectric function: Distance (Tripos) or Constant (MMFF94)

Dielectric Constant: 1.0 (vacuum) or 80.0 (solvent)

NB Cutoff: 8.0

Aggregates: On

Constraints: Off

Ignore Atoms: Off

Random Search Details:

Maximum cycles: 1000

Energy cutoff: 20 kcal/mol

RMS Threshold: 0.2 A

Convergence threshold: 0.05

Maximum hits: 6

Check chirality: On

Check Symmetry: On
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Table A.1 Torsion Constraints for TP250

Atoms (of

piperadine ring)

Constant (Penalty)

Kcal/mol °K2

Default Torsions Violation Pwr

1 2 3 4 15.00 56.637 0.009

2 3 4 5 15.00 -58.920 0.006

3 4 5 6 15.00 58.924 0.008

4 5 6 1 15.00 -56.654 0.004

5 6 1 2 15.00 56.660 0.008

6 1 2 3 15.00 56.649 0.009

Table A.2 Torsion Constraints for DM324

Atoms (of

piperadine ring)

Constant (Penalty)

Kcal/mol °K2

Default Torsions Violation Pwr

1 2 3 4 15.00  56.002 0.014

2 3 4 5 15.00 -58.122 0.000

3 4 5 6 15.00 58.023 0.005

4 5 6 1 15.00 -55.793 0.017

5 6 1 2 15.00 57.945 0.003

6 1 2 3 15.00 58.054 0.002



Table A.3 Atoms Defining Torsion Angles of Rotatable Bonds

Rotatable bond Atoms

Al 3 4 23 2 4

A2 423 24 33

B1 2178 

B2 1 789 

B3 7 8 9 10

B4 8 9 10 47

B5 9 10 11 12

B5 DASH* 9 10 11 16

B6 9 10 17 18

B6 DASH* 9 10 17 22
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* 180 ° opposite of B5 or B6 respectively



APPENDIX B

SYBYL RANDOMSEARCH INSTRUCTIONS

This appendix provides instructions on running a random search using the Random

Search function of the Sybyl software on the Unix system. Tripos Bookshelf sections

Sybyl Basics p.7, Force Field pp.63-64, and Conformational Analysis pp.58-59 were used

to prepare this appendix. The example shown applies to the molecules used in this

study. Other applications may require different settings. Sybyl dialog boxes,

parameters, and settings are indicated in bold Arial typeface.

B.1 Initial steps

1. Log into the computer. The system prompt ">" should be visible. If necessary,

navigate to your assigned research area.

2. To start the Sybyl program, enter "Sybyl" at the prompt. In a minute or so, the Sybyl

window will open. The Sybyl menubar (at the top of the window) appears as shown

below:

Figure B.1 Sybyl menubar.
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Graphic manipulation tools are represented by icons along the left edge of the Sybyl

window. The textport window usually appears at the bottom of the terminal screen

(below the Sybyl window):

Figure B.2 Sybyl textport window.

3. To open the desired molecular description file "... .mol2" for reading, select File >>>

Read... and select the appropriate file. (If necessary, select a molecular area (i.e., work

area) - m1 is the default). Click on OK.

NOTES:

a) If the desired molecule is not in your research area, you can open another

console window to copy the molecule file to your area.

b) Help is available by using the Help menu at the right of the Sybyl menubar

and clicking on Start Bookshelf.

c) To eliminate an onscreen molecule, select Build/Edit >>> Zap (Delete)

Molecule... .

d) To undo an operation on a molecule, select Build/Edit >>> Undo... .
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B.2 Minimization

1. Click on Compute >>> Minimize.... The Minimize dialog box as shown below

will appear.

Figure B.3 Minimization dialog box.

2. Set Max Iterations to 1000.

3. The other settings should be as specified in Appendix A.

4. Select Energy Setup >>> Modify. An Energy dialog box like the one shown

below will appear.
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Figure B.4 Energy dialog box.

5. Select desired Dielectric Function (Distance [-dependent] or Constant) and

Dielectric Constant (1.0 for air or vacuum, 80.0 for water).

6. Click on Constraints [...]. Select Torsion Constraints. Set them according to

the details specified in Appendix A.

7. Click on Aggregates [...]. Make certain that there are only 3 aggregates (2 phenyl

rings and a naphthalene fused ring pair), and that their Status is Active.

8. Select the Constraints and Aggregates boxes. (They will appear red when

selected.)

