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ABSTRACT

VIBRATION-INDUCED DENSIFICATION OF GRANULAR MATERIALS

by
Ninghua Zhang

Physical experiments as well as discrete element simulations of vibration are carried out.

The use of different amplitudes and frequencies are applied in the experiments to

facilitate the observation of densification trends with mono-disperse acrylic spheres and

multi-disperse polyethylene pellets. For mono-disperse acrylic spheres, four densification

trends are found at different vibration conditions, and attaining the "maximum density" is

closely related to the combination of vibration frequency and amplitude, in agreement

with experiments in the literature. For multi-disperse polyethylene pellets, there is a

substantial increase in solids fraction due to the effects of particle shape and surface

friction. Computer simulations applying the discrete element method are then used to

investigate the influence of material properties, container geometry and vibration

amplitude and frequency on the vibration process. The instantaneous dynamic states have

been deeply investigated. The results obtained are in agreement with the experiments of

Thomas et al. and consistent with theoretical predictions of Richman et al. at the high

relative accelerations. At low relative accelerations, the initial structure of the poured

particle bed strongly affects the dynamic behavior. From the analysis of the relaxed states,

four densification trends have also been found, and the relationship between the

instantaneous dynamic states and final relaxed states is established. Several possible

densification mechanisms have been discussed, which is substantiated by evolution of the

solids fraction.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The behavior of vibrating granular beds has been of great interest to industries which

process granular materials, such as plastics, powder metals, ceramics, food and

pharmaceuticals. From daily observations to extended scientific research, vibrations

applied to granular assemblies can produce two dramatically different effects: either the

bed densifies or it becomes fluidized.

Densification of bulk solids by vibration, known as vibratory compaction, is

extensively used in industry. These techniques involve the supply of energy to the bed of

particles at a selected frequency and amplitude for some time period, but for different

materials, how to determine the most suitable parameters (such as vibration frequency

and amplitude) to attain a "maximum density" is still an open problem. The complication

lies on the fact that many factors (i.e. resilience, friction, particle sharp & size, material

density, geometry of container and the initial state before vibration) affect the behavior.

Much effort has been made in the past to attain the densest packing [1, 2, 3, 4, 5, 6, 7].

Due to the difficulties of obtaining data on individual particle motions and local property

in a particle bed, these experimental studies were focused on the phenomenology to

explain the observed behavior. Recently, there have been experiments, modeling and

simulations on the behavior of bulk solids subject to tapping [9, 10, 11, 12].

Fluidization of granular beds by vibration has been another challenging area of

study. A granular bed can be fluidized and different kinds of complicated phenomena are

1
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generated under external vibration. These phenomena include heaping [13, 14, 15],

pattern formation [16], convection [17, 18], size segregation [19, 20, 21, 22], surface

wave [13, 23, 24, 25, 27] and arching [13, 16, 23, 26, 27].

The manner in which particles pack or self-arrange in a containment vessel is also

an important area related to the subject of this dissertation, since both densification and

fluidization depend on the microstructure for low energy vibrations. Numerous

investigations on the packing of spheres can be found in the literature, including

experiments [7, 29, 30] and computer simulations [31 — 36, 81 — 86].

1.2 Literature Survey

1.2.1 Sphere Packing

Randomly packed beds are extensively used in many industries (such as granular

materials, plastics, powder metals, ceramics, food and pharmaceuticals). Furthermore,

packed beds of spheres also serve as a model for other more general porous system. As

early as 1944, Oman and Watson [28] coined the terms "random dense" and "random

loose" to describe the two limiting cases of random, uniform sphere packing. In 1960,

Scott [29] carried out a number of different experiments with 3mm steel ball bearing to

study dense and loose random packing. He poured the steel spheres into cylindrical

containers followed by 2 minutes of shaking to obtain a dense random packing. He

plotted solids fraction p against 1/U (where N is the number of spheres), and then

extrapolated the curve to large N. He found two distinct values of the solids fraction,

namely ρloose = 0.59 before vibrations, and nρdense = 0.63 after vibrations. In 1969, Scott

and Kilgour [7] investigated randomly packed hard spheres by improving on the older
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studies. Both random 'loose' and random close-packed densities were reported for 1/8"

plexi-glass, nylon and steel balls in air, and also with steel balls immersed in oil. A series

of measurements for the random close-packed density was made using up to 80,000 steel

balls with the aid of a mechanical vibrator. From the analysis of the experimental data,

the solids fraction for a random close packing was found to be 0.6366 ± 0.0005.

In 1960, Macrae [30] carried out a series of experiments to investigate the

significance of material properties in the packing of spherical particles consisting of steel,

glass, lead shot, bronze and polystyrene. Two filling methods were employed to generate

the particle beds, i.e. either via cascading or by dropping the entire particle mass. The

intensity of deposition, height of drop and elasticity of the materials were shown to be

important parameters affecting the bulk density. As a function of the drop height, there

was an increase in solids fraction curve up to a drop height beyond which the curve

flattened out. Although this was the general trend, there were quantitative differences in

the curves depending on the sphere materials being used. The results obtained by varying

deposition intensity were also a function of the sphere material properties. Except for the

lead shot, there was a critical range of deposition intensity that produced the closest

packing at the prevailing height of drop.

Since the 1960's, various computer simulation algorithms have been employed to

study the packing of particles [31-36]. These algorithms generally involve various

assumptions about particle motion and/or stability criteria, which stem largely from

geometrical considerations by ignoring dynamic effects during the process. Realistic

dynamics have been reproduced with the Discrete Element Method [37]. This technique

involves the solution of the equations of motion that govern systems of interacting,
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dissipative particles. Yen and Chaki [38] carried out a DEM study of the packing of fine

particles that had only translational degrees of freedom, i.e., their contact model did not

include a mechanism for particle rotations. A detailed DEM study of the variable

affecting the packing structure of spheres characterized by the solids fraction,

coordination number and radial distribution function was report by Zhang et al. [39].

They were able to demonstrate that the bulk density increases with drop height and

restitution coefficient, and decreases with deposition intensity and friction coefficient, in

qualitative agreement with the experimental results of Macrae [30].

Table 1.1 lists selected results from experiments and simulations in the literature.

Table 1.1 Summary of Selected Literature on Uniform Sphere Packing

ρloose ρdense System Reference

0.608 0.6366±0.005 Steel spheres in cylinder Scott & Kilgour [7]

0.605 Glass spheres in cylinder Scott [29]

0.596 Steel spheres in cylinder Macrae & Gray [30]

0.599 0.644 Glass spheres in cylinder Macrae & Gray [30]

0.607 0.62 Lead spheres in cylinder Macrae & Gray [30]

0.59 Computer Simulation Tory, Cochrane & Waddell [31]

0.6099 0.6472 Statistical Model Gotoh & Finney [32]

0.61 Computer Simulation Bennett [33]

0.634 Computer Simulation Mason [34]

0.6366 Computer Simulation Jodrey & Tory [35]

0.582 Computer Simulation Tulluri [81]

0.628 Computer Simulation Adams & Matheson [82]

0.606 Computer Simulation Matheson [83]

0.582 Computer Simulation Visscher & Bolsterli [84]

0.59 ± 0.01 Computer Simulation Powell [85]

0.58 ± 0.05 Computer Simulation Rodriguez, Allibert & Chaix [86]
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1.2.2 Vibration-induced Fluidization

Evesque et al. [14] carried out experiments on sand piles subjected to vibrations. From

observations, they found that fluidization began at the surface, which appeared to be at

odds with the predictions of some analytical models. [40, 49, 50, 51]. In 1989, Thomas et

al. [41] conducted experiments on sinusoidal vibrating shallow granular beds that had

static depths ranging from 24 μm to 30mm. The vibration frequency was 25 Hz and

amplitude was a few millimeters. Glass beads with different sizes and FCC powders were

used. In a thin, rectangular vessel with transparent walls, they measured the critical

values of vibrational intensity Fcr  aω^2/g g , at which shallow beds became "mobilized".

Their results indicated that Fcr was very sensitive to the particle size, cohesiveness and

initial packing state of the beds. For fine and aeratable particles, Гcr was significantly

larger in a densely packed bed than in a loosely packed bed. During the experiments, four

vibration-induced dynamic states were distinguished by the degree of fluidization as the

bed depth increased. The reported that bed depth, particle properties (including restitution

coefficient) were the primary factors affecting transitions from one state to another.

In 1995, Lan and Rosato [42] reported on the results of their three-dimensional

DEM simulations to investigate macroscopic behavior of spherical particles that were

agitated through the sinusoidal motion of the floor of the computational cell. The

particles were smooth (i.e., frictionless) so that transfer of tangential momentum did not

produce rotations. This was done in order to facilitate comparison with kinetic theory

predictions of predications of Richman and Martin [40], and with the experimental

measurements of Hunt et al. [43]. In the higher acceleration regions, the computed depth

profiles of granular temperature and solid fraction were in good agreement with the
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kinetic theory predictions, while for lower accelerations, the simulation results were

quantitatively consistent with the experimental data of Hunt et al. In addition, the

simulations captured the observations of Evesque [14], that at lower acceleration values,

most of the bulk mass is near the bottom, while fluidization occurs at the surface. In a

subsequent study [44], Lan and Rosato examined the critical factors required for the

production of bulk convection during vibration.

In 1997, Vanel et al. [45] carried out experiments to measure the rise time T of a

single large sphere (or intruder) within a sinusoidally vibrated bed. At a fixed

acceleration F, the authors identified three distinct behavioral regimes from visual

observations and from the trends of the log of the dimensionless rise time •f against

frequency f. The first regime was characterized by visible surface heaping and an

exponential scaling of •f with f. Here, the intruder was carried to the bed's surface by a

strong convective flow that manifested itself by surface avalanches. In the second regime,

this appeared for frequencies beyond 15 Hz and smaller than approximately 40 Hz, the

surface heaping was not apparent. •f varied slowly with f near 15 Hz, but this product

increased more rapidly at higher frequencies. In the last regime, for which the amplitude

was only a fraction of the particle diameter a/d 0.25, the bed became very rigid and

tightly packed. Here, a size dependent rise of the large intruder was seen.

In 1998, Hsiau and Pan [46] carried out a series of experiments with three types of

glass beads to investigate vibration-induced states. The experiments were performed in a

rectangular container (239 cm high x 1.9 cm deep) and the motion of the bed of the bed

was recorded digitally via an image processing system. A displacement amplitude of 5

mm was used with relative accelerations 0 < F < 7. Approximately 8% of the particles
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were dyed black to serve as tracers. They found that the granular layers in a vertical

shaker exhibited several types of motion: heaping, coherent, expansion, waves and

arching. The wave and arching states were not observed for the very spherical, smooth

particles, a finding that was previously reported by Hunt et al. [43].

Yang and Hsiau [47] employed the discrete element method to study convection

cells in a two-dimensional vibrated granular bed consisting of glass spheres. The flow

patterns and velocity vectors were consistent with 1998 experimental results of the

second author. A power law relationship between the mass flow rate J and the

dimensionless vibration velocity Vb was reported such that J ∞vb^2.3 when the amplitude

was constant, and J cc Vb^-0.4 when the acceleration was fixed.

Theoretical approaches to the study of granular flows began only within the last

25 years. Ogawa [48] introduced the term "granular temperature" to quantify the dynamic

behavior of particle beds in analogy with the behavior of dense gases. This concept was

used by Savage and Jeffrey [49], Lun et al. [50] and Jenkins and Richman [51] to develop

relatively successful kinetic-theory based models for energetic granular flow, by

incorporating energy dissipation due to inelastic collisions. Jenkins and Richman [51]

made use of the kinetic theory of dense gases to determine the rate at which momentum

and energy were transferred between flow particles and the boundary. Richman and

Martin [40] extended the previous model [51] to develop the first theoretical predictions

of the solid fraction and granular temperature profiles in a top-open granular bed with a

bumpy floor. Their model demonstrated a greater thermalization of the particles adjacent

to the vibrating floor, and an expansion of the initial depth of the bed as a consequence of

increasing the boundary fluctuation velocity. Granular temperature increased
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monotonically from the top to bottom, while the solids fraction reached its maximum at

an intermediate level.

1.2.3 Vibration-Induced Densification

As previously noted in Section 1.2.1, Scott & Kilgour [7, 29] used vertical vibrations to

disrupt particle beds so as to produce a random close packing. They did not report the

values of the vibration parameters that were used. In 1967, D'Appolonia [5] carried out

similar vibration tests on air-dry sand using a mechanical vibrator that was able to

produce unidirectional harmonic motion. The frequency w range was 10 to 60 cps with

amplitudes a up to 0.01". Sand was placed in a cylindrical mold (4" in diameter and 3.5"

high) that was vibrated until the sand volume remained constant over the last 20 minutes

of the test. The change in volume of the sample was measured with a depth micrometer.

A density-acceleration plot was used to show the effect of dimensionless

acceleration F, from which it was found that the largest density occurred at F = 2, and the

density increase was minimal when F < 1. Additionally, they reported that dry sand with

zero-surcharge required less time to reach the maximum density under the vibration

for F =1.5 . What was unclear in the experiment was their observation that an increase in

acceleration produced a decrease in compacted density.

