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ABSTRACT

PARAMETRIC SYNTHESIS OF SIGN LANGUAGE

by
Jerome Allen

The isolation of the deaf community from mainstream society is in part due to the lack of

knowledge most hearing people have of sign language. To most, there seems to be little

need to learn a language that is spoken by such a small minority unless perhaps a relative

is unable to hear. Even with a desire to learn, the task may seem insurmountable due to

the unique formational and grammatical rules of the language.

This linguistic rift has led to the call for an automatic translation system with the

ability to take voice or written text as input and produce a comprehensive sequence of

signed gestures through computing.

This thesis focused on the development of the foundation of a system that would

receive English language input and generate a sequence of related signed gestures each

synthesized from their basic kinematic parameters. A technique of sign specification for

a computer-based translation system was developed through the use of Python objects

and functions. Sign definitions, written as Python algorithms, were used to drive the

simulation engine of a human-modeling software known as Jack. This research suggests

that 3-dimensional computer graphics can be utilized in the production of sign

representations that are intelligible and natural in appearance.
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CHAPTER 1

INTRODUCTION

1.1 Objective

American Sign Language (ASL), like any other language is one that has its own linguistic

structure and grammatical rules, as well as its own pool of native users. It is the natural

language of North Americans who are congenitally deaf or who lost their hearing as

young children [1].

Learning a spoken language is extremely difficult for someone who is unable to

hear, and as a result, deaf individuals experience difficulty speaking and reading English

if their deafness is present in their early years of life. Similarly, learning sign language

later in life is an arduous endeavor for hearing people and the majority seem to have no

immediate reason to learn the language. Consequently, there is an enormous demand for

ASL translators. These interpreters however, are costly to hire, limited in number, and

usually available only in formal settings. This clash of interests and ability has resulted in

the isolation of the Deaf community as a linguistic minority within mainstream society.

It is believed that the creation of a computer translation system could assist

tremendously in the social integration of the Deaf community, while still preserving the

use of their native language. Such technology may not achieve the capability of a human

interpreter, but would be practical for application in casual settings such as grocery

stores, hotel lobbies, gas stations, and cafés, where interpreters are not usually available.

One side of this full translation system would entail an oral/written language to

sign language translation apparatus. Such an apparatus that would take acoustic or textual

information as input and produce a visual sequence of signed gestures. The acoustic

1
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information, in the foam of a person's voice may be acquired through the use of speech

recognition technology. The spoken words would be converted to text, which is then

recognized, processed and used to synthesize the appropriate signed gestures (Figure 1.1).

The goal of this thesis is to develop the foundation of a system that would receive

English language input and generate a sequence of signed gestures each synthesized from

their kinematic parameters. The term "synthesis" means the generation of original sign

language messages without prior recording of the sign. The signed gestures are conveyed

though the use of a three dimensional avatar that is realistic and human-like in both

movement and appearance.

Figure 1.1 Basic Architecture of English to Sign Language System.
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1.2 The Ear and Deafness

1.2.1 The Hearing System

Hearing is a complex process in which sound waves are converted to mechanical

movement and then to neural impulses, which are processed by the brain. The first step in

hearing is the entrance of sound waves into the pinna, which catches sound waves and

directs them down the ear canal. The sound waves fill the external auditory canal with the

continuous vibrations of pressure waves. These waves push air molecules against the

eardrum, causing it to vibrate at the same frequency as the sound wave. These vibrations

are passed across the middle ear by the malleus, the incus, and the stapes. These bones

amplify the vibrations before passing them into the cochlea via the oval window. As the

vibrations from the bones in the middle ear enter the cochlea they cause movement in the

fluid. This in turn causes the hair cells to bend. As the hair cells move they create a small

electrical current, which triggers an action potential to move along the auditory nerve to

the brain where they are converted into signals that can be understood as sound (Figure

1.2).

For an individual to hear properly, all of these elements must work well. Deafness

happens when at least one part of this system is not working effectively [2,3].
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Figure 1.2 The mechanism of hearing [4].

1.2.2 Types and Levels of Deafness

Deafness is loss of hearing of any degree, and may be slight or severe, temporary or

permanent. It may affect a person's ability to hear sounds of a certain frequency, or

sounds at particular intensities. Whatever the level of hearing loss, the condition is

usually classified as being one of two main types: conductive deafness or sensorineural

deafness [5].
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Conductive deafness is the most common type of deafness. It occurs when

something interferes with the conduction of sound to the fluids of the inner ear. There are

a plethora of things that could cause this to happen, including the physical blockage of

the ear canal with earwax, rupture of the eardrum, middle ear infections with

accompanying fluid accumulation, or restriction of the ossicular movement because of

bony adhesions between the stapes and oval window [6].

Sensorineural deafness on the other hand is caused by problems within the inner

ear or auditory nerve. It results from damage to the neural structures at any point from the

cochlear hair cells to and including the auditory cortical cells. This type of deafness may

be partial or complete but is typically permanent. There are also cases where an

individual may experience a combination of both conductive and sensorineural deafness,

often referred to as mixed deafness [7].

Regardless of the type of deafness, every individual falls within one of four levels

of deafness. Individuals are classified as being mildly, moderately, severely or

profoundly deaf (Figure 1.3).

• Someone that suffers from mild deafness may be able to hear sounds

ranging between 24 and 40 decibels (dB) on average in their better ear.

They usually find is difficult to follow speech in situations where there is a

lot of background noise.

• A person with a moderate level of deafness may hear sounds between 40

and 70 decibels. They usually find it difficult to follow speech without a

hearing aid or other sound amplification technology.
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• Severe deafness affects individuals who may only hear sounds within the

70 to 95 decibel range. Children with a severe level of deafness may rely

heavily on lipreading or use sign language as a mode of communication.

• The fourth level, profound deafness, is one in which a person can only

hear sounds of around the 95 decibel level or greater on average in their

better ear. Children suffering from profound deafness may rely heavily on

lipreading and/or a method of sign language.

Figure 1.3 Representation of loudness and pitch of everyday sounds [3].
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It is not always possible to identify the reason a person is deaf. Some children are

born deaf (congenital deafness), while others become deaf later in life (deafened). Many

children in early childhood may become deaf due to infections such as meningitis,

mumps and measles. Congenital deafness occurs prior to birth due to complications

during pregnancy, or illnesses such as rubella, cytomegalovirus, toxoplasmosis, and

herpes. There also is a class of medicines, known as ototoxic drugs, which can damage

the hearing of a baby before or after birth [3].

The main cause of congenital deafness in children however, is heredity. Deafness

can be passed down in families even though there appears to be no immediate family

history of deafness (about 90 percent of deaf children are born to hearing parents) [7].

When this occurs, hearing loss is usually significant and permanent. These children suffer

from moderate to profound hearing loss, and tend to develop auxiliary modes of

communication [7].

1.3 Communication and Language

1.3.1 Methods of Communication

Developing good communication technique is vital for any child or person whether they

can hear or not. With communication skills children can express themselves, as well as

influence and learn from others. This truth is no different for deaf children, however

sometimes the methods used to communicate may be different from those of hearing

children.

For those with residual hearing, the ability to develop listening skills and spoken

language is possible with the assistance of hearing aids, and other forms of amplification.

Cochlear implants are now being used in profoundly deaf individuals. Such neural
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prostheses are extremely invasive however; and though this approach may improve their

hearing, the quality leaves much to be desired.

Lipreading/speechreading is also one of the techniques used by the Deaf to

facilitate communication. Some deaf people nurture the ability to read lip patterns. This

approach requires an in-depth understanding of spoken language and the ability to read

lip patterns. Since only a third of words and speech sounds can be lipread under the best

conditions, it is not possible to distinguish between all the different parts of speech from

lipreading alone [3,7]. Effective lipreading, relies on residual hearing to provide cues

related to vocal tract movements.

A large population of the deaf community, especially those with severe to

profound deafness, use a form of sign language to communicate. Sign languages are

languages in a visual context that are capable of the same intellectual, expressive, and

social functions as a spoken language. Instead of being based on signals produced by the

voice and perceived by the ear, these systems are based on signals produced by the hands

and perceived by the eye [8]. Sign Languages are gestural-visual systems that have taken

their own course of development separate from spoken languages. In the United States

nearly 500,000 deaf people use a form of sign language known as American Sign

Language (ASL or Ameslan) [1], while in Britain an estimated 70,000 people use British

Sign Language [3]. These languages and others like them use handshapes, facial

expressions, gestures and body language to communicate.
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1.3.2 American Sign Language

American Sign Language (ASL) is the natural language of approximately half a million

deaf people in the United States and in the English speaking parts of Canada [1,9]. It is

the native language of many deaf people who have deaf parents, and is the language used

by many deaf adults among themselves. Increasingly, hearing people are learning ASL as

a second language, making it the third most commonly used language in the United

States [9].

For deaf people who use ASL, the language is a bond that unites them as part of

the deaf community. They are also connected through similarities in their attitudes and

beliefs about themselves and the world around them. They tend to view themselves as

sharing a common cultural experience, and take pride in their rich heritage. This strong

sense of identity in the deaf community is nurtured by the use of ASL.

There are certainly definite reasons to be proud of this form of language. ASL is a

legitimate language that has undergone hundreds of years of development by deaf people

and their advocates. In fact, American Sign Language has roots in French Sign Language

(FSL), which was brought to the United States in 1817 by Thomas Gallaudet and Laurent

Clerc, a deaf teacher from France [1]. These educators brought FSL to the United States,

while others spread FSL throughout Europe, influencing such sign languages as Swedish,

Latvian, Irish, Spanish, Dutch, Italian, Swiss, Austrian, Russian, and eventually,

Australian [10].

One of the most common fallacies in regard to American Sign Language is the

belief that it is a visual-gestural language based on English. However, it is not derived

from any spoken language. Instead, it is a distinct language with its own unique set of

grammatical and syntactical rules. It is as capable as any other spoken language of



10

communicating complex and abstract ideas. English, however, can be used to describe

ASL just as it can be used to describe any other language. This description could give

some insight to the differences between American Sign Language and English. Below are

two sentences, each written in both ASL and English. These sentences will give some

idea of the difference in grammar and syntax between the two languages.

English There is food in the store.

ASL	 IT STORE HAVE FOOD.

English He gave her a trophy.

ASL	 TROPHY HE-PRESENT-HER [11].

In addition, in ASL signs can be arranged in a variety of different orders to form

the same sentences. For instance, the sentence "I am happy" may be signed as "I happy

I", "I happy", or "Happy I". Furthermore, there is no distinction between the different

grammatical forms for nouns, adjectives and adverbs. For example, "happy",

"happiness", and happily" are all still signed exactly alike, so the appropriate meaning

must be determined from the context [9].

In ASL, one sign may represent a number of different ideas. And so, it is

necessary to incorporate supra segmentals, such as facial expressions and the appropriate

acceleration or velocity of a sign to convey its intended meaning. These non-manual

characteristics are just as important as the actual signs made by the hands.
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Since ASL is so different in grammar and syntax from English, new sign systems

have been developed in the past twelve years, with the intent of better facilitating deaf

children's acquisition of the English Language. These sign systems make an effort to

represent English Language grammar as best they can. They are collectively referred to

as Manually Coded English (MCE).