9. Click on OK.

10. Click on OK in the Minimize dialog box. (The Job Name can be left at the

default: maximin.)

11. Messages will appear in the textport window. If "Optimization completed"

does not appear when Sybyl stops, return to the Minimize dialog box and click on OK
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again. Repeat until "Optimization completed" is seen in the textport window — this

may require several iterations.

B.3 Random Search

1. Click on Compute >>> Search >>> Random Search. The Random Search

dialog box will appear.

Figure B.5 Random search dialog box.

2. The molecule should be displayed on the screen. Click on Bonds to Search [...].

For each bond to be searched, select the atoms at both ends. The default is a search of all

bonds. Then click on OK.

3. Click on Minimize Details and review the settings. They should be the same as for

the minimization.

4. Click on Energy Setup. In the resulting Energy dialog, de-select Constraints

(the box to its left should not appear colored).
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5. Click on Aggregates [...]. Then click on New. On the displayed molecule,

highlight the 6 heavy atoms of the piperazine or piperadine ring. Click on OK, and

name the new aggregate. Make certain the Status of all 4 aggregates is Active. Then

click on OK.

6. Make certain that the Aggregates box is selected. Then click on OK in the Energy

dialog.

7. Click on Randomsearch Details. The dialog box shown below will appear.

Figure B.6 Random search details dialog box.

8. Set Maximum Cycles to 1000.

9. Set Energy Cutoff to 20.0.

10. Select the Chirality and Symmetry boxes.

11. The other settings should be as specified in Appendix A. Click on OK.
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12. Choose a unique Job Name and click on Search to start the random search. (It

takes several hours to complete.) The results are stored in a molecular database in the

directory in which the search is run.



APPENDIX C

RANDOM SEARCH SOURCE DATA INFORMATION

The source data for Sybyl random searches conducted in this study is located in a

subdirectory of Dr. Carol Venanzi's research area on the AFS system:

/afs/cad/research/chem/venanzi/14/searches_used. The original molecular description

files, prt_tp_2_50.mol2 for TP250 and M_dm324_rs2.mol2 for DM324, are in the

directory /afs/cad/research/chem/venanzi/2/eq_eq/.

The file designations are as follows:

RS1000 	 ..Random Search of 1000 maximum cycles

DE80 	 Dielectric constant of 80, simulating water

DE1	 Dielectric constant of 1, simulating vacuum

DM324 	  the DM324 (piperazine) analog of GBR12909

TP250 	 the TP250 (piperadine) analog of GBR 12909

M or trgh 	  minimization with torsion constraints on (non-aggregated)

piperazine or piperadine followed by random search with torsion

constraints inactivated and piperazine or piperadine treated as an

aggregate; Tripos force field and Gasteiger-Hűckel charges

DP   minimization performed as above, followed by random

search with torsion constraints deleted and piperazine or piperadine treated

as an aggregate; Tripos force field and Gasteiger-Hűckel charges

MMFF94 	 same as M, but with MMFF94 force field and charges
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APPENDIX D

SCATTERPLOTS

The following pages include full-size sets (each containing 14 torsion angle pairs) of

scatterplots for nine cases, in the following order:

Tripos force field:

DM324:

Vacuum*

Solvation

Second vacuum

TP250:

Vacuum *

Solvation

MMFF94 force field:

DM324:

Vacuum*

Solvation

TP250

Vacuum *

Solvation

* These scatterplots are courtesy of Deepangi Pandit of the Venanzi group, included for the

purposes of comparison.
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D.1 Tripos for DM324 and Vacuum

56

• 0-4 kcal/mol ■ 4-8 kcal/mol A 8-12 kcal/mol 0 12-16 kcal/mol 0 16-20 kcal/mol

Figure D.1 Protonated DM324 (Tripos, vacuum) A2 vs Al torsion angles.



57

* 0-4 kcal/mol a 4-8 kcal/mol ♦ 8-12 kcal/mol 0 12-16 kcal/mol  0 16-20 kcal/mol

Figure D.2 Protonated DM324 (Tripos, vacuum) B1 vs Al torsion angles.



Al Torsion Angle

0-4 kcal/mol 4-8 kcal/mol ♦ 8-12 kcal/mol o 12-16 kcal/mol  E 16-20 kcal/mol
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Figure D.3 Protonated DM324 (Tripos, vacuum) B5 vs Al torsion angles.