In 1995, Knight et al. [9] carried out a systematic experimental investigation of

the evolution of bulk density in a tapped granular material using a noninvasive, capacitive

technique. Their apparatus consisted of mono-disperse, 2mm-diameter spherical soda-

lime glass beads confined to a 1.88cm diameter Pyrex tube, which was mounted

vertically on a Bruel and Kjaer 4808 vibration exciter. Four parallel plate capacitors were
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arranged along the tube's length to measure the bulk density (or equivalently solids

fraction) at four depth sections. The bed was prepared in a low-density initial state by

flowing high pressure, dry nitrogen gas through the tube from the bottom. The initial

height of the beads before tapping was 87cm, corresponding to an initial column packing

density of 0.577 ± 0.005. Smooth tube walls and the low static friction reduced the

occurrence of convection. A 30Hz sine wave was fed to the exciter, producing a single

shake, or "tap" followed by a one-second-relaxation period. They found the evolution of

solids fraction against the number of taps depended not only relative acceleration but also

number of taps. At = 1.4, significant relaxation was clearly observed at the base of the

column, but only after an extended tapping time. However at F = 1.8, the behavior

changed radically as the density began to immediately increase immediately, a trend that

continued until t = 200, at which time, the rate of increase was dramatically reduced. At

values of r greater than 2.7, the data appeared to collapse onto a single curve. Near the

top of the bed, a sharp transition in densification behavior was noted between F = 1.4 and

F = 1.8, similar to what was seen at the bottom of the tube. However, the difference in

density between the F = 1.8 and r = 2.3 data were minimal. The data strongly suggested

that the evolution of density versus the number of taps was depth dependent. Another

discovery was that a steady state density was not attained for accelerations greater than r

> 2.7 up to t = 10,000.

The authors proposed a four-parameter phenomenological model to fit their

experimental data, i.e,
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Here, ρ∞ is the steady-state density (which is dependent on the acceleration history), r is

a relaxation time, and B is a constant that is also dependent on F. The relationship

between the relative acceleration and packing density is contained in the parameter B,

although a model for this was not specified. It is noted that this model was explained by

Linz [24] who carried out an asymptotic analysis on the stroboscopic decay law (derived

from his physical model of the compaction process) for the inverse

In 1998, Nowak et al. [11] extended the experiments of Knight et al. by

investigating the frequency dependence and amplitude of density fluctuations as a

function of vibration intensity F . They found at certain intensities and after long periods

of vibration, the system attained a steady-state density having a well-defined average

with large fluctuations. The magnitude of the fluctuations depended on the depth at which

measurements were made as well as the vibration intensity (that is, an increase in F

resulted in larger fluctuations about the mean density). In addition, they reported a rather

large value of solids fraction p = 0.656 in comparison to other experiments in the

literature [7, 29-35]. It is likely that this discrepancy was a consequence of the influence

of the walls as the aspect ratio (particle to cylinder diameter) dID 9.4 was small.

In 1991, Baker and Mehta [52] used Monte Carlo simulations to investigate the

structure and "dynamics" of frictionless, mono-disperse spheres subject to vibration. The

continuous evolution of particle positions and velocities that occurs during a physical

process is replaced by a time-ordered, discrete set of static configurations. Their study

focused principally on how shaking intensity affected solids fraction and the steady-state
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mean coordination number. Emphasis was placed on the role of cooperative structures

within the shaken assembly, such as bridges and "holes". Their results suggested the

existence of a critical acceleration I', below which the solids fraction would increase with

time, and when Г > Гc, the solids fraction decreased with "time".

Rosato and Yacoub [53] carried out discrete element simulation to model the

densification process experienced by a bed of frictional, inelastic spheres of diameter d in

a rectangular vessel whose floor is subject to high frequency f and low amplitude a/d <

0.1 sinusoidal oscillations in 1999. They selected two values of relative acceleration (i.e.,

1.02 and 6.4) corresponding to aid = 0.1 and f = 20 and 50Hz respectively to assess their

influence on the coordination number and solid fraction of spheres. They found that at F

= 6.4, the evolution of the coordination number distribution proceeded at a faster rate

than what occurred when F = 1.02. Also evaluated was the evolution of the mean solids

fraction, whose value was computed as a space-time average taken within the central

region of the bed over five second time intervals. Good fits of the data to both the

phenomenological model of Nowak et al. (equation (1.1) above) and the exponential

decay model of Takahashi and Suzuki [54] were found. The simulations also showed that

at F = 6.4, very little difference in solids fraction between the center and top of the bed

existed, while at F = 1.02, the solids fraction was larger near the center of the bed. This

behavior is in qualitative agreement with the reported experiments [9] in which density

decreases toward the surface at F < 1.8, while greater homogeneity is achieved at higher

accelerations.
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1.3 Objectives

A survey of the literature reveals that physical experiments, computer simulations and

theoretical approaches have been extensively used to investigate the random packing of

particles, vibration-induced fluidization and densification. However, the phenomenon of

densification under continuous vibrations appears to have received relatively little

attention. This dissertation presents an experimental investigation coupled with

analogous discrete element simulations in an effort to understand the conditions favorable

to the occurrence of densification. A large parameter space is taken into account,

consisting of particle properties, containment geometry, initial poured states, and a wide

range of vibratory amplitudes and frequencies.

Several important insights have been gained from the results of this work, that is,

• identification of the factors that control the pouring process,

• a quantification of the system's dynamic steady state,

• recognition of factors to predict the final relaxed solids fraction, and

• the relationship between the dynamic and final relaxed states.

1.4 Outline of Dissertation

Chapter 1 presents a concise overview of some of the relevant literature on the packing of

particles, vibration-induced fluidization and densification, followed by the motivation

and specific objectives and structure of the investigation. Chapter 2 describes the

experimental results obtained for mono-disperse acrylic spheres and polyethylene pellets,

which provide a backdrop for the computer simulations. Chapter 3 provides an overview

the discrete element method, the algorithm and hard sphere and soft sphere models.
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Details of the simulation code, including the integration method, force models, and

definitions of various computed physical quantities are given in Chapter 4. Chapter 5

consists of the results from the simulation of pouring process with different two normal

force contact models, and the results are compared with those from other experiments and

simulations [7, 30, 55]. Chapter 6 shows the effects of various parameters on the dynamic

steady state of the system before the final relaxation process. Here results are

qualitatively compared with the experiments of Thomas et al. [41]. In Chapter 7,

densification results are discussed, comparisons are made with specific physical

experiments [5], and a relationship between dynamic and relaxed state is established. In

addition, the evolution of overall or bulk solids fraction is reported that includes an

examination of the particle structure that develops against the solid wall, and

comparisons with the work of others. Lastly, the summary and conclusions are present in

Chapter 8, and some suggestions for future research are given.



CHAPTER 2

PHYSICAL EXPERIMENT

Densification of bulk solids by vibration often occurs in industrial solids handling

systems, and for different materials at different vibration conditions, the densification

processes can be very different. In this chapter, two series of physical experiments using

acrylic spheres and polyethylene pellets are carried out to highlight the difference.

Additionally, the results from these experiments supply physical data that can be used for

comparison purposes with the computer simulations that are discussed in subsequent

chapters.

Before imposing vibration on the granular bed, an initial poured particle bed is

needed. In order to minimize the effects of the initial configuration, the pouring process

should be carried out so as to produce as best as possible almost same initial state for

each trial.

2.1 Experimental Equipment

The experimental system consists of a fixed acrylic cylinder, several acrylic rings and a

piston mounted onto a Bruel & Kjar shaking head. Figure 2.1 diagrams the apparatus,

whose components are as follows:

1) Bruel and Kjar Vibration Exciter Control Type 1050

2) Bruel and Kjar Power Amplifier Type 2707

3) Bruel and Kjar Vibration Exciter type 4801/Vibration Head Type 4812

4) Accelerometer

14



5) Kistler Dual Mode Amplifier Type 5010

6) Acrylic cylinder

7) Fixing Plate

8) Exciter plate

9) Electrical Balance Type XP-1500

10) Acrylic particles with different diameters.

11) Polyethylene pellets with different shapes and friction coefficient.

12) Colorful sand with different diameters.

15

Figure 2.1 Schematic drawing of vibration assembly.

An accelerometer mounted to the shaking platform provides feedback so that

precise control over the excitation amplitude and frequency is obtained. The displacement

of the piston is sinusoidal in nature.
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2.2 Particle Pouring Experiment

The objective of first stage of the experiment is to obtain an initial poured particle bed of

acrylic spheres. Multiple trials were conducted on uniform systems over a number of

different particle diameters. The procedures for this part of the experiment is as follows:

Figure 2.2 Pouring procedures.

• Insert five rings (ID2.5", OD2.75", h = 0.75") in a larger tube (ID2.75", OD3.00",
h = 5.5") and use a plug as a bottom. The top of rings should be lower than the top
of tube.

• Weigh the rings, plug and tubing separately.

• Insert a tube with same ID and OD as that of the rings from the top, and then pour
particles with certain diameter into the container until the particles reach the top
of bigger tubing (see Figure 2.2 (a)).

• Use a tube with same ID and OD as those of rings; slowly push the particles bed
and rings from the bottom until the top surface of rings meets with that of the big
tube (see Figure 2.2 (b)).

• Quickly remove the top tube to make a flat surface.

• Weigh the total assembly (including particles).

• Calculate the weight of particles.

• Repeat the experiment for 20 times.

• Determine the average weight of particles.
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• Calculate the overall solids fraction and its deviation.

• Change the size of particles and repeat the experiments.

In the pouring experiments, five different sphere diameters (d) are used. Denoting

D as the cylinder inner diameter, the aspect ratio is given by D/d.

Aspect Ratio D/d

Figure 2.3 Solids fraction versus aspect ratio D/d for the pouring
experiment. The vertical bars represent the spread of the data over
20 trials and the solid curve is included to show the overall trend.

From Figure 2.3, it is clear that with the increase of the aspect ratio, the poured

solids fraction increases. The reason for this is that near the container wall, there are more

voids, which affect the overall poured solids fraction. From the error bars, it is clear that

the use of 1/8" acrylic spheres gives the most stable initial poured state because the error

bar is the smallest. Thus the 1/8" spheres are chosen for the vibration experiments.
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2.3 Vibration Experiment using 1/8" Acrylic Spheres

After producing the initial poured particle bed, vibrations are imposed to this system

under different conditions by selecting various amplitudes and frequencies.

The cylinder is filled with mono-disperse acrylic spheres of diameter d = 1/8".

The initial undisturbed bed depth is H = 3.75", and the bed aspect ratio is HIDcy = 1.5. A

sinusoidal signal is used to vibrate the piston over a range of amplitudes 0.04 5_ a/d 0.24

and frequencies between 25Hz-100Hz, corresponding to relative accelerations F

between 0.94 and 11.54. The vibration time is 10 minutes. In order to reduce the buildup

of static charge, the inside tube wall and particles are treated with a household anti-static

agent. In summary, the following procedures are followed.

• Obtain the initial poured bed.

• Attach the particle bed to the vibrator, and then vibrate it at different frequencies
and amplitudes for 600s.

• Because of the difficulty of measuring the heights of the compacted particle bed,
remove the top ring to produce a flat surface, and then to calculate the overall
average solids fraction.

• Use the following equation to calculate the improvement of solids fraction:
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Improvement of Solids Fraction = 
P 

2 —
P

 1 x 100 (%) 	 (2.1)
P i

where  ρ1 is the poured solids fraction, p2 is the solids fraction after 10 minutes of

vibration and relaxation. The detailed experimental parameters are shown in the

Appendix, while the experimental results are summarized in Figures 5~11.

From Figure 2.5, it can be seen that when a/d = 0.04, the solids fraction increases

with the relative acceleration F, but the improvement is relatively slow. When F <= 1, the

total particle bed just moved with the floor and no relative movement could be observed,

including convection. However, when F was slowly increase beyond approximately 2,

motion of the particle at the surface was visible.

Figure 2.5 Solids fraction versus relative acceleration at aid = 0.04.
The solid line is a best fit curve to show the trend.
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When a/d is between 0.06 and 0.12 (Figures 2.6 to 2.9), the particle bed attains a

"maximum density" (p 0.636) when F is between 5 and 7, followed by an expansion

upon a further increase of F.

Figure 2.7 Solids fraction versus relative acceleration at aid = 0.08.
The solid line is a best fit curve to show the trend.



Figure 2.9 Solids fraction versus relative acceleration at aid = 0.12.
The solid line is a best fit curve to show the trend.
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Here, convection was clearly noticed near the boundary and this motion became

stronger as F was increased. This result suggests that densification dominates at small F ,

and after reaching a peak, convection effects begin to appear which reduces the bulk

solids fraction.

Figure 2.11 Structure seen from sidewall. Figure 2.12 Structure seen from top.

At the point when the system has reached its "maximum density", a tightly

packed particle structure (depicted in Figure 2.11) adjacent to the cylinder wall was

formed. The arrangement as seen from the top is sketched in the Figure 2.12. Careful

observations during the experiment seemed to indicate that the wall structure could be

destroyed if a strong bulk convection was present during the vibrations. It is conjectured
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that the rearrangement of particles adjacent to the cylinder walls that is promoted by

convection is an important contributor to achieving a substantial (about 5%)

improvement in bulk solids fraction in these experiments. However, it is clear that the

cylindrical geometry and aspect ratio (Did) are key factors that facilitated the easily

obtained maximum (between 0.63 and 0.64) in solids fraction. Along these lines, Nowak

et al [11] also pointed that compaction process in their experiments was affected by the

aspect ratio (Did = 9.4) that was used. In fact, they reported a bulk solids fraction of p =

0.656, which is substantially larger than the value associated with a random close packing

p = 0.6366 [7].

Figure 2.13 Solids fraction versus relative acceleration at aid = 0.16.
The solid line is a best fit curve to show the trend.
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When aid is 0.16 Figure 2.13 shows several oscillations of the solids fraction as a

function of the relative acceleration with some moderate improvement over the initial

poured state, in contrast to the behavior shown in Figures 2.6 — 2.9. It is noted that bulk

convection was visible during these experiments.

Figure 2.14 Solids fraction versus relative acceleration at aid = 0.24.
The solid line is a best fit curve to show the trend.

