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ABSTRACT

A STATISTICAL ULTRA WIDEBAND INDOOR CHANNEL MODEL AND THE
EFFECTS OF ANTENNA DIRECTIVITY ON MULTIPATH DELAY SPREAD

AND PATH LOSS IN ULTRA WIDEBAND INDOOR CHANNELS

by
Jason Anthony Dabin

Ultra-wideband (UWB) indoor frequency domain channel measurements have been

performed in the 2 GHz to 6 GHz frequency band using three different

transmitter/receiver (Tx/Rx) antenna combination pairs. The effects of antenna directivity

on path loss and multipath propagation in the channel were analyzed extensively for

various omni-directional and directional antenna combinations. A statistical model of the

path loss in the channel is presented, where the parameters in the model (i.e., path loss

exponent and shadow fading statistics) are dependent on the particular Tx/Rx antenna

combination. Time domain statistics of the channel (i.e., mean delay spread and RMS

delay spread) are analyzed thoroughly for each antenna combination. Results show that

RMS delay spread increases over distance for all three antenna combinations, but at a

greater rate when directional antennas are used in the channel. There is a significant

reduction in RMS delay spread when directional antennas are used at the transmitter and

receiver or solely at the receiver with respect to an omni-directional/omni-directional

antenna pair. Results show that directional antennas can be used as an effective way of

mitigating the effects of multipath propagation in UWB indoor channels. A distance

dependent statistical impulse response model of the channel is also presented, which

statistically reproduces the impulse response of the channel with high fidelity.



A STATISTICAL ULTRA WIDEBAND INDOOR CHANNEL MODEL AND THE
EFFECTS OF ANTENNA DIRECTIVITY ON MULTIPATH DELAY SPREAD

AND PATH LOSS IN ULTRA WIDEBAND INDOOR CHANNELS

by
Jason Anthony Dabin

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

May 2004



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE

A STATISTICAL ULTRA WIDEBAND INDOOR CHANNEL MODEL AND THE
EFFECTS OF ANTENNA DIRECTIVITY ON MULTIPATH DELAY SPREAD

AND PATH LOSS IN ULTRA WIDEBAND INDOOR CHANNELS

Jason Anthony Dabin

Alednder M. Haimovich, Thesis Advisor 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Haim Grebe1, Thesis Co-Advisor 	 IDate
Professor of Electrical and Computer Engineering, NJIT

Dr. LaEra_eieenstein, Committee Member 	 Date
Research Scientist, WINLAB, Rutgers University



BIOGRAPHICAL SKETCH

Author:	 Jason Anthony Dabin

Degree:	 Master of Science

Date:	 May 2004

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology,
Newark, New Jersey, 2004

• Bachelor of Science in Electrical Engineering Technology,
New Jersey Institute of Technology,
Newark, New Jersey, 2001

• Associate of Applied Science in Electrical Engineering Technology,
County College of Morris
Randolph, New Jersey, 1999

Major:	 Electrical Engineering

Presentations and Publications:

Jason A. Dabin, Nan Ni, Alexander M. Haimovich, Edip Niver, and Haim Grebel,
"The Effects of Antenna Directivity on Path Loss and Multipath Propagation in
UWB Indoor Wireless Channels," Proceedings of the 2003 IEEE Conference on
Ultra Wideband Systems and Technologies, Reston, VA, pp. 305-307, November
2003.

iv



To my parents, brother, and sister

v



ACKNOWLEDGMENT

I sincerely express my gratitude and appreciation to Dr. Alexander M. Haimovich

and Dr. Haim Grebel for all their encouragement, guidance, and support, which led to the

completion of this thesis. Also, I especially thank Dr. Edip Niver for all his help and

insight regarding RF measurements and channel measurement apparatus. I would like to

gratefully thank Dr. Larry J. Greenstein for his many helpful insights and suggestions,

and participation as a member of my committee. My appreciation and thankfulness is

expressed to Dr. Saeed S. Ghassemzadeh for his many helpful suggestions.

I would like to thank Ivan Seskar of the Wireless Information Network

Laboratory (WINLAB) at Rutgers University for all his assistance and helpul suggestions

regarding RF measurements. Also, I would like to thank Andrej Domazetovic for his

helpful discussions during his time at WINLAB as a graduate student.

Much appreciation is extended to my fellow graduate students in the

Communications and Signal Processing Research Laboratory at NJIT, in particular;

Nikolaus H. Lehmann, Dr. Jingdi Zeng, Nan Ni, and Hongsan Sheng for all their

invaluable suggestions and support. Also, I would like to sincerely thank Marlene

Toeroek for all her administrative assistance.

vi



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

2 MEASUREMENT SYSTEM AND PROCEDURE 	 5

2.1 Measurement System 	 5

2.2 Procedure and Environment 	 8

2.3 Summary 	 10

3 LARGE SCALE FADING 	  11

3.1 Data Reduction  	 11

3.2 Path Loss Model 	 14

3.3 Summary 	 22

4 TIME DOMAIN ANALYSIS 	  23

4.1 Data Reduction 	  23

4.2 Multipath Delay Spread Analysis 	 25

4.2.1 RMS Delay Spread versus Distance 	 30

4.2.2 Distribution of RMS Delay Spread over Distance 	 33

4.2.3 Correlation Between Shadow Fading and RMS Delay Spread 	  36

4.3 Summary 	 42

5 CHANNEL IMPULSE RESPONSE MODEL 	 44

5.1 General Impulse Response Model Representation 	 44

5.2 Channel Impulse Response Measurements.  	 46

5.2.1 Conjectures of Impulse Response Measurements.  	 46

vii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

5.2.2 Effects of Antenna Directionality on Power Delay Profiles 	 52

5.3 Power Delay Profile Model.. 	 58

5.4 Omni-Directional/Directional Channel Model Description 	  63

5.5 Omni-Directional/Directional Channel Model Parameters 	 65

5.5.1 Cluster Intercept Parameter 	 66

5.5.2 Cluster Interarrival and Ray Intra-arrival Times 	 70

5.5.3 Cluster and Ray Decay Factors 	 70

5.5.4 Random Variation of Cluster and Ray Power Gains 	 73

5.6 Omni-Directional/Directional Channel Model Simulation Results 	 76

5.7 Summary 	 82

6 CONCLUSIONS 	  83

REFERENCES 	  86

viii



LIST OF TABLES

Table Page

3.1 Path Loss Exponent a and Standard Deviation of the Shadow Fading Random
Variable X  21

4.1 Descriptive	 Statistics	 of RMS	 Delay	 Spread	 for	 All	 Three	 Antenna
Combinations  27

4.2 Descriptive Statistics of the Mean Delay Spread for All Three Antenna
Combinations  27

4.3 % Power, Mean RMS Delay Spread Ti„ and Mean Number of Paths Bp  for

Threshold Levels of 10 dB, 20 dB, and 30 dB Below the Maximum
Component 	 29

4.4 Standard Deviation of s, For Each Antenna Combination   36

4.5 Correlation Coefficient Between Shadow Fading and RMS Delay Spread. 	 40

5.1 MMSE Estimates for Parameters of Equation (5.19) 	 69

5.2 MMSE Estimates for Parameters of Equation (5.21)  73

5.3 Standard Deviations of Cluster and Ray Power Gain Distributions 	 75

5.4 Mean Values of a, and Number of Paths Bp  of Simulated Data for Threshold
Levels of 10 dB, 20 dB, and 30 dB Below the Maximum Component 	 81

ix



LIST OF FIGURES

Figure	 Page

2.1 Frequency domain channel sounder measurement system 	 6

2.2 Hewlett Packard 8510C Vector Network Analyzer (VNA) (center) 	 7

3.1 Scatter plot of path loss vs. Tx/Rx separation distance and the least squares fit to
the data for all three antenna combinations 	 16

3.2 Normal probability plots of the shadow fading parameter X (a) omni-
directional/omni-directional. 	 (b) omni-directional/directional.	 (c)
directional/directional 	 17

4.1 CDF of RMS delay spread values over all locations for each antenna
combination 	

26
4.2 RMS Delay Spread versus Distance. (a) omni-directional/omni-directional. (b)

omni-directional/directional. (b) directional/directional 	 31

4.3 Deviation of o, over distance about the least squares fit. (a) omni-
directional/omni-directional. 	 (b)	 omni-directional/directional.	 (c)
directional/directional 	 32

4.4 Shadow fading versus RMS delay spread. (a) omni-directional/omni-directional.
(b) omni-directional/directional. (c) directional/directional 	 38

5.1 Normalized impulse response measurements at 6m in the EE laboratory.
(a) omni-directional/omni-directional. (b) omni-directional/directional. (c)
directional/directional  47

5.2 Normalized impulse response measurements at 4m in the classroom.
(a) omni-directional/omni-directional. (b) omni-directional/directional.
(directional/directional  49

5.3 Ten normalized PDP measurements at a 4 m location in the classroom shown in
two 3-dimensional views. (a.1 & a.2) omni-directional/omni-directional. (b.1
& b.2) omni-directional/directional. (c.1 & c.2) directional/directional  53

5.4 Normalized power delay profile (measured) at a 4 m location in the classroom.
(a) omni-directional/omni-directional. (b) omni-directional/directional. (c)
directional/directional  59



LIST OF FIGURES
(Continued)

