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ABSTRACT

INVESTIGATION OF HEART RATE VARIABILITY
DURING SLEEP APNEA

by
Sekar Subramanian

Sleep apnea is a disorder, where there are repetitive pauses in respiratory flow of

at least 10 seconds or longer duration, and which occur more than five times per hour.

Apnea has strong modulating effects on the autonomic nervous system, with prominent

heart rate variation. It can be assumed that during sleep, internal influences (sympathetic

and parasympathetic nervous system activities) dominate the autonomic nervous system;

in addition repetitive apneas are accompanied by a pronounced increase in average heart

rate. The aim of this study was to investigate the heart rate variability using spectral

analysis and time-frequency analysis during sleep apnea.

A total of 22 subjects (18 males and 4 females, 49 ± 20 years) were studied who

were experiencing both obstructive sleep apnea and central sleep apnea in whom sleep-

disordered breathing was diagnosed. In addition 6 control subjects were studied where

sleep apnea was not expected. Spectral and wavelet analysis were used to investigate the

heart rate variability from the sleep apnea subjects and control subjects. The results of the

wavelet analysis gave information about the parasympathetic (HF) and sympatho-vagal

balance (LF: HF) changes as a function of time and frequency. The spectral parameters

LF, HF and LF/HF confirmed reduced parasympathetic activity in patients with sleep

apnea compared to normal subjects. In addition the repetitive apneas are accompanied

by a pronounced increased cyclic variation of heart rate.
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CHAPTER 1

INTRODUCTION

1.1 Scope of research

The development of improved treatments for diseased patients is important, and the

development of improved monitoring techniques to assess risk of morbidity and

mortality, as well as to assess response to treatment is needed. One particular population

of patients, which is used in this study, is the Sleep Apnea Hypopnea Syndrome. SAHS

is characterized by repetitive punctuations or reductions of respiration during sleep.

Sleep apnea is a sleep disorder with high prevalence in the adult population. Sleep

apnea is regarded as an independent risk factor for cardiovascular sequelae such as

ischemic heart attacks and stroke. Early recognition and selection of patients with sleep

related breathing disorder is an important task. It has been suggested that this can be

done on the basis of the single channel ECG doing time-frequency analysis [1,20,23].

Sleep apnea / hypopnea syndrome is associated with a wide range of health

implications and increased cardiovascular morbidity and mortality. The gold standard in

diagnosing sleep apnea is polysomnography, an inconvenient, expensive and time

consuming procedure which includes an overnight multi channel recording of blood

oxygen saturation, blood pressure, EEG, ECG, EOG, EMG, nasal/oral airflow, chest

effort, and abdominal effort. This study assesses the suitability of established time-

frequency domain HRV measures, which are known to reflect ANS control [1, 7].

Investigation of heart rate variability during sleep apnea and through tests which

measure the physiologic changes of sleep stage in the brain. However, the effects of

severe sleep disease are not limited to the brain. Often there are serious accompanying

1
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cardiac problems and severe alterations to the normal state of autonomic regulation [1].

Patients with sleep disease are subject to a hyperadrenergic state and have many

alterations in their autonomic physiology that can be documented. There is a non-

invasive measure of autonomic function, heart rate variability (HRV), which can be

performed in a simple fashion and can offer a clear window into the state of the subject.

In subject populations with cardiac disease, the abnormalities found in these measures

were found to have very strong correlations with subsequent mortality and sudden death.

Because of some of the similarities (ex: change in blood pressure, respiration rate etc)

between patients with severe sleep disease and patients with severe heart disease, the

systematic study of the autonomic disturbances in these individuals, along with an

analysis of the survival of the patients with and without treatment should be undertaken

[24].

Respiratory sinus arrhythmia (RSA) is a phenomenon that has been recognized

and studied for years, and it has been described as a rhythmical fluctuation in R-R

intervals that is characterized by a decrease in the R-R interval length during inspiration,

and an increase in the R-R interval length during expiration. Spectral analysis

techniques have allowed researchers to conclude that RSA can primarily be attributed to

vagal activity [1] and can be used as an index of vagal control of the heart. It has been

shown that the variation of blood pressure seen with respiration is also associated with

the heart rate variability. The physiologic mechanism of heart rate variability is

mediated through respiratory afferents synapsing in the medulla oblongata and

entraining the central regulatory oscillator. Similarly, the mechanism of blood pressure

variability (BPV) is entrained to respiration, and is a combination of the effects of the
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changes of stroke volume and the increase in vagal tone with inspiration. With the use

of spectral analysis, and time-frequency analysis, the raw data (ECG and BP) obtained

can be broken down into useful investigation of sleep apnea subjects [1, 20].

Since the relationship of altered heart rate variability and increased mortality

have been documented in cardiac populations, the population of patients with severe

sleep apnea disease (SA) is an excellent candidate to be studied. Patients with sleep

disease also have significant alterations of their autonomic regulation [1]. In SA patients

breathing patterns are altered, causing abnormalities in the entrainment of the normal

central oscillators.

With the correlations that are possible to see from the previous work that has

been done in cardiac disease and heart failure, it should be possible to demonstrate that

these autonomic tests are clear predictor of HRV in sleep apnea subject.

Further to the above discussion an article survey was conducted, which is discussed

below.

1. Kim [5] reported that HRV was significantly higher in severe apnea patients,

especially in REM and stage 2 sleep. Sleep apnea occurred more in REM

sleep, and exclusively in supine position. The increased HRV during sleep

was excited by sleep apnea. Having more stage 2 and REM sleep can

contribute to higher HRV both in normal and apnea patients.
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2. Penzel [8] compared the results of normal subjects with patients suffering

from mild sleep apnea, modulating influence of sleep stages on heart rate

variability remained very strong even though OSA caused additional

fluctuations. The additional fluctuations are directly linked with the disturbed

respiration during sleep.

3. Hilton [9] reported that spectral analysis of HRV is a better diagnostic than

oximetry for the SAHS. The accuracy of HRV may be reduced with the

association of the other sleep disorders that produce recurrent arousal or

fluctuations in the heart rate. The article proposed that applying spectral analysis

of HRV in conjunction with oximtry would provide much better diagnostic

accuracy then oximetry alone.

4. Baharav [11] reported that the overall increased sympathetic activity during

sleep and sympathetic predominance during SWS in apnea patients, as compared

to control subjects. The degree of sympathetic predominance correlated well

with the severity of sleep apnea.

5. Maier [7] reported that the best result from 28/30 subjects achieved when the

median minute-by-minute values are considered. Calculation over the whole

signal duration decreases the performance considerably, because the higher

regulatory of the cyclic variation of heart rate during period of apnea is blunted

by other fluctuations on this time scale. This author concluded, generally, lower,

less complex heart rate variability is found in apnea patients.
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This study has been designed to answer questions about interactions between the

nervous system, the cardiovascular system, sleep physiology and the pulmonary system;

and issues concerning heart rate variability activity.
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1.2 Goals and Contributions

The goals of this research are:

1. To apply time-frequency analysis to heart rate variability in order to investigate the

heart rate variability during subject sleep apnea.

2. To use time-frequency analysis to understand and to develop tools that can describe

rapid changes in the time varying spectrum due to apnea. Expansion of the concept of

spectral analysis of heart rate variability to time-frequency analysis gives us the ability

to quantitatively assess the parasympathetic and sympatho-vagal balance changes as a

function of time for the subjects with sleep apnea.

3. To investigate the Weighted coherence which is a technique to measure the total

variance of one signal that is shared with the other signal within a certain frequency

band. It can be computed easily from the values of the coherence function and the

spectral density values of one of the signals in that frequency region.

This work clarified some of the questions about heart rate variability in sleep apnea

subjects which are of fundamental importance in diagnosing the severity of the disease,

in assessing the benefit of rehabilitation procedure and ultimately in determining who

may benefit the most from sleep apnea disease.
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1.3 Outline of the Thesis

Chapter 1 summarizes the scope of research involving the investigation of sleep apnea

(SA) populations.

Chapter 2 summarizes the physiology background for studying the human

cardiovascular system and sleep mechanism. The description and operating mechanism

of the heart, lung, the electrocardiogram (ECG), the blood pressure, the respiration, the

brain waves and the sleep physiology are presented.

Chapter 3 presents the engineering tools to analyze the biological signals of ECG, BP

and respiration. The basic signal representation used in this thesis is the time-frequency

representation.

Chapter 4 presents the experimental protocols used in the study.

Chapter 5 presents the results of the study.

Chapter 6 presents the discussion of all the results obtained in chapter 5 and conclusions

as well as suggestion of topics for future study. Hopefully, these topics, in addition to

this research work, will motivate the prospective researcher to explore further

unresolved issues in the field of heart rate variability, biological modeling and disease

severity classification in the direction of signal processing application to signal analysis

using time-frequency representation techniques.



CHAPTER 2

PHYSIOLOGY BACKGROUND

Biomedical engineering is the application of the principles of engineering, science, and

mathematics to biology and medicine. The physiological signals or waveforms (ECG,

EEG, blood pressure) are examined because they can yield information of clinical

significance about the biological systems. Therefore, in order to conduct biomedical

research, the relevant physiological systems must be understood. The purpose of this

section is to provide a general, but concise, background to the physiological systems that

are relevant to the work in this research.

2.1 Cardiovascular Systems and the Heart

The cardiovascular system consists of the heart, which is a muscular pumping device,

and a closed system of blood vessels called arteries, veins, and capillaries. The heart

pumps blood around a closed circuit of vessels contained in the circulatory system as it

repeatedly passes through the various "circulations" of the body. The vital role of the

cardiovascular system in maintaining homeostasis is dependent upon the continuous and

controlled movement of blood to reach every cell in the body. Regulation of blood

pressure and flow must change in response to cellular activity. Consequently, numerous

control mechanisms help to regulate and integrate the diverse functions and component

parts of the cardiovascular system to supply blood to specific body areas according to

need [1,2].

8
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Figure 2.1 The Heart. (From Lauralee Sherwood, Human Anatomy and Physiology, 4 th

Ed. California: The Brooks/Cole Publishing Company, Inc., 2001.)

The heart, illustrated in Figure 2.1, is divided into two functional halves, each

half containing two chambers: an atrium and a ventricle. The atrium of each side

empties into the ventricle on that side. There is no direct flow between the two atria or

the two ventricles in a healthy individual. Blood is pumped by the pulmonary circuit

from the right ventricle through the lungs and then into the left atrium. The blood is then

pumped by the systemic circuit, from the left ventricle, through all the tissues of the

body except the lungs, and then to the right atrium [2].
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Figure 2.2 The Systemic and Pulmonary Circulations. (From Lauralee Sherwood,
Human Anatomy and Physiology, 4 th Ed. California: The Brooks/Cole Publishing
Company, Inc., 2001.)

In both circuits, the vessels carrying blood away from the heart are called arteries

and those carrying blood from either the lung or all other parts of the body back to the

heart are called veins. Figure 2.2 illustrates the heart with the systemic and pulmonary

circulations.
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The heart, located in the chest, is a muscular organ, which is enclosed, in a

fibrous sac called the pericardium. The walls of the heart are primarily composed of

cardiac-muscle cells called the myocardium. Cardiac-muscle cells combine properties of

both skeletal muscle and smooth muscle. However, even more important, approximately

one percent of the cardiac-muscle fibers has specialized features that are essential for

normal heart excitation. They constitute a network known as the conducting system of

the heart and are connected to other cardiac-muscle fibers by gap junctions. The gap

junctions allow action potentials to spread from one cardiac-muscle cell to another [2,

29].

Figure 2.3 The intrinsic conduction system of the heart and succession of the action
potential through selected areas of the heart during one heart beat. B, The sequence of
potentials generated across the heart is shown from top to bottom beginning with the
pacemaker potential generated by the SA node and ending with an action potential.
(From E. N. Marieb, Human Anatomy and Physiology, 3 rd ed. New York: The
Benjamin/Cummings Publishing Company, Inc., 1995.)
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Thus, the initial excitation of one myocardial cell results in excitation of all cells,

and as a result, the pumping action of the heart. The conducting system of the heart is

illustrated in Figure 2.3. The initial depolarization normally arises in a small group of

conducting-system cells called the sinoatrial (SA) node. The SA node is located in the

right atrium near the entrance of the superior vena cava (the vein returning from the body

tissues that are above the heart). The SA node has the fastest inherent discharge rate of

any of the myocardial cells with pacemaker activity. Therefore, the SA node is the

normal pacemaker for the entire heart. The action potential initiated in the SA node

spreads throughout the myocardium, passing from cell to cell by way of gap junctions.

The spread throughout the right atrium and the left atrium does not depend on fibers of

the conducting system. The spread is rapid enough that the two atria are depolarized and

contract at essentially the same time.

The spread of the action potential from the atria to the ventricles involves a

portion of the conducting system called the atrioventricular (AV) node. The AV node is

located at the base of the right atrium. The AV node has an important characteristic that

makes the cardiac cycle more efficient. For several reasons related to the electrical

properties of the cells that make up the AV node, the propagation of action potentials

through the AV node results in a delay of approximately 0.1 seconds. This delay allows

the atria to finish contracting and, therefore, completely emptying their contents of blood

into their respective ventricles before ventricular excitation occurs [2,21].

Upon leaving the AV node, the action potential then travels to the septum, the

area between the two ventricles, by the conducting-system fibers called the bundle of

His. The bundle of His then divides into the left and right bundle branches, which
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eventually leave the septum and enter the walls of their respective ventricles. These

fibers then make contact with the Purkinje fibers, which are large conducting cells that

rapidly distribute the action potential throughout most of the ventricles. The rapid

conduction along the Purkinje fibers and the distribution of these fibers cause the

depolarization of the left and right ventricular cells approximately simultaneously, thus

resulting in a single coordinated contraction. Figure 2.4 illustrates the sequence of

cardiac excitation.

