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ABSTRACT

SIMULATION AND MATHEMATICAL NOTATION OF ALARMS UNIT
FOR COMPUTER ASSISTED RESUSCITATION ALGORITHM

by
Swaroop Malangi

The Computer Assisted Resuscitation Algorithm [CARA] is a system that is used to drive

a high output infusion pump used for infusing saline into patients suffering from

conditions that lead to hypotension. The infusion pump infuses saline at a particular rate

into the patient depending on the blood pressure of the patient.

The alarms unit of CARA was simulated for the infusion pump in which the

occurrence of alarms depends on the various criteria the infusion pump encounters when

saline is being infused into patients. Various criteria may vary from an air bubble in the

line to varying high and low blood pressure. Using the alarms finite state machine already

provided simulation of the alarms unit was done. The alarms finite state machine was

constructed by using the requirements [2] provided by WRAIR [Walter Reed Army

Institute of Research].

A mathematical specification was written which relates the English language

description of the alarms unit and the alarms finite state machine. The Design Oriented

Verification and Evaluation [DOVE] tool [5] was used to prove that the extended finite

state machine satisfies the mathematical specification.

The simulation of the alarms unit was done as per the requirements [2] and

extended finite state machines were created according to the code of the simulation.

Safety properties and linear temporal logic for these safety properties were also written.
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DOVE: Design Oriented Verification and Evaluation.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Background

Walter Reed Army Institute of Research [WRAIR] is making medical equipments that

are used during war and other critical situations. One of them is the development of an

infusion pump that infuses saline into patients. This infusion pump works in both auto

control and manual mode. During both the modes a caregiver or a paramedic is assumed

to be present to operate the pump. Computer Assisted Resuscitation Algorithm [CARA]

runs the infusion pump when it is in auto control mode. CARA consists of logical units

like pump monitor, blood pressure monitor, algorithm and the display/alarm unit.

WRAIR has constituted a committee from New Jersey Institute of Technology,

University of Pennsylvania and State University of New York at Stony Brook to develop

the software to run the infusion pump. The focus of this thesis is to develop the software

to run the alarms unit and use verification tools to prove that the software developed and

the requirements [2] are consistent. The verification is necessary because of the critical

situations in which the infusion pump is used and inconsistency may lead to loss of life.

1.2 Objective

First, to simulate the alarms unit in the pump depending on various criteria the pump

encounters when it is plugged in. Simulation was done using the Finite State Machine

already provided in the requirements [2].
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Secondly, to write a mathematical specification which relates the English

language description and the alarms finite state machine. Such a mathematical

specification can then be used with model checking tools or theorem proving tools such

as DOVE to prove that the Finite State Machine satisfies the mathematical specification.

1.3 About CARA

Computer Assisted Resuscitation Algorithm is a software system used to drive the pump

responsible for fluid resuscitation of patients suffering from conditions that lead to hypo-

tension. CARA consists of the following components

• CARA [algorithm]

• Pump

• Environment

• Propaq

• Patient

• Interfaces

1.4 Interfaces
Computer Assisted Resuscitation Algorithm communicates with the Environment

(caregiver, usually a medic or a nurse) via alarm signals, messages that appear on a

display screen and user input via soft buttons. The pump raises alarm signals when it

encounters problems during infusion (e.g., air bubbles). CARA further interfaces with the

environment by setting the drive voltage for the infusion pump which is pumping saline
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into the patient and by reading the blood pressure of the patient from a physiological

monitoring device.

1.5 Previous Work
Computer Assisted Resuscitation Algorithm system is developed as per the requirements

specified by WRAIR [2]. WRAIR has constituted a group to work on this system. The

requirements specified have been studied for their formal properties by researchers at

several universities including New Jersey Institute of Technology, University of

Pennsylvania [8] and SUNY — Stony Brook.

