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ABSTRACT

APPLICATION OF BOOTSTRAP RESAMPLING IN FMRI

by
Arthika Bappal

This thesis demonstrates the use of the bootstrap resampling technique considering

temporal dependency in the fMRI data to determine the reliability and confidence interval

of fMRI parameters. Traditionally, the test-retest method has been used to reliably detect

active voxels in the fMRI image of the brain, which is based on repetitive

experimentation. The main concern with the test-retest method is the reproducibility of

data over these multiple repetitions. Fatigue, habituation, motion artifacts, and

repositioning errors are few of the factors, which can affect the reproducibility of data.

The conventional bootstrap resampling technique is based on the assumption that

the dataset is independent and identically distributed over time. However, studies have

shown temporal dependency in the fMRI images of the brain acquired from subjects in

the resting phase. This study demonstrates the use of the bootstrap resampling technique,

incorporating the criterion of temporal dependency in the fMRI data set, to detect reliable

active voxels in the fMRI images acquired during a task activated motor paradigm, where

the subject is instructed to perform bilateral finger tapping.

The results of the study showed that the active regions detected using the

bootstrap resampling technique considering temporal dependency in the fMRI data were

more reliable than the active regions detected using the bootstrap resampling technique

without considering any temporal dependency in the fMRI data.



APPLICATION OF BOOTSTRAP RESAMPLING IN FMRI

by
Arthika Bappal

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

May 2004





APPROVAL PAGE

APPLICATION OF BOOTSTRAP RESAMPLING IN FMRI

Arthika Bappal

Dr. Stanley S. Reisman, Thesis Advisor	 Date
Professor of Biomedical Engineering, NJIT
Professor of Electrical and Computer Engineering, NJIT

Dr Bharat B. Biswal, Co-Advisor 	 Date
Associate Professor of Radiology, UMDNJ

Dr. David Kristol, Committee Member 	 Date
Associate Chair and Professor of Biomedical Engineering, NJIT



BIOGRAPHICAL SKETCH

Author:	 Arthika Bappal

Degree:	 Master of Science

Date:	 May 2004

Undergraduate and Graduate Education:

• Master of Science in Biomedical Engineering
New Jersey Institute of Technology, Newark, NJ, 2003.

• Bachelor of Science in Biomedical Engineering
Manipal Institute of Technology, Manipal, KA, India, 2002.

Major:	 Biomedical Engineering



This thesis is dedicated to my beloved family and friends.

v



ACKNOWLEDGEMENT

I would like to first thank my research co-advisor, Dr. Bharat B. Biswal for his

unwavering guidance, encouragement and support that greatly enhanced my graduate

school education at New Jersey Institute of Technology. His expertise in the field of

medical image processing and his valuable suggestions made my research work

extremely enjoyable and rewarding.

Special thanks to my thesis advisor, Dr. Stanley Reisman for his guidance and

supervision during the research. Also, thanks to Dr. David Kristol for serving as member

of the thesis committee.

I am grateful to Radiology Department, University of Medicine and Dentistry of

New Jersey for providing me the necessary infrastructure and support to carry out the

research work.

I would also like to express my gratitude to everyone who directly or indirectly

helped me during the course of the thesis. This thesis is dedicated to my family for whom

I would like to express my love and gratitude.

vi



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 	 1

1.1 Overview 	 1

1.2 Objective 	 3

1.3 Background Research 	 3

1.4 Outline 	 5

2 MAGNETIC RESONANCE IMAGING 	 6

2.1 Introduction 	 6

2.2 Physics of MRI 	 6

2.3 Image Contrast 	 8

2.4 Magnetic Field Gradients 	 12

2.4.1	 Slice Selection Gradient 	 12

2.4.2	 Frequency Encoding Gradient 	 13

2.4.3	 Phase Encoding Gradient 	 14

2.5 Pulse Sequence 	 16

2.5.1	 Spin Echo Pulse Sequence 	 16

2.5.2	 Inversion Recovery Pulse Sequence 	 17

2.5.3	 Gradient Echo Sequence 	 18

2.5.4	 Echo Planar Imaging 	 19

2.6 Functional Magnetic Resonance Imaging 	 20

2.6.1	 BOLD Functional Magnetic Resonance Imaging 	 21

2.6.2	 Paradigm Design 	 23

vii



TABLE OF CONTENTS
(Continued)

Chapter Page

2.6.3	 Noise Factors in fMRI 	 24

3 TECHNIQUES FOR fMRI DATA ANALYSIS 	 26

3.1 Motion Correction 	 26

3.1.1	 Woods' Automated Image Registration (AIR) Method 	 27

3.1.2	 Mutual Information 	 28

3.1.3	 Least Square (LS) Measure 	 29

3.2 Statistical Analysis of the Data 	 29

3.2.1	 Paired T-test 	 30

3.2.2	 Correlation Technique 	 31

3.2.3	 The General Linear Model 	 34

3.2.4	 Analysis of Variance (ANOVA) 	 35

4 RESAMPLING TECHNIQUE 	 39

4.1 Jackknife Resampling Technique 	 40

4.2 Bootstrap Resampling Technique 	 41

4.3 Block Bootstrap Resampling Technique 	 42

5 MATERIALS AND METHOD 	 46

5.1 Subjects and Data Acquisition 	 47

5.2 Task Paradigm 	 48

5.3 Data Analysis 	 51

5.3.1	 Applying Bootstrap Resampling Technique 	 52

5.3.2	 Applying Block Bootstrap Resampling Technique 	 54

viii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

5.3.3 Generating Activation Map Using Fixed threshold 	 55

5.3.4 Applying T-test 	 56

6 RESULTS AND DISCUSSION 	  57

6.1 Motion Correction 	 57

6.2 Results Obtained Using Cross Correlation 	 57

6.3 Results Obtained Using Bootstrap Resampling Technique 	  60

6.4 Results Obtained Using Block Bootstrap Resampling Technique 	  63

6.5 Results Obtained Using T-test 	 78

6.6 Discussion 	 84

7 CONCLUSION 	  86

REFERENCES 	  89

ix



LIST OF TABLES

Table	 Page

2.1 Water Content of Various Human Tissues 	  11

5.1 Shows the Different Block Size Used for Each TR to Apply Block
Bootstrap Resampling Technique 	  53

6.1 Shows the Different Block Size Used for Each TR to Apply Block
Bootstrap Resampling Technique 	  64

6.2 (a) Shows the Block Size Obtained for Each TR, for the First Dataset
at Which Maximum Correlation Coefficient Values was Obtained 	  67
(b) Shows the Block Size Obtained for Each TR, for the Second Dataset
at Which Maximum Correlation Coefficient Values was Obtained 	  67

6.3 (a) Shows the Mean and Standard Deviation of the 1000 Correlation
Coefficient Values Obtained Using the Bootstrap Resampling
Technique for the Voxel Shown in Figure 6.8 	  70
(b) Shows the Mean and Standard Deviation of the 1000 Correlation
Coefficient Values Obtained Using the Block Bootstrap Resampling
Technique for the Voxel Shown in Figure 6.8 	  70

6.4 (a) Shows the Mean and Standard Deviation of the 1000 Correlation
Coefficient Values Obtained Using the Bootstrap Resampling
Technique for the Voxel Shown in Figure 6.11 	  73
(b) Shows the Mean and Standard Deviation of the 1000 Correlation
Coefficient Values Obtained Using the Block Bootstrap Resampling
Technique for the Voxel Shown in Figure 6.11 	  73

6.5 (a) Represents the Number of Voxels that were Shown as Active
Using Fixed threshold of correlation coefficient,	 Bootstrap
Resampling Technique and Block Bootstrap Resampling Technique
for the First Set of Data 	  76
(b) Represents the Number of Voxels that were Shown as Active
Using Fixed threshold of correlation coefficient, 	 Bootstrap
Resampling Technique and Block Bootstrap Resampling Technique
for the Second Set of Data 	  77

x



LIST OF TABLES
(Continued)

Table	 Page

6.6 (a) Represents the Number of Voxels that were Shown as Active
Using Fixed Threshold of t-values, Bootstrap Resampling
Technique Using T-test and Block Bootstrap Resampling Technique
Using T-test for the First Set of Data 	  82
(b) Represents the Number of Voxels that were Shown as Active
Using Fixed Threshold of t-values, Bootstrap Resampling
Technique Using T-test and Block Bootstrap Resampling Technique
Using T-test for the Second Set of Data 	  83

xi



LIST OF FIGURES

Figure	 Page

2.2 Precession of the magnetization vector in a static magnetic field aligned along
the z-axis 	 8

2.2 Longitudinal magnetization vector M. in the direction of the magnetic field Bo. 	 9

2.3 The T 1 relaxation curve 	 10

2.4 The net magnetization vector along the XY plane 	 11

2.5 The T2 relaxation cure 	 11

2.6 A long cylindrical object aligned along the z-axis in a field gradient which
increases linearly with increasing z 	 12

2.7 Timing diagram for Spin Echo Pulse sequence 	 17

2.8 Timing diagram for Inversion Recovery Pulse sequence 	 18

2.9 Timing diagram for Gradient Echo Pulse sequence 	 19

2.10 Timing diagram for spin Echo planar Pulse sequence 	  20

2.11 A hypothesized mechanism of changes in the blood oxygenation level
dependent (BOLD) that underlie the FMRI approach to imaging task
dependent neural activity  22

2.12 Representation of a box car reference waveform 	  23

3.1 Steps involved in the processing of fMRI data 	  26

3.2 The waveform below represents the signal from an active voxel in the brain
image in response to stimulus box car reference waveform shown above 	  32

3.3 Distribution of the correlation coefficient values between the range of —1 and
+1 for a non active voxel at the top (a) and for an active voxel (b) below 	 33

4.1 a) Represents the autocorrelation of a voxel from the resting data and
b) Represents the autocorrelation of another voxel from the resting data 	  43

5.1 Picture of a patient lying in the MRI scanner 	 47

xii



LIST OF FIGURES
(Continued)

Figure	 Page

5.2 Representation of ideal box car reference waveforms used for acquiring the
first set of data. Figure 5.2 (a) ,(b), (c), (d) are the reference waveform
used for TR = 2000 ms, TR = 1000 ms, TR = 500 ms, TR = 250 ms with a
(with 20 secs ON and OFF period) total of 90, 180, 360, 720 images
acquired, respectively   49

5.3 Representation of ideal box car reference waveforms used for acquiring the
second set of data. Figure 5.3 (a), (b), (c), (d) are the reference waveform
used for TR = 2000 ms, TR = 1000 ms, TR = 500 ms, TR = 250 ms (total
of 180 images were acquired) with 40 secs, 20 secs, 10 secs, and 5 secs
ON and OFF period, respectively  50

5.4 a) An fMRI image acquired across the motor cortex of the brain during
bilateral finger taping and b) The time series of the voxels shown in
Figure 5.3 (a)  51

5.5 The flow chart for bootstrap resampling technique 	 53

5.6 The flow chart for block bootstrap resampling technique 	 55

6.1 The histogram of the correlation coefficient values ranging from -1 to +1
obtained by cross correlating the stimulus reference waveform on a voxel
by voxel basis with every time course in the resting fMRI image obtained
using TR = 500 ms  58

6.2 The histogram of the correlation coefficient values ranging from -1 to +1
obtained by cross correlating the stimulus reference waveform on a voxel
by voxel basis with every time course in the active fMRI image obtained
using TR = 500 ms  59

6.3 The activation map generated using a fixed threshold of 0.4 for correlation
coefficient values, for the fMRI image obtained using TR = 500ms 	  59

6.4 a) Cross correlation image obtained applying the Bootstrap resampling
technique on fMRI image acquired using TR = 500 ms, b) Represents the
1000 correlation coefficient values for the voxels shown in Figure 6.4 (a)
generated using the bootstrap resampling technique  	 61
c) Represents the histogram of the correlation coefficient values ranging
from -1 to +1 obtained using the bootstrap resampling technique for the
voxels shown in Figure 6.4 (a) 	 62



LIST OF FIGURES
(Continued)

Figure	 Page

6.5 a) and b) Shows the activation map generated using the bootstrap resampling
technique and fixed threshold of correlation coefficient 	 63

6.6 Represents subplots comparing mean correlation coefficient values obtained
applying block bootstrap, with block sizes 14, 16, 18, 19 and 0 (conventional
bootstrap resampling technique) for voxels in the motor cortex  65

