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ABSTRACT

ADAPTIVE LEARNING FOR
EVENT MODELING AND PATTERN CLASSIFICATION

by
Shuangshuang Dai

It is crucial to detect, characterize and model events of interest in a new propulsion

system. As technology advances, the amount of data being generated increases

significantly with respect to time. This increase substantially strains our ability to

interpret the data at an equivalent rate. It demands efficient methodologies and algorithms

in the development of automated event modeling and pattern recognition to detect and

characterize events of interest and correlate them to the system performance. The fact

that the information required to properly evaluate system performance and health is

seldom known in advance further exacerbates this issue.

Event modeling and detection is essentially a discovery problem and involves the

use of techniques in the pattern classification domain, specifically the use of cluster

analysis if a prior information is unknown. In this dissertation, a framework of Adaptive

Learning for Event Modeling and Characterization (ALEC) system is proposed to deal

with this problem. Within this framework, a wavelet-based hierarchical fuzzy clustering

approach which integrates several advanced technologies and overcomes the

disadvantages of traditional clustering algorithms is developed to make the

implementation of the system effective and computationally efficient.

In another separate but related research, a generalized multi-dimensional Gaussian

membership function is constructed and formulated to make the fuzzy classification of

blade engine damage modes among a group of engines containing historical flight data



after Principal Component Analysis (PCA) is applied to reduce the excessive

dimensionality. This approach can be effectively used to deal with classification of

patterns with overlapping structures in which some patterns fall into more than one

classes or categories.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivation

With development of a new propulsion system, the information required to properly

evaluate system performance and health is seldom known in advance. Capturing key

elements within the growing volumes of data can become quite a monumental task. In

addition, most developing systems are seldom static in their design and the task of

developing and refining a health management system concurrently with the evolving

client system design can be very difficult. Therefore, a need naturally arises for efficient

methodologies and algorithms in the development of automated event modeling to detect

and characterize events of interest and correlate them to the system performance. Event

modeling and detection is essentially a discovery problem [I] and involves the use of

techniques in the pattern classification domain, specifically the use of cluster analysis if a

prior information is unknown.

Clustering is a division of data into groups of similar objects. From a machine

learning perspective clusters correspond to hidden patterns, the search for clusters is

unsupervised learning, and the resulting system represents a data concept. Traditional

clustering algorithms can be classified into two main categories [2]: hierarchical and

partitional. In hierarchical clustering, the number of clusters need not be specified a

priori, and problems due to initialization and local minimum do not arise. However, since

hierarchical methods consider only local neighbors in each step, they cannot incorporate

a prior knowledge about the global shape or size of clusters. As a result, they cannot

1



2

always separate overlapping clusters. Moreover, hierarchical clustering is static, and

points committed to a given cluster in the early stages cannot move to a different cluster.

Partitional clustering obtains a single partition of the data instead of a clustering structure

by optimizing a criterion function defined either locally (on a subset of the patterns) or

globally (defined over all of the patterns). Partitional clustering can be further divided

into two classes: crisp clustering and fuzzy clustering. In crisp clustering, every data

point belong to only one cluster, while in fuzzy clustering every data point belongs to

every cluster to a certain degree as determined by the membership function [3].

Partitional algorithms are dynamic, and points can move from one cluster to another.

They can incorporate knowledge about the shape or size of clusters by using appropriate

prototypes and distance measures. The most often used partitional algorithm is fuzzy k-

means method. However, there are three major difficulties encountered during fuzzy

clustering of real data:

(1) The number of clusters can not always be defined a prior, and one has to find a
cluster validity criterion [23] in order to determine the optimal number of clusters
present in the data;

(2) The characteristics and location of cluster centroids are not necessarily known a
prior, and initial guesses have to be made;

(3) The presence of large variability in cluster shapes, variations in cluster densities, and
variability in the number of data points in each cluster.

Since the advantages and disadvantages of clustering algorithms of each major

category have been demonstrated, an attempt can be made to find an approach which

will combine the advantages of hierarchical and partitional clustering techniques. Within

each category of algorithms, enhancement can be made to improve performance.
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1.2 Objectives of this Study

As mentioned above, in order to build a robust framework to effectively detect events of

interest for an operational propulsion system, several advanced technologies should be

integrated in a unique manner to provide an adaptive self-learning system that detects and

characterizes key features within the data as it is being collected and develops a

knowledge base with key signatures and models of events of interest. As the system gains

knowledge through interaction with the user, of what each characteristic feature means in

relation to engine performance and health, this knowledge base becomes the foundation

for routine health assessment. The knowledge base could provide information about

variables correlated with near-term and long-term health conditions. Therefore, the

objective of the dissertation can be summarized as follows:

• To compare various clustering algorithms about their advantages and disadvantages
and decide how to modify within each standard algorithm and combine them together
in order to better detect event of interest.

• To study the wavelet transform and choose the appropriate wavelet to aid feature
extraction in the time-localized frequency.

• To study the fuzzy logic and generalize the membership function into multi-
dimensional feature space.

• To complete system integration of the proposed framework including feature
extraction, adaptive clustering and defining the signature models for prospective events.

1.3 State of the Art

Within each clustering algorithms, numerous variants have appeared. Hierarchical

clustering is inflexible due to its greedy approach: after a merge or a split is selected it is

not refined. Fisher [4] studied iterative hierarchical cluster redistribution to improve once
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constructed dendrograms. Karypis et al. [5] also researched refinements for hierarchical

clustering. The problem with partitional algorithms is the initial guess of the number of

clusters. A simple way to mitigate the effects of clusters initialization was suggested by

Bradley and Fayyad [6]. First, k-means is performed on several small samples of data

with a random initial guess . Each of these constructed systems is then used as a potential

initialization for a union of all the samples. Centroids of the best system constructed this

way are suggested as an intelligent initial guesses to ignite the k-means algorithm on the

full data. Zhang [7] suggested another way to rectify the optimization process by soft

assignment of points to different clusters with appropriate weights, rather than by moving

them decisively from one cluster to another. Nowadays, probabilistic models have been

proposed as a basis for cluster analysis. In this approach, the data are viewed as coming

from a mixture of probability distributions, each representing a different cluster. Methods

of this type have shown promise in a number of practical applications [8-10]. An

approach which combines hierarchical clustering and EM (expectation-maximization)

algorithm [11] for maximum likelihood has been proposed by Dasgupta and Raftery [12].

This approach can give much better performance than existing methods.

1.4 The Proposed Approach

In this dissertation, a self-learning adaptive system has been proposed to detect,

characterize and model events of interest through spatio-temporal analysis based

signatures of engine parameters for performance evaluation. A detailed description of this

system is presented in Chapter 2. The clusters of spatio-temporal information of specific

measured signals from an engine are obtained during windowed periods of the desired
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operation. Three window periods are utilized, namely, the Data Acquisition window, the

Processing for Event Detection window and the Model based Characterization & Update

window.

To better improve the detection results and capture the time information of the

signal, a wavelet transform will be performed on the raw data to do the feature extraction

for later stage processing.

Since a prior knowledge about the events to be modeled is not available, an

unsupervised learning is performed using a combined hierarchical fuzzy clustering

algorithm to form the clusters. In addition, the time-frequency localization based features

obtained during the first preprocessing stage are multi-dimensional, fuzzy membership

functions need to be extended to deal with multi-dimensional feature space. The clusters

are then translated into prospective events.

After learning the events, the system performs classification analysis using a

nearest neighborhood method for further analysis and characterization. The detected

events are displayed to the user for assessment. In case of inconsistencies or new

prospective events, the user is provided with the time-history based information of the

past and current occurrences of the prospective events. With interaction from the user, the

sensitivity thresholds of the clusters can be modified accordingly. This leads to the

property of adaptive learning of our system.

1.5 Organization of the Dissertation

The whole dissertation is divided into five chapters:

(1) Introduction;
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(2) Background and Literature Review;

(3) Methodology;

(4) Results and Discussion and

(5) Conclusions and Future Work.

Chapter 2 presents a brief background and literature review. In Section 2.1 the

various clustering algorithms are presented and their advantages and disadvantages are

compared and contrasted. Section 2.2 describes the proposed Adaptive Learning for

Event Modeling and Characterization (ALEC) system from a high-level view. The

implementations of the ALEC system are detailed in Chapter 3. Each individual

component is thoroughly examined and corresponding algorithm is proposed and

evaluated. Chapter 4 shows the experimental results to prove the feasibility of

implementation of the system and good performance of each algorithm applied. In

Chapter 5, conclusions drawn from the studies done so far are given and the future work

to be done is also presented.



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Background

In this section, a brief summary of various techniques for event detection and data

clustering is presented. The advantages and disadvantages of these techniques are

mentioned. The summary presented is based on an extensive review of the literature. This

section formulates the proposed approaches used in this dissertation.

2.1.1 Event and Event Detection

Without a set of rules, different individuals will have different notions of what constitutes

an event. An event can be defined as something that happens at some specific time and

place [13]. From this definition it can be seen that an event is associated with two

important characteristics: time and place. Event-related philosophy concludes that two

events are the same if they have the same spatio-temporal history, and that events are

identical if they have the same causes and effects. Lombard [1;15] discusses why these

properties are not sufficient conditions for event identity. He presents a model for events

that includes the aspect of change, which he defines as " the addition or loss of

properties." Event detection is heavily studied in the world of media in which the

objective is to identify stories in several continuous news streams that pertain to new or

previously unidentified events [5]. While in this dissertation the counterpart of the news

streams is the time series signals (e.g., pressure measurement of the rocket engine). Event

detection consists of two tasks: retrospective detection and on-line detection. The former

entails the discovery of previously unidentified events in an accumulated collection, and

7
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the latter strives to identify the onset of new events from signal feeds in real-time.

