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ABSTRACT

EXTENDING THE BOUNDARY METHOD FOR SOLVING HUMAN MOTION
PROBLEMS USING A 3 DIMENSIONAL COUPLED PENDULUM MODEL

by
Avani Janardan Patel

Mathematical modeling, an evolving area in movement analysis research, couples

quantitative measures of human motion with theoretical concepts in physiology and

mechanics. Literature reveals two methods to solve for human motion problems,

Forward and Inverse Mechanics. In this investigation, a new approach called the

Boundary Method is adopted to solve for human motion. This approach has the advantage

of being able to solve for both new motions and the net muscular joint forces required to

produce those motions but only at those discrete times and body configurations that are

believed to be most crucial for accomplishing the task.

The method is applied to solve for the dynamic equations of motion governing a

coupled double pendulum in 3 Dimensions.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to discuss the application of the Boundary Method to solve

human motion problems. The specific case studied is the shoulder, modeled as a 3D

system of two coupled pendulums with four degrees of freedom.

The equations are derived using the Lagrangian equations of motion. Given the

segment masses, segment lengths, distribution of mass in each of the segments, and

appropriate side conditions (either initial or boundary) the equations of motion can be

solved for the position of the segments at any given time. The Boundary Method enables

one to solve for many possible movement paths that can accomplish a given desired

motor task. The method breaks each movement path into a discrete and flexible number

of contiguous ballistic phases. Each ballistic phase is solved independently as a two point

boundary value problem. The two boundary points are the starting body configuration

and the target ending configuration. In addition, a time duration for moving from the start

to the target must be specified. The equations of motion are used to find a ballistic

solution. More precisely a ballistic solution is a motion path that moves the body from

start to target in the given duration using only gravity and the initial momentum in the

starting configuration. Since gravity does much of the work, in a ballistic solution

muscles would only be used to set the correct initial segment velocities for gravity to act

upon. Unlike an initial value problem, the initial velocity (momentum) of each segment is

not part of the input of a two point boundary value problem; rather it is part of the
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solution. So in this sense, the boundary method solves for both the motion path and the

necessary net muscle activity required to produce that motion. Therefore the boundary

method is neither an inverse nor a forward approach to solving biomechanical questions

involving the dynamics of movement but rather is a new approach for solving such

problems.

The method searches for a path that exploits gravity and momentum of the system

and can be used to optimize mechanical efficiency.

The 3D system of a coupled double pendulum is studied as a test case for the

more general form of a system of 'N' coupled pendulum in 3D. This general form has

been worked out by the research team in the Human Performance Lab.

1.2 Background Information

Biomechanics is the science which investigates the internal and external forces acting on

a human body and the effects produced by these forces. In the last several decades,

biomechanics has demonstrated considerable growth evolving from an exercise in the

filming of human movement to an applied science with a powerful array of measurement

and modeling techniques. The simple descriptive approach which was characteristic of

early work has been superceded by attempts to explain the mechanisms underlying

movement. Consequently, biomechanics has emerged as an important area of scientific

investigation in a variety of disciplines. Included among these are automobile safety,

biomedical engineering, ergonomics, exercise science, orthopedic surgery, physical

rehabilitation, and sport.

The development and application of mathematical modeling approaches designed

to investigate human movement is constantly expanding. These models are useful in
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better understanding movement and in estimating clinical parameters that are significant

but otherwise difficult to access. For example, joint reaction forces or stability indices

are clinically important but difficult to assess directly. Modeling techniques can also be

used to gather information regarding the action of muscles such as estimating force,

torque, work, power and duration of activity.

1.2.1 Forward and Inverse Dynamics

Modeling of human motion is dominated by two approaches: forward and inverse

dynamics, primarily because they either solve the dynamical equations of motion in a

forward or backward direction. The type of model used in a particular research situation

depends on the goal of the study and the type of data that has either been collected or is

otherwise made available.

Whether an inverse dynamics or a forward dynamics approach is used, the

modeling process must always include a reasonable idealization of the moving anatomic

and physical structures. Depending on the motion studied and the inherent complexity of

the associated model, the body is idealized as a two- or three-dimensional, multi-

segment, coupled pendulum system with segments represented as either point masses or

rigid bodies referred to as distributed masses.

Underlying every model mathematically are its equations of motion, which relate

the actual movement of the body to the applied forces, which cause the movement. How

the equations of motion are solved determines whether the modeling approach is forward

or inverse. Forward methods require forces as input and solve for the motion as output.
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Inverse methods use the equations backwards to solve for the forces necessary to

generate a given motion.