6.7 Represents subplots comparing mean correlation coefficient values obtained
applying block bootstrap, with block sizes 34, 36, 38, 39 and 0 (conventional
bootstrap resampling technique) for voxels in the motor cortex  66

6.8 (a) (top left), (b) (top right), (c) (bottom) Shows the activation map that have
same confidence internal at each voxel generated using the bootstrap
resampling technique, block bootstrap resampling technique (block size 36)
and using a fixed correlation coefficient threshold of 0.4 in AFNI for the
fMRI image acquired using TR = 500 ms  68

6.9 The time series of the fMRI image obtained using TR = 500ms for the voxel
shown in Figure 6.8 	  70

6.10 (a) Represents the histogram of the correlation coefficient values ranging
from -1 to +1 obtained using the bootstrap resampling technique for the
voxels shown in Figure 6.8 and 	 71
(b) Represents the histogram of the correlation coefficient values ranging
from -1 to +1 obtained using the bootstrap resampling technique for the
voxels shown in Figure 6.8 	 71

6.11 (a) (top left), (b) (top right), (c) (bottom) Shows the activation map that have
same confidence internal at each voxel generated using the bootstrap
resampling technique, block bootstrap resampling technique (block size 18)
and using a fixed correlation coefficient threshold of 0.4 in AFNI for the
fMRI image acquired using TR = 1000 ms  72

6.12 The time series of the fMRI image obtained using TR = 1000ms for the voxel
shown in Figure 6.11  	 73

6.13 (a) Represents the histogram of the correlation coefficient values ranging
from -1 to +1 obtained using the bootstrap resampling technique for the
voxels shown in Figure 6.11 and 	 74
(b) Represents the histogram of the correlation coefficient values ranging
from -1 to +1 obtained using the bootstrap resampling technique for the
voxels shown in Figure 6.11  	 74

xiv



LIST OF FIGURES
(Continued)

Figure	 Page

6.14 (a) (left), (b) (right) Shows activation map that has same confidence interval
at each voxel obtained using cross correlation and t-test for bootstrap
resampled dataset for the fMRI image acquired using TR = 500 ms  78

6.15 (a) Represents the histogram of the correlation coefficient values ranging
from -0.06 to 0.8 obtained using the bootstrap resampling technique for the
voxels shown in Figure 6.14 (a) 	 79
(b) Represents the histogram of the correlation coefficient values ranging
from -0.6 to 12 obtained using the bootstrap resampling technique for the
voxels shown in Figure 6.14 (b) 	 79

6.16 (a) (left), (b) (right) Shows activation map that has same confidence interval
at each voxel obtained using cross correlation and t-test for block bootstrap
resampled dataset for the fMRI image acquired using TR = 500 ms  80

6.17 (a) Represents the histogram of the correlation coefficient values ranging
from -0.2 to 0.8 obtained using the bootstrap resampling technique for the
voxels shown in Figure 6.16 (a) 	 81
(b) Represents the histogram of the correlation coefficient values ranging
from -2 to 12 obtained using the bootstrap resampling technique for the
voxels shown in Figure 6.16 (b) 	 81

xv



CHAPTER 1

INTRODUCTION

1.1 Overview

Traditionally, for physiological and anatomical studies, neuroscientists have relied on

animal models and human patients with localized brain damages to reveal the brain

mechanisms of mental functions. Modern imaging techniques permits observe non-

invasively, the neural activity of both normal and diseased human brain. Among

noninvasive measurement techniques, functional magnetic resonance imaging (fMRI) is

growing rapidly because of its superior spatial resolution and complete non-invasiveness.

Functional Magnetic Resonance Imaging measures brain response for a given

stimulus. The main advantages of fMRI is that it is noninvasive, has a greater temporal

and spatial resolution allowing for event-based and trial-based experiments and does not

require exposure to radioactive isotopes. Blood Oxygenation Dependent (BOLD)

functional MM is the most commonly utilized method to measure brain activation in

motor, visual, auditory cortex and in the areas of higher cognitive functions like speech,

word generation and working memory.

To detect active regions in the fMRI images of the brain, researchers [1, 2] have

used methods like the t-test, f-test, ANOVA and cross correlation. During activation, the

signal intensity increases by about 5% above the mean signal intensity and by about 1%

during rest, making it difficult to detect the active regions. Moreover, the presence of

noise factors in the fMRI signal adds to the challenge of identifying the active regions

reliably. Noise in functional MRI arises from a variety of sources. In most MR imaging,

1
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the standard sources of noise are thermal noise from the subject, reception coil,

preamplifiers and other electronics, and quantization noise from the analog to digital

conversion. Also, uncontrolled or spontaneous neural events represent yet another source

of noise.

It is important to devise methods, which can generate a measure for assessing the

reliability and accuracy of the statistical parameters like t-test, cross correlation and

ANOVA. The test-retest method [3-9] has been used to reliably detect active voxels in

the fMRI image of the brain, which is based on repetitive experimentation. The main

concern with the test-retest method is the reproducibility of data over these multiple

repetitions. Fatigue, habituation, motion artifacts and repositioning errors are few of the

factors, which can affect the reproducibility of data. Moreover, it is not possible to

conduct repetitive scans on trauma patients and children.

To overcome the drawbacks of the test retest technique, statistical resampling

methodologies have been proposed. Recently, the jackknife [10] and bootstrap

resampling technique [11] has been developed, which can be used as an alternative to the

test-retest method in reliable detection of active regions in fMRI images of brains. The

basic principle behind these resampling techniques is generating a large pseudo

population of the dataset by repeatedly resampling the original dataset. The statistical

parameter of interest like the mean or correlation coefficient is calculated for each

resampled dataset, and finally the distribution of this approximated statistical parameter is

analyzed to find its confidence interval (explained in detail in Chapter 4).



3

The bootstrap and jackknife resampling techniques are based on the assumption

that the dataset is independent and identically distributed over time. However, studies

[12-18] have shown temporal dependency in the fMRI images of the brain acquired from

subjects in the resting phase.

1.2 Objective

This study demonstrates the use of the bootstrap resampling technique, incorporating the

criterion of temporal correlation in the fMRI data set, to detect reliable active voxels in

the fMRI images acquired during task activation. Temporal dependency in fMRI datasets

for different TR (time of repetition) is analyzed and the hypothesis that active regions

detected considering temporal dependency in fMRI data is more reliable than the active

regions detected without considering temporal dependency is tested.

1.3 Background Research

The test-retest technique is a commonly used tool to detect reliable active regions of the

brain. In this technique, the experiment is repeated several times to increase reliability of

data. In fMRI, considerable research has been done using this technique in recent years

[3-9]. Yetkin et al. [3] were the first to investigate the use of the test-retest technique to

obtain reliable measures. They showed that for each subject, activation from the first and

second repetition of an experiment for motor and cognitive task was located in the same

region. A measure of precision called the mean reproducibility ratio was defined as being

the ratio of number of pixels activated by two experiments of the same task to the pixels

activated by either experiment. Their studies showed that for a motor task, the mean
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reproducibility ratio was 0.54, 0.59 and 0.57 at threshold levels of 0.70, 0.60 and 0.50

respectively and for sensory task was 0.39, 0.45 and 0.57 at thresholds of 0.70, 0.60 and

0.50.

Rombouts et al. [4] investigated the inter-subject and intra-subject variability of

an activated area in the visual cortex. In terms of the size and shape of activated areas, the

study showed higher inter-subject variability compared to intra-subject variability. For

intra-subject variability, the mean values for reproducibility ratio of size was 0.83 ± 0.16

and for location was 0.31 ± 0.11.

Following the study of Yetkin et al. [3] and Rombouts [4], researchers developed

statistical methods used along with the test retest technique to increase the reliability of

active pixels. To define and quantify the reliability of the test-retest technique, Genovese

et al. [5] recently proposed the maximum likelihood (ML) method. This method was used

to set thresholds for detecting activation and determining the number of images that can

be used for an experiment. Further extending this study, Maitra et al. [6] incorporated

spatial context into the estimation process extending the premise of maximum likelihood

(ML) developed by Genovese et al. [5]. They claim that their methodology provided

more conservative estimates of true positives when compared to those obtained by

Genovese et al. [5].

All studies on the test-retest technique [3-9] are based on the underlying

assumption that the imaging parameters are constant over multiple scans. This technique

might be effective in analyzing a simple motor or visual task. For more complex tasks,

this assumption will not be valid. For example, for a simple finger tapping experiment,

the imaging parameters and the stimulus related parameters like the finger tapping rate
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and the ON/OFF cycle timing must be identical for each scan. Any deviation from the

specified finger tapping rate or the ON/OFF cycles in any of the scans would result in an

erroneous conclusion. Moreover the reproducibility of fMRI data for each repetitive scan

can be affected by attentional efforts, motion artifacts, repositioning errors, learning,

habituation or fatigue. Further, for a number of cases involving children and trauma

patients, it is not possible to repeat the study a number of times.

Carel et al. [19], and Loubinoux et al. [20], have shown the test-retest effects for

between sessions using time effect comparison. The study revealed prevalence of

habituation shown by decreased activity of the primary sensorimotor cortex and SMA

and an increased activity of the ipsilateral cerebellar hemisphere. Ramsey at al. [21]

showed reduced extent of cortical motor activated areas, when the experiments were

separated by 10-30 min or 5 to 16 weeks.

1.4 Outline

In Chapter 2, the basics of MRI and fMRI are briefly discussed. Chapter 3 discusses the

currently used techniques for registration and statistical analysis of fMRI images. Chapter

4 describes three resampling techniques, the jackknife resampling technique, the

bootstrap resampling technique, and the extension of the bootstrap resampling technique

called the block bootstrap resampling technique. Subjects, task paradigm and data

analysis are explained in Chapter 5. In Chapters 6 and 7 the results and future work are

discussed.



CHAPTER 2

MAGNETIC RESONANCE IMAGING

2.1 Introduction

The concept of Nuclear Magnetic Resonance (NMR) was first demonstrated by Purcell

[23] and Bloch [24] in 1946. In 1973 Lauterbur [25] and Mansfield [26] used the

principles of NMR to describe a technique for determining physical structure properties.

Since then, Magnetic Resonance Imaging (MRI) has been used in many biomedical,

chemical and engineering applications. In this chapter, the basic principles of magnetic

resonance imaging and functional magnetic resonance imaging are explained.

2.2 The Physics of MRI

Magnetic Resonance Imaging (MRI) is a non invasive imaging technique used primarily

in medical settings to generate high quality images for studying the inside of human

body. Magnetic Resonance Imaging is based on the principles of Nuclear Magnetic

Resonance (NMR). The principle of NMR is derived from the quantum mechanical

property of nuclear spin. Nuclei with odd number of neutrons or protons, or both will

have a net magnetic moment making it NMR active. Among the most commonly used

nuclei are Hydrogen, Carbon, Fluorine, Sodium, and Phosphorous. For medical imaging

applications, "proton" NMR (hydrogen nuclei), is most common due to its high

concentration in the human body and its high sensitivity [27].

6
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The proton nucleus has two intrinsic properties - a magnetic moment and spin.

When a magnetic field is applied, a torque is wielded on the nucleus causing it to align

itself in the direction of magnetic field. However, temperature and other perturbations

disturb this alignment. Over time, these thermodynamic and magnetic forces arrive at an

equilibrium state with a small excess of protons aligned with the magnetic field. The

combined alignments of these protons result in net magnetic moments, thereby inducing

its own magnetic field. The spin causes the nuclei to precess about the magnetic field axis

at a characteristic frequency rather than aligning themselves with the field. The frequency

of precession, f is linearly proportional to the strength of the magnetic field Bo, as shown

by the Larmor equation below [27].

Where, y is a proportionality constant specific to the nuclear species.

The magnetic moments of each nucleus can be divided two components - a

stationary (longitudinal) component and a rotating (transverse) component. While the

longitudinal component is on average in line with the applied magnetic field, the

transverse component rotates about it. Normally, the phases of the rotational component

of each nucleus are random with respect to each other, and thus, the net rotational field

equates to zero [27].
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Figure 2.1 Precession of the magnetization vector in a static magnetic field aligned
along the z-axis.