Figure	 Page

5.5 Zoomed in version of the normalized PDP's of Figure 5.4.
(a) omni-directional/omni-directional. (b) omni-directional/directional. (c)
directional/directional  61

5.6 Cluster intercept MMSE estimates versus distance for the omni-
directional/directional Tx/Rx antenna combination 	 68

5.7 Residuals of the least squares fit to the MMSE cluster intercept estimates of
Figure 5.6 	 69

5.8 Quantile-Quantile plot of the cluster interarrival times versus exponentially
distributed random samples with parameter A = (20 ns) -1 	71

5.9 Average cluster decay factors versus Tx/Rx separation distance 	 72

5.10 Distribution of cluster power gains about the mean response in dB 	 74

5.11 Distribution of ray power gains about the mean response in dB 	 75

5.12 RMS delay spread vs. distance computed from simulated data. The solid line
represents the least squares fit to the simulated data, and the dashed line
corresponds to the least squares fit to the RMS delay spread values of the
measured data  77

5.13 RMS delay spread CDF plots computed from simulated and empirical data 	  78

5.14 4 m normalized PDP response. (a) Simulated. (b) Empirical 	 79

5.15 8 m normalized PDP response. (a) Simulated. (b) Empirical 	 80

xi



CHAPTER 1

INTRODUCTION

An ultra-wideband (UWB) device defined by the Federal Communications Commission

(FCC) must have a -10 dB fractional bandwidth greater than or equal to 20% of the center

frequency or have a minimum bandwidth of 500 MHz [1]. UWB technology is being

considered as a short-range (up to 10 m) wireless air interface for high speed data

transmission (e.g. Wireless Personal Area Network (WPAN) IEEE standard 802.15.3a).

This standard is proposed to support data rates in excess of 110 Mbps, lending itself

applicable to wireless in-home networking. These data rates are unachievable in

conventional wireless systems due to data rate limitations of the channel.

The wireless channel is a limiting factor in the performance of wireless systems.

By knowing the characteristics of the channel, optimum methods can be developed to

mitigate the effects that hinder the performance of the system. For frequency selective

channels the signal bandwidth is greater then the channel coherence bandwidth, which

results in multiple replicas of the transmitted signal, which are attenuated, phase shifted,

and delayed in time. Furthermore, the delay spread of the channel is larger than the

reciprocal bandwidth of the signal, which can greatly impede the performance of the

system (i.e., data rates).

For wideband systems, it is well known that multipath delay spread in the wireless

channel limits data rates due to transmission errors caused by intersymbol interference

(IASI). One method to mitigate the effects of multipath propagation is to use directional

antennas. The radiation or beam pattern of a directional antenna can be thought of as a

1
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sector of an omni-directional antenna pattern. Therefore, it is less susceptible to multipath

in the channel since it accepts only multipath signals that arrive within the beam pattern

of the antenna. Moreover, the directional antenna limits the amount of multipath

received in the channel resulting in less delay spread and the ability to achieve higher

data rates. Other techniques can be developed to mitigate the impairments of frequency

selective channels, but a detailed characterization of the channel is needed to guarantee

optimum performance.

Wideband measurements of the indoor radio propagation channel have been

studied thoroughly in [2]-[l 1], but are only valid for wideband channels and do not

consider UWB indoor signal propagation. To understand the UWB propagation channel

(i.e., path loss and multipath characteristics), field measurements must be performed and

analyzed thoroughly. UWB channels have been studied using time domain and

frequency domain channel sounding techniques in office and residential environments

[12]-[28].

In Ghassemzadeh et al. [12][13], a characterization of the indoor UWB channel is

thoroughly described for line of sight (LOS) and non-line of sight (NLOS) scenarios in

residential environments. Frequency domain channel measurements were performed

over the 4.375 GHz to 5.625 GHz frequency band using a Vector Network Analyzer

(VNA). Measurements were performed in a total of 23 homes, resulting in over 300,000

measurements of the channel. In general, the power delay profile of the channel was

shown to exhibit a single cluster arrival taking on the form of a decaying exponential,

times a noise-like process with lognormal statistics. The path loss exponents and RMS

delay spread values were Guassian distributed over all homes. The mean path loss values
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obtained for LOS and NLOS channels were 1.7 and 3.5, respectively. The mean RMS

delay spread values were 4.7 ns and 8.2 ns for LOS and NLOS, respectively.

In [14]-[17], time domain measurements of the indoor UWB channel were

performed in an office environment using baseband pulses with a corresponding 2 ns

delay resolution. Measurements were taken in 14 different rooms and hallways resulting

in a total of 741 measurements. A statistical characterization of the channel is thoroughly

described in Cassioli et al. [17]. The PDP was shown to take on the form of a decaying

exponential, similar to what was observed in Ghassemzadeh [13], but without the

multiplicative lognormal process.

In Kunisch [21], indoor UWB frequency domain measurements were performed

in an office environment for a 1 GHz to 11 GHz frequency range. Measurements

consisted of LOS, NLOS, intra-office, and inter-office scenarios. The PDP resulted in

multiple decaying exponential clusters as opposed to a single cluster arrival as described

in the measurements above.

The IEEE 802.15.3a task group has proposed a UWB channel model as a result of

numerous channel modeling campaigns [18]. Overall, several channel modeling

proposals observed a multipath clustering phenomenom, which led to a channel model

based on the Saleh-Valenzuela model [11] with slight modifications.

However, these measurements do not include the effects of antenna directivity on

the channel. Moreover, LOS measurements in classrooms and laboratories were not

carried out extensively. This thesis examines the effects of antenna directivity on path

loss and multipath propagation in a college campus building at the New Jersey Institute
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of Technology (NJIT), resulting in a thorough characterization of the UWB indoor

wireless channel.

In this thesis, Chapter 2 describes the measurement system, environment, and

procedure. Chapter 3 describes the data reduction of the measured data for suitable

representation and analysis of the path loss in the channel. From this a statistical model

of the path loss is presented for different omni-directional and directional antenna

combinations. Chapter 4 thoroughly analyzes the multipath characteristics of the channel

through extensive analysis of the RMS delay spread of the measured impulse responses.

Chapter 5 analyzes the impulse response measurements of the channel in depth and

describes a statistical channel impulse response model representative of the measured

data. Lastly, Chapter 6 concludes the work of this thesis.



CHAPTER 2

MEASUREMENT SYSTEM AND PROCEDURE

In this chapter, the channel sounding technique, measurement system, environment, and

measurement procedure are described.

2.1 Measurement System

Frequency response measurements of the indoor UWB channel were performed using a

frequency domain channel sounder shown in Figure 2.1. The channel was swept from

2 GHz to 6 GHz in intervals of 5 MHz, at a rate of 2.5 Hz. The frequency response of the

channel was measured using a Hewlett Packard 8510C Vector Network Analyzer (VNA),

shown in Figure 2.2. The VNA measures the magnitude and phase of each frequency

component and; therefore, the inverse discrete Fourier transform (IDFT) can be used to

convert the frequency domain channel response into the time domain channel response

for analysis in the temporal domain. Given a frequency spacing equal to

5 MHz, the time domain window can detect a multipath component arrival up to 200 ns.

This is a reasonable window length given that multipath arrivals have not been detected

beyond 160 ns for a transmitter/receiver (Tx/Rx) separation distance up to 10 m [22]. A

power amplifier (PA) with a maximum output of 30 dBm was used to amplify each

frequency component generated by the VNA prior to propagation via the transmitting

antenna. The signal from the receiving antenna was propagated through a 20 m double

shielded coaxial cable with an average 17 dB loss over the corresponding measured

frequency band before being returned to the VNA. Double shielded cable was used for

all front end and back end connections throughout the system.

5



Figure 2.1. Frequency Domain Channel Sounder Measurement System.
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Figure 2.2. Hewlett Packard 8510C Vector Network Analyzer (VNA) (center).

Three Tx/Rx vertically polarized antenna combinations were tested using omni-

directional and directional antennas. The omni-directional antenna is a linearly polarized

conical monopole antenna which is omni-directional in the azimuth plane with a typical

gain of 0 dBi. The directional antenna is a linearly polarized log periodic antenna with a

half power beamwidth equal to 65° in the E-plane and 100° in the H-plane and has an

approximate gain of 5.6 dBi.
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2.2 Procedure and Environment

Measurements were performed in a classroom, an electrical engineering (EE) laboratory,

and an optical science laboratory, which are all located on the fourth floor of the Faculty

Hall building at NJIT. Faculty Hall is a four-story building, which mostly consists of

classrooms and engineering laboratories. The floors of each measured room are made up

of ceramic tiles. The classroom contains approximately forty desks surrounded by three

cinder block walls and one sidewall with cinder blocks and windows with metal framing.

The electrical engineering lab contains wooden lab workstations with computer terminals

and various test and measurement equipment surrounded by four cinder block walls. The

two sidewalls are aligned with wooden cabinets with glass windows. The optical science

lab contains optical lab worktables, computer terminals on carts, metal air ducts that hang

from the ceiling which are part of the air conditioning system, student desks, metal

cabinets, and various other clutter surrounded by four cinder block walls.