Although any given method and choice of dynamic variables may ultimately lead

to an equivalent system of differential equations that can be used to solve for either

kinetics or kinematics, the choice is not trivial. Different methods and choices for

dynamic variables can greatly simplify the explicit form of the equations, reduce the

number of redundant equations and/or the number of terms and non-linearities in each

equation. For problems involving a large number of degrees of freedom, the choice of

formulation method and dynamic variables can greatly affect the ease of formulating the

system of differential equations and the efficiency by which solutions can be achieved

using modern computational techniques.

For example, the Newtonian free-body diagram approach where the sum of all

externally applied force vectors is set equal to the sum of inertial terms often leads to a

redundant set of equations that may be difficult to systematically simplify. This is

because (reaction) force components that maintain configuration constraints but do no

work on the system are included in the free body diagrams that are used to setup the

equations.

Finding the equations of motion using the method of Lagrange is straight forward

once the appropriate work or energy (Lagrangian) function is obtained, and simply

involves taking the appropriate partial and time derivatives. However, when there are a

large number of degrees of freedom, this process can become quite tedious and can often

lead to equations that are much lengthier than the equivalent reduced equations finally

arrived at using the force methods of Newton or D'Alembert (Reference).
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The Lagrange method is usually more direct than either the Newton or

D'Alembert (Reference) methods for arriving at the correct set of independent motion

equations. For this reason it may be preferred in a forward dynamics approach when an

analysis of all the interacting forces in the system is of less importance than actually

obtaining the motion of the system itself. The Newtonian formulation method is used

more frequently in inverse dynamic studies because direct information about all the

forces, including the reaction forces that occur between interacting segments, is often

desired.

The major advantage of inverse modeling is that its required input (motion

kinematics and ground reaction forces) is readily measurable by sophisticated motion

analysis systems and force plates available in many research laboratories. The muscle

activity predictions obtained from inverse modeling are useful in estimating such

important quantities as the mechanical energy expenditure and the power consumption of

a performed movement. Such measures can provide a means for quantitatively

comparing different movements with respect to the forces, the mechanical energy, and

the power required to produce them.

A primary disadvantage of inverse models is that they require kinematics as input.

Because of this, inverse models can be used only to analyze movements that have already

been performed. They are incapable of generating system kinematics as output and,

therefore, cannot be used to predict new movement patterns. That is, they cannot suggest

better alternatives to present observable motions but can only compare or contrast

existing motions. Therefore, a different approach that can be used to propose other

movement options than the research subject is currently affording himself or herself is
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highly desirable. When the goal of the research is to predict new physically realizable

motions, forward models are ordinarily utilized.

Unlike the inverse method, forward models require forces as input and solve for

the motion as output. All forces acting on the system must be input to the model, while

accelerations are unknown and constitute model output. These dynamic accelerations are

used to solve for position (and velocity) segment trajectories as a function of time. Thus,

the causes of the motion are known by forward models, which predict the ensuing motion

of the system when such forces are applied.

In this way, the hierarchy of forward modeling more closely mimics the real

sequence of physiological events. Movement begins with neural drive to the muscles,

resulting in muscle force activity at the joints, and ultimately causing displacements of

the joints (i.e., the observed motion). Therefore, forward models will simulate physically

realizable movements when provided with input data resembling the net joint force

produced from neural input to the muscles. Unfortunately, noninvasive instrumentation

to measure such muscle forces does not exist presently. Therefore, forward models must

rely on estimates or even educated guesses of forces that must have acted on the system

in order to produce an observed movement.

In addition to net muscle force estimates, forward model input in a Newton-Euler

formulation of the equations of motion requires inclusion of all other body and contact

forces that could significantly contribute to the system's motion such as gravity, ground

and joint reaction forces. Forward approaches usually solve the differential equations of

motion as initial value problems and therefore both the initial system configuration

(segment angles) and the initial system velocity (segment angular velocities) are also
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required input. As with inverse solutions all forward solutions require accurate

anthropometric segment data.

The potential of the forward modeling approach is that new and better movement

solutions can be found that will optimize any sufficiently well defined performance goal.

In practice, however, the technique is very difficult to apply towards this goal. Many of

the motor tasks for which an optimal solution is desired are highly skilled movements

that are likely to be very sensitive to small changes in the dynamic forces applied to the

system. This inherent instability of the motion requires a very accurate guess of the net

muscle moments that must have acted at each joint of the system in order to produce the

improved movement and even educated guesses of what these net muscle moments might

be are not available.

After considering the limitations of existing modeling methods, it seems desirable

to try to develop a new modeling technique, which would try to address some of the

inadequacies of both inverse and forward models. Inverse models can effectively use

motion data collected in the lab to critically compare two given performance techniques

but cannot output new motions since they are input to the method. Forward models have

the potential for finding new movements to skilled motor tasks but to find such new

solutions requires very accurate input data (muscle force or EMG) that can not be known

or even reasonably guessed a priori.