1.3.3 Manually Coded English Systems

Manually Coded English is a general term used to refer to all sign systems devised to

represent English grammar. These are most often used in deaf schools to teach its

students English grammar. It is also common in schools since hearing teachers may have

learned sign language as adults and impose English grammatical structure on their

signing. The two more frequently used systems are Signed English and Signing Exact

English [9]. Theses systems include representations of plurals, tenses, and articles all

signed in English Language word order.

Since in Manually Coded English Systems each sign produced is used to represent

an English word rather than a complete concept, these systems are thought of as codes

rather than a language. The signs of ASL are used, but they are employed in an order

indicating English Language grammar. A few signs have been created, however, for

frequently used English words that had no corresponding sign in American Sign

Language.
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1.3.4 Fingerspelling

Fingerspelling is the use of a manual alphabet to represent English words. It is used as an

adjunct to all of the systems described in the sign language continuum (see Table 1),

including previously mentioned signing systems. In these systems, each of the twenty-six

letters of the alphabet is represented by a particular shape of the hand and fingers.

Fingerspelling is used in ASL to indicate words that do not have a prescribed sign

associated with, such as, names of places, people, and things. It is also understood that

fingerspelling is sometimes used to substitute for signs that are either forgotten, or not

learned as yet.

When learning sign language fingerspelling is one of the most important bases. It

helps teach many of the handshapes used in everyday signs. Fingerspelling is actually the

main component of a sign system known as the Rochester Method, where each and every

word is fingerspelled.
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Table 1.1 Different Sign Language Methods and Their Relationship to English [12]

Sign Language Continuum

American Sign Language	 Manually Coded English	 Fingerspelling

(ASL)	 (MCE)

Characteristics I Combines standard sign,	 Combines some standard 	 Is a letter-by-letter

fingerspelling, and elements of signs with invented and 	 representation of

pantomime; has a syntax of its adapted ASL signs; 	 English

own; is ideographic and	 represents visually the

idiomatic; follows one sign-	 syntax of English,

one concept rule	 including inflections,

suffixes, and prefixes;

follows one sign — one

word rule

Sign Systems I American Sign Language	 Signed English	 Rochester Method

(ASL), also known as	 Seeing Essential English 	 Visible English

Ameslan	 (SEE I)

Signing Exact English

(SEE II)

Linguistics of Visual

English (LOVE)

Relation to	 Some representation of 	 Complete representation of Complete representation

English	 English Elements	 English elements	 of English



CHAPTER 2

BACKGROUND ON SIGN PRODUCTION AND ANIMATION

2.1 Technologies Used to Present Sign Language Digitally

The social integration of deaf communities around the world has been the focus of much

research. The past several decades have seen several attempts to create assistive

technologies that aid in the presentation and translation of sign language. The underlying

idea is that improved techniques for teaching and translating sign language will help

narrow the linguistic gap between the deaf and hearing worlds.

There are several techniques that have been used to generate sign language, either

for educational purposes or as part of translation systems. These techniques include: still

image technology, digital movie clips, key frame computer animation, and motion

capture technology. Both key frame animation and motion capture utilize three-

dimensional computer graphics.

2.1.1 Still Image Technology

Representing sign language by displaying still images is an approach that has been taken

in both educational and sign translation systems. These systems usually produce a

sequence of still images from an image database that correspond to the appropriate sign

pattern. The images, whether photographic or illustrated, are digitized so that they may be

displayed on a computer [13, 14, 15].

The most basic forms of this technology simply display still images of

fingerspelled letters in a sequence corresponding to text that is entered [14, 15]. This can

then be read by someone who knows, or is learning the manual alphabet. Similarly, there

are educational software packages that represent ASL words using animated GIFs

14



15

(Graphic Interchange Format), which are merely compressed sequences of still images

[16].

A sign language generation system, which uses still image technology, was

proposed by Hideo Kawai and Shinichi Tamura of the Osaka University in Japan. The

system was developed to recognize speech and generate the corresponding animation-like

sign language sequence in real-time. It is implemented on a personal computer, which has

both video RAM and a voice recognition board. Image files representing sign language

patterns and fingerspelling are stored on a disk. When text is received from the keyboard

or the voice recognition circuit board, an analogous sequence of sign language patterns

and/or fingerspelling patterns is generated and displayed on the computer monitor. Each

sign pattern is composed of one to four sub-pattern still images, and is read from the disk

and transferred to the video RAM. Consequently, spoken language is displayed as sign

language animation [13].

2.1.2 Movie Clip Technique

A very similar but improved technique employs digital movie clips as an alternative to

using still images. Here, video of a personal signer is played according to words entered

or selected on the system.

One such system is "The Personal Communicator" developed by Michigan State

University (Figure 2.1). The software package was originally written in a language

known as Hypercard, and was eventually redesigned and ported to Macromedia Director,

in order to make it a cross-platform product. The software used digital video and

compression technology to record and store over 2500 video clips of signs on a CD-

ROM.
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"The Personal Communicator", is a tool both for learning and communicating

American Sign Language. It was created with the intention of helping deaf children and

their hearing peers communicate better. It utilizes word processing techniques to convert

typed English text to American Sign Language signs and Speech for learning or

communication purposes. The program however does not tackle grammar or syntax

conversion issues [17].

(a)	 (b)

Figure 2.1 The Personal Communicator: (a) English-ASL Dictionary, (b) Word
Processor [17].

2.1.3 Key Frame Computer Animation

In an attempt to better visually document sign language, and effectively represent its

three dimensional aspects, some researchers opt to use three dimensional computer

graphics to represent the language; as opposed traditional two dimensional media such as

movie clips and pictures.

Some systems with this focus are mainly concerned with teaching the language.

Three-dimensional models give users the ability to view signs from different visual

perspectives, and hence better facilitate the learning process.
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An example of this is a system for teaching the manual alphabet on the Internet

proposed by Geitz et al. The system uses VRML (Virtual Reality Modeling Language) to

create three-dimensional static handshapes representing the manual alphabet. Each

VRML file represents a single handshape, and is placed on a Web server accessible to

clients over the World Wide Web. These client computers are equipped with Web

browsers, as well VRML browsers, in order to be able to view the handshape files [18].

Users are able to go online and observe the subtle differences in handshapes by rotating

the hand models in 3-dimension. The system was envisioned as a means to reach and help

people in remote locations better learn sign language. However, it also possesses

potential as a classroom aid since it allows students to study handshapes from any

perspective.

A very similar but more comprehensive system is described by Ling and Long in

their paper "An On-line Sign Language Communication System" [19]. This system uses

a full-body VRML model, and tackles the problem of describing dynamic signs by

employing the use of key frame animation. The overall system consists of an editor

applet for creating animation sequences (Figure 2.2), and a viewer applet for viewing the

Sign Language animation files (Figure 2.3). The animation files and the VRML human

model are stored on a web server that is accessible all users over the Internet. Users

defining animation sequences do so by specifying selected static gestures as key frames,

and then rely on the system to generate the in-betweens. Users can use the system to learn

sign language, as well as to communicate by simply selecting the animation files that

they desire their comrade to view.



Figure 2.2 Editor applet of Hand Gesture Animation Studio [19].

Figure 2.3 Viewer applet of Hand Gesture Animation Studio [19].

18
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2.1.4 Motion Capture Technology

Motion capture is yet another technique for animating virtual human models. Its

proponents usually apply it when they desire realistic human-like movements from a

virtual actor.

There are a large number of Sign Language translation and animation systems that

utilize this technique, as opposed to key frame animation. One such system is being

developed in Tokyo, Japan. The system helps to support conversation between hearing

people and people with hearing impairments. The sign language representation portion of

the system drives an avatar by regenerating motion data obtained by an optical motion

capture system [20]. While capable of presenting very realistic signs, motion capture

based animations are not easily expanded. Adding additional signs require extensive

production capabilities

2.2 Advantages of Computer Graphics Sign Language Generation

As mentioned in previous sections of this chapter, the use of three-dimensional computer

graphics in sign generation stands to better facilitate the acquisition of the language, due

to its more accurate representation of the true nature of the language over more traditional

two-dimensional media. However, this is not the only accolade that sets computer

graphics aside from the rest. Apart from its ability to allow users to view signs from

different angles, computer graphics give a sign translator system the flexibility to blend

movements of an avatar based on kinematic rules. For instance, as opposed to using key

frame or motion capture animation, a sign translator system could use inverse kinematic

calculations based on certain given parameters to determine the intricacies of a

movement. Furthermore, this mechanism is easily applied to interpolating between
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individual dynamic signs to produce a fluid transition from one sign to another. This

quality of continuous and connecting movements is extremely important when

considering realism in a translator. Translator systems (such as those using any of the

four previously mentioned techniques) that simple play animation files or display still

images, lack this realism since there is no interpolation involved to create the natural

movements necessary to transition from one sign to another.

Through using computer graphics and algorithms to generate signs from their

basic kinematic parameters, new signs can be easily synthesized by combining the

appropriate predefined parameters. This will also lead to a consistent signing pattern,

which users' will become accustomed to and remember.

2.2.1 Sign Animation versus Sign Synthesis

It is now possible to synthesize signs as opposed to merely animating them. It is

important to distinguish between sign animation and sign synthesis. Animation is the

production of motion or movement through the creation of artificial moving images, such

as in cartoon and movie clips. The use of motion capture and key frame animation in

computer graphics is also animation. For each of these, if new signs are needed in a

system, new videotaping, new motion capture, or new frame-by-frame images need to be

created. Sign Synthesis on the other hand, is the generation of sign language by

combining its separate elements or parameters to produce the intended sign

representation. These parameters are discussed in the following chapter.



CHAPTER 3

IMPORTANT ASPECTS OF CONSIDERATION IN SIGN SYNTHESIS

3.1 The Input and Output Language

In developing a computerized system to translate English into Sign Language, it is

important to realize that the English language has two basic forms, a spoken form, and

written form. Hence, it is desirable that a translator system accommodate both forms of

the language as input. It should be able to acquire input data whether it is textual or

acoustic in nature.

The first step towards this end, however, is to ensure that the more primitive of

the two can be translated. As a result, English text is the primary form of input to the

system that was designed. Entire sentences, and even paragraphs, can be entered into the

translator via the keyboard, or through cutting and pasting.

It is possible to acquire acoustic information, in the form of spoken English, with

the aid of speech recognition software. Such software can easily be integrated with the

translator application, and used to convert spoken English into written English, which is

then processed and translated. At present however, speech recognition technology does

not yet accommodate speaker independent continuous recognition, and so this feature is

best left for future implementation when the technology becomes more advanced.

In order to avoid the difficulties of grammar translation between English language

and American Sign Language (ASL), a compromise was struck between the two. The

prototype system temporarily employs Signed English as its output language instead of

American Sign Language. This ensures focus on the matter of immediate importance, the

21
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parametric synthesis of signs, and not on the development of language processing

techniques.

Signed English is one of the methods of communicating with the deaf. It is taught

in many deaf schools around the country as a manual interpretation of English using

fingerspelling and signs from American Sign Language. Signed English executes a sign

for every word in an English sentence, whereas ASL would merely seek to convey the

idea or concept instead [21]. By using Signed English as the output language for the

translator system, focus is geared toward the synthesis of intelligible signs.