2.3 Image Contrast

The contrast in an MR image is strongly reliant on the image acquisition process. By

adding RF or gradient pulses, and by careful choice of their timings, it is possible to

highlight different components in the object being imaged. Contrast is generated by the

varying degrees of spin density along the object, in the absence of which, there would be

no NMR signal. Proton spin densities depend on water content, typical values of which

are given in Table 2.1 for various human tissues [28]. The low proton spin density of

bone makes MM inappropriate for skeletal imaging. Since there is such a small

difference in proton spin density between most other tissues in the body, other suitable

contrast mechanisms must be employed. These are generally based on the variation in the

values of Ti and T2 for different tissues.



Table 2.1 Water Content of Various Human Tissues

9

'Ili Processes

At equilibrium, the net magnetization vector lies along the direction of the applied

magnetic field B. and is called the equilibrium magnetization M0, shown in Figure 2.2. In

this configuration, the Z component of magnetization M z equals Mo . Mz is referred to as

the longitudinal magnetization. There is no transverse (Mx or My) magnetization here

[271

Figure 2.2 Longitudinal magnetization vector M. in the direction of the magnetic field
B..

It is possible to vary net magnetization by exposing the nuclear spin system to the

energy of a frequency equal to the energy difference between the spin states. If enough

energy is put into the system, it is possible to saturate the spin system and make
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Mz=0. The time constant, which describes how Mz returns to its equilibrium value, is

called the spin lattice relaxation time (T i ). The equation governing this behavior as a

function of the time t after its displacement is:

Figure 2.3 The T1 relaxation curve.

The spin-lattice relaxation time T1 is a measure of the time for the longitudinal

magnetization to recover [27].

T2 Processes

In addition to the rotation, the net magnetization starts to de-phase because each of the

spin packets making it up is experiencing a slightly different magnetic field and rotates at

its own Larmor frequency. The longer the elapsed time the greater the difference in

phase. Here, the net magnetization vector is initially along XY, as shown in Figure 2.4.

The time constant that describes the return to equilibrium of the transverse magnetization,

Mxy , is called the spin-spin relaxation time, T2 [27].



Figure 2.4 The net magnetization vector along the XY plane.

11

The net magnetization in the XY plane goes to zero and the longitudinal

magnetization grows until M. is along Z. The transverse component rotates about the

direction of applied magnetization and dephases [27]. The loss of transverse

magnetization occurs relatively quickly whereas the return of excited magnetization to

equilibrium takes a longer time.

Two factors contribute to the decay of transverse magnetization - Molecular

interactions (said to lead to a pure T2 molecular effect) and Variations in B. (said to lead

to an inhomogeneous T2 effect). The combination of these two factors results in the decay

of transverse magnetization. The combined time constant is called T2 star and is given the
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symbol T2 * . The decay is exponential and is also called Free Induction Decay, FID. This

rapid decay is due to the relationship between the T2 from molecular processes and that

from inhomogeneities in the magnetic field as follows.

2.4 Magnetic Field Gradients

The measurement of frequency of precession of the magnetization in an NMR

experiment, gives information on the field experienced by that group of spins. By

manipulating the spatial variation of the field in specific ways, frequency information

could yield spatial information. If each region of spin experienced a unique magnetic

field their positions could be imaged. A gradient in the magnetic field is required to do

this. A magnetic field gradient is a variation in the magnetic field with respect to position.

A one-dimensional magnetic field gradient is a variation in only one direction, while a

two-dimensional gradient is a variation in two. The more popular of the two gradients in

magnetic resonance imaging is the one-dimensional linear magnetic field gradient. A

one-dimensional magnetic field gradient along the x axis in a magnetic field, Bo,

indicates that the magnetic field is increasing in the x direction. The symbols for a

magnetic field gradient in the x, y, and z directions are G x, Gy, and Gz [27].

2.4.1 Slice Selection Gradient

The RF pulses generated by RF antennas cannot spatially direct the RF energy. The slice

selection gradient determines the slice of the tissue to be imaged in the body, in

conjunction with the RF excitation pulse. For axial MR images, this gradient is applied

along the long axis of the body, as shown in Figure 2.6. Proton precessional frequencies
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vary according to their distance from the null of the slice selection gradient. A selective

frequency RF pulse is applied to the whole volume, but only those spins along the

gradient that have a precessional frequency equal to the frequency of the RF will absorb

the energy due to the resonance phenomenon [29].

Figure 2.6 A long cylindrical object aligned along the z-axis in a field gradient which
increases linearly with increasing z.

Slice thickness is determined by two parameters, (a) the bandwidth (BW) of the

RF pulse, and (b) the gradient strength across the FOV. For a given gradient field

strength, an applied RF pulse with a narrow BW excites the protons over a narrow slice

of tissue, and a broad BW excites a thicker slice. For a fixed RF BW, the gradient slope

determines the slice thickness. An increase in the gradient slope produces a large range of

frequencies across the FOV and results in reduced slice thickness [29].

2.4.2 Frequency Encoding Gradient

The frequency encoding gradient, also known as the readout gradient, is applied in a

direction perpendicular to the slice selection gradient. For an axial image acquisition, the

frequency encoding gradient is applied along the x-axis throughout the formation and the

decay of the signal arising from the spins excited by the slice selection gradient. Spins

constituting the signal are frequency encoded, depending on their position along the
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frequency encoding gradient. During the time the gradient is turned on, the protons

precess with a frequency determined by their position from the null. Higher precessional

frequencies occur at the positive pole and, lower frequencies occur at the negative pole of

the gradient. Demodulation of the composite signal produces a net frequency variation

that is symmetrically distributed from zero frequency at the center, to +fmax and —fmax

at the edges of the FOV [29].

2.4.3 Phase Encoding Gradient

The position of the spins in the third spatial dimension is determined with a phase

encoding gradient, applied before the frequency encoding gradient and after the slice

selection gradient, along the third perpendicular axis. Phase represents the variation in the

starting point of the sinusoidal wave, and can be purposefully introduced with application

of a short duration gradient. After the initial localization of the excited protons in the slab

of the tissue by slice selection gradient, all spins are in phase coherence. During the

application of the phase encoding gradient, a linear variation in the precessional

frequency of the excited spins occurs across the tissue slab along the direction of the

gradient. After the gradient is switched off, spin precession reverts to the larmor

frequency, but now phase shifts are introduced, the magnitude of which are dependent on

the spatial position relative to the phase encoding gradient null and the strength. Phase

advances for the protons in the positive gradients and phase retards for protons in the

negative gradient, while no phase shifts occur for protons at the null [29].
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To obtain T1, T2 or proton density weighted images, specific values of TR (time

of repetition) and TE (time to echo) should be selected for a given pulse sequence. The

selection of appropriate TR and TE weighs an image so that one contrast mechanism

predominates the other two.

T1 Weighted Image

A Ti-weighted spin echo sequence is designed to produce contrast based on the T1

characteristics of tissues by de-emphasizing T2 contributions. This is achieved with the

use of a relatively short TR to maximize the differences in longitudinal magnetization

during the return to equilibrium, and a short TE to minimize T2 dependency during signal

acquisition [29].

Proton Density Weighted Image

Image contrast with spin density weighting relies mainly on differences in the

magnetizable protons per volume of tissue. At thermal equilibrium, those tissues with a

greater spin density exhibit a larger longitudinal magnetization. To minimize the T1

differences of the tissues, a relatively long TR is used. This allows a significant

longitudinal recovery so that the transverse magnetization differences are mainly those

resulting from variations in spin density. The influences of T2 differences are minimized

by using a short TE. Proton density weighted images therefore require a long TR and a

short TE for the spin echo pulse sequence [29].
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T2 Weighted Image

A T2-weighted spin echo sequence is designed to produce contrast based on the T2

characteristics of tissues. This is achieved by reducing T1 effects with long TR, and

accentuates T2 differences with a longer TE [29].

2.5 Pulse Sequence

The pulse sequence is a complex sequence of events, occurring during MRI data

acquisition by switching on RF pulses and magnetic gradient fields. An MR pulse

sequence comprises of three parts - the "preparation" or "excitation module", the

"acquisition module" or "readout module" and a third "end module" which is used to

modify or abolish remaining xy-plane magnetization prior to a succeeding spin

excitation. All three modules are repeated multiple times to form an entire imaging pulse

sequence during which the entire image points of the two-dimensional image or three-

dimensional volume are measured.

In the following sections, four main pulse sequences used for MRI data

acquisition are described briefly.

2.5.1 Spin Echo Pulse Sequence

The spin echo pulse sequence is the most commonly used pulse sequence. The pulse

sequence timing can be adjusted to give T i -weighted, proton or spin density, and T2-

weighted images. Dual echo and multi-echo sequences can be used to obtain both proton

density and T2-weighted images simultaneously. The two variables in spin echo

sequences are the Time of Repetition (TR) and the Time of Echo (TE) [30].
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All spin echo sequences include a slice selective 90 degree pulse followed by one

or more 180 degree refocusing pulses as shown in the following diagram.

2.5.2 Inversion Recovery Pulse Sequence

Inversion recovery pulse sequences are used to give heavy Ti-weighting. In addition, the

STIR (Short T1 Inversion Recovery) sequence can be used for fat suppression, where

shorter inversion times are utilized to null the fat signal while maintaining water and soft

tissue signal. The basic part of an inversion recovery sequence is a 180 degree RF pulse

that inverts the magnetization. This is followed by a 90 degree RF pulse that makes the

residual longitudinal magnetization into the x-y or transverse plane. This can now be

detected by RF coils. In imaging, the signal is usually refocused with a 180 degree pulse

as in a spin echo sequence. The time between the initial 180 degree pulse and the 90

degree pulse is the inversion time (TI) [30]. A diagram of the sequence is shown below.



2.5.4 Echo Planar Imaging

Echo planar imaging is a gradient echo technique related to fast gradient echo imaging.

An entire set of 64 or 128 phase steps is acquired during one acquisition TR instead of

one to 16 phase steps per acquisition TR. This is done by rapid reversal of readout or

frequency- encoding gradient. This switching or reversal can also be done in a sinusoidal

form. Echo planar sequences may use entirely gradient echos or may combine a spin echo

with the train of gradient echos as illustrated in the diagram below. Echo planar images

may be acquired in less that 1/10th of a second and therefore may be useful in cardiac

imaging and other rapidly changing processes [30].
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imaging and other rapidly changing processes [30].
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2.6 Functional Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) of the brain is well-recognized for its excellent

spatial resolution, allowing neuro-anatomic structures to be viewed in sharp detail.

Recently, it has become possible to modify a conventional MRI scanner to study the

brain's function as well. This new technology, called functional Magnetic Resonance

Imaging (fMRI). Functional Magnetic Resonance is a non invasive technique used for

measuring brain response to a given stimulus. There are four main types of functional

MRI, (1) BOLD (Blood Oxygenation Dependent)-fMRI that senses variations in the

blood oxygenation, (2) Perfusion fMRI which measures regional cerebral blood flow, (3)

Diffusion-weighted fMRI which measures random movement of water molecules, and (4)

CBV-fMRI, which measures variations in the cerebral blood volume. The signal to noise

ratio obtained using BOLD method is high, compared to other methods. It is the most

commonly used method to measure brain activation in motor, visual, auditory cortex and
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in the areas of higher cognitive functions like speech, word generation and working

memory.

2.6.1 BOLD Functional Magnetic Resonance Imaging

The BOLD method was introduced by Seiji Ogawa and his colleagues (1990) at the

AT&T Bell laboratories [31]. Since regional blood flow is closely related to neural

activity, measurement of the rCBF is useful in investigating brain function. The exact

mechanism behind the BOLD contrast is still to be determined; however there is

hypothesis which explains this mechanism.

The BOLD technique is based on the magnetic susceptibility of hemoglobin.

Deoxygenated hemoglobin is paramagnetic, but when oxygenated, it becomes

diamagnetic. The presence of the paramagnetic deoxy-hemoglobin distorts the static

magnetic field. Spins in this non-uniform magnetic field now precess at different

frequencies causing more rapid phase dispersal and decay of the NMR signal. Therefore,

changes in blood oxygenation can cause changes in the MR decay parameter, T2 * ,

leading to changes in image intensity in T2*-weighted images [32].