1.2.2 Lagrangian Equations of Motion: An Energy Based Approach

Specific to any mathematical model are its equations of motion, which describe the

interaction between applied forces (kinetics) and the movement of limb segments

(kinematics). There are a number of methods that can be used to formulate equations of
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motion. Many of greatest names in the history of modern science such as Newton, Euler,

D'Alembert, Lagrange, Hamilton, Jacobi, Boltzmann, Gibbs have developed distinct

methods for constructing equations of motion.

For purposes of the research undertaken in this thesis, the Lagrangian approach

has been adopted. The formulation method of Lagrange uses an energy (rather than force)

approach and a more flexible (generalized) coordinate system than the Newtonian

approach. Force terms that do not contribute to the motion, such as reaction force

components that keep segment lengths constant, do not explicitly appear in the equations

of motion. These force components are implicitly accounted for in the Lagrangian

approach, either by a clever choice of independent generalized coordinates or by using

Lagrange multipliers. For example, choosing segment angles as the generalized

coordinate system implicitly allows for body movements to occur without violating the

constraints of constant segment lengths.

Lagrange's equations require the concepts of virtual displacement and employ

system energy and work as functions of the generalized coordinates to obtain a set of

second-order differential equations of motion. To a large extent the method reduces the

entire field of dynamics to a single procedure involving the same basic steps, regardless

of the number of segments considered, the type of coordinates employed, the number of

constraints on the model, and whether or not the constraints are in motion. In summation,

the Lagrangian method is characterized by simplicity and is applicable in any suitable

coordinates.
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1.2.2.1 The Generalized Coordinate. One of the foremost things to be determined

in a given system is the number of independent coordinates that represent the model. Any

set of time-dependent parameters that give an unambiguous representation of the system

configuration can serve as system coordinates. These parameters are known as

generalized coordinates, and they are denoted by [q] t,

The symbol []t indicates the transpose of an array or a matrix.

By definition, the first and second derivatives of a generalized coordinate q i with respect

to time are called the generalized velocity q

i

 and the generalized acceleration 4 i ,

respectively.

1.2.2.2 The Lagrangian Function L.	 The Lagrangian function L is defined as the

difference between the total kinetic energy KE and the total potential energy PE in the

system

The kinetic energy for a segment is defined as the work done on the segment to increase

its velocity from rest to some value v. Potential energy exists if the system is under the

influence of conservative forces. For the purposes of this discussion, segment potential

energy will be defined as the energy possessed by virtue of a segment (or particle)

position in a gravity field relative to an arbitrarily selected datum level (usually ground

level) in the system.
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1.2.2.3 Lagrange's Equations.	 Lagrangian equations of motion for a conservative

system with n generalized coordinates are given by:

where L = KE — PE.

1.2.3 The Lagrangian Derived from the Principle of Least Action

1.2.3.1 For a system of one particle. 	 Principle of Least Action says that nature

selects a motion path which tends to optimize (usually minimize) a real valued functional

called the action of the system, or in other words, it selects a path where the action is

critical.

The Lagrangian is defined as follows:

L(X, k) = K(X, X) - P(X)

where K = Kinetic Energy (a function of X and X )

P = Potential Energy (a function of X)

L is a function of position (X) and velocity(X ).

Action is defined as:

Consider a single particle with an initial configuration x 0 and a target configuration x f
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To travel from x 0 to x f , a multitude of paths can be chosen, for example,

x1, (t), x2 (t),........,xN(t). This is indicated in Figure 1.1

Figure 1.1 Particle can follow 'N' paths.

Suppose we select any arbitrary path x(t). Path x(t) can be approximated by dividing it

into 'N' equally spaced time-points separated by time At . As At gets smaller and smaller,

we get a better approximation for the path x(t).

Figure 1.2 An arbitrary path x(t) divided in 'N' equally spaced time points.

As indicated in Figure 1.2, each time-point has a corresponding value of the path

associated to it. The initial and final configurations, x 0 and x f ,respectively, are fixed.

Hence, path x(t) is a vector approximated as:
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In this approximation, the path x(t) can be considered as a point in 'N' space. Thus the

action functional, defined by Equation (1.1), assigns a number to each path (point) in its

domain.

Figure 1.3 Path X(t) is a point in 'N' space.

Once the path has been selected, the derived velocities from it are given by the vector:

The Lagragian, which is a function of position and velocity, assigns a value of L to each

', where i goes from 1 to N.

Hence the 'Action' for the path x(t) is approximated by:

Now we will consider all nearby paths to a given path X(t) by constructing a test function

(point) η(t) and scale it by a factor ε . η(t) is any arbitrary test oath that satisfies



The change in the action is given by:
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path x(t) and given test function η (t) as

Nature chooses an x(t) that is critical, in the sense that δA/δx|= 0, no matter what η(t)  is.
8x11

That is, for a path x(t) that is critical, the rate of change of the action is 0 no matter what

path nearby to it is chosen.