All measurements were made while the transmitter and receiver antennas

remained stationary and within line-of-sight of each other. Also, the channel was kept

stationary during measurements by ensuring there was no movement in the surrounding

environment. Three different TxlRx antenna combinations were set up to explore the

effects of antenna directivity on the channel. The three TxlRx antenna combinations

tested were omni-directionallomni-directional, directionalldirectional, and omni-

directionalldirectional. Measurements were made between 1 m and 10 m in intervals of

1 m, with the exception of the classroom where measurements extended up to a

maximum of 9 m. Thirty locations were measured in the EE lab, twenty in the

classroom, and thirty in the optics lab for all three antenna combinations, with the
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exception of the omni-directionalldirectional case in the optics lab in which twenty

locations were measured. Therefore, a total of seventy-eight locations were measured for

each antenna combination with the exception of the omni-directionalldirectional case in

which sixty-eight locations were measured. Ten snapshots of the channel frequency

response were recorded per receiver location for post-processing averaging to obtain a

more stable response of the channel. The VNA was calibrated with respect to a 1 m

reference distance inside an anechoic chamber for each antenna combination so that all

measurements depend solely on the response of the channel. A back-to-back calibration

(i.e., system calibration excluding the Tx/Rx antennas) was also carried out to assess the

path loss in the channel at 1 m including the antennas as well. The measured path loss at

1 m in the anechoic chamber and the pathloss computed by averaging over the same

number of frequencies using the Friis free space Equation in (2.1) resulted in a difference

of at most 0.13 dB for all three antenna combinations. Therefore, a TxlRx separation

distance of 1 m in the anechoic chamber was considered an adequate free space reference

distance. The free space path loss is given by,

where PLFS(d) denotes the free space path loss, X is the wavelength in meters, d is the

distance in meters, and Gat, and G„ denote the transmitter and receiver antenna gains,

respectively. The TxlRx antennas were each set to a height of 1.4 m for all

measurements.
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2.3 Summary

This chapter described a measurement campaign for the UWB indoor channel. A

description of the measurement system, procedure, and environment in which

measurements were performed were thoroughly explained.



CHAPTER 3

LARGE SCALE FADING

The measured data must be processed and represented in proper form for analysis

purposes. In this chapter, the data processing and representation of path loss are

described. A path loss model is proposed for each antenna combination and the shadow

fading in the channel is analyzed.

3.1 Data Reduction

The path loss of the channel represents the attenuation a signal undergoes when

transmitted through the medium, which is represented as a positive quantity in dB. As

mentioned in Chapter 2, the VNA was used to measure the frequency response of the

channel, and is known to be a tractable measurement apparatus for calibrating out the

effects of unwanted components for any particular system setup. This lends itself

particularly useful for characterizing the path loss and multipath characteristics of the

channel, where the effects of the system components must be factored out to assess the

propagation channel characteristics. The path loss is given by the difference between the

transmitted and received power in dB including antenna gains as well for analysis and

modeling purposes. The measured frequency response was referenced to a system

calibration at a distance of 1 m in an anechoic chamber as described in the measurement

procedure. The squared magnitude response is given by the received power at a distance

d relative to the received power at 1 m in the anechoic chamber (i.e., negative path loss in

11
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dB). Therefore, additional processing of the data is needed for proper representation of

the path loss as defined above (i.e., path loss including antenna gains and the loss at 1 m).

The average path loss of the channel at a distance d denoted by PL(d) is given by

the inverse of PL (d) (where PL(d) is negative in dB, which results in a positive value

for PL(d) in dB). The measured frequency response referenced to a distance of 1 m has

a corresponding inverse path loss PL (d; do ) given by,

where H .(f . d) is the frequency response of the channel for a given snapshot j, which

represents the received power relative to the transmitted power per frequency component

or, rather, the attenuation in the channel over the 2 GHz to 6 GHz frequency range. N

represents the number of frequency components f measured in the channel, K represents

the number of snapshots, and d is the separation distance between the TxlRx antennas in

meters.

The frequency response obtained from the VNA can be written as a ratio of the

received power per frequency component at a distance d relative to the corresponding

powers at a distance do =1 m . Therefore, the path loss obtained from the VNA averaged

over the bandwidth is represented by,
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the TNA at a distance of 1 m in the anechoic chamber per frequency component f The

received power Pr (f;d) is given by,

where G„ is the gain of the power amplifier, L ab (f) is the cable loss per frequency f

is the loss due to the channel corresponding to the aforementioned parameters f

and d, and Gbh, and G,. are the transmitter and receiver antenna gains, respectively. Now

Therefore, the inverse path loss computed from the measured data is referenced to the

inverse path loss at 1 m.

To assess the path loss in the channel at the close in reference distance (do = 1 m),

the path loss in the channel must be referenced to a back to back calibration. As

mentioned previously, a back to back calibration refers to a system calibration excluding

the antennas and thus can be thought of as a closed loop calibration of the entire system

up to the back ends of the antennas. Therefore, all calibration data must be removed from

the measured frequency response obtained from the TNA except for the back to back

calibration data. Let Pfi ref (f;BB) in Equation (3.5) denote the inverse path loss at do

referenced to a back to back calibration in the anechoic chamber per frequency f which is

given by,
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where Pear (f ; BB) represents the received power excluding the Tx/Rx antenna gains and

the path loss of the channel and is given by,

By multiplying Equations (3.2) and (3.5) the received power P re  (f ;do ) in Equation (3.2)

is removed and replaced with Pcai (f ; BB) the received power from the back to back

calibration. Therefore, the inverse path loss in the channel is referenced to the front end

and back end of the measurement system up to the antennas and is given by:

This enables analysis of the path loss at 1 m to be assessed including antenna gains,

3.2 Path Loss Model

It is well known that the median path loss referenced to a distance do can be modeled as a

function of distance using the following power law relationship,

By logarithmically transforming Equation (3.8) and including the path loss at do,

the mean path loss in dB can be modeled linearly as a function of the logarithmic

distance. The mean path loss model does not account for the clutter present in the

environment at different locations with the same TxlRx separation distance. As the
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clutter in the environment changes from location to location, so does the received power,

which introduces a random change in the path loss. This random variation has been

shown to be log-normally distributed (Gaussian in dB with zero mean) [12][16][17][18],

and is known as log-normal shadowing. Therefore, the path loss in the channel is

normally distributed in dB with a mean that linearly changes with distance and is

modeled as,

where PLdb(do) denotes the mean path loss at 1 m, 10•alog(dldo) denotes the mean path

loss referenced to 1 m, and X is a zero mean log-normal random variable in dB. The

mean path loss at do and the path loss exponent a (or rather the slope of the mean of

Equation (3.9)) were determined through regression analysis using the method of least

squares. That is, the path loss at do and the slope a were taken as estimates for which the

sum of the squares of the errors between the straight line and the measured data is a

minimum. The difference between the least squares fit and the measured data is

represented by the log-normal random variable X All data was pooled together globally

for computing the least squares fit to the data for each antenna combination. Therefore,

the measured data from all rooms was used to calculate the model parameters of Equation

(3.9). A scatter plot of the path loss vs. distance along with the least squares fit to the

data is shown in Figure 3.1 for each antenna combination, where the path loss is

represented as a positive quantity. Normal probability plots of the deviation between the

fitted and measured data (also known as residuals) for each antenna combination are

shown in Figure 3.2.



Figure 3.1. Scatter plot of path loss vs. TxlRx separation distance and the least squares
fit to the data for all three antenna combinations.
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Figure 3.2. Normal probability plots of the shadow fading parameter X. (a) omni-
directionallomni-directional. (b) omni-directionalldirectional. (c) directionalldirectional.
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As shown in Figure 3.1, the path loss values for the dir/dir antenna combination

are highly concentrated about the regression line with large deviations occurring sparsely.

These values significantly agree with the normality assumption as shown in Figure 3.2c.

On the other hand, the omnilomni data is sparsely distributed about the regression line

and does not demonstrate a large concentration of path loss values about the least squares

fit as in the dirldir case. This is due to the sensitivity of the omnidirectional antennas to

homogeneous environments with differing clutter, and is illustrated in the normal

probability plot of Figure 3.2a. Therefore, the clutter has a significant effect on the total

received energy when using omni-directional antennas, even though the environmental

characteristics of the rooms are homogeneously related. It can be deduced from the

shadow fading experienced in the channel that the environment has less of an impact on

the channel for an omnildir antenna combination, than for an omnilomni antenna

configuration, as shown in Figure 3.2. What's more, since a directional antenna is

employed at the receiver, the channel is less vulnerable to multipath propagation

experienced in different rooms due to its spatial filtering capability, which is described in

Chapter 5. Therefore, in indoor environments spatial filtering provides significant

multipath resistance, resulting in a more stable average path loss value for homogeneous

environments with differing clutter as shown in Figures 3.1 and 3.2.

It is apparent that omnidirectional antennas are more susceptible to changing

environments then directional antennas, resulting in larger deviations in path loss. This

can be explained from the fact that omnidirectional antennas are more prone to the

effects of multipath propagation than directional antennas. Therefore, when modeling the

data globally, directional antennas provide a more stable model of the path loss
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experienced in the environment. One way to improve the stability of modeling omni-

directional data is to include more measured data in the global database to account for the

large deviations of path loss experienced in the channel. Therefore, large data sets are

needed to account for the dependence or impact the environment has on the channel when

omni-directional antennas are employed. Another way to model the path loss in the

channel is to estimate the path loss model parameters for each individual location (e.g.,

room) and then model the variation of these estimates over all locations [12]. It can be

concluded that multipath propagation experienced in different environments (with

homogeneous characteristics) has less of an effect on the path loss in the channel when

directional antennas are used.