Detection of events is in fact a knowledge discovery problem, i.e., mining the data

stream for new patterns in signals. Bottom-up signal clustering appears to be a natural

solution for the discovery of natural clusters without introducing any assumptions about

the domain. Moreover, bottom-up clustering can result in a cluster hierarchy, thus

allowing observation at any level of abstraction in the information space. Higher levels of

clusters give progressively coarse grain overviews of the content of signal groups, while

lower levels provide tighter clusters corresponding to specific events, or temporal phases

of events.

2.1.2 Pattern Classification and Cluster Analysis

Before the discussion of pattern classification and cluster analysis can be delved into,

some definitions are given first to make the discussion easy.

(1) Definitions and Notation

Pattern -- A pattern ( or feature vector, observation, or datum) z is a single data item

used by the clustering algorithm. It typically consists of a vector of d measurements:

Feature -- The individual scalar components x i of a pattern z are called features (or

attributes).

Dimensionality -- d is the dimensionality of the pattern or of the pattern space.

Pattern set -- A pattern set is denoted 8 = {x1,...xn}. The ith pattern in	 is denoted

= (xij ,...xi ,d ). In many cases, a pattern set to be clustered can be viewed as an n x d

pattern matrix.
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Class -- A class, in the abstract, refers to a state of nature that governs the pattern

generation process. More concretely, a class can be viewed as a source of patterns whose

distribution in feature space is governed by a probability density specific to the class.

Clustering techniques attempt to group patterns so that the classes thereby obtained

reflect the different pattern generation processes represented in the pattern set.

Hard clustering -- Hard clustering techniques assign a class label i to each pattern xi ,

identifying its class.

Fuzzy clustering -- Fuzzy clustering procedures assign to each input pattern xi a

fractional degree of membership 	 in each output cluster j.

Distance measure -- A distance measure is a metric on the feature space used to quantify

the similarity of patterns.

(2) Pattern Classification

A traditional pattern classification system can be viewed as a mapping from input

variables representing the raw data set to an output variable representing one of the

categories or classes. Because of the curse of dimensionality [44], it is nearly always

advantageous to apply pre-processing transformations to the raw data before it is fed into

the classification system. Pre-processing usually involves feature selection and/or feature

extraction. Feature selection is the process of identifying the most effective subsets of

the original features to be used in the clustering while feature extraction is the use of one

or more transformations of the input features to generate new salient features.

After the preprocessing and pattern representation are established, interpattern

similarity should be defined on pairs of patterns and it is often measured by a distance

function. Finally, the output of the grouping step is a collection of different clusters and
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it can be hard (a partition of the data into groups) or fuzzy where each pattern has a

variable degree of membership in each of the output clusters. The following figure

shows the schematic diagram of a typical classification system which underlies the

proposed approaches presented in this dissertation.

Figure 2.1 A typical classification system.

(3) Cluster Analysis

Cluster analysis is the organization of a collection of patterns (usually represented as a

vector of measurements, or a point in a multidimensional space) into clusters based on

similarity. Intuitively, patterns within a valid cluster are more similar to each other than

they are to a pattern belonging to a different cluster.

Since similarity is fundamental to the definition of a cluster, a measure of the

similarity between two patterns drawn from the same feature space is essential to most

clustering procedures. Because of the variety of feature types and scales, the proper

choice of distance measure is of great importance. It is most common to calculate the

dissimilarity between two patterns using a distance measure defined on the feature space.

Euclidean distance is the most popular metric and it is defined as:
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It is noted that Euclidean distance is actually a special case (p=2) of the Minkowski

metric which is :

The Euclidean distance has an intuitive appeal as it is commonly used to evaluate

the proximity of objects in two or three-dimensional space. It works well when a data set

has "compact" or "isolated" clusters [16]. The drawback to the direct use of the

Minkowski metrics is the tendency of the largest-scaled feature to dominate all others.

Solutions to this problem include normalization of the continuous features or other

weighting schemes. Linear correlation among features can also distort distance measures.

This distortion can be alleviated by applying a whitening transformation to the data or by

using the squared Mahalanobis distance:

Where the patterns xi and xi are assumed to be row vectors and A is the sample

covariance matrix of the patterns or the known covariance matrix of the pattern

generation process. dm (x i ,xj ) assigns different weights to different features based on

their variances and pairwise linear correlations. It is implicitly assumed here that class

conditional densities are unimodal and characterized by multidimensional spread, i.e.,
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that the densities are multivariate Gaussian. The regularized Mahalanobis distance was

used in [16] to extract hyperellipsoidal clusters.

Traditional clustering algorithms can be classified into two main categories [2]:

hierarchical and partitional. In hierarchical clustering, the number of clusters need not be

specified in advance, therefore no problems due to initialization and local minima

occur. It builds a cluster hierarchy or, in other words, a tree of clusters. Every cluster

node contains child clusters; sibling clusters partition the points covered by their common

parent. Such an approach allows exploring data on different level of granularity.

Hierarchical clustering methods are divided into agglomerative and divisive [2;17]. An

agglomerative clustering starts with one-point (singleton) clusters and recursively

merges two or more appropriate clusters. A divisive clustering starts with one cluster of

all data points and recursively splits the most appropriate cluster. The process continues

until a stopping criterion, e.g., the desired number k of clusters, is achieved.

To merge or split subsets of points rather than individual points, the distance

between individual points has to be generalized to the distance between subsets. Such

derived proximity measure is called a linkage metric. The type of the linkage metric used

significantly affects hierarchical algorithms, since it reflects the particular concept of

closeness and connectivity. Major inter-cluster linkage metrics include single link,

average link and complete link [18-19]. The underlying dissimilarity measure (usually

distance) is computed for every pair of points with one point in the first set and another

point in the second set. A specific operation such as minimum (single link), average

(average link), or maximum (complete link) is applied to pair-wise dissimilarity

measures:



13

Early examples include the algorithm SLINK [20] which implements single link,

Voorhees' method [21] which implement average link, and the algorithm CLINK [22]

which implements complete link. Of the three prominent algorithms, SLINK is

referenced the most which is related to finding the Euclidean minimal spanning tree and

has 0(N 2 ) complexity.

All of the above linkage metrics can be derived as instances of the Lance-

Williams updating formula[23].

Here a, b, c are coefficients corresponding to a particular linkage. This formula expresses

a linkage metric between the union of two clusters, Ci and Cj , and a third cluster, Ck in

terms of underlying components. The Lance-Williams formula has an utmost importance

since it makes manipulation with dissimilarity computationally feasible. Jain and Dubes

[2] introduced the original average link agglomeration algorithm — Group-Average

Method.

Linkage metrics-based hierarchical clustering suffers from time complexity. Under

reasonable assumptions, such as reducibility condition, linkage metrics methods have

0( N 2 ) complexity [19]. Ward [23] implements an agglomerative clustering based not on

a linkage metric, but on an objective function used in k-means. The merger decision is

made in terms of its effect on the objective function. Chiu et al. [24] proposed another
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hierarchical clustering algorithm using a model-based approach in which maximum

likelihood estimates were introduced.

Traditional hierarchical clustering is inflexible due to its greedy approach: after a

merge or a split is selected, it is not refined. In addition, since they consider only local

neighbors in each step, they cannot incorporate a prior knowledge about the global shape

or size of clusters. As mentioned in Chapter 1, they cannot always separate overlapping

clusters. Moreover, hierarchical clustering is static, and points committed to a given

cluster in the early stages cannot move to a different cluster.

A partitional clustering algorithm obtains a single partition of the data instead of a

clustering structure, such as the dendrogram produced by a hierarchical technique.

Partitional methods have advantages in applications involving large data sets for which

the construction of a dendrogram is computationally prohibitive. The partitional

techniques usually produce clusters by optimizing defined either locally (on a subset of

the patterns) or globally (over all of the patterns). K-means [25] is the simplest and most

commonly used algorithm employing a squared error criterion which is defined as:

It starts with a random initial partition and keeps reassigning the patterns to

clusters based on the similarity between the pattern and the cluster centers until a

convergence criterion is met, e.g., there is no reassignment of any pattern from one

cluster to another, or the squared error ceases to decrease significantly after some number

of iterations. The k-means algorithm is popular because it is easy to implement and its

time complexity is 0(N), where N is the number of patterns. A major problem with this

algorithm is that it is sensitive to the selection of the initial partition and may converge to
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a local minimum of the criterion function value if the initial partition is not properly

chosen. Bradley and Fayyad [6] suggested a way to mitigate the effects of cluster

initialization.

One variation to the k-means algorithm is to permit the splitting and merging of

the resulting clusters. Typically, a cluster is split when its variance is above a pre-

specified threshold and two clusters are merged when the distance between their

centroids is below another pre-specified threshold. Under such a scheme, it is possible to

obtain the optimal partition starting from any arbitrary initial partition, provided proper

threshold values are specified.

Another variation of the k-means algorithm involves selecting a different criterion

function altogether. Diday [26] and Symon [27] described a dynamic clustering approach

obtained by formulating the clustering problem in the framework of maximum-likelihood

estimation. The regularized Mahakanobis distance was used in Mao and Jain [16] to

obtain hyperellipsoidal clusters.

On the other hand, partitional clustering algorithms can be divided into two

classes: crisp (or hard) clustering and fuzzy clustering. Hard clustering is the traditional

approach in which each pattern belongs to one and only one cluster. Hence, the clusters

in a hard clustering are disjoint. Fuzzy clustering extends this notion to associate each

pattern with every cluster using a membership function [2]. Fuzzy set theory was

initially applied to clustering in Ruspini [28]. The most popular fuzzy clustering

algorithm is the fuzzy k-means (FCM) algorithm. A generalization of the FCM algorithm

was proposed by Bezdek [29] through a family of objective functions. A fuzzy c-shell

algorithm and an adaptive variant for detecting circular and elliptical boundaries was



16

presented in Dave [30]. It was also extended in medical image analysis to segment

magnetic resonance images [31]. Even though it is better than the hard k-means

algorithm at avoiding local minima, FCM can still converge to local minima of the

squared error criterion. The design of the membership function is the most important

problem in fuzzy clustering; different choices include those based on similarity

decomposition and centroids of clusters.