It is important to acknowledge that deaf signers, even without learning Signed

English in school, are able to understand variations in sign language syntax. This is

evident since most deaf signers see and understand 'bad signing' by hearing people,

which is really ASL signs in an English sentence structure.

3.2 Software

3.2.1 Jack 3.0 — The Synthesis Engine

In order to realistically mimic human motion and appearance when generating signs, the

Neuromuscular Engineering Laboratory of the New Jersey Institute of Technology,

employs the use of a computer animation tool known as Jack (see Figure 3.1).

Though it may be used to generate sign language, Jack was developed at the

University of Pennsylvania as human modeling and ergonomics analysis software. It is

Jack's extensibility and capacity as a powerful interactive, real-time visual simulation

solution, that enables it to lend its services as a sign synthesis engine.
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Jack gives its users the ability to manipulate virtual humans that can be either

chosen from a menu of predefined human figures, or created based on anthropometric

data. It provides the industry's most biomechanically accurate human models, which are

based on body dimension measurements taken from the 1988 Anthropometric Survey of

U.S. Army Personnel (ANSUR 88). Jack human figures [22]:

• have 69 segments, 68 joints, a 17-segment spine, 16-segment hands, coupled

shoulder/clavicle joints and 135 degrees of freedom

• obey joint limits derived from NASA studies (Anthropometric Source Book,

Vol. 2: A Handbook of Anthropometric Data, Technical Report NASA RP-

1024)

• can be represented as stick figures, wireframe, shaded, high-resolution or

transparent model

A detailed list of all of Jack's segments, joints and sites can be viewed in Appendix C of

this thesis.
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Figure 3.1 Jack interface with human figure.

Jack allows its users to manipulate individual body segments connected by joints

that obey angle limits derived from NASA studies. As an end-effector of a body segment

on a Jack virtual human is moved, the software uses real-time inverse kinematics to

determine the joint angles that move the linked segments into anatomically reasonable

positions [22]. For instance, when a figure's hand is moved, the upper and lower arm

segments and related joints move in a way that is expected of a human body. This

provides realism in Jack's motions.

Furthermore, Jack provides a built-in motion system for defining tasks that must

be performed under time constraints. Jack simulations may consist of several distinct

motions, many occurring simultaneously and defined for a specified interval of time. The

user can create motions interactively or using a scripting language in Jack to control the
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movement of the head, eyes, torso, pelvis, center of mass, arms, hands, feet, and more. In

addition, it is possible to move objects, as well as the camera perspective.

Conveniently, there are a number of ways in Jack to save, store and reuse postures

of the whole human figures as well as postures of parts of human figures such as

handshapes. This turns out to be very helpful when synthesizing sign language, since a

library of handshapes can be created and stored prior to use in generating a sign.

In addition to modeling humans, Jack can also create such primitives as cubes,

sphere, cylinders, cones and toroids. Constraints can then be defined between theses

objects and human figures, if desired. For example, constraints can be created between

Jack's arms and cubes so that when the arm moves these cubes move as well.

Most importantly the Jack software is extensible. It is accessed through scripting

languages such as Python, Tcl/Tk and Lisp to enable users to extend its functionality.

These scripting APIs (Application Programming Interface) allow the general

programming of Jack internal functions, and each have consoles easily accessible from

the Jack menu. In fact, this access is supported by a specific high level scripting interface

for Jack based on Python, called JackScript. JackScript can be accessed from the Python

menu, where is can be used to provide support for procedural animations as well as many

other utilities.

3.2.2 Python

Python is an open source language whose popularity is increasing. It combines ease of

use with the capability to run on multiple platforms. Guido van Rossum created the

language nearly 11 years ago and it has evolved into a powerful programming language

[23].
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Python is an interpreted language that employs an object-oriented approach. It is a

high-level programming language, which separates the user from the underlying

operating system as much as possible, although it still provides the ability to access the

operating system at a lower level if desired. Because of this ability, Python is often

classified somewhere between such languages as Visual Basic or Perl and the system-

level C language [24].

Of the three programming languages capable of extending the functionality of

Jack, Python is the most suitable for this sign synthesis application. The key reason is that

JackScript, the scripting language for the Jack toolkit, is itself written in Python, and is

easily used within Python modules.

In addition, numerous other features support the use of Python. Its capabilities,

portability, extensibility, extensibility, and superior text processing, as well as its ease to

learn and code make it the language of choice for this application.

There is very little that cannot be done with Python. The core of the language is

very small, but it provides enough of the basic building blocks to allow the design of

most applications. Furthermore, because the language can be extended using C, C++, and

even Java in certain circumstances, it does not limit program development. The Python

interpreter actually comes with a large library of modules that extend the capabilities of

the language to allow network communication, text processing, and regular expression

matching [24].

Python is able the run on a range of operating systems. Its design is not attached

to a specific operating system because it is written in portable ANSI C [23]. This means

that a Python program written on one operating system can be run, tested and/or uploaded

on different systems. This would allow the created sign synthesis application to be
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portable and run on any machine supported by Jack. Python and Jack are well integrated

with both UNIX and Windows platforms.

Because Python is written in C and because there is access to the source code, it is

easy to write extensions to the language. Python can be embedded into C or C++

applications so it is possible to provide a scripting interface to any desired application

using the Python language. Due to the support for cross-language development, Python

can be used to design and conceptualize an application and later port it to C. There is no

need to rewrite the application in C before using it. Python and C can work in tandem

[24]. Extensibility of the application at hand was an important consideration. There will

be many improvements made in the future to the sign synthesis program and it was

important to use a language that would facilitate any necessary improvements, no matter

how unexpected.

In Python, everything (numbers, strings, lists, hashes, file-objects, and compiled

code) is an object, and can be passed easily to functions. Python is particularly known to

be an excellent string handler; it is very similar to Perl in this regard. It comes with

expression libraries that allow use of the same expressions as Emacs, Perl, and many

other utilities. With Python's support for other text-processing engines (regular

expressions and the natural splitting/combing of information) and flexible variable and

object handling, Python becomes a very useful tool for the text-processing programmer

[24]. This particular attribute of Python is pertinent to use in the sign synthesis program,

since input to the program is textual and requires processing prior to its conversion to

visual information.
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Python possesses suitability for large tasks. The language has features that support

the complexity as programs grow in size. This is extremely important for a program that

intends to eventually support a sign dictionary with over 50,000 signs. Tcl, for example,

is specifically intended for use in relatively small programs, though some have pushed

the envelope [25].

One of the most attractive aspects of the language is that it employs a compilation

stage that translates the raw-text Python script into a series of bytecodes, which are then

execute by the Python Virtual Machine. The use of the compilation and bytecode stages

helps to improve performance and makes Python much faster than pure interpreters such

as BASIC, but slower than the truly complied languages such as C and Pascal. However,

unlike many other languages the bytecode versions of modules can be saved and

executed without having to recompile them each time they are required, thereby

improving performance by eliminating the compilation stage [23].

Best of all Python is easy to learn. This is mainly because its source code

resembles pseudo code. Once the basic principles of the language are understood,

learning the rest is relatively easy. The language is also fast to code, since it is a high

level language and the programmer can skip many lower level tasks that other languages

require. In addition, the interactive interpreter that comes with the Python distribution

brings rapid development strategies to any project. Each line of code can be run prior to

putting them all together. This enables the programmer to edit code with the execution

environment.
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3.3 The Kinematic Parameters of Sign Language

When synthesizing signs of any sign language, thought has to be given to: (1) gesture

specification and how the signs will be recreated, (2) the input and output language, and

any linguistic conversion that might have to take place, and (3) the type of sign

generation engine needed, and the mechanisms needed for its functionality.

Of these three, the one of immediate importance is the ability to create realistic

sign representation. This requires knowledge of what distinguishes each sign from all

other signs in the language, and is a topic that has been the focus of research by many

linguists over the past four decades.

Currently, most researchers agree that five parameters completely describe a sign,

and differentiate it from all others signs. They are:

(1) Handshape	 - the configuration of the hand defined by the way the
fingers are arranged;

(2) Hand Orientation	 - the direction the palm of the hand faces;

(3) Location	 - the place in space or on the body where the sign is made;

(4) Movement	 - the way the hand or hands move;

(5) Non-Manual Gestures 	 - these include facial expressions, and movements of the
shoulders, head, and body [26].

There are several notation systems, which attempt to provide a way to write signs. These

notation systems use methods of gesture specification that rely on the parameters of

signs. One of the more popular systems is known as Stokoe Notation.
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3.3.1 Stokoe Notation

Stokoe notation is an American Sign Language notation system that was devised by

linguist Willam Stokoe in 1960. Stokoe's notation system was the first of its kind, and as

a result grew a following of many researchers. It is actually considered a family of similar

linguistic notations, since various groups of researchers have made improvements to the

system and no standard version was developed.

Stokoe believed that each sign in American Sign Language had three defining

parameters: the place where it was made, the handshape accompanying it, and the action

of the hand or hands [27]. These he named the tab (tabulation, location), dez (designator,

handshape), and sig (signation, movement), respectively. In his notation he described

Orientation as a part of handshape and in some cases, as a part of movement. Over the

years, researchers have realized the necessity of treating Orientation as its own

independent parameter, and as a result this view has become standard.

Stokoe purposely omitted Non-Manual Gestures in sign descriptions. He

recognized their importance to sign formation, especially as supra segmentals, but also

realized the extreme difficulties in analyzing them. This he left to be studied by

subsequent researchers.

In his book, A Dictionary of American Sign Language, Stokoe specifies a limited

number of primes for each of the three parameters; handshape, location, and movement.

Symbols were assigned to represent each of these primes, which include: 19 different

handshapes, 12 different locations, and 24 alternate movements. Stokoe uses these

symbols to define over 2,000 different signs. A table of these symbols can be seen below.



Table 3.1 Stokoe's Transcription Symbols [27]

Tab symbols
1. 0 zero, the neutral place where the

hands move, in contrast with all places
below

2. 0 face or whole head
3. ∩ forehead or brow, upper face

4. is mid-face, the eye and nose region

5. u chin, lower face
6. 3 cheek, temple, ear, side-face
7. II neck
8. () trunk, body from shoulders to hips
9. \ upper arm

10. if elbow, forearm
11. 0 wrist, arm in supinated position (on its

back)
12.D wrist, arm in pronated position (face

down)

Dez symbols, some also used as tab
13. A compact hand, fist; may be like 'a', 's',

or T of manual alphabet
14. B flat hand
15. 5 spread hand; fingers and thumb spread

like '5' of manual numeration
16. C curved hand; may be like 'c' or more

open
17. E contracted hand; like 'e' or more c law-

I ike
18. F "three-ring" hand; from spread hand,

thumb and index finger touch or cross
19. G index hand; like 'g' or sometimes like

'd'; index finger points from fist
20. H index and second finger, side by side,

extended
21. I "pinkie - hand; little finger extended

from compact hand
22. K like 6 except that thumb touches mid-

dle phalanx of second finger; like 'I('
and 'p' of manual alphabet

23. L angle hand; thumb, index finger in
right angle, other fingers usually bent
into palm

24. 3 "cock - hand; thumb and first two
fingers spread, like '3' of manual
numeration

25. 0 tapered hand; fingers curved and
squeezed together over thumb; may be
like 'a' of manual alphabet 

26. -warding off" hand; second finger
crossed over index finger, like 'r' of
manual alphabet

27. V "victory" hand; index and second fm.
gers extended and spread apart

28. W three-finger hand; thumb and little fin-
ger touch, others extended spread

29. X hook hand; index finger bent in hook
from fist, thumb tip may touch finger-
tip

30. 'Y "horns" hand; thumb and little fing-
er spread out extended from fist; or
index finger and little finger extended,
parallel

31. 8 (allocheric variant of Y); second finger
bent in from spread hand, thumb may
touch fingertip

Sig symbols
32, ^ upward movement
33. V` downward movement 	 vertical action
34.