While neural activity increases the consumption of oxygen and the amount of

deoxy-hemoglobin, the increase in blood flow that occurs a few seconds after the onset of

activity results in a rapid influx of fresh, highly oxygenated hemoglobin into the

capillaries and veins that far out weighs the prior decrease in oxygen. Consequently, the

ratio of oxygenated to depleted hemoglobin increases during brain activation. As the ratio

of oxy-hemoglobin to deoxy-hemoglobin increases, the rate (T2*) spin dephasing

decreases due to fewer inhomogeneities that are caused by deoxy-hemoglobin. Finally,
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this results in a brighter region in the functional MR image in areas of higher neural

activity. [33]

Figure 2.11 A hypothesized mechanism of changes in the blood oxygenation level
dependent (BOLD) that underlie the FMRI approach to imaging task dependent neural
activity.

Functional Mapping

To study brain function using fMRI, it is necessary to repeatedly image the brain, while

the subject is presented with a stimulus or required to carry out some task. Most research

is carried out using EPI since its fast acquisition rate enables detection of activation

response to short stimuli and its reduced artifact from subject motion. The amount of T2 *

weighting in the image is dependent on the echo time TE. If TE is too short, there will be
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little difference in the T2 * curves for the activated state and the resting state, however if

TE is too long then there will be no signal from either state. To obtain the maximum

signal change for a region with a particular value of T2*, the optimal value of echo time

can be shown to be equal to the T2 * value of that tissue [35].

2.6.2 Paradigm Design

Designing the stimulus paradigm is as important as choosing the imaging parameters for

a good experiment. The most common stimulus paradigm design is the blocked design,

which has regular epochs of stimulus (active) and rest, as shown in Figure 2.12. The

duration of the epochs should be long enough to accommodate the haemodynamic

response, and so a value of at least 8 seconds, or more commonly 16 seconds should be

chosen [35]. These epochs are repeated for as long as is necessary to gain enough contrast

to noise to detect the activation response. The total experimental duration, however, must

be a balance between how long the subject can comfortably lie still without moving, and

the number of data points required to obtain enough contrast to noise. There are often

some technical limitations to the experimental duration, and there is the possibility of the

subject habituating to the stimulus causing the BOLD contrast to reduce with time [35].

Stimulus can also be presented in a random sequence, in which case, the pattern of the

stimulus will not be known.

Figure 2.12 Representation of a box car reference waveform.
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Event-Related design is another approach to present the stimulus. Unlike the

traditional block design paradigm that strings identical event types together in a row,

event-related fMRI allows for different event types to be interlinked in an arbitrary

manner. Most importantly, while the block design is optimal for detecting activity in the

brain, event-related fMRI is optimal for estimating the parameters of the hemodynamic

response associated with individual events [36].

2.6.3 Noise Factors in fMRI

During scan, there are a number of physiological factors which induce noise. One factor,

which affects the signal, is due to the cardiac and respiration cycle. Studies [12-18] have

shown that rapid acquisition of echo planar images from subjects in the resting phase

(during which no mental exercises are performed) comprise unstructured random noise in

the MR signal together with cardiac (0.6-1.2 hz) and respiratory (0.1-0.5 hz) noise, and

other oscillations below 0.1 Hz.

Another factor leading to artifact in fMRI is the signal coming from draining

veins. Since gradient echo images are sensitive to vessels of diameters from micrometers

to millimeters, it is difficult to distinguish between signals from the tissue and that from

the veins, which could be some distance away from the activation site [37]. Also, the

blood flowing into the imaging slice may be stimulus correlated. One way to reduce the

signal from large vessels would be to use a spin echo sequence. This is sensitive to T2

effects only and eliminates the dephasing effects from the large vessels [38, 39]. It is

better to acquire a separate set of images which are sensitive to large vessels, and base

this to decide the quality of signal [35].
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Summary

This chapter discussed the basic principles involved in Magnetic Resonance Imaging and

its extension to functional Magnetic Resonance Imaging. T1 and T2 contrast in MRI

images can be used to differentiate varying tissue density levels in the brain, thereby

obtaining a good contrast in the image. The Blood Oxygenation Level Dependent fMRI

mechanism can be effectively used to measure the response of the brain to a stimulus. It

is important to choose appropriate imaging parameters (RF pulse, TR, TE) and an

effective stimulus paradigm to obtain a good fMRI image. The presence of noise factors

during the scan presents a challenge to analyze the fMRI image and the following chapter

discusses some of the methods to overcome the influence of noise factors.



CHAPTER 3

TECHNIQUES FOR fMRI DATA ANALYSIS

The method of analyzing fMRI data can be divided into three stages — preprocessing,

statistical analysis and inference generation (shown in Figure 3.1). The raw data is

preprocessed to improve the detection of activation events. This includes registering the

images to correct for subject movement during the experiment and filtering the images to

increase signal to noise ratio. Next, the preprocessed data is statistically analyzed to

detect the image pixels, which show response to the stimulus. Finally, activation images

are displayed and probability values computed to analyze statistical significance.

Figure 3.1 Steps involved in the processing of fMRI data.

3.1 Motion Correction

Motion correction is significant to accurately detect activations, as all subsequent analysis

requires that each voxel correspond to a fixed location in the brain at every point in time.

Subjects often tend to move in the scanner during the course of an experiment resulting in

26
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motion artifacts. Therefore, all images need to be registered to a standardized coordinate

system to enable further analysis. The motion artifacts can vary from small, sub-voxel

motion to large, obvious motion. However, even sub-voxel motion result in detrimental

effect on the statistical analysis — especially for smaller activations. Therefore, motion

correction is required for almost all fMRI experiments.

In addition to rigid-body motion, sources of non-rigid motion like the pulsatile

motion of the soft brain tissues during the cardiac cycle are also usually present. Even

motions during respiration will change the magnetic field distribution throughout the

body and will therefore affect the geometry of the scans. It is possible to reduce the

extent of some of these motions by using methods such as cardiac gating of the images.

However, the major component of motion is due to rigid movement of the head in the

scanner, and it is the correction of this motion that is discussed in the following sections

[40].

3.1.1 Woods' Automated Image Registration (AIR) Method

In 1992, Roger Woods et al. [41] developed a method for registration based on the

assumption that if two images are accurately aligned, then the value of any voxel in one

image is directly proportional to the value of the corresponding voxel in the other image.

If the images are misaligned, the proportion is no longer constant but varies from voxel to

voxel throughout the image. The registration algorithm systematically moves the test

image relative to the reference image until this voxel-to-voxel variation is minimized.

Given two images u and v, let u denote the reference image and v the test image.

First, the brain is segmented by thresholding in both images, based on the intensity levels

of voxels. The voxel positions are denoted by i. If u(i) is the value of voxel i in image u
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and v(i) is the value of the corresponding voxel in image v, let r(i) = u(i)/v(i) be the value

of voxel i in the ratio image r. If r std is the standard deviation of r and r mean the mean value

of r over all voxels, the algorithm uses the normalized standard deviation, r std / rmean , as a

measure of how well the two images are aligned. To make the algorithm unbiased with

regard to which image is designated the reference image, and which is designated the test

image, the roles of the reference image and test image are switched. v is called the

reference image, u is the test image and now u is transformed and a new normalized

standard deviation, r'std/r'mean , is calculated. These two normalized standard deviations are

then averaged to generate the Rstd/Rmean, Rsta = (rstd+r'std)/2 and Rmean  = (rmean+r'mean)/2. Themean,

algorithm minimizes Rstd/Rmean by adjusting the transformation parameters, a and

calculating Rstd/Rmean iteratively [40].

3.1.2 Mutual Information Method

Mutual information (MI), or relative entropy, is a basic concept from information theory,

measuring the statistical dependence between two random variables or the amount of

information that one variable contains about the other. Collignon [41] and Viola and

Wells [42] independently proposed the use of mutual information as a similarity measure

in image registration, relating the joint entropy to the entropy of the two images, u and v

separately [40].

The method is based on the assumption that MI measures the amount of

information that image u contains about image v. Mutual information is derived from the

entropy formulations of the images based on the frequency of observing a specific signal

intensity in an image. This frequency is computed using probabilistic inference.
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3.1.2 Least Square (LS) Measure

Hajnal et al. [44] presented a least-square similarity measure for intra modality

registration of MR images and is used as registration technique for this thesis. Given two

images u and v, the least square similarity is defined as

Where u (i,j) and v (i,j) denote signal intensity at voxel site (i,j) of image u and v,

respectively, and N is the number of voxels in the overlapping region of the two images.

This measure is fast to calculate, but can only be applied when the two images are of the

same modality. The LS similarity measure is not applicable to multimodality registration

results since the same tissue type has different intensity values in the two modalities. For

example, bone appears bright in CT images but dark in MR images, so even though the

images were perfectly aligned the LS function would evaluate to a rather large number.

This is also true for registration of Ti-weighted and T2-weighted MR images. Some

benefits of this method are that it is easy to understand and implement and fast to

evaluate [40].

3.2 Statistical Analysis of the Data

Many techniques have been proposed for statistically analyzing fMRI data to generate

effective images identifying the regions that show significant signal change in response to

the task.
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3.2.1 Paired T-test

One of the simplest methods for obtaining results from an fMRI experiment is by simple

subtraction. This is done by subtracting the averages of the images obtained during two

different states of the stimulus. However, the presence of motion artifacts in the image

can lead to inaccurate results using this technique. Also, this method does not generate a

statistic to test against the null hypothesis. Hence, to obtain statistical significance, it is

more common to use a Paired t-test [35].

The Paired T-Test quantifies the difference in means, by the standard deviation in

the stimulus states, giving high t-scores to large differences with small standard

deviations, and low t-scores to small differences with large standard deviations. The t-

score is calculated on a pixel by pixel basis, for a time series X, using the Equation (3.2).

The suffix '1' refers to the n1 images acquired during the active period of the

task, and '2' refers to the n2 images acquired during the rest period [35].

Often, there can be a delay in the hemodynamic response due to which, there is a

shift in the response waveform. This delay needs to be incorporated while averaging the

signal intensities of resting images.
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T-test is generally used for simple, straightforward comparisons between two

different states of stimulus. Since the T-values can be calculated by estimating the

difference in the active and resting images, which are acquired separately, t-test is also

applicable in situations where the stimulus sequence is unknown.

3.2.2 Correlation Technique

Since the BOLD response is mediated by blood flow, it is possible to improve the

detection of activations by predicting the shape of the response to the stimulus, and

calculating correlation coefficients between each pixel time course and their reference

waveform. This is less sensitive to other physiological changes during the experiment,

and to movement. For a time course X and a reference waveform Y, the correlation

coefficient is calculated as,

The equation estimates a value of 1 for perfect correlation, a value of zero for no

correlation, and a value of -1 for perfect anti-correlation. The selection of an appropriate

reference waveform is vital for the success of this technique in finding activations. Figure

3.2 represents a typical stimulus reference waveform and the signal below it corresponds

to the response of the brain to the stimulus. The cross correlation of the two waveform

shown in Figure 3.2 gave a correlation coefficient value of 0.73. Such a waveform does

not account for the delay and smoothness of the haemodynamic response, which

regulates the BOLD contrast. An improvement to this would be to change the phase of
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the square wave, with the delay being between 3 and 6 seconds. To improve the reference

waveform further, it is necessary to look more closely at the actual haemodynamic

response. In an experiment, where there is both visual and motor activation, it is possible

to use the response to one type of stimulus to form the reference waveform for finding the

other. In this case, the time series for one or more pixels in, say the visual cortex is

extracted, and correlation coefficients are calculated between this waveform and that of

every other pixel in the image. Such an analysis detects only those regions in the brain,

which respond to the stimulus in the same way as the visual cortex. The major

disadvantage of this technique is that it is particularly sensitive to motion artifact, since if

such artifact is present in the reference waveform then the movement of other regions

will be highly correlated [35].

Figure 3.2 The waveform below represents the signal from an active voxel in the brain image
in response to stimulus box car reference waveform shown above.

The distribution of correlation coefficient values between the ranges of —1 and +1,

obtained by performing cross correlation between the reference waveform and each voxel

in the resting image and active image is shown in Figure 3.3 (a) and (b). It is seen that for
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a resting image, the distribution of the correlation coefficient is evenly spread between —1

and +1, with the mean almost close to zero and the distribution for the active image has

correlation coefficient values greater than 0.4.

Figure 3.3 Distribution of the correlation coefficient values between the range of —1 and
+1 for a resting image at the top (a) and for a active image (b) below.
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To identify the active regions in this technique fixed threshold of correlation

coefficient value is used. If the voxels had correlation coefficient values greater than the

threshold value they are considered to be active. The problem with this method is that the

same noise level and impulse response function is assumed for all the voxels, which

might lead to less reliable detection of active regions.