1.6 Methods
The background for the first part of the thesis, namely to simulate alarms unit, is the

alarm finite state machine. K. L. Henniger [1] specifies the technique of representing

software requirements as finite state machines. A finite state machine can be described as

a machine that has a finite number of states, an initial state, one or more final states,

grammar for the machine and at least (n-1) edges between states where n is the number of

finite states.

The alarms state machine from the formal specification of CARA [8] is as shown

in Figure 1.1. PluggedIn is a boolean value and PumpUnplugged is an alarm.

ActiveAlarms is the set of alarms that are active. AddAlarms, ClearAlarms,

SilenceAlarms, ResetAlarms and DisplayAlarms are all functions to be performed.

Initially the pump is not plugged in and when it is plugged in the set of active alarms is
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empty. Mier pump is plugged in the functions mentioned above take place. If pump is

unplugged all active alarms are displayed.

Figure 1.1 Alarms State Machine.

The CARA system might be seen as having four logical components.
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Figure 1.2 Logical components of CARA.

To write the mathematical specification Linear Temporal Logic is used. Temporal logic

presents a formal approach to the specification, verification, and development of reactive

systems. Reactive systems are (usually) concurrent systems whose role is to maintain an

ongoing interaction with their environment, such as real-time process, which in this case

is the infusion pump. The reliability and correctness of the infusion pump is a primary

and critical condition for their applicability.



CHAPTER 2

DESCRIPTION

2.1 Functional Specification

2.1.1 Functions Performed for Alarms Unit

The purpose of alarms unit is to communicate with the environment. Alarms go off if

something undesirable occurs like air bubbles in the pipe etc. Alarms will go off if the

following occur. Though it is not the complete list, it gives a general idea.

• Pump Unplugged

• Continuity Fault

• Impedance

• Occlusion

• Falling Patient BP

• Loss of control BP Source

• Failure to reach 60 mmHg in 5 minutes or failure to reach setpoint in 20 minutes

• No BP

• Cuff pressures not available

• Cuff pressure is invalid

• Can not measure BP after 3 minutes

• BP source can not be corroborated

• Loss of non-control BP source

6
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The alarms unit takes care of faults that may occur during infusion. If an error

signal arrives from a monitor or algorithm, then an error message is displayed on the

screen and an alarm is sounded. The message persists until the fault has been removed

and the user resets the alarm.

Alarms may be silenced for a given period of time by pressing a soft "silence

alarm" button on the screen. All active alarms are reset if there is a "pump unplugged"

alarm. Alarms have priorities and silence times and they are shown in the table below

Table 2.1 Alarms Table
Alarm Priority Silence Time

Pump unplugged (during manual or auto control mode) 1 2
Continuity Fault (in. no Back EMT') 2 5
Impedance 3 2
Occlusion 4 2
Falling Patient BP 5 2
Failure to reach 60 mmHg in % minutes or failure to reach
set point in 20 minutes

6 5

Loss of control BP Source 7 -
No BP (polling failure / no data stream) 8 -
Cuff pressures not available 9 -
Cuff pressure is invalid (out of range) 10 -
Can not measure BP after 3 minutes 11 -
BP source can not be corroborated 12 -
Loss of non-control BP source 13 -

2.1.2 Functions Performed in Mathematical Specification

The mathematical specification is based on Linear Temporal Logic. Using Linear

Temporal Logic we map the hardware specifications expressed in English into formulas.

DOVE is used to model the alarm system and to verify that the model satisfies the

specification.
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Design Oriented Verification and Evaluation is a tool built to simulate and reason

about extended finite state machines (EFSMs). With DOVE it is possible to define

systems in a modular and hierarchical fashion. It is also possible to reason by narrowing

the proof to just those components that are actually relevant to a desired property.

2.1.3 Limitations and Restrictions

Some of the important limitations and restrictions are, even when the system is in auto-

control, it always assumes that there is a caregiver who will be near the system. The

algorithm to run needs an M100 (or equivalent) pump. Also we assume the pump is

working properly.