As previously mentioned, the path loss of the channel is affected by the amount of

energy the antenna receives, which is a function of the antenna directivity or rather the

radiation pattern of the antenna. From a radiation pattern perspective, it is evident that

more multipath components are coupled from the propagation medium by an omni-

directional receiving antenna as opposed to a directional receiving antenna. This can be

justified through the path loss exponent, which is related to the degradation of the path

loss over distance relative to 1 m. The path loss exponent for the omnilomni case is equal

to 1.55 and is equal to 1.65 for the omnildir case. The former path loss exponent is less

than the latter due to the fact that an omni-directional receiving antenna collects many

more multipath components in comparison to a directional receiving antenna. The path

loss exponent a is 1.72 for the dirldir case, which is greater than for either of the other

two antenna combinations. This is expected, since the directional transmitter antenna

limits the radiated energy to a narrow cone, resulting in fewer multipath components at
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the receiver. Note that all path loss exponents are less than the corresponding free space

value (a=2) due to the accumulation of considerable multipath energy as opposed to a

single LOS ray, which was also observed in [9][11][12]. Table 3.1 lists the values

obtained for the path loss exponent a and the standard deviation an of the shadow

fading random variable Xfor each antenna combination.

It has been validated that the path loss at 1 m can be modeled by averaging the

path loss at 1 m over the specified frequency band using the Friis free space equation.

The average path loss computed in the environment at 1 m over all locations for each

antenna combination resulted in a difference of at most approximately 1 dB in

comparison to the corresponding free space path loss result. For example, the average

path loss at 1 m over all locations for an omnilomni TxlRx antenna combination is

42.10 dB, and is equal to 43.23 dB using the Friis free space equation and averaging over

the same frequency range. When using an omnildir antenna combination the average

measured path loss at 1 m is 36.8 dB and is theoretically equal to 37.63 dB. Furthermore,

for a dirldir antenna combination the empirical average path loss value is 32 dB, which is

almost identical to the theoretical free space value of 32.03 dB. Therefore, Equation (2.1)
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can be used for computing the average path loss at a distance of 1 m for the path loss

model in Equation (3.9) by averaging over the specified frequency band and including the

TxlRx antenna gains. The path loss in the channel can be predicted as a function of

distance for all three antenna combinations by using Equation (3.9) along with the values

in Table 3.1 and Equation (2.1), as explained previously.

3.3 Summary

In this chapter, data processing of the measured data was explained for path loss

representation and analysis. A path loss model representative of all three antenna

combinations was thoroughly described. Results show that path loss increases at a

greater rate when directional antennas are used in the channel as opposed to omni-

directional antennas. Also, the shadow fading in the environment was shown to be

largest for the omni/omni antenna pair and lowest for the dir/dir antenna pair. All path

loss exponents were estimated to be less than the free space value. Lastly, it was shown

that the path loss at 1 m can be approximated using the Friis free space equation.



CHAPTER 4

TIME DOMAIN ANALYSIS

4.1 Data Reduction

The impulse response of the channel was obtained by performing the IDFT on the

frequency response of the channel. Before performing the IDFT, the frequency domain

data was first filtered using a Kaiser window with parameter 18 = 4.54 [30]. The non-

windowed frequency spectrum can be thought of as a rectangular windowed response

with frequency selectivity. Therefore, the time domain response is represented by

multiple sinc functions which are attenuated and delayed in time. Using the window

filtering function prior to performing the IDFT helps reduce the side lobes, which are

inherent to the sinc pulses appearing or rather existing in the impulse response of the

channel. This filtering procedure reduced the side lobes of the impulse response by 50

dB and broadened the main lobe width such that the time resolution has changed from

0.25 ns to 0.4 ns. The window parameter )6 was chosen to lower the sidelobes down to

the noise floor and avoid significant effects of pulse broadening simultaneously. The

time resolution derived from the non-windowed frequency response is given by the

reciprocal of the bandwidth (e.g., 1/(4 GHz)). This results in a 0.5 ns null-to-null pulse

width. After performing the IDFT on the windowed frequency response the main lobe of

the pulse increases to approximately 0.8 ns. Note that a 4096 point zero-padded

frequency response was constructed before performing the IFFT. This resulted in a

sampling period Ts given by,

23
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The time axis was quantized into bins to obtain a power delay profile (PDP) in

which each multipath component is represented as an impulse function weighted by the

integration of the power within each bin having a width At. The bin width was chosen to

correspond roughly with the aforementioned pulse width, equal to approximately 0.8 ns.

Therefore, At is chosen to be,

which corresponds to a bin size slightly greater than the pulse width. Each impulse

response was represented with the first arrival starting at time 0 ns. Therefore, any

multipath signal arriving within the itchbin is represented with a delaycif= LAST , for

i = 0 to N-1, where N is the total number of possible multipath components including the

first arrival [29]. The discretized impulse response of the channel is given by,

where d represents the Tx/Rx separation distance, aildenotes the amplitude of theitch

multipath component, O ildenotes the phase associated with theitchmultipath component,

and 8 is the Dirac delta function.

The PDP of the channel is characterized by averaging many snapshots of Ih(T;d)1 2

over a spatial local area. For wideband signals, it is known that multipath fading

statistics of the channel do not change significantly over a local area [6][8]. Therefore,

wideband channels are considered wide-sense stationary over small spatial distances;

which concludes that multipath statistics at a single location are representative of the

multipath statistics in the corresponding local area. Given the ultra-wide bandwidth of

the measured frequency response (see Chapter 2) it can be concluded, that averaging the
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PDP over K snapshots in a single location approximates the spatial average of the PDP

with high accuracy. Therefore, the PDP of the channel is given by:

where K represents the number of snapshots of the channel hker;d) taken at a single

location, and I h(i; d)1 2 represents the average PDP.

The noise floor was removed from the PDP prior to time quantization to eliminate

noise spikes appearing as false multipath components [31]. The noise threshold was set

2 dB above the maximum noise component detected prior to the first multipath

component arrival (e.g., LOS Signal). All power below this threshold was set to zero,

resulting in a PDP with 98.3% energy capture after noise reduction on the average.

4.2 Multipath Delay Spread Analysis

The multipath in the channel is most commonly characterized quantitatively by the first

moment and the square root of the second central moment of the PDP, referred to as the

mean delay spread and the root mean square (RMS) delay spread, respectively. The

RMS delay spread can be used as a figure of merit for estimating data rates for multipath

channels [29]. The RMS delay spread a, is defined as,



Figure 4.1 shows the cumulative distribution function (CDF) of o for each antenna

combination. Tables 4.1 and 4.2 list the mean, minimum, median, and maximum values

of a and 'r im respectively. It is evident from Figure 4.1 and Table 4.1 that the RMS delay

spread decreases when directional antennas are introduced into the channel, or rather

when the beamwidth of the antenna decreases.

Figure 4.1. CDF of RMS delay spread values over all locations for each antenna
combination.
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The minimum RMS delay spread for the omnildir case is 2.44 ns and is 6.05 ns

for the omnilomni case. Therefore, by using a directional antenna at the receiver the

minimum RMS delay spread decreased by approximately two and a half times or rather

60% with respect to the value achieved from the omnidirectional receiver antenna.

When using a directional transmitter and directional receiver antenna the minimum RMS

delay spread value decreased by approximately 92% with respect to an omnilomni

antenna configuration.



28

The mean values of a, for the omnilomni, omnildir, and dirldir TxlRx antenna

combinations are 17.34 ns, 11.35 ns, and 7.71 ns, respectively. This corresponds to a 35%

decrease and a 55.5% decrease in the mean RMS delay spread with respect to the value

obtained from the omnilomni antenna configuration. Overall, the RMS delay spread

decreases when directional antennas are introduced into the channel, as expected since

the directionality of the beam pattern limits the amount of multipath received by the

antenna. Results show that directional antennas used at the receiver or at both transmitter

and receiver may help reduce the multipath in the channel as opposed to using omni-

directional antennas.

Multipath components were detected with a maximum delay up to 190 ns with

respect to the first arrival signal for the omnilomni pair, and 184 ns and 186 ns for the

omnildir and dirldir antenna combinations, respectively. The average maximum excess

delay (i.e., the sample mean value computed over all maximum excess delay values) for

the omnilomni, omnildir, and dirldir antenna combinations were 143.2 ns, 121.7 ns, and

112.26 ns, respectively. Table 4.3 lists the mean RMS delay spread and mean number of

paths Bp  for threshold levels of 10 dB, 20 dB, and 30 dB below the maximum component

of the PDP and the average percentage of power contained within the PDP for the given

threshold levels. From the table it can be concluded that the mean number of paths are

considerably reduced for the 20 dB and 30 dB threshold levels as a function of antenna

directionality. Even though the number of paths are not as significantly reduced at the

10 dB threshold level for a directional receiver or both TxlRx with respect to the

omnilomni pair, the mean RMS delay spread is in fact reduced, and at the same time

more energy is captured, showing the significance of the directional antennas. In
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conclusion, more energy is captured with fewer paths and less dispersion when

directional antennas are used at the receiver or both transmitter and receiver as opposed

to the omnilomni antenna pair.



30

4.2.1 RAMS Delay Spread versus Distance

The RMS delay spread of the channel increases as a function of TxlRx separation

distance as shown in Figure 4.2 on a log-log scale for all three antenna combinations.