2.1.2 Wavelet Transform

The wavelet transform is a synthesis of ideas that emerged over many years from

different fields, such as mathematics and signal processing. In order to better appreciate

the role wavelet plays in the analysis, an introduction is briefly given here to the history

of wavelets. In the early days of signal analysis, the Fourier transform proved to be an

extremely useful tool, which broke down a signal into constituent sinusoids of different

frequencies of interest. However, Fourier analysis has a serious drawback in that time

information is lost when transforming from the time domain to the frequency domain.

When the frequency representation of a signal is looked into, it is impossible to tell when

a particular event took place. If the signal properties do not change much over time, this

drawback may be ignored. However, most interesting signals like the ones used in this

project contain numerous abruptly changing data points, and these changes are often the

most important part of the signals . Therefore, Fourier analysis is not suited for detecting

characteristic changes in the time-series signals.

The next step forward in correcting the Fourier's deficiency comes with the Short-

Time Fourier Transform (STFT) [32]. This technique adapted the Fourier transform to

analyze only a small section of the signal at a time. As a matter of fact, STFT maps a
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signal into a two-dimension function of time and frequency. The STFT represents a sort

of compromise between the time- and frequency-based views of a signal. It tells some

information about both when and at what frequencies a signal event occurs. This

information is, nevertheless, obtained with limited precision, and that precision is

determined by the size of the window. A major shortcoming with STFT is that the

window size is fixed for all frequencies, once a particular size for the time window is

chosen. In real applications, many signals require a variable window size in order to

determine more accurately either time or frequency.

Wavelet transform allows the use of long time intervals where more precise low-

frequency information is wanted, and shorter regions where high-frequency information

is needed. Thus, one major advantage afforded by wavelets is the ability to perform local

analysis — that is, to analyze a localized area of a larger signal. Thus, wavelet analysis is

capable of revealing aspects of data that other signal analysis techniques miss, such as

trends, breakdown points, and discontinuities in higher derivatives. Wavelet theory has

been under intensive study during the last decade [32-35]. Scaling and shifting are two of

the most important concepts in wavelet analysis. Scaling a wavelet simply means

stretching ( or compressing) it while shifting a wavelet simply means delaying (or

hastening) its onset. Daubechies wavelets [32] are compactly orthonormal wavelets

which make discrete wavelet analysis practicable. Wavelet analysis has seen numerous

applications in statistics [36], time series analysis [37] and image processing [38].

Coifman et al. [39] have generalized the wavelet basis function to include a library of

modulated waveform orthonormal bases called wavelet packets. Furthermore, Wavelet

transform has been extensively used in data mining field [40] because of its many



18

favorable properties, such as vanishing moments, hierarchical and multi-resolution

decomposition structure, linear time and space complexity of the transformations,

decorrelated coefficients and a wide variety of basis functions.

2.2 Adaptive Learning for Event Modeling and Characterization (ALEC)

By combining the techniques introduced above, an integrated approach can be developed

to effectively monitor and characterize the event of interest of the propulsion system. The

following figure gives a schematic representation of the operating windows of the

proposed ALEC system using time-history based adaptive clustering of the selected

measurements as well as wavelet based temporal frequency components.

Figure 2.2 The time windows for the operations of the proposed ALEC system.
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The figure above shows that one cycle consists of three major time windows.

Below is a brief explanation of the functional operation of each time window.

(a) Data Collection window: In this time window, the input signal is obtained. The
signal should be collected over a time period that is large enough for
accumulating sufficient number of samples to implement wavelet transform.

(b) Processing for Event Modeling time window: In this window, the time-frequency
features are computed using the wavelet transform.

(c) Model-based Characterization and Update time window: In this time window, the
time-frequency features are analyzed and clustered for characterization and the
event signature models are updated accordingly.

The cycle of steps (a)-(c) is repeated for another sequential time window as the data

acquisition is continued.

2.3 Summary

In this chapter, an extensive literature review is presented to demonstrate the state of the

art of the approaches. With focus in algorithms directly applicable to the implementation

and realization of the ALEC system, a clear understanding can be obtained as to how to

combine the advantages of each major category of clustering algorithm to produce an

effective and feasible framework to characterize and model the event of interests.



CHAPTER 3

METHODOLOGY

3.1 ALEC Method

In Section 2.2, the time windows are given and labeled to show how measurement and

processing occurs at each stage. Next a schematic diagram of the proposed ALEC

system during the training phase is shown as follows:

Figure 3.1 System diagram during the training phase of ALEC. (1) Absolute
measurement (2) Wavelet decomposition features (3) Statistical features

As can be seen from the above, after the raw data is fed, a series of operations are

performed to obtain the necessary measurements in order to be used in later processing.

These measurements include (1) Absolute measurement, the raw value acquired at

that particular instant; (2) Wavelet decomposition features which contains approximation

20
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and (3) Statistical features.

Here is the description of the processing stages during the training phase which

roughly correspond to the blocks shown in Figure 3.1:

(a) The features in the wavelet domain are clustered using the hierarchical fuzzy
clustering method described later in this chapter.

(b) Using a specific threshold on the clustered features, events are flagged and
presented to the user for comments and categorization.

(c) Signatures of categorized events are stored in the model signature database.

(d) Other signature of the prospective events that have not been acknowledged by
the user are stored in the event database for future references and correlation
analysis.

3.2 Feature Extraction

Feature extraction is an essential part in any pattern recognition system and belongs to

the preprocessing stage of a classification system. The choice of preprocessing will be

one of the most significant factors in determining the performance of the final system.

The features to be used in the ALEC system include direct measurement features and

processed features.

3.2.1 Direct Measurement Features

In the modeling of event of interests of the propulsion system, the direct measurement is

the pressure value taken at the pneumatic valve. Its unit is psia and sampled at certain

frequency. Therefore, each measurement carries two pieces of relevant information: the

pressure values which can be used as the elements of features in a later classification
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stage, and the timestamp. This timestamp will allow us to look into the time history of the

signal when inconsistencies occur.

3.2.2 Processed Features - Wavelet Transform

Wavelet transform is the decomposition of a signal with a family of real orthonormal

bases Ψm,n (x) obtained through translation and dilation of a kernel function Ψ(x) ,

known as the mother wavelet, i.e.,

where m and n are integers. Due to the orthonormal property, the wavelet coefficients of

a signal f (x) can be easily computed via

and the synthesis formula

can be used to recover f (x) from its wavelet coefficients.

To construct the mother wavelet Ψ(x) , a scaling function may be first

determined, which satisfies the two-scale difference equation [33 ; 41]

Then, the wavelet kernel Ψ(x) is related to the scaling function via
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The coefficients h(k) in (3.2) have to meet several conditions for the set of basis wavelet

functions in (3.1) to be unique, orthonormal, and have a certain degree of regularity [41].

Several different sets of coefficients h(k) satisfying the above conditions can be found in

[32-33; 35; 42].

The coefficients h(k) and g(k) play a very crucial role in a given discrete wavelet

transform. To perform the wavelet transform does not require the explicit forms of

0(x) and Ψ(x) but only depends on h(k) and g(k) . Consider a J-level wavelet

decomposition which can be written as

where coefficients Co dc are given and coefficients

related to coefficients C j,k at scale j via

cj+1,n 	and di+1,n 	 at scale 	 j +1 are

where 0 5 j J . Thus, (3.6) provides a recursive algorithm for wavelet decomposition

through h(k) and g(k) , and the final outputs include a set of J-level wavelet coefficients
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di „,	 j J , and the coefficient cj,n for a low-resolution component 0 k (X) . By

using a similar approach, a recursive algorithm can be derived for function synthesis

based on its wavelet coefficients	 and c,n

It is convenient to view the decomposition (3.6) as passing a signal c j+1,n through

a pair of filters H and G with impulse response h(x) and g (x) and downsampling the

filetered signals by two (dropping every other sample), where h(x) and g (x) are

defined as

The pair of filters H and G correspond to the halfband lowpass and highpass filters,

respectively, and are called the quadrature mirror filters in the signal processing

literature. The reconstruction procedure is implemented by upsampling the subsignals

cj+1 and dj+1 (inserting a zero between neighboring samples) and filtering with h(n) and

g (n) , respectively, and adding these two filtered signals together. Usually the signal

decomposition scheme is performed recursively to the output of the lowpass filter h. It

leads to the conventional wavelet transform or the so-called pyramid-structure wavelet

decomposition.
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In summary the wavelet transform decomposes the signal as a linear combination

of weighted basis functions to provide frequency localization with respect to the sampling

parameter such as time or space. The multi-resolution approach of the wavelet transform

establishes a basic framework of the localization and representation of different

frequencies at different scales.

Wavelet transforms may also used to smooth data. This is accomplished by

applying a wavelet transformation to the noisy data, thresholding the resulting

coefficients which are below some value in magnitude, and then inverse transforming to

obtain a smoother version of the original data. This process has been coined Wavelet

Shrinkage by Donoho and Johnstone [48-51].

Standard wavelet transforms have traditionally been implemented using

Quadrature Mirror Filters. Since filters are used, this requires that the samples be

uniformly spaced. There is an alternative wavelet transform based upon the idea of

interpolating subdivision [53-54] which was created by Wim Sweldens [55-56].

Sweldens coined these wavelets as Second Generation Wavelets. These biorthogonal

wavelets are constructed through a technique he called Lifting. Lifting is a method of

increasing the number of vanishing moments of the decomposition function.

Daubechies wavelets [32;52] are compactly orthonormal wavelets which make

discrete wavelet analysis practicable. The names of the Daubechies family wavelets are

written dbN, where N is the order. In the dissertation db2 has been chosen for its good

derivative property. On the other hand, wavelet analysis can be performed at multiple
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levels depending on the requirements of the applications. The following figure depicts a

three-level decomposition of a signal:

Figure 3.2: A three-level wavelet decomposition tree,
A means approximation and D means detail.