Since mathematical specification is written for the part of a big system LTL can

only approximate the English Description. When the negation of the mathematical

specification is done, the model checker may not recognize the necessary path the

English Description specifies. There may be more than one path and model checker may

choose the path that is not specified in the English Description.

2.1.4 User Interface Design

The user display consists of a screen that gives the warning messages. As this is a subset

of the larger system, the display and interfaces are restricted to user inputs, which

simulate the real values possible for the lines. Also the output is made simple so that they

just give warning messages, because in the real system there is a separate module that

takes care of displaying alarms. Appropriate values are placed in variables that would be

shared with the other modules in the total system.
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2.1.5 Other User Inputs

The other input is a data file. This file is read by the simulated pump for giving the

various states possible for it to work on. The data file may be randomly generated from

any source.

2.2 Design Specification

2.2.1 System Data Flow Diagrams

The following diagram shows the different components of the system that relate to the

alarms unit. It also shows the data flow between the components. The alarms unit

interacts with the Algorithm, Blood Pressure Monitor and the Pump Monitor.
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Figure 2.1 Components relating to alarms unit.

2.2.2 Specification of Display/Alarms Component

The alarms unit works in conjunction with the Display Unit. This is how the system

communicates with the environment.
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Figure 2.2 Display unit and alarms unit.

2.2.3 System Data Dictionary

For realizing the different alarms, there has to be some well defined variables used. These

variables give the state of the system at any point of time. The different variables used are

shown in the table.



Table 2.2 Variables Used
Name Scope (G/L) Type Description

Alarm Local to AFSM Record Below
Active alarms Local to AFSM Set of alarm Set of active alarms
Polled Alarms Local to AFSM Set of Alarm Set of polling alarms
All Alarms Local to AFSM Set of Boolean alarms
New Alarm Local to AFSM Metavariable for alarms
Fixed alarm Local to AFSM Metavariable for alarms
Silence Alarm Global boolean User silences audible alarm
SilenceButton Local to AFSM boolean Silence button enabled
ResetButton Local to AFSM boolean Reset button enabled
AudibleAlarm Local to AFSM boolean Sets audible alarm false
ResetAlarms Global boolean User rests active alarms

The variable Alarm is of type record, with the following items: alarm name, alarm

priority, alarm message, audible level and temporary silence time.

2.2.4 Procedures Used

The procedures are written in pseudo code. There are two expressions, AddAlarms and

ClearAlarms, which capture the fact that new alarms may become active and some active

alarms may be fixed.

AddAlarms	 VNewAlarm AllAlarms NewAlarm == 1 ---> AddAlarm (NewAlarm)

ClearAlarms = V FixedAlarm C AllAlarms FixedAlarm == 0 ClearAlarm (FixedAlarm)

The procedures that implement each individual action are first described

informally.

• Procedure Add Alarms
Adds a new alarm that has become active into the set of active alarms. Activates
the silence button and the reset button.

• Procedure Clear Alarms
Will remove any fixed alarm from the set of active alarms.

12
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• Procedure Display Alarms
Given a set of active alarms, it will (re) display all currently active alarms in the
order determined by their priorities

• Procedure Sound Alarms
Will sound audible alarm, according to alarm level. A level 1 alarm will be
continuous and requires user intervention to stop. A level 2 alarm is sounded 5
times and requires no user intervention to stop.

• Procedure Silence Alarms
Will silence active alarms for a period of time.

• Procedure Reset Alarms
Will reset active alarms, clear the screen and stop the audible part. However, if
the conditions have not been actually fixed, this will not change the value of
active alarms and the alarms will be redisplayed and sounded again.

The pseudo code for the above procedures mentioned is found in Appendix A.

2.2.5 Mathematical Specification

As mentioned above DOVE (Design Oriented Verification and Evaluation) will be used

to verify the model. It contains a graphical user interface to construct extended finite state

machines. Extended finite state machines are finite state machines that have the ability to

model the manipulation of variables. Safety properties and linear temporal logic are

written for the system from the requirements [2]. Safety properties and linear temporal

logic is explained in detail in chapter 4. DOVE can be used to verify the model by

checking the linear temporal logic against the extended finite state machines.