• 

up-and-down movement
35. > rightward movement
36. < leftward movement 	 sideways action
37.

• 

side to side movement
38.

• 

movement toward signer
39. 4- movement away from signer horizontalaction
40. I to-and-fro movement
41. a supinating rotation (palm up)42.

• 

pronating rotation (palm down) action
43. 41 twisting movement
44. nodding or bending action45.

• 

opening action (final dez configuration
shown in brackets)

46. * closing action (final dez configuration
shown in brackets)

47.
A wiggling action of fingers

48. t° circular action
49. )4 convergent action, approach
50. X contactual action, touch
51. z linking action, grasp Interaction

+

52.  crossing action
53,

• 

entering action
54. - divergent action, separate
55. " interchanging action
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Stokoe specified 19 different values for the handshape or dez parameter (Figure

3.2), although there are more handshapes used in ASL. Some of the handshapes he

specified are not necessarily identical in configuration to the letters in the manual

alphabet with the same name, but closely resemble them in formation [8]. For instance,

the handshape named 'B' in Stokoe's notation is really the flat hand configuration, and

lacks the bent thumb formation of the actual manual alphabet handshape. Also, the fist

configuration though referred to as 'A', is interchangeable with the handshapes for the

manual letters 's' and 't', since they each generally resemble a closed fist.

Figure 3.2 Stokoe Handshapes arrange in order of frequency of use [8].
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The space in which signs are made is a delimited region referred to as the signing

space. It is described as extending from the top of the head to just below the waist, and

spanning the reach of arms bent at the elbows from side to side. A prime of the place of

articulation of a sign is always defined by a specific location on or around the body

within the signing space. Stokoe described 12 different locations that he thought would

minimally define the place of articulation of signs (see Figure 3.3). He also determined

that in addition to these locations, several of the des handshapes would serve as place of

articulation for signs that involved two hands touching [1].

Figure 3.3 Places of articulation according to Stokoe notation [8].

The most complex of the three Stokoe parameters is of movement. It can be

exceedingly difficult to analyze and transcribe. This complexity, arises due to the

seemingly infinite number of way the arms and hands can be articulated. Luckily, just as

the formational system of American Sign Language limits the number of handshapes that
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it uses, so does it limit the different types of movements. These movements may occur in

isolation, in series with one another, or concurrently, depending on the sign [8]. Stokoe

proposed 24 different types of movement (some shown in Figures 3.4 and 3.5), which he

thought could be used in describing most ASL signs.

Figure 3.4 Some Stokoe movements as related to their sig symbols [8].



Figure 3.5 More Stokoe movements as related to their sig symbols [8].

Once the three parameters of a sign have been identified, the sign can then be

transcribed and described using conventions which Stokoe provided. Stokoe proposed

that each sign be described using a TDs notation, where 'T' denotes the tab (location),

`D' the dez (handshape), and 's', the sig or movement in the sign. This convention

indicates that at some location 'T' the handshape `D' is formed and is used to perform the

action 's'.
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There are however, additional symbols and conventions used along with this

notation. For instance, the sign for the word `me' is transcribed as [ ]G┬x (Figure 3.6).

The sig symbol, T, written as a subscript to the dez symbol, G, shows the way that the

hand is held. According to this notation the sign for ME is described as having the

dominant hand in the 'index hand' configuration (see Table 3.1), pointing and moving

towards the trunk of the body, and then touching it. Here, Stokoe uses the sig as a

subscript to allude to the orientation of the hand. This can be better seen with the sign for

MONEY, which is transcribed as BaBax.' (Figure 3.7). The subscript 'a' of both the tab

and the dez shows that they are supinated, turned palm up. In this sign a dez symbol is

used as a tab to indicate that the sign takes place at the location of the non-dominant,

which is in the 'flat hand' configuration. A sharp or tense movement is made as the hands

touch, as indicated by the dot following the 'x'.

Figure 3.6 The sign for ME	 Figure 3.7 The sign for MONEY

transcribed as [ ]G; [28]. 	 transcribed as BaBax [28].
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3.3.2 Sign Specification in the Translator System

As discussed in previous chapters, the intention of this research is to propose a method of

synthesizing signs from their basic kinematic parameters. In order to accomplish this, a

technique had to be developed that codes each sign in sufficient detail to allow graphical

rendering by the synthesis engine. Such a technique was derived from Stokoe's seminal

investigation of sign formation.

This kinematic coding system defines the simultaneous occurrence of four

parameters: handshape, location, movement, and orientation. This parametric breakdown

of a sign is similar in nature to that of Stokoe, with the addition of orientation, which is

treated as an independent parameter. The orientation of the hands is equally significant to

the other three parameters when describing and distinguishing between signs. This is

evident in ASL where many signs are similar to one another in all aspects except for the

orientation of the hand or hands. The signs for CHILD and THING, for instance, differ

only in orientation (see Figure 3.8). In the sign for CHILD the palm of the dominant hand

faces up (palm up), where as in the sign for THING the palm of the hand faces the

downward direction (palm down).

Figure 3.8 Importance of orientation as a parameter in sign language [8].
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At present, as in Stokoe's work, non-manual signals have been omitted from use

in the translator system. Though these are important in the formation of a sign, they are

beyond the scope of this effort and will be left for others to study. In the interim, a system

that synthesizes signs without producing facial expressions will still convey meaningful

information.

The key to efficient sign synthesis based on parametric values, is a limitation on

the number of possible entries or primes, while effectively generating the majority, if not

all, of the signs in the language. The primes chosen for this system include 39

handshapes. These are stored in a handshape library, and can be used in the specification

of signs, letters of the manual alphabet, and the numbers one through ten. These

handshapes are the 24 used to represent the letters of the alphabet, the 10 used to

represent numbers one through ten, and the 5 remaining most frequently used handshapes

in ASL and Signed English (see Figures 3.9 through 3.11). Only 24 handshapes are used

to represent the manual alphabet, and thus used in fingerspelling, since the letter T uses

the 'I' handshape in its formation, and the letter 'Z' uses the '1' handshape.



Figure 3.9 Handshapes used in the manual alphabet [29].

39

Figure 3.10 Hanshapes used in numbers one through ten [30].



Figure 3.11 Additional frequently used handshapes [31].

The increase in the number of handshapes from the 19 proposed by Stokoe is

justified by recent changes in ASL, as well as the desire for well-formed-ness in certain

ASL signs. Initialization of signs has been introduced to American Sign Language since

the completion Stokoe's work. This technique has resulted in the creation of several signs

from one, by increasing the importance of handshapes used in some signs. For instance,

where a single sign made with the 'A' handshape would initially represent all three words

TRY, STRIVE, and ATTEMPT, a distinction is now made between the three by choosing

the handshape 'T', 'S' or 'A', respectively [1]. This has added all 24 fingerspelling

handshapes to those used in ASL.

The 19 handshapes proposed by Stokoe are considered the 19 major hand

configuration sub-primes in ASL. There are actually additional sub-primes within the

different hand configuration classes [8]. For instance, the 'B' handshape in Stokoe's

notation is only one of the many different 'B' sub-primes in the 'B' hand configuration

class. There is also the 'open B' configuration, and the 'closed B' configuration to name

a few (see Figure 3.11). By increasing the number of sub-primes used in the translator

system, more accurate well-formed signs can be generated than would be possible with

with Stokoe's 19.
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The places of articulation (location) associated with signs are defined relative to

the torso of the avatar. In order to create a naturally appearing sign, the Jack animation

engine must be instructed to move the appropriate end effector (eg. tip of index finger of

the dominant hand) to a location, while also determining anatomically appropriate joint

angles of the finger, wrist, elbow and shoulder joints. This requires the application of

inverse kinematics, which allows the joint angles of the limb to be determined from the

desired end effector location.

Unfortunately, Jack's internal inverse kinematics algorithms are not accessible in

JackScript and hence are unavailable to a Python program. This difficulty was overcome

through the introduction of virtual cubes as a convenient means of directing Jack to

correctly position an end-effector at a desired location, with appropriate arm joint

trajectories. This method also provides a convenient mechanism to control the orientation

parameter associated with the hand.

This technique utilizes Jack's innate ability to align one cube's position and

orientation with that of another cube. An invisible cube is placed at a target location with

a desired orientation (location cube), and a second cube is constrained to the desired end-

effector of the arm (end-effector cube). Thus, when the end-effector cube is moved, the

constraint requires that the end-effector and all attached segments (i.e. hand, forearm,

upper arm) change to accommodate the movement. When the JackScript command is

given to the end-effector cube to align with the location cube, Jack performs real-time

inverse kinematic calculations to determine the joint angles of the arm necessary to

comply with the constraints of the human-model, and generate human-like movement to

the location. The local co-ordinate systems of the cubes are aligned, allowing the

orientation of the location cube to play an important role in the orientation of
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The local co-ordinate systems of the cubes are aligned, allowing the orientation of

the hand at the desired location (see Figure 3.12). For instance, in the figure below, two

visible location cubes are placed on the nose, and an end-effector cube is constrained to

the fingertip. One location cube is oriented at a forty-five degree angle to the bridge of

the nose, while the other is oriented vertically, parallel to the nose bridge. In Figure 3.12

A and B the end-effector cube is instructed to move to the first location. In A, the finger,

and hence the hand, approaches the location with a correct orientation. In C and D the

finger is moved to the second location cube, which results in both a different approach

trajectory and final orientation.

Figure 3.12 Virtual cubes used to specify location.

It should be noted that this method is very powerful. It not only provides the

location parameter, but also partially defines the movement and orientation. Figure 3.12

shows that the same location can be specified by different cubes, which have different

orientations. These orientations determine the final alignment of the end-effector cube,

which controls the final orientation (3 degrees of freedom) of the hand. Jack's inverse
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kinematics computation also determines the trajectory followed by the end-effector cube

and makes the movement trajectory of the hand appear realistic.

The execution of a movement is accomplished with the JackScript command,

`Reach', which instructs the human-model to move a hand or hands to a particular

location. This command is normally very limited in its functionality, requiring the end

effector to be either the palm of the hand or the model's forearm. Additionally, Jack is

incapable of reaching to any of the predefined sites on its body. The introduction of

virtual cubes expands the capabilities of the 'Reach' function. 'Reach' allows the

specification of an object that is constrained to the hand to be the defacto end-effector.

`Reach' also allows the target location to be an object as opposed to an anatomical site.

The default setting for 'Reach' aligns the local coordinate system of the end-effector

object and the target object.