3.3 Fuzzy Hierarchical Clustering

Cluster analysis can be generally defined as decomposing or partitioning a data set into

groups so that the points within one group are similar to each other and are as different as

possible from the points in other groups. Currently there are three categories of solutions

to this problem: those based on an attempt to find the optimal partition into a specified

number of clusters, those based on a hierarchical attempt to discover cluster structure and

those based on a probabilistic model for the underlying cluster [43]. In some cases, some

prior knowledge is available to guide the process of clustering. Therefore, a general

hierarchical clustering combined with supervised knowledge can be depicted in Figure

3.3.
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Figure 3.3 Hierarchical clustering with prior knowledge.

3.3.1 Hierarchical Clustering with the Agglomerative Method

There are generally two ways to perform hierarchical clustering, one is the agglomerative

(which merges) and the other is the divisive (which divides). Hierarchical methods of

cluster analysis permit a convenient graphical display in which the entire sequence of

V
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merging (or splitting) is shown. Because of its tree-like nature, the display has the name

of dendrogram. The agglomerative method is usually chosen because it is more important

and more widely used. One reason for the popularity of agglomerative method is that

during the merging process the choice of threshold is not a big concern which will be

illustrated in the details of the algorithm shown below. In contrast, divisive methods are

more computationally intensive and the difficulty of choosing potential allocations to

clusters during the splitting stages.

Agglomerative methods are based on measures of distance between clusters.

Essentially, starting with an initial clustering, they merge those two clusters that are

nearest, to form a reduced number of clusters. This is repeated until just one cluster is

obtained. Usually the starting point for the process is the initial clustering in which each

cluster consists of a single data point. Suppose that n sample points are to be clustered,

the initial number of clusters will be n as well. Therefore, an agglomerative algorithm for

clustering can be described as follows:

Assume there are n data points D={x(1),...,x(n)} and a function D(Ci , Cj) is

defined as measuring the distance between two clusters Ci and q .

Algorithm 1. (Agglomerative Hierarchical Clustering)

Step 1:	 for i=1,..., n let Ci = { x(i) }

Loop:	 While there is more than one cluster left do

Minimizing the distance D(Ck , Ch ) between any two clusters

Let	 JC1. and C- be the clusters with minimum distance
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Remove cluster q ;

End

In the above algorithm, some consideration should be taken about the distance

measure. Normally Euclidean distance is employed which assume some degree of

commensurability between the different variables. It makes less sense if the variables are

non-commensurate, that is, variables are measured in different units. This is the case in

the study of the fuzzy classification of turbine blade fatigue modes. A common strategy is

to standardize the data by dividing the sample value of each of the variables by its sample

standard deviation, so that they are equally important [44]. This strategy is utilized in this

dissertation to classify the turbine blade fatigue modes. Figure 3.4 shows a sample

dendrogram.
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Figure 3.4 A sample dendrogram.

3.3.2 Fuzzy Classification

Conventional classification approaches always assign a new unidentified object into

exactly one category by means of classifier constructed from the training data set. Even

though they are suitable for various applications and have proven to be an important tool,

they do not reflect the nature of human concepts and thoughts, which tend to be abstract

and imprecise. In real world, to set a crisp boundary often makes the result intuitively

unreasonable. It can be observed from Figure 4.1 that the engine mode categories are

actually overlapping with each other, which implies that a particular engine may fall into

two or more different categories. Thus the introduction of fuzzy logic into the realm of
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classification becomes necessary. Another better justification for employing fuzzy logic

is to represent via membership functions the extent to which various fatigue modes

might be present in an engine blade.

(1) Fuzzy Set and Membership Function

In contrast to a classical set, a fuzzy set is a set without a crisp boundary. If X is a

collection of objects denoted generically by x, then a fuzzy set A in X is defined as a set

of ordered pairs:

where PA (x) is called the membership function (MF) for the fuzzy set A and its value

ranges from 0 to 1. In short, a membership function can be viewed as a curve that

defines how each point in the input space is mapped to a membership value ( or degree of

membership) between 0 and 1. The input space, or X in the definition, is sometimes

referred to as universe of discourse which may consist of discrete objects or continuous

space. Next one example is shown to illustrate the concept of membership function.

Suppose a researcher is given a task of defining a person as "middle-aged". Always in

practice, a range of ages, say, between 40 and 50, is considered as "middle-aged". This

statement can be expressed in a mathematical way. Here the generalized Cauchy

distribution is used to specify the MF :
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where c is the median value of the range, in this example it is 45, a and b are parameters

to adjust the width and sharpness of the curve. Now the curve of membership function is

drawn as PA (x) = bell(x;15,3,45) in Figure 3.5.

Figure 3.5 A plot of the Bell membership function bell(x; 15, 3, 45).

As shown above, it can be seen that the definition of "middle aged" is very natural

without a crisp boundary. If your age is between 40 and 50 you MF value is 1 which is

considered middle-aged. If you are 35 years old, you are more likely considered to be

middle-aged than to be considered as young because your MF value is around 0.8. This

model can be extended into a more meaningful one in which X, the universe of discourse

is partitioned into several fuzzy sets whose MFs cover X in a more or less uniform

manner. The following figure shows three MFs that define a person as "young", "middle

aged" or "old".



Figure 3.6 A plot of three Bell MFs for "young", "middle aged" and "old".

Therefore, a particular age has three corresponding MF values in different

categories. As mentioned before, the three MFs totally cover the value range of X and the

transition from one MF to another is smooth and gradual.

(2) Membership Function Formulation

The classes of parameterized functions used to define functions include the following:

Triangular MFs, Trapezoidal MFs, Gaussian MFs and Bell MFs, as used above. In the

project of classifying blade fatigue modes, the Gaussian MF is used with the assumption

that the sample engines are selected from a population with Gaussian distribution. In

addition, the one-dimensional Gaussian MF needs to be extended to multi-dimensional

Gaussian MF since in the analysis each engine has many parameters which are correlated

with each other. This means that the multi-dimensional Gaussian MF is not simply a

33
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multiplication of MF of each individual variable. Therefore, a need arises to derive the

following formula to calculate the multi-dimensional Gaussian MF.

Where X and M are column vectors defined by:

m i is the mean value of variable x1 .

K is covariance matrix of variables x1 , which is defined as:

(3) Fuzzy k-means Clustering

The fuzzy k-means algorithm [45] is based on minimization of the following objective

function, with respect to U, a fuzzy K-partition of the dataset, and to V, a set of K

prototypes:
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where q is any real number greater than 1, X j is the j-th m-dimensional feature vector,

V is the centroid of the ith cluster, u 13 is the degree of membership of X j in the ith

cluster. d 2 (X j ,Vi ) is any inner product metric (distance between X j and V j ), N is the

number of data points. K is the number of clusters. The parameter q is the weighting

exponent for u 13 and controls the "fuzziness" of the resulting clusters [29].

Fuzzy partition is carried out through an iterative optimization of (3.12) according

to [45]:

1) Choose primary centroid V (prototypes);

2) Compute the degree of membership of all feature vectors in all the clusters:

3) Compute new centroids V :

and update the degree of membership, /44 to Ulf , according to (3.13).

where e is a termination criterion between 0 and 1.



Computation of the degree of membership u13 depends on the definition of the distance

The inclusion of A (an m x m positive-definite matrix) in the distance measure results in

weighting according to the statistical properties [29]. In the dissertation, Euclidean

distance which is the default measurement for fuzzy k-means algorithm was used.

Therefore, A equals the identity matrix.

3.4 Competitive Learning and Classification of Events

Clustering algorithms such as k-means and hierarchical (introduced above) clustering

typically have all data present before clustering begins. However, our case is not

applicable to this assumption because the data or the raw signal arrives continuously.

Under this condition, two problems may be run into: (1) there is a short supply of

memory to store all the patterns themselves ( this problem would not occur if the machine

had large amounts of computer memory) or (2) the clusters need to be used even before

the full data are present which is exactly the case studied here [46].

In order to evaluate the performance of the clustering algorithm, some criteria

must be established in guiding the clustering process and comparing different schemes.

Here the simple yet useful sum-of-squared-error criterion is used , which is briefly stated

as follows. Let D be the set of n samples, that is, D = x 1 , x2 .... xn 1. Suppose that
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these samples needs to be partitioned into exactly c distinct subsets D 1 , D2 ... De . Each

subset is to represent a cluster. On the other hand, let n i be the number of samples in D il

and let m i be the mean of those samples.

Then the sum-of-squared errors is defined by

Our goal is to try to minimize J e . This type of clustering is often called mimimum

variance partitions.

The other important question related to on-line clustering is the stability or

convergence problem. Sometimes a cluster structure may be present which is unstable

and continually wander and drift. Under such condition, the most recently acquired piece

of information can cause major reorganization. The reason for this problem is that the

clustering is guided by the global criterion one of which is discussed above. Every

sample can have an influence on the location of a cluster center, regardless of how remote

it might be. Some scheme must be come up with to overcome this influence and confine

the learning adjustments to the cluster that is most similar to the pattern currently being

presented. As a result, the characterizations of previously discovered clusters that are not

related to the current pattern are not disrupted. The scheme is referred to competitive

learning. In the ALEC project, a leader-follower clustering algorithm belonging to the

category of competitive learning has been implemented. The algorithm is described as
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follows which alter only the cluster center most similar to a new pattern being presented.

Let w il denote the current center for cluster i, let 77 denote a learning rate and let 0

denote a threshold.

Algorithm 2. (Leader-Follower Clustering)

Begin initialize η and 0

->

Do accept new X

Calculate the fuzzy membership function and find nearest cluster j

if II X- Wj II < 0

then	 //hen W. + X -> W.

else add new X-> W

normalize weight

until no more patterns

return W1, W2, ...

End

In the project of event modeling and characterization of engine pressure the

following events of interest are defined and intended to be characterized and detected.