Linear Temporal Logic has non-temporal logical connectives And, Or, Not,

Implies and temporal connectives Next, Until, WeakUntil, Always, and Eventually.

These will be used to give the mathematical specification of the Airline Ok Monitor as an

example.
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The connectives And, Or, Not and Implies are basic logical connectives. The

connective Next describes the next step in the process. The term A Next B means that B

immediately holds after A.

The connective Until means one process holds till the other is done. The term A

Until B means either B holds at the beginning or A does and A keeps holding until B

finally holds and B must hold at some point.

The connective WeakUntil means one process holds till the other is done. This is

different from Until because the second process need not hold at some point like Until.

The term A WeakUntil B means either B holds at the beginning or A holds at the

beginning and A keeps on holding. Here B need not hold at some point.

These logical connectives are used to show how an EFSM works.

Consider the Air Line Monitor,

The english language description of this in the CARA Requirements is as follows,

8 The CARA will Monitor the Air OK Line whenever the pump is plugged in.

8.1 If the Air OK signal remains low for 10 seconds.

8.1.1 An appropriate error message should be issued.

8.1.2 A level 1 Alarm should be issued

Mathematical statements for the Air Ok Alarm is as follows,

Always(AirOk >limit and

Next (t = 0 and

(AirOk < limit until t = 10) )
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implies

( ( Eventually

Error Message = "Air Ok Fault")

and

(Eventually

Alarm Level = 1) ) )

If the AirOk variable becomes false, then a timer is started with t = 0. If the timer

reaches ten seconds, then the AirOk alarm will go off It will remain so till the alarm

AirOk variable becomes true and AirOk alarm also becomes false.

To verify if the mathematical specification is consistent with the English

description, mathematical specification is negated and compared with the description.

Consistency between the extended finite state machines and the actual alarms unit

simulator is checked. Necessary changes are made to the simulator and the mathematical

specification if there is any inconsistency.



CHAPTER 3

SIMULATION OF ALARMS UNIT OF CARA

3.1 Introduction

Simulation was done using the Java programming language. The entire code of the

simulation is shown in Appendix B. This chapter gives a description of definitions and

declarations used in the program. It also gives an overview of the functions individually.

The working of the program is also described in detail.

3.2 Definitions

Function Process: This function is called when the alarm becomes active. Depending on

the alarm, it starts an active thread and, depending on the user input, it calls the respective

function, which might be Silencealarms or Soundalarams. It checks if there is an alarm

that is already active. If there is one, it compares the priority of already existing alarm

and the alarm that recently occurred. If the recently occurred alarm is of higher priority, it

creates a new thread for the recently occurred alarm and suspends the active alarm. If the

recently occurred alarm is of lower priority than the already existing alarm, then it just

adds the alarms to the list of active alarms. If no alarm exists, it creates a new thread for

the alarm and adds it to the list of active alarms. If an alarm that is suspended gets control

after another alarm is cleared, then its thread is resumed. If the alarm condition becomes

active (if the function polling returns a change in Boolean value) for an alarm that is

already suspended, its thread is not suspended but killed.

16



17

Function polling: This function checks all the Boolean values of all the alarms starting

from the highest priority. It returns the value of the alarm that is of highest priority and

does not continue to check for the rest of the lower priority alarms. If no alarm condition

exists it returns a very large number greater than fifteen.

Function addalarm: This function adds any new alarm that has become active. If the

alarm being added is a suspended alarm then the suspended thread for that alarm is killed.