3.3.2.1 Placing Virtual Cubes. 	 As an example, the sign for YOU uses the '1'

handshape with the index fingertip as the end-effector. The location of the end-effector is

specified as a position directly in front of the signer's chest. The orientation of this sign

requires the finger to be pointed horizontally, away from the signer. Since the index

finger of the dominant hand is often used as an end-effector, an end-effector cube is

constrained to its tip. The orientation of that cube is defined with its:

• y-axis parallel to the palm of the hand and positive in the direction of the thumb

• x-axis normal to the dorsal side of the finger and positive on the dorsal side

• z-axis co-linear to the central axis of the distal phalange and positive in the distal

direction
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The target cube for the sign YOU is placed approximately .3 m directly in front of

the avatar's chest. Its orientation is accomplished by setting its local reference frame

parallel to that of the site located at the center of Jack's chest. This determines that the

target cube axes are aligned with its:

• y-axis oriented with its positive direction up relative to Jack

• x-axis oriented with its positive direction to Jack's right

• z-axis oriented with its positive direction in Jack's direction of view

Executing the JackScript "Reach" function aligns the end-effector cube's local

reference frame with that of the target cube. This brings the finger tip to the desired

location, with its distal end aimed in the direction of Jack's view, and with the dorsal side

of the finger (and hand) oriented toward Jack's right.

The ASL sign for ME uses the same handshape, with the fingertip touching the

middle of the signer's chest, pointing toward the signer. Thus, it differs from YOU in

both the place of articulation (location) and partial orientation of the hand.

Accomplishing the display of this sign uses the same end-effector cube as YOU,

and a different target cube placed at the center of Jack's chest. Its local orientation is first

made parallel to the orientation of Jack's waist, and then rotated 180 degrees about its y-

axis. Thus, when the "Reach" function is executed, the axes of the end-effector cube are

aligned with the new target cube and the finger points toward Jack's chest, while its

dorsal side is now oriented to Jack's left.
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Rotating the target cube about only its y-axis changes only the direction in which

the finger and hand point, while the thumb continues to point upward relative to Jack.

The structure and possible parameters of the 'Reach' command, and other

pertinent JackScript functions can be viewed in Appendix C.

3.3.2.2 Virtual Cube Sites. Once a method of specifying cube locations was defined,

the next step was to decide upon the sites for the location cubes, and end-effector cubes.

For this, Stokoe's model of places of articulation (Figure 3.3) was modified to provide

specific sites of articulation (location sites shown in Figure 3.13). In this prototype

implementation, multiple cubes, with different orientations, are superimposed at location

sites. Depending upon the desired hand orientation, the synthesis engine passes the

correct cube to the 'Reach' function. Cubes were attached to three of the most frequent

end-effector sites used in American Sign Language. Figure 3.14 shows cubes placed at

the tips of the thumb, index finger and middle finger, as well as the center of the palm.

Not shown is the fifth cube located on the dorsal side of the palm. All cubes placed in the

signing environment are made invisible so as not to distract the viewer.



Figure 3.13 Sites of location cubes 	 Figure 3.14 End-effector cubes on
in the translator system. 	 the right hand of the human-model.

3.3.2.3 Wrist Orientation. Although the virtual cubes specify the orientation of the

end-effector they do not necessarily define the correct wrist orientation needed to produce

a correct sign representation. As a result, seven primes were created to represent the

possible wrist orientation in a sign. Each prime is defined by three angle values,

representing the three degrees of freedom of the wrist in the human-model. For example,

the palm-up orientation of the hand would be defined by the following three lines of code

(where 'rw' specifies the right wrist, and 'wor3' indicates wrist orientation number 3):

rw jack.right_wrist

wor3 =(0,0,90*u.deg)

rw.Move(wor3)
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3.3.2.4 Synthesis of Signs. In order to synthesize a sign in the Sign Translator System,

it is first necessary to create a detailed kinematic description of each sign. This

description must provide information regarding the specific parameter primes needed to

produce the sign representation, and the instances at which they occur. As a result, a

complete description requires, the beginning, ending, and any intermediate configurations

of the sign. Depending on the complexity of the sign, multiple intermediate

configurations may be required.

Figure 3.15 ASL sign representing YOU [32].

Returning to the sign YOU for instance, requires a signer to form the one

handshape with the dominant hand, in front of the body, and point the finger straight out

[32] (Figure 3.15). While this description and an illustration, may be enough to instruct a

person to recreate the sign, more information is needed to synthesize the sign using a

computer driven avatar. As a result, a descriptive format was customized to effectively

parse a sign definition into parameters the Sign Translator System could synthesize and

combine (Table 3.1). By describing a sign in this way, coding can be developed in Python

to mimic the structure of this description, and hence generate a sign representation that is

intelligible.



Left handRight hand
Inherited
Inherited
Inherited
Inherited

Dominant hand
Beginning Handshape
Beginning Orientation
Beginning Location
Beginning Movement
Duration

Dominant hand
Beginning Handshape
Beginning Orientation
Beginning Location
Beginning Movement
Duration
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As can be seen in the sign specification table, the sign YOU, does not have a

particular beginning configuration (handshape, orientation, location and movement). Its

initial configuration is inherited from the previous sign, and its ending configuration, has

the dominant arm out in front of the body with the '1' handshape, while oriented with the

palm of the hand facing the signer's left (assuming the dominant hand is the right hand).

Table 3.1 Sign Specification prior to entry in the Sign Translator System

YOU

Intermediate Handshape	 Intermediate Handshape
Intermediate Orientation	 Intermediate Orientation
Intermediate Location	 Intermediate Location
Intermediate Movement	 Intermediate Movement
Duration	 Duration

Ending Handshape
Ending Orientation
Ending Location
Ending Movement
Duration

1
Palm left
In front of the body
None

Ending Handshape
Ending Orientation
Ending Location
Ending Movement
Duration

This sign specification can be imitated using a combination of JackScript

functions. The functions will instruct the human-model to form the '1' handshape on the

right hand, and to orient the palm of the hand vertically to face the avatar's left side.

Simultaneously, the avatar is instructed to align the position and orientation of the end-

effector cube on the index finger, to that of the target location cube in front of the avatars

body.
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The JackScript algorithm for signing YOU can be seen below:

DoTogether(jack.Reach('right',point,endeff = rindex,duration
= 2),HandShapeMotion(jack,letters[ '1'],'right',duration
=1.5),rw.Move(wor1,duration = 1.5))

The highest-level function, 'DoTogether', assures that all functions within it are

executed simultaneously. The avatar is instructed to align the end-effector cube, labeled

'rindex', to the position and orientation of the location cube 'point'. At the same time,

the joint angle description of the handshape '1' is loaded from the handshape library file,

and the wrist, 'raw' (right wrist), is instructed to assume the orientation allocated to the

variable 'wore'.



CHAPTER 4

FEATURES OF THE SIGN TRANSLATOR SYSTEM

4.1 Input and Output Environment

The input and output environments of the Sign Translator System are based on the

graphical user interface of the Jack software. Once launched, Jack provides two windows;

a graphics window, where objects are rendered, and a control bar that contains the

standard menus and icons of the program (Figure 4.1).

An additional window, the JackScript console, can be accessed by selecting the Python

icon after adding it to the control bar through View >Toolbars>Consoles (Figure 4.2).

This console is where the supervisory Python program, for sign translation is accessed.

This program is initiated by typing 'execfile' (a Python command for executing a file),

followed by the location and the name of the file, as follows:

execfile(`'/Python23/prgmodule/SignJack.py')
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Figure 4.1 Jack user interface showing control bar and graphics window.
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Figure 4.2 Jack user interface showing Python icon and JackScript console.
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Once the Sign Translator Program is launched, the human-model or avatar is

automatically loaded in the graphics window, and the user is prompted to input an

English sentence. At this point the JackScript console assumes the role of the input

environment for the system, with user input typed in this window (Figure 4.3).

Figure 4.3 JackScript console is the input environment for the translator system.

The output environment is the graphics window that contains the avatar.

Important consideration was given to the signing space of the avatar. The camera view

was arranged such that the avatar was close enough for users to distinguish between

handshapes, but wide enough to respect the sign envelope of all possible arm

configurations used in signing. This space is limited by the waist line, the top of the head,

and the reach of bent arms (see Figures 4.4 and 4.5) [8].
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Figure 4.4 The region in which	 Figure 4.5 Signing space in the

signs are made [8]. 	 translator system.

4.2 Interpolation in the Sign Synthesis Process

A sign is synthesized in the Sign Translator System by obeying combined joint angle data

imposed on the human-model by the appropriate parameter primes. Joint angle

information from inverse kinematic calculations (to align cubes), the handshape library

file, the appropriate wrist orientation variable, and the pertinent motion file (when

applicable), are combined and obeyed in order to generate the desired sign representation.

Jack's simulation engine sets the requested joints to the required configurations while still

complying with the inherent joint constraints of the model. This results in realistic human

like motions.
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The Jack software produces interpolation between the requested configurations in

order to produce continuous signing (Figure 4.6). Interpolation occurs between all

dictated configurations, whether they are a part of the same sign or not. This allows the

ending configuration of one sign to smoothly bend into the beginning configuration of the

following sign, preventing the detached representations that animation techniques usually

nrovide.

Figure 4.6 Interpolation in the Sign Translator System.

In defining a sign representation, the Sign Translator System allows the

specification of the duration of the sign sequence. This is accomplished through the

simulation engine using a real-time clock. As a result, if a sign is created with 'duration =

2', the sign will appropriately run for two seconds. However, the number of steps that

will be computed during the allocated time will vary, depending on the complexity of the

motion and the processing power of the computer [22].
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The simulation engine clock can be forced to perform computations and steps as

if they occurred every 1130th of a second by adding the following line of code to the

translator program:

ClockControl(dT=1/30., rt =0)

In this Python command the value assigned to 're identifies the use of a real-time

clock (rt = 1 indicates real-time clock, rt = 0 clock is not real-time). The variable 'dT'

specifies the time step assumed between consecutive frames [22]. The use of these

variables realizes a fast processor in order to avoid discontinuities in the frame rate.

4.3 Software Design

The program for sign translation was implemented in Python and calls a number of

functions in JackScript. It consists of four parts (Figure 4.7); a main module in which all

supporting files are loaded and user input is requested, and three sub-modules that are

branched to in order process this input and produce the corresponding sign

representations. The three sub-modules are: (1) the Word List module, which contains a

list of the words that the system is capable of signing, (2) the Sign Word module, which

contains the sign specifications for words in the list, and (3) the Sign Letter module that

contains the sign specifications for each letter of the manual alphabet.

In the main module the user is requested to input the text to be translated. This

text then under goes some basic string processing, where all letters are made lower case,

and punctuation symbols or special characters are removed. The input is made lower case

to ensure that words present in the Word List module can be matched with the



56

corresponding words in the input string. This permits the user to be unconcerned with the

case of letters or words that are cut and pasted, or typed in the system. The removal of

punctuation symbols and special characters is a precautionary measure to prevent any

discrepancies when matching words or letters to their corresponding sign definitions in

the system. Even more importantly, fingerspelling and Sign Language do not use

capitalization or punctuation to convey any messages, which makes them irrelevant for

recognition and processing.