Figure 2.4. The Sequence of Cardiac Excitation (from A.J. Vander, J.H. Sherman, and
D.S. Luciano, Human Physiology, 1994)
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2.2 Blood Pressure

The force that blood exerts against the walls of a vessel is called blood pressure.

Normally, some amount of blood is present in every blood vessel of the body, including

all arteries, arterioles, capillaries, venules and veins.

Blood volume is greatest in the veins. Venous blood pressure, however, is quite

low because of the large-radius and low resistance of the vein. Skeletal movement,

mechanical movement from respiration and one-way valves, facilitates return of

deoxygenated blood to the heart.

Less than fifteen percent of the blood volume is present in the arteries. Mean

arterial pressure, however, is approximately 100 mm Hg. Mean arterial pressure (MAP)

depends upon overall arterial resistance (TPR) and cardiac output (CO) [2]. Specifically:

The resistance of a particular arteriole depends upon the associated organ's

requirements. Under different conditions, an arteriole radius will be varied by control

mechanisms to accommodate the need of the associated organ. If the overall radius of all

arterioles decreases, then the TPR is increased, which may cause arterial blood pressure

to increase, depending upon the CO value.

When blood flows into arteries and arterioles, stretching occurs due to the

pressure that blood exerts on the arterial walls. The maximum pressure, which is

reached when the ventricles eject blood, is called the systolic pressure. The minimum

arterial pressure occurs just before ventricular ejection begins and is called diastolic

pressure.
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2.3. Metabolic Function/Respiration

In the human respiration serves to provide cells with oxygen, eliminate carbon dioxide

and regulate pH of the blood. In order to provide cells with oxygen, air from the

environment enters the body during inhalation. Carbon dioxide and other unwanted

substances are removed from the body during exhalation. Upon inhalation, air enters the

body via the trachea, and then flows into the bronchi. The air then reaches the alveoli.

The properties of the alveoli allow rapid and efficient exchange of gasses between the

blood within the capillaries and the alveoli. The volume of oxygen per unit time ( V02 )

that is transported from the capillaries to the body cells is equal to the volume of the

inspired oxygen that is diffused from the alveoli into the blood at any given instant.

Analogously, the volume of CO2 produced by the body cells per unit time ( VCO2 ) is

equal to the amount of CO2 that diffuses from the blood to the alveoli. The total amount

of air entering and leaving the body per unit time is the called ventilation (VE) [2].

In HRV studies, one important equation that links the circulatory system to the

respiratory system is the calculation of volume of blood ejected from a ventricle during

systole known as stroke volume (SV), which can be derived once VO2 is known [2, 16]:

The physiologic mechanism of heart rate variability is mediated through

respiratory afferents synapsing in the medulla oblongata and entraining the central

regulatory oscillator. Similarly, the mechanism of blood pressure variability (BPV) is

entrained to respiration, and is a combination of the effects of the changes of stroke

volume and the increase in vagal tone with inspiration [2].
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2.4 The Nervous System

Human behavior is controlled and regulated by two major communication systems, the

endocrine system and the nervous system. The nervous system can be divided into two

separate, but interconnected, parts. The first part consists of the brain and spinal cord

and is called the central nervous system. The second part, which consists of nerves,

which extend from the brain and the spinal cord out to all points of the body, is called the

peripheral nervous system.

The peripheral nervous system consists of both an afferent division and

efferent division. The afferent division conveys information from primary receptors to

the central nervous system. The efferent division carries signals from the central nervous

system out to effector cells such as muscles and organs. The efferent division is

subdivided into a somatic nervous system and an autonomic nervous system. The

somatic nervous system consists of all the nerve fibers going from the central nervous

system to skeletal-muscle cells. The efferent innervation of all tissues other than skeletal

muscle is done by the autonomic nervous system. Table 2.1 illustrates the organization

of the human nervous system [1, 2].

Table 2.1 The Nervous System

I. Central Nervous System II. Peripheral Nervous System

A. Brain
B. Spinal Cord

A. Afferent Division
B. Efferent Division

1. Somatic Nervous System
2. Autonomic Nervous System

a. Sympathetic Nervous System
b. Parasympathetic Nervous System
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2.4.1 The Autonomic Nervous System

Cardiac muscle cells, smooth muscle cells, and glands are innervated by the autonomic

nervous system. Although it is not entirely true, the autonomic nervous system controls

bodily functions that one often assumes to be automatically controlled. Such functions

include heart rate, blood pressure, and body temperature. For example, when one is

placed under a lot of physical stress such as climbing three flights of stairs, the person's

heart rate and respiration rate automatically increase to supply the body with the energy

needed on demand. Likewise, when a person is resting, the heart rate and respiration rate

slow down due to the decrease in energy expenditure. Therefore, one can assume that

the body automatically controls heart rate and respiration rate. However, it is possible to

override the autonomic nervous system and consciously control some of its functions. A

good example of this is that under certain meditation techniques, it has been shown that

some people can actually lower their heart rate substantially below their resting rate, or

even stop their heart from beating for a brief period of time. In addition, some people

can slow their breathing rate to only one breath for every few minutes during deep

meditation.

As shown in Table 2.1, the autonomic nervous system is divided into two

anatomically and physiologically different systems. These two systems are termed the

sympathetic nervous system and the parasympathetic nervous system. Anatomically, the

sympathetic and parasympathetic nervous systems differ for two reasons. One difference

is that the nerve fibers of each system leave the central nervous system at different levels

[1, 2].
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The sympathetic nerve fibers leave the central nervous system from the thoracic

and lumbar sections of the spinal cord. The parasympathetic nerve fibers leave the

central nervous system from the brain through cranial nerves III, V, VII, IX, and X and

the second and third sacral spinal nerves. Cranial nerve X is also called the vagus nerve.

The parasympathetic innervation of much of the thorax and abdomen, and especially the

heart, is done by the nerve fibers, which leave from the brain through cranial nerve X.

Therefore, parasympathetic activity related to the heart is often called vagal activity.

Figure 2.5 illustrates the anatomic difference between the sympathetic nervous system

and parasympathetic nervous system as well as some of their respective effector organs

[2].

The second anatomical difference between the sympathetic and parasympathetic

nervous systems has to do with the location of the ganglia. Each connection of the

autonomic nervous system between the central nervous system and the effector cell

consists of two-neuron chains connected by a synapse. Most, but not all, of the

sympathetic ganglia are located close to the spinal cord and form two chains of ganglia,

one on each side of the spinal cord, called the sympathetic trunk. Conversely, the

parasympathetic ganglia lie within the organs innervated by the postganglionic neurons.

Physiologically, the sympathetic and parasympathetic nervous systems are also

different. One common physiological characteristic is that the major neurotransmitter

released between the pre- and post-ganglionic fibers is acetylcholine. However, in the

sympathetic division, the major neurotransmitter between the postganglionic fiber and

the target cell is usually norepinephrine, a neurotransmitter that activates excitatory

receptors, but in some cases can inhibit certain organs. In the parasympathetic division,
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the major neurotransmitter between the postganglionic fiber and the target cell is the

same as the pre- and post- ganglionic neurotransmitter, acetylcholine. Although

acetylcholine generally has an excitatory effect, it is also known to have inhibitory

effects as well, such as the slowing of the heart by the vagus nerve. In Figure 2.5, it is

important to realize that some organs, such as the heart, eyes, and stomach, receive

autonomic activity from both the sympathetic and parasympathetic nervous systems.

This is often called "dual innervation". Usually, but not always, whatever effect the

sympathetic nervous system has on the effector cells, the parasympathetic nervous

system has the opposite effect.

In general, the sympathetic nervous system increases its response under

conditions of stress. It is responsible for what is known as the fight-or-flight response.

On the other hand, activity of the parasympathetic nervous system is associated with

relaxing and the storing of energy. For example, heart rate increases with sympathetic

activity and decreases with parasympathetic activity. Table 2.2 (Page # 21) summarizes

the effects of the autonomic nervous system on selected organs.

Dual innervation by nerve fibers that cause opposite responses provides a very

fine degree of control over the effector organ- it is like equipping a car with both an

accelerator and a brake. One can slow the car simply by decreasing the pressure on the

accelerator; however, the combined effects of releasing the accelerator and applying the

brake provide faster and more accurate control. Analogously, the sympathetic and

parasympathetic divisions are usually activated reciprocally; that is, as the activity of one

division is increased, the activity of the other is decreased [1, 2].
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In addition to dual innervation, another important physiological characteristic is

that the sympathetic and parasympathetic nervous systems are continually active.

Without these sympathetic and parasympathetic tones, each nervous system would only

be able to produce one desired output, such as increasing heart rate. For instance, when

sympathetic tone increases, heart rate increases. Conversely, when sympathetic tone

decreases below its basal rate, the heart rate will decrease because of less sympathetic

influence.

Figure 2.5 The Sympathetic Nervous System and Parasympathetic Nervous System.
(From E. N. Marieb, Human Anatomy and Physiology, 3 rd ed. New York: The
Benjamin/Cummings Publishing Company, Inc., 1995.)
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Table 2.2 Autonomic Effects on Selected Organs of the Body. (From A.J. Vander, J.H.
Sherman, and D.S. Luciano, Human Physiology, 1994)

Effector Organ Effect of Sympathetic
Stimulation

Effect of Parasympathetic
Stimulation

Eyes
Iris muscles
Ciliary muscle

contracts (dilates pupil)
Relaxes (flattens lens)

relaxes (constricts pupil)
Contracts

Heart
SA node
Atria
AV node
Ventricles

Increases heart rate
Increases contractility
Increases conduction velocity
Increases contractility

Decreases heart rate
Decreases contractility
Decreases conduction velocity
Decreases contractility slightly

Arterioles
Coronary
Skin
Skeletal muscle
Abdominal viscera
Salivary glands

Dilates ( f32 ); constricts (a )

Constricts
Dilates ( 132 ); constricts ( α)

Dilates ( 162 ); constricts (a )

Constricts

Dilates
None
None
None
Dilates

Lungs
Bronchial Muscle Relaxes Contracts
Stomach
Motility, tone
Sphincters
Secretion

Decreases
Contracts
Inhibits (?)

Increases
Relaxes
Stimulates
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2.4.2 Autonomic Nervous System and Sleep

The parasympathetic and sympathetic nervous system have been regarded as

antagonistic. This behavior is exemplified in end organ responses such as the heart where

an increase in sympathetic activity increases the heart rate while increases in

parasympathetic activity decrease the heart rate. This has resulted in a depiction of the

autonomic nervous system as a balance swinging around a fulcrum.

Sleep is a state of reduced consciousness that offers potential for the assessment

of autonomic regulation in an environment relatively devoid of physical activity and

higher cortical activity. The efferent and afferent systems that may be involved in ANS

regulation in the SAHS are primarily related to the pulmonary and cardiovascular

systems [1].

The normal average heart beat in a resting teen is 70-80 beats per minute, during

sleep it goes down to 50-60 beats per minute, and it accelerate to above 100 with

emotional excitement. During sleep the parasympathetic nervous system is in control and

the sympathetic nervous system is suppressed so that the heart rate becomes low. During

fear the sympathetic nervous system takes command and the parasympathetic nervous

system is suppressed so the heart rate will be higher [1, 2, 29].
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2.5 Heart Rate and Heart Rate Variability

2.5.1 Physiology of Changes in Heart Rate

Change in heart rate is sensitive to changes in body temperature, plasma electrolyte

concentrations and hormone concentrations. However, the most important influence of

beat-to-beat variations of heart rate comes from the autonomic nervous system. More

specifically, sympathetic activity increases heart rate, whereas activity in the

parasympathetic (vagus) nerves causes the heart rate to decrease. Due to considerably

more parasympathetic activity to the heart than sympathetic activity in the resting state,

the normal resting heart rate is below the inherent rate of 100 beats/minute.

The autonomic nervous system innervates the heart in a number of places. The

sympathetic nervous system terminates at the SA node, the conduction system, atrial and

ventricular myocardium, and coronary vessels. The parasympathetic fibers terminate in

the SA and AV nodes, atrial and ventricular musculature, and coronary vessels.

Interplay between the two systems will cause the heart to speed up or slow down,

depending on which system is more active. Figure 2.6 illustrates the autonomic

innervation of the heart [1, 2].

Perhaps the most important site of innervation of the autonomic nervous system

on the heart occurs at the SA node. The SA node possesses an inherent discharge rate,

often referred to as the pacemaker potential. The pacemaker potential is a slow

depolarization of the cells of the SA node. The innervation of the sympathetic and

parasympathetic nervous system on the SA node changes the characteristics of
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depolarization within the SA node cells, thus changing heart rate. Figure 2.7 illustrates

these changes due to autonomic innervation.

Figure 2.6 Autonomic Innervation of the Heart (From M.D. Kamath and E.L. Fallen,
"Power spectral analysis of heart rate variability," Crit. Rev. in Biomed. Eng., 1993)

For comparative purposes, the pacemaker potential labeled "Normal" is the

control. From the figure, one can observe that sympathetic stimulation increases the

slope of the pacemaker potential. As a result, the SA node cells reach the threshold more

rapidly, thus increasing the heart rate. Conversely, parasympathetic stimulation

decreases the slope of the pacemaker potential. Consequently, the SA node cells reach

the threshold more slowly, and heart rate decreases. In addition to decreasing the slope

of the pacemaker potential, parasympathetic stimulation also hyperpolarizes the plasma
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membrane of the SA node cells so that the pacemaker potential starts from a more

negative membrane potential. As a result, the time it takes the SA node cells to reach the

threshold increases, which decreases heart rate [2].

true ""`"1-,

Figure 2.7 Effect of Autonomic Stimulation on the Slope of the Pacemaker Potential
(from A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994)

2.5.2 Heart Rate Variability as a Measure of Autonomic Function

Changes in heart rate usually involve the reciprocal action of the two divisions of the

autonomic nervous system. An increased heart rate is the result of reduced

parasympathetic tone and a concomitant increase in sympathetic activity. A decrease in

heart rate is usually the result of increased parasympathetic tone and a simultaneous

decrease in sympathetic tone. Therefore, changes in heart rate reflect the action of the

sympathetic and parasympathetic nervous systems on the heart. However, under certain

conditions (emergency or stressful situations), it is possible for heart rate to change by

activity of only one division of the autonomic nervous system, independent of the other
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division, rather than reciprocal changes in both [1, 2]. This response is typically referred

to as a fight-or-flight response.