Function clearalarm: This function checks if the fixed alarm exists in the active alarms

list. Removes the fixed alarm from the set of active alarms. It checks if the alarm is a

polled alarm, and if it is a polled alarm, it will check the value of these alarms, compares

them with the acceptable value and then finally clears the alarm. This part is commented

out from the program because the value needed to check the existence of the polled alarm

is outside the scope of the program. After clearing the alarm, it goes through the list of

active alarms checking for alarm conditions and calls function process when an alarm

condition is detected. If a suspended alarm was cleared then it kills the thread of the

suspended alarm.

Function displayalarms: This function when the pump is unplugged, will display all

currently active alarms in the order determined by their priorities. If the pump is plugged

in , then it will display the current active alarm.
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Function soundalarms: This function sounds an audible sound, according to alarm level.

The level of the alarm depends on each individual alarm as listed in the alarms table.

Function silencealarms: This function silences the alarm when caregiver chooses to

silence it. It calls the Reminder in which a timer is set for the silence time of that

particular alarm.

Class Reminder: This class belongs to the timer class. Depending on the silence time of

the alarm sets a timer. If the alarm timer expires, then it displays a visual message

respective of the alarm. Once the alarm condition does not exist anymore, it clears the

timer.

Class Pollingschedule: This class belongs to the timer class. It gets the value from

function polling, which in turn returns the alarm with highest priority.

Class Test: This class belongs to the timer class. It changes the Boolean values of the

alarms at regular intervals. A random number from one to fifteen is generated. Boolean

value of that random number is changed using random Boolean values. Also three is

added and subtracted to this random number and the Boolean value of these numbers are

also changed using random Boolean values to make sure more than one alarm value is

changed each time.
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Class NewThread: This class belongs to the thread class. New thread is created when a

new alarm occurs. The thread is alive while the alarm condition exists. Once the alarm

condition does not exist anymore it calls the function clearalarms in which the alarm is

eventually cleared.

3.3 Declarations

alarmsarray is the array of Boolean values of all the alarms which is used by class test.

alarmslist is the vector with the list of currently active alarms.

alarmssuspend is the array of Boolean values of all the suspended alarms.

siltime is the array of integer values that contains silence times of all the alarms.

3.4 Working

The program for simulating the alarms unit does the following,

• The program uses test scheduler to change the Boolean values of all the alarm
conditions at regular intervals. It uses a random number generator to choose the
alarm whose condition is to be changed and uses random Boolean generator to
change its value.

• The program uses pollingschedule to check for alarm conditions at regular
intervals. It gets a value from the polling function and that in turn checks the
Boolean values of all the alarms and returns the alarm number of the highest
priority.

• The priorities of alarms are as listed in the alarm table.

• The program issues a visual message when an alarm becomes active.

• The program gives caregiver option for silencing or sounding or
acknowledge/resetting the alarm. Acknowledge/reset option is only for polled
alarms.

• An alarm is added to list of active alarms when alarm condition occurs.
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• A thread is created for that alarm when an alarm becomes active. This thread is
alive until the alarm condition ceases to exist.

• Each alarm occurrence is logged in to a file as and when it occurs.

• An alarm will be silenced for a period of time specified in the alarm table if the
alarm silence button is pushed. It uses Reminder as a timer for silencing the alarm.

• The silence times of all the alarms are as listed in the alarms table.

• If an alarm is silenced and an alarm of higher priority becomes active, an option
to silence the new alarm is displayed. The thread of the lower priority alarm is
suspended and the thread of higher the priority alarm becomes active.

• If an alarm is not silenced, it will be sounded. The level of the alarm will depend
on each individual alarm as listed in the alarms table.

• If a higher priority alarm is active and a lower priority alarm also becomes active,
then the latter is just added to the active alarms list.

• If all the current alarms are silenced and a new alarm condition occurs, a new
message will be displayed for that alarm.

• If an alarm that is suspended becomes active then the thread of that alarm is
resumed again. If the alarm condition for that alarm changes it is not resumed.

• The alarms will be automatically reset when the alarm condition ceases to exist.

• When the alarm condition does not exist, the alarm is cleared.

• Control is automatically given to the next priority alarm when an alarm is cleared.