Expanding L[x + εη,x, εη] in a Taylor series about (x, ) gives the following

14

Integrating Equation (1.6) by parts, we get

Since η(t) = 0 for t = t 0 and t = t f , P = 0 in Equation (1.7)

Hence,

Equation (1.8) can also be written as

The equation above is a dot product between R and S. For a critical path x(t), R • S = 0 .

The only way that can be satisfied for all choices of η (t) , is to have R = 0.

Hence, we get
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1.2.3.2 For a system of N particles.	 Consider a system of N particles. Particle 1

follows a path x 1 (t) , particle 2 follows path x 2 (t) 	  path xN (t) for the Nth

particle. x(t) then, is a vector path consisting of 'N' particle paths.

The velocity vector is given by

The action for a system of 'N' particles is given by

The test function is given by

Scaling the test function by ε  gives us

Hence, for small ε a new nearby path to X(t) is defined by

The action for the old path is given by



The action for the new path is

Again, expanding L(x + εη,x + εη) in a taylor series about L(X, X) gives

16

Dividing by ε and taking the limit as ε ----> 0, we get

Integrating by parts

Since η(t) = 0 at times t0  and t f , we get



Equation (1.16) can also be written as

For a critical point, δA/δx= 0, for all choices of η , i.e,

17

Equation (1.17) is the Lagrange Equation of Motion for a system of N particles or an N

degree of freedom system.



CHAPTER 2

BOUNDARY METHOD: A DIFFERENT MODELLING APPROACH

2.1 Rationale

The forward and inverse methods respectively require either forces or the actual motion

as input to solve the equations of motion. Since muscle forces are not generally known

for a new movement pattern the forward method is not a practical method for finding new

movement patterns that solve a desired motor task. The inverse method does not solve for

motion patterns since they are input to the method. These two methods, therefore, lack

the ability to solve for new movement patterns to accomplish a particular task. The

boundary method approach has the advantage of being able to solve for both new motions

and the net muscular joint forces required to produce those motions.

2.2 Method Description

Although muscles are required to initiate movement, once initiated, movement can and

generally does continue without further muscular activity because of the momentum

initially imparted to the segments, and their interaction both with the gravitational field

and with each other. The motion of the system and its parts only stops because of the

presence of dissipative forces such as friction and joint viscosity that eventually removes

the macroscopic mechanical energy initially imparted to the system.

Macroscopic motion which is imparted to a system by the sudden injection of

energy into it is sometimes called ballistic because it is similar to what happens to a

projectile shot out of a cannon. After the initial explosive force that generates the

18
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projectile's initial velocity it continues to move towards the target by the action of gravity

alone. If the projectile is composed of many internal parts or segments, each rigid but

connected by movable joints then these segments will also continue to move relative to

each other as the system moves towards its target. If the initial velocity of each of its

segments is given, the motion of the system and of each of its parts is relatively easy to

calculate, since the only external force acting on the system is gravity. Frictional or

viscous forces can also be included if they are believed to play an important role.

Reaction forces at the points of segment contact, however, are only needed if a

free body Newtonian approach is used to solve for the motion of the segments. If an

energy based method such as Lagrangian or Hamiltonian mechanics is used then it is not

required to know joint reaction forces to solve for the motion since these arise as forces

of constraint that simply maintain the postulated rigidity of the segments.

The main point is that one does not need to know the muscle forces during a

ballistic motion because they are not active except to give the segments their starting

velocity at the beginning of the movement. Of course, it would be difficult in a

complicated system of joints and segments to know what the correct initial velocity of

each of the segments should be in order that the system might arrive from the action of

gravity alone in a desired target configuration at a specified target time.

If a ballistic solution exists we can solve the dynamical equations of motion either

as an initial value problem or as a two-point boundary value problem. The input required

to solve an initial value problem is the system's initial position and its initial velocity. In

a two-point boundary value problem the initial velocity of the system is not used as input

for the motion solution but is replaced by knowledge of the desired target position of the
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system. The two-points in a two-point boundary value problem are the initial and target

points. In a system consisting of many segments these two points really represent the

configuration of the system at each of these times. The coordinates of each point, for

example, could be represented by the location of each segment's center of mass or for

planar motion by the angle that the beginning of each segment makes relative to its

horizontal position. Instead of asking to find the motion of a projectile given its initial

position and velocity, a two-point boundary value problem solves for what the initial

velocity must be in order that the resulting motion solution hits the target configuration in

a specified time.