Initially, the effect of the autonomic nervous system on the heart was estimated

by utilizing the traditional technique of average heart rate. As a reference, the average

heart rate was measured under normal resting conditions. Then the average heart rate

was measured under the administration of drugs. The drugs used were atropine, which

blocks the effects of the parasympathetic nervous system, and propranolol, which masks

the effects of the sympathetic nervous system. A qualitative assessment can then be

made of the autonomic nervous system by comparing the reference heart rate to the heart

rate while under the administration of the drugs. This method looks at the average over

time of heart rate. However, when the ECG is looked at on a beat-to-beat basis, rather

than over a period of time, fluctuations in the heart rate are observed. Recent research

indicates that fluctuations in heart rate are a healthy sign. In fact, one hypothesis is that

the larger variations in the heart rate correlate to a healthier autonomic nervous system.

By contrast a number of physiologic and disease states produce alterations in autonomic

function, which reduce the variability in heart rate.

The direct quantification of vagal activity in humans is difficult as recording directly

from the nerve is highly invasive. The degree of RSA provides a quantitative measure of

the vagal outflow to the myocardium. That is, the phasic inhibition of cardiac vagal

activity associated with inspiration produced by the CNS introduces a heart rhythm at the

respiratory frequency, typically 0.25Hz [1, 18]. The amplitude of this rhythm (i.e. the

degree of slowing down and speeding up) of the heart rate determines the tonic level of

the vagal outflow. Spectral analysis techniques have been applied to the heart rate
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variability (HRV) in order to estimate the frequency component centered about the

respiratory frequency, termed the high frequency band (HF). This evaluation of RSA has

provided a useful method for the non-invasive measurement vagal input to the

myocardium.

The heart rate demonstrates a frequency component at a lower frequency (LF)

centered at about 0.1Hz (i.e. one cycle per 10 seconds). These slower cycles, related to

sympathetic activity, have been associated with Mayer waves and baroreceptors [18].

There is a certain amount of disagreement as to the physiological significance of the LF

component of HRV, because pharmacological interventions blocking the vagus also

produce a reduction in LF power in HRV studies. Thus, the LF variability is thought to

have both a sympathetic and vagal component and is not a pure measure of sympathetic

activity. The sympathetic nervous system modulates blood pressure Mayer waves. The

cyclical increases in blood pressure most likely modulate the heart rate via baroreceptor

feedback mechanisms. A better concept that is used to isolate the sympathetic activity is

that of "sympatho-vagal balance" which recognizes both reciprocal and non-reciprocal

parasympathetic and sympathetic influences on heart rate by computing the low

frequency to high frequency ratio. An increase in the low frequency to high frequency

ratio indicates either an increase of sympathetic activity, a decrease in parasympathetic

activity, or a reciprocal change in both.

Power spectrum analysis of short segments of beat-to-beat heart rate variability

(PS/HRV) reveals three distinct peaks. In human PS/HRV, the high frequency (HF) band

(0.15 to 0.4 Hz) is correlated with respiratory driven vagal efferent input to the sinus

node. The low frequency band (LF) 0.06 to 0.15 Hz is believed to be due to baroreceptor
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mediated blood pressure control. Therefore, PS/HRV represents a noninvasive signature

of the balance between sympathetic and parasympathetic components of the autonomic

nervous system.

2.6 The Electrocardiogram

The electrocardiogram (ECG) is primarily a tool for evaluating the electrical events

within the heart. The action potentials of cardiac muscles can be viewed as batteries that

cause charge to move throughout the body fluids. These moving charges, or currents,

represent the sum of the action potentials occurring simultaneously in many individual

cells and can be detected by recording electrodes at the surface of the skin. Figure 2.8

illustrates a typical normal ECG recorded between the right and left wrists for one

heartbeat [2, 29].

Figure 2.8 An electrocardiogram tracing (lead I) illustrating the three normally
recognizable deflection waves and the important intervals. (From E. N. Marieb, Human
Anatomy and Physiology, 3 rd ed., 1995.)
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The first deflection, the P wave, corresponds to the current flow during atrial

depolarization (contraction). The second deflection, the QRS complex, is a result of

ventricular depolarization. The third and final deflection is the T wave. The T wave is a

result of ventricular repolarization (relaxation). It should be noted that atria

repolarization is usually not evident in the ECG because it occurs at the same time as the

QRS complex.

As mentioned earlier, the ECG is a measure of the electrical activity of the heart

measured on the skin. In order to measure the ECG, bipolar leads are required. The

bipolar method of acquiring ECG detects electrical variations at two different locations

on the skin and displays the difference to obtain one waveform. Figure 2.9 is an

illustration of the standard limb lead connections that form the Einthoven's triangle. In

addition, the diagram also shows the names of the respective leads. To record lead I, the

negative terminal of the ECG monitor is connected to the right arm (RA) and the positive

terminal is connected to the left arm (LA). To record lead II, the negative terminal of the

ECG monitor is connected to the right arm and the positive terminal is connected to the

left leg. To record lead III, the negative terminal of the ECG monitor is connected to the

left arm and the positive terminal is connected to the left leg (LL). The reference point

or ground is connected to the right leg (RL) [2, 29].

It is important to realize that depending on where the electrodes are attached, a

different waveshape will be obtained for the same electrical events occurring in the heart.

In other words, leads I, II, and III all have a different waveform shape. In addition to

obtaining different waveforms depending on the location of the electrodes, each

individual has a unique ECG.



Figure 2.9 The placement of the positive and negative electrodes for three commonly
used leads, as shown. (From J. G. Creager, Human Anatomy and Physiology. Belmont,
CA: Wadsworth Inc., 1983.)

30



31

2.7 Electroencephalogram (EEG)

2.7.1 Brain Waves

The gross electrical activity of different parts of the brain can be recorded

electrographically. Extracellular current flow arising from electrical activity within the

cerebral cortex can be detected by placing recording electrode on the scalp to produce a

graphical record known as an Electroencephalogram or EEG. These "brain waves" for

the most part are not due to action potentials but instead represent the momentary

collective postsynaptic potentials activity in the cell bodies and dendrites located in the

cortical layer under the recording electrode [2, 8, 29].

As mentioned briefly in the previous section, electrodes placed on the scalp measure

continuing oscillations due to the electrical activity of the brain. These variations in

potential are called brain waves, and when they are recorded, the record is termed an

electroencephalogram. The amplitude of these waves when measured through the scalp

is about 10-100microVolt, and their frequency can vary from 0.5Hz to 100Hz. The

character of the brain waves is highly dependent on the degree of activity in the cortex.

Much of the time, especially during alert activity, the brain waves are small in amplitude

and quite asynchronous. However, at other times the brain will exhibit very rhythmic

activity that is almost sinusoidal in nature.
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2.7.2 Brain Wave During Sleep

The brain wave patterns are divided into four different types of waves: alpha, beta, theta

and delta waves [1, 2].

Alpha waves consist of high-amplitude, well-synchronized sinusoidal waves having a

frequency of between 8 and 12 Hz. They occur in almost all adults, particularly in the

thalamocortical region of the brain, when they are awake but in a quiet, resting state with

eye closed. Alpha waves will disappear during sleep and when an awake person focuses

attention on a specific mental activity.

Beta waves are desynchronized, and lower-amplitude then alpha waves.

Desynchronization is not only characteristic of the transition between the closing and the

opening of the eyes, but also of the most alert, attentive, or excited states. Beta waves

normally occur at frequencies above 13 Hz; sometimes they can be as high as 50Hz.

These mostly appear in the parietal and frontal lobes during intense mental activity.

Theta waves oscillate at frequencies between 4 and 7Hz. These waves occur mainly in

the parietal and temporal lobes of children, but they can also appear during emotional

stress in adults, especially during disappointment and frustration.

Delta waves include all frequencies below 4Hz. These occur in very deep sleep, in

infants, and in serious organic brain disease. They also have occurred in animals whose

cerebral cortex has been transected from the thalamus, indicating the waves can occur in

the cortex independent of other brain areas.
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2.8 Sleep Physiology

Currently there can be no absolute definition of sleep. In the human, sleep and sleep

type is identified by electroencephalographic (EEG) frequency. This does not extend

to all organisms as the simplest single cell organisms demonstrate rest-activity cycles

[1].

The exact function of sleep is still to be definitively elucidated. Many theories have

abounded as to the function of sleep [1]. These are include but are not limited to

1. Energy conservation (save energy, stop expenditure)

2. Wakefulness (being awake)

3. Immune function

4. Growth (in children, repair work in adults)

5. Data storage (reverse learning)

2.8.1 Sleep

In the human being sleep is differentiated into two main types namely:

1. Rapid Eye Movement (REM) and

2. Non-Rapid Eye Movement (NREM).

REM sleep has been divided into two principal classes namely phasic (high

amplitude, low frequency) and tonic (low amplitude, high frequency) REM. NREM



34

sleep is characterized by four main sleep stages ranging from light sleep: stages1 and

2 sleep to deep sleep: stages 3 and 4 sleep. In humans the temporal arrangement of

sleep type is described graphically by a hypnogram (Fig: 2.9.1)

HOURS OF SLEEP

(Fig: 2.9.1) Typical Hypnogram from a healthy young subject.

Typically humans transition from quiet wakefulness into stage 1 sleep that lasts for 1

to 7 minutes, followed by a rapid progression taking between 10 and 25 minutes,

through sequential NREM sleep stages to stage 4 sleep. REM sleep then follows deep

sleep. This NREM-REM sleep cycle has an ultradian rhythm of approximately 90

minutes. As the sleep episode progresses this 90-minute cycle repeats; however the

density of each sleep type alters across the course of time into sleep. Deep sleep

(stage 3 and 4) is most prominent in the early part of the night and is related to

homeostatic sleep pressure influences. Thus, as the sleep drive is progressively
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satisfied across the course of the night, the time spent in deep sleep decreases. REM

sleep exhibits the reverse pattern. The first episode of REM sleep may be as short as

a couple of minutes lengthening to approximately 20-30 minutes by the end of the

sleep episode [1, 2].

2.8.2 Types of Sleep — Sleep Stages

A methodology for the identification of human sleep stages uses their recognizable

electroencephalograph (EEG) characteristics.

Wakefulness

The first stage is wakefulness which is characterized by low amplitude

desynchronized EEG in the eyes open state. Relaxed wakefulness with the eyes

closed may contain alpha rhythm.

Stage 1 Sleep

Stage 1 sleep is generally low amplitude EEG with some theta rhythms and vertex

waves (sharp negative waves). Transitions into sleep are identified by alpha-theta

transitions. There may also be slow rolling eye movements in stage 1 sleep.

Time in seconds.

(Fig: 2.9.2) Stage 1 sleep — Alpha.
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(Fig: 2.9.3) EEG during sleep stage 1.

Stage 2 Sleep

During stage 2 sleep the EEG becomes more synchronized and is characterized by the

appearance of K-complexes (a sharp negative wave followed by a slower positive

component) and sleep spindles (short rhythmic waveform clusters of 12 — 14Hz). If a K-

complex or spindle is present then it is stage 2 sleep. However stage 2 sleep can be

scored in the absence of K-complexes and spindles if it is surrounded with other episodes

of stage 2 sleep and has the characteristics frequency components. There may also be

slow rolling eye movement.
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(Fig: 2.9.4) EEG sleep stage 2.

Slow Wave Sleep

Both stage 3 and 4 sleep are characterized by EEG delta wave activity. Delta waves

are large amplitude waves at a frequency of < 4Hz. Stage 3 has >20% and <50%

delta waves, stage 4 has >50% delta waves. There is usually little to no eye

movement present in deep sleep.
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Time in seconds.

(Fig: 2.9.5) EEG slow wave sleep during stage 3&4.

Rapid Eye Movement Sleep (REM)

REM sleep exhibits some of the characteristic traits from both sleep and wakefulness

EEG recordings. The EEG in REM is low amplitude and desynchronized. It may exhibit

a saw tooth pattern [1, 2].

REM can also be broadly classified in to two types namely phasic and tonic

REM. During phasic REM there are rapid eye movements and brief bursts of EMG,

while during tonic REM eye movement are not present.
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(Fig: 2.9.6) EEG - REM sleep.

2.9 Sleep Apnea Disease (SA)

Apnea has been described as a total cessation in airflow for a period of greater

then 10 seconds. As the apnea continues to progress there is an absence or reduction of

alveolar ventilation. Hypopnea is a reduction in airflow of greater then 50% for a period

of 10 seconds or greater with apnea being the extreme case of hypopnea. The sleep apnea

/ hypopnea syndrome (SAHS) is characterized by repetitive pauses in respiration during

sleep. The literal Greek meaning of "Apnea" is "want to breath". A syndrome is defined

by " a group of concurrent symptoms of a disease". Conservative prevalence studies

estimate that 4% of males and 2% of females have the SAHS in American population. It

is considered a major health problem having been reported as a more serious public
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health problem than smoking and asthma. It has also been reported that the SAHS

contributes to road traffic accidents, memory impairment and personality changes [1].