• As the alarm is cleared, its thread is killed and a new thread for the next priority
alarm is created if it is not suspended earlier. If the thread was suspended earlier
then it will be resumed.

• If an alarm reset button is pressed and a polling device was the source of the
alarm, the program will immediately check if the alarm condition exists before
clearing the alarm. This is not implemented in the program because the value
needed to check the condition of the alarm is outside the scope of the program.

• The program automatically resets all the alarms when the pump is unplugged.

• The program displays the list of active alarms when the pump is unplugged from
the highest priority to the lowest priority.



CHAPTER 4

MATHEMATICAL SPECIFICATION

4.1 Extended Finite State Machines

Extended finite state machines are finite state machines that have the ability to model the

manipulation of variables. The components of the EFSM as encoded in DOVE [5] are a

number of states, one start state, transitions between states, heap variables and input

variables. Heap variables are local to the machine and they can be changed in transitions.

Input variables cannot be modified in transitions and they change when the environment

changes. Each transition can be looked at as an if-then statement. If a condition (Guard in

DOVE) of the heap and input variables is satisfied, then (Act in DOVE) some heap

variables may or may not be modified in the action part.

Extended finite state machines were constructed with the help of the DOVE tool.

Each EFSM was constructed with respect to the functions used in the implementation.

The combination or the product of all EFSMs is not shown because it contains hundreds

of states.

Type declarations and data type decalarations used in all the EFSMs are as

follows.

• list alarms is a list of alarms.

• alarm is a data type that can be assigned one of four values, namely
Active, NotActive, Suspended and Dormant.

• namesslist is a list of names of alarms that are of data type alarm.

• array is a list of natural numbers.

The descriptions of all the EFSMs are as follows.

21
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Polling EFSM: It starts when the timer in the polling schedule gets timed out, i.e. when it

is time to check the states of all the alarms. The EFSM checks each alarm one by one

from the highest priority alarm and stops once an alarm condition is found. It starts

checking from the alarm of highest priority once again when the time in the polling

schedule times out.

The program code for polling EFSM is as follows,

public static int polling()

{

//Alarms checking

for(int i=1;i<16,i++)

if(globals.alarmsarray[i]) return i;

}

return 99;

From the above program code we can construct the extended finite state machine.

The machine starts when a variable do_polling is set in pollingschedule EFSM as

shown in the GetAlarm transition. It goes to the CheckAlarm state and as shown in the

Check transition checks for an alarm condition and if it does not find one it increments

the index and checks again. If it finds an alarm condition, it goes to the DonePoll? state

and stops. It sets variable so that pollingschedule EFSM can continue further. If it does

not find an alarm condition and the value of I reaches 16 it still goes to DonePoll? and



23

returns a large number for the pollingschedule EFSM. The same method is used to for

constructing the other machines from the program code.

Figure 4.1 Polling EFSM.

Heap Variables used in Polling EFSM

poll_alarm of type natural numbers.

i of type natural numbers.

Input Variables used in Polling EFSM

do_poll of type Boolean.

list_alarms of type alarm.

Transition Definitions for Polling EFSM

transdef "GetAlarm" "
Guard: do_poll=true
Act: i=1;
poll_ready<-- false;"

transdef "Check" "
Guard:list_alarms!i=false and i<16
Act :i=i+1;"
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transdef "AlarmGot" "
Guard:list_alarms!i=t- rue and i<16
Act:poll_ready<--true;
poll_alarm<--i;"

trandef "NoAlarm" "
Guard : i=16
Act:poll_ready<--true;
poll_alarm<--#99;"

transdef "Loop" "
Guard poll_ready=false and i < #15
Act: Skip,"

PollingSchedule EFSM: It starts when the time is more than 5 ms after the previous

polling. It sets a Boolean value do _poll so that the polling EFSM starts. It waits till the

polling EFSM returns an alarm condition or does not return any alarm condition. If there

is an alarm condition, it sets the variable handle to true