Ballistic motions, if they exist, are often quite efficient because muscles need act

only at the beginning of a movement. Gravity and the spontaneous transfer of momentum

between segments will accomplish the rest. Such ballistic motions however would often

require great skill to perform especially if they occur over a long duration. This is

because small errors in the initial velocities of the segments magnify into large errors in

the target configuration as the duration of the ballistic movement increases.

What happens if no solution exists that moves the body for a designated time from

a given starting configuration to a desired target configuration using muscles only to

deliver the initial segment velocities? Unlike many initial value problems, the solution of

a boundary value problem is not guaranteed to either exist or even be unique if it does

exist. Perhaps if a single ballistic solution does not exist, the motion could be successfully

performed if two ballistic phases were allowed. One ballistic phase is used to get to an

important intermediate target configuration. This configuration serves as the initial

configuration of a second ballistic phase where muscle activity is again permitted to



21

actively change the momentum of some or all of the segments to complete the motor task

in the second ballistic phase.

The boundary method approach for this two ballistic phase motion will consist of

three input configurations (initial, intermediate and target) and the target time will be the

sum of the two times to complete each phase separately. Both ballistic phases are solved

as separate and independent two-point boundary value problems. The entire motion will

now consist of the two ballistic solutions contiguously pieced together. The complete

motion will be continuous since the end configuration of the first ballistic phase solution

is the beginning configuration of the second ballistic phase. Since both phases are solved

separately and independently the final segment velocities at the end of the first ballistic

phase solution will not, in general, match the initial velocities that are given by the

solution of the second phase.

The method, therefore, generates as output the sudden change in segment velocity

that is required to be delivered by the muscles at the crucial intermediate configuration in

order to complete the task in the designated time. If there are several two phase ballistic

solutions each obtained with a different intermediate configuration then each would

represent a different possible movement strategy that solves the desired motor task. Since

the solution of a boundary value problem is not guaranteed to be unique, there may be

several single phase ballistic solution strategies as well to choose from. Different motion

solution strategies will predict that muscles deliver different amounts of mechanical

energy to the system and one of many possible selection criteria could be to search for

that strategy that minimizes muscular effort, assuming, of course, that this can be defined

in some reasonable way.
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Of course, one need not restrict the search for motion strategies that are limited to

one or two ballistic phases. If more ballistic phases than two are permitted then more

intermediate configurations must be specified as input. This results in more times when

muscle activity occurs. In the limit of a large number of phases, the boundary method

approaches a type of (stable) inverse dynamics since essentially the input consists of a

given motion and the output consists of the large number of impulsive forces that are

required to produce it. At the other extreme, a single ballistic phase solution is a type of

forward dynamic solution where the forces are known but no muscle force terms are used

in the equations of motion since the motion is assumed to be ballistic.

In summary, the Boundary Method breaks any movement task into a finite and

adjustable number of separate contiguous phases. Each phase is solved as an independent

ballistic two-point boundary value problem using Lagrangian Mechanics. The generated

output will always be the continuous motion obtained by piecing together the

independent two-point boundary value solutions of the separate but contiguous ballistic

phases. In addition, the generated output will also consist of a predicted series of

impulsive "hammer blows" that represent the net impulsive muscle forces that are needed

to suddenly change the segment velocities at the beginning of each contiguous phase. The

Boundary Method yields muscular activity at a finite but adjustable number of discrete

times during the motion.



CHAPTER 3

EQUATIONS OF MOTION

3.1 Equations of Motion for a Double Pendulum in 3 Dimensions

Figure 3.1 Double pendulum in a cartesian coordinate system.

Consider a double pendulum attached end-to-end as shown in figure 3.1. Point

0(0,0,0) identifies the origin of the system. The first pendulum has length 1 1 and the

second has a length 1 2. Mass points m 1 and m2 are located at distances z, and (11  + z 2 )

respectively, from the origin. θ1 (theta 1) and θ2 (theta 2) are the angles which pendulum

1 and pendulum 2 respectively, make with the positive z axis. The projection of

23
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pendulum 1 and pendulum 2 onto the x-y plane, makes an angle (1) and 0 2 respectively,

with the positive x axis.

Hence, the system has four degrees of freedom as defined by the four angles.

Relation Matrix:

The relation matrix R shows the relationship of connection between segments of the

system. Each row of R represents a point mass of the system, and has information about

the path from the origin of the system to the point mass. Each column represents a

segment, and has the information about the usage of the segment for every path to point

masses. For a system with S segments and P point masses, the relation matrix R has the

form as

The path from the origin to the p-th point mass may consist of many segments. Let us

assume that the p-th point mass is on the i-th segment of the system. Then, the i-th

segment is the last segment of the path, and all other segments of the path are called

forefather segments of the i-th segment.

Using the above information each element rps of R can be determined as follows:



where

zP : mass center of the p-th particle from the joint with its forefather segment

LS : length of the s-th segment

p = 1, 2, ... P (P: total number of particles)

s = 1, 2, ...S (S: total number of segment).