2.9.1 Symptoms

Interruptions of the normal respiratory cycle, due to apnea or hypopnea, typically end

with an arousal, which fragments the normal sleep architecture. This arousal-arousal

cycle potentially causes a daytime neurological disorder of excessive daytime sleepiness,

impaired cognitive function, short-term memory impairment and mood swings. Other

associated symptoms include snoring, nocturnal enuresis, nocturnal choking,

unrefreshing sleep, morning headaches, impaired sexual function, spouse reports of

arousal and restless sleep. Typically, but by no means always, a patient with the SAHS is

an obese, middle-aged male presenting with excessive snoring and excessive daytime

sleep (EDS) [1, 20].

2.9.2 Severity of Sleep Apnea

The severity of sleep apnea is classified according to the number of times per hour that a

person stops breathing (apnea) or has slowed breathing (hypoapnea). Periods of apnea

must result in at least a 4% drop in blood oxygen levels. The classification is referred to

as the apnea-hypoapnea index (AHI) [1, 20].

• Mild Apnea. Mild apnea is 5 to 15 episodes of apnea or slowed breathing

per hour with 86% or more oxygen saturation in the blood. Symptoms may

include drowsiness or falling asleep during activities that do not require
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much attention, such as watching TV or reading. These symptoms may

cause only minor problems with work or social function.

• Moderate Apnea. Moderate apnea is 15 to 30 episodes of apnea or

hypoapnea per hour with 80% to 85% oxygen saturation in the blood.

Symptoms may include drowsiness or falling asleep during activities that

require some attention, such as attending a concert or a meeting. These

symptoms may cause moderate problems with work or social function.

• Severe Apnea. Severe apnea is more than 30 episodes of apnea or

hypoapnea per hour with 79% or less oxygen saturation in the blood.

Symptoms may include drowsiness or falling asleep during activities that

require active attention, such as eating, talking, driving, or walking. These

symptoms may cause severe problems with work or social function.

2.9.3 Types of Apnea

An apnea may arise from different mechanisms. This has led to the sub-classification of

apnea types. The most common cause of an apnea event is the result of mechanical

obstruction of the upper airway. This is termed an obstructive sleep apnea event. A

narrow, floppy upper airway provides the pathophysiological basis for OSA. This may

have a congenital or acquired origin. Usually such an airway does not cause problem

during wakefulness. However, with sleep the associated loss of skeletal muscle tone

increases the collapsibility of the upper airway [15], particularly during rapid eye

movement (REM) sleep when muscle relaxation is profound. This has two important

consequences as gas is accelerated through it. First, the structures will tend to vibrate as
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turbulent flow patterns are produced, with snoring the result. Second, the pharynx will

tend to collapse due to the Bernoulli effect, with resultant partial or complete

obstruction. Obstruction will persist until sleep is interrupted and muscle tone is restored.

Usually these interruptions are momentary arousals lasting less then 15 s and the sufferer

is unaware of them. Occasionally, the obstructive event will result in an awakening, and

the sufferer may complain of waking suddenly or with a snort or a snore. With arousal,

breathing is restored and after a few breaths deeper sleep will resume with recurrence of

the problem as the muscles again relax. In the more severe cases of OSA, this cycle of

apnea and arousal may occur hundreds of times a night. In the more subtle cases, it may

only occur in certain sleep stages (particularly REM sleep) and postures (particularly

supine) or after alcohol consumption. The result of this constant sleep disruption is

lethargy and somnolence during wakefulness [1, 2, 15, 20].

(Figure: 2.9.7) illustrates an obstructive apnea where airflow is discontinued however;

intrathroracic movement indicates the presence of a respiratory effort.

(Fig: 2.9.7) Obstructive Sleep Apnea.
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An apnea that results from loss of central respiratory drive is termed a central apnea.

During a central apnea there is little to no chest or abdominal wall expansion; therefore,

no negative intrathoracic pressure developed during the apnea. A central apnea resulting

from Cheyne-Stokes respiration (periodic breathing) in a heart failure patient, is

illustrated in (Fig: 2.9.8) [1. 16. 19. 201.

(Fig: 2.9.8) Central Sleep Apnea example. The top tracing illustrates tidal volume (VT); the middle trace

in the intrathoracic pressure recording (Pes) and the bottom trace illustrate the corresponding arterial

oxyhaemoglobin saturation (SaO2).

There is also a hybrid type of apnea termed a mixed apnea. Mixed apneas begin centrally

and the upper airway collapses. Then respiratory efforts begin against the occluded

airway, turning it into an obstructive event. Hypopneas are not usually sub-classified

through they result from the same combination of mechanisms as apneas.



Table: 2.3 Symptoms Associated with Sleep Apnea

Adults Children

Heavy snoring Snoring

Excessive daytime sleepiness Restless sleeping

Witnessed apneas Somnolence

Sudden awakenings with "choking" Aggression / behavioural problems

Accidents related to sleepiness Hyperactivity

Poor memory/concentration Odd sleeping postures

Gastro- oesophageal reflux Frequent coughs/colds

Mood/personality changes

Nocturnal sweating

Restlessness during sleep

Dry mouth on awakening

Nocturnal or morning headache
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2.9.4 Physiological Changes during an Apnea

Hemoglobin Saturation

The reduction in alveolar ventilation resulting from either an apnea or hypoapnea

event may, but not always, produce a decline in arterial oxyhaemoglobin saturation

(Sa02). Apneas are more likely to produce an arterial desaturation than hypoapneas [1].

Arousals

Respiratory disturbances typically end with cortical arousals. Arousals are characterized

by an increase in EEG frequency. Brief arousals, lasting less than 15 seconds, are termed

micro arousals. Definitions of EEG arousal classification vary. The most widely applied

criteria for arousal are those reported by the American Sleep Disorders Association

(ASDA). The ASDA criteria define a duration of 3-seconds for an arousal to be scored.

Several reports have noted that not all respiratory events are terminated with a visually

identifiable cortical arousal. Davies et al [33]. have shown that auditory stimuli provoke

heart rate and blood pressure alterations without noticeable EEG changes. Conclusions

drawn from this work have generated the concept of subcortical or autonomic arousals.

These may provide a quantifiable method for measurement of sleep disruption.

Heart Rate

Inspiratory efforts against an occluded upper airway produce large negative intrathoracic

pressure swings (Fig: 2.9.9). This is akin to performing the Mueller manoeuvre

(voluntary negative intra-thoracic pressure), which is known to cause vagal activation.

This is illustrated in the bottom trace of (Fig: 2.9.7) where a lengthening of the R-R

intervals in the ECG trace is witnessed during the apnea. Supporting evidence for vagal

involvement producing the apnea related bradycardia is that atropine sulphate inhibits
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this reflex. Hedner et al [1]. report that, during an apnea, there is increasing muscle

sympathetic nerve activity, peaking immediately prior to apnea cessation. The effect of

increased sympathetic stimulus during an apnea, usually increasing the heart rate, may be

swamped by the concurrent increase in vagal activity.

(Figure: 2.9.9) Transient heart rate and blood pressure consequences of an apnea.

The arousal at the termination of an apnea initiates a burst of sympathetic activity. In the

SAHS, transient sympathetic increases have been demonstrated by blood pressure, heart

rate (Figure: 2.9.9), catecholamine and MSNA recordings. The resulting tachycardia at

arousal is not completely abolished by pharmacological Beta-blockade suggesting that

there may be vagal inhibition in addition to sympathetic activation. In addition, at

arousal there is reported carotid body activation and baroreceptror inhibition. After the
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arousal heart rate and sympathetic activity fall to near resting levels [1, 15, 16], which

can be seen in our data (Fig: 2.9.9.1). The first waveform shows the airflow of a 10

second apnea period. The following two graphs are electrocardiograph with the

lengthening of the R-R intervals and simultaneous increase in blood pressure during the

apnea. After the arousal the heart rate and blood pressure fall to near resting levels.

.1.114.1V 	 seconds .

(Fig: 2.9.9.1) Airflow, heart rate and blood pressure consequences of an apnea

Blood Pressure

Systemic and pulmonary arterial pressure increase during an apnea. By the termination

of an apnea, blood pressure can increase, with an associated decrease in stroke volume
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suggesting an increase in peripheral resistance [1]. Following an apnea, blood pressures

return to normal.

Haemodynamics Effects

It has been suggested that the negative intrapleural pressures developed during apnea

induces homodynamic changes in the myocardium and shifts in thoracic blood volume.

It is unlikely that the blood pressure alterations are due to mechanical hemodynamic

changes as studies have demonstrated that central apnea events, where no respiratory

effort is produced, elicit blood pressure increases and bursts of muscles sympathetic

nerve activity. Non-apnea arousals, i.e. those produced by nocturnal myoclonus (shock-

like muscle contraction) and auditory stimuli also yield increases in systemic blood

pressure and heart rate [1, 2, 20].



CHAPTER 3

ENGINEERING BACKGROUND

The purpose of this chapter is to introduce a brief background of signal-

processing methods used in this study. One major component of this thesis is the

investigation of heart rate variability using wavelets. The rest of this chapter will

present the reason for using time-frequency analysis, the background on wavelets and

the general approach to computing time-frequency distributions.

3.1 The Need for Time-Frequency Distributions

The distribution of signal energy in time and the distribution of signal energy in

frequency are very straightforward. The distribution in time is defined as the squared

magnitude of the signal,  , and the distribution in frequency is defined as the

squared magnitude of the Fourier transform, |X(ω)|^2 Neither the signal nor its Fourier

transform indicate how the energy of the signal is distributed simultaneously in time and

frequency [17, 18].

3.2 The Uncertainty Principle

The uncertainty principle in time-frequency analysis provides us with a lower limit on

the spread of signal energy in time and frequency. To define the spread of a signal in

time and frequency, we first need to define the average time μ t and average frequency

pa, of a signal:
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The spread of the signal in time a 2 (duration) and frequency o (bandwidth) is defined

as:

Therefore a signal cannot have an arbitrarily small duration and bandwidth. A Gaussian

signal:

meets this bound with equality where a is an arbitrary constant.

3.2.1 The Analytic Signal and Instantaneous Frequency

Most signals are real valued functions of time. Since the Fourier transform of a real

signal will be even, there is an unnecessary redundancy in a real signal. To eliminate the

redundancy, one can compute what is called the "analytic signal" from the real valued

signal. The analytic signal, xa (t) , is of the form:

where H[] is the Hilbert transform operator . The Fourier transform of the analytic
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One advantage of the analytic signal is that it can be sampled at half the rate of the real

signal. Another advantage of the analytic signal, which will be discussed later, is that

there are fewer cross terms in the time-frequency distribution of an analytic signal.

In computing examples of time-frequency distributions, we will often use narrow band

signals of the form:

The above is the analytic signal corresponding to A(t) cos(φ(t)) . The frequency of a

signal at a given time is denoted as the instantaneous frequency, and for the signal in

equation 3.1 it is defined as [13, 17, 18]:

where 8(.) is a Dirac delta function. The above equation implies that the energy of the

time-frequency distribution is concentrated along the instantaneous frequency of the

signal. A dual quantity is the average time of a signal at a given frequency. This

quantity is called the group delay. For a signal of the form:



the group delay is defined as:

3.2.2 Properties of Time-Frequency Distributions

There are many methods for constructing time-frequency distributions. To provide

guidelines for constructing time-frequency distributions, authors have proposed many

"desirable" properties that time-frequency distributions should satisfy. For example,

since time-frequency distributions are usually considered to be energy distributions, they

should be real and positive functions. Also, the time marginal of a time-frequency

distribution is the integral of the time-frequency distribution over frequency, and the

time marginal should be identical to the distribution of signal energy over time.

52
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3.3 Power Spectral Analysis of Heart Rate Variability

Power spectral analysis of heart rate variability is a potentially powerful tool for

evaluating the activity of the autonomic nervous system non-invasively. Power spectral

analysis is a technique, which transforms a signal from the time domain to the frequency

domain. It is based on the theory proposed by Fourier who states that all periodic

functions can be represented as a sum of sines and cosines at a fundamental frequency

and its harmonics. This sum is referred to as a Fourier series. Since heart rate

variability is not periodic, a similar technique called the Fourier transform is applied.

The time domain signal used for computing the heart rate variability power spectrum is

known as the interbeat interval (IBI)[17, 18].

The ECG and BP signals are converted from analog to digital form and stored in

.TXT format on the data acquisition computer. The data is then transferred over to a

signal-processing computer. A LabVIEW program is used to identify the channel and

obtain the HRV power spectrum. The following is a description of the necessary steps

to obtain the power spectrum of HRV.

The first step to obtain the power spectrum of HRV is to detect every R-wave in

the ECG. Because the R-wave complex is more pronounced in the ECG the LabVIEW

detection program can easily detect these R-waves.



54

Figure 3.1 Figure Depicting the Construction of the IBI Signal (from S.J. Shin, W.N.
Tapp, S.S. Reisman, and B.H. Natelson, "Assessment of autonomic regulation of heart
rate variability by the method of complex demodulation," 1989)

Before trying to detect the R-waves, the ECG signals are detrended using a

locally weighted robust regression algorithm built in LabVIEW. To help detect each R-

wave, a vertical threshold (which the R-wave must exceed) and a horizontal threshold

(to prevent detecting an R-wave for a period of time after one was detected) can be

varied. If an error occurs during the R-wave detection, the analyst can use existing

software to manually detect or the mis-detected R-waves.

Once the R-waves are properly detected, an interbeat interval (IBI) signal can be

constructed. To obtain the IBI signal, the distance in time between a specific beat (TO

and the beat previous in time ) is calculated. This value of time difference then

becomes the amplitude of the IBI signal at that specific beat. Mathematically, the IBI



55

signal is computed by the formula IBIm=Tm - Tm-1. See Figure 3.1 for a graphical

representation.