This has also been observed for indoor and outdoor propagation measurements in

[6][12][32]. It has been stated and shown in Chapter 3 that directional antennas highly

influence the rate at which path loss increases over distance. As is the case with path

loss, the TxlRx separation distance has a greater influence on the RMS delay spread

when directional antennas are used in the channel as opposed to omnidirectional

antennas. Therefore, the highest and lowest rates at which path loss and RMS delay

spread increase over distance were found to be correlated with one another, where the

highest and lowest rates of path loss correspond to the highest and lowest rates of RMS

delay spread over distance, respectively. That is, the more directionality introduced into

the channel the greater the rate in which path loss and RMS delay spread increase over

distance.

Results show that the RMS delay spread for the dirldir antenna combination

increases at the greatest rate over distance followed by the omnildir pair and lastly the

omnilomni pair which increases at the lowest rate with distance. The least squares fit of

the RMS delay spread versus distance is shown in Figure 4.2 for each antenna

combination, which resulted in the following three distant dependent models: 10•d 03 ,

4.37•d°.55 , and 1.32•d 1 • °I , for omnilomni, omnildir, and dirldir Tx/Rx antenna

combinations, respectively, with d in meters. A similar result was obtained for the

omni/omni antenna combination in [12], where the RMS delay spread was shown to

increase as a function of distance with an exponent of 0.26.



Figure 4.2. RMS Delay Spread versus Distance. (a) omni-directionallomni-directional.
(b) omni-directionalldirectional. (c) directionalldirectional.
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4.2.2 Distribution of R1VIS Delay Spread over Distance

As explicitly stated in Greenstein et al., 1997 [32], the RMS delay spread can be

considered to be log-normally distributed at a given distance d. This can be explained

starting from the fact that the path loss is log-normally distributed as shown in Figure 3.2,

and we can consider the individual power gains of the PDP to be log-normally

distributed, which is shown in Chapter 5. Bow being that the addition and subtraction of

log-normals tend to remain log-normal, and since log-normality is preserved under

multiplication, division, powers, and roots it can be concluded that the RMS delay spread

is log-normally distributed too [32]. Bormal probability plots of the deviation of a, in

dB (denoted by s„) about the corresponding least squares fit to a t over distance of Figure

4.2 are shown in Figure 4.3. The theoretical normal fit given by the straight line

confirms the log-normality of a, over distance. s, is a zero-mean normal random

variable with a standard deviation denoted by a s, with values corresponding to each

antenna combination listed in Table 4.4.

As shown in Table 4.4, as becomes greater with antenna directivity. Therefore,

larger deviations of RMS delay spread can be expected with respect to the mean at a

given distance d for directional antennas as opposed to omni-directional antennas. This

implies that directional antennas are more sensitive to multipath dispersion than omni-

directional antennas at different locations with the same TxlRx separation distance. This

is a valid result and can be explained from a physical point of view. It is known that

multipath components are significantly reduced in the channel when directional antennas

are used. Bot only are signals rejected when arriving within the null point of the
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radiation pattern, but are also attenuated greatly by the antenna side lobes. On the other

hand, omni-directional antennas are unable to reject multipath

Figure 4.3. Deviation of a over distance about the least squares fit. (a) omni-
directionallomni-directional. (b) omni-directionalldirectional. (c) directionalldirectional.
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Figure 4.3. (Continued)
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components and thus all multipath arriving within a 360° radius of the antenna are

accepted. Let us define an outlier as a multipath component that is either highly

attenuated or highly accentuated with respect to the norm, which results in a large

deviation about the mean RMS delay spread at a given distance. The chances of a

directional antenna receiving an outlier are much more probable then omnidirectional

antennas since multipath components arriving at different angles are subject to different

gain levels of the radiation pattern. The omni-directional antenna exhibits a constant gain

beam pattern and all multipath signals are ideally attenuated equally when arriving at

different angles. Therefore, the RMS delay spread is more likely to deviate about the

mean when directional antennas are used in the channel as opposed to omni-directional

antennas.

4.2.3 Correlation Between Shadow Fading and RMS Delay Spread

The path loss and RMS delay spread are both inherently dependent on the received

multipath in the channel. Therefore, it can be inferred that a change in the path loss

corresponds to some change in the RMS delay spread. It was postulated and shown in

[32] that when a deep shadow fade occurs the RMS delay spread tends to increase for
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digital cellular environments. That is, deep shadow fades are more likely to be correlated

with larger RMS delay spread values.

When considering different channels, one may expect a channel corresponding to

the greatest shadow fading variance (deviation in path loss) to correspond to the greatest

deviation of cr which is not true when considering different antenna combinations. This

was shown in the previous section, where the dir/dir antenna combination resulted in the

smallest shadow fading variance and the largest variance in RMS delay spread and vice

versa for the omnilomni antenna pair. Therefore, the largest standard deviation of the

shadow fading random variable does not necessarily correspond to the largest standard

deviation of the RMS delay spread over distance when comparing different channels, but

rather the largest shadow fading deviation for a given channel (i.e., greatest path loss) at a

given distance d should correspond to the largest RMS delay spread deviation at that

distance d.

Therefore, analysis is carried out on the correlation between shadow fading and

RMS delay spread for each antenna combination to assess the interdependency between

the two variables. This is done by analyzing the influence shadow fading has on the

RMS delay spread values. A quantitative measure of the correlation between two

variables and the influence they have on one another is given by the correlation

coefficient denoted by p. When a deep shadow fade occurs the path loss increases and

from the previously stated conjecture we can expect an increase in RMS delay spread,

which results in a positive value for p. The correlation coefficient is given by,
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where X and Y correspond to the shadow fading random variable X and RMS delay

spread at, respectively. era and Cry are standard deviations estimated from the data.

Figure 4.4 shows the RMS delay spread versus shadow fading for each antenna

combination. Bote that positive shadow fading values in Figure 4.4 correspond to an

increase in path loss with respect to the MMSE fitted response of Figure 3.1. The values

of p for each antenna combination are listed in Table 4.5.

Figure 4.4. Shadow fading versus RMS delay spread. (a) omni-directionallomni-
directional. (b) omni-directionalldirectional. (c) directionalldirectional.
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Table 4.5. Correlation Coefficient Between Shadow Fading and RMS Delay Spread
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Results show that deep shadow fades (e.g., a drop in total power about the mean) tend to

be correlated with larger RMS delay spread values for the omnilomni and omni/dir

antenna combinations. On the other hand, there is a small correlation between deep

shadow fading and larger RMS delay spread values for the dirldir antenna combination.

Overall results show positive correlation for all three cases, which indicates that the

channel is more likely to suffer a fading loss and an increase in RMS delay spread about

the mean simultaneously.

The dirldir antenna combination does not show much correlation, which can be

explained by the fact that multipath arrivals are sparsely distributed over delay and the

power gain of each arrival is highly dependent on the angle of arrival with respect to the

maximum gain region of the antenna. The multipath in the channel appears to arrive in

clusters, which is explained in Chapter 5, and this being the case has a double effect on

the RMS delay spread when power levels are above and below the mean value.

Therefore, if multipath arrivals are more attenuated at lower delays the later arrival

components will increase the RMS delay spread value. That is, a loss in total power

results in a larger RMS delay spread value. On the other hand, if a later arrival
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component arrives within the main beam of the antenna the total power will increase and

the RMS delay spread will increase. If a late arriving component does not exist then the

total power will drop below the mean value and the RMS delay spread will decrease.

Lastly, if more power exists for early arrivals then a late arriving component will not

have a great effect on the RMS delay spread and thus the RMS delay spread can be

expected to decrease. All cases are plausible given the limited amount of multipath and

the dependency the arrival angles have on the power gains due to the non-uniform

antenna gain of the radiation pattern.

An omni-directional antenna creates more multipath in the environment and

therefore when a change occurs in the total received power it is most likely a result of a

change in the power gain of the lower delayed multipath components as opposed to

longer delayed multipath components. This is possible since longer delayed pulses do

not carry significant power compared to the power contained in the LOS and lower

delayed multipath component arrivals. Therefore, when lower delayed multipath

components become attenuated the later arrivals will cause the RMS delay spread to

increase and vice versa [32]. This explains why a loss in power can be correlated with a

larger RMS delay spread value and a gain in power can be correlated with lower RMS

delay spread values.

The omnildir antenna combination exhibits the highest correlation with the

omnilomni antenna combination corresponding to a slightly lower value. A possible

explanation for this is that when lower delayed arrivals are attenuated as seen from the

omni-directional antenna, the directional antenna causes further attenuation due to the

side lobes as explained previously. Thus, the RMS delay spread can be expected to be
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more sensitive to this, since less multipath is captured from the directional antenna as

compared to the omni-directional antenna.

4.3 Summary

In this chapter, the time domain statistics of the channel were thoroughly analyzed for

each antenna combination. Results show that the mean, minimum, median, and

maximum RMS delay spread values have all decreased as a function of antenna

directivity in the channel. Therefore, the lowest values were obtained for the dirldir

antenna combination and the highest values were obtained for the omnilomni antenna

combination. All antenna combinations show a power law relationship between RMS

delay spread and distance, with results for the dirldir antenna pair increasing at the

greatest rate followed by those for the omnildir antenna pair and finally those for the

omnilomni antenna pair. The RMS delay spread deviation over distance was shown to be

greatest for the dirldir antenna pair followed by the omnildir antenna pair, with the

smallest deviation being for the omnilomni antenna pair. This proves that directional

antennas are more affected by changes in multipath propagation at different locations for

a given distance d. That is more variation in the RMS delay spread can be expected when

directional antennas are used as opposed to omnidirectional antennas.