Next, the input string is parsed into its individual words, and the words are

indexed to preserve the order in which the words are processed. The first word in the

index is then sent to the Word List module where the list is checked for an occurrence of

the word. If the word is present, it is then sent to the Sign Word module where its sign

definition (specification), which is based on kinematic data, is used to generate the

equivalent sign. If the word is not present in the word list, it is sent to the Sign Letter

module where the letters of the word are indexed, and the equivalent handshape is

generated for each letter of the word in the order of its occurrence.

The fully commented algorithm can be found in the Appendix A.
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Figure 4.7 Schematic showing the architecture and data flow in the translator system.



CHAPTER 5

CONCLUSIONS

This thesis focused on the development of the foundation of a system that would receive

English language input and generate a sequence of related signed gestures each

synthesized from their basic kinematic parameters. A technique of sign specification for

a computer-based translation system was developed through the use of Python objects

and functions. Sign definitions (written as Python algorithms), as well as a supervisory

sign synthesis application, were created to drive the simulation engine of a human-

modeling software known as Jack.

The work presented in this thesis provides the foundation for a scalable Sign

Language translation system that is capable of synthesizing intelligible signs based on

parametric sign definitions. The prototype employs a commercial animation engine, Jack,

to produce an avatar that physically resembles a human, and is capable of moving with

human-like motion. The system has the potential of an unlimited vocabulary of signs,

which depends only on the labor to code each sign in the format expected by the

synthesis engine.

An informal viewing of sample signs and fingerspelled words out put by the

system was held, and the results were very encouraging. The evaluators were two hearing

individuals knowledgeable in both fingerspelling and Sign Language, and claimed that

the signs were intelligible and natural in appearance. They noticed however, some minor

production deficiencies, such as the hand penetrating the torso of the avatar due to Jack's

internal inverse kinematics, which lacks collision avoidance. Should this be a problem in

the use of the system, modifications to hand trajectories can be made by adding via points
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in the form of intermediate locations of virtual cubes along the desired trajectory.

Subsequent versions of Jack are likely to remedy this problem however.

In the future the inventory of signs will be greatly increased, as more signs are

code in the appropriate format. Currently, movements in the prototype are embedded in

the way Jack moves the limbs from one location to the next. Some additional, secondary

movements are not possible as of yet and will need to be specifically added in the future.

Non-manual signals including facial expression, head movement, shoulder movement

and eye gaze are very intricate details that have not been incorporated and are left for

theses of the future.

The linguistic conversion from English grammar to ASL is also not included

within the scope of this thesis. What has been produced is a working system that

synthesizes ASL signs and fingerspelled words using English grammar in the form

referred to as Manually Coded English. This is a solid foundation for continued research

at the New Jersey Institute of Technology.



APPENDIX A

SIGN LANGUAGE TRANSLATOR PROGRAM

The algorithm for the translator program is divided into four modules, and hence four

sections. Within the algorithm all indentations made are essential.

A.1 Main module: SignJack.py

sys.path.append('/Python23/prgmodule')
# adds the modules' directory to the search path

os.chdir('/Python23/prgmodule')
# makes '/Python23/prgmodule' the current working directory

import string
# imports string functions such as 'translate' and 'maketrans'
from WordList import List, WordCheckList

v = View()
prevloc = v.LookingFrom()
prevfoc = v.LookingAt()
# stores the current view parameters of the graphics window

LoadFile("/Program Files/jack30/library/data/SignJack1.env")
# loads the human-model with cubes and fingerspelling postures
letters = ReadHandShapeFile("/Program
Files/jack30/library/data/sys/JASignedEnglishHandshapes.data")
# loads all stored handshape data and names it 'letters'

v.LookFrom(xyz(-0.250591, -0.002582, -0.000661) * trans(-
7.147087, 165.768768, 158.128845))
v.LookAt(trans(-6.708587, 123.651581, -6.409498))
# adjusts the camera view to define the signing space

jack= scene.jack
rw = jack.right_wrist
lw = jack.left_wrist
# assigns Jackcore objects to Jackscript variable names

# the following postures were imported and saved in the env file
# lists all postures imported for fingerspelling
#jack.AddPosture('fingerspell_a.post', 'fingerspell_a')
#jack.AddPosture('fingerspell_b.post', 'fingerspell_b')
#jack.AddPosture('fingerspell_c.post', 'fingerspell_c')
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#jack.AddPosture('fingerspell_d.post', Ifingerspell_d')
#jack.AddPosture(Ufingerspell_e.post ', Ifingerspell_e ' )
#jack.AddPosture('fingerspell_f.post', 'fingerspell_f')
#jack.AddPosture('fingerspell_g.post', Ifingerspell_g')
#jack.AddPosture('fingerspell_h.post', ''fingerspell_h')
#jack.AddPosture('fingerspell_i.post ', 'fingerspell_i')
#jack.AddPosture('fingerspell_j.post', 'fingerspell_j')
#jack.AddPosture('fingerspell_k.post', 'fingerspell_k ' )
#jack.AddPosture('fingerspell_l.post', 'fingerspell_l' )
#jack.AddPosture('fingerspell_m.post', 'fingerspell_m ' )
#jack.AddPosture('fingerspell_n.post', 'fingerspell_n')
#jack.AddPosture('fingerspell_o.post', 'fingerspell_o ' )
#jack.AddPosture('fingerspell_p.post', 'fingerspell_p')
#jack.AddPosture('fingerspell_q.post', 'fingerspell_q ' )
#jack.AddPosture('fingerspell_r.post', 'fingerspell_r')
#jack.AddPosture('fingerspell_s.post', 'fingerspell_s')
#jack.AddPosture('fingerspell_t.post', 'fingerspell_t')
#jack.AddPosture('fingerspell_u.post', 'fingerspell_u ' )
#jack.AddPosture('fingerspell_v.post', 'fingerspell_v')
#jack.AddPosture('fingerspell_w.post', 'fingerspell_w')
#jack.AddPosture('fingerspell_x.post', 'fingerspell_x')
#jack.AddPosture('fingerspell_y.post', 'fingerspell_y ' )
#jack.AddPosture('fingerspell_z.post', 'fingerspell_z')
#jack.AddPosture('fingerspell_0.post', 'fingerspell_0')
#jack.AddPosture('fingerspell_l.post', 'fingerspell_1 ' )
#jack.AddPosture('fingerspell_2.post', 'fingerspell_2 ' )
#jack.AddPosture('fingerspell_3.post', 'fingerspell_3 ' )
#jack.AddPosture('fingerspell_4.post', 'fingerspell_4')
#jack.AddPosture('fingerspell_5.post', 'fingerspell_5 ' )
#jack.AddPosture('fingerspell_6.post', 'fingerspell_6')
#jack.AddPosture('fingerspell_7.post', 'fingerspell_7')
#jack.AddPosture('fingerspell_8.post', 'fingerspell_8')
#jack.AddPosture('fingerspell_9.post', 'fingerspell_9')
#jack.AddPosture('fingerspell_10.post', 'fingerspell_10')
# this is also the end postion for the ten sign
#jack.AddPosture('j_end.post', 'Lend')
#jack.AddPosture('z_end.post', 'z_end')
#jack.AddPosture('relaxed.post', 'relaxed')
#jack.AddPosture('stand_normal.post', 'stand_normal')
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### Motions ###
jmotion = LoadChannelSet('/Program
Files/jack3O/library/data/sys/j_chset.env')
j = jmotion.Bind([scene.jack], ['jack'])
zmotion = LoadChannelSet('/Program
Files/jack30/library/data/sys/z_chset.env')

z = zmotion.Bind([scene.jack], ['jack'])
tenmotion = LoadChannelSet('/Program
Files/jack30/library/data/sys/ten_chset.env ' )
ten = tenmotion.Bind([scene.jack], ['jack'])

### locations ###
start = scene.1cube
nosel = scene.lcube0
nose2 = scene.1cubel
nose3 = scene.1cube2
midchest1 = scene.1cube3

midchest2 = scene.1cube4
midchest3 = scene.lcube5
midchest4 = scene.lcube6
1shoulder = scene.1cube7

reye 	 = scene.1cube8
rmouthcorner = scene.1cube9
leye 	 = scene.1cube10
lmouthcorner = scene.1cubell
point = scene.1cubel2

### end effectors ###
rindex = scene.fcube.cube.base
rthumb = scene.fcube0.cube.base
rmiddle = scene.fcubel.cube.base
rpalmcenter = scene.fcube2.cube.base

lindex = scene.fcube3.cube.base
lmiddle= scene.fcube4.cube.base
1thumb = scene.fcube5.cube.base

### wrist orientations ###
won =(0,0,0) 	 # hand oriented vertical (handshake)
wor2 =(0,0,45*u.deg)
wor3 =(0,0,90*u.deg) 	 # palm down
wor4 =(0,0,-45*u.deg)
wor5 =(0,0,-90*u.deg) 	 # palm up
worflex1 = (0,-45*u.deg,0)

worflex2 = (0,45*u.deg,0)
# wrist orientation 1 => rw.Move(wor1, duration=1)
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reply = 'yes'
while 'yes' == reply:

sentence = raw_input("Please type in a sentence:\n")
print sentence

sentence = string.lower(sentence)
# because input words need to match exactly with words in
# the WordList (case sensitive)

nonletnum ="$!@#$%^&*,;:+_-~='><.?/\[]{}{}u
# all punctuation symbols and special characters are
# stripped away from input string
transtable = string.maketrans(", ")
# builds a list of all characters
sentence = string.translate(sentence,transtable,nonletnum)
# deletes all non-letter and non-number characters
#(incase enter's text with punctuation)

sentence = sentence+' #'
# the '#' character tells Jack to relax at the end of a
# sign request in the 'SignLetter.py' file
# a space was needed before the '#' to separate it from the
# last word in the sentence, allowing the word to be
# recognized in the wordlist

word = sentence.split(" ",)
# uses the space , " ", between words as a delimiter
# allocates each word from the input string to the variable
# name 'word'. The variable is indexed so that each word is
# allocated a number

for i in range(len(word)):
# loops as many times as there are words in the input
# string

wordi = word[i]
# can't put word[i] in the function def
# so used wordi instead
if (List(wordi)):
# checks to see if current word
# is in the WordList (returns '1' if it is)

execfile('SignWord.py')
# branches to 'Sign Word' sub-module

else:
execfile('SignLetter.py')
# branches to 'Sign Letter' sub-module



else:
# else for the 'for' loop

reply = raw_input("Do another ?: ")
# requests another input when the previous one is
# processed
print reply
while (reply !='yes' and reply != 'no'):

print 'Not a valid reply'
reply = raw_input("Do another ?(yes or no): ")
print reply
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else:

print 'Thank you for using the program\n'
Destroy (jack)
v. LookFrom(prevloc)
v.LookAt(prevfoc)
# returns camera view to its original viewing configuration
# prior to initiating the Sign Jack program
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A.2 Sub-module: WordList.py

# list is case sensitive, so the entire input string was made
# lower case

# made 'WordCheckList' a global variable by putting it in the top
# level of this module

# the word list is extensible, new words can be added within the
# brackets

WordCheckList = ['eye', 'i', 'me', 'my', 'nose', 'you']

def List(wordi):

InList = wordi in WordCheckList
return InList 	 # returns a value (0 or 1) to the function

# that called it, indicating whether the
# word is present in the list or not
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A.3 Sub-module: SignWord.py