When a/d is 0.24 (Figure 2.14), the solids fraction remains almost constant. Very

energetic particle movement was noted, although bulk convection was not at all apparent.

At this amplitude, expansion of the bed depth occurred that is characteristic of a fluidized

granular system.

2.4 Vibration Experiment with Polyethylene Pellets

2.4.1 Materials' Description

Three kinds of materials are used, designated as #1, #2, and #3 for reference.

Material #1: polypropylene, >= 99%
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Appearance: 1/8" diameter pellets with irregular shapes; whitish color

Solid density: 0.88-0.92g/cm'

Material #2: 1-Hexene, polymer with ethane, >=99%

Appearance: 1/8" diameter pellets, like a cylinder, more regular than 1#

Solid density: 0.89-0.965g/cm^3

Material #3: 1-Hexene, polymer with ethane, >=99%

Appearance: 1/8" diameter pellets, like an oval, with very smooth surface

Solid density: 0.89-0.965g/cm^3

2.4.2 Experimental Procedures

The apparatus used here is depicted in Figure 2.2 (or Figure 2.4).

• Insert five rings (ID2.5", OD2.75", h = 0.75") into the large tube (ID2.75", OD3.00",
h = 5.5") and use a plug as a bottom. The top of the rings should be lower than that of
tube.

• Insert a tube with the same ID and OD as those of the rings from the top, and then
pour particles into the container until they reach the top of the large tube. Then using
a tube with same ID and OD as those of the rings, slowly push the particle bed and
rings from the bottom until the top surface of the rings meets with that of large tube.

• Quickly remove the top tube to produce a flat surface.

• If the surface has been damaged (i.e., not flat in some places), add some particles to
make the surface as flat as possible.

• Vibrate the poured bed using various frequencies and amplitudes. After finishing the
vibration, measure the maximum, minimum and medium distances between the top of
the rings and the surface of the particle bed.

• Repeat the experiment for 3-4 times.

• Calculate the improvement of solids fraction using equation (2.1)
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2.4.3 Observations During the Experiment

The first interesting phenomenon is the transition of the top surface during the vibration.

The slope angle is introduced to describe this transition (see Figure 2.15). The relation

between slope angle and relative acceleration F at amplitudes a = 0.005", 0.01" and 0.02"

are displayed in Figures 2.16 — 2.18, respectively.

Figure 2.16 Relationship between relative acceleration F and surface slope
angle at amplitude a = 0.005".
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Figure 2.18 Relationship between relative acceleration and surface slope
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Because the inner surface of the rings is very smooth, convection between the

particles and inner surface is not observed. In addition, particle movement at the surface

of the particle beds occurs readily under the large relative acceleration (F≈2). When the

relative acceleration F is less than 1.5, the slope angles are all smaller than 3°, when the

relative acceleration F reaches about 2.5 — 3.0 (see Figures 2.16 — 2.18), the slope angle

reaches its repose angle, then slope angle decreases with the increase of relative

acceleration F.

2.4.4 Densification of Particle Beds

The results of improvement in bulk density versus relative acceleration F are presented in

Figures 2.19 — 2.22.

Figure 2.19 Relationship between relative acceleration and
improvement of solids fraction at a = 0.005".
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From the Figure 2.19, where amplitude a is equal to 0.005", materials #1 and #2

show a continuous improvement in solids fraction. However, for material #3, when F 3,

the solids fraction reaches its "maximum value", and then drops only very slightly with a

further increase in relative acceleration.

From the Figures 2.20 to 2.22, it can be seen that at the lower F values, the solids

fraction increases with the relative acceleration. Upon attaining their "densest" state, the

beds all experience a decrease in density with further increase in the relative acceleration.

It can also be seen that material #2 is more sensitive to the vibration in the sense that it

responds to the vibration more quickly. However, material #1 exhibits the greater

improvement in bulk solids fraction. An inspection of the data points for Material #3

indicates that it attains its largest solids fraction at a smaller acceleration value than the

other pellets.

Figure 2.20 Relationship between relative acceleration and
improvement of solids fraction at a = 0.01".



Figure 2.22 Relationship between relative acceleration and
improvement of solids fraction at a = 0.02".
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2.4.5 Analysis of the Experimental Results

The following reasons are believed to contribute to the phenomenon just described.

(1) Material #1 has the most irregular shape and thus the largest dynamic friction

coefficient. Hence, the material finds it difficult to respond to low relative acceleration

because not enough energy is supplied to destroy its initial structure. But when the energy

reaches a certain level, the particles may rotate and translate to a greater extent than the

other materials used in the experiments. In addition, the initial (poured) bulk density is

the smallest compared with the other materials. This may be why material #1 shows the

greatest improvement in the bulk solids fraction with acceleration compared with the

other materials.

(2) Material #2 appears to be the most sensitive to the vibration in that the curves

show the earliest response as compared with the other materials.

(3) Material #3 has the largest flow ability because of the rather ellipsoidal shape

of the particles. This feature is in line with the trends in Figures 2.20 to 2.22, i.e., that the

system attains its maximum solids fraction at lower relative accelerations compared with

the other materials. The data also indicates that the system first begins to respond to the

vibrations at higher acceleration values, or in other words, it requires greater kick to

initiate the process of particle rearrangement so that the solids fraction increases.

2.5 Observations and Results

For mono-disperse acrylic spheres d= 1/8":

1) The aspect ratio dID affects the poured solids fraction, with the increase of dID,

the solids fraction decreases because of the effect of the container wall.
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2) The displacement amplitude a influences densification behavior as a function of

acceleration. When aid is between 0.06 and 0.12, the particle bed attains a "maximum

density" for relative accelerations F between 5 and 7. When aid is 0.16 and 0.24, the

particle bed does not attain a "maximum density" within 600 seconds.

3) Depending on the selected vibration parameters, the occurrence of bulk

convection can either accelerate or hinder the densification process.

For multi-disperse polyethylene pellets:

1) Particle shape and friction coefficient have significant effects on densification

process and fluidization during the vibration.

2) Three different materials show different behaviors during vibration.

3) The beds of polyethylene pellets can attain a 9% improvement in solids fraction

which is significantly larger than the results for the spherical particles.



CHAPTER 3

DISCRETE ELEMENT METHOD REVIEW

3.1 Introduction

Computer simulations using discrete particles provide a means of directly accessing the

detailed dynamics of the system so that macroscopic quantities can be calculated. For

problems involving the flow of dry granular materials, these methods are extremely

important and useful in providing microscopic information that cannot be easily obtained

in physical experiments. Because constitutive relations needed for continuum modeling

of granular systems over the wide range of observe phenomena are scarce, particle

simulation methods serve to bridge the gap by providing a means of uncovering the

physical mechanisms governing a problem.

The discrete element method (DEM) has its origins within the physics community

involved with molecular dynamics modeling of liquids and gases [Alder, etc.]. The

method is based on the numerical solution of Newton's equations of motion for systems

of interacting particles. In contrast to real molecular systems in which collisions are

energy conservative, granular particles dissipate energy when they collide. Hence the

incorporate of mechanisms that produce dissipation is an inherent aspect of DEM

simulations.

The development of the method in the early 1970's is attributed to Cundall [37],

although it is really an outgrowth of molecular dynamics methods used by the physics

community. With advances in computing technology, applications of the DEM have seen

tremendous growth in investigations on a variety of important solids handling problems,

33
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such as segregation, mixing and agglomerate degradation [56, 57] and shear flows [58,

59]. In dry particle systems (i.e., those for which there is no fluid phase), solid-solid

interactions provide the means of transferring momentum and energy. Consequently, all

discrete element simulations feature contact detection algorithms together with contact

interaction models. Examples are the two-dimensional polygonal particles of Walton

[60] and Hopkins [61], and three-dimensional polyhedral particles of Ghaboussi and

Barbosa [62]. In general, DEM simulations can be categorized by the type of contact

model, either "hard" or "soft".

3.2 Hard Sphere Models

Hard sphere interactions can be defined as those in which collisions occur

instantaneously (without deformation of the impacting objects). Energy loss in is

achieved through restitution and friction coefficients which, in combination with the pre-

collisional particle velocities, yield post-collision velocities.

The basic algorithm of a rigid contact model is shown in Figure 3.1 and the

processes are as follows: after starting the simulation, the time at which the first collision

occurs is computed from the trajectories given by simple time functions. The positions

and velocities of all the particles are updated to that time. The collision is then carried

out, and the time for the next collision is found. Then, as before, particle positions and

velocities are updated to this next collision time, and the algorithm continues. Statistics

can be accumulated as the simulation proceeds and computations of average properties

carried out at selected times.



The simulation using this method is very efficient at low solid concentrations

where collisions are infrequent. The hard sphere model cannot be applied directly to

situations involving stagnant zones or where particles are in contact for long durations of

time. In such cases, modifications can be made to the algorithm when particles are in

close proximity.

3.3 Soft Sphere Model

In contrast to hard spheres where collisions are instantaneous, soft spheres go through

deformations during a collision so that the contact time is finite. Although binary (two-

body) interactions are considered, a particle can be in contact with several particles

simultaneously. The exact form of the contact duration depends on the particular collision

model being used, although it generally depends on contact stiffness. The interaction
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force is a function of a small, allowed overlap between the colliding particles as well as

the material properties.

At any time instant, a particle may be in contact with several others so that there

is a net force given by the vector sum of the binary or pair interactions. Thus, detailed

information about the net force experienced by each particle at discrete times is available.

The system is marched forward in time by numerical integration of the equations of

motion (i.e., Newton's laws for translation and rotation). The time step for this

integration is generally small and can range from 10 -4 to 10 -8 seconds, depending on the

particles being simulated. The simplified flowchart of Figure 3.2 depicts the framework

of the simulation procedure. A book keeping device that tracks contacts as they are

formed and broken is denoted as the "link-list". The frequency at which this list is

updated depends on the mean solids fraction of the flow.

Figure 3.2 Algorithm of soft sphere model.
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For dense systems, the use of soft spheres is more attractive since it is not

necessary to introduce any corrections to account for long duration contacts between

particles. From the perspective of computational intensity, soft sphere models are not

efficient for sparse (i.e., low solids fraction) systems where collisions are infrequent. This

is the case because particles trajectories are advanced through rather small times steps via

the numerical integration of the motion equations. Despite this drawback, soft sphere

models are used quite often because of their robustness in handling the gamut of quasi-

static to dynamic flow regimes, as well as a wide variety of different materials.



CHAPTER 4

3D DYNAMIC SIMULATION MODEL

4.1 General Structure

The numerical simulations presented in this dissertation employs soft spheres since this

method can incorporate elaborate collision interactions, as well as handle static

assemblies of particles. Minor modifications to an existing three-dimensional code

developed by Walton and Braun [8] are made for the purposes of this investigation. The

code itself consists of 16 subroutines that may be partitioned as follows. Note that routine

names are shown below in italics typeface.

A: Input and initialization of simulation parameters

Datain, Bound, Init, Findrad

B: Inter-particle force calculation

Force, Update

C: Intergrations

Initstep, Integ1, Integ2

D: Diagnostic calculations

Datasave

Subroutine Datain reads in the input file i3ds that contains information about the

total number of particles and their corresponding radii, the cell size, the maximum time,

the pouring time, the type of boundaries, the material properties and the vibration

parameters. The input file i3ds also contains the value for the "search distance" to be used

later in the calculation of the particles' link lists. Subroutine Bound creates the

38
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configuration for the cell boundaries based on the data read in from i3ds. This subroutine

can create cell boundaries in the x-z plane and/or in the y-x plane with periodic

boundaries in the x-direction. It can also create cylindrical boundaries. In the studies to be

presented here, only the floor of the cell is vibrated in the y-direction, i.e. the cell walls

remain stationary. Subroutine Init will randomly assign initial particle centers and

deviatoric velocities to all free (non-boundary) particles. The particle centers assigned are

always checked to ensure that boundary conditions are satisfied. The particle radii,

which initially have zero values, are expanded to their assigned values in subroutine

Findrad. After the expansion of the particle radii, a link list for each particle is created

and updated by subroutine Update. In each particle's link list, the information about all

the particles that lie within a surrounding "search distance" is stored. Any overlap

between particles is translated as interactive forces that are calculated in subroutine

Forces. The equations of motion are then integrated, using a Verlet leapfrog algorithm

[65], in subroutines Integ 1 and Integ2 using a time step that is computed in subroutine

Initstep. For the purpose of gathering statistics, short and long term average parameters

are initialized in subroutines Initcum1 and Initcum2, respectively. Subroutine Diagnos2 is

called to compute various quantities of interest, such a mean velocity as well as other

transport properties. The output data is then stored in labeled files specified by subroutine

Datasave.
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4.2 Collisional Force Model (Non-Cohesive)

In the soft sphere model, solid-solid interactions contain three basic features.

• a mechanism to calculate normal force at the contact point that pushes the particle

apart.

• a mechanism to provide energy dissipation during the collision.

• a mechanism to calculate tangential force that acts on the particle surfaces.

Figure 4.1 Partially latching-spring model.

The partial latching-spring model (Figure 4.1) was developed by Walton-Braun

[8, 63, 64] for an elastic-plastic material. They used a "latching spring" that loads with

one spring constant and unloads with another as a way of incorporating the energy

dissipation. It was found that this to be closer to results of elastic-plastic finite element

modeling of impact of spherical particles.

In this model, the loading resistance force is given by a linear spring, with the

spring constant denoted by K1 . A stiffer linear spring with constant K2 is used during the

unloading process. In the case where the restitution coefficient is independent of relative
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normal impact velocity, the relationship between e, K1, K2 can be shown [Lan's

During a collision, the normal force obeys,

where a is the relative approach (overlap) after initial contact, and ao is the value of

residual overlap where the unloading curve goes to zero. Further details can be found in

[8, 63, 64].