Results show that shadow fading tends to be correlated with RMS delay spread

values for omnilomni and omnildir antenna combinations. That is, when a deep shadow

fade occurs, the RMS delay spread can be expected to increase. On the other hand, the

dirldir antenna combination did not show a significant amount of correlation between

shadow fading and RMS delay spread. Therefore, deep fades are not necessarily
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associated with larger RMS delay spread values when a directional transmitter and

directional receiver are used in the channel. The highest correlation was achieved for the

omnildir antenna combination.



CHAPTER 5

CHANNEL IMPULSE RESPONSE MODEL

The received signal in the measured environment consists of many multipath signals

arriving at the receiver antenna. This is caused from the transmitted signal taking on

multiple paths from the ground, walls, ceiling, doors, and clutter in the environment.

Multipath signals can be represented as dirac delta functions weighted by the associated

path gain, resulting in a discrete impulse response representation of the channel. In this

chapter, a distance-dependent discrete impulse response model of the channel is

presented.

5.1 General Impulse Response Model Representation

As mentioned previously, when a signal is transmitted into the wireless medium, multiple

radiowaves are received from multiple propagation paths. This phenomenon is most

commonly referred to as multipath propagation. Multipath signals in the propagation

channel can be represented as Dirac delta functions weighted by the power in each

multipath component, resulting in a discrete impulse response of the channel h(i;d) as

mentioned in Chapter 4, which is shown below for convenience.

44
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which was also explained in Chapter 4. The normalized PDP is denoted as normnorm and is

given by,

where,

Therefore, the channel power at a distance d computed using Equation (5.4) is equivalent

to Equation (3.1) where the channel power is computed in the frequency domain. This

mathematical relationship is known as Perseveres theorem [30].

norm can be represented as,

By taking the square root of Equation (5.6) and including the associated phase

information corresponding to each i th multipath component, the impulse response of the

channel given by Equation (5.1) can we written as [13],

As shown in Equation (5.7) the discrete channel impulse response can be represented

using a model for the path loss and a model for the normalized PDP. Equation (5.7) is

the basis of the statistical channel impulse response model or rather is shown in general
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form with no specific channel characteristics explaining the behavior of the channel. To

statistically generate impulse responses of the channel, the path loss over distance and a

model of the normalized PDP must be characterized and integrated into Equation (5.7).

A statistical path loss model for PL(d) has been described in Chapter 3, and a statistical

model of Pnorm isi described in section 5.3, which completes all model information needed

to statistically characterize the channel impulse response of Equation (5.7).

5.2 Channel Impulse Response Measurements

5.2.1 Conjectures of Impulse Response Measurements

Figure 5.1a is a typical normalized channel impulse response (CIR) measured at 6 m in

the EE laboratory using an omni-directionallomni-directional antenna combination.

Figures 5.1b and 5.1c represent the normalized channel impulse response at the same

location as the CIR of Figure 5.1a using omni-directionalldirectional and

directionalldirectional antenna combination pairs, respectively. Figure 5.2 represents

channel impulse response measurements taken at 4 m in the classroom for each antenna

combination. The CIR measurements shown in Figures 5.1 and 5.2 both exemplify a

similar channel behavior in which the multipath in the channel appears to arrive in

clusters. The impulse response measurements shown in these figures were measured in

different rooms, suggesting that the channel reacts in a similar manner amongst different

rooms. This similar channel behavior can be deduced from the fact that the measured

rooms consist of homogeneous environmental characteristics and thus should result in

similar impulse response measurements.



Figure 5.1. Bormalized channel impulse response measurements at 6 m in the EE
laboratory. (a) omni-directionallomni-directional. (b) omni-directionalldirectional.
(c) directionalldirectional.
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Figure 5.2. Bormalized impulse response measurements at 4 m in the classroom.
(a) omni-directionallomni-directional. (b) omni-directionalldirectional.
(c) directionalldirectional.
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where P represents the total number of samples of hk(t,d), ti is the time delay of the itch

sample, k denotes the kth snapshot, and d is the aforementioned TxlRx separation distance

in meters. Note that the impulse response is a function of t in this case and not T, which

is associated with the binned data. Therefore, hk(t,d) is a direct result of the IFFT of the

frequency response of the channel hk(t,d).

As mentioned in Chapter 3, the frequency response was measured with respect to

a distance of 1 m inside an anechoic chamber. Therefore, the effects of the measurement

system apparatus are cancelled out, resulting in a time domain response solely dependent

on the effects of the channel. With this in mind, note that the time domain response of

Figures (5.1a)-(5.1c) each begin with a time delay of approximately 16.5 ns. This time

delay is governed by the fact that the LOS signal traveled a distance of 6 m and was then

time shifted back with respect to the calibration distance of 1 m. Therefore, this time

delay is given by the signal traveling at the speed of light (i.e., 3 x10 8 m / s) over a

relative distance of 5 m resulting in approximately 16.67 ns.

The channel impulse response measurements illustrated in Figures 5.1 and 5.2,

each consist of a large first arrival signal (e.g., LOS signal) with respect to subsequent

multipath arrivals. After the first arrival signal, multipath components appear to arrive in

clusters. Similar channel characteristics have been observed in previous wireless channel

propagation studies. For example, the clustering phenomenon of multipath arrivals has

been observed for wideband indoor measurements taken inside a medium size office
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building [11]. However, the statistical channel model in [11] is representative of a non-

LOS channel and thus does not include the existence of a relatively large LOS path. In

other case studies, for indoor and outdoor measurements, a large first arrival signal has

been shown to exist in the channel [13][17][31], but without the effect of multipath

signals arriving in clusters and rather having a single cluster arrival immediately

following the first arrival. Although there are differences, a similarity amongst all four

cases mentioned is that the rays of the clusters all experience an exponential decay over

time. In this thesis the PDP of the channel is a function of a large LOS component plus

multipath clusters which decay exponentially and contain rays which decay exponentially

within the clusters. This appears to be similar to the channel characteristics of Saleh-

Talenzuelza [11] and Ghassemzadeh [13], or rather a combination of the two. Although

similarities do exist, these two models are not entirely explicative of the measured data in

this thesis. Therefore, if used separately, the models will not capture the effect of the

channel impulse response presented here and thus modifications are needed.

5.2.2 Effects of Antenna Directionality on Power Delay Profiles

Ten normalized power delay profiles corresponding to the impulse response

measurements of Figure 5.2 are shown on a dB scale in two 3-dimensional views in

Figure 5.3. In other words, ten PDP measurements (or snapshots) taken at a single

location at 4 m in the classroom are shown in two plots for each antenna combination.

Two plots of the data are shown for each antenna combination to view the PDP

measurements at different angles. It is evident from Figure 5.3, that the multipath in the

channel has decreased as a result of antenna directionality.
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Figure 5.3. Ten normalized PDP measurements at a 4 m location in the classroom
shown in two 3-dimensional views. (a.1 & a.2) omni-directionallomni-directional. (b.1 &
b.2) omni-directional/directional. (c.1 & c.2) directionalldirectional.
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The directional antennas produce a spatial filtering effect, in which signals are

only received or transmitted within a specific region of space, dependent on the antenna

radiation pattern. Therefore, when using a directional antenna at the receiver instead of

an omnidirectional antenna, the amount of multipath received in the channel decreases

as a result of the sectorization of the radiation pattern of the antenna. This is shown in

Figure 5.3, where plots a.1 and a.2 correspond to an omnilomni antenna combination and

plots b.1 and b.2 correspond to an omni/dir antenna combination. For example, the

multipath present at approximately 150 ns in Figure 5.3 (a.1 and a.2), has been

completely rejected by the directional receiver antenna giving a clear visualization of the

spatial filtering effect of directional antennas.
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Although, the channel is dissimilar at some time instances due to different

antenna combinations, there is a multipath arrival time correlation amongst all plots of

Figure 5.3. This is expected since the surrounding environment has not changed and

multipath components arriving in the antenna beam of an omni-directional antenna will

partially be detected by a directional antenna, resulting in correlated multipath arrivals.

From a receiver point of view the omni-directional antenna collects multipath signals

arriving within a 360° radius of the antenna and thus cannot eliminate multipath arrivals

from any direction. The radiation beam pattern of the directional antenna can be thought

of as a section of the omnidirectional antenna beam pattern. Therefore, the directional

antenna collects a portion of the total amount of multipath arrivals collected by an omni-

directional antenna. This is shown in Figure 5.3 (b.1 and b.2) where signals arriving in

the null section of the beam pattern are eliminated, and multipath cluster arrivals that

exist are correlated in time with the squared magnitude response of the omnilomni

antenna combination of Figure 5.3 (a.1 and a.2). Figure 5.3 (c.1 and c.2) shows a

correlation amongst cluster arrivals with Figure 5.3 plots (a.1 and a.2), but there are less

cluster arrivals due to the directional transmitter antenna.