Although the IBI represents the heart period at discrete points, the IBI signal is

not suitable for FFT analysis because the discrete points, located at each R-wave, are not

evenly spaced. In order to produce equidistant IBI samples suitable for analysis, the IBI

signal must be interpolated. The interpolation method used was that of a backward step

function. This method assumes no new information about the direction of the time

series is available until the next heartbeat occurs. Therefore, the amplitude of all of the

interpolated values between a beat at timeTm-1, and the beat at T„,, were set equal to the

time difference between Tm and Tm-1 l . The interpolated interbeat interval (IIBI) is then

sampled to produce an IIBI with evenly spaced samples. For example, in Figure 3.1(c)

if a beat occurs at a time equal to 2 seconds and the next beat occurs at a time equal to

2.9 seconds, then the interpolated values between time 2 seconds and 2.9 seconds are all

0.9 as shown in Figure 3.1(d). After the IIBI signal is obtained, it is detrended using a

locally weighted robust regression algorithm (available in LabVIEW), which acts like a

filter. Essentially, this removes low frequency components below .05 Hz. If these low

frequency components are not removed, they can dominate the power spectrum and

decrease the detail of the components in the frequencies above 0.05 Hz. Another

example of an IBI signal and an IIBI signal is shown in Figure 3.2.



Figure 3.2 IBI and IIBI Signals of heart rate.

The final step to obtain the power spectrum of HRV is to take the FFT of the

detrended IIBI signal. In the existing software, this is done by decimating the IIBI signal

by a factor of ten (the ECG is sampled at 200 Hz) and taking an 8192 point FFT of the

decimated IIBI signal. When the signal is decimated by a factor of ten, every tenth point

of the original signal is kept, and the nine points in between every tenth point are not

used. In a time series of samples, every tenth point occurs at the same time as in the

undecimated signal, except that there are no samples in between. In effect, decimating is

similar to down-sampling. Because the length of the IIBI signal is approximately the

same length of the sampled ECG, which is acquired using a sampling frequency of 200

Hz, decimating the IIBI by a factor of 10, is similar to sampling the IIBI at 20 Hz. This

can be done because the IIBI signal contains no frequency components above 6 Hz.
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The software is programmed to take an 8192-point FFT by default regardless of

the input signal length. In our experiments, —300 seconds of ECG were collected. At a

sampling frequency of 200 Hz, this corresponds to 60,000 samples. Recall that the IIBI

is approximately the same length as the ECG. If an 8192-point FFT were taken, only the

first one-eighth of the IIBI would be represented in the spectrum. In addition, the

frequency resolution would be 200/8192= 0.0244 Hz and the spectrum would be

between 0Hz and 100 Hz. However, the spectrum of the IIBI, the heart rate variability

spectrum, consists of low frequencies less than 6 Hz; therefore, the spectrum does not

need to be calculated up to 100 Hz. As a result, the IIBI is decimated by a factor of ten.

In this case, the IIBI signal would then be 6,000 samples long for a 300-sec long ECG

signal. For example the length of the IIBI signal is 6,000 points long. The length of the

IBI signal depends on the number of heartbeats. Now, in order to take an 8192-point

FFT of a signal that has only 6,000 samples, a technique called zero padding must be

used. Essentially all samples from 6001 to 8192 are given the value of zero. The only

effect this has on the spectrum is that it increases the frequency resolution. When the

FFT is calculated, we limited our spectrum from 0 Hz up to 10 Hz. The frequency

resolution is now 20/8192=0.00244 Hz. Once the power spectrum is obtained, it is

smoothed twice by applying a modified Daniell Rectangular smoothing algorithm.

Figure 3.3 illustrates the power spectrum of the IIBI signal in Figure 3.2.



Figure 3.3 Power Spectrum of IIBI Signal in Figure 3.2.

It should also be noted that when performing the FFT, the IIBI signal is

windowed by applying a split cosine bell taper. The taper begins at 20 percent from

each end of the time signal. The application of the split cosine bell taper is done before

the zero padding takes place so as to provide a smooth transition to zero rather than the

window's abrupt changes from one to zero.

It should be noted that if the window were a simple rectangular function, the

sharp one to zero changes are the cause of the side lobes in the FFT output sine function

(sin(x)/x). To minimize the spectral leakage caused by those sidelobes, we have to

reduce the sidelobe amplitudes by using window functions other than the rectangular

window. The purpose of the split cosine bell taper window is to reduce any additional

spectral components that result from the shape of the window. Multiplying the time

signal by the window function does the windowing. The split cosine bell taper for a

6,000-point long signal is shown in Figure 3.4.

Figure 3.4 Plot of the Split Cosine Bell Taper used as a Window in the F'FT Calculation
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Past research in power spectral analysis of heart rate variability correlates the

three distinct peaks with certain physiological parameters as illustrated by a more

classical power spectrum of the IIBI signal in Figure 3.5. The very low frequency band

is associated with vasomotor control and temperature control. The low frequency band

is associated with baroreceptor-mediated blood pressure control. The high frequency

band has been linked with respiration [18].

Figure 3.5 Example of power spectral density of HRV. Blue: power of spectrum of RR
interval in VLF range, red: power in LF range and yellow: power in HF range. (From
www. skyaid.org/Skyaid%20Org/Medical/HRV_Courses.htm,  2001)

To date, the best-known and best-defined peak in power spectral analysis of

heart rate variability is the high frequency peak. The high frequency peak reflects

changes in the interbeat interval that cycles up and down at the same frequency as

respiration. This influence of respiration on heart rate has been known for more than

one century and is called respiratory sinus arrhythmia (RSA). Properly defined, RSA is
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a rhythmical fluctuation in heart periods at the respiratory frequency that is characterized

by a shortening and lengthening of heart periods in a phase relationship with inspiration

and expiration, respectively. RSA is being used increasingly as a measure of vagal

control of the heart. As a result, the high frequency peak, which often occurs at the

same frequency as the respiration peak, corresponds approximately to the RSA and it is

purely parasympathetic in origin. From experience, one might contest that the frequency

of respiration is not limited to within the narrow band of 0.15 Hz to 0.4 Hz. The normal

respiration rate can be as low as only a few breaths per minute at rest and as high as up

to 40 breaths per minute during intense exercise. This stresses the fact that, when doing

research on heart rate variability to determine parasympathetic activity, the frequency of

respiration must be known. More specifically, the power spectrum of the respiration

waveform should be computed. [13, 17, 18].

Unlike parasympathetic activity, the sympathetic activity is not easily separated

from the power spectrum of heart rate variability. It has been hypothesized that the low

frequency peak (0.04 to 0.15 Hz) is a mixture of both parasympathetic activity and

sympathetic activity. A better concept that is used to isolate the sympathetic activity is

that of "sympatho-vagal balance" which recognizes both reciprocal and non-reciprocal

parasympathetic and sympathetic influences on heart rate by computing the low

frequency to high frequency ratio. An increase in the low frequency to high frequency

ratio indicates either an increase of sympathetic activity, a decrease in parasympathetic

activity, or a reciprocal change in both.
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3.4 Wavelet Transforms

Analysis of signals using appropriate basis functions is one of the fundamental problems

in the signal processing field. Fourier proposed the complex sinusoids as the basis

functions for signal decomposition. The Fourier transform of a finite energy continuous

time signal f (t) , (i.e. f (t) E L2 ) is defined as [14, 22]:

The strength of the standard Fourier analysis is that it allows the decomposition of a

signal into its individual frequency components and establishes the relative intensity of

each frequency component. Because of the infinite durations of these basis functions,

any time-local information (e.g. an abrupt change in the signal) is spread over the whole

frequency spectrum. Therefore, this transform cannot reflect any time-localized

characteristic of f (t) into frequency domain. It only provides the frequency behavior of

f (t) in the interval -00< t<00. Gabor addressed this problem by introducing a window

function to localize f (t) and calculating the Fourier transform of the windowed signal

as

where ω(t-τ) is the appropriate time-frequency localized, window function. This

transform is called the Windowed or Short-Time Fourier Transform (STFT) (also

referred to the Gabor transform when the window function used in the STFT is

Gaussian) [13, 14, 22].

The major advantage of Short-Time Fourier Transform is that if a signal has
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most of its energy in the given time interval [-T,T] and in the frequency interval

[– Ω,Ω], then its STFT will be localized in the region [-T,T]x [– 0,0] of the time-

frequency plane. Of course, the uncertainty principle prevents the possibility of having

arbitrary high resolution in both time and frequency domains, since it lower-bounds the

time bandwidth product of any basis function by Ann —1 
where (0T) 2 and

4r

(00) 2 are the variances of time function and its Fourier transform respectively.

An important parameter of a window function is its size (or scale). The selection

of an appropriate window size poses a fundamental problem in signal analysis. Thus, by

varying the window function used, one can trade the resolution in time for the resolution

in frequency. An intuitive way to achieve this is to have short time duration high

frequency basis functions, and long time duration low frequency ones. Fortunately, the

wavelet transform provides for this desired feature and is defined as,

where a E ,b E R . Here a, and b are the scale and shift variables respectively, and

they are continuous variables. Depending on the scaling parameter a, the wavelet

function ψ(t) dilates or contracts in time and causing the corresponding contraction or

dilation in the frequency domain. Therefore a flexible time-frequency resolution is

achievable with the wavelet transforms. Another significant difference of these

transforms is that, the STFT is never a real function on the time-frequency plane

regardless of the choice of ω(t) , but the wavelet transform is real if the basic wavelet

WO is chosen to be real.



3.4.1 Continuous Wavelet Transform

The continuous wavelet transform maps a function f (t) onto time-scale space as

ψab(t) represents a family of functions obtained from a single wavelet function ψ(t) and

the dilation and translation parameters a and b as

where a and b are continuous.

The wavelet function ψ(t) is a band-pass function. It is desired that this function

have a good time and frequency localization so that f (t) is decomposed into elementary

building blocks which are jointly well localized in time and frequency. The wavelet

function has to satisfy the "admissibility" condition that makes it an isometry (reflection

or a half turn rotation) of L2 (R) onto E (R x R) . This requirement limits the wavelet

functions which must satisfy

where ψ(Ω) is the Fourier transform of the wavelet function ψ(t). The admissibility
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condition is directly related to the decay of the wavelet function t) which is required
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to have good localization. The admissibility condition for a continuous ψ(Ω) is

equivalent to a zero-mean wavelet function in time

This condition forces that the wavelet function is a band pass function and decays at

least as fast as Itl e in time (in practice we need to have much faster decay of ψ(t), in

order to have good time localization).

The admissibility condition assures that the "resolution of the identity" holds.

This guarantees that any function f (t) E L2 (R") can be reconstructed from the wavelet

space as

where the wavelet coefficients were defined earlier in Eq. (3.17). Whenever ψ(t) is a

real function, the integral limits of Ch expression in Eq. (3.22) are changed from 0 to 00.

Resolution of the identity ensures that the Continuous Wavelet Transform

(CWT) is complete if Wf (a,b) are known for all a and b. A continuous signal f (t) is

represented by a pass band function ψ(t)and its dilated and translated versions. The

dilation in time leads to different resolutions in frequency. Fig. 3.6 displays a wavelet

function ψ(t) and its dilations for different values of parameter "a" along with their

Fourier transforms. This figure helps to visualize the time-frequency plane and

emphasizes the band pass nature of ψ(t) and its dilations. Fig. 3.3 also displays the

time-frequency resolution cells of the wavelet transform compared with the STFT. This
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figure indicates the fixed time-frequency resolution of the STFT versus the more flexible

resolution of the wavelet transforms.

Figure 3.6 The time-frequency plane resolution cells of the STFT vs. Wavelet transform
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The STFT yields the deposition of a signal into a set of equal bandwidth

functions sweeping the entire frequency spectrum. On the other hand the wavelet

transform provides the decomposition of a signal by a set of constant Q (or equal

bandwidth on a logarithmic scale) band pass functions. The constant bandwidth

condition on a logarithmic scale can be easily seen by the following relation,

The roles played by the transform parameters are different for STFT and wavelet

transforms. The time parameter r in the STFT refers to actual time instant, while the

parameter b in the continuous wavelet transform refers to the time instant lb .
a

There is a time-frequency resolution trade-off in the wavelet transform. To

quantify how the continuous wavelet transform spans the time-frequency plane, the

measures of time and frequency resolutions are defined. Let at and an be the standard

deviations of the mother wavelet function  ψ (t) in the time and frequency domains

respectively and the corresponding variances are defined as

Let the wavelet function WO be centered at (t 090 ) in the time-frequency plane. Hence
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t —
b is	

0v(—) s centered at (t0 ,---9-) with the variances
a	 a

These results explain the role of scaling parameter a in the wavelet transform. Fig. 3.7

displays time-frequency resolutions of the wavelet and scaling functions for different

values of a.



Figure 3.7 The role of scaling parameter in wavelet transform

3.4.2 Parseval Relation of Wavelet Transforms (Energy Preservation Property)

We will now show that the Parseval relation in the wavelet transform
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holds for any signal f (t) which is squared-integrable.	 Its proof requires the
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admissibility condition, which was defined in Eq. (3.20). By using the dual relation of

one can get

It is worth noting that the wavelet transform energy between the different scales also

preserves such that

3.4.3 Discrete Wavelet Transform

Although the admissibility condition assures the complete representation of f (t) with its

wavelet transform coefficients W f (a,b) , it requires the wavelet transform operation to

be performed for all values of a and b which are continuous parameters. This transform

representation is not practical. One would prefer to perform the wavelet transform

operation as few times as possible. Therefore these scaling or dilation, and translation or

shift parameters, a and b respectively, are discretized. This discretization provides a

transform grid or frame on the time-scale plane for the representation of signal f (t) . It

is intuitive that this grid or frame should be defined properly such that the complete
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representation of f (t) is still possible. This is called the Discrete Wavelet Transform

(DWT). This version of the wavelet transform reduces the redundancies of the wavelet

space W1 (a,b) significantly. The mathematical reasoning on the choice of frames or

grids is perfectly treated in the literature [22].