The tangential force model used here is incrementally slipping friction model also

developed by Walton and Braun [8, 63, 64]. The idea is that the tangential stiffness KT of

a contact (in the direction parallel to the friction force) decreases with tangential

displacement until it is zero, at which point full sliding occurs. The effective tangential

stiffness, KT is given by

where T is the total tangential force; u is the coefficient of friction; N is the total normal

force; y is a fixed parameter usually set to 1, and T* is the loading reversal value, which

is initially zero, and then subsequently set to the value of the total tangential force, T,

wherever the magnitude changes from increase to decrease, or vice versa. It is scaled in
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proportion to any change in the normal force from the previous time step. K0 is the initial

tangential stiffness assigned by the equation,

where 'r is the ratio of tangential and normal stiffness, a parameter that is normally less

than unity. The new tangential force T' (parallel to friction force) is given by the

expression

where As is the amount of relative surface displacement between the contact particles

during time step At.

Thus, in order to calculate the total tangential force acting between each pair of

particles, it needs to keep only two history dependent quantities, T and T* from one time

step to the next. The simulation model assumes that the displacements from one time step

to the next step are relatively small.

4.3 Numerical Method

The particle translational and rotational accelerations in y direction are calculated by

Newton's law,
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where the superscript n refers to the current time step; m i = 1/6*πd^3iρ is the mass of
6

particle i, where d, is the diameter of particle i, and p is the material density.
10

is the mass moment of inertia, while Fey and May are the inter-particle force and

momentum, respectfully, acting on the particle i. The new velocities and positions of N

particles are found by integrating the Eq. 4.6 via a leap-frog method [65] using a

backward Euler approximation at t = 0. For the translational motion (rotation equations

are analogous), the following equations can be obtained,

where Fi is the net force on the ith particle.

4.4 Time Step and Material Properties

The time step At used in this study is derived from the normal force model by considering

the time spent in the unloading period during a collision. The detailed derivation is given

by Y. Lan in his dissertation [66]. Thus,

where e is the restitution coefficient, m is mass of particle, K1 is spring stiffness for

loading, n is the desired (user-input) number of time steps for one contact (usually n

40), d is the diameter of sphere and p is the density of the material. Equation (4.8) shows
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that time step depends on the material properties e, d, p, Kl. In particular, it is clear that

K1 has close relationship with Δt. If the K1 is very large, the time step will be very small

and computation time will be very long. However, if K1 is very small, the particle will be

too soft, and thus the deformation or overlap can be greater than one to two percent of the

particle diameter, which is what occurs during the collision of real particles. The Hertzian

model can be used to estimate the value of the stiffness K 1 of the loading spring [66], i.e.

where an., υmax are the maximum overlap and impact velocity respectively between

two spheres during collision. In these expressions, v is the Poison's ratio, and E is

Young's modulus of the material.

By substituting Equation (4.9) into Equation (4.10), one finds that

In the study, the value of K 1 approximated from Equation (4.11) is generally

between 100,000 and 20,000,000 N/m 2 depending on different material properties used.
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4.5 Boundary Conditions

Experiments and theoretical studies have shown that boundary conditions greatly

influence the behaviors of particle beds [44, 66]. In this investigation, both the bottom

and sidewalls are chosen to be solid. The top surface is open and vibrations are supplied

from the floor (Figure 4.2).

Figure 4.2 Computational cells and boundary conditions.

The solid plane is modeled as a rigid sphere whose motion is unaffected by

collisions with the flow particles. The velocity of the floor v(y) is given by

v(y(t)) = vamp • cos(2 π • f • t)	 (4.12)

where vamp = 27y" * a, and f and a are the vibration frequency (Hz) and amplitude (m).
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4.6 Diagnostics and Data Analysis

The main thrust of this investigation is the densification process induced through

vibrations. In both the physical experiments and computer simulations, three procedures

take place (pouring, vibrating, and relaxing) that correspond to the states depicted in

Figure 4.3. The poured state is that obtained immediately after the particles have been

deposited and have come to rest in the vessel. The dynamic state refers to the condition of

the system while under vibration and in a steady state condition. Finally, the relaxed state

is what results after the external vibrations are terminated.

Figure 4.3 States corresponding to pouring, vibration and relaxation.

In order to describe or characterize these states, four quantities are computed,

namely, the solids fraction, improvement in solids fraction, granular temperature and

translational energy ratio.

4.6.1 Solids Fraction

Two spatial averaging methods are employed to compute the solids fraction. The bulk

solids fraction represents the mean value for the entire computational cell, while the local
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average provides information on the depth profile of the solids fraction. In order to

calculate local average solids fraction, the computational cell is partitioned into "zones"

or layers along its depth. The depth of each zone is generally equal to the diameter of the

sphere so t hat a particle may occupy up to two layers. An instantaneous zone diagnostic

is computed as a mass-weight average of all particles that occupy a zone at some time t.

Figure 4.4 Only shadow portions of particles contribute to the average .

In Figure 4.4, only the mass contained in the lower parts of particles 1 and 2, total

mass of particle 3 and the upper parts of particles 4 and 5 are included when the average

for zone y is calculated. So the instantaneous solids fraction of the layer at time t is given

4.6.2 Improvement in Solids Fraction

The poured state of the system can be affected by a number of factors, such as deposition

intensity, size of the vessel relative to the particle size, particle shape and material

properties. The question thus arises as to how one can compare the relaxed states of
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systems that have different initial or poured configurations. This can be done by

computing the improvement in solids fraction as a relative difference in solids fraction,

i.e.

If ISF < 0, the bulk solids fraction after vibrations are terminated is the same as it

was after particles were poured into the vessel.

4.6.3 Granular Temperature Td

In analogy to the definition of temperature in thermodynamics, the granular temperature

T described the kinetic energy of the granular mass due to fluctuating velocities. It is

commonly defined by,

where C(y,t) is the root-mean-square (rms) deviatoric velocity, whose y-zone mass-

weighted average at time t is calculated as,

Here, ml (t) is the mass fraction of particle i in zone y, v(y,t) is the velocity of particle i at

time t. The quantity u(y,t) is the instantaneous mean velocity in zone y, and computed as,
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Granular temperature is made non-dimensional by dividing it by the product "gd",

so that Td is computed as,

where g is the gravitational acceleration and d is the diameter of a particle.

4.6.4 Translational Energy Ratio R

Momentum is supplied to the flow particles through inelastic collisions with the floor,

and thus the entire system is activated. How the energy supplied by the moving floor is

partitioned into the bed particle influences the "phase" of the system. The translational

energy ratio R is defined as a ratio of kinetic energies. If it refers to the kinetic energy of

the vertical motion to the lateral motion, then R is computed as,

A large value of R as defined by equation (4.19) indicates on the average, that

particle bed's motion is primarily in the vertical direction. Note that because there is no

effective difference in the behavior of the particle assembly in the x and z directions, it is

sufficient to compute only the energy ratio defined by (4.19). In Section 6.1 (Chapter 6),

a categorization of the system's "local phase" as either "solid", "thermal" or "thermal-

solid" is described in terms of the R values. It is important to mention that R only

partially describes the partition of energy supplied by the floor since particles also rotate.



CHAPTER 5

POURING PROCESS OF UNIFORM-SPHERE BEDS
WITH SOLID SIDEWALLS

In this chapter, a detailed parameter study of the process by which a "poured" state is

obtained is presented. Because of the control on particle properties afforded by the

simulation, it is possible to obtain some clear insights.

Figure 5.1 Three steps and four states in vibration simulation.

The four steps in an individual vibration experiment are shown in Figure 5.1,

which depicts four states and three processing steps.

• Pouring process to attain a stable state (poured)

• Vibration for a period of time to obtain a dynamic state (dynamic)

• Relaxation to attain another stable state (relaxed)

The initial state (defined by the particle positions) is determined in the code via a

random number generator that distributes particles uniformly within the computational

cell so that solids fraction is homogeneous along the three coordinate directions.

50
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For the pouring process of mono-disperse spheres, the following aspects are

considered:

1) Effect of initial positions of particles

2) Effect of material properties

• Particle friction

• Restitution coefficient e

• Normal stiffness K 1

• Material Density v

3) Effect of aspect ratio d/L of container

4) Effect of wall friction ,u,

5) Effect of different pouring methods

6) Effect of size of particle system N

7) Comparison with experimental results of other researches

In order to compare with some experiment results using very soft spheres, such as

lead, a normal force model with variable restitution coefficients has been used in Section

5.8. The physical reason for the non-constant restitution coefficient in this case is based

on the fact that e is known [Goldsmith, etc.] to be a monotonically decreasing function of

normal relative impact velocity beyond a value that depends on the particle material

properties.

In the simulation, the material properties for acrylic spheres of diameter d = 1/4"

are chosen. All other parameters are kept constant, except for the particle friction

coefficient. The operating parameters are listed in Table 5.1.
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Table 5.1 Simulation Operating Parameters

Number of Particles N 605

Diameter of Particles (m) 0.00635

Density of Particles (kg/m 3) 1200

Normal Stiffness of Particles (N/m2) 2.8 x 10 6

Particle Friction Coefficient ,up 0.01 to 0.8

Wall Friction Coefficient , μw 0.01 — 0.8

Cell Dimension (L* W*H) in meter 0.06 x 0.06 x 0.2

Coefficient of Restitution (e) 0.9

5.1 Effect of Initial Positions of Particles

In the physical pouring experiment (see Chapter 2), 20 trials were completed for each

sphere diameter that was used. It was found there that the small fluctuations in the poured

solids fraction decreased with the aspect ratio (Lid) (see Figure 2.3). The simulation is

carried out to duplicate the same phenomena through the use of a random number

function capable of generating different sequences of numbers depending on the seed that

is used. For a specific aspect ratio, the code has been re-run 10 times, corresponding to 10

different sequences of random numbers to generate ten pre-poured (before gravity is

activated) systems. Upon completion of the pouring process, the mean solids fraction

and its fluctuation was calculated. This procedure was done for 4 different aspect ratios

with the data plotted in Figure 5.2.



From the Figure, it is clear that with the increase of aspect ratio (Lid), the average

poured solids fraction increases, and its fluctuation decreases — a trend that is in good

agreement with the results of the physical experiments (Figure 2.3).

5.2 Effects of Material Properties

As mentioned in Chapter 1, researchers used different materials to carry out experiments,

and it is known that different materials have different material properties. In this section,

an exploration of the influence of particle properties (friction coefficient, normal

restitution coefficient, loading stiffness and material density) on poured bulk density is

carried out. A description of the simulation case studies for each property follows.
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5.2.1 Effect of Particle Friction Coefficient pp

Figure 5.3 summarizes the results of the simulations in which particle friction coefficient

was varied, from perfectly smooth (1 = 0) to very rough (1 = 0.8), while the wall friction

coefficient (μw) was fixed at 0.30. As the trend in the figure indicates, particles that are

more frictional produce a less dense poured structure. The reason for this behavior is that

a high particle friction coefficient promotes the formation of large voids in the packing.

When the friction is smaller, the probability of the formation of arches between particles

becomes smaller, which results in a smaller void volume.

Figure 5.3 Relationship between poured solids fraction and
friction coefficient for N = 605, ,u,,,, = 0.3.
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5.2.2 Effect of Restitution Coefficient e

For the height of the computational cell used in this study, very little effect of restitution

coefficient on bulk solids fraction was found, as can be seen in Figure 5.4.

Figure 5.5 Effect of normal stiffness on poured solids fraction,
N = 605, μ=0.1, μw = 0.3.



56

5.2.3 Effect of Normal Stiffness K1

The loading stiffness K 1 of the particles was changed over a range of four orders of

magnitude. Figure 5.5 indicates that the mean solids fraction remained relatively

constant.

5.2.4 Effect of Material Density

From the Figure 5.6, it is noted that the poured solids fraction increases slightly with the

material density, albeit it is very small (less than 1%) for the height of the computational

cell.

From the above simulations, it is very clear that material density, normal stiffness

and restitution coefficient have only a minimal influence on the poured solids fraction.

However, particle friction appears to be the most important factor to affect the poured

bulk density.
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5.3 Effect of Aspect Ratio of Container L/d

In order to produce a variety of aspect ratios L/d, the dimensions of the computational

cell in the x and z directions was varied uniformly (see Figure 5.7) while the particle

diameter d and cell height (ycell) was kept constant. The initial solids fraction distribution

along the cell height was maintained by changing the number of particles used.

Figure 5.7 Section areas of the computational cell.

Figure 5.8a indicates the poured solids fraction is quite sensitive to the aspect

ratio, i.e., it increases with the dimensions of the base of the computational cell. So as the

cell becomes wider, the influence of the walls in arranging the particles to form greater

voidage begins to disappear. The trend of the data in Figure 5.8a is in good agreement

with that obtained in the physical experiments and shown in Figure 2.3. It is possible to

extrapolate the simulated curve to the limit of a container of infinite width (or base

dimensions) d/L→0, thereby finding what is often references as the "random loose"

packing density. The linear extrapolation, shown in Figure 5.8b, yields a value of 0.61,

which is in good agreement with the results of Scott [7] and Bennett [33].
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Figure 5.8b Solids fraction of random "loose" packing obtained via a
linear extrapolation of the simulation data.
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Figure 5.9 Cumulative solids fraction in the wide direction.

From the Figure 5.9, the width profiles of cumulative solids fraction indicate the

effect of side walls on the overall solids fraction.