* 0-4 kcal/mol 4-8 kcal/mol ♦ 8-12 kcal/mol o 12-16 kcal/mol 16-20 kcal/mol

Figure D.4 Protonated DM324 (Tripos, vacuum) B6 vs Al torsion angles.
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Figure D.5 Protonated DM324 (Tripos, vacuum) B1 vs A2 torsion angles.
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Figure D.6 Protonated DM324 (Tripos, vacuum) B4 vs A2 torsion angles.
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Figure D.7 Protonated DM324 (Tripos, vacuum) B5 vs A2 torsion angles.
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Figure 0.8 Protonated DM324 (Tripos, vacuum) B6 vs A2 torsion angles.
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Figure D.9 Protonated DM324 (Tripos, vacuum) B2 vs B1 torsion angles.



Figure D.10 Protonated DM324 (Tripos, vacuum) B3 vs B2 torsion angles.



Figure D.11 Protonated DM324 (Tripos, vacuum) B4 vs B3 torsion angles.
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Figure 0.82 Protonated DM324 (Tripos, vacuum) B5 vs B4 torsion angles.
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Figure D.83 Protonated DM324 (Tripos, vacuum) B6 vs B4 torsion angles.
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Figure D.84 Protonated DM324 (Tripos, vacuum) B6 vs B5 torsion angles.
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Figure D.15 Protonated DM324 (Tripos, solvent) A2 vs A1 torsion angles.



Figure D.16 Protonated DM324 (Tripos, solvent) B1 vs Al torsion angles.



Figure D.17 Protonated DM324 (Tripos, solvent) B5 vs Al torsion angles.
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Figure D.18 Protonated DM324 (Tripos, solvent) B6 vs Al torsion angles.
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Figure D.19 Protonated DM324 (Tripos, solvent) B1 vs A2 torsion angles.



Figure D.20 Protonated DM324 (Tripos, solvent) B4 vs A2 torsion angles.



Figure D.21 Protonated DM324 (Tripos, solvent) B5 vs A2 torsion angles.
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Figure D.22 Protonated DM324 (Tripos, solvent) B6 vs A2 torsion angles.
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Figure D.23 Protonated DM324 (Tripos, solvent) B2 vs B1 torsion angles.
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Figure D.24 Protonated DM324 (Tripos, solvent) B3 vs B2 torsion angles.
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Figure D.25 Protonated DM324 (Tripos, solvent) B4 vs B3 torsion angles.



Figure D.26 Protonated DM324 (Tripos, solvent) B5 vs B4 torsion angles.



Figure D.27 Protonated DM324 (Tripos, solvent) B6 vs B4 torsion angles.
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Figure D.28 Protonated DM324 (Tripos, solvent) B6 vs B5 torsion angles.
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Figure D.29 Protonated DM324 (Tripos, 2nd vacuum) A2 vs A1 torsion angles.
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Figure D.30 Protonated DM324 (Tripos, 2nd vacuum) B1 vs A 1 torsion angles.
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Figure D.31 Protonated DM324 (Tripos, 2 nd vacuum) B5 vs A 1 torsion angles.



Figure D.32 Protonated DM324 (Tripos, 2nd vacuum) B6 vs Al torsion angles.



Figure D.33 Protonated DM324 (Tripos, 2nd vacuum) B1 vs A2 torsion angles.
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Figure D.34 Protonated DM324 (Tripos, 2nd vacuum) B4 vs A2 torsion angles.
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Figure D.35 Protonated DM324 (Tripos, 2nd vacuum) B5 vs A2 torsion angles.
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Figure D.36 Protonated DM324 (Tripos, 2nd vacuum) B6 vs A2 torsion angles.



Figure D.37 Protonated DM324 (Tripos, 2nd vacuum) B2 vs B1 torsion angles.
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Figure D.38 Protonated DM324 (Tripos, 2nd vacuum) B3 vs B2 torsion angles.



Figure D.39 Protonated DM324 (Tripos, 2nd vacuum) B4 vs B3 torsion angles.
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Figure D.40 Protonated DM324 (Tripos, 2nd vacuum) B5 vs B4 torsion angles.
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Figure D.41 Protonated DM324 (Tripos, 2 nd vacuum) B6 vs B4 torsion angles.



97

Figure D.42 Protonated DM324 (Tripos, 2nd vacuum) B6 vs B5 torsion angles.