The cross correlation technique can be used only when the stimulus reference

sequence in know. The technique is easy to use and the significance level of the statistical

parameter obtained is high because an assumption of the fMRI response timing and delay

is used.

3.2.3 The General Linear Model

The statistical techniques described above assume that the observations are taken from

normal populations and are special cases of the general linear model. The aim of the

general linear model is to explain the variation of the time course yl ...yn, in terms of a

linear combination of explanatory variables and an error term. For a simple model with

only one explanatory variable xl ...xn, the general linear model can be written as,

Where 13 is the scaling, or slope parameter, and c, is the error term. If the model

includes more variables it is convenient to write the general linear model in matrix form,

Where now Y is the vector of observed pixel values, 13 is the vector of parameters

and c is the vector of error terms. The matrix X is known as the design matrix. It has one

row for every time point in the original data, and one column for every explanatory



35

variable in the model. In analyzing an fMRI experiment, the columns of X contain vectors

corresponding to the 'on' and 'off' elements of the stimulus presented. By finding the

magnitude of the parameter in /3 corresponding to these vectors, the presence or absence

of activation can be detected. IC can be determined by solving the 'normal equations'

Where	 is the best linear estimate ()fig . Provided that (XTX) is invertible then is

given by,

Such parameter estimates are normally distributed, and since the error term can be

determined, statistical inference can be made as to whether the /3 parameter

corresponding to the model of an activation response is significantly different from the

null hypothesis [35].

For general linear model approach, it is necessary to know the pattern of the

stimulus waveform. The general linear model can perform data analysis both within and

between subjects and more than one reference waveform can be used to check for linear

relationships between the response and reference waveforms.

3.2.4 Analysis of Variance (ANOVA)

This technique does not require any assumptions about the shape of the reference

waveform and is based on simple signal averaging theory [45]. The time series contains

two components, one is a genuine response to the signal, and the other is the random

fluctuations due to uncorrelated physiological events and noise in the image. Upon

averaging 32 cycles together, the magnitude of the noisy component is reduced but that
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of the repeated signal is not. The reduction of the noisy component can be measured by

calculating the variance of both the unaveraged and averaged data set.

To detect regions of activation, the ratio of the variance of the averaged data set to

the variance of the unaveraged data set is calculated for each pixel in the image. For

pixels in regions of purely random intensity variations, this ratio will be around 1/n,

where n is the number of cycles averaged together. Pixels in regions of activation,

however, will have a significantly higher ratio than this, since the variance of both

unaveraged and averaged data sets is dominated by the stimulus locked intensity

variations of the BOLD effect, which does not reduce upon averaging.

If Xii refers to pixel intensity measured at ith time point after the stimulus, of the

jth trial of an experiment with n cycles and k points of interval per trail. The null

hypothesis is that there is no significant difference in the means X1 . This can be tested by

comparing two estimates of the population variance, s2, one based on variations in

measurements of the same time point, and one based on the variance between time points.

The variance within measurement of any time point can be calculated by
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The variance of the time point means is given by,

Which is based on k-1 degrees of freedom. Under the null hypothesis, both (3- ,4,2

and σ(^2)B independently estimate the population variance s2. This means that the ratio

will have an F distribution with k-1 and k(n-1) degrees of freedom. If there is any signal

change that is time locked to the stimulus, the value of will be larger than expected under

the null hypothesis [35].

The ANOVA can be used in situations where the stimulus reference waveform is

not known. ANOVAs are often used in the fMRI to make comparisons of signal

activation within and across subjects.

Summary

This chapter provided an overview of the various steps involved in fMRI data analysis

and a review of the various registration methods for motion correction like the Woods'

Automated Image Registration technique, Mutual Information method and Least Square

measure have been discussed.

The least square measure method, which is the image registration technique used

in AFNI, has been adopted in this study to perform image registration. The chapter also

discussed the various statistical methods for detecting the active voxels in an fMRI

image. Methods like the paired T-Test, cross correlation and general linear model require
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that the reference waveform be known. However, the application of ANOVA for

statistical analysis does not require any assumptions of reference waveform and is based

on simple signal averaging theory.



CHAPTER 4

RESAMPLING TECHNIQUES

The previous chapter discussed about the conventional statistical techniques like the

paired t-test, cross correlation, and ANOVA to detect the active regions. These methods

use a fixed threshold value for a statistical parameter to differentiate an active voxel from

a non active voxel. The limitation with using a fixed threshold value is that same impulse

response function and noise level is assumed for every voxel, which might lead to less

reliable detection of active voxels.

Researchers have also used the test-retest method to reliably detect active voxels

in the fMRI image of the brain. In the test-retest method the experiment is repeated

several times and the data is statistically analyzed using methods like the t-test, cross

correlation and ANOVA. The problem with this method is the reproducibility of the data

over multiple repetition of the experiment. Fatigue and habituation due to repetitive

experiments can alter the neuron firing rate affecting the reproducibility of the data.

Moreover, motion artifacts and repositioning errors during repetitive experiments can

also affect the reproducibility of data. Also, it is not possible to conduct repetitive scans

on trauma patients and children.

To overcome the limitations of conventional methods the resampling technique

has been developed. By performing resampling on a small original dataset, it is possible

to generate a large pseudo population of the data, and thereby, avoid the need to repeat

the experiment multiple times to obtain a large population of data.

39
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To understand the basic principle of resampling, consider a sample X = (xi, x2,

x3 ... xn), the sample being a collection of independent identically distributed random

variables of unknown distribution F. Let v denote any statistical parameter of F, like the

mean, variance, correlation coefficient or any other measure. The distribution of v, forms

the basis to obtain the confidence interval of v . The distribution is obtained by repeatedly

resampling from X and computing the new unknown characteristic, i3 for each of these

resample. Thus, we obtain a distribution for /3 that approximates the actual distribution

of v , from which a confidence interval for v can then be derived [46].

This chapter describes the various resampling techniques like jackknife, bootstrap

and block bootstrap resampling used for estimating the reliability and confidence interval

of the statistical parameters of interest.

4.1 Jackknife Resampling Technique

The jackknife resampling method was first developed by Maurice Quenouille and then

used extensively by John Tukey for statistical analysis. In the Jackknife resampling

technique the original data set is repeatedly resampled a large number of times by

excluding a small number of data points, which is different every time the data is

resampled. Thus, a large number of resampled data sets are obtained and the statistical

parameter in question (mean, correlation coefficient) for each dataset is calculated. The

distribution of a statistical parameter is then analyzed to obtain its confidence interval

[10].
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4.2 Bootstrap Resampling Technique

The bootstrap technique was first considered in a systematic manner by Efron in the year

1997. Bootstrap methodology is based on the theory of resampling. In the absence of any

other knowledge, a good guide to the distribution in a population is the distribution of

values found in a random sample of size n from the same population. The unknown real

population is modeled from the infinite population which consists of n observed sample

values, each with probability 1/n. The sampling is done with replacement, which makes

bootstrapping different from randomization in many applications [49].

The general algorithm for the Bootstrap resampling technique is as follows:

1. Perform the experiment and obtain data X = (xi, x2, x3... XN), which is
independent and identically distributed.

2. Calculate the statistical parameter (mean, standard deviation or correlation
coefficient) v for the above data set.

3. Replicate each element of the above data set (xi, x2, X3... xN) K times. K =
1000 was considered for this study.

4. The replicated data set is X' = (x'1, x'2, x'3... x'NxK).

5. Randomize the replicated dataset to obtain X".

6. Create a new dataset X* = xi*, x2*, x3*... XN* from the randomized dataset
X".

7. Calculate the statistical parameter in interest (mean, standard deviation or
correlation coefficient) /3 for the above resampled data set X*.

8. Repeat steps 5 to 7 a large number of times (was repeated 1000 times for this
study).

9. Determine the confidence interval of v using the distribution of
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The bootstrap resampling technique is similar to the jackknife resampling

technique, the primary difference being that in jackknife, a minor fraction of data is

neglected while resampling from the original data set. For small datasets, this might lead

to a suboptimal estimation of statistical parameters. Moreover, the statistical significance

is assumed to be the same for the resampled data set and the original dataset, which might

also lead to erroneous detection of the active voxel. These limitations of the jackknife

technique are overcome in the bootstrap resampling technique by keeping the size of the

resampled data set the same as the original data set.

The bootstrap resampling technique is based on the assumption that each point in

the data set is time independent. However, as explained in Chapter 2, Studies [12-18]

have shown that rapid acquisition of echo planar images from subjects in the resting

phase (during which no mental exercises are performed) comprise unstructured random

noise in the MR signal together with cardiac (0.6-1.2 hz) and respiratory (0.1-0.5 hz)

noise, and other oscillations below 0.1 Hz.

In the next section an extension of bootstrap resampling is explained, which

incorporates the time dependency criterion in the dataset.

4.3 Block Bootstrap Resampling Technique

The block bootstrap resampling technique is an extension of the bootstrap resampling

technique, which incorporates the criteria of temporal dependency in the data. Figure

4.1(a) and (b) shows the autocorrelation of two resting data sets. It is evident from the

figure that the auto correlated values are non-zero positive integers, which signifies that

the signal is not random and has some temporal dependency in it.
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Figure 4.1(b) Represents the autocorrelation of another voxel from the resting data.

In the block bootstrap resampling technique, the dataset is divided into non

overlapping blocks and the block size depends on the temporal dependency in the dataset.

An example of the process of dividing data into blocks is illustrated below.
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Consider a dataset X, which has N elements and data with block size D. Consider

N= 20 and D= 5.

X= [Xi X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 ]

This data is now divided into blocks of size 5 as shown below

The maximum number of blocks that a data can be divided into is given by N/D.

In block bootstrap resampling technique, the blocks are replicated multiple times, unlike

in conventional bootstrap resampling where each element is replicated.

The general algorithm for the Bootstrap resampling technique is as follows:

1. Perform the experiment and obtain data X = (x i , x2, x3,.., xN), which is
independent and identically distributed.

2. Divide the original dataset into blocks of size D.

3. Replicate each block (X1, X2, X3... X (N/D) K times. K = 1000 was considered
for this study.

4. The replicated data set is X" = (X'1, X'2, X'3... X' (N/D)xK)•

5. Randomize the replicated dataset X".

6. Create a new dataset X* = X i *, X2 * , X3 * ... XN * by selecting few blocks from
the randomized dataset, until the number of points obtained combining the
blocks equals the length of the original dataset.

7. Calculate the statistical parameter (mean, standard deviation or correlation
coefficient) 13 for the above resampled data set.

8. Repeat steps 5 to 7 a large number of times (was repeated 1000 times for this

study).

9. Determine the confidence interval of v using the distribution of ύ.
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Hence, by using resampling techniques like the jackknife and bootstrap it is

possible to generate a large pseudo population of data and thereby avoid the need to

repeat the experiment multiple times to obtain a large data set. Using resampling

techniques on an fMRI data set it is possible to generate the distribution of the statistical

parameter for every voxel and use the mean and standard deviation of the distribution to

determine its confidence interval. Hence, the noise level is considered for each voxel

unlike the conventional fixed threshold method, which assumes the same noise level for

each voxel in the image. This study is aimed to determine if better reliability of detecting

active regions can be achieved by using the block bootstrap resampling technique

incorporating the temporal dependency criterion in the fMRI dataset.



CHAPTER 5

EXPERIMENTAL METHODS AND DESIGN

To obtain a good quality fMRI image, it is essential to use high field MRI machine and

choose the appropriate imaging parameters like the TR (Time of Repetition), and TE

(Time to echo). It is also important to use stimulus paradigm design with suitable active

and resting time period, which can produce a good signal response from the brain. Once

the fMRI images are acquired the next step is to detect the regions in the brain that show

a good response to the stimulus paradigm used. The signal from the brain increases only

by 5% during activation and varies by 1% during rest and the presence of noise in fMRI

signal, makes it difficult to identify activation. Hence it is essential to use the appropriate

statistical technique to detect the active regions of the brain.

This study demonstrates the use of bootstrap resampling technique considering

temporal dependency in the fMRI data set to determine the reliability and confidence

interval for fMRI parameters. This chapter explains the process of implementing the

bootstrap methodology on the fMRI data set and is also tested to see if better reliability in

detecting active regions is achieved when compared to the conventional methods being

used. This chapter also explains the data acquisition process and the design of the

stimulus paradigm used.