Now we can define the basis functions of a Discrete Wavelet Transform as the

subset of continuous wavelet function

with the corresponding discrete transform lattices or grids

Hence, the discrete wavelet transform basis functions can be expressed as

Here m and n are integers. It is intuitively seen that this discrete wavelet family

approaches to a continuous wavelet family when a o -1 	 b0 --> 0

It can be shown that the functions of a discrete wavelet transform basis

ψmn(t) can form a frame or the sets of m and n parameters are proper for the

completeness if the wavelet function ψ(t) satisfies the admissibility condition. Then the

frame bounds are constrained by the inequalities 0<A<B<G0

These inequalities hold for any choice of a0 and bo . These bounds diverge for non-
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admissible wavelet functions.

The discrete wavelet transform is defined on the grid points or in the frame of

time-scale plane as

W f (m,n)	 f >= a0^2 ψ(a0^-m t — nb0̂ )f (t)dt	 (3.36)

and the wavelet transform representation of the signal

f (t) = EEwf (n,n)Knn (t)	 (3.37)
m n

There is a particular interest on binary or dyadic grid where a0 = 2 and b0 =1, which

leads to the conventional mutiresolution concept and the orthogonal discrete wavelet

transforms.



CHAPTER 4

METHODS

4.1 Subjects

The sleep apnea data were acquired from the Pulmonary Function Test (PFT) Lab at

the New York Presbyterian Hospital (Columbia Presbyterian Medical Center) and the

normal subjects data were acquired from the NJIT Biomedical Engineering Signal

Processing Research Lab. A total of 22 subjects (18 males and 4 females, 49 ± 20 years)

experiencing both OSA and CSA in whom sleep-disordered breathing were diagnosed,

were used for this thesis. The inclusion criterion was the presence of at least five OSA

per hour of sleep. The severity of the disorder, from moderate to severe, was based on

the apnea / hypopnea index (the number of apneas / hypopneas per hour of sleep).

Chronic hypertension was present in 14 subjects and none of them were treated for

hypertension. Three subjects were current smokers.

The gold standard for a definitive diagnosis of the sleep apnea / hypoapnea

syndrome is polysomnography (PSG) [9]. Polysomnography is a scientific evaluation of

sleep. A polysomnograph is a machine that converts physiological signals (Ex. Oxygen

saturation, Airflow, EEG, ECG, blood pressure, thoracic and abdominal movement) in

the body to a graphical representation, which can help determine what is occurring

during sleep. The subjects were chosen from the patients who came with the complaint

of the following: snoring, poor sleep quality, excessive daytime sleep, some degree of

fatigue and high blood pressure [11].
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4.2 Protocol

Each subject underwent overnight polysomnography (PSG). PSG measures included

thoracic and abdominal wall expansion, oro-nasal airflow, oximetry, body position,

ECG, blood pressure and two-channel electroencephalography. EEG arousal was

defined as an abrupt and discrete change in EEG frequency. Sleep stage analysis was

performed by a sleep specialist. All subjects reported to the Sleep Laboratory at 20:00

and underwent standard nocturnal polysomnography until 06:00 the following morning.

Typically a full night's sleep is observed before a diagnosis is reached, and in some

patients a second night's recording is required. Because of the number and variety of

measurement made, this test is somewhat uncomfortable for the patient [3].

4.3 Sleep Recordings

Sleep was recorded using standard polysomnographic measurements including

electroencephalography (EEG), Electrocardiography (ECG) with precordial surface

electrodes, oxyhemoglobin saturation 02 with finger pulse oximeter (Embla, type XN),

blood pressure, nasal and oral airflow measured by thermistors. respiratory movements

of the rib cage and abdomen with piezo sensor bands. We recorded two leads of EEG,

ECG, nasal airflow, thoracic and abdominal respiratory movements, oxygen saturation,

snoring and body position. All sleep recordings were attended by a sleep specialist,

which took care of the patients and electrodes during the night. We recorded at least

eight continuous hours from 20:00 to 06:00. Data were recorded using the Labview Link

15 program, digital data with 200 Hz sampling rate for the ECG, blood pressure and

EEG with 16 bit resolution. Respiration, airflow and oxygen saturation were digitized at
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sampling rates of 10 Hz. All signal data were stored in the .TXT format, which allows

easy exchange with other programs to display the signals and gives access to many

analysis tools.

4.4 Data Analysis

The raw data was analyzed by using the LabVIEW (weighted coherence, Fig: 4.1)

program and the output was stored in .asc file format. From this output the time-

frequency (Wavelet) analysis was performed to determine the sympathetic and

sympatho-vagal activities.Block

 Diagram

(Fig: 4.1) LabVIEW Program for power spectrum analysis.
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4.4.1 Power Spectrum Analysis

The acquired digital data was transferred to a signal-processing computer. The raw data

was run with a channel identification program (LabVIEW, Fig: 4.2) to identify the

channels and locate the period of apnea.

The following (Fig: 4.3) represents the output of the channel identification program.

1 St graph - Oxyhemoglobin saturation (Sa02)

2nd graph - Thoracic movement

3 rd graph — Abdominal movement

4 th4 graph — Airflow

5 th graph — Electrocardiograph (ECG)

6 th graph — Blood pressure (BP)

Block Diagram

(Fig: 4.2) LabVIEW program for channel identification.
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(Fig: 4.3) LabVIEW Program to identify the channels of apnea subject (KT).
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Another LabView (weighted coherence, Fig: 4.1) program was used to obtain the HRV

power spectrum. The following is a description of the necessary steps to obtain the

power spectrum of HRV.

The first step to obtain the power spectrum of HRV is to detect every R-wave in the

ECG. Because the R-wave complex is pronounced in the ECG, the LabVIEW detection

program can easily detect these R-waves. If an error occurs during the R-wave detection,

existing software can be used to manually detect or undetect the incorrectly detected R-

waves.

The IBI signal represents the heart period at discrete points. It is not suitable for FFT

analysis because the discrete points, located at each R-wave, are not evenly spaced. In

order to produce equidistant IBI samples suitable for analysis, the IBI signal must be

interpolated. The interpolation method used is that of a backward step function. After

the IIBI signal is obtained, it is stored in .asc format to run with the Wavelet program.

The IIBI signal is illustrated in Fig: 4.4.Detrended

 I IIBI 1:71,-t+ of 2 HR asc using  meld wavelet

(Fig: 4.4) IIBI Plot of apnea subject (KT) using Morlet Wavelet.
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4.4.2 Wavelet Analysis

After opening the Wavelet program (Appendix B) version 6.1, type the root directory

file .asc location and then type wl_apnea to access the Wavelet program. The program

will ask to enter the sampling frequency, no of windows to open, and the type of wavelet

need to use. In our analysis we used Morl Wavelet. It opens up the specified number of

windows; the last three windows give us the useful information for the investigation of

sleep apnea. (Fig: 4.5) represents the sympathetic and parasympathetic activities of an

apnea subject, and (Fig: 4.6) represents the normalized value of sympathetic and

parasympathetic activities of an apnea subject.

(Fig: 4.5) Sympathetic and Parasympathetic activity of apnea subject (KT).



4.4.3 Sleep Recording of Control Subjects

In order to compare our results with normal subjects 5 healthy persons participated in

the study in the age group of (25±5). These normal controls had no symptoms of

sleepiness and no sleep apnea. The normal subjects data were acquired at the New

Jersey Institute of Technology Biomedical Engineering lab. Five channels of

physiological signals were acquired from the normal subjects, which include two
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channels of EEG, one channel of ECG, continuous Blood Pressure and thoracic

respiratory movements.

The EEG signal was acquired with a Grass amplifier (Grass Telefactor

W.Warwick, R.I. USA), the ECG signal acquired using Resp-I Impedance Pneumograph

(UFI, Morrobay, California), the blood pressure acquired using Colin 7000 continuous

blood pressure monitor (Colin Medical Instruments Corp., San Antonio, Texas) and the

thoracic respiratory movements were recorded with a chest belt using inductive

plethysmography (Respitrace, Studley Data Systems, Oxford, U.K.).

(Fig: 4.7) Equipment setup for the normal subject data acquisition.

The ECG and EEG leads were hooked up to the subject using disposable

electrodes and continuous blood pressure monitor cuff kept on the arm. When the

subject was ready to sleep the lead connections were checked and the light was turned

off. The acquired analogue signals were amplified by the corresponding instrument.
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From the data acquisition instrument the amplified signals were transferred to the

Laptop through the interface board and DAQ card.

The data were digitized with 200 Hz sampling rate for the ECG, blood pressure,

respiration and EEG with 12 bit resolution. The digitized data were recorded in a

computer for subsequent analysis using the Labview (Link 15) program. All signal data

were stored in the .TXT format, which allows easy exchange with other programs to

display the signals and gives access to many analysis tools. Further analysis of normal

subject data followed the same technique used above to analysis the data for sleep apnea

subjects.



CHAPTER 5

RESULTS

The investigation of the heart rate variability during sleep apnea was performed

through power spectral analysis and wavelet analysis. The changes in power spectral

components LF, HF & LF/HF have been described by comparing the normal subjects

with apnea subjects. From the spectral analysis of each subject, the LF and HF were

averaged to 5 minutes. From the average of LF and HF values the mean was calculated.

In our study we found that there is a statistically significant difference in sample means

of sympatho-vagal balance (LF/HF) between normal and sleep apnea subjects. That is,

the sampled subjects from the normal and apnea populations were found to be

significantly different in their mean values (p< 0.05) by a two-sample t-test (Appendix

E). In order to check the difference between the individual groups, t-tests were applied.

Statistical significance was stated for p< 0.05. In Fig: 5.1 & 5.2 we observed an increase

in LF & HF activity in apnea subjects compared to normal subjects, but the difference in

sample means were not found to be statistically significant. This increase in LF & HF

could be because of the presence of an autonomic dysfunction in sleep apnea patients, or

one apnea subject (PW) (Fig: 5.1 and 5.2) having large variation in spectral power

compared to the others may cause this variation.

t-test for normal and apnea subjects
DataSet MEAN (N) MEAN (A) t p

(N = 6) (N = 7)
LF 179.87 1024.89 -1.61 0.07
HF 214.5 764.14 -0.82 0.22

LF/HF 1.57 6.52
-2.84 0.01*

*: Significant at 0.05	 (with outlier - PW)
(Table: 5.1) The significance levels were given for the group difference between normal

and apnea subjects using the t-test.
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(Fig: 5.1) Comparison of LF (Normal Subjects Vs. Apnea Subjects).
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(Fig: 5.2) Comparison of HF (Normal Subjects Vs. Apnea Subjects).
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Fig: 5.3. Shows the comparison of LF/HF between the normal and apnea

subjects. The mean was investigated during sleep in normal subjects and sleep apnea

subjects (Table: 5.1). The LF/HF was significantly higher (p< 0.01) in sleep apnea

patients as we confirmed in our study (Fig: 5.3). (Table: 5.1) shows a greater decrease of

parasympathetic activity (HF) than the decrease of LF activity in sleep apnea patients [8]

[35].

(Fig: 5.3) Comparison of LF/HF (Normal Subjects Vs. Apnea Subjects).

In (Fig: 5.1 & 5.2) one apnea subject has a large variation in LF & HF compared to the

rest of the subjects, and therefore could be an outlier. Therefore we did the t-test without

that person (PW). We observed (Table: 5.2, Fig: 5.4 & 5.5) increased LF in sleep apnea

subjects compared to normal subjects and decreased HF in sleep apnea subjects

compared to normal subjects.
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t-test for normal and apnea subjects
Data Set MEAN (N)

(N = 6)
MEAN (A)

(N = 6)
t P

LF 179.87 521.51
-2.05 0.03*

HF 214.5 103.5 1.4 0.09
LF/HF 1.57 7.46

-3.5 0.002*
(Without outlier - PW)*: Significant at 0.05

(Table: 5.2) The significance levels were given for the group difference between normal

and apnea subjects using the t-test.

(Fig: 5.4) Comparison of LF (Normal Subjects Vs. Apnea Subjects)

Penzel et al. [35] investigated spectral components in normal and sleep apnea

subjects. The LF component decreases in normals compared to sleep apnea subjects and

the HF increases in normals compared to sleep apnea subjects. In our data the LF

(p<0.03) spectral component is significantly different in normal subjects compared to

the sleep apnea subjects and there is no significant difference in the HF component

(Table: 5.2).
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(Fig: 5.5) Comparison of HF (Normal Subjects Vs. Apnea Subjects)

(Fig: 5.6) Comparison of LF/HF (Normal Subjects Vs. Apnea Subjects)
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The LF/HF was investigated without the outlier apnea subject (PW); the t-test

showed the sample mean to be significantly different (p< 0.002) in normal subjects

compared to the sleep apnea subjects (Table: 5.2).

We compared the wavelet output of two different sleep apnea subjects, and

found that the amplitude changes in the IIBI plot were not the same (Fig: 5.8.b & 5.9.b).

This could be because different persons have different disease conditions other than

sleep apnea. (Fig: 5.8.a) shows the airflow with multiple apnea and (Fig 5.8.b) shows the

IIBI plot of the wavelet output in (Fig: 5.8.a). The airflow (top tracing) illustrates an

apnea where the respiratory efforts continue against the obstruction until the patient

arouses and respiration is resumed (Fig: 5.7). The wavelet output in Fig: 5.8.b (IIBI-

Plot) has an increase and decrease in amplitude corresponding to the apnea period in the

airflow graph.