# the sign for words are generated by combining information
# pertaining to which hand or hands are used in a sign, the
# handshape assumed, the location of the sign, the orientation of
# the hand, and any additional motion, if necessary

if(wordi =='nose' ):
DoTogether(jack.Reach('right',nose2,endeff= rindex,duration
=2),HandShapeMotion(jack,letters[ ' 1'],'right',duration
=1.5),rw.Move(wor1,duration =1.5))
Flush() 	 # needed to ensure that the motion generated by

# the above script is carried out to completion
# before any other line of code is executed

elif(wordi == 'my'):
DoTogether(jack.Reach('right',midchest1,endeff=
rpalmcenter,duration = 2),HandShapeMotion(jack,letters
['OpenB'],'right',duration =1.5),rw.Move(wor1,duration
=1.5))
Flush()

elif(wordi == 'i'):
DoTogether(jack.Reach('right',midchest4,endeff=
rpalmcenter,duration = 2),HandShapeMotion(jack,letters['I']
,'right',duration = 1.5),rw.Move((0,45*u.deg,0 ),duration
= 1.5))
Flush()

elif(wordi=='eye'):
DoTogether(jack.Reach('right',reye,endeff= rindex,duration
= 2),HandShapeMotion(jack,letters['1'],'right',duration
=1.5),rw.Move((0,0,0 ),duration = 1.5))
Flush()

elif(wordi =='me'):
DoTogether(jack.Reach('right',midchest2,endeff=
rindex,duration = 2),HandShapeMotion(jack,letters[ ' 1 ' ],
'right',duration =1.5),rw.Move(worflex1,duration = 1.5))
Flush()

elif(wordi =='neutral'):
DoTogether(jack.Reach('right',start,endeff= rindex,duration
= 2.0),HandShapeMotion(jack,letters['1'],'right',duration
=1.5),rw.Move((0,0,0 ),duration = 1.5))
Flush()
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elif(wordi =='you'):
DoTogether(jack.Reach('right',point,endeff= rindex,duration
= 2),HandShapeMotion(jack,letters['1'],'right',duration
=1.5),rw.Move(wor1,duration = 1.5))
Flush()

else:
pass 	 # represents that nothing is done here and that

# the control returns to the higher-level module
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A.4 Sub-module: SignLetter.py

jack._CachePostures()
# places all the posture files in the cache so that they may be
# accessed a lot faster than if they were present only on the
# hard drive

n = 0
# used the variable 'n' in-order to be able to use the subsequent
# letters in conditional statements, eg.(1&0 is ten)

preletter='$'
wordi = wordi+'    '
# This space is integral, it allows jack to hold letters for
# awhile, indicating a space between one spelt word and another
# (rochester method)

for letter in wordi:

if(letter =='1' and wordi[n + 1] == '0'):
# necessary to evaluate 10 before one and zero are
# evaluated individually

DoInOrder(jack.Pose("fingerspell_10", duration = 0.4,
style = EaselnEaseOut), ten.Run(duration=1))
Flush()
preletter=letter

elif(letter =='0' and wordi[n - 1] == '1'):
# necessary to prevent a zero from being signed after a ten
# is signed since the for loop evaluates each sentence
# letter by letter

preletter=letter
# once a letter or number is signed, that character
# then becomes the previous letter

elif((letter== preletter and letter =='j')):
DoInOrder(jack.Pose("fingerspell_j", duration = 0.4,
style = EaselnEaseOut), j.Run(duration=0.5))
Flush()
preletter=letter

elif((letter== preletter and letter =='z')):
DoInOrder(jack.Pose("fingerspell_z", duration = 0.4,
style = EaselnEaseOut), z.Run(duration=0.5))
Flush()
preletter=letter
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elif (letter == preletter):
DoInOrder(jack.right_elbow.Move((2.42,), duration =
0.15, style=Constant),
jack.right_elbow.Move((2.3561944961547852,), duration
= 0.15, style= Accelerate))
# produces the back and forth movement necessary
# when the same letter appear more then once
# contiguously
Flush()

elif (letter =='#'):
jack.Pose("relaxed", duration = 1, style =
EaselnEaseOut)
# relaxes Jack's hands to the sides of his torso when
# there are no more words of letters left to
# fingerspell
Flush()
preletter=letter

elif(letter =='     '):
# takes care of situations where a letter or number that
# requires secondary movement occurs prior to a space

if(preletter == 'z'):
jack.Pose("z_end", duration = 0.5, style =
EaselnEaseOut)
# provides a posture for 'z' that can be held
Flush()
preletter=letter

elif (preletter == 'j'):
jack.Pose("j_end", duration = 0.5, style =
EaselnEaseOut)
Flush()
preletter=letter

elif(preletter == '0' and wordi[n-2] == '1'):
# needs be 'n-2' since n is now the space and 'n-1' is
# the zero

jack.Pose("fingerspell_10", duration = 0.5, style
= EaselnEaseOut)
Flush()
preletter=letter

elif (preletter == '# ' ):
pass

else:
jack.Pose("fingerspell_"+ preletter, duration
=0.5, style = EaselnEaseOut)
Flush()
preletter=letter
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elif (letter == ' j ' ):
DolnOrder(jack.Pose("fingerspell_j", duration = 0.4,
style = EaselnEaseOut), j.Run(duration=0.5))
# adds motion for 'j' to the sign
Flush()
preletter=letter

elif (letter =='z'):
DoInOrder(jack.Pose("fingerspell_z", duration = 0.4,
style = EaselnEaseOut), z.Run(duration=0.5))
Flush()
preletter=letter

elif(letter):
# condenses the code by adding the letter that occurs to
# name of the file that needs to be retrieved

jack.Pose("fingerspell_"+letter, duration =0.5, style
= EaselnEaseOut)
Flush()
preletter=letter

else:
Pass

n = n+1



APPENDIX B

LIST OF JACK PARTS: SITES, SEGMENTS, AND JOINTS

The following is a comprehensive list of the two hundred and sixty eight parts of the

human-model.

B.1 Sites

Jack.left_eyeball.sight
Jack.right_eyeball.sight
Jack.right_foot.distal
Jack.right_foot.toes
Jack.right_foot.proximal
Jack.right_foot.top
Jack.right_foot.bottomJackleft_foot.distal

Jack.left_foot.normal
Jack.left_foot.heel
Jack.right_toes.toetip
Jack.right_toes.distal
Jack.left_toes.distal
Jack.right_lower_leg.proximal
Jacksight_lower_legleft
Jack.right_lower_leg.right
Jack.right_lower_leg.distal
Jack.left_lower_leg.distal
Jack.right_upper_leg.front
Jack.right_upper_leg.right
Jack.right_upper_leg.poplit
Jack.right_upper_leg.distal
Jack.left_upper_leg.distal
Jack.upper_torso.proximal
Jack.upper_torso.left
Jack.upper_torso.lclav
Jack.bottom_head.right_eyeball
Jack.bottom_head.sight
Jack.bottom_head.left_eyeball
Jack.bottom_head.right
Jack.bottom_head.left
Jack.bottom_head.top
Jack.bottom_head.top_out

Jack.left_eyeball.base
Jack.right_eyeball.base
Jack.right_foot.right
Jack.right_foot.left
Jack.right_foot.normal
Jack.right_foot.heel
Jack.right_foot.new_heel
Jack.left_foot.toes
Jack.left_foot.proximal
Jack.left_foot.new_heel
Jack.right_toes.proximal
Jack.left_toes.toetip
Jack.left.toes.proximal
Jack.right_lower_leg.knee
Jacksight_lower_leg.front
Jacksight_lower_leg.back
Jack.left_lower_leg.proximal
Jack.right_upper_leg.left
Jack.right_upper_leg.proximal
Jack.right_upper_leg.back
Jack.right_upper_leg.poplit2
Jack.right_upper_leg.knee
Jack.left_upper_leg.proximal
Jack.upper_torso.distal
Jack.upper_torsosight
Jack.upper_torsosclav
Jack.bottom_head.eye_level
Jack.bottom_head.front
Jack.bottom_head.proximal
Jack.bottom_head.menton
Jack.bottom_head.bottom
Jack.bottom_head.top_side
Jack.bottom_head.eye_lvl_out
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Jack.bottom_head.back	 Jack.neck.di stal
Jack.neck.base_rt	 Jack.neck.back
Jack.neck.proximal	 Jack.neck.front
Jacksight_clavicle. lateral 	 Jack.right_clavicle.acromion
Jack.right_clavicle.top	 Jack.right_clavicle.shoulder_back
Jack.right_clavicle.proximal	 Jack. left_clavicle.acromi on
Jack.left_clavicle.lateral	 Jack. left_clavicle.proximal
Jack.right_upper_arm.distal 	 Jack.right_upper_arm.right
Jack.right_upper_arm.front 	 Jack.right_upper_arm.back
Jack.right_upper_arm.left 	 Jack.right_upper_arm.proximal0
Jack.right_upper_arm.proximal 	 Jacksight_upper_arm.deltoid

Jack.right_upper_arm.acromion 	 Jacksight_upper_arm.shoulder_level
Jack.right_upper_arm.shlder_lvl_out Jack.left_upper_arm.deltoid
Jack.left_upper_arm.proximal0 	 Jack.left_upper_arm.proximal
Jack.left_upper_arm.acromion	 Jack.left_upper_arm.distal
Jack.right_lower_arm.distal	 Jacksight_lower_arm.left
Jack.right_lower_arm.back 	 Jacksight_lower_armsight
Jack.right_lower_arm.front 	 Jack.right_lower_arm.proximal
Jack.right_lower_arm.elbow	 Jack.left_lower_arm.distal
Jack.left_lower_arm.proximal 	 Jack.t 1 .di stal
Jack.tl.cy2	 Jack.t 1 .proximal
Jack.t 1 .origin	 Jack.t2.distal
Jack.t2.front	 Jack.t2.proximal
Jack.t2.origin	 Jack.t2.back
Jack.t3.distal	 Jack.t3.origin
Jack.t3.proximal	 Jack.t4.front
Jack.t4.di stal	 Jack.t4.proximal
Jack.t4.origin	 Jack.t4.back
Jack.t4.interscye_left	 Jack.t4.interscye_right
Jack.t5.distal	 Jack.t5.origin
Jack.t5.proximal	 Jack.t6.di stal
Jack.t6.proximal	 Jack.t6.origin
Jack.t7.right	 Jack.t7.front
Jack.t7.distal	 Jack.t7.origin
Jack.t7.proximal	 Jack.t7.back

Jack.t7.left 	 Jack.t8.distal
Jack.t8.proximal	 Jack.t8.origin
Jack.t9.di stal 	 Jack.t9.proximal
Jack.t9.origin	 Jack.t10.distal
Jack.t10.proximal	 Jack.t10.origin
Jack.t10.back	 Jack.t 1 1.di stal
Jack.t 1 1 .proximal	 Jack.t 11.origin
Jack.t12.distal	 Jack.t 1 2.proximal
Jack.t12.origin	 Jack.11.distal
Jack.11.proximal	 Jack.12.distal
Jack.12.proximal	 Jack.13.distal
Jack.13.proximal	 Jack.14.distal