Here a brief introduction to each of them is given so that a better understanding of how

the engine works can be gained.
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(1) PV07 Commanded Open

(2) PV02 Commanded Open/PV02 Open Command Discontinued

(3) SVO2 Commanded Open/SVO2 Open Command Discontinued

The symbol PV07 is a pneumatic valve immediately downstream of the RP-1 tank

that is opened to allow the propellant to begin "bleeding" into the engine feedline; the

symbol PV02 is a second pneumatic valve downstream of the RP-1 tanks that must be

opened to allow propellant into the engine.

The symbol SVO2 represents the pressurization valve that is opened to pressurize

the tanks from approximate 23psia to 53psia.The system goes into a controller process to

maintain the tank pressure from 53psia to 47psia. The overshoot is due to the rate of

pressurization and the very small amount of ullage initially in the tank.

3.5 Principal Component Analysis

In one project conducted in this dissertation, a population of 17 engines were provided

and the dimension of variables was as much as 28. The detail for this project will be

detailed in Chapter 4. Because of the curse of dimensionality, it is nearly always

advantageous to apply preprocessing transformation to the raw data before it is fed into

the classification system. This comes to the use of Principal Component Analysis (PCA).

The central idea of PCA is to reduce the dimensionality of a data set which consists of a

large number of interrelated variables while retaining as much as possible of the variation

present in the data set [47].
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The goal here is to map vectors X d in a d-dimensional space (x 1 , x2 ...xd ) onto

vectors Z M in an M-dimensional space (z 1 , z 2 ...zm ) where M<d. Without loss of

generality we express vector X as a linear combination of a set of d orthonormal vectors

u i

Where the vectors u i satisfy the orthonormality relation

Therefore the coefficient in (3.18) can be expressed as

Now suppose that only a subset of M<d of the basis vectors u i are to be retained,

so that only M coefficients x i are used. In general, PCA does not retain a subset of the

original set of basis vectors. It finds a new set of basis vectors that spans the original d-

dimensional space such that the data can be well represented by a subset of these new

basis vectors. Here v i is used to denote the new basis vectors which meet the

orthonormality requirment . As above, only M coefficients xi are used and the remaining

coefficients will be replaced by constants bi . Now each vector x is approximated by an

expression of the form
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An attempt to choose the basis vectors v i and the coefficients bi is to be made

such that the approximation 	 given by (3.21), with the values of xi determined by

(3.22), gives the best approximation to the original vector X on average for the whole set

data set. Then next step is to minimizes the sum of squares of errors over the whole data

set. The sum-of-square error can be written as follows:

Where A is the covariance matrix of the set of vectors X' , which is defined as follows:

Now the problem is converted to minimizing EM with respect to the choice of basis

vectors v i . A minimum value is obtained when the basis vectors satisfy the following

condition.

Thus v i (i=M+1...d) are the eigenvectors if the covariance matrix. Note that, since the

covariance matrix is real and symmetric, its eigenvectors can indeed be chosen to be

orthonormal. Finally the minimum of error is in the form:
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Therefore, the minimum error is achieved by rejecting the (d-M) smallest eigenvalues

and their corresponding eigenvectors. The first M largest eigenvalues are then retained.

Each of the associated eigenvectors v i is called a Principal Component.

In the theory of matrix, an algorithm called Singular Value Decomposition (SVD)

can be employed to calculate the eigenvalues and its corresponding eigenvectors. The

use of SVD has two important implications. First it is computationally efficient and

second it provides additional insight into what a PCA actually does. It also provides a

way to represent the results of a PCA both graphically and analytically.

After the exploration of the concept of PCA and how it can be obtained, another

question occurs naturally: how the number of PCAs or a subset of the original variables

will be selected, that is, how to determine the dimension of M in the Z" . There are

several approaches to this problem [47]. In the project of classifying engine blade fatigue

modes, the approach employed is to choose a subset of the original variables after

discarding the variables which contribute below the threshold of variance (0.02 in the

case) in the data set .



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Fuzzy Classification of Engine Blade Fatigue Modes

In this section, a task has been carried out to classify engine blade fatigue modes using a

generalized multi-dimension Gaussian membership function. First the problem

description is given, then Principal Component Analysis is applied for feature extraction.

Finally results and discussion are presented.

4.1.1 Problem Description

The purpose of this work is to investigate the combined use of statistical analysis and

fuzzy logic techniques in developing a model for turbine blade fatigue to the higher

pressure turbine of an aircraft engine. To investigate this task, a data set was provided

that contained flight history information for a set of engines whose turbines were

warranty-repaired by Pratt and Whitney for a reason other than that of blade damage,

which corresponds to the normal incremental wear and tear of engine parts. The

predetermined categories of blade fatigue are oxidation/erosion (OE) related, thermo-

mechanical (TMF) related and other reason related as shown in the following figure.

Figure 4.1 shows that some engine blade falls into more than one category which results

in an overlapping structure. In order to address this problem, generalized multi-

dimensional Gaussian membership function is then formulated so that its validity can be

verified.
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Figure 4.1 Predefined engine blade fatigue modes.

As can be seen from Figure 4.1, the fatigue modes for the first 17 engines have

been predetermined by the domain expert in a manner which contains overlapping

structures. For each engine, the flight history data was provided in a text file which

contains 28 parameters shown in the following table:



Table 4.1 A List of 28 Engine Variables and Their Description

Parameter
names

Parameter description Engineering
units

Notes Data
recorded

in
Take-off files

Data
recorded in
Cruise files

ACID1 XXAircraft Id Code Lowest 4 Bytes x x
ACID2 XXAircraft Id Code Highest 4 Bytes x x
DATE Date MM/DD/YY x x
GMT Greenwich Mean time (hhmm) x x

MACH MACH Number mach x x
TAT Total Air Temperature deg.0 x x
IAS Indicated Air Speed knots x x
ALT Altitude (Pressure) ft. x x
SAT Static Air Temperature deg.0 x

DEPART XXDeparture City-Code x x
ARRIVE XXDestination City-Code x x

N1 Low Pressure Rotor Speed xx.x % 100%=2990rpm x x
N2 High Pressure Rotor

Speed
xx.x % 100% =

10800rpm
x

WF Fuel Flow PPH x
TLA Throttle Lever Angle deg. (-45.0 to 90.0) x
T2 Engine Inlet Temperature deg.0 x
T25 LPC Exit Temperature deg.0 x
T3 Compressor Exit Temp deg.0 x

EGT Exhaust Gas Temperature deg.0 x x
P25 LPC Exit Pressure psia x
PB Burner Pressure psia x
P5 Exhaust Gas Pressure psia x x
P2 Engine Inlet Pressure psia x x

PAMB Ambient Pressure psia x
TCAPOS Turbine Cooling Air

Position
% open (-5.0 to 105.0) x x

CYCINS Cycles since installation nnnnn x x
HRSINS Hours since installation nnnnn x x
TCATMP TCA Temperature deg.0

1: the appearance of —999 in data field indicates that the data was not recorded.
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The data from these engines is contained in two files: cruise data and take off data

designated by engine_xxcr.txt for cruise data and engine_xxto.txt. The `xx' in the file

name refers to the engine number. Here is a general description of each of the variables.

ACID1 and ACID2 are aircraft identification values coded in hexadecimal for the highest

(ACID2) and lowest (ACID1) 4 bytes of the identification code. Actually, this was an

arbitrary code employed by United Technologies Research Center (UTRC) team to de-

identify flight data per the agreement with the airline that owns the data. These values

only changed if the engine was placed on a different aircraft. DATE is the date when the

data point was collected and recorded. GMT is the Greenwich Mean Time corresponding

to the data point. MACH is the mach number that is an indication of speed. TAT is the

total air temperature. IAS is the indicated air speed. ALT is the altitude measured in feet

above sea level. SAT is the static air temperature at a specified point in flight. DEPART

and ARRIVE are the letter codes for the city of departure and arrival respectively. N1 is

the measure of the low pressure rotor speed given as percentage of full speed where

100% is 2990rpm. N2 is a measure of the high pressure rotor speed given as a percentage

of full speed where 100% is 10800rpm. WF is the fuel flow to the engine measured in

pounds per hour. TLA is the throttle lever angle measured in degrees ranging from —45.0

to 90.0. T2 is the engine inlet temperature, T25 is the LPC exit temperature, T3 is the

compressor exit temperature, and EGT is the exhaust gas temperature, all measured in

degrees Celsius. P25 is a measure of the LPC exit pressure in units of psia. PB is the

burner pressure measured in units of psia. P5 is a measure of the exhaust gas pressure in

units of psia. P2 is a measure of the engine inlet pressure in units of psia. PAMB is a

measure of ambient pressure in units of psia. TCAPOS is a measure of the cooling air
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position given as a percentage of full open ranging from —5% to 105.0%. CYCINS is a

calculation of cycles since installation measured in cycle counts. TCATMP is a measure

of the turbine cooling air temperature measured in units of degrees Celsius.

With respect to the number of parameters which is 28 in this case, the total

number of sample engines is only 122 including the pre-classified 17 engines. In

addition, some parameters, such as ACID1, ACID2, DEPART, ARRIVE, don't

contribute anything to the final analysis of the data set. Thus, without the reduction of

dimensionality by eliminating some variables, the result of classification would be

extremely poor and error prone.

The PCA algorithm was implemented in the Matlab environment and the original

variables ALT, N1, P2 , TCAPOS and TAT were finally chosen.

4.1.2 Preprocessing and Results

(1) Some engines have one or two abnormal (isolated) data point(s) for some parameters.

We plot the ALT parameter for engine 13 and 14:
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Figure 4.2 Some engine blades have isolated data point(s).

Figure 4.2 shows that there are abrupt drops in the ALT (altitude) parameter. By

looking into the data files themselves, a fact was identified that the ALTs at the 2454 th

data point for engine 13 and at the 2523 rd for engine 14 both have a value of 3000 while

on average ALT is at least 35,000 ft. Therefore these isolated data points needs to be

discarded.

(2) Filling missing data values

Some parameters for all engines have a few missing values which must be taken care of

in order to have correct result. The following plot illustrates this problem.
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Figure 4.3 Some engine blades have missing data values.