Table 5.2 Cumulative Solids Fraction and Ratios

L/d=10 L/d=15 L/d=25

Solids Fraction at 3d 0.581626 0.578329 0.584788

Solids Fraction at 4d 0.589173 0.58561 0.590585

Solids Fraction at 5d 0.591289 0.59 0.59573

Max. Solids Fraction 0.594169 0.596562 0.605987

ρ 3d/ρmax. 97.9% 96.9% 96.5%

ρ4d/ρmax. 99.2% 98.2% 97.5%

ρ5d/ρmax. 99.5% 99% 98.3%
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Table 5.2 shows the cumulative solids fraction and the ratios at three Lid values.

If it is assumed that the wall no longer influences the results from the solids fraction ratio

reaches 98%, the table shows that this occurs at approximately 5 particle diameters from

the wall. This result is in agreement with the literature [67].

5.4 Effect of Wall Friction Coefficient μw

To study the effect of wall friction, its value is changed from 0.01 to 0.8 while keeping all

other parameters constant. As expected, Figure 5.10 shows that the wall friction has little

effect on the poured solids fraction. In this simulation, the aspect ratio L/d was

approximately 10.0.

Figure 5.10 Effect of wall friction on poured solids fraction,
N= 605, ,up = 0.1.
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5.5 Effect of Different Pouring Methods

In order to examine the effect of different pouring methods, the number of particles (N =

605) is fixed, while the y coordinates of all particles are changed by uniformly increasing

their values by a fixed distance P (called the "pouring height", as in Figure 5.11). Then,

the system is allowed to collapse under the action of gravity.

Figure 5.12 Effect of pouring height on poured solids fraction,
N= 605, pp = 0.1, μw = 0.3.
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The results of this procedure summarized in Figure 5.12 indicate only a very

small increase in solids fraction. In order to assess if the height at which the pouring takes

place is important, the value of ycell of particle bed is varied up to one meter.

The result in Figure 5.13 again shows only a small increase in solids fraction of

not more than 2.5%. While the trend is qualitatively similar to the physical experiments

of Macrae et al. [30], the quantitative values are smaller. They used several different

materials, each of which showed that larger bulk densities were obtained as the height of

the drop was increased. The quantitative difference between the simulation and

experiment may be due to the fact that very different deposition methods were used. In

the experiments, the material was poured in as a stream, in contrast to the simulation in

which spheres are distributed throughout the computational cell volume before gravity

was activated.
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5.6 Effect of Size of System on Solids Fraction

Since all the results obtained up to this point are for a small system (only of N = 605

particles), larger systems are simulated. Here the initial height ycell is set to 0.2m, while

the number of particles in the system is varied. This means that the initial solids fraction

of the system was larger at N was increased.

Figure 5.14 indicates that this procedure did not result in a drastic changed in bulk

solids fraction over the ranged considered. The result is quite different if the initial solids

fraction of the particle bed is fixed, while the number of particles in the system is

changed (i.e., so that the particle beds have different initial heights ycell).
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Figure 5.15 shows that as the number of particles N increases, the bulk density

grows and then flattens out. The reason for the behavior in the figure can be explained in

terms of the depth of the poured bed. For small system sizes, particles that rain down

may disturb the already formed thin layer at the bottom of the cell so that voids are

created thus reducing the mean solids fraction of the final, poured configuration.

However, as the depth of the "stable" layer at the bottom develops for larger systems, the

kinetic energy of particles falling from above onto this layer is quickly dissipated through

the layer so that the effect on the voidage of the growing deposit is reduced. Beyond

approximately 2000 particles, the process is stabilized and the bulk solids fraction flattens

out.
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5.7 Comparison with Experimental Results

In order to verify the correctness of the pouring simulation, a study is carried out with

steel, glass and lead particles that can be compared with the experiments of Scott and

Kilgour [7] and Macrae and Gray [30]. The size of spheres in the simulation is 1/4" (6.35

mm). The physical properties of the materials (i.e., density, Young's modulus and

Poisson's ratio) are obtained from a handbook [68], while restitution coefficients are

obtained from the experimental results of Goldsmith [55] and Marcre [30]. Since

restitution coefficient for real materials is a decaying function of relative normal impact

velocity, an average value was selected over the maximum expected value of impact

velocity, which is approximated as

With this value of on., equation (4.11) is used to compute the loading stiffness

K1 of the three materials. Additionally, in order to omit the effect of boundary, L/d = 25.2

is chosen. Table 5.3 lists the simulation parameters selected the steel, glass and lead

particles.

Table 5.3 Main Simulation Operation Parameters for Three Materials

Materials Steel Glass Lead

Material Density p (kg/m3) 7900 2450 11340

Normal Stiffness K1 (N/m 2) 1.5e+7 5.0e+6 2.0e+6

Restitution Coefficient e 0.9 0.8 0.4
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Table 5.4 Comparison of Simulation with Experiments

Materials Simulation Experiments

Steel spheres 0.6034 0.596-0.608 [7, 30]

Glass spheres 0.6007 0.599-0.605[7, 30]

Lead spheres 0.5979 0.607 [30]

Table 5.4 shows that the simulated results fit within the range of experimentally

obtained values for the steel and glass spheres. However, the agreement with the lead

particles is not as good, with approximately a 1.5% discrepancy. The reason for this is

that a constant restitution coefficient was used, which is not reasonable for lead spheres

for the particle velocities in the simulation. In the next section, a velocity-dependent

feature in the code is used for the lead spheres in an attempt to improve the result.

5.8 Modification of Normal Force Model

In this section, a variable coefficient of restitution mode is activated in the code for the

soft lead spheres and the results are compared with the experiments of Goldsmith [55].

The derivation of the model developed by Walton and Braun is repeated here for

completeness.



The loading stiffness K1 and unloading stiffness K2 are linear functions of the maximum

force Fmax achieved before unloading (see Figure 5.16), so that,

Equation (5.2) is rearranged to yield,



so that a substitution of equations (5.6) and (5.7) into (4.1), the yields,

The value of S is an input parameter in the simulation. Equations (5.5) and (5.7)

indicate that S is not a constant because the relative normal impact velocities between

colliding spheres is variable. Therefore, a value of S was selected to obtain the best match

between the experimental data and simulated restitution coefficient.

A direct normal collision between two spheres at a selected impact velocity is

simulated using a restitution coefficient taken from physical experiments in the literature

[55]. With this data, equation (5.8) is solved to compute S for an input value. Then the

impact velocity is changed, and the new restitution coefficient e is computed directly

from the simulation using the previously determined value of S. The computed e is

compared with data from Goldsmith [55] and procedure repeated to generate a curve of

restitution coefficient against impact velocity.

The restitution coefficient as a function of impact velocity obtained from the

simulation is compared with the data of Goldsmith in Figure 5.17. The lines are included

in the figure to highlight the trends. The comparison is reasonable, although there is

some deviation at higher impact velocities.
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Figure 5.17 Relation between restitution coefficient and impact
velocity for steel spheres.
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Figure 5.18 Relation between restitution coefficient and
impact velocity (lead).
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Figure 5.18 shows the results of the simulation as compared with the data for lead

spheres. The intersection of the trend curves gives the value of the impact velocity and

experimental restitution coefficient that was used to compute S from equation (5.8).

Although other strategies are possible to find an appropriate value of S, the

technique employed here appears to have given good results.

Table 5.5 Results of Simulation and Physical Experiment of Lead Spheres

Methods Random Loose Solids fraction

Simulation with constant e 0.5979

Simulation with variable e 0.6028

Physical experiment 0.607 [30]

A summary of the final results is presented in Table 5.5. This shows a marked

improvement in the simulated random loose solids fraction when the variable restitution

coefficient model is used. One final point should be emphasized here. Up to this point,

only the overall or bulk solids fraction has been used to quantify the pouring process. If

two pouring trials product almost the same solids fraction, this does not imply that the

detailed microstructures are the same.

This fact is demonstrated in the following example. Two poured systems are

generate using particles with e = 0.9 and 0.6. By partitioning the computational cell into

layers, the depth profiles of the solids fraction can be computed. Figure 5.19 shows the

results in which the bulk solids fractions are very close, and yet the depth profiles are

different.
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Figure 5.19 The depth profiles of solids fraction.

The results of the above study are summarized as follows.

1. With the increase of aspect ratio, the effect of initial positions of particles on the

poured solids fraction disappears and the aspect ratio affects the poured solids

fraction, the result from the simulation is very similar to that obtained from the

physical experiments and conclusion in "Handbook of powder science" [67].

2. Particle friction coefficient has a pronounced influence on the poured solids

fraction.

3. Other material properties, such as restitution coefficient, normal stiffness and

material density appear to have only a small influence on the poured bulk solids

fraction.

4. Wall friction has little effect on the poured solids fraction.

5. Particle beds with large ycell may yield slightly higher bulk densities.



72

6. By increasing system size while keeping the initial particle distribution along the

depth constant, the poured solids fraction first increases and then flattens out.

7. The simulation produces almost the same random loose solids fraction as found in

physical experiments in the literature [7, 30].

8. For soft particles, such as lead, a velocity dependent coefficient of restitution

model in the code produced good agreement with the experiments of Goldsmith

[55] and with the random loose experiments of Macrae [30].



CHAPTER 6

ANALYSIS OF INSTANTANEOUS DYNAMIC STATES

The final bulk density that a vibrated system achieves after the excitations are terminated

should depend on the "dynamic" state — that is the condition that the system finds itself

during vibrations. The focus of this chapter is on analyzing the dynamic state and its

dependence on a number of parameters, i.e., vibration frequency and amplitude, particle

friction coefficient p, restitution coefficient e, container aspect ratio Lid, loading stiffness

K1 and initial solids fraction after pouring.

In order to quantify the dynamic state, depth profiles of solids fraction, granular

temperature and translational energy ratio are computed as steady-state values. The data

represents steady-state dynamic condition of the vibrated system. In a physical

experiment, this would be tantamount to taking instantaneous measurements (if possible)

when the bed of particles is being vibrated rather than when the shaking device is

switched off.

The parameter that is used to classify the dynamic state (or phase) of the vibrated

assembly is the translational energy ratio R in the following manner. The state is termed

"thermal" if R < 10, "solid" if R> 100, and "thermal-solid" if 10 < R < 100. Because the

computed depth profiles of R are not constant, an energized system can exist in more than

one state. The results of the study presented in this chapter suggest that there is complex

relationship between the parameters, and that particle friction, restitution coefficient and

initial poured states appear to have the greatest influence on the dynamic behavior of the

system. Table 6.1 lists the parameter selected for the simulations.
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Table 6.1 Operating Parameters for the Simulation

Particle Number N 605

Diameter of Particles d (m) 0.00635

Density of Particles (kg/m 3) 1200

Normal Stiffness of Particles (N/m2) 2.8 x 10 6

Friction Coefficient of Particles pp 0.1

Wall Friction Coefficient μw 0.3

Cell Dimension (L*W*H) in meter 0.06 x 0.06 x 0.2

Coefficient of Restitution e 0.9

Vibration Amplitude a (inch) 0.005 - 0.12

Vibration Frequency (Hz) 5 - 100

6.1 Effect of Vibration Frequency and Amplitude

For this study, particles are assigned a restitution coefficient e of 0.9, a friction

coefficient of 0.1 with wall friction set to 0.30. The selection of a shallow configuration

(i.e., poured depth of approximately 7d) and an aspect ratio Lid = 9.4 minimizes the

system size (N = 605), so that greater computational efficiency is obtained.

At low acceleration levels, particles are constrained by near neighbors to move

within only small neighborhoods of their initial locations, while, for higher accelerations,

they can experience significant displacements. This is demonstrated by using two

normalized amplitudes aid and a range of frequencies that correspond to accelerations

I" a-- a(2πf)^2/g between 0.46 and 99.35. Each system was agitated for three seconds,

starting from the same initial poured solids fraction Po = 0.5775 (parameters pp = 0.3 and
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μw = 0.1, e = 0.9). Diagnostic quantities were computed at t = 3 seconds for both the

high and low relative accelerations since little difference in the depth profiles of solids

fraction and granular temperature was found beyond this point. In order to verify the

simulation of vibration process, two vibration conditions (low vibration amplitude and

high amplitude) are used. The results are then compared with the observations of

Eversque et al. [14], the kinetic theory predictions of Richman & Martin [40] and the

experimental conclusion of Thomas et al. [41].

Figure 6.1 Depth profiles of solids fraction (N = 605, a/d = 0.02,
,up = 0.3, μw = 0.1, e = 0.9) for f = 30, 60, 90 Hz and p.= 0.5775.
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The smaller amplitude vibrations produce minimal agitation in the system

(relative to when aid = 0.48), which is reflected in the scales selected to display the

granular temperature profiles in Figure 6.3 and Figure 6.8. The solids fraction depth

profiles in Figure 6.1 at aid = 0.02 and ρ0 = 0.5775 illustrates that the bed depth does not

change appreciably when f = 30, 60 and 90 Hz (F = 0.46, 1.84 and 4.14). However, as f

grows, the solids fraction does increase as the bulk mass shifts towards the floor (Figure

6.2). At 30 and 60 Hz, the granular temperature (Figure 6.3) at the surface of the bed is

largest, while at 90 Hz it is the smallest so that particles nearest the vibrating floor

experience greater agitation.
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The depth profile of the translational energy ratio R and plotted in Figure 6.4 on a

log scale features a small gradient with a minimum near the surface. The vertical dotted

lines indicate the demarcation between the solid, thermal and solid-thermal phases. At f =

30 Hz, the values of R, which are significantly larger than at the other two frequencies,

suggests that the motion of the particles is predominantly in the y-direction. For these

vibration conditions, particles do not wander or migrate from their pre-vibrated locations,

as substantiated by the evolution of the distance between two arbitrarily chosen particles

in three different regions of the bed (Figure 6.5). Furthermore, an inspection of several

animation frames revealed that particles moved in a coordinated mode, i.e., in this case

up and down together. Indeed, the motion of the mass center is in phase with the

vibrating floor at this frequency as revealed in Figure 6.6. Hence, the system is in a

"solid" phase.