(Fig: 5.7) shows the obstructive apnea for a period of 10 Sec.



(Fig: 5.8.a) Shows airflow of Apnea subject (HL).
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Time (sec)

(Fig: 5.8.b) Shows wavelet output of Apnea subject (HL) in (Fig: 5.8.a).



(Fig: 5.9.b) Shows wavelet output of apnea subject (SE) in (Fig: 5.9.b).

The data contained many spikes/glitches (increase and decrease in waveform

amplitude) [32], partially due to repetitive apneas and accompanied by respiratory flow.

In this example (Fig: 5.8.b), the apnea is characterized by slow rise in the heart rate

followed by a rapid decrease. (Fig: 5.9.b) shows another typical pattern for a different

subject in the heart signal during the onset of apnea. Unlike (Fig: 5.8.b), the episodes of

apnea in this signal are characterized by a rapid increase in the heart rate followed by a

slow decline. When comparing our results with previous studies, we confirmed that the
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heart rate variation differs from person to person as every person has different

physiological phenomena [32].

When we compared two different subjects (Fig: 5.8.a & Fig: 5.9.a), both had

multiple apneas, but their IIBI plot trends were not the same. Since each subject had

multiple apneas, we were unable to identify which apnea effect made an increase and

decrease in amplitude in the IIBI plot. Therefore we decided to look at a person who had

a normal pattern of sleep with a single apnea over a 5-minute duration. We did not have

such data from the sleep apnea data set, so we did the data acquisition in our research

lab. In this study six normal subjects were chosen in the age group of 25 ±3 years. After

the data acquisition we did the data analysis and found that all the normal subjects also

had an apnea [23]. Such a case is shown in (Fig: 5.10) and (Appendix C).

Fig: 5.10 has six channels; the first channel represents the oxygen saturation

(SaO2), the second channel represents the thoracic movement, the third channel

represents the abdominal movement, the fourth channel represents the airflow, the fifth

channel represents the electrocardiogram (ECG) and the sixth channel represents the

blood pressure (BP). In the graph (Fig: 5.10) we first observed a large oscillation in the

oxygen saturation and a single central apnea (no chest or abdominal wall expansion

during apnea) for a period of 10 seconds. (Fig: 5.11) shows an expanded version of (Fig:

5.10) in the vicinity of the apnea (135 to 145 seconds) that results from the obstruction

period of respiration. During a central apnea there is little to no chest or abdominal wall

expansion; therefore no negative intrathoracic pressure developed during the apnea [1].

In addition we observed that the inspiratory efforts against an occluded upper airway

produce large negative intrathoracic pressure swings, which is known to cause vagal
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activation. This is illustrated in the fifth channel (ECG) of (Fig: 5.11), where a

lengthening of R-R intervals in the ECG trace is witnessed during the apnea [1]. The

arousal at the termination of an apnea initiates a burst of sympathetic activity and the

transient sympathetic increases have been demonstrated by blood pressure and heart rate

(shown in Fig: 5.11 in the fifth and sixth channel (31000 to 32000 seconds)).

(Fig: 5.10) Normal subject (L2) with a single central apnea over 5-minute duration.
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(Fig: 5.11) is an expanded version of (Fig: 5.10) in the vicinity of the apnea (L2)

(135 — 145 Seconds).
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(Fig: 5.12) shows the IIBI Plot of (Fig: 5.11) normal subject (L2) with single

apnea over five minute duration.

Fig: 5.12 shows the IIBI plot of Fig: 5.11. The IIBI trend in (Fig: 5.12) shows a

sudden increase in HR (after 150 sec) at the end of the apnea to terminate the apnea and

resume the normal breathing. In the wavelet output, (Fig: 5.13) there is not much change

in the LF/HF ratio during the apnea period compared to the rest of the interval. To get

this kind of subject (one apnea over five minutes) is very difficult and this doesn't fulfill

the criteria of a sleep apnea subject [1].
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(Fig: 5.13) shows the wavelet output of normal subject (L2) with single apnea in

5 min duration in (Fig: 5.11).
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Drinnan [28] reported that patients with sleep apnea have significant regular dips

in the R-R interval plot, which are not present in the normal subject. Also, Drinnan [28]

studies shows that patients with sleep apnea tended to have a spectral peak lying

between 0.01 and 0.05 cycles / beat, with the width of the peak indicating variability in

the recurrence rate of the apnea, which are not present in the normal subject. When

comparing our results of a sleep apnea subject with a normal subject, all the apnea

(Appendix D) subjects had spectral peak at 0.01 and 0.05 Hz. [see (Fig: 5.14)], which is

not present in the normal subject (Fig: 5.15).

(Fig: 5.14) Spectral output of a sleep apnea subject (HL).
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(Fig: 5.15) Spectral output of a normal subject (GN).

In our study, out of five normal subjects, one subject does not have the spectral

peak, but rest of the normal subjects had spectral peaks at 0.01 and 0.05 Hz. which can

be seen in (Fig: 5.16 and 5.17). This may be because the normal subject had different

diseases other than sleep apnea. For the purpose of comparison we kept the arbitrary

units of the "power" axis constant for all spectral plots. Drinnan [28], study the X-axis is

represented in cycles/beat, but in our study the X-axis is represented in Hz in the spectral

output graph, This might be a reason that our result differs from the result of the

literature [28].



97

(Fig: 5.17) Spectral output of a normal subject (L).



CHAPTER 6

CONCLUSION

Due to the complexity of the patterns and variations among subjects (Fig:

5.8.a & 5.9.a), we found that the LF: HF ratio oscillated in each case (Appendix E). It is

well known, for example, the sympathetic activity is increased during wakefulness and

physical activity, whereas parasympathetic activity dominates during sleep [1]. There is

also a clear difference in LF and HF spectral power and in their ratios during normal

sleep and sleep apnea. Transient physiological phenomena, such as body movements

and K-complexes during sleep, also results in altered HRV [5]. The gold standard in

diagnosing sleep apnea is polysomnography, an inconvenient, expensive and time-

consuming procedure [7]. Screening for SA using the ECG alone would save time,

money, and discomfort. When comparing our results with previous studies on HRV

during apnea, we can confirm several aspects with existing results.

When comparing two different subjects, the amplitude changes in the IIBI plot

were not the same (Fig: 5.8.b & 5.9.b). This could be because different persons have

different physiological phenomena other than sleep apnea. The data contained many

spikes/glitches (increase/decrease in waveform amplitude), partially due to repetitive

apneas and accompanied by respiratory flow. The sleep apnea (Fig: 5.8.b) is

characterized a by slow rise in the heart rate followed by a rapid decrease. (Fig: 5.9.a),

shows another typical pattern in the heart signal during the onset of apnea. Unlike

(Fig: 5.8.b), the episodes of apnea in this signal are characterized by a rapid increase in

the heart rate followed by a slow decline.

98
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In a subject with a central apnea there is little to no chest or abdominal wall

expansion; therefore no negative intrathoracic pressure developed during the apnea. In

addition (Fig: 5.7 — Effort Esophageal pressure) we observed that the inspiratory efforts

against an occluded upper airway produce large negative intrathoracic pressure swings

because of vagal activation. The lengthening/shortening of R-R intervals in the ECG

trace is witnessed during the apnea (Fig: 5.11) [1]. The termination of an apnea initiates

a burst of sympathetic activity and the transient sympathetic increases have been

demonstrated by blood pressure and heart rate. On the wavelet output, (Fig: 5.13) there

is not much change in the LF/HF ratio during the apnea period as compared to the rest of

the interval.

With reference to article [28], patients with sleep apnea tended to have a

spectral peak lying between 0.01 and 0.05 cycles / beat, with the width of the spectral

peak indicating variability in the recurrence rate of the apnea, which are not present in

the normal subjects. This statement was not satisfied with our data, since there is no

spectral peak at 0.01 and 0.05 Hz in all normal subjects. This might be because the X-

axis representations were not same. We represented the X-axis in Hz, but the literature

representing the X-axis in cycles/beat.

The changes in power spectral components have been described by LF, HF &

LF/HF [35]. We found the LF (p<0.03) spectral component is significantly decreased in

normal subjects compared to the sleep apnea subjects and there is no significant

difference in the HF (p<0.09) component (Table: 5.2). However there is a trend toward a

decrease in the HF component from the mean (N) of normal subjects to the mean (A) of

sleep apnea subjects. Since there is a decrease in the HF component (not significant) and
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a significant increase in the LF component. We hypothesize that there is an increase in

sympathetic activity in sleep apnea subjects compared to normal subjects. The mean (A)

of the HF component is lower than the mean (N) of the LF component for the apnea

subjects, which is not the case in normal sleep subjects and we concluded that an

autonomic dysfunction is present in patients with sleep apnea. The LF/HF investigation

(student t-test) showed the sample mean to be statistically significantly lower (p< 0.002)

in normal subjects compared to the sleep apnea subjects (Table: 5.2) [8][32]. This again

shows a significant increase in the sympatho-vagal balance in apnea subjects. Studies

show that either weight loss or CPAP (Continuous Positive Airway Pressure) is the best

treatment and indicate a significant improvement from the sleep apnea disease in the

cardiovascular point of view (To increase the ability of the heart muscle to contract and

supply enough blood to the metabolic need) [6]. Considerably more research is needed

to understand the effects and clinical relevance on total HRV power and its various

components in health and sleep apnea disease.

Future Work

1. Future work includes an investigation of stability and specificity in the

presence of other diseases known to affect the ANS as well as

different sleep stages, which will help in further investigation of

spectral components VLF, LF & HF.

2. Comparison of two different subject's result may not be a good idea

as each person has different physiological and cardiovascular

phenomena. It would be more interesting to compare the same
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person's data while the subject is in normal sleep and with sleep

apnea.

3. A correct detection of R peaks of the QRS complexes is believed to

require a sampling rate of 500-1000 Hz [35]. The sampling rate has to

be increased from the current 250 samples per second to provide finer

resolution in R wave peak detection.

4. To make these studies more objective, future data collection should be

done at the patient home. This could be a better solution, but its

disadvantage is an increase in experiment cost. The patients may not

feel comfortable in traveling to a sleep lab and hooked up with wires.

The traveling itself will cause discomfort to the patient's normal sleep

rather than sleep apnea. We need to find a better way of data

collection with the comfort of the patient in mind.



APPENDIX A

EQUIPMENT SETUP

The diagram below shows the laboratory setup for the Sleep recording experiments at

NJIT. The experienced technician setup all the leads and hock to the subject. When the

subject is ready to sleep the technician will fix-up all the leads and turn off the light.
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Instrument Input Output

Grass Amplifier Two pair signal lead EEG Output to Interface

One GND lead Card. II channel

Resp I Two leads connected with

subject through electrode

Single channel ECG

One GND lead.

Colin 7000 BP Apparatus Blood Pressure cuff Single channel BP

Pressure Gauge

RespTrace Chest belt/abdomen Single channel Respiration



APPENDIX B

COMPUTER PROGRAM

Time-Frequency Analysis using Wavelet

The following program used to analysis the sleep apnea signal.

% d_wvlet.m

% Matlab Wavelet Toolbox 2.0.

% Modified by D. Newandee

% 7-13-2001: using time - freq spectrogram and change to run with MATLAB 6.0

% 10-23-2001: add calculation of normalized sympathovagal ratio using chosen wavelet

% This program will accept any wavelet from the Matlab Wavelet Toolbox 2.0 by

entering the wavelet

% name in " for the 'wave' variable below.

clear all;

close all;

SIGNAL=input('Please enter name of datafile with no extension --> ','s');

filename=[SIGNAL,'.asc'];

eval(['load ' filename]);

original_rawdata=eval(SIGNAL)';clear SIGNAL;

Question_1=input('Which channel do you want to analyze? [1=02, 2=BP, 3=resp,

4=ECG] --> ','s');

if	 Question_1=='1'

rawdata=original_rawdata(1,:);

elseif Question_1=='2'
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rawdata=original_rawdata(2,:);

elseif Question 1=='3'

rawdata=original_rawdata(3,:);

elseif Question_1=='4'

rawdata=original_rawdata(4,:);

end

sf=input('Please enter the sampling rate of the data --> ');

sf=sf/10;	 % upsampling (to get correct recording time)

%T=input('Please enter the window size in seconds --> '); % normally 10 (sec) is best

T=10.0;

nfft=input('Please enter the fft size (128, 256,512 etc.) --> '); % must be larger than

window size and in AA2

wave = input('Please enter name of wavelet used --> ','s');

x = decimate(rawdata,10); % decimate data array

N = length(x);	 % number of samples

%*sf = 1000;	 % sampling frequency

%*N = 500;	 % number of samples

%%T = 1/500;	 % window size in seconds (1/500 = 0.02 sec)

ws = T*sf;	 % window size in samples

%*nfft = 256;	 % fft size in specgram command. Must be larger than window

size in samples

%*wave = 'mexh'; 	 % the wavelet to use (see wavelets table in Matlab Wavelet

Tool Box v 2.0



t = ( (1:(N)) )* (1/sf); % times

f = ( (0:(N-1))/N) * sf; % frequencies

index = 1:N;

% first construct the time domain and frquency domain plots

fx = abs(fft(x));

% spectrum 1 D.m

% function [Pyy,f]=rspec(x,Fs)

fftsize=length(x);

% put alternative fft method here

x=x-mean(x);

fftx=fft(x,fftsize);

Pyy=fftx.*conj(fftx)/fftsize;

%	 f=sf*(0:(fftsize/2-1))/fftsize;

f=sf*(0:(fftsize-1))/fftsize;

clear fftx

p=Pyy;

figure;

subplot(2,1,1)

plot(t,x);