At the first glance of the plot for this original data set, people might think the P25

(LPC Exit Pressure) parameter for engine #1 may be safely ignored because almost

every data point has a value of zero so that it would have zero mean and zero variation.

Again, the data file was looked into and it was found out that this is not the case. Almost

every data point for P25 parameter contains a value of around 20. Therefore, there must

be a few isolated points that prevent the proper plot of the data points. A careful

examination of data file confirmed that only a few data points (2620 th , 2621 st, 2622nd and

2626th ) contain missing values as indicated by a value of —999, which means that data is

unavailable. The action taken to remedy this situation is to fill the missing value with the
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average value of other valid data points. After fixing this problem, a plot of the P25

parameter for engine #1 was drawn again in Figure 4.3 as a comparison , which was the

true representation of the data set.

(3) Too few data points available for some engines.

By examining the data files, it was also found that there are quite a few engines

containing too few data points which will to some extent affect the interpretation of the

final categorization. The following plot shows this problem:

Figure 4.4 Some engine blades have too few data points.
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After the inspection of data file for these engines indicated above, it was found

out that engine # 130 contains 55 data points while engine #131 and # 132 only contains

31 data points. It was noted that there were seven engines which contained fewer than

500 data points while 80% of the engines contained at least 2,000 data points. For such

engines, no special action is taken. These engines are still used in the principal

component analysis to find the variables which contributed most to the variation of the

data.

(4) Fuzzy Classification

After the preprocessing outlined above was carried out, the following procedures were

used to formulate the MFs for each category of fatigue modes.

(a) Given Figure 4.1, three categories of fatigue modes were defined as follows:

TMF = {6, 9, 10, 11, 12, 13, 15, 16, 191;
OE = {4, 5, 7, 10, 12, 15, 17, 20};
OTHER = {1, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 19, 20};

(b) For each category (which serves as fuzzy set) the mean value of each of feature
variables chosen (the ratio of its mean to standard deviation of each variable)
were calculated and their corresponding covariance matrix was obtained using
Equation (3.11);

(c) For each category the MF using Equation (3.10) was formulated;

(d) For each unidentified engine, its feature value vector was first calculated and
substitute for X in Equation (3.10) for each category's MF obtained in Step C.
Thus for each engine three MF values corresponding to respective category would
be obtained.

The following table shows the result obtained from the above procedure.



Table 4.2 Fuzzy Classification Result of Engine Blade Fatigue Modes

Engine# MF_TMF MF_OE MF_OTH ER

1 0.8936 0.4114 0.8480

4 0.1827 0.6966 0.6878

5 0.0008 0.2991 0.1019

6 0.2368 0.0007 0.4810

7 0.0001 0.1603 0.0513

8 0.0626 0.0000 0.2341

9 0.2536 0.0000 0.1257

10 0.3430 0.0985 0.2161

11 0.1864 0.0000 0.2609

12 0.1675 0.1313 0.5966

13 0.2723 0.0396 0.4494

14 0.0026 0.0000 0.0680

15 0.2272 0.2823 0.4883

16 0.7409 0.0166 0.7315

17 0.0019 0.4389 0.1358

19 0.2085 0.0014 0.0926

20 0.2512 0.5140 0.7413

21 0.0178 0.0002 0.2217

22 0.6335 0.4073 0.6360

23 0.1996 0.0000 0.2046

24 0.0327 0.0000 0.0340

25 0.0011 0.1990 0.1119

26 0.7240 0.0189 0.7341

27 0.3481 0.0002 0.5253
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28 0.0575 0.5401 0.4607

29 0.7801 0.0385 0.7438

30 0.0000 0.0000 0.0000

31 0.0000 0.0000 0.0005

32 0.0476 0.0492 0.3053

33 0.0129 0.0000 0.0489

34 0.4487 0.9738 0.9183

35 0.2830 0.1621 0.2625

36 0.0155 0.0000 0.1052

37 0.5773 0.1643 0.5724

38 0.2144 0.7175 0.6366

39 0.5604 0.0001 0.3360

40 0.1682 0.0000 0.1781

41 0.0004 0.0511 0.0549

42-132 0.0000 0.0000 0.0000

4.1.3 Discussion

If the MF values for engine #1,#4-17,#19 and #20 were compared with the pre-

classification as shown in Figure 4.1, it can be shown that the calculated MF values

basically reflect the categories it belong to. For example, Engine #12 has a value of

0.1675 for TMF mode, of 0.1313 for OE mode and of 0.5966 for OTHER mode. Also it

has been shown that it is more meaningful to compare the relative MF values to

determine its category(s) than to use a fixed threshold. For example, engine #7 it has MF

values of 0.0001, 0.1603 and 0.0513 for TMF, OE and OTHER respectively. By looking

at Figure 4.1, it showed that Engine #7 falls into categories of OE and OTHER.
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Therefore the calculated MF values agree with the classifications even though none of

these MF values is even larger than 0.5 which seems a good threshold. Only two

engines are exception to this rule. Engine #1 falls exclusively into the category of

OTHER as shown in Figure 4.1, while calculated MF values are 0.8936 for TMF, 0.4114

for OE and 0.8480 for OTHER. Similarly, Engine #6 falls exclusively into the category

of TMF while calculated MF values are 0.2368 for TMF, 0.4810 for OTHER and

0.0007 for OE.

All the engines (#21- #132) cab be classified. It seems that most of engines have

MF values of 0.0000 giving an impression that they are not classified. As a matter of

fact, they have extremely smaller MF values. In the code of our program, a format was

imposed that the precision was restricted to the fourth digit after the decimal point. In the

command window of Matlab environment, the precise MF values can be displayed

before they are formatted and written to the text file for later reading. For example, the

MF values for engine #132 are 3.3900e-294 for TMF, 5.0918e-319 for OE and 2.3753e-

135. In this case, if none of MF values is significant, this engine will be classified as

normal.

4.2 Event Detection and Modeling of Engine Pressure Data

4.2.1 Problem Description

Simulated and real data sets are both provided by the NASA Glenn Research Center. The

event list is also included with the data set. The purpose of the ALEC system is to try to

detect those events with raw data as the input. In the first place, the ALEC system

doesn't have any priori knowledge about the signatures of the events to be characterized.
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As described in Chapter 3, a combination of wavelet analysis, unsupervised learning and

adaptive fuzzy clustering is to be used to achieve this goal. For the purpose of

performance comparison between the proposed approach and the traditional hierarchical

clustering one, results from each of these two approaches are to be presented for both

simulated and real data sets.

4.2.2 Results on Simulated and Real Data

(1) Results on Simulated Data

Two sets of raw signals are provided for the purpose of analysis and clustering. The

signals are sampled at 40ms for a certain time period starting at Oms and ending at

97,799,660ms. Therefore, there is a total of 244,5000 samples in each data set. Due to the

volume of data and limited computing capacity of the computer system available,

partition of data has to be performed first in order for the signal to be feasibly analyzed,

The signal was segmented every 5,000 data points.

Along with the raw signals, a list of events shown below are predefined and used

in the refinement of the parameters of the algorithms.
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Table 4.3 Event List from the Last Segment of Simulated Signal (5000 data points)

Time (Relative) Time (Absolute)

T-00:04:20:900 9519100
T-00:04:20:740 9519260
T-00:04:50:430 9549570
T-00:04:50:250 9549750
T-00:03:19:190 9580810
T-00:03:19:000 9581000
T-00:03:48:170 9611830
T-00:03:47:970 9612030
T-00:02:17:330 9642670
T-00:02:17:120 9642880
T-00:02:46:550 9673450
T-00:02:46:330 9673670
T-00:01:15:760 9704240
T-00:01:15:530 9704470
T-00:01:44:940 9735060
T-00:01:44:700 9735300
T-00:00:13:940 9766060
T-00:00:13:680 9766320

Matlab's Toolboxes such as Wavelet, Statistics and Fuzzy Logic were combined

to implement our algorithms outlined below. For the purpose of illustration, the focus

was given to the last segment which contained the most events as observed from the

event list. This segment started at a time of 9,580,000ms and ended at 9,779,960ms. It

was sampled at 25Hz and had a total of 5,000 data points.

First a plot of the original signal (the last segment) was drawn and then a three-

level wavelet decomposition using db2 wavelet was performed. After that, a detail

reconstruction at level 1, level 2 and level 3 was carried out. Figure 4.6 shows the

reconstruction of approximation A3 and details at three levels.



Figure 4.5 The last segment of the simulated signal 2.
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Figure 4.6 A plot of approximation A3 and details Dl, D2 and D3
after three-level db2 wavelet decomposition is performed on simulated signal 2.

The following procedures were performed step by step to obtain the final result of event

modeling and characterization.

(1) Get the first leg of the segment, say, 1000 samples.

(2) Perform three-level wavelet decomposition and form the feature vectors after
normalization.

(3) Do hierarchical clustering to find initial clusters and initialize database using the
predefined event list.

(4) For incoming signals do fuzzy k-means clustering, calculate the membership function
with previous clusters and add new clusters accordingly based on leader-follower
algorithm and flag the event if it is not in the database.

(5) Repeat Step 4 until all the signal has been processed.
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The initial clustering results for the last segments of the two sets of simulated

signals are shown on the next few pages. The time values and their corresponding data

values are listed only for clusters which contains no more than 10 data points. Otherwise,

a symbol of "X" is placed. For the purpose of comparison, for each raw signal, two

different clustering results are shown, one with the hierarchical clustering of the whole

segment when all the signals are present, the other with the adaptive hierarchical fuzzy

clustering after wavelet transform is performed.