At f = 60 Hz, there is a very large difference between the value of R at the bottom

and the surface of approximately two orders of magnitude. More importantly, R at the

surface is relatively small (approximately 5) and therefore, particle velocities

(proportional to √R ) in the x and y directions are comparable. Hence, the thermal phase

appears at the surface (in agreement with experiments [14]), and below this, the system is

in a solid-thermal state. With an increase of frequency to 90 Hz, values of R are less than

approximately 5, (except in the region adjacent to the floor where it is slightly higher) so

that a significant fraction of the input kinetic energy has been coupled into the x-direction

(also z-direction). This condition, in view of the granular temperature profile shown in

Figure 6.4 at 90 Hz, suggests that the entire assembly is in a thermal state, although the

bed depth remains constant.
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When the floor displacement amplitude is increased to aid = 0.48, the assembly

experiences a drastic expansion of its depth as f increases (Figure 6.7), a phenomenon

that has been reported in experiments [43]. There is an accompanying upward shift of the

mass center and a depletion of particles near the floor. Here, large velocity fluctuations

are reflected in a maximum granular temperature (Figure 6.8) that decreases towards the

surface, in qualitative agreement with kinetic theory predictions [40]. Particles no longer

remain close to their initial positions, but rather migrate. As indicated in the R profiles of

Figure 6.9 (i.e., average values of R for each frequency were all less than 4.23), the

increased displacement amplitude of the floor causes a shift to the thermal phase, albeit

the system possesses a fluid-like nature.
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6.2 Effect of Depth of Particle Bed

The depth of the poured bed was approximately doubled to 14d by increasing the number of

particles (N = 1305) while maintaining the aspect ratio Lid = 9.4 and all other parameters

identical to the system discussed in the previous section.
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In Figure 6.11, the granular temperature at 30 Hz, (which has no depth gradient),

is much smaller than at 60 and 90 Hz, where maximums appears at the surface. Recall

that for the shallow bed (Figure 6.3), the highest granular temperature at f = 60 Hz

appeared at the surface. At f= 90Hz, however, the depth profiles for the shallow and deep

beds are rather different, i.e., the central region of the deep bed is still in solid-thermal

phase (Figure 6.11), while the shallow bed is in the thermal phase throughout the depth

(Figure 6.4). Such a result is expected since the floor oscillations are less effective in

agitating the greater mass overburden of deeper system (where particle velocities are

quickly attenuated) as compared to the shallow bed.

From all above analysis, it is clear that a deep particle bed and a shallow particle

bed can have different phase patterns under same vibration conditions, which means that

bed height has effect on the phase change, in agreement with the conclusion of Thomas et

al [41]. The deep particle bed is more difficult to be thermalized because the energy

supplied from the bottom will dissipate when transferring to the top, with the increase of

height, more energy will disappear during the transfer to the top, which will delay the

thermalization of the total particle bed.

6.3 Effect of Friction Coefficient

Frictional properties of the particles are an important characteristic that influences the

behavior of the system. Evidence of this was seen in the results summarized in Figure

5.3, which depicts the solids fraction versus friction coefficient 	 when particles are

"poured". In order to assess the situation when the system is vibrated, the friction
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coefficient is varied (II = 0.0, 0.1, 0.8) in a shallow system (N = 605) for amplitudes aid =

0.02 and 0.48, andf= 30 Hz.

Figure 6.13 Depth profiles of translational energy ratio,
for N = 605, a/d= 0.02, e= 0.9,f = 30Hz, Г ≈ 0.46.
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When the vibrations are weak (aid = 0.02, F 0.46), the bed is not very agitated

as evidenced by the rather low granular temperatures in the profiles of Figure 6.12. At

these conditions, the system with particles that are more frictional (p = 0.8) has the

largest granular temperature. As was noted previously, particles in this system essentially

move in a coordinated manner in that they maintain their relative positions (see Figures.

6.5, 6.6), and so the flow is not collision dominated. It is conjectured that the granular

temperature is dictated by the pre-vibrated state in the following sense. Systems with

smooth spheres (p = 0) attain a maximum solids fraction (or equivalently a minimum free

volume) when deposited (see Figure 5.3). The resulting tight packing cannot easily be

dislodged by weak floor oscillations, thereby yielding a low granular temperature. In

contrast, systems with frictional particles are configured with a less dense structure upon

pouring so that less energetic floor vibrations can promote larger velocity fluctuations

and correspondingly higher relative granular temperatures.

It can be seen in Figure 6.13 that when p = 0.8, the translational energy ratio is

the lowest (10 < R < 100), which, according to the definition, signifies that the assembly

is in the solid-thermal phase.
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When the floor excitations are much stronger (aid = 0.48, F 11), the smooth

particle system (μ = 0, e = 0.9) attains the largest granular temperature (Figure 6.14),

expanding to a depth of approximately 13d. The initial pre-vibrated structure is easily

destroyed by the energetic floor oscillations so that particle collisions are dominant.

Furthermore, according to the R profiles of Figure 6.15 and the phase definitions, the

smooth particle system is in a thermal phase, while the frictional bed (p = 0.8) is only

partially thermalized over its upper half. Systems with particles that dissipate more

energy during collisions (i.e., those with larger friction coefficients) have available a

smaller fraction of the input energy to produce velocity fluctuations, which results in a

reduced granular temperature.

6.4 Effect of Normal Stiffness

As mentioned in the Chapter 4, the normal stiffness is derived from the material's

Young's Modulus. In the pouring simulation, its effect is not apparent as was shown in

Figure 5.5. In this study, three values of normal stiffness K 1 are chosen, while other

parameters kept the same. The results are examined for weak (aid = 0.02,f = 30 Hz) and

strong (aid = 0.48,f = 30 Hz) floor vibrations.
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The depth profiles of granular temperature and translational energy ratio in

Figures 6.16 and 6.17, respectively, indicate sensitivity to the value of K1. However, at

the level of floor vibration applied (aid = 0.02, f = 30 Hz), the systems are in the solid

phase since R> 100 throughout the depth, and particles undergo negligible fluctuations.
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When the stronger floor vibrations (a/d= 0.02 and f = 30Hz.) are applied, there is

little difference in the depth profiles of granular temperature (Figure 6.18) and

translational energy ratio (Figure 6.19) for the three K 1 values shown.

6.5 Effect of Restitution Coefficient

As an input parameter to the simulation, the restitution coefficient e provides a means of

creating energy dissipation during particle collisions. For a single impact between

spheres of masses m 1 and m2, the energy lost is given by mrv1^2(1—e^2)/2, where v1 is the

component of incident velocity along the line of centers of one of the particles, and

mr m1m2/(m 1 + m2) is the reduced mass. Thus it would be expected to see the

influence of restitution coefficient on the dynamic granular temperature when particle

collisions prevail. This occurs at higher levels of acceleration.

Figure 6.20 Effect of restitution coefficient on granular temperature,
N = 605, a/d= 0.02,f = 30Hz.
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For each value of e, the dimensionless amplitude aid is fixed at 0.02, and three

frequencies are chosen (f= 30, 60 and 90 Hz, corresponding to F.- -- 0.46, 1.84 and 4.14,

respectively).

For the small relative acceleration (aid = 0.02, f = 30Hz.), the granular

temperature profiles in Figure 6.20 do not reveal a clear trend on the value of the

restitution coefficient. At this level of vibration, particles in the system do not undergo

energetic collisions because there is very little relative motion.

The temperature profiles when stronger floor oscillations are used (aid = 0.02 and

f = 60Hz) is shown in Figure 6.21. Here, the system with larger restitution (e = 0.9)

experiences a smaller degree of dissipation from collisions, so that a greater fraction of

the energy supplied by the floor is available to promote particle fluctuations. Hence, the

granular temperature is higher.



When the vibration frequency (aid = 0.02 and f = 90Hz) increases so that F =

4.14, Figure 6.22 shows a highly agitated system when e = 0.9, for which the largest

temperature appears in the region adjacent to the floor. All of these confirm the

explanation.
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Finally, when the floor acceleration is increased even further (aid = 0.48 and f=

30Hz), Figure 6.23 depicts temperature profiles at each value of e that have a similar

form, i.e., largest near the floor and decreasing upward to the surface. As expected,

particles that are less dissipative (e = 0.9) yield the most agitated system.

From the above analysis, it is clear that when the vibration is weak, the particle

bed simply follows the floor, so that particle restitution coefficient does not play an

obvious role. As the relative acceleration increases, collisions between the particles

become more frequent so that the role of dissipation governed by the restitution

coefficient becomes unambiguous.

6.6 Effect of Aspect Ratio of Container

In this study, a constant poured bed depth is maintained as the aspect ratio Lid is varied

by adjusting the number of particles in the system appropriately.



Figure 6.25 Depth profiles of translational energy ratio,
aid = 0.02, f= 30Hz.

When a weak vibration (aid = 0.02 and f= 30Hz.) is imposed on the particle bed,

the results in Figures 6.24 and 6.25 shows that the largest granular temperature and

smallest translational energy ratio occurs when Lid = 10. The reason is that the poured

state of this system is the least dense (see Figure 5.8) compared to Lid = 15 and 25, so

that the free volume enhances particle mobility, which manifests itself in the system

having a relatively higher granular temperature, albeit it is small at this level of vibration.

When the frequency is increased to 60 Hz, Figures 6.26 and 6.27 reveal that the

temperature and energy ratio profiles are somewhat similar for Lid = 10, 15 and 25. The

granular temperature is largest at the surface from where it decreases in a monotonic

fashion up to within a couple of particle diameters from the floor. It is conjectured that

the aspect ratio does not have a pronounced effect on the dynamic states of the

assemblies since the magnitude of the vibrations supplied by the base is sufficient to
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greatly minimize any influence of the initial poured condition. This is supported by the

results shown in Figure 6.28 and 6.29 at f= 90 Hz.
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6.7 Effect of Initial Poured States

From the above analysis, it is observed that when the relative acceleration is small, the

initial poured state is the key that determines the dynamic behavior of the particle

assembly. It is also very clear that many factors impact the initial poured states, the

difference is that some factors have bigger effects, while others have smaller effects.

6.8 Conclusions

From the above discussion, the following conclusions can be obtained:

1) Under vertical vibrations, fluidization starts from the top surface, in agreement

with the experimental observations of Evesque et al. [14]

2) At a large relative accelerations, the depth profiles of granular temperature

decrease monotonically from the floor, a behavior that is consistent with kinetic theory

predictions [40].

3) At fixed vibratory conditions, the degree of agitation experienced by the particle

assembly depends on the depth of the system, a finding in agreement with Thomas et al.

[41]. Deeper beds are more difficult to thermalize.

4) At low relative acceleration, particles that are more frictional exhibit a stronger

tendency to thermalize to a greater degree. However, at high relative accelerations, the

opposite situation exists, i.e., particles with smaller friction coefficients have higher

granular temperatures.

5) Normal stiffness has some effect on the dynamic behavior under small relative

acceleration, but it has little or no effect under large relative accelerations.
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6) Restitution coefficient has little effect on dynamic behaviors under small relative

acceleration. At high relative accelerations, with an increase of restitution coefficient, the

assembly can be more easily excited.

7) Under large relative accelerations, aspect ratio has little effect on the assembly's

dynamic behavior. However, at low relative accelerations, the initial poured state

determines dynamic behavior.



CHAPTER 7

RELATIONSHIP BETWEEN INSTANTANEOUS DYNAMIC STATES
AND RELAXED SOLIDS FRACTION

The poured and vibrated states of particle beds have been studied in Chapter 5 and

Chapter 6. The subject of this chapter is the relationship between the relaxed and

dynamic states. The influences of various factors are considered, including:

• Vibration amplitude and frequency

• Bed depth

• Friction coefficient

• Restitution coefficient

• Normal stiffness

• Aspect ratio

Dense random packing is generated, and a phase chart mapping densification

improvement verses amplitude and frequency is presented. The essential parameters used

in the simulations are given in Table 6.1.

7.1 Effect of Vibration Amplitude & Frequency on the Relaxed States

In 1951, Stewart proposed that a consolidation state of "maximum density" could be

attained by the imposition of high frequencies and low amplitudes. In this study, four

amplitude ratios are considered (aid = 0.02, 0.08, 0.24, 0.48) over frequencies ranging

between 5Hz and 90Hz. Floor vibrations are applied for 3 seconds, after which the

system is allowed to "relax" under gravity until stable. A small system size (N = 605) is

used in all cases.
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The general trend in Figure 7.1 where aid = 0.02 is very much the same as what

occurred in the physical experiments (see Figure 2.5). Over the frequency range tested at

this amplitude, there is a continual improvement in bulk solids fraction. When aid 0.08,

the curve of Figure 7.2 peaks at approximately 6% near f 50 Hz , and then it drops

slightly with a further increase in frequency. When the amplitude aid is 0.24, the peak

value occurs at approximately 40 Hz, and the curve decays thereafter until, near 80 Hz,

no improvement in bulk density is possible at higher frequencies. The occurrence of the

peak and decay afterwards is consistent with the experimental observations of Appolonia

et al. [5]. Finally, at aid = 0.48, the Figure 7.4 shows only a minimal improvement and

that after a critical frequency of approximately 35 Hz, the system does not experience any

densification upon relaxation. This trend is analogous to the experiments reported in

Chapter 2 (Figure 2.14).