% axis([0 20 -2 5]);

grid on;

xlabel('Time (sec)');
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ylabel('Amplitude');

title(['Raw data in time domain of ',eval('filename')]);

subplot(2,1,2);

% plot(f(400:800),p(400:800)/max(p),'r');

plot(f(1:200),p(1:200)/max(p),'r');

axis([0 1 0 1]);

grid on;

xlabel('Frequency (Hz)');

ylabel('Power');

title(['Power Spectrum of ',eval('filename')]);

%subplot(3,1,3);

% plot(f(index)/1 0,fx(index));

% grid on;

% axis([0 2 -2 5]);

% xlabel('frequency');

% title('frequency domain');

%*orient landscape;

print -dps wvleta.eps

% construct a spectrogram with window size, ws

[B,frequencies,times] = specgram(x, nfft, sf, ws);

% plot the spectrogram

figure;

imagesc(times, frequencies, abs(B));
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axis('xy');

xlabel('Time (sec)');

ylabel('Frequency (Hz)');

title(['Spectrogram with T =' num2str(1000*T) ' ms']);

%*orient landscape;

print -dps wvletb.eps

% make a 3D plot for better viewing

figure;

mesh(times, frequencies, abs(B));

xlabel('Time (sec)');

ylabel('Frequency (Hz)');

title(['3D Spectrogram with T =' num2str(1000*T) ' ms']);

view(-60,30);

%*orient landscape;

print -dps wvletc.eps;

% now work out the scales at which to compute the CWT

% There is a connection between scale and frequency as follows

factor = 5/(2*pi);

% range of interested frequency

%freq = [100:100:2000]; % EMG: 100 - 2000 Hz

%freq = [1:10:100];	 % EEG: 1 - 100 Hz

freq = [0.01:0.01:2.0]; % HRV: 0.01 - 2 Hz

scale = factor * sf ./ freq;



% make sure the string wave is set before executing the m-file

% compute the CWT and plot at the same time

figure;

coef=cwt(x, scale, wave, 'plot');

title('scalogram - Scale vs. Time');

%* orient landscape;

%% print -dps wvletd.eps;

% Extract LF and HF

[row,col]=size(rawdata');

I=1: row;

I=I(:);

A=(I/sf)/60;	 % Time axis in minutes

m=512;	 % The size of the fft we will be computing.

skip=25;	 % Number of points we skip to get the next segment.

k=fix((row-m)/skip); 	 % the number of spectra we compute

TFDs=abs(coef);

[r,C]=size(TFDs);

for i=1:C,

W=TFDs(:,i);

Y=(1:r)';

M=W. *Y;
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S=sum(M);

F=sum(W);

E(i)=S/F;

end

%LFC = input('Please enter the low frequency range in index numbers. ');

LFC=1:4;

symvag=sum(TFDs(LFC,1:k));

%HFC=input('Please enter the high frequency range in index numbers. ');

HFC=4:20;

vagal=sum(TFDs(HFC,1:k));

symtopar=symvag./vagal;

% Normalize

n_symvag=symvag./(symvag+vagal);

n_vagal=vagal./(symvag+vagal);

n_symtopar=n_symvag./n_vagal;

% Plotting commands

%J=[ 12.8+(1:k)*

J=(length(x)/sf)/(k)*(0:k-1);

% Make a "spectrogram" type plot

figure;

imagesc(t, freq, coef);

colormap('hsv');

colorbar('vert');
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axis('xy');	 % flip the vertical axis over

xlabel('Time (sec)');

ylabel('Frequency (Hz)');

title('Scalogram - Frequency vs. Time');

%* orient landscape;

print -dps wvlete.eps;

% make a 3D plot for better viewing, rotate by 45 degrees

figure;

subplot(2,1,1), mesh(t, freq, abs(coef));

%* [az,e1]=view;

%*view(az+45,e1);

%* view(az,e1);

% axis([0 300 0 0.5 03]);

% view([55,15]);

% grid on;

colormap('jet');

colorbar('vert');

brighten(0.5);

shading interp;

xlabel('Time (sec)');

ylabel('Freqency (Hz)');

title(['3D scalogram of ',eval('filename'),' using ',eval('wave'),' wavelet']);



%* orient landscape;

%* print -dps wvletf.eps;

subplot(2,1,2), contour(t, freq, abs(coef),20);

%% axis([0 300 0 .6]);

grid on;

xlabel('Time (sec)');

ylabel('Frequency (Hz)');

title(['Contour of ',eval('filename'),' using ',eval('wave'),' wavelet']);

% print -dps wvletf.eps;

figure;

subplot(2,1,1);

%plot(A,x);

plot(t,x);

title(['Detrended IIBI Plot of ',eval('filename),' using ',eval('wave'),' wavelet']);

xlabel('Time (sec)');

ylabel('Amplitude');

subplot(2,1,2);

plot(t,E);

%plot(A,E);

%%axis([0 300 0 150]);

xlabel('Time (sec)');

ylabel('Frequency (Hz)');

title(['Instantaneous frequency Plot of ',eval('filename')]);
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figure;

subplot(3,1,1);

plot(J,symvag);

%plot(A,symvag);

%gtext(top);

title(['Symp. and Parasymp Mixture (LF) Plot of ',eval('filename'),' using ',eval('wave'),'

wavelet']);

%xlabel('time (sec)');

ylabel('Amplitude');

subplot(3,1,2);

plot(J,vagal);

%plot(A,vagal);

title('Parasympathetic range (HF)');

%xlabel('time (sec)');

ylabel('Amplitude');

subplot(3,1,3)

plot(J,symtopar);

%plot(A,symtopar);

%gtext(top);

title('Ratio of LF to HF')

xlabel('Time (sec)');
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ylabel('Amplitude');

%order=input('Please enter the order of the lowpass filter. ');

%freq=input('Please enter the cuttoff frequency for LPF. ');

%sample=input('Please enter the sample rate of the data. ');

%order=12;

%freq=0.03;

%nfreq=freq/sf;

%[poles,zeros]=butter(order,nfreq);

%dtrnd_nsymvag=filtfilt(poles,zeros,n_symvag);

%dtrnd_nvagal=filtfilt(poles,zeros,n_vagal);

%dtrrnd_nsymtopar=filtfilt(poles,zeros,n_symtopar);

figure

subplot(3,1,1);

plot(J,n_symvag);

%plot(A,n_symvag);

%gtext(top);

title(['Normalized Symp and Parasymp Mixture (NLH) Plot of ',eval('filename'),' using

',eval('wave'),' wavelet']);

%xlabel('time (sec)');

ylabel('Amplitude');

subplot(3,1,2);

plot(J,n_vagal);

%plot(A,n_vagal);
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title('Normalized Parasympathetic range (NHF)');

%xlabel('time (sec)');

ylabel('Amplitude');

%figure

subplot(3,1,3)

plot(J,n_symtopar);

%plot(A,symtopar);

%gtext(top);

title('Ratio of NLF to NHF')

xlabel('Time (sec)');

ylabel('Amplitude');

figure;

subplot(3,1,1);

plot(J,symvag);

%plot(A,symvag);

%gtext(top);

title(['Symp. and Parasymp Mixture (LF) Plot of ',eval('filename),' using ',eval('wave'),'

wavelet']);

%xlabel('time (sec)');

ylabel('Amplitude');

subplot(3,1,2);

plot(J,vagal);



%plot(A,vagal);

title('Parasympathetic range (HF)');

%xlabel('time (sec)');

ylabel('Amplitude');

subplot(3,1,3)

plot(J,symtopar);

%plot(A,symtopar);

%gtext(top);

title('Ratio of LF to HF')

xlabel('Time (sec)');

ylabel('Amplitude');

%order=input('Please enter the order of the lowpass filter. ');

%freq=input('Please enter the cuttoff frequency for LPF. ');

%sample=input('Please enter the sample rate of the data. ');

%order=1 2;

%freq=0.03;

%nfreq=freq/sf;

%[poles,zeros]=butter(order,nfreq);

%dtrnd nsymvag=filtfilt(poles,zeros,n_symvag);

%dtrnd_nvagal=filtfilt(poles,zeros,n_vagal);

%dtrnd_nsymtopar=filtfilt(poles,zeros,n_symtopar);

figure

subplot(3,1,1);
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plot(J,n_symvag);

%plot(A,n_symvag);

%gtext(top);

title(['Normalized Symp and Parasymp Mixture (NLH) Plot of ',eval('filename'),' using

',eval('wave'),' wavelet']);

%xlabel('time (sec)');

ylabel('Amplitude');

subplot(3,1,2);

plot(J,n_vagal);

%plot(A,n_vagal);

title('Normalized Parasympathetic range (NHF)');

%xlabel('time (sec));

ylabel('Amplitude');

%figure

subplot(3 1 3)

plot(J,n_symtopar);

%plot(A,symtopar);

%gtext(top);

title('Ratio of NLF to NHF')

xlabel('Time (sec));

ylabel('Amplitude');



APPENDIX C

Examples of Control subjects having apnea.

Subject: SS
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Subject: BP2
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Subject: GN6
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APPENDIX D

Example of Sleep Apnea Subject having spectral peak at 0.01 to 0.05 Hz.

Subject: 1
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Subject: SF
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Subject: KT1



Subject: KT2
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APPENDIX E

t-test for normal and apnea subjects (with outlier - PW)

Normal Apnea Normal Apnea Normal Apnea
LF/HFName LF LF HF HF LF/HF

447.86 46.6 9.6
KT1 263.08 19.93 13.2
KT2 449.12 51 8.8

IL 1310.91 347.85 3.8
LY 386.38 108.54 3.6
PW 4045.19 4727.99 0.9
SF 271.74 47.1 5.8
LE 126.91 130 0.98
LES 343.53 151.8 2.263
SEK 110.67 23.39 4.731

AN 262.57 460.9 0.569
BV 81.98 259.64 0.315
BP4 153.59 261.29 0.581

t-Test: Two-Sample Assuming Unequal Variances

LF

Normal Apnea

Mean 179.875 1024.8971

Variance 10298.07551 1903963.1

Observations 6 7

Hypothesized Mean Difference 0

df 6

t Stat -1.615183626

P(T<=t) one-tail 0.078699071

t Critical one-tail 1.943180905

P(T<=t) two-tail 0.157398141

t Critical two-tail 2.446913641
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HF

Normal Apnea

Mean 214.5033333 764.14429

Variance 22506.89115 3067773.8

Observations 6 7

Hypothesized Mean Difference 0

df 6

t Stat -0.82673384

P(T<=t) one-tail 0.22000993

t Critical one-tail 1.943180905

P(T<=t) two-tail 0.440019861

t Critical two-tail 2.446913641

t-Test: Two-Sample Assuming Unequal Variances

LF/HF

Normal Apnea

Mean 1.573166667 6.5285714

Variance 2.875071367 17.889048

Observations 6 7

Hypothesized Mean Difference 0

df 8

t Stat -2.844573683

P(T<=t) one-tail 0.010829524

t Critical one-tail 1.85954832

P(T<=t) two-tail 0.021659048

t Critical two-tail 2.306005626



t-test for normal and apnea subjects (with outlier - PW
DataSet MEAN (N) MEAN (A) VARIANCE (N) VARIANCE (A) t P

LF 179.87 1024.89 10298.07 1903963.1 -1.61 0.07
HF 214.5 764.14 22506.89 3067773.8 -0.82 0.22

LF/HF 1.57 6.52 2.87 17.88 -2.84 0.01*
*: Significant at 0.05

t-test for normal and apnea subjects (without outlier - PW)

Normal Apnea Normal Apnea Normal Apnea 

LF/HFme LF LF HF HF LF/HF

AA 447.86 46.6 9.6

KT1 263.08 19.93 13.2

KT2 449.12 51 8.8

SIL 1310.91 347.85 3.8

LY 386.38 108.54 3.6

SF 271.74 47.1 5.8

LE 126.91 130 0.98

LES 343.53 151.8 2.263

EK 110.67 23.39 4.731

IAN 262.57 460.9 0.569

BV 81.98 259.64 0.315

)3134 153.59 261.29 0.581
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t-Test: Two-Sample Assuming Equal Variances

LF

Normal Apnea

Mean 179.875 521.515

Variance 10298.07551 156249.646

Observations 6 6

Pooled Variance 83273.86067

Hypothesized Mean Difference 0

df 10

t Stat -2.050571848

P(T<=t) one-tail 0.033721854

t Critical one-tail 1.812461505

P(T<=t) two-tail 0.067443708

t Critical two-tail 2.228139238

t-Test: Two-Sample Assuming Equal Variances

HF

Normal Apnea

Mean 214.5033333 103.503333

Variance 22506.89115 15178.2178

Observations 6 6

Pooled Variance 18842.55447

Hypothesized Mean Difference 0

df 10

t Stat 1.400598692

P(T<=t) one-tail 0.095795663

t Critical one-tail 1.812461505

P(T<=t) two-tail 0.191591326

t Critical two-tail 2.228139238
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t-Test: Two-Sample Assuming Equal Variances

LF/HF

Normal Apnea

Mean 1.573166667 7.46666667

Variance 2.875071367 14.0746667

Observations 6 6

Pooled Variance 8.474869017

Hypothesized Mean Difference 0

df 10

t Stat -3.506448122

P(T<=t) one-tail 0.002832579

t Critical one-tail 1.812461505

P(T<=t) two-tail 0.005665158

t Critical two-tail 2.228139238

t-test for normal and apnea subjects (without outlier - P
DataSet MEAN (N) MEAN (A)

_
VARIANCE

(N)
VARIANCE

(A)
t P

LF 179.87 521.51 10298.07 156249.64 -2.05 0.03
HF 214.5 103.5 22506.89 15178.21 1.4 0.09

LF/HF 1.57 7.46 2.87 14.07 -3.5 0.002*
*: Significant at 0.05
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