Relation Matrix for the Double Pendulum: 

The relation matrix R for the double pendulum with two point masses m1 and n

length 1 1 and (11+12) from the origin respectively, is given by

x-, y-, and z- coordinates for a system of s- segments and p- mass points: 

After the relation matrix is determined, the general x, y and z- coordinates of point

masses can be written as follows:
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where

θs : Angle of the s-th segment with respect to the positive z-direction.

φs : Angle of the s-th segment with respect to the positive x-direction.

Double pendulum coordinates: 

The coordinates of the two mass points m(x1,y1,z1) and m2(x2 ,y2,z2) are given by
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Velocity of components in the x- and y- and z- direction : 

From the x-, y- and z- coordinate equations, the x- and y- and z- component of the

velocity ofp point masses can be determined as follows
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Double pendulum velocity components in the x, y, and z directions: 

The velocity components for point masses m 1 (x1 , y1 , z1 ) and m2 (x2 ,y,2z2) are given by

where



Hence, the velocity components of the system under consideration are given by
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Potential Enemy: 

The total potential energy of a system can be calculated by adding up potential energies

of all point masses of the system.



Potential Energy for the double pendulum: 

Potential energy for the system of two point masses m 1 and m2 is given by
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Hence the final form for the potential energy of a double pendulum with two point

masses is

Kinetic Enemy: 

Adding up kinetic energies of all point masses of a system gives the total kinetic energy

of the system. When the mass and the velocity of the p-th point mass are m P and vP,

respectively, the kinetic energy of the point mass is given as ep= (1 / 2) m P |v 2P|.
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If |v2p| is substituted by (x2p + y2p + z2p) the total kinetic K of a system with P

mass points can be written as follows:

Then the total kinetic energy can be written in a compact form as:

where

and M is a 2s x 2s symmetric matrix that can be represented as a 2 x 2 block matrix
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where each block matrix Mij (i = 1,2; j = 1,2) is an s x s whose elements are given by,

and i & j go from 1 —> s (s = 2 for the double pendulum), where s is the number of

segments in the system.

Block matrices M11(i, j) and M 22 (1, j) are symmetric in the sense that:

Results (3.23) and (3.24) imply that

Kinetic Energy for the double pendulum: 

Generalised form of Kinetic Energy reads as

For a system of two pendulum with two point masses



The submatrices M,,, M 12 5 M 21 5 and M 22 are calculated in the following manner:
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Hence, the Kinetic Energy for the double pendulum is given by

The Lagrangian: 

The Lagrangian is defined as

The Lagrangian for the double pendulum is given by:

Equations of Motion: 

For a conservative system the i th equation of motion is given by
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The ith equation of motion in a matrix-vector format is given by:

Hence, the general form for the equations of motion is as follows:

A system of two pendulums with four degrees of freedom is governed by the four

equations of motion as shown below:
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Hence, the form of the equations of motion for the double pendulum system is as follows:

The matrix-vector format is given by:

where



3.2 Equations of Motion for a 3D Single Pendulum Derived as a Check for the
3D Double Pendulum Equations

36

Figure 3.2 Single pendulum in a cartesian coordinate system.

Figure 3.2 shows a single pendulum with length 1 and a mass m in a cartesian

coordinate system. The mass 'm' located at a distance 'z' from the origin, has coordinates

(x,y,z). The pendulum makes an angle (theta) 0 with the positive z — axis. Its projection

onto the XY plane makes an angle (phi) 4 with the positive direction of x — axis.
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The above system has two degress of freedom given by the two angles: theta and

phi. At any given point in time, the position of the pendulum can be determined if the

angles 0 and (I) are specified.

The equations of motion governing the system in 3D can be determined using the

Lagrangian method.

Relation Matrix: 

The relation matrix R shows the relationship of connection between segments of the

system, where each row of R represents a point mass of the system, and has the

information about the path from the origin of the system to the point mass. Each column

represents a segment, and has the information about the usage of the segment for every

path tp point masses. For this particular system, with one segment and one point mass, the

relation matrix R has the form:

After determining the relation matrix, the x- and y- and z- coordinates of a point mass can

be written as follows:
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From Equation (3.53), (3.54) and (3.55), the x- and y- and z- components of velocity can

be determined as follows:

Potential Enemy: 

The potential energy for the system is given by:

Kinetic Enemy: 

The total kinetic is given as K = [1/2 • m • v 2 ] .The velocity term, v 2 , is determined by

adding up the velocities in x-, y- and z- directions.
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where, M11, M12, M21, and M22  are block matrices of the Mass matrix M, each with

dimension s x s . Here, s is the number of segments in the system, which in this case is

one. Hence, the mass matrix M is a 2 x 2 matrix.