A comparison between the experiments (Figures 2.5-2.14) and the simulation

(Figures 7.1-7.4) demonstrates a reasonable qualitative agreement. At peak points, the

improvement of solids fraction matches the experimental results, about 6%. Although

there are quantitative differences between the simulated and experimental results

(possibly attributed to boundary conditions and aspect ratio), the simulation is able to

produce all of the important critical phenomena observed in the experiments.

7.2 Relationship between Dynamic States and Relaxed States

At low relative accelerations, the assembly's relaxed solid fraction changes with

frequency. Such behavior is evident upon examination of Figures 6.1 — 6.4 in

conjunction with Figure 7.1, where the solids fraction increases almost monotonically
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with frequency. When f = 30Hz (Figure 6.4), the entire assembly exists in a solid phase,

so that the system is only slightly agitated. Consequently, the improvement in mean

solids fraction upon relaxation is small. When f = 60 Hz, the top zones are in thermal

phase, and the mean solids fraction is larger than the situation atf= 30 Hz. Finally, atf=

90 Hz when the whole assembly is in thermal phase, the system attains the largest

improvement in solids fraction after relaxation. Furthermore, as shown in Figures 6.1 and

6.2, more of the bulk mass is displaced towards the floor as frequency increases

regardless of the phase of the assembly. It appears that at low relative accelerations, this

feature is a key indicator of whether or not the system's bulk solid fraction will improve

upon relaxation regardless of its dynamic phase.

The dynamic state of the system at aid = 0.24 is presented in Figures 7.5 — 7.7.

Referring to Figure 7.3, it is observed that at f = 40Hz, the assembly attains the largest

improvement in solids fraction upon relaxation. The system is fully thermalized (Fig.

7.7), the maximum granular temperature occurs at bottom, and the greatest fraction of the

bulk mass is located within the first four bottom layers.
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Lastly, at aid = 0.48, the assembly is in a fully thermalized phase throughout its

depth at each of the three frequencies (f= 30, 60 90 Hz) shown on Figures 6.7 — 6.9, and

the granular temperature monotonically decreases from the floor to the surface. However,

according to Figure 7.4, the system does not attain a marked improvement in solids

fraction at these frequencies when relaxed. Again, the reason (see Figure 6.7) is that the

assembly is greatly expanded, almost doubling its depth from the level attained upon

completion of the pouring process, so that particles are dispersed throughout the occupied

region.

From the above analysis, the following conclusions are made.

1) A large improvement in bulk solids fraction occurs when the pre-relaxed

assembly is in a thermal dynamic state and most of the bulk mass lies in the bottom half

of the bed.
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2) At high relative accelerations (i.e., Figures 7.1 — 7.4), the thermal phase can be

divided into optimum thermal phase and the over-thermalized phase. That is, in the

optimal phase, a large improvement (of the order of 6%) in solids fraction occurs upon

relaxation, while a system that is over-thermalized experiences little or no change in

solids fraction when relaxed.

3) At low relative accelerations, if the assembly has not been fully thermalized

throughout its depth and a great fraction of the particle mass lies near the bottom of the

bed, the assembly will experience a moderate densification.

7.3 Effect of Bed Height

In order to examine the effect of poured bed height on the relaxed state, the number of

particles is increased from N = 605 to N = 1305 while keeping the aspect ratio Lid

constant.
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Figure 7.11 Solids fraction evolution with frequency, aid = 0.48.

From the Figures 7.9 - 7.11, it can be observed that when aid = 0.02, both systems

have similar trends, the difference being the magnitude of the improvement. This is most

likely a consequence of the fact that the larger system does not achieve the same (pre-

relaxed) dynamic state (because of its greater mass overburden) as the smaller assembly.

When aid = 0.08 (Figure 7.9), the peak improvement of approximately 4.5% occurs at

f 65 Hz in the deeper assembly, while the values are 5.7% at f≈50 Hz in the shallow

bed. The downward shift in the location of the peak is attributed to the higher relative

acceleration required in the deeper assembly to attain a sufficient degree of agitation. A

further increase in amplitude to 0.24 (Figure 7.10) produces a peak value of 6.6% at f----

40Hz when N = 1305, and a somewhat reduced peak at f = 35Hz in the shallower

assembly. When aid = 0.48 (Figure 7.11), the larger system attains a maximum solids

fraction at f = 30 Hz (where optimal dynamic conditions exist). The improvement
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monotonically decays to zero at 80 Hz. In contrast, the smaller system is

over-thermalized, a peak of less than 2% appears at 30 Hz that quickly decays to zero at 35 Hz,

remains around zero up to approximately 60 Hz, after which it begins to oscillate.

Certain generalizations can be deduced from the behavior these two systems. For

thin layers, it is possible to produce less dense assemblies after vibration if the

acceleration is too high (Figure 7.4). But for deeper systems at the same conditions, some

improvement in solids fraction is possible (Figures 7.10 and 7.11). In addition, the

relative accelerations corresponding to the peaks in the solids fraction improvement

curves increase with the depth of the assembly.
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Thus there is a question as to why small systems (shallow beds) do not densify

when the relative acceleration is high (Figure 7.4 atf> Hz), but for deep beds at the same

vibration conditions an increase in solids fraction takes place upon relaxation (Figures

7.10 and 7.11). In an effort to explain this behavior, reference is made to Figures 6.7, 6.8

and 6.9, where the floor is vibrated at aid = 0.48 and f = 30, 60 and 90 Hz. As the

frequency is increased, the bed expands accompanied by a depletion of particles adjacent

to the floor, and a shift of the maximum in the solids fraction profile upwards.

Figure 7.12 shows a comparison of the relaxed solids fraction depth profiles for

the poured state and at f = 60 and 90 Hz (N = 605). It can be seen that the region adjacent

to the floor forms into a somewhat less dense structure when relaxed in comparison with

the initial poured assembly. The dilution of the region adjacent to the floor in the

dynamic state may play a role in the overall solids fraction being less than its initial value

(i.e., after pouring) when the relative acceleration is too high. Thus, for thin layers at
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large values of relative acceleration, the assembly may find itself in a less dense

condition after relaxation, which, in a physical experiment, occurs upon stopping the

vibrations.
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Figures 7.13 and 7.14 shows the poured, dynamic and relaxed states for the deeper

assembly (N = 1305) at 60 and 90 Hz, respectively when aid = 0.48. As the curves

indicate, relaxation of these dynamic assemblies favors a redistribution of the particles

that results in an improvement of the overall solids fraction.

7.4 Effect of Friction Coefficient on Densification

The results in Chapter 6 demonstrated that the inter-particle friction coefficient p p plays

an important role on the dynamic state. In this section, the effect of friction on

densification upon relaxation is examined.

Figure 7.15 shows solids fraction improvement versus frequency curves at aid =

0.02 for ,up = 0, 0.1 and 0.8. All assemblies become more dense after relaxation, although

the system consisting of smooth particles (pp = 0) exhibits the smallest values and its

curve contains a maximum at f 75 Hz . At a higher vibration amplitude (Figure 7.16)

aid = 0.08, all three systems become more dense after relaxation with each curve showing

a peak. Again, the smooth particle system has the smallest values. For both amplitudes,

the rough sphere systems (pp = 0.8) attain the greatest solids fraction improvement. The

high friction system reaches a peak in the improvement curve at a higher frequency, the

reason being that the assembly requires more input energy from the floor vibrations to

reach a thermal phase due to large energy dissipation during the collisions among

particles. When aid = 0.24, the smooth particle assembly is unable to achieve any

substantial increase in solids fraction (suggesting that it is over-thermalized), in contrast

to the frictional particle systems. Also, the 0.8 frictional particle system experiences a

bulk density increase throughout the range of tested frequencies shown on Figure 7.17,
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while beyond 75 Hz, no improvement in solids fraction occurs in the slightly frictional

particle assembly Gip =0.1). Upon doubling the amplitude to aidd = 0.48 (Figure 7.18),

systems with both smooth and slightly frictional particles (li p =0, 0.1) show no

improvement in solids fraction at any frequency. The system with the greatest inter-

particle friction exhibits a decaying improvement curve until, at f 60 Hz , a reduction in

bulk density takes place. In fact, the 75 Hz vibrations place the system in a dynamic state

such that upon relaxation, the solids fraction becomes approximately 4% smaller than it

was after pouring. A principal finding from this series of simulations is that smooth

particle assemblies do not attain a substantial increase in bulk density (i.e., approximately

5%) after vibrations are applied.
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In order to understand the physical rationale for the behaviors discussed above,

reference is made to the dynamic analysis presented in Section 6.3 (Figures 6.12 — 6.15).

In Figure 7.15, the general trends of three systems are similar, but the improvement in

solids fraction is different. When vibrated, the high friction assembly (pp= 0.8) maintains

the largest granular temperature (Figure 6.12), and the translational energy ratio profiles

(Figure 6.13) indicate that the particles undergo more sizeable lateral motions (albeit

small) compared with the smooth (p p = 0) and lower frictional particles (11 p= 0.1). At the

vibration levels applied ( a I d = 0.02 ,35 Hz < f < 90 Hz , 0.32 F S 2.07 ), this relatively

low density assembly experiences a global rearrangement process that depends, in part,

on the lateral mobility of the particles. If this conjecture is accepted, then the

improvement curves for the smooth and low friction systems (whose particles undergo

significantly smaller lateral displacements as can be seen from their large translational
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energy ratio profiles in Figure 6.13) would necessary lie below that of the high friction

particle system. Equally important to the trends with friction illustrated in Figure 7.15 is

"proximity" of the poured solids fraction (see Figure 5.3) to that of a loose random

packing. If this value is taken as 0.61, then high friction particle system (ti = 0.8) is at

91.1% ( vpour / 0.61 X 100 = 91.1), while the smooth and lower friction particle assemblies

are at 97.3% and 94.8%, respectively. Thus, after pouring, the high friction particle

system has the greatest capacity to undergo an increase in bulk density.

In Figure 7.18, the lack of any densification for the smooth and p = 0.1

assemblies is a consequence of them being in over-thermalized states (Figure 6.14 and

6.15). However the highly friction system (p = 0.8) does experience a substantial

improvement in solids fraction because at f = 35Hz it is in a mixed solid-thermal and

thermal phase.

7.5 Effect of Aspect Ratio on Densification

In Chapter 6, it was shown that at low relative accelerations, the dynamic states of an

assembly are, in a sense, controlled principally by initial poured structure, which in turn

depends on the aspect ratio of the containment geometry. However, with an increase in

relative acceleration, the influence of aspect ratio is minimized. In this section, the

influence of aspect ratio on relaxed systems is considered.

Figure 7.19 presents the percentage improvement in solids fraction versus

frequency at aspect ratios Lid = 10, 15 and 25 when the relative acceleration is small (aid

= 0.02, 2.07). The system with the largest aspect ratio attains the smallest

improvement under these small accelerations because the larger poured solids fraction
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(see Figure 5.8 and Table 5.2) makes the system less sensitive to the vibrations. However,

when the vibration intensity reaches some level, the effect of initial poured states

becomes minimal.
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This can be seen in Figure 7.20 at a higher vibration amplitude (aid = 0.08).

When f s 40 Hz , the system with the largest aspect ratio (Lid = 25) shows the least

improvement in solids fraction. However, the trend reverses when f 40 Hz so that the

largest system now attains the largest improvement.
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Figures 7.21 and 7.22 indicate that the trends of the improvement curves for the

different aspect ratios are quite similar, although their magnitudes are not the same. That

is, for example, the improvement becomes worse as frequency increases in these figures.

In summary, for each fixed aid values, the results reveal that the overall trends of

the improvements curves are similar.

7.6 Effect of Restitution Coefficient on Densification

When the relative acceleration is small so that particle fluctuations are minimal, the

coefficient of restitution does not play an important role on the dynamic state of an

assembly (See Chapter 6). However, as the assembly becomes more energetic at higher

vibrations, there is more collisional dissipation through the restitution coefficient e.

Hence, the value of e has an effect on the dynamic state of the assembly. In this section,

the role of normal restitution on the relaxed state is considered.
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Figure 7.23 shows the percentage improvement in solids fraction (after relaxation

of the dynamic state) against floor vibration frequency for e = 0.3, 0.6 and 0.90 under

small relative accelerations (aid = 0.02). While the curves do exhibit some differences in

the degree of improvement, they all have very similar trends. Consequently, it appears

that the system is not extremely sensitive to the exact value of the restitution coefficient.

A similar level of insensitivity of the dynamic state on the restitution coefficient was seen

in Chapter 6 (Section 6.5).

As the vibration amplitude is increased (aid = 0.08), Figure 7.24 shows that

restitution coefficient begins to play a role. For the case where e= 0.9, the solids fraction

reaches its maximum value whenf= 50Hz, it then decreases up to 70 Hz, after which is

oscillates. When e= 0.6 and 0.9, the assemblies attain the greatest improvement in solids

fraction at approximately 70Hz and 80Hz, respectively. The assembly having the largest
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restitution coefficient particles experiences the smallest dissipation and thus it becomes

thermalized at a lower frequency that the other systems.
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When aid = 0.24 (Figure 7.25), the assembly with 0.9 restitution coefficient

particles reaches its maximum solids fraction at the lowest frequency ( f a: 40 Hz ),

followed by e = 0.6 at f ≈=50 Hz , and e = 0.3 at f ≈=80 Hz . These differences in

frequency are again attributed how easily the system attains the proper thermal dynamic

state, which depends on the restitution coefficient of the particles comprising the

assembly. Note that at 70 Hz, the e = 0.9 curve indicates that the system is over

thermalized since the there is no improvement in solids fraction upon relaxation. Figure

7.26 (aid = 0.48) continues to show that the e= 0.9 assembly has been over-thermalized

at f = 40Hz, but the other two systems exhibit some solids fraction improvement.