46
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5.1 Subjects and Data Acquisition

Seven healthy subjects, between 23 and 30 years of age (six male, one female) without

any history of neurological illness volunteered for the fMRI scan. All subjects signed an

informed consent approved by the Institutional Review Board of UMDNJ and each

subject was paid on an hourly basis.

The subjects were made to lie straight inside a 3T Allegra Siemens MRI machine,

with their head inside the birdcage head coil, as shown in Figure 5.1.

Figure 5.1 Picture of a patient lying in the MRI scanner.

A High resolution Ti weighted anatomical image was first obtained during

scanning sessions. A gradient-recalled at steady state (GRASS) pulse sequence with TR =

600ms, TE = 10ms, FOV = 24cm and matrix size of 256x256 was used, resulting in a

pixel resolution of 0.9375 mmx0.9375 mmx5 mm.

For functional images, five axial slices across the motor cortex were obtained

using a gradient-recalled T2* weighted echo planar imaging (EPI) pulse sequence. The

fMRI scans were acquired using different TR (TR = 2000ms, TR=1000ms, TR = 500ms,



48

TR = 250ms), TE = 20 ms, FOV = 24 cm and a matrix size of 256x256 was used. This

resulted in a pixel resolution of 0.9375mmx0.9375mmx5mm. For each TR, the resting

fMRI scan was performed immediately after the task activated fMRI scan.

5.2 Task Paradigm

For this study, a motor task paradigm was used. Subjects were instructed to perform

bilateral finger tapping for a set period of time, alternating with periods of rest. For this

study fMRI images were acquired for two different sets of paradigm design. For the first

set, fMRI images were acquired for different TR (time of repetition), TR = 2000 ms, TR

= 1000 ms, TR = 500 ms, TR = 250 ms and for each TR the subjects were instructed to

perform bilateral finger tapping for 20 secs, which is represented as ON, alternating with

20sec of rest, which is represented as OFF. The ideal box car reference waveform used

for this experiment is shown in Figure 5.2.

For the second set, fMRI images were acquired for different TR, TR = 2000 ms,

TR = 1000 ms, TR = 500 ms, TR = 250 ms, but the ON and OFF period during bilateral

finger tapping varied for each TR. The ON and OFF period for, TR = 2000 ms,

TR=1000ms, TR = 500 ms, TR = 250 ms, were 40ms, 20ms, 10ms, 5ms, respectively.

The box car reference waveform used for acquiring this set of data is shown in Figure

5.3.



Figure 5.2 Representation of ideal box car reference waveforms used for acquiring the first set of data. Figure 5.2 (a),(b),(c),(d) are
the reference waveform used for TR = 2000 ms, TR = 1000 ms, TR = 500 ms, TR = 250 ms with a (with 20 secs ON and OFF period)
total of 90, 180, 360, 720 images acquired, respectively.



Figure 5.3 Representation of ideal box car reference waveforms used for acquiring the second set of data. Figure 5.3 (a),(b),(c),(d)
are the reference waveform used for TR = 2000 ms, TR = 1000 ms, TR = 500 ms, TR = 250 ms (total of 180 images were acquired)
with 40 secs, 20 secs, 10 secs, and 5 secs ON and OFF period, respectively.
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5.3 Data analysis

The fMRI images were analyzed using AFNI software and one of the fMRI image

acquired across the motor cortex of the brain during bilateral finger tapping is shown in

Figure 5.3 (a) and its time series is shown in Figure 5.3 (b). Initially, the fMRI images

obtained from each subject were passed through a registration algorithm using AFNI. The

registration technique used is based on the least square method which is explained in

Chapter 3.

Figure 5.4 (a) An fMRI image acquired across the motor cortex of the brain during
bilateral finger taping.

Figure 5.4 (b) The time series of the voxels shown in Figure 5.3(a).
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5.3.1 Applying Bootstrap Resampling Technique

Neglecting the effect of temporal correlation, the bootstrap resampling technique was

applied on all the active fMRI images obtained with different TR (TR = 2000 ms, TR =

1000 ms, TR = 500 ms, TR = 250 ms). Each point in the time series of the fMRI image

and its corresponding point in the reference waveform were replicated 1000 times. To

randomize the replicated data set, random numbers were generated and each random

number was associated with a point in the replicated dataset and its corresponding point

in the replicated reference waveform. The random numbers were arranged in ascending

order, and from the randomized data set, the first few points were selected depending on

the length of the time series of the fMRI image. Along with this, the corresponding

reference points from the randomized data set were also selected. Next, cross correlation

was performed between the chosen time points and the corresponding reference points.

This process of randomizing and performing cross correlation was repeated 1000 times,

resulting in 1000 correlation values for each voxel in the fMRI image. The process is

depicted in the flowchart, shown in Figure 5.4.

The histogram for the 1000 correlation values for each voxel, generated using

bootstrap resampling technique was calculated. Next, the mean and standard deviation of

the 1000 correlation values for each voxel were obtained. The activation maps were

generated that have the same confidence interval of the correlation coefficients at each

voxel.



Figure 5.5 The flow chart for bootstrap resampling technique.

Table 5.1 Shows the Different Block Size Used for Each TR to Apply Block Bootstrap
Resampling Technique



54

5.3.2 Applying Block Bootstrap Resampling Technique

Bootstrap resampling technique incorporating temporal dependency was applied on all

the active fMRI images obtained using different TR. Here, the time series of each voxel

in the fMRI image and its corresponding reference waveform was divided into equal

sized blocks. The Block Bootstrap resampling technique was then applied on this data

set. Each block in the time series and the corresponding block in the reference waveform

were replicated 1000 times and randomized. From this randomized data set, a few time

series blocks (sum of blocks equals the length of the time series) and its corresponding

reference waveform blocks were selected. Next, the time series obtained by combining

the blocks was cross correlated with the corresponding reference waveform obtained by

combining the blocks. This entire process of randomizing the blocks and performing

cross correlation was replicated 1000 times resulting in 1000 correlation values for each

voxel. The flow chart for this method is shown in Figure 5.5. This method was repeated

for different block sizes. Table 5.1 shows the block size that was used for fMRI image

acquired using different TR (TR=2000ms, TR=1000 ms, TR=500ms, TR=250 ms). The

mean, standard deviation and histogram of the 1000 cross correlation values for each

voxel generated using different block size was then calculated. The mean correlation

image generated using the bootstrap resampling technique (i.e. without considering

temporal dependency in the fMRI data) was compared with the mean correlation image

generated using different block size (i.e. considering temporal dependency in the fMRI

data). The block size, which generated the image with highest correlation coefficient

value, was considered as the block size for that TR. The activation maps were generated

that have the same confidence interval of the correlation coefficients at each voxel.



Figure 5.6 The flow chart for block bootstrap resampling technique.

5.3.3 Generating Activation Map Using Fixed Threshold

In order to compare the activation maps generated using the bootstrap and block

bootstrap resampling technique, activation maps were generated using a fixed threshold

of correlation coefficient in AFNI. The reference waveform was cross correlated with

each voxel in the fMRI image and a fixed threshold of the correlation coefficient was

used to determine the active voxels.
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5.3.4 Applying T-test

The t-values were calculated instead of calculating the correlation coefficient for both

bootstrap resampled data set and block bootstrap resampled data set. The purpose was to

verify if a similar distribution for voxels were obtained using a different technique. For

applying the t-test, the average of the signal intensity during activation was subtracted

from the average of the signal intensity during rest. If the t-values obtained by subtracting

were high then the voxel was considered to be active.



CHAPTER 6

RESULTS AND DISCUSSION

In this chapter, the results obtained using the fixed threshold of correlation coefficients,

conventional bootstrap (without considering temporal dependency in the data) and block

bootstrap resampling technique (considering temporal dependency in the fMRI data) was

analyzed to observe the reliability in detecting the active voxels for each of these

techniques.

6.1 Motion Correction

Subject head motion during the experiment is a main source of artifact in fMRI data.

Hence, the first step in image analysis was to remove the motion artifacts due to head

motion. The AFNI software, which uses the least-square based registration technique,

was employed for correcting motion artifacts in fMRI images. Out of the seven subjects

scanned, images from one subject were discarded due to the presence of motion artifacts

even after image registration. To eliminate signal intensity variations arising from

progressive saturation, the first four images of each time series from all the images were

discarded.

6.2 Results Obtained Using Cross Correlation

The cross correlation images were obtained using the AFNI software. The stimulus

reference waveform was cross correlated on a voxel by voxel basis with every voxel time

course in the fMRI image. Figure 6.1 represents the histogram of the correlation

57
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coefficient values, ranging from -1 to +1, obtained for every voxel in a resting fMRI

image acquired using TR = 500 ms and Figure 6.2 represents the same for an active fMRI

image acquired using TR = 500 ms. Observing the distributions in Figure 6.1 and 6.2, a

correlation coefficient threshold of 0.4 was used to generate an activation map. Figure 6.3

represents the activation map obtained using a fixed threshold of 0.4 and displays

activation in the motor cortex of the brain.

Figure 6.1 The histogram of the correlation coefficient values ranging from -1 to +1
obtained by cross correlating the stimulus reference waveform on a voxel by voxel basis
with every time course in the resting fMRI image obtained using TR = 500 ms.
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Figure 6.2 The histogram of the correlation coefficient values ranging from -1 to +1
obtained by cross correlating the stimulus reference waveform on a voxel by voxel basis
with every time course in the active fMRI image obtained using TR = 500 ms.

Figure 6.3 The activation map generated using a fixed threshold of 0.4 for the
correlation coefficient values, for the fMRI image obtained using TR = 500ms.
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The limitation of using a fixed threshold of correlation coefficient is that, the

noise level is assumed to be same for all the voxels. This assumption might lead to less

reliable detection of active voxels.

6.3 Results Obtained Using the Bootstrap Resampling Technique

The bootstrap resampling technique has been used in this study to estimate the reliability

and confidence interval of the correlation coefficients for the fMRI image. In this

method, each point in the time series and the corresponding reference waveform was

replicated 1000 times and randomized. From the randomized data set, the first few time

series points (equal to the length of the time series) and the corresponding reference

waveform points were selected and cross correlated. This process of randomization and

calculation of the correlation coefficients were repeated 1000 times. The bootstrap

resampling technique generated 1000 correlation coefficients for each voxel in the image.

The mean and standard deviation of 1000 correlation coefficients for each voxel were

calculated. The cross correlation image obtained using the bootstrap resampling

technique is shown Figure 6.4 (a). Figure 6.4 (b) represents the 1000 correlation

coefficient values generated for the voxels shown in Figure 6.4 (a). Figure 6.4 (c)

illustrates the histogram of the 1000 correlation coefficient values for the voxels shown in

Figure 6.4 (a).
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Figure 6.4 (a) Cross correlation image obtained applying the bootstrap resampling
technique on fMRI image acquired using TR = 500 ms.

Figure 6.4 (b) Represents the 1000 Correlation coefficient values for the voxels shown
in Figure 6.4 (a) generated using the bootstrap resampling technique.
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Figure 6.4 (c) The histogram of the correlation coefficient values ranging from -1 to +1
obtained using the bootstrap resampling technique for the voxels shown in Figure 6.4 (a).

The activation maps were generated by calculating the confidence interval of the

correlation coefficient values for each voxel. Figure 6.5 (a) shows the activation map for

the fMRI image obtained using TR = 500 ms, generated using a confidence interval of

correlation coefficient mean greater than 8 times its standard deviation for each voxel.

This indicates that voxels detected as active have a very high significance level. The

activation maps generated using the bootstrap resampling technique (Figure 6.5 (a)) were

compared with the activation map generated using a fixed threshold of 0.4 (Figure 6.5

(b)) for correlation coefficient value.
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figure	 (a) ana (n) snows the activation map generated using the bootstrap
resampling technique and fixed threshold of correlation coefficient.

Observing the activation maps shown above, it can be seen that the activation map

generated using the confidence interval of the correlation coefficient shows less

extraneous voxels outside the motor cortex as active, when compared to the activation

map generated using the fixed threshold of correlation coefficient value. Hence, a better

reliability in detecting active regions can be achieved by generating the activation map

using the distribution of the correlation coefficients for each voxel.