Table 4.4 Clustering Result for Last Segment of Simulated Signal 1 (10 Clusters)
( Number of data points=5000, X means omitted

Algorithm: Hierarchical Clustering )

Cluster # of data points
in this cluster

Time(sec.) Data Value Average Max Min

#1 4988 X X 58.994944 63.327534 56.828144

#2 3 9611800 57.048904 58.606861 61.822487 56.949192
9673800 61.822487
9766040 56.949192

#3 1 9704240 56.987427 56.987427 56.987427 56.987427

#4 1 9742640 57.008797 57.008797 57.008797 57.008797

#5 1 9642840 62.800018 62.800018 62.800018 62.800018

#6 1 9642880 63.113914 63.113914 63.113914 63.113914

#7 1 9642800 62.333115 62.333115 62.333115 62.333115

#8 1 9642920 63.307735 63.307735 63.307735 63.307735

#9 1 9642720 58.128113 58.128113 58.128113 58.128113

#10 2 9642680 56.870113 57.319447 57.768780 56.870113
9704280 57.768780
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Table 4.5 Clustering Result for Last Segment of Simulated Signal 1 (15 Clusters)
( Number of data points=5000, X means omitted

Algorithm: Adaptive Hierarchical Fuzzy Clustering )

Cluster # of data points Time(sec.) Data Value Average Max Min
in this cluster

#1 4972 x X 58.995594 63.327534 56.828144

#2 2 9673720 62.930683 62.44018 62.930683 61.949677
9704360 61.949677

#3 1 9704520 62.907265 62.907265 62.907265 62.907265

#4 10 X X 57.788401 61.559910 56.955296

#5 2 9611840 57.044876 57.087919 57.130962 57.044876
9766080 57.130962

#6 1 9642760 60.840183 60.840183 60.840183 60.840183

#7 2 9673800 61.822487 58.606861 61.822487 56.949192
9766040 56.949192

#8 1 9704240 56.987427 56.987427 56.987427 56.987427

#9 1 9642640 57.008797 57.008797 57.008797 57.008797

#10 1 9642840 62.800018 62.800018 62.800018 62.800018

#11 1 9642880 63.113914 63.113914 63.113914 63.113914

#12 1 9642800 62.333115 62.333115 62.333115 62.333115

#13 1 9642920 63.307735 63.307735 63.307735 63.307735

#14 1 9642720 58.128113 58.128113 58.128113 58.128113

#15 2 9642680 56.870113 57.319447 57.768780 56.870113
9704280 57.768780
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Table 4.6 Clustering Result for Last Segment of Simulated Signal 2 (10 Clusters)
( Number of data points=5000, X means omitted

Algorithm: Hierarchical Clustering )

Cluster # of data points Time(sec.) 	 Data Value 	 Average 	 Max 	 Min
in this cluster

#1 4983 X X 58.994944 63.327534 56.828144

#2 5 9643080 60.728146 57.913474 60.728146 56.947231
9673520 57.261398
9704240 56.947231
9735120 57.192970
9766160 57.437626

#3 2 9581000 59.248848 59.323622 	 59.398396 59.248848
9612040 59.398396

#4 2 9581080 60.340618 60.347149 60.353680 60.340618
9612120 60.353680

#5 1 9673640 58.776394 58.776394 58.776394 58.776394

#6 2 9581160 60.869476 60.8111095 60.869476 	 60.752743
9612200 60.752743

#7 2 9580840 57.054195 57.118973 57.183750 57.054195
9611880 57.183750

#8 1 9704360 57.719246 57.719246 57.719246 	 57.719246

#9 1 9704280 57.076664 57.076664 57.076664 57.076664

#10 1 9673560 57.665771 57.665771 	 57.665771 57.665771



Table 4.7 Clustering Result for Last Segment of Simulated Signal 2 (15 Clusters)
( Number of data points=5000, X means omitted

Algorithm: Adaptive Hierarchical Fuzzy Clustering )

Cluster # of data points Time(sec.) Data Value Average Max Min
in this cluster

#1 4972 X X 58.956684 61.180935 56.942448

#2 1 9673800 60.397797 60.397797 60.397797 60.397797

#3 3 9581120 60.717632 60.350489 60.717632 59.757690
9612160 60.576145
9704520 59.757690

#4 2 9581040 59.973118 59.973904 59.974689 59.973118
9612080 59.974689

#5 1 9642760 57.541943 57.541943 57.541943 57.541943

#6 4 9580800 56.989128 57.120558 57.388290 56.957870
9611840 56.957870
9704320 57.388290
9766120 57.146942

#7 5 9643080 60.728146 57.9134742 60.728146 56.947231
9673520 57.261389
9704240 56.947231
9735120 57.192970
9766160 57.437626

#8 2 9581000 59.248848 59.323622 59.398396 56.248848
9612040 59.398396

#9 2 9581080 60.340618 60.347149 60.353680 60.340618
9612120 60.353680

#10 1 9673640 58.776394 58.776394 58.776394 58.776394

#11 2 9581160 60.869476 60.811110 60.869476 60.752743
9612200 60.752743

#12 2 9580840 57.054195 57.118973 57.183750 57.054195
9611880 57.183750

#13 1 9704360 57.719246 57.719246 57.719246 57.719246

#14 1 9704280 57.076664 57.076664 57.076664 57.076664

#15 1 9673560 57.665771 57.665771 57.665771 57.665771
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To better view and interpret the result, the event detection outcome can be

tabulated in a more readable format from the result of adaptive hierarchical fuzzy

clustering algorithm on simulated signal 2.

Table 4.8 A Combination of Event List and Detected Events for Simulated Signal 2

Event # Event Time Detected Time Cluster #

1 9580810 9580800 6
9580840 12

2 9581000 9581000 8
9581040 4
9581080 9
9581120 3
9581160 11

3 9611830 9611840 6
9611880 12

4 9612030 9612040 8
9612080 4
9612120 9
9612160 3
9612200 11

5 9642760 9642760 5
6 9642880

9643080 7
7 9673450 9673520 7

9673560 15
8 9673670 9673640 10

9673800 2
9 9704240 9704240 7

10 9704470 9704280 14
9704320 6
9704360 13
9704520 3

11 9735060 9735120 7
12 9735300
13 9766060 9766120 6

9766160 7
14 9766320



64

(2) Result on Real Data

Two sets of measurements (signals) are provided. They differ only in end time and

sample rate. One set starts at 9,229,000ms and ends at 9410040ms, which is sampled at

25Hz and contains a total of 4527 samples. The other one starts at 9,229,000ms and ends

at 9410020ms, which is sampled at 50Hz and contains a total of 9052 samples. Within

each set, there are three measurement labeled as MPRE301P, MPRE302P and

MPRE105P. In this report, the focus is given to the one with 50Hz sample rate and a

label of MPRE301P. The following is the plot of the corresponding signal.

Figure 4.7 The last segment of the real signal ( MPRE301P at 50Hz).
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As can be seen in Figure 4.7, there is no overshooting issue as observed in the

simulated data set shown in Figure 4.5. In the previous data sets, the signals were taken

from a simulation of LOX tank ullage pressure which produced an artificial overshoot

that quickly resolved, but caused the development system to key in on that feature. For

the purpose of illustration, only the last data segment will be reported here in detail,

although each segment has similar results. This data segment starts at a time of

9,310,040 ms and ends at 9,410,020ms. It is sampled at 50Hz and has a total of 5,000

data points.

A three-level wavelet decomposition using db2 wavelet was first applied to the

data segment. After the decomposition, a detail reconstruction at level 1, level 2 and

level 3 was performed to verify the decomposition results and this step is not absolutely

required except for the purpose of verification. Figure 4.8 shows the reconstruction of

approximation A3 and details at three levels.
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Figure 4.8 A plot of approximation A3 and details D1, D2 and D3 after the
three-level db2 wavelet decomposition is performed on real signal.

Initial clustering results for the last segment with the label of MPRE301P and

sample rate of 50Hz are presented here. Table 4.9 shows the expected events from the

system being monitored corresponding to the last segment. In Table 4.10 and 4.11, the

initial clustering results are reported for this last data segment. In the table, corresponding

time and data values are listed only for clusters which contain no more than 10 data

points. Otherwise, a symbol of "X" is placed in the "Time" and "Data Value" fields. For

the purpose of comparison, for each raw signal, different clustering results are shown,



67

one with the traditional hierarchical clustering of the whole segment when all the signals

are present, and the other with the adaptive hierarchical fuzzy clustering.

Table 4.9 Event List from the Last Segment of Real Signal (5,000 data points)

Flight Time Time (msec) Major Event Minor Event
T-00:07:25:190 9334810 SVO2 Commanded Open

9334860 MMSW102X indicates SVO2 Open
T-00:07:24:500 9335500 SVO2 Open Command Discontinued

9335510 MMSW102X loses SVO2 Open Indication
T-00:07:57:730 9362270 SVO2 Commanded Open

9362320 MMSW102X indicates SVO2 Open
T-00:07:56:980 9363020 SVO2 Open Command Discontinued

9363030 MMSW102X loses SVO2 Open Indication
T-00:06:27:820 9392180 SVO2 Commanded Open

9392230 MMSW102X indicates SVO2 Open
T-00:06:26:980 9393020 SVO2 Open Command Discontinued

9393030 MMSW102X loses SVO2 Open Indication

Table 4.10 Clustering Result for Last Segment of Real Signal at 50Hz ( 7 Clusters)
( Number of data points = 5000, X means omitted
Algorithm: Traditional Hierarchical Clustering )

Cluster # of data points Time(sec.) Data Value Average Max Min
in this cluster

#1 4992 X X 49.268860

#2 2 9335500 52.982689 53.077349 53.172009 52.982689
9363020 53.172009

#3 1 9311640 57.372505 57.372505 57.372505 57.372505

#4 1 9388660 48.039326 48.039326 48.039326 48.039326

#5 2 9362340 47.249926 47.093082 47.406769 47.093082
9362380 47.406769

#6 1 9334860 47.211018 47.211018 47.211018 47.211018

#7 1 9334920 47.434807 47.434807 47.434807 47.434807
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Table 4.11 Clustering Result for Last Segment of Real Signal at 50Hz (13 Clusters )
( Number of data points=5000, X means omitted

Algorithm: Adaptive Hierarchical Fuzzy Clustering)

Cluster # of data points Time(sec.) Data Value Average Max Min
in this cluster

#1 4985 X X 47.268860 57.638893

#2 3 9335500 52.982689 53.10098 53.172009 52.982689
9363020 53.172009
9393020 53.145596

#3 1 9311640 57.372505 57.372505 57.372505 57.372505

#4 1 9341660 55.035538 55.035538 55.035538 55.035538

#5 1 9388660 48.039326 48.039326 48.039326 48.039326

#6 1 9362340 47.093082 47.093082 47.093082 47.093082

#7 1 9392220 47.045036 47.045036 47.045036 47.045036

#8 1 9334860 47.211018 47.211018 47.211018 47.211018

#9 1 9334920 47.434807 47.434807 47.434807 47.434807

#10 1 9362380 47.406769 47.406769 47.406769 47.406769

#11 1 9392300 47.41877 47.41877 47.41877 47.41877

#12 2 9335520 53.209351 53.283785 53.358219 53.209351
9363040 53.358219

#13 1 9334900 47.209438 47.209438 47.209438 47.209438
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To better view and interpret the result, the event detection outcome can be

tabulated in a more readable format from the result of adaptive hierarchical fuzzy

clustering algorithm on real signal.