Figure D.43 Protonated TP250 (Tripos, vacuum) A2 vs Al torsion angles.
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Figure D.44 Protonated TP250 (Tripos, vacuum) B1 vs A 1 torsion angles.
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Figure D.45 Protonated TP250 (Tripos, vacuum) B5 vs Al torsion angles.
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Figure D.46 Protonated TP250 (Tripos, vacuum) B6 vs Al torsion angles.
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Figure D.47 Protonated TP250 (Tripos, vacuum) B1 vs A2 torsion angles.



Figure D.48 Protonated TP250 (Tripos, vacuum) B4 vs A2 torsion angles.



104

Figure D.49 Protonated TP250 (Tripos, vacuum) B5 vs A2 torsion angles.



Figure D.50 Protonated TP250 (Tripos, vacuum) B6 vs A2 torsion angles.
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Figure D.51 Protonated TP250 (Tripos, vacuum) B2 vs B1 torsion angles.
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Figure D.52 Protonated TP250 (Tripos, vacuum) B3 vs B2 torsion angles.



Figure D.53 Protonated TP250 (Tripos, vacuum) B4 vs B3 torsion angles.
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Figure D.54 Protonated TP250 (Tripos, vacuum) B5 vs B4 torsion angles.
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Figure D.55 Protonated TP250 (Tripos, vacuum) B6 vs B4 torsion angles.
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Figure D.56 Protonated TP250 (Tripos, vacuum) B6 vs B5 torsion angles.
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Figure D.57 Protonated TP250 (Tripos, solvent) A2 vs Al torsion angles.
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Figure D.58 Protonated TP250 (Tripos, solvent) B1 vs Al torsion angles.
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Figure D.59 Protonated TP250 (Tripos, solvent) B5 vs Al torsion angles.
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Figure D.60 Protonated TP250 (Tripos, solvent) B6 vs Al torsion angles.



Figure 1).61 Protonated 1.1)250 (Tripos, solvent) 131 vs A2 torsion angles.



Figure D.62 Protonated TP250 (Tripos, solvent) B4 vs A2 torsion angles.
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Figure D.63 Protonated TP250 (Tripos, solvent) B5 vs A2 torsion angles.



Figure D.64 Protonated TP250 (Tripos, solvent) B6 vs A2 torsion angles.



Figure D.65 Protonated TP250 (Tripos, solvent) B2 vs B I. torsion angles.
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Figure D.66 Protonated TP250 (Tripos, solvent) B3 vs B2 torsion angles.
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Figure D.67 Protonated TP250 (Tripos, solvent) B4 vs B3 torsion angles.



Figure D.68 Protonated TP250 (Tripos, solvent) B5 vs B4 torsion angles.
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Figure D.69 Protonated TP250 (Tripos, solvent) B6 vs B4 torsion angles.



Figure D.70 Protonated TP250 (Tripos, solvent) B6 vs B5 torsion angles.
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Figure D.71 Protonated DM324 (Tripos, vacuum) A2 vs Al Torsion Angles.
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Figure D.72 Protonated DM324 (Tripos, vacuum) B1 vs Al Torsion Angles.



Figure D.73 Protonated DM324 (Tripos, vacuum) B5 vs Al Torsion Angles.
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Figure D.74 Protonated DM324 (Tripos, vacuum) B6 vs A 1 Torsion Angles.
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Figure D.75 Protonated DM324 (Tripos, vacuum) B1 vs A2 Torsion Angles.
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Figure D.76 Protonated DM324 (Tripos, vacuum) B4 vs A2 Torsion Angles.
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Figure D.77 Protonated DM324 (Tripos, vacuum) B5 vs A2 Torsion Angles.
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Figure D.78 Protonated DM324 (Tripos, vacuum) B6 vs A2 Torsion Angles.
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Figure D.79 Protonated DM324 (MMFF94, vacuum) B2 vs B1 Torsion Angles.
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Figure D.80 Protonated DM324 (MMFF94, vacuum) B3 vs B2 Torsion Angles.



Figure D.81 Protonated DM324 (MMFF94, vacuum) B4 vs B3 Torsion Angles.



Figure D.82 Protonated DM324 (MMFF94, vacuum) B5 vs B4 Torsion Angles.
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Figure D.83 Protonated DM324 (MMFF94, vacuum) B6 vs B4 Torsion Angles.