Again, each block matrix is given by the following equations:

For this particular case, i and j are one.

Cij= RT• MD•R

Let us define a matrix M D , which is a pxp, where p is the number of point masses in

the system.

Hence MD for this example is given by:



The expression for the Kinetic energy is given by:

The Lagrangian is given by: L = K — P

The equations of motion are given by:

Hence, the equation of motion in a vector — matrix format is given by:
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The equations of motion for a 3D single pendulum are given by:



CHAPTER 4

NUMERICAL METHODS FOR SOLVING THE EQUATIONS OF MOTION

Given the equations of motion, one needs to solve them numerically to solve for motion

problems. For purposes of this dissertation, two methods are discussed; the Initial Value

Problem and the two point Boundary Value Problem.

4.1 Initial Value Problem

The input to an initial value problem (IVP) is the system's initial position and initial

velocity. That is, we are given

Given these two side conditions it is possible to solve the dynamical equations for the

motion X(t). These dynamical equations of motion take on a general form M • A = g ,i.e,

The generalized mass 'M' is a function of position only, whereas the force term g is a

function of both position and velocity. Since X0 and V0 are known at time t = 0, we could

solve for V, (acceleration) as follows,
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*Numerically, the inverse ofM(X 0 ) is not calculated, since it is inefficient to do so. In

practice, an 'IX Decomposition' of M is used to solve for T o . See Section (4.2) for

explanation.

To obtain the position (X) and velocity (V) at the next time step ' Δ t', Euler's Method

can be used as shown below.

where V(t) is the rate of change of velocity at time 't' (acceleration) and

Hence, the position and velocity for the next time step is obtained, which can be used to

solve for the acceleration V at that time step. Iterations over Equations (4.2), (4.3) and

(4.4), solves for an approximation of the motion X(t) (as well as V(t) and V(t)) at discrete

time steps of Δ t .This approximation becomes more accurate as the time step is

decreased. It should be sufficiently small to give accurate results. But here there is a trade

—off between accuracy and computational iterations. As At gets smaller, the number of

iterations increases which effectively reduces computation speed.

Often a higher order accuracy method such as the Runge Kutta method is used to

iterate over time't'. The advantage here is that the time step ' Δ t' can be made large,

reducing the number of iterations involved in the computation.
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4.2 Solving the Ax = b Problem

The matrix shorthand Ax = b, is a common Linear Algebra problem which solves for

vector 'x' given matrix 'A' and vector 'b'. One way to solve this problem could be to

solve for the inverse of 'A' and multiply it by 'b' to get K , i.e,

But as stated in Section (4.1), this method is not very efficient, especially if 'N' (the

number of unknowns) is very large. Instead of finding the inverse, what is done

numerically is called the `LU Decomposition' of matrix 'A'.

Gaussian elimination allows the matrix 'A' to be written as a product of two matrices,

where 'I.,' is the lower triangular matrix (has elements only on the diagonal and below)

and `U' is upper triangular (has elements only on the diagonal and above). For the case of

a 4 x 4 matrix 'A', for example, equation (4.5) would look like:

A decomposition such as (4.5) can be used to solve the Linear set

by first solving for the vector y such that
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and then solving the upper triangular system

for the desired unknown x.

The advantage of breaking up one linear set into two successive sets is that the solution of

a triangular set of equations is quite trivial.

Thus, Equation (4.8) can be solved by forward substitution

while Equation (4.9) can be solved by back substitution

Equation (4.11) gives a solution for the vector R .

Going back to Equation (4.1) we have

This is also an Ax = b problem where



From Equation (4.5) we have that

Since M(x) is a symmetric matrix,

From Equations (4.12), (4.13) and (4.14),
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Hence, Equation (4.18) can be solved for 'C' by 'forward substitution.'

Again, by Equation (4.17)

C = LT V , we solve for V by 'back substitution.'

4.3 Two point Boundary Value Problem

Unlike an initial value problem, the input to a two point boundary value problem (BVP)

is the desired initial (X0 ) and target (XT ) configuration of the system, and a time period

(T). Given this, the method searches for an initial velocity that can take the system from
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the initial configuration to the target configuration in time 'T.' In the shooting method for

solving the BVP, we start by taking a guess at this initial velocity and solve an Initial

Value Problem to arrive at a configuration X(T). The guess may or may not take the

system to the target configuration. If it is not the right initial velocity, the solution might

overshoot or undershoot the desired configuration. Both cases will generate an 'error' by

which the solution misses the target (X T ) .