Table 4.12 A Combination of Event List and Detected Events for Real Signal

Event # Event Time Detected Time Cluster #
1 9334810 X X

9334860 9334860 8
9334900 13
9334920 9

2 9335500 9335500 2
9335520 12

3 9362270 X X
9362320 9362340 6

9362380 10

4 9363020 9363020 2
9363040 12

5 9392180 X X
9392230 9392220 7

11

6 9393020 9393020 2
9393030 X X

Additional Events (not shown in the event list but detected in our clustering analysis)

9311640 	 3
9341660 	 4



A more intuitive presentation of the event detection result can be graphically

drawn in Figure 4.9.
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Figure 4.9 Graphical display of event detection result for real signal.

As shown above, most of the events can be successfully detected except for the

last one in which only event of "SVO2 Open Command Discontinued' was detected while

event "MMSW1 02X loses SVO2 Open Indication" went unnoticed. The reason can be due to

the fact that the two events occur within 10 msecs of each other. After careful inspection

of Table 4.12, it can be seen that clusters follow similar patterns for each alternate

event: "open" and "close". For example, for "open" events such as #1, #3, #5 (they all
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contain the same sequence of sub-events of SVO2 Commanded Open and MMSW102X

indicates SVO2 Open as shown in Table 4.9), the absolute data values are very close to

each other ( values among Cluster 8, 6 and 7 and values among Cluster 13, 10 and 11).

At the same time, for "close" event, the sequence of clusters show the same patterns for

"close" event, e.g., Event #2 and #4 both have Cluster 2 and Cluster 3. In addition, two

more additional events not on the event list were detected which was shown immediately

under the Table 4.12. The adaptive learning property of this system can also be

demonstrated as follows. Suppose that after the verification with the domain expert that

one of the two additional detected events is true indication of new event, say, at the time

of 9311640, a update of the new event list is performed. With this new knowledge in

place, the whole processing of time series signal was redone to reflect such event

signature database update. The following three more events have been identified and

they occurred at the time of 9339320ms, 9366620ms and 9396480ms respectively. A

plot of detected events was again shown in Figure 4.10.
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Figure 4.10 Adaptive learning of new events.

4.2.3 GUI-based System Integration

It is the ultimate goal of the ALEC system to let the user interact with it so that both user

and system simultaneously learn about new events and their characteristics. Figure 3.1

shows that this system is an integration of several advanced technologies ranging from

wavelet transform, hierarchical clustering to fuzzy clustering and database system. In

order to reduce the user's learning curve and present an integrated environment, a

Graphical User Interface (GUI) has been designed and prototyped. The GUI has been

developed with the following in mind [57-581:

(1) Present commands, options, or data to the user on the appropriate application
display.
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(2) Display information appropriate to completing a task on the screen, so the user
can be selective in attending to information relevant to his or her needs.

(3) Organize information in a meaningful way to help the user focus on essential task
information. This makes the decision-making process easier as well as reducing
the potential for errors.

As introduced in Chapter 3, the ALEC system is an adaptive system which consists of

two phases: training phase and learning phase. The training phase has been described in

detail in Chapter 3. After learning the events and storing the cluster statistics-based

model signatures, the system performs classification analysis using a nearest neighorhood

method to detect events. Then the user are presented with the events for evaluation. In

some cases, either inconsistencies occur or new prospective events have been identified,

user is then provided with the time-history based information of the past and current

occurrences of the prospective events. From the feedback of the user, the sensitivity

thresholds of the clusters can be modified accordingly and the event model signature

database will then be updated for further analysis. Figure 4.11 illustrates the concept of

learning phase with the user interaction.



ALEC System
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Figure 4.11 System diagram during the data analysis phase of ALEC. (1) Absolute
measurement (2) Wavelet decomposition features (3) Statistical features

engines is transformed into the wavelet domain and the specified features are computed.

Using the event signature model database, the features from incoming signals are

compared with the model signatures of categorized events. In case of a match, the event

is classified and reported to the user. In case there is no match to the event, the features

are matched with the clustered data in the flagged event database. If it is matched to any

cluster, the entire information with past history is reported to the user for additional

comments and categorization. If a new categorization is obtained, the data is classified

accordingly and the database are updated.
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There are a lot of GUI development software under Windows, and a few under

Unix and Linux, but sometimes people are asked to develop a GUI tool that can run both

under window system and Unix or Linux based system, it might be a painful job. Matlab

is a choice to address this problem. In this dissertation, GUIDE, the Matlab Graphical

User Interface Development Environment [59], is used because it provides a set of tools

for creating GUIs. GUIDE stores GUIs in two files, which are generated the first time

you save or run the GUI: (1) FIG-file: a file with extension .fig that contains a complete

description of the GUI figure layout and the components of the GUI: push buttons,

menus, axes, and so on. When you make changes to the GUI layout in the Layout Editor,

your changes are saved in the FIG-file. (2) M-file : a file with extension .m that contains

the code that controls the GUI, including the callbacks for its components. This file is

referred to as the GUI M-file. When you first run or save a GUI from the Layout Editor,

GUIDE generates the GUI M-file with blank stubs for each of the callbacks. You can

than program the callbacks using the M-file editor. A user manual for the ALEC system

is also provided to facilitate the learning the individual module of the system. The

following figure is the screen shot of the main menu of the ALEC system.
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Figure 4.12 The main menu of graphical user interface of ALEC.

Figure 4.12 shows that the ALEC system consists of the following major modules

integrated together to provide an automated analysis of raw data and result display.

(1) Load data: enable the user to load the raw data.

(2) Wavelet transform: analyze the data or signal, the default is db2 wavelet.

(3) Load initial event list: get the predefined event list to be used in the guidance

of algorithm tuning.

(4) Hierarchical fuzzy clustering/clustering result: the core of the system to

produce the clustering results and display to user for evaluation.

(5) Model events: let the user view the statistics of the cluster.
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(6) Signature database update: user can update the model database to reflect the

current state of the system.

4.2.4 Discussion

For both simulated and real signals, it can be observed that the wavelet-based hierarchical

fuzzy clustering method can detect more events than traditional hierarchical clustering

method. The reason for this improvement is that wavelet decomposition is performed first

on the raw signal which can localize the characteristics of the signal, thus permitting a

more detailed description at abrupt changes. Furthermore, with the wavelet-based

hierarchical fuzzy clustering method, the processing time is greatly reduced because the

new incoming signal only affect the most similar cluster as described in the leader-

follower algorithm presented in Chapter 3.

The ability of adaptive learning of ALEC system has been demonstrated by

updating the new event model signature database. The new signature would provide new

statistics about the detected event, thus providing a guideline for detecting similar events.

It should be pointed out that wavelet-based approach can be easily extended to

higher dimension to include additional features. In this experiment, after three-level

decomposition is performed, a vector is formed for each signal(or measurement),

including absolute measurement, A3, D3, D2, D1 after they have been normalized. Thus

the dimension is 5. However, a tradeoff must be found between processing time and

produced results. Our experiments have shown that higher dimension can produce more

clusters but the processing time also increases greatly. In the analysis of real signal, the

D l level can be further decomposed and included in the feature vector. After the
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dimension reaches certain number (7 in this case), the clustering result almost remain the

same even more dimension can be added. Put in another way, in the experiment,

dimension of 7 and dimension of 9 produce the same results. In summary, for the

practical use of the wavelet-based approach, a tradeoff should be found between the

accuracy and response time, especially for adaptive real-time system.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Results of fuzzy classification of blade engine fatigue mode using generalized multi-

dimensional Gaussian membership fuction are effective and simple for classification of

patterns with overlapping structures in which some patterns fall into more than one

classes. This method is more robust than the hierarchical clustering in which each pattern

can only fall into one class. In addition, this approach is also successfully applied to

classify skin lesion images into melanoma and dysplastic nevus. Furthermore, the

experimental results also show the important role of Principle Component Analysis plays

during the preprocessing stages of a classification system with excessive dimensionality

feature space which is 28 in our project. PCA achieves its optimal representation of the

original patterns using only a subset of principle component in the sense of minimum

mean-square error.

The framework of ALEC system was proposed and demonstrated to be feasible in

implementation. The wavelet-based adpative hierarchical fuzzy clustering approach

uniquely and successfully integrates several advanced technologies to effectively detect

and characterize the event of interest through the interaction with the user. By using the

adaptive approach, the algorithm can be computationally efficient to satisfy the on-line

requirement. Results of the integrated approach have shown that it can detect more events

by 50% and 85% than traditional hierarchical clustering while the computation time is

reduced between 20% and 25%.

79
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The proposed approach can be extended to applications in image processing,

control system and data mining where on-line new data is continuouly being generated

and collected.

5.2 Future Work

The following tasks need to be investigated and completed before the final ALEC system

is accomplished and put into practical use.

• Design some customized wavelet to extract useful features for better event
characterization and detection.

• Complete system evaluation involving domain experts about the accuracy of
flagging events.
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