139

Figure D.84 Protonated DM324 (MMFF94, vacuum) B6 vs B5 Torsion Angles.
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Figure D.85 Protonated DM324 (MMFF94, solvent) A2 vs Al torsion angles.
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Figure D.86 Protonated DM324 (MMFF94, solvent) B1 vs Al torsion angles.
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Figure D.87 Protonated DM324 (MMFF94, solvent) B5 vs Al torsion angles.



Figure D.88 Protonated DM324 (MMFF94, solvent) B6 vs Al torsion angles.
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Figure D.89 Protonated DM324 (MMFF94, solvent) B1 vs A2 torsion angles.
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Figure D.90 Protonated DM324 (MMFF94, solvent) B4 vs A2 torsion angles.
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Figure D.91 Protonated DM324 (MMFF94, solvent) B5 vs A2 torsion angles.
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Figure D.92 Protonated DM324 (MMFF94, solvent) B6 vs A2 torsion angles.



148

Figure D.93 Protonated DM324 (MMFF94, solvent) B2 vs B1 torsion angles.
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Figure D.94 Protonated DM324 (MMFF94, solvent) B3 vs B2 torsion angles.



Figure P.95 Protonated DM324 (MMFF94, solvent) B4 vs B3 torsion angles.
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Figure D.96 Protonated DM324 (MMFF94, solvent) B5 vs B4 torsion angles.
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Figure D.97 Protonated DM324 (MMFF94, solvent) B6 vs B4 torsion angles.
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Figure D.98 Protonated DM324 (MMFF94, solvent) B6 vs B5 torsion angles.
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Figure D.99 Protonated TP250 (MMFF94, vacuum) A2 vs Al torsion angles.
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Figure D.100 Protonated TP250 (MMFF94, vacuum) B1 vs Al torsion angles.
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Figure D.101 Protonated TP250 (MMFF94, vacuum) B5 vs Al torsion angles.
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Figure D.102 Protonated TP250 (MMFF94, vacuum) B6 vs Al torsion angles.
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Figure D.103 Protonated TP250 (MMFF94, vacuum) B1 vs A2 torsion angles.



Figure D.104 Protonated TP250 (MMFF94, vacuum) B4 vs A2 torsion angles.
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Figure D.105 Protonated TP250 (MMFF94, vacuum) B5 vs A2 torsion angles.
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Figure D.106 Protonated TP250 (MMFF94, vacuum) B6 vs A2 torsion angles.



Figure D.107 Protonated TP250 (MMFF94, vacuum) B2 vs B I torsion angles.



Figure D.108 Protonated TP250 (MMFF94, vacuum) B3 vs B2 torsion angles.



Figure D.109 Protonated TP250 (MMFF94, vacuum) B4 vs B3 torsion angles.
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Figure D.110 Protonated TP250 (MMFF94, vacuum) B5 vs B4 torsion angles.
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Figure D.111 Protonated TP250 (MMFF94, vacuum) B6 vs B4 torsion angles.
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Figure D.112 Protonated TP250 (MMFF94, vacuum) B6 vs B5 torsion angles.
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Figure D.113 Protonated TP250 (MMFF94, solvent) A2 vs Al torsion angles.
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Figure D.114 Protonated TP250 (MMFF94, solvent) B1 vs Al torsion angles.
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Figure D.115 Protonated TP250 (MMFF94, solvent) B5 vs Al torsion angles.



Figure D.116 Protonated TP250 (MMFF94, solvent) B6 vs Al torsion angles.
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Figure D.117 Protonated TP250 (MMFF94, solvent) B1 vs A2 torsion angles.
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Figure D.118 Protonated TP250 (MMFF94, solvent) B4 vs A2 torsion angles.
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Figure D.119 Protonated TP250 (MMFF94, solvent) B5 vs A2 torsion angles.
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Figure D.120 Protonated TP250 (MMFF94, solvent) B6 vs A2 torsion angles.
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Figure 11121 Protonated TP250 (MMFF94, solvent) B2 vs B1 torsion angles.
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Figure D.122 Protonated TP250 (MMFF94, solvent) B3 vs B2 torsion angles.
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Figure D.123 Protonated TP250 (MMFF94, solvent) B4 vs B3 torsion angles.



Figure D.124 Protonated TP250 (MMFF94, solvent) B5 vs B4 torsion angles.
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Figure D.125 Protonated TP250 (MMFF94, solvent) B6 vs B4 torsion angles.



Figure D.126 Protonated TP250 (MMFF94, solvent) B6 vs B torsion angles.
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