Jack.14.proximal
Jack.15.distal
Jack.15.left
Jack.15.right
Jack.lower_torso.distal
Jack.lower_torso.h_point
Jack.lower_torso.lhip_lateral
Jack.lower_torso.ldistal
Jack.lower_torso.left_side
Jack.lower_torso.crotch_level
Jack.lower_torso.proximal
Jack.lower_torsoright_hiphandle
Jack.lower_torso.seat
Jack. left_palm.thumb0
Jack. left_palm.base
Jack.left_palm.f33
Jack. left_palm.f44
Jack.right_palm.f33
Jack.right_palm.rightbird
Jack.right_palm.back
Jack.right_palm.f44
Jack.right_palm.left
Jack.right_palm.thumb0
Jack.right_palm.base
Jack. left_finger32.tip
Jack. left_finger31.tip
Jack. left_finger30.tip
Jack. left_finger22.tip
Jack. left_finger21.tip
Jack. left_finger20.tip
Jack.left_fingerl2.tip
Jack. left_finger11.tip
Jack.left_finger10.tip
Jack.left_finger02.tip
Jack.left_finger01.tip
Jack.left_finger00.tip
Jack.left_thumb2.tip
Jack.left_thumbl.tip
Jack.left_thumb0.tip
Jack.right_thumb2.tip
Jackright_thumbl.tip
Jack.right_thumb0.tip
Jack.right_finger32.tip
Jack.right_finger31.tip
Jack.right_finger30.tip
Jack.right_finger22.tip
Jackright_finger21.tip

Jack.15.front
Jack.15.proximal
Jack.15.back
Jacklower_torso.proximal0
Jack.lower_torso.center_of mass
Jack.lower_torso.front
Jack.lower_torso.rhip_lateral
Jack.lower_torso.rdistal
Jack.lower_torso.left_hiphandle
Jack.lower_torso.right_side
Jack.lower_torso.butt
Jack.lower_torso.sit_ext
Jack.lower_torso.floor
Jack.left_palm.palmcenter
Jack. left_palm.leftbird
Jack. left_palm.f22
Jack.left_palm.f 11
Jack.right_palm.f22
Jack.right_palm.palmcenter
Jack.right_palm.front
Jack.right_palm.f 11
Jack.right_palm.right
Jack.right_palm.real_base
Jack.left_finger32.base0
Jack.left_finger31.base0
Jack. left_finger30.base0
Jack.left_finger22.base0
Jack.left_finger21.base0
Jack.left_finger20.base0
Jack.left_finger12.base0
Jack. left_finger11.base0
Jack.left_finger10.base0
Jack.left_finger02.base0
Jack.left_finger01.base0
Jack. left_finger00.base0
Jack.left_thumb2.base0
Jack.left_thumbl.base0
Jack.left_thumb0.base0
Jack.right_thumb2.base0
Jack.right_thumbl.base0
Jack.right_thumb0.base0
Jackright_finger32.base0
Jack.right_finger31.base0
Jackright_finger30.base0
Jack.right_finger22.base0
Jack.right_finger21.base0
Jack.right_finger20.base0
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Jack.right_finger12.base0Jackright_finger11.base0

Jack.right_finger10.base0
Jackright_finger02.base0
Jack.right_finger01.base0
Jack.right_finger00.base0
Jack.hair.top

Jack.right_finger20.tip
Jack.right_fingerl 2.tip
Jackright_finger11.tip
Jack.right_finger10.tip
Jackright_finger02.tip
Jack.right_finger01.tip
Jackright_finger00.tip



B.2 Segments
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Jack.left_eyeball
Jack.left_foot
Jack.left_toes
Jack.left_lower_leg
Jack.left_upper_leg
Jack.upper_torso
Jack.neck
Jack.right_clavicle
Jack.right_upper_arm
Jackright_lower_arm
Jack.t2
Jack.t4
Jack.t6
Jack.t8
Jack.t10
Jack.t12
Jack.12
Jack.14
Jack.lower_torso
Jack.right_palm
Jack.left_finger31
Jack.left_finger22
Jack.left_finger20
Jack.left_fingerl 1
Jack.left_finger02
Jack.left_finger00
Jack.left_thumb 1
Jack.right_finger32
Jackright_finger30
Jackright_finger21
Jack.right_fingerl2
Jackright_fingerl 0
Jackright_finger01
Jack.right_thumb2
Jackright_thumb0
Jack.left_eyeball
Jack.left_foot
Jack.left_toes
Jack.left_lower_leg
Jack.left_upper_leg
Jack.upper_torso
Jack.neck
Jack.right_clavicle
Jack.right_upper_arm
Jack.right_lower_arm

Jack.right_eyeball
Jack.right_foot
Jack.right_toes
Jackright_lower_leg
Jack.right_upper_leg
Jack.bottom_head
Jack.left_clavicle
Jack.left_upper_arm
Jack.left_lower_arm
Jack.tl
Jack.t3
Jack.t5
Jack.t7
Jack.t9
Jack.tl 1
Jack.11
Jack.13
Jack.15
Jack.left_palm
Jack.left_finger32
Jack.left_finger30
Jack.left_finger21
Jack.left_fingerl 2
Jack.left_finger10
Jack.left_finger01
Jack.left_thumb2
Jack.left_thumb0
Jackright_finger31
Jack.right_finger22
Jackright_finger20
Jack.right_fingerl 1
Jackright_finger02
Jack.right_finger00
Jack.right_thumb 1
Jack.hair
Jack.right_eyeball
Jack.right_foot
Jack.right_toes
Jackright_lower_leg
Jack.right_upper_leg
Jack.bottom_head
Jack.left_clavicle
Jack.left_upper_arm
Jack.left_lower_arm
Jack.tl
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Jack.t2	 Jack.t3
Jack.t4	 Jack.t5
Jack.t6	 Jack.t7
Jack.t8	 Jack.t9
Jack.t10	 Jack.tl 1
Jack.t12	 Jack.11
Jack.12	 Jack.13
Jack.14	 Jack.15
Jack. lower_torso	 Jack.left_palm
Jack.right_palm	 Jack.left_finger32
Jack.left_finger31	 Jack. left_finger30
Jack.left_finger22	 Jack. left_finger21
Jack.left_finger20	 Jack.left_fingerl2
Jack.left_fingerll 	 Jack.left_finger10
Jack. left_finger02	 Jack.left_finger01
Jack.left_finger00	 Jack.left_thumb2
Jack.left_thumbl	 Jack. left_thumb0
Jack.right_finger32	 Jackright_finger31
Jackright_finger30	 Jack.right_finger22
Jackright_finger21	 Jackright_finger20
Jack.right_finger12	 Jack.right_fingerl 1
Jackright_finger10	 Jack.right_finger02
Jack.right_finger01	 Jack.right_finger00
Jack.right_thumb2	 Jack.right_thumb 1
Jack.right_thumb0	 Jack.hair



B.3 Joints
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Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack
Jack

.rthumb2

.rpinfinger31

.rringfinger22

.rmidfingerl2

.rinfinger02

.right_finger00

.right_finger20

.right_toes

.right_ankle

.right_knee

.right_hip

.altanto_occipital

.spinet2t1

.spinet4t3

.spinet6t5

.spinet8t7

.spinetllt10

.spinellt12

.spine1312

.spine1514

.solar plexus

.right_shoulder

.right_wrist

.left wrist

.left_shoulder

.lthumb2

.lpinfinger31

.lringfinger22

.lmidfingerl2

.linfinger02

.left_finger00

.left_finger20

Jack.rthumb 1
Jack.rthumb0
Jack.rpinfinger32
Jack.rringfinger21
Jack.rmidfingerl 1
Jackrinfinger01
Jackright_fingerl 0
Jackright_finger30
Jack.left_toes
Jack.left_ankle
Jack.left_knee
Jack.left_hip
Jack.base_of neck
Jack.spinet3t2
Jack.spinet5t4
Jack.spinet7t6
Jack.spinet9t8
Jack.spinetl2t11
Jack.spinel211
Jack.spinel413
Jack.waist
Jack.right_clavicle_j oint
Jack.right_elbow
Jack.left_elbow
Jack.left_clavicle_joint
Jack.lthumb 1
Jack.lthumb0
Jack.lpinfinger32
Jack.lringfinger21
Jack.lmidfingerl 1
Jack.linfinger01
Jack.left_finger10
Jack.left_finger30



APPENDIX C

JACKSCRIPT FUNCTIONS

The following JackScipt functions were integral in the generation sign representations in

the translator program. This appendix provides a full description of each of these

functions.

Reach(self, side, goal, jfrom='shoulder', endeff='palm', reach_duration=0,
poweight=0.3, ptype='point_to_point', otype='align_frame', duration=0, start=1,
style=EaseInEaseOut)
An arm motion that reaches a goal and holds to it.

side 	 "left" or "right"
goal 	 the goal object or location. If this is an object, and it moves in parallel

to this motion, the arm will follow

jform 	 "shoulder" (the default) or "waist". The starting joint for the reach

endeff 	 the end-effector: "palm" (the default), "forearm" or a Site, which must
be on an object attached to the human's hand. In the first two cases,
the effector is the hand's "palmcenter" Site. In the case of "forearm",
the wrist joint doesn't take part in the motion

reach_duration the duration of the "reach" part of the motion, i.e., the part where the
end-effector is moving progressively closer to the goal. If 0 (the
default), the reach duration will be set to half the total duration

poweight

ptype

otype

duration

start

style

position/orientation weight
default = 1.0 (100% position)

positional type. allowed types are: "none", "point_to_point",
"point_to_line", "point_to_plane", "limit_spring", "rest_angle"
default = "point_to_point"

orientation type. default = "none"

the length of motion, in seconds

if true, the created motion will immediately begin to execute.
Otherwise, the motion object won't execute until it's explicitly started
with the Start() method
one of the keywords "Constant", "Accelerate", "Decelerate" or
"EaseInEaseOut", describing the motion's velocity profile
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name

anchor

duration

start

Pose(self, name, anchor=None, use='both', *args, **kws)

Posture the body (motion).
Return a Motion object that postures the body.Example:
human. Pose (name= " stand_working" , anchor=human. right_foot . distal)
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use

style

the posture's name (a string). If filename is specified, the name is ignored

a Site on the posed Figure. This site's location will be kept constant as the
posture changes. For example, when a human's posture changes from
standing to sitting, we would most likely want the foot to be the anchor
(Default: the figure's root; for Humans, "right_toes.toetip")

one of "both" (default), "trans" or "xyz". Specifies which parts of the
anchor's location matrix are maintained. For example, if the foot is not flat
and the toes are used as anchor, the figure could end up tilted. In this case,
it may make sense to have "use='trans", i.e., use only translational part.
the length of motion, in seconds

if true, the created motion will immediately begin to execute. Otherwise,
the motion object won't execute until it's explicitly started with the Start()
method

one of the keywords "Constant", "Accelerate", "Decelerate" or
"EaseInEaseOut", describing the motion's velocity profile

HandShapeMotion(human, handshape, side, duration, start, style)

human 	 a human model

handshape a handshape to be interpolated

side 	 "right", "left" or "both", denting which hand or hands will be affected by
the motion



DoInOrder(*args, **kws)

Execute actions sequentially.
For example, DolnOrder (al , a2 , a3 )

start 	 if 0, don't start the actions, just declare.

DoTogether(*args, **kws)

Execute actions in parallel.
For example, DoTogether (al , a2 , a3 )
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start 	 if 0, don't start the action
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