6.4 Results Obtained Using the Block Bootstrap Resampling Technique

The block bootstrap resampling technique is an extension of the conventional bootstrap,

incorporating temporal dependency in fMRI dataset. In the block bootstrap, the time

series and the corresponding reference waveform were divided into equal sized, non

overlapping blocks. These blocks were then replicated and randomized, unlike the

conventional bootstrap resampling technique, where each element in the time series was

replicated (both the replicated time series and the corresponding reference waveform

blocks are randomized in the same way). From this randomized dataset, the first few

time series blocks (sum of blocks equals the length of the time series) and the
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corresponding reference waveform blocks were chosen and cross correlated. This process

of randomizing and calculating correlation coefficients was repeated 1000 times and the

mean and standard deviation of 1000 correlation coefficients for each voxel were

calculated.

The first step in analyzing the results for the block bootstrap technique was to

observe if higher mean correlation coefficient values were obtained, by considering the

block sizes shown in Table 6.1, when compared to the mean correlation coefficient

values obtained by applying the conventional bootstrap. The mean correlation coefficient,

obtained by using a block size, which gave maximum coerrelation coefficient, is

considered as the block size for that particular TR.

Table 6.1 Shows the Different Block Size Used for Each TR to Apply Block Bootstrap
Resampling Technique

Two cases have been illustrated to show the variation in correlation coefficient

values obtained using block bootstrap. For the first case, fMRI image acquired using TR

= 1000 ms and for the second case, TR = 500 ms was used as illustrated in Figure 6.6 and

6.7, respectively.

Figure 6.6 (for image with TR = 1000 ms) graphically compares the difference in

mean correlation coefficients between block bootstrap (considering different block sizes)

and conventional bootstrap resampling technique for voxels at the motor cortex. Each

subplot illustrates the variation in mean correlation coefficient for 5 different block sizes-
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14, 16, 18, 19 and 0. The block size zero essentially represents the conventional bootstrap

resampling technique. It is evident from the plots that the mean correlation coefficients

for block size 18 are high in most voxels.

Similarly, Figure 6.7 (image with TR = 500 ms) graphically compares the

difference in mean correlation coefficients between the block bootstrap and conventional

bootstrap resampling technique for voxels at the motor cortex. Each subplot illustrates the

variation in mean correlation coefficient for 5 different block sizes- 34, 36, 38, 39 and 0.

It is evident from the plots that the mean correlation coefficients for block size 36 are

high in most voxels.

Figure 6.6 Represents subplots comparing mean correlation coefficient values obtained
applying block bootstrap, with block sizes 14, 16, 18, 19 and 0 (conventional bootstrap
resampling technique) for voxels in the motor cortex.
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Figure 6.7 Represents subplots comparing mean correlation coefficient values obtained
applying block bootstrap, with block sizes 34, 36, 38, 39 and 0 (conventional bootstrap
resampling technique) for voxels in the motor cortex.

For this study the fMRI data were acquired for two different designs of task

paradigm. For the first set of task paradigms, the 20 secs ON and OFF time period were

used for TR = 2000 ms , TR = 1000 ms , TR = 500ms and TR = 250 ms. For the second

set of task paradigm, 40 secs, 20 secs, 10 secs and 5 secs ON and OFF time periods were

used for TR = 2000 ms , TR = 1000 ms, TR = 500 ms, TR = 250 ms, respectively.

The block size obtained for each TR, at which high mean correlation coefficient

value was observed, for the first set of data is shown in Table 6.2 (a) and for the second

set of data is shown in Table 6.2 (b).
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Table 6.2 (a) Shows the Block Size Obtained for Each TR, for the First Dataset at
Which Maximum Correlation Coefficient Values was Obtained

Table 6.2 (b) Shows the Block Size Obtained for Each TR, for the Second Dataset at
Which Maximum Correlation Coefficient Values was Obtained

Subject 1
TR (Time of
repetition, ms)

2000 1000 500 250

Block Size 22 18 18 No activation
Subject 2
TR 2000 1000 500 250
Block Size 22 24 18 No activation
Subject 3
TR 2000 1000 500 250
Block Size 20 20 18 No activation
Subject 4
TR 2000 1000 500 250
Block Size 20 18 20 No activation
Subject 5
TR 2000 1000 500 250
Block Size 22 18 18 No activation
Subject 6
TR 2000 1000 500 250
Block Size 24 18 No

activation
No activation
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In the second set of data, for TR = 250 ms, since the ON (active) and OFF (rest)

period was only for 5 secs, activation was not very evident. The ON and OFF time period

was too short to obtain a good response from the brain to the stimulus.

Once the block size for each TR was determined, the activation maps were

generated using a confidence interval of mean correlation coefficient greater than 8 times

its standard deviation. To analyze the activation maps, two cases are examined — first for

images with TR = 500 ms and second with TR = 1000 ms. The activation map generated

using the bootstrap, block bootstrap resampling for the block size 36 and using a fixed

threshold of 0.4 for the correlation coefficient, for the fMRI image acquired using TR =

500 ms is shown in Figure 6.8 (a), (b), (c), respectively.

Figure 6.8 (a) (top left), (b) (top right), (c) (bottom) Shows the activation map that
have same confidence internal at each voxel generated using the bootstrap resampling
technique, block bootstrap resampling technique (block size 36) and using a fixed
correlation coefficient threshold of 0.4 in AFNI, for the fMRI image acquired using TR =
500 ms.
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Analyzing the activation maps shown in Figure 6.8, it can be noted that the

number of active voxels detected varied for different techniques. It is evident that the

activation map generated using the block bootstrap (i.e. considering temporal dependency

in the fMRI dataset) shows less number of active voxels, when compared to the

activation map generated using the conventional bootstrap and the activation map

generated using AFNI.

To further analyze the active regions detected using different techniques, the time

series of the voxels represented in Figure 6.8, are shown in Figure 6.9. From Figure 6.8

and Figure 6.9 it can be seen that the activation map generated using the block bootstrap

shows only those voxels as active, whose signal time course show a good response to the

stimulus reference waveform. The mean and standard deviation of the correlation

coefficients generated using the bootstrap and block bootstrap for the voxels shown in

Figure 6.8 is represented in Table 6.3 (a), (b). The histogram of the correlation

coefficient values ranging from -1 to +1 generated using the bootstrap and block

bootstrap resampling technique for the voxels shown in Figure 6.8 is represented in

Figure 6.10 (a), (b).
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Figure 6.9 The time series of the fMRI image, which shows the response of the brain
during bilateral finger tapping, acquired using TR = 500ms for the voxel shown in Figure
6.8.

Table 6.3 (a) Shows the Mean and Standard Deviation of the 1000 Correlation
Coefficient Values Obtained Using the Bootstrap Resampling Technique for the Voxel
Shown in Figure 6.8

0.37±0.04 -0.15±0.05 0.04±0.05 0.32±0.04 0.02±0.05
0.72±0.02 0.48±0.03 0.75±0.02 0.49±0.03 0.03±0.05
0.25±0.04 0.57±0.03 0.72±0.02 0.36±0.04 0.09±0.05
0.13±0.05 0.23±0.04 0.57±0.03 0.66±0.02 0.54±0.03
-0.09±0.05 0.18±0.05 0.49±0.03 0.41±0.03 0.54±0.03

Table 6.3 (b) Shows the Mean and Standard Deviation of the 1000 Correlation
Coefficient Values Obtained Using the Block Bootstrap Resampling Technique for the
Voxels Shown in Figure 6.8

0.41±0.06 -0.14±0.04 0.05±0.06 0.33±0.08 0.04±0.04
0.74±0.03 0.47±0.03 0.77±0.02 0.50±0.06 0.04±0.04
0.25±0.05 0.56±0.04 0.73±0.02 0.39±0.05 0.08±0.02
0.16±0.04 0.23±0.04 0.59±0.03 0.66±0.04 0.56±0.03
-0.1±0.07 0.20±0.05 0.48±0.03 0.41±0.04 0.55±0.03
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Figure 6.10 (a) Represents the histogram of the correlation coefficient values ranging
from -1 to +1 obtained using the bootstrap resampling technique for the voxels shown in
Figure 6.8.

Figure 6.10 (b) Represents the histogram of the correlation coefficient values ranging
from -1 to +1 obtained using the block bootstrap resampling technique for the voxels
shown in Figure 6.8.
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Figure 6.11 (a), (b) and (c) represents the activation maps for the fMRI image

obtained using TR = 1000ms, generated using the bootstrap, block bootstrap resampling

using a block size of 18 and fixed threshold of 0.4 for correlation coefficient value.

Figure 6.11 (a) (top left), (b) (top right), (c) (bottom) Shows the activation map that
have same confidence internal at each voxel obtained using the bootstrap resampling
technique, block bootstrap resampling technique (block size 18) and using a fixed
correlation coefficient threshold of 0.4, for the fMRI image acquired using TR = 1000
ms.

Even for this case, it can be observed that the number of voxels shown as active

differs for different techniques used. The time series for the voxels represented in Figure

6.11 is shown in Figure 6.12. The mean and standard deviation of the correlation

coefficient values generated using the bootstrap and block bootstrap technique is shown

in Table 6.4 (a) and (b) and their histogram with values ranging from -1 to +1 is shown in

Figure 6.13 (a) and (b).
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Figure 6.12 Represents the time series of the fMRI image, which shows the response of
the brain during bilateral finger tapping, obtained using TR = 1000ms for the voxel
shown in Figure 6.11.

Table 6.4 (a) Shows the Mean and Standard Deviation of the 1000 Correlation
Coefficient Values Obtained Using the Bootstrap Resampling Technique for the Voxel
Shown in Figure 6.11

-0.05±0.07 0.23±0.07 0.29±0.06 0.30±06 0.35±0.05
0.08±0.07 0.45±0.05 0.60±0.04 0.61±04 0.52±0.04
0.45±0.05 0.58±0.04 0.78±0.02 0.67±03 0.55±0.04
0.30±0.06 -0.19±0.06 0.26±0.06 0.39±05 0.11±0.07
0.09±0.07 0.23±0.07 0.27±0.07 0.07±07 0.56±0.04

Table 6.4 (b) Shows the Mean and Standard Deviation of the 1000 Correlation
Coefficient Values Obtained Using the Block Bootstrap Resampling Technique for the
Voxel Shown in Figure 6.11

-0.02±0.07 0.31±0.08 0.28±0.12 0.30±05 0.34±0.07
0.04±0.11 0.43±0.05 0.63±0.03 0.59±04 0.49±0.07
0.48±0.11 0.59±0.05 0.80±0.03 0.72±06 0.62±0.09
0.29±0.12 -0.30±0.15 0.19±0.11 0.33±16 0.04±0.19
0.01±0.13 0.22±0.09 0.32±0.06 0.05±0.09 0.61±0.08
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Figure 6.13 (a) Represents the histogram of the correlation coefficient values ranging
from -1 to +1, obtained using the bootstrap resampling technique, for the voxels shown in
Figure 6.11.Z: 1

Num: 	 .1:1 at s e : separate

Figure 6.13 (b) Represents the histogram of the correlation coefficient values ranging
from -1 to +1, obtained using the block bootstrap resampling technique, for the voxels
shown in Figure 6.11.
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Analyzing the activation maps generated using the conventional bootstrap, block

bootstrap resampling technique and cross correlation technique, showed difference in the

number and regions of active voxels. Table 6.5 (a) shows the difference in the number of

voxels that were shown as active for the first dataset and Table 6.5 (b) shows the

difference in the number of voxels that were shown as active for the second dataset using

different techniques for the fMRI images obtained using different TR.

In the second set of data, for TR = 250 ms, since the ON (active) and OFF (rest)

period was only for 5 secs activation was not very evident. The ON and OFF time period

was too short to obtain a good response from the brain to the stimulus.