7.7 Effect of Normal Stiffness on Densification

In Chapter 6, it was demonstrated the normal loading stiffness K1 only affected the

dynamic state in the low relative acceleration regime.
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Figure 7.27 shows the percentage improvement in solids fraction versus

frequency when aid = 0.02 for two values of the loading stiffness. The improvement

increases monotonically with frequency as the difference between the curves is reduced.

The qualitative features in the curves (Figures 7.28 — 7.30) at each amplitude level

are quite similar, and only the magnitude of the improvement differs with the loading

stiffness. Most important is that the frequency at which the peak occurs at each fixed

vibration amplitude is not highly sensitive to the value of K 1 . This result indicates that

normal stiffness does not have a great effect on the trend of improvement versus

frequency at higher relative accelerations.



125



126

7.8 Phase Chart of Densification

In this section, a contour plot is presented that portrays the overall relationship between

improvement in solids fraction against frequency and amplitude. This is done by

simulating a system having N= 8000 particles, Lid = 25, and 0.02 <= aid <= 0.48 and 10Hz

<=f<=90Hz, withe0.9, pip= 0.1 and = 0.3. It is conjectured that similar plots may

exist for other materials, although this has not been done in the current investigation.

Figure 7.31 shows the densification contour plot as a function of amplitude and

frequency, where the color indicates the extent of the improvement as given in the

included scale. Four rather distinct improvement zones appear, corresponding to various

levels of the improvement in solids fraction. "Zonel" is characterized by improvements

of less than 1%, while assemblies in "Zone 2" show an improvement of the order of 3%.

"Zone3" systems are distinguished by a significant improvement of the order of 5% or

better. Finally, "Zone4" systems attain little or no solids fraction improvement, which is

characteristic of an over-thermalized dynamic state before relaxation.
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7.9 Generation of Random "Closest" Packing

In Chapter 6, the simulation results for the solids fraction of random "loose" packing

were shown to be in good agreement with the results of physical experiments and other

simulations in the literature. In this section, a random "closest" packing is produced by

vibrating the assembly of N = 8000 spheres in a cell having an aspect ratio Lid = 25. In

addition, the arrangement of the particles directly adjacent to the wall is obtained when

the system is in the closed packing state.

7.9.1 Random "Closest" Packing

In order to obtain a dense random packing, it is necessary to find suitable conditions at

which to vibrate the assembly. This is accomplished by shaking the system at different

vibratory conditions for 3 seconds and by plotting the bulk solids fractions (relaxed) to

select the optimum settings.
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From Figure 7.32, it can be seen that this occurs when f = 40Hz and a = 0.04".

Using these parameters, the system is vibrated for T v seconds until the solids fraction

curve flattens out, as shown in Figure 7.33a. An extrapolation is performed as Tv - ' ----> 0 to

obtain the solids fraction for random close packing (Figure 7.33b). A value of 0.6582 is

found, which is very close to the experimental results of Nowak et al. [11].
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7.9.2 Particle Structure Near the Wall

Experimental observations presented in Chapter 2 revealed (Figure 2.11) an interesting

ordered arrangement of the particles against the wall. A similar feature is produced in the

simulations after 13 seconds of vibration, as can be seen in Figures 7.34a, b.
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7.10 Conclusions

From the simulation studies discussed in the Chapter, the following conclusions are

made:

1) The simulation was able to duplicate all phenomenon that occurred in physical

experiments. At low relative accelerations, the densification mechanism is simply a

shifting of particles towards the bottom of the cell, which causes a small improvement in

solids fraction. A substantial increase in solids fraction takes place only when the

assembly has been fully thermalized to the proper degree.

2) The depth of a system has a pronounced effect on solids fraction improvement,

i.e., deeper assemblies require stronger floor vibrations to attain the same bulk density

(and level of agitation) as shallower assemblies after relaxation.

3) A level of vibration that causes a decrease in the average solids fraction upon

relaxation of a shallow bed can induce densification in deeper assemblies.

4) Smooth sphere systems do not easily attain a large degree of densification.

However, assemblies consisting of highly frictional particles are more responsive to the

vibrations and more easily attain a large increase in average solids fraction.

5) The container aspect ratio and normal stiffness of the particles have almost no

effect on the trends of solids fraction against the frequency of vibration.

6) At large relative accelerations, normal restitution coefficient e greatly affects

solids fraction. As e increases, the assembly attains their maximum improvement in

solids fraction at lower floor vibration frequencies than do more dissipative particle

systems, which have smaller maximums.
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7) The simulation is capable of producing a random close packing that is in very

good agreement with physical experiments.

8) The particle structure near the wall is very similar with observations made in

physical experiments.



CHAPTER 8

CONCLUSIONS

Physical experiments as well as discrete element simulations have been successfully

carried out to deepen the understanding of pouring process, vibration-induced fluidization

and densification. In physical experiment, before vibration is imposed, the particle bed is

prepared by pouring mono-disperse acrylic particles with different diameters into a

cylinder. It is found that with the increase of aspect ratio (Did), the solids fraction

becomes bigger and its fluctuation is smaller, then the different amplitudes (a) and

frequencies (f) are applied to facilitate the observation of four densification trends. The

results show that attaining the "maximum density" is closely related to the combination

of frequency and amplitude, and vibration amplitude (a) affects the densification trends.

Additionally, convection can accelerate or hinder the densification process. At the

vibration conditions, which can induce a big improvement in solids fraction, a crystal-like

structure is obtained against the container wall, which may be the reason for the particle

bed to easily reach a solid fraction of 0.6366. For multi-disperse polyethylene pellets,

there is a substantial increase in solids fraction due to the effects of particle shape and

surface friction, and the slope angle of top surface and fluidization behavior of particle

beds with different pellets also show some effects of particle surfaces and shapes.

Computer simulations applying the discrete element method are then used to

carefully investigate the influences of material properties, pouring methods and container

geometry on the pouring process. Normal force models with constant restitution

coefficient and variable restitution coefficient have been used. It is found that aspect ratio

132
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and particle friction coefficient have a pronounced influence on the solids fraction, other

parameters, such as restitution coefficient, normal stiffness and material density have

little effect on the poured solids fraction. The solids fraction of random "loose" packing

is derived by interpolation and matches the experimental results of Macrae [30] and Scott

[7]. The collision simulation between two particles is also in good agreement with those

of Goldsmith [55].

Vibration process is then simulated. The instantaneous dynamic states have also

been analyzed by using the depth profiles of granular temperature, solids fraction and

translational energy ratio, and the effects of height of particle bed, friction coefficient,

normal stiffness, restitution coefficient, aspect ratio of container and initial poured states

are deeply studied. At the same time, the dynamic state is divided in three phases

depending on the translational energy ratio. The results from different vibration

conditions are in agreement with the observation of Eversque et al. and consistent with

theoretical predictions of Richman et al. at the high relative accelerations. Depths of

particle beds have a big effect on the dynamic behaviors under the same vibration

conditions. With the increase of depths, the beds are more difficult to be thermalized. The

results are in good agreement with the experiment of Thomas et al. Friction coefficient

shows strong influence on the dynamic behaviors. Its effect is different at low and high

relative accelerations. At low relative acceleration, the particle bed with higher friction

coefficient shows a stronger trend to be thermalized, but at a high relative acceleration,

the particle bed with smaller friction coefficient shows a stronger trend to be thermalized.

For aspect ratio and normal stiffness, only at low relative acceleration, their influences

appear, and only at low relative accelerations, the initial structure of the poured particle
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bed strongly affects the dynamic behavior during vibration. For the effect of restitution

coefficient, it becomes apparent with the increase of relative accelerations.

The main contributions of the research are duplication of four densification trends

and the establishment of relationship between the instantaneous dynamic states and final

relaxed states. At low relative accelerations, the densification mechanism is that the

particles just shift to the bottom, which makes the solids fraction increase, but this

improvement is limited. Big improvement only happens when the bed is totally

thermalized. Depth of a particle bed has big effect on the improvement in solids fraction.

With the increase of depth, the bed is postponed to attain a big improvement in solids

fraction. Some strong vibration can make shallow beds un-densify and deep beds attain

small improvement in solids fraction, the reason is strong vibration can make the solids

fraction near the bottom smaller than their initials. Smooth spheres make the beds

difficult to obtain big increase in solids fraction. Spheres with big friction coefficient

make the particle bed more sensitive to vibration and attain high increase in solids

fraction. Aspect ratio and normal stiffness have almost no effect on the evolution trends

of solids fraction, and restitution coefficient has big effect on the evolution trends of

solids fraction at big relative acceleration. With the increase of restitution coefficient, the

beds will be quicker to be thermalized and attain big improvement in solids fraction.

Similar to the derivation of solids fraction of 'loose' packing, the solids fraction of

random 'close' packing has been derived, which is very close to the experiment value,

and the particle structure against the wall is very similar with the observation in the real

experiment.

The work, which has been done, supplies some directions for the future study.
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(1) Calculate the energy distribution of rotational and translational in different zones.

(2) Use a normal force model with variable restitution coefficient to investigate

vibration —induced fluidization and densification.

(3) Modify boundary condition to a cylinder.

(4) Apply multi-disperse particle system to investigate vibration-induced segregation.

(5) Develop algorithms to simulate non-sphere particles.



APPENDIX

VIBRATION PARAMETERS FOR EXPERIMENT

1. Densification under Vibration with Mono-disperse Acrylic Spheres

Table A.1 Experiment 1 for aid = 0.04

Frequency, f, Hz Amplitude, a, inch aid Acceleration, F, g

55 0.005 0.04 1.55

60 0.005 0.04 1.84

65 0.005 0.04 2.16

70 0.005 0.04 2.51

75 0.005 0.04 2.88

80 0.005 0.04 3.28

85 0.005 0.04 3.70

90 0.005 0.04 4.15

95 0.005 0.04 4.62

100 0.005 0.04 5.12

Table A.2 Experiment 2 for aid = 0.06

Frequency, f, Hz Amplitude, a, inch aid Acceleration, F, g

55 0.075 0.06 2.32

60 0.075 0.06 2.76

65 0.075 0.06 3.24

70 0.075 0.06 3.76

75 0.075 0.06 4.32

80 0.075 0.06 4.92

85 0.075 0.06 5.54

90 0.075 0.06 6.22

95 0.075 0.06 6.93

100 0.075 0.06 7.67
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Table A.3 Experiment 3 for aid = 0.08

Frequency, f, Hz Amplitude, a, inch aid Acceleration, F, g

40 0.01 0.08 1.61

45 0.01 0.08 2.04

50 0.01 0.08 2.52

55 0.01 0.08 3.05

60 0.01 0.08 3.63

65 0.01 0.08 4.26

70 0.01 0.08 4.93

75 0.01 0.08 5.66

80 0.01 0.08 6.45

85 0.01 0.08 7.28

Table A.4 Experiment 4 for aid = 0.1

Frequency, f, Hz Amplitude, a, inch aid Acceleration, F, g

40 0.0125 0.1 2.01

45 0.0125 0.1 2.55

50 0.0125 0.1 3.15

55 0.0125 0.1 3.81

60 0.0125 0.1 4.54

65 0.0125 0.1 5.33

70 0.0125 0.1 6.16

75 0.0125 0.1 7.08

80 0.0125 0.1 8.06

85 0.0125 0.1 9.10

90 0.0125 0.1 10.20

95 0.0125 0.1 11.54
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Table A.5 Experiment 5 for aid = 0.12

Frequency, f, Hz Amplitude, a, inch aid Acceleration, F, g

35 0.015 0.12 1.88

40 0.015 0.12 2.45

45 0.015 0.12 3.11

50 0.015 0.12 3.84

55 0.015 0.12 4.64

60 0.015 0.12 5.52

65 0.015 0.12 6.48

70 0.015 0.12 7.52

75 0.015 0.12 8.63

Table A.6 Experiment 6 for aid = 0.2

Frequency, f, Hz Amplitude, a, inch aid Acceleration, F, g

25 0.025 0.2 1.60

30 0.025 0.2 2.31

35 0.025 0.2 3.14

40 0.025 0.2 4.02

45 0.025 0.2 5.10

50 0.025 0.2 6.30

60 0.025 0.2 7.62

Table A.7 Experiment 7 for aid = 0.24

Frequency, f, Hz Amplitude, a, inch aid Acceleration, F, g

25 0.03 0.24 1.92

30 0.03 0.24 2.76

35 0.03 0.24 3.76

40 0.03 0.24 4.91

45 0.03 0.24 6.22
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2. Densification under Vibration with Multi-disperse Polyethylene Pellets

Table A.8 Experiment 8 for a = 0.005 "

Frequency, f, Hz Amplitude, a, inch Acceleration, F, g

45 0.005 1.04

50 0.005 1.28

55 0.005 1.55

60 0.005 1.84

65 0.005 2.16

70 0.005 2.52

75 0.005 2.88

80 0.005 3.28

85 0.005 3.7

Table A.9 Experiment 9 for a = 0.01"

Frequency, f, Hz Amplitude, a, inch Acceleration, F, g

30 0.01 0.92

35 0.01 1.25

40 0.01 1.64

45 0.01 2.07

50 0.01 2.56

55 0.01 3.1

60 0.01 3.68



Table A.10 Experiment 10 for a = 0.015"

Frequency, f, Hz Amplitude, a, inch Acceleration, F, g

25 0.015 0.96

30 0.015 1.38

35 0.015 1.88

40 0.015 2.46

45 0.015 3.11

50 0.015 3.84

Table A.11 Experiment 11 for a = 0.02"

Frequency, f, Hz Amplitude, a, inch Acceleration, F, g

20 0.015 0.82

25 0.015 1.28

30 0.015 1.84

35 0.015 2.51

40 0.015 3.27

45 0.015 4.14
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