The error is given by

where V0 = initial guess

This error is used to guess at a new velocity by using Newton's approach as shown below

Figure 4.1 Error-velocity curve.
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In Figure 4.1, e0 is the error for the old velocity (V 0 ) guess. Using Newton's approach, a

straight line is drawn at point A. This line intersects the x-axis at point B which

corresponds to velocity V n which represents the next initial velocity guess. For this

velocity, the error would come out to be zero if e(V 0 ) were linear (which it is not) . This

fact enables us to find Vn and use it as our next guess.

The equation for the straight line is given by

Equation (4.22) is also an Ax = b problem (see Section 4.2), where we are solving for

de/dV|V0 is the Jacobian Matrix of N x N or 2s x 2s dimensions, where 'N' is the number of

degrees of freedom and 's' is the number of segments of the system. The elements of the

Jacobian are given by

In Equation (4.23), δei/δVj is the rate of change of error when V0 is changed by a small

amount Av . Once the Jacobian (see Section 4.3.1) is constructed, it is used to solve for

δV.
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Equation (4.24) solves for V,„ the new guess for velocity. In general, for every new

velocity guess, 2s+1 initial value problems are solved. One IVP for the initial guess and

2s IVP's for constructing the Jacobian matrix.

4.3.1 Solving for the Jacobian

The elements of the Jacobian matrix give the rate of change of error for a small change

Av in each independent coordinate direction. If there are 'N' unknowns then the Jacobian

is a NxN matrix.

Let the number of unknowns be 2. Hence N = 2.

Let the initial guess for the velocity be given by

An IVP is solved to arrive at configuration X 0 (T) . The error is given by

By Newton's approach,
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Figure 4.2 Independent velocity directions. 	 Figure 4.3 Error for the velocity.

In Figure 4.2 and Figure 4.3, point C represents the initial velocity guess and the resulting

error, respectively. Let us move Av in direction V1 , then the coordinates for point A are

given by (VI + Δv, V2 ) (Figure 4.2). An WP is solved to arrive at error [e1 ] as shown in

Figure 4.3(point A). Change in error in direction V ] is given by

Similarly, let us move Av in direction V

2

, then the coordinates for point B are given by

(V1 , V2 + Δv) (Figure 4.2). Again, an IVP is solved to arrive at error [62 ] as shown in

Figure 4.3(point B). Change in error in direction V

2

 is given by
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Hence, the Jacobian, which in this case will be a 2 x 2 matrix, is given by

4.4 Equations of Motion with Constraints

Motion for many systems in practice is constrained. This section, discusses the solution

of equations of motion with constraints. A constraint can often be written in the form

where X is the position variable

If there are 'k' such constraint equations. G is a k x 1 vector

Again,	 G(X) = 0

i.e.	 G(X(t)) = 0
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Applying the chain rule, we get

Again, applying the product rule, we get

i.e.

or,

Hence, the equations of motion with constraints can be written as

and

Equation MX - VG T • λ, = F can be written as

(VGT • λ) can be thought of as constraint forces. Just like the unconstrained case, the

equations of motion are solved numerically as an Ax = b problem. For the constrained

case, besides solving for the acceleration, the equations of motion also solve for λ(t), the

Lagrange multiplier at each time step.
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For an 'N' degree of freedom system and 'k' constraints, the matrix vector format for the

equations of motion read as follows

G(X) = 0

where



CHAPTER 5

CONCLUSIONS

A 3 dimensional double pendulum system with four degrees of freedom has been

developed in this thesis, which can be solved numerically using the 2 point boundary

value method. The equations of motion with constraints have also been discussed for

applications that have a constrained motion. A computer code to solve the equations of

motion for a double pendulum in 3D has been started. The code uses the numerical

methods outlined in this thesis to solve the Ax = b problem. Once the simulation is set up,

this model can be used to imitate the shoulder joint, where the clavicle and humerus are

modeled as a coupled pendulum in 3 dimensions. But unlike this model, which has

unrestricted movement, the human shoulder has physiological constraints which restrict

its movement. The joint structure of the shoulder plus the tendons and muscles that insert

into it restrict freedom of movement of the joint. Hence, for practical solutions to the

equations, we need to develop constraint equations that are the natural constraints present

in the shoulder. Future work would include developing these constraints and using them

to solve the equations of motion.

Once a working model has been developed, it can be used to solve for human

motion problems and provide an insight into new movement patterns that exploit

momentum and gravity so that they are more efficient. These more efficient movement

patterns are also less likely to produce shoulder injury because they would avoid energy

dissipating collisions with the shoulder constraint surface. This might be particularly
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important in sport applications such as in baseball throwing and pitching where high

velocities are used and shoulder injury is common.

The mathematical model developed is general enough to be extended to solve for

a system of 'N' coupled pendulums. It can be used to model other segments of the human

body. Future research would also include modeling joint rotation, which is an important

and interesting property of the joints. The research undertaken in this thesis has a lot of

future potential in solving human motion problems.
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