A directional antenna employed at the transmitter has a greater effect on reducing

initial cluster arrivals than a directional antenna employed at the receiver. This is shown

in Figure 5.3 where the multipath has decreased considerably prior to 100 ns in plots c.1

and c.2 as compared to plots b.1 and b.2. On the other hand, it is observed that multipath

arrivals proceeding 100 ns have not changed considerably when a directional antenna is

used at the receiver with a directional transmitter. This results from the fact that the

transmitter antenna is closer to the wall than the receiver antenna. When this is the case,
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multipath components arriving from the back end of the receiver antenna travel a longer

distance then the multipath components reflecting off the wall in close proximity to the

transmitter. Therefore, when a directional antenna is employed at the receiver longer

delayed arrivals are eliminated. On the other hand, when a directional transmitter

antenna is used, the initial reflections reflecting off the wall in close proximity to the

transmitter are eliminated due to the null point of the back end of the directional antenna.

This indicates that a directional receiver antenna can considerably reduce longer delayed

multipath arrivals, and a directional transmitter antenna can help reduce shorter delayed

multipath arrivals in similar TxlRx scenarios.

5.3 Power Delay Profile Model

Figure 5.4 illustrates the average normalized power delay profiles of Figure 5.3 in a 2-

dimensional view, where the vertical axis is linear and not in decibels. Bote that the

binned data is used in Figure 5.4, and not the raw data which was used in Figure 5.3. The

PDP contains a relatively large first arrival signal starting at 0 ns as shown in Figure 5.4.

Also, it is shown that the rays of the clusters tend to decay in an exponential nature. This

corresponds to a linear decreasing function on a dB scale as shown in Figure 5.3. The

first arrival component is relatively large, compared to subsequent multipath arrivals,

causing clusters to appear greatly attenuated in the profile as compared to the first arrival

signal. On the other hand, multipath components which appear greatly attenuated on a

linear scale are greatly accentuated on a dB scale, indicating the significance of the

clusters in the PDP as shown in Figure 5.3.



Figure 5.4. Bormalized power delay profile (measured) at a 4 m location in the
classroom. (a) omni-directionallomni-directional. (b) omni-directionalldirectional. (c)
directionalldirectional.
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Figure 5.5 is a zoomed-in version of the PDP's of Figure 5.4. This gives a more

detailed visualization of the cluster arrivals and the exponential decaying nature inherent

in the profiles.

Figure 5.5. Zoomed-in version of the normalized PDP's of Figure 5.4. (a) omni-
directionallomni-directional. (b) omni-directionalldirectional.



The PDP profile of the channel exhibits a large first arrival component, which can

be represented as a delta function with unity gain by scaling the normalized PDP to its

maximum component. This results in a PDP that is scaled relative to its maximum

component, hence it is given the name relative PDP. Modeling the relative PDP of the

channel has been shown to give significant results [13]. The relative PDP Pre, (t, d) is

given by:
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Pei , d) contains a unit gain component at t = 0 and a double summation term pertaining

to the cluster and ray arrivals starting at t = At. Bote that the double summation term

used to represent the cluster and ray arrivals is given by the general representation of the

Saleh-Talenzuela wideband channel model in [11], although in greater detail, differences

arise in the characterization of 13k1.

5.4 Omni-DirectionallDirectional Channel Model Description

The general relative PDP model is given by Equation (5.9), and is dependent on the

characterization of the arrival times T / and 'ride, and the power gains of the rays given by

f3 (d) . In this section a model is developed based on the characterization of these

parameters.

The arrival time of the / thecluster is denoted by T1and the arrival time of the kthray

of the / thecluster is denoted by'Chid 'The first cluster starts at To= 0 with respect to the

initial time shift At and the first ray of the / thecluster starts at To/= 0 . Therefore,tkl

represents a vernier time shift adjustment within the lth cluster. The interarrival times of

, are exponentially distributed and thus are

described by the probability density function,

where x corresponds to the interarrival times and A is the cluster arrival rate. The ray

intra-arrival times are not exponentially distributed and are considered instead to be

constant over all intra-arrival times of all clusters in which,
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A double exponential model is used in [11] to characterize the mean square values

of the impulse response of the channel. Similar channel behavior characteristics are

experienced for measurements described in this thesis and thus a modified double

exponential model is used to characterize the median power gains {Pk, (d)} estimated via

least-squares fitting to the logarithmic data of the 113L (d)} path gains of Eq. (5.9). The

multipath in the channel increases as a function of distance as described in Chapter 4

through RMS delay spread analysis. Therefore, 132,,, (d) which represents the path gain of

the k ithmultipath component of the /thecluster is modeled as a function of distance. The

median power gains {13k2/ (d)} are given by,

where F(d) is the cluster decay factor, or rather the cluster decay time constant,

described by a probability distribution with a mean that changes over distance, S p  is the

ray decay factor, where the first cluster is associated with a different decay factor than

subsequent clusters, and K. (d) is a median estimate of the power gain of the first

multipath component of the first cluster. The power gains 13 2k/ (d) are independent

positive random variables given by,
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where ki is a random variable describing the random variation of the k th ray of the /the

cluster for k > 0 and 'P describes the random variation of the first ray (i.e, k = 0) of the

tit cluster. Therefore, Pr el (t , d) of Eq. (5.9) can be represented as,

Equations (5.14) and (5.15) completely characterize the normalized PDP of the channel at

any given distance, (e.g., between 1 m and 10 m for the measured channel described in

this thesis).

5.5 Omni-Directional /Directional Channel Model Parameters

As mentioned previously, the PDP of the channel consists of a large first arrival signal

(e.g. LOS component). Furthermore, subsequent multipath components arrive in clusters

that decay in an exponential nature and rays within the clusters which also decay

exponentially. The channel model representing this phenomenon is given by Equation

(5.14). The channel model given by Equation (5.14) can be represented in linear form by

taking the logarithm of the function. This enables linear regression techniques to be used

for extracting the given parameters of Equation (5.14). The linear transformation of

Equation (5.14) in dB is given by,
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5.5.1 Cluster Intercept Parameter

The mean power gain of the first component of the first cluster is denoted by 13 020 (d)dB

which represents a minimum mean square error (MMSE) estimate of the power of the

first ray of the first cluster at a given distance d. Therefore, the cluster intercept estimates

(e.g., MMSE estimate of the power of the first ray of the first cluster) obtained from

fitting a line to the cluster data in the mean square error sense are plotted versus distance.

This parameter is modeled as a random variable with a mean that increases as a function

of distance. When the receiver is positioned at a distance close to the transmitter (e.g., 1

m to 3 m), multipath components are highly attenuated by the antenna side lobes. As the

receiver is positioned farther away from the transmitter, multipath components are more

prone to arriving within the maximum gain region of the antenna resulting in multipath

signals which are less attenuated with respect to the first arrival component. Therefore, at

a close distance or, more specifically at 1 m, the total power of the PDP is mostly

contained in the first arrival component.
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where B 2 is the MMSE estimate of all cluster intercept MMSE estimates at 1 m, c is the

slope of the MMSE fitted line in dBlm, d is the Tx/Rx separation distance in meters, r is

a zero mean Guassian random variable with a standard deviation of ail , which is the

standard deviation of the residuals or rather the differences between the observations and

the fitted line. i is given by,

where Arlo is a zero mean Guassian random variable with unit variance. Figure 5.6 is a

plot of the cluster intercept MMSE estimates versus distance along with the least squares

fit to the data. Figure 5.7 is a normal probability plot of the residuals of the least squares

fit to the data in Figure 5.6. The values of the model parameters of Equation (5.18)

corresponding to Figures 5.6 and 5.7 are shown in Table 5.1.



Figure 5.6. Cluster intercept MMSE estimates versus distance for the omni-
directionalldirectional TxlRx antenna combination.
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Figure 5.7. Residuals of the least squares fit to the MMSE cluster intercept estimates of
Figure 5.6.
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5.5.2 Cluster Interarrival and Ray Intra-arrival Times

As explained in Section 5.4, the cluster interarrival times are exponentially distributed

and modeled using Equation (5.10). The mean interarrival time is given by 1/ A and is

estimated to be approximately 20 ns. Figure 5.8 is a quantile-quantile plot of the cluster

interarrival times of the empirical data versus theoretical exponentially distributed

interarrival time samples with parameter A = (20 ns) -1 . As shown in the figure, the

interarrival times of the clusters fit the theoretical line reasonably well indicating that the

exponential distribution is a valid model for the cluster interarrival times. The rays within

the clusters do not exhibit any distribution amongst the intra-arrivals and are considered

to arrive constantly with an intra-arrival time At = .9768 ns . This value corresponds to

the bin time of each multipath component, as explained in Chapter 4.

5.5.3 Cluster and Ray Decay Factors

The cluster decay factor is an MMSE estimate corresponding to the slope of the least-

squares fit to the cluster data in dB. The decay factors are averaged at each distance d

and then a least squares regression model is fitted to the data. The cluster decay factor

17(d) is modeled as a function of distance and is given by,

where rob is an MMSE estimate of the cluster decay factor at a distance of 1 m, d is the

aforementioned TxlRx separation distance, and u is an MMSE estimate of the slope of

the least squares fit to the data. Therefore, there is single value representing the cluster

decay factor at each distance d. It is intuitive that the cluster decay factor is conducive to

or rather contributes to the increase in RMS delay spread experienced over distance.
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Figure 5.9 represents the average cluster decay factors plotted versus distance along with

the least squares fit to the data. Bote the increasing trend of the cluster decay factor with

distance, corresponding to a relative increase in RMS delay spread over distance. Table

5.2 lists the parameter values of Equation (5.20), representing the least squares fit to the

data of Figure 5.9. The ray decay factor y, or rather the decay time constants of the

clusters, did not exhibit any trend over distance. On the other hand, it appears that the

first set of rays corresponding to the first cluster decay at a greater rate then subsequent

clusters of rays on the average. The mean decay time constant of the first cluster has a
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decay time constant denoted by 7 1 and subsequent clusters correspond to a decay time
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Table 5.2 MMSE Estimates for Parameters of Equation (5.20)

5.5.4 Random Variation of Cluster and Ray Power Gains

The dB power gains of the rays and clusters are zero mean Guassian distributed random

variables with differing standard deviations. It has been deduced from analyzing cluster

arrivals and tracing propagation paths of PDPs, that the floor and surrounding walls

within a room are contributing factors of cluster arrivals. On the other hand, the rays

within the clusters were deduced to be a result of the clutter present in the environment.