Analyzing Table 6.5 (a) and (b), it can be inferred that using the distribution of

the correlation coefficients generated using the bootstrap resampling technique to detect

active voxels show less number of voxels, when compared to using the fixed threshold

method. Moreover, it can also be observed that by applying the block bootstrap

resampling technique, even less number of active voxels are detected compared to the

conventional bootstrap.
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Table 6.5 (a) Represents the Number of Voxels that were Shown as Active Using Fixed
threshold of correlation coefficient, Bootstrap Resampling Technique and Block
Bootstrap Resampling Technique for the First Set of Data

TR (Time of
repetition, ms)

Cross Correlation Bootstrap
Resampling

Technique using
Cross Correlation

Block Bootstrap
Resampling

Technique using
Cross Correlation

Subject 1
2000 83 41 42
1000 52 42 30
500 49 69 46
250 22 55 18
Subject 2
2000 57 30 27
1000 47 40 27
500 32 48 25
250 24 43 14
Subject 3
2000 50 25 18
1000 41 37 17
500 32 36 21
250 18 32 14
Subject 4
2000 41 23 17
1000 63 43 30
500 28 36 25
250 16 41 8
Subject 5
2000 55 31 41
1000 37 34 25
500 14 24 14
250 12 16 10
Subject 6
2000 50 31 32
1000 40 30 18
500 21 22 21
250 7 16 9
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Table 6.5 (b) Represents the Number of Voxels that were Shown as Active Using Fixed
threshold of correlation coefficient, Bootstrap Resampling Technique and Block
Bootstrap Resampling Technique for the Second Set of Data

TR (Time of
repetition, ms)

Cross Correlation Bootstrap
Resampling

Technique using
Cross Correlation

Block Bootstrap
Resampling

Technique using
Cross Correlation

Subject 1
2000 91 25 18
1000 52 42 30
500 16 5 5
250 No activation No activation No activation
Subject 2
2000 35 23 15
1000 47 40 27
500 11 5 1
250 No activation No activation No activation
Subject 3
2000 56 34 11
1000 41 37 17
500 20 17 7
250 No activation No activation No activation
Subject 4
2000 61 48 24
1000 63 43 30
500 36 23 3
250 No activation No activation No activation
Subject 5
2000 44 38 32
1000 37 34 25
500 11 4 2
250 No activation No activation No activation
Subject 6
2000 23 15 9
1000 40 30 18
500 4 No activation No activation
250 No activation No activation No activation
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6.5 Results Obtained Applying T-test

In order to check if a similar distribution of the voxels can be obtained by using methods

other than cross correlation, t-values were calculated for the bootstrapped and block

bootstrapped resampled data set. For applying the t-test, the average signal intensity

during rest was subtracted from the average signal intensity during activation. If the t-

values obtained by subtracting the signal intensities were high, then the voxel was

considered to be active.

The activation maps for cross correlation and t-test using bootstrap and block

bootstrap technique were generated using a confidence interval of mean greater than 8

times that standard deviation. Figure 6.14 (a) and (b) shows the activation map obtained

by calculating the cross correlation and t-values for bootstrapped resampled data (without

considering temporal dependency) for an fMRI image acquired using TR = 500 ms.

Figure 6.15 (a) and (b) represents the histogram of the correlation coefficients ranging

from -0.06 to 0.8 and t-values ranging from -0.6 to 12 obtained using the bootstrap

resampling technique.

Figure 6.14 (a) (left), (b) (right) Shows the activation map that have same confidence
internal at each voxel obtained using cross correlation and t-test for bootstrap resampled
data set for the fMRI image acquired using TR = 500 ms.



Figure 6.15 (a) Represents the histogram of the correlation coefficient values ranging
from -0.06 to 0.8 obtained using the bootstrap resampling technique for the voxels shown
in Figure 6.14 (a).

Figure 6.15 (b) Represents the histogram of the t-values ranging from -0.6 to 12
obtained using the bootstrap resampling technique for the voxels shown in Figure 6.14
(b).
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Figure 6.16 (a) and (b) shows the activation map for an fMRI image acquired with

TR = 500 ms, obtained by calculating the cross correlation and t-values for block

bootstrapped data (considering temporal dependency). Figure 6.17 (a) and (b) represents

the histogram of the correlation coefficients ranging from -0.2 to 0.8 and t-values ranging

from -2 to 12 obtained using the block bootstrap resampling technique.

Figure 6.16 (a) (left), (b) (right) Shows the activation map that have same confidence
internal at each voxel obtained using cross correlation and t-test for block bootstrap
resampled data set (block size 36) for the fMRI image acquired using TR = 500 ms.

It can be inferred from Figures 6.14 (a) and (b) that the activation maps generated

from cross correlation and t-values in the bootstrap resampling technique showed slight

difference in the detection of active voxels. Also, observing the Figures 6.16 (a) and (b),

the differences in the activation maps, generated from cross correlation and t-values in

the block bootstrap resampling technique are evident.



Figure 6.17 (a) Represents the histogram of the correlation coefficient values ranging
from -0.2 to 0.8 obtained using the block bootstrap resampling technique for the voxels
shown in Figure 6.16 (a).

Figure 6.17 (b) Represents the histogram of the t-test values ranging from -2 to 12
obtained using the block bootstrap resampling technique for the voxels shown in Figure
6.16 (b).
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Table 6.6 (a) compares the variation in the number of active voxels for the first

dataset, detected using fixed threshold of t-values, bootstrap and block bootstrap

technique using t-test and Table 6.6 (b) shows the same for the second dataset.

Table 6.6 (a) Represents the Number of Voxels that were Shown as Active Using Fixed
Threshold of t-values, Bootstrap Resampling Technique Using T-test and Block
Bootstrap Resampling Technique Using T-test for the First Set of Data

Subject 1
TR (Time of

repetition, ms)
T-Test Bootstrap Resampling

Technique using t-test
Block Bootstrap Resampling

Technique using t-test
Subject 1
2000 56 18 29
1000 15 26 19
500 30 62 33
250 35 46 14
Subject 2
2000 45 17 13
1000 20 32 17
500 36 40 18
250 59 41 7
Subject 3
2000 88 22 18
1000 44 36 26
500 44 36 12
250 28 12 9
Subject 4
2000 62 10 10
1000 52 34 13
500 37 29 11
250 23 36 4
Subject 5
2000 51 23 29
1000 39 24 17
500 83 16 11
250 4 13 7
Subject 6
2000 85 17 18
1000 31 22 15
500 32 21 19
250 20 14 9
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Table 6.6 (b) Represents the Number of Voxels that were Shown as Active Using Fixed
Threshold of T-values, Bootstrap Resampling Technique Using T-test and Block
Bootstrap Resampling Technique Using T-test for the Second Set of Data

TR (Time of
repetition, ms)

Fixed Threshold
of t-values

Bootstrap
Resampling

Technique using t-
test

Block Bootstrap
Resampling

Technique using t-
test

Subject 1
2000 63 50 42
1000 15 26 19
500 1 2 1
250 33 No activation No activation
Subject 2
2000 13 17 9
1000 20 32 17
500 42 No activation No activation
250 51 No activation No activation
Subject 3
2000 96 23 13
1000 44 36 26
500 24 No activation No activation
250 4 No activation No activation
Subject 4
2000 64 42 10
1000 52 34 13
500 12 No activation No activation
250 18 No activation No activation
Subject 5
2000 31 35 22
1000 39 24 17
500 30 No activation No activation
250 34 No activation No activation
Subject 6
2000 99 11 6
1000 31 22 15
500 66 No activation No activation
250 12 No activation No activation
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In the second data set, for TR = 250 ms and TR = 500 ms no activation was

observed. This was due to poor signal response, which failed to show difference in the

average signal intensity during rest and activation.

From Table 6.6 (a) and (b) it can be observed that using the block bootstrap

resampling technique, less number of extraneous voxels was shown as active, when

compared to the bootstrap resampling technique and fixed threshold of t-values.

6.6 Discussion

Analysis of the mean correlation coefficient values obtained using the block bootstrap

showed higher correlation coefficient values when compared to those obtained from

conventional bootstrap resampling technique. Observing the block size obtained for each

TR (at which higher mean correlation coefficient values were obtained), shown in Table

6.2 (a) and (b), the presence of temporal dependency in the fMRI dataset is evident.

Analyzing Table 6.5 (a) and (b), it can be observed that the activation map

generated using the conventional bootstrap resampling showed less number of active

voxels, when compared to the activation map obtained using the fixed threshold of the

correlation coefficient. It was also seen that, compared to the conventional bootstrap

resampling, block bootstrap showed lesser number of active voxels. Analyzing the time

series of the active voxels detected showed that using the block bootstrap, only those

voxels were shown as active for which the time series has a good response to the stimulus

waveform. Hence, using the block bootstrap resampling technique, considering temporal

dependency in the fMRI data, better reliability of detecting active voxels can be achieved.
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The results of the t-test showed slight variation in activation map compared to the

activation map generated using the cross correlation in the bootstrap and block

resampling technique. The difference in the methodologies of t-test and cross correlation

can result in different distributions of the statistical parameter, which leads to variation in

activation detections.



CHAPTER 7

CONCLUSION

Functional Magnetic Resonance Imaging is a noninvasive technique to detect regional

changes in cerebral metabolism, blood flow volume or oxygenation in response to task

activation. The critical step in functional MR imaging is the statistical analysis of the

images. Prior to statistical analysis, the images need to be preprocessed, for motion

correction and filtering, to reduce the noise and increase signal to noise ratio.

The most commonly used methods for statistical analysis are the linear parametric

methods like t-test, cross correlation, and the general linear model. These methods use a

fixed threshold of statistical parameter (t-test, f-test and cross correlation) to detect the

active voxels. By using a fixed threshold, all voxels are assumed to be influenced by the

same level of noise, which can lead to less reliable detection of active voxels.

To reliably detect active regions, researchers have used test-retest method. In the

test-retest method the experiment is repeated multiple times using the same imaging

parameters. The data obtained from multiple repetitions of the experiment is statistically

analyzed. The test-retest methodology assumes that images are acquired under identical

conditions for multiple repetitions of the experiment. This assumption may hold true for a

simple motor or visual task, but for more complex tasks, this assumption will not be

valid. For example, in a simple finger tapping experiment, the imaging parameters and

the stimulus related parameters, like the finger tapping rate and the ON/OFF cycle

timing, must be identical for each scan. Any deviation from the specified finger tapping

rate, or the ON/OFF cycles in any of the scans, would result in erroneous detection.

86
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Moreover, the reproducibility of fMRI data for each repetitive scan can be affected by

attentional efforts, motion artifacts, repositioning errors, learning, habituation or fatigue.

Further, for a number of cases involving children and trauma patients, it is not possible to

repeat the study a number of times.

To overcome the limitations of conventional methods, resampling techniques like

the jackknife and bootstrap have been developed to reliably detect the active regions.

Using resampling techniques, it is possible to generate a large pseudo population of data,

by repeatedly resampling from the original dataset. Hence, the necessity to repeat an

experiment multiples times in order to obtain large amount of dataset can be avoided.

This study used the bootstrap resampling technique to estimate the reliability and

confidence interval of correlation coefficients for fMRI image. Using the bootstrap

resampling technique, the confidence interval of the correlation coefficients was

determined by analyzing its distribution for each voxel. This resulted in generating

activation maps that had the same confidence intervals at each voxel. Also, the different

noise levels present at each voxel is taken into account while generating the activation

map, unlike in hard thresholding where same noise levels are assumed among all voxels.

The Bootstrap resampling technique assumes that the fMRI dataset is independent

and identically distributed over time. Studies on fMRI images acquired from the resting

brain have shown fluctuations that are correlated with heart rate and respiratory rate and

other fluctuations that are slower than cardiac or respiratory rate. This study investigated

if higher reliability and confidence interval in detecting active regions can be achieved

using the block bootstrap resampling technique, considering temporal dependency in the

fMRI data.
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Analysis of the results revealed that, considering temporal dependency in the data

while applying the bootstrap resampling technique showed active voxels that has more

reliability than those obtained without considering any temporal dependency in the data.

Higher correlation coefficient values were observed using the block bootstrap when

compared to the conventional bootstrap resampling. Analyzing the time series of the

images showed that using the block bootstrap, only those voxels were shown as active

whose signal time course has a good response to the stimulus reference waveform.

Comparing the activation maps generated using the block bootstrap resampling

technique, bootstrap resampling technique and fixed threshold of correlation coefficients,

showed that activations detected using block bootstrap resampling technique were more

localized and showed less extraneous active voxels compared to the other two methods.

Functional magnetic resonance imaging is being increasingly used to map the

brain for surgical planning and for such high stake applications; it is essential to detect

functional regions with high reliability. Hence, the use of statistical methods like

bootstrap resampling technique is necessary.

In this study, cross correlation and t-test were used to generate confidence

interval, other statistical parameters like F-test, ANOVA can also be used in the bootstrap

resampling technique. In conclusion, applying the block bootstrap resampling technique

incorporating the temporal dependency in the data can be used to determine the reliability

and confidence interval of the statistical parameters. The active regions detected using

this technique, was more reliable than the active regions detected by applying the

conventional bootstrap resampling technique, without considering any temporal

dependency in the data.
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