This has also been observed in [11].

The median response of the channel is given by Equation (5.12), and the random

variation of the rays and clusters about the median response in dB are described by

4(dB) and 4(dB) , respectively. Equation (5.13) in dB is given by,

4(dB) and 4(dB) are zero mean Guassian distributed random variables in dB as shown

in Figure 5.10 and Figure 5.11, respectively. The standard deviations of 'Ii(dB) and

4(dB) are denoted by cr,i, and cy , respectively, and are listed in Table 5.3.



Figure 5.10. Distribution of cluster power gains about the mean response in dB.
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5.6 Omni-DirectionallDirectional Channel Model Simulation Results

The relative PDP given by Equation (5.16) can be synthesized using the parameter

estimates described in Section 5.5. The normalized PDP of Equation (5.7) can be

realized by transforming the synthesized response to a linear scale and using Equation

(5.15) to normalize the relative PDP. The phase term 0 in Equation (5.7) is described as

a uniform random variable over [0, 27r) . Bote that the first arrival component is always

positive (i.e., 0 = 0 ).

The clusters of the relative PDP model are generated for T 1 <130 ns to ensure ray

arrivals are simulated up to and beyond the average maximum multipath excess delay of

approximately 120 ns. The ray arrivals are simulated for 'Chid<8. ypwherep =1denotes

the first cluster decay factor and p = 2 denotes the decay factor of subsequent clusters.

This corresponds to ray delays up to 40 ns beyond the cluster delay T i . After

normalization of the relative PDP all power gains falling below a threshold of 45 dB are

set to zero. This corresponds to the average noise level of the measured data.

RMS delay spread is a feasible parameter for testing the significance or validity of

the channel model and how well it reproduces the characteristics of the measured data.

As shown in Chapter 4, the RMS delay spread increases as a function of distance, and the

model should indeed capture this effect. Figure 5.12 is a scatter plot of RMS delay

spread versus distance corresponding to seven simulated PDPs per distance. As shown in

the plot, the model captures the effect of the RMS delay spread increasing over distance.

The least squares fit to the simulated data and the least squares fit to the measured data

are also shown in Figure 5.12. Bote that in this particular trial run the least squares fit to

the simulated data is approximately identical to the least squares fit of the measured data.
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Figure 5.12. RMS delay spread vs. distance computed from simulated data. The solid
line represents the least squares fit to the simulated data, and the dashed line corresponds
to the least squares fit to the RMS delay spread values of the measured data.

A CDF plot of RMS delay spread values computed from simulated data is shown in

Figure 5.13, along with the CDF of the RMS delay spread values of the measured data. It

is shown that the model reproduces a CDF plot similar to that of the empirical CDF plot,

confirming the validity of the model.



Figure 5.13. RMS delay spread CDF plots computed from simulated and empirical data.

A simulated normalized PDP representing a 4 m response is shown in Figure

5.14a. This closely matches the 4 m PDP response of Figure 5.4b, which is shown in

Figure 5.14b for convenience. Figure 5.15a illustrates an 8 m simulated PDP response

and Figure 5.15b is a measured 8 m PDP response, note the similarities amongst these

two figures. It is exemplified in Figures 5.14 and 5.15 that the model of Equation (5.16)

reproduces PDP responses of the channel exhibiting channel characteristics similar to

those of the measured data.
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The simulation model data was also analyzed for threshold levels of 10 dB, 20

dB, and 30 dB below the maximum component of the normalized PDP response. That is,

the number of paths and the mean RMS delay spread were computed for each threshold

level and are listed in Table 5.4.

Table 5.4. Mean Talues of coy, and Bumber of Paths Np of Simulated Data for Threshold

Levels of 10 dB, 20 dB, and 30 dB Below the Maximum Component

Comparing the values of Table 5.4 with those of Table 4.3, it is evident that the

simulation model is highly reliable and accurate for threshold levels of 10 dB and 20 dB.

For a 30 dB threshold the model actually is highly reliable even though it lacks 8 paths

with regard to the measured data. This is true since the eight paths have been determined

to exist approximately at the 30 dB threshold level in which a 2 dB gain over the given

threshold level results in exactly 40 paths. Moreover, there was no significant change in

the mean RMS delay spread value for this threshold. Therefore, it can be concluded that

these paths do not carry significant energy at this threshold level, and for all practical

purposes the simulation model is valid at the 30 dB threshold.



82

5.7 Summary

In this chapter, the impulse response of the channel was thoroughly investigated for three

antenna combinations. Results show that the channel consists of a large first arrival

signal and rays that arrive in clusters. PDP plots for each antenna combination were

shown in 2-dimensional and 3-dimensional views, illustrating the effect of antenna

directivity on multipath propagation. It has been concluded that directional antennas

employed at the receiver or transmitter can help reduce multipath excess delay in the

channel.

A general representation of the impulse response model is described, which can

be modeled as a combination of the path loss model and normalized PDP model. A

distant-dependent relative PDP model of the channel is proposed which consists of a

delta function representing the LOS component and a double exponential model

representing the clustering phenomenon of rays. This simulation model is characterized

for an omni-directionalldirectional antenna combination and shows favorable agreement

with the measured data. The model can be used to regenerate impulse responses of the

channel for any location at any given distance from 1 m to 10 m for an environment with

homogeneous characteristics to the measured environment explained in Chapter 2.

Results show that the model reproduces statistical characteristics of the measured channel

with high accuracy.



CHAPTER 6

CONCLUSIONS

Frequency domain measurements of the indoor UWB channel were performed in a

college campus building for three different TxlRx antenna combinations using omni-

directional and directional antennas. The measurement procedure, environment, data

processing and statistical analysis of the channel are described. A statistical model that

characterizes the path loss in the channel was developed from the empirical data

measured in the channel for all three antenna combinations. This model can be used for

predicting the attenuation in the indoor UWB channel as a function of distance. Statistics

of the shadow fading in the environment are shown to be log-normally distributed.

Statistical analysis in the temporal domain was achieved by transforming the

frequency domain data into the time domain using the IDFT. The RMS delay spread has

been shown to decrease considerably when using directional antennas as opposed to

using omnidirectional antennas. Therefore, directional antennas can be used to mitigate

the effects of multipath in the indoor UWB channel that occur for omni-directional

antennas (e.g., transmission errors).

The RMS delay spread was shown to increase as a function of distance for all

three antenna combinations. Although, over distance RMS delay spread was shown to be

more sensitive to directional antennas than omni-directional antennas. This in effect

results in the ability to achieve higher data rates when the transmitter and receiver are

within close proximity of each other (e.g. 1 m-3 m) as compared to a TxlRx separation

distance of 10 m. The RMS delay spread was shown to increase at the lowest rate over
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distance when using an omnidirectional Tx/Rx antenna combination. The mean RMS

delay spread and mean number of paths were computed for threshold levels of 10 dB, 20

dB, and 30 dB below the main peak for all three antenna combinations. Directional

antennas were shown to considerably reduce the number of paths and delay spread over

the given threshold levels with significant results for a 30 dB threshold level. Results

show that a 30 dB threshold level gathers most of the energy in the PDP for each antenna

combination correspondingly and thus can be considered a suitable threshold level for all

three antenna combinations.

The deviation in RMS delay spread over distance was shown to be log-normally

distributed. Furthermore, large deviations of RMS delay spread tend to be correlated

with larger path loss values at a given distance for the omnilomni and omnildir antenna

combinations. On the other hand, the dirldir antenna combination did not exhibit much

correlation, and thus the RMS delay spread and shadow fading for this antenna

combination can be considered uncorrelated.

The channel impulse response was analyzed and characterized through physical

explanations and mathematical modeling. It was visually shown that directional antennas

employed at the receiver can significantly reduce longer delayed multipath components.

On the other hand, employing a directional antenna at the transmitter has been shown to

significantly reduce shorter delayed multipath components in the channel. These findings

are based on the transmitter antenna being set up in closer proximity to the wall than the

receiver antenna. The channel consists of a large LOS component and multiple signals

arriving from multiple propagation paths as a result of the clutter and walls of the indoor

environment. The multipath in the channel appears to arrive in clusters which decay in
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an exponential nature and rays within the clusters which also decay in an exponential

nature. This phenomenon has been observed for wideband indoor measurements in [11],

and thus a modified channel model based on the approach in [11] has been proposed.

The proposed channel model is a distant-dependent impulse response model of the UWB

channel for LOS indoor environments. Simulation results (i.e., RMS delay spread and

PDPs) for the omnildir antenna combination were shown to significantly agree with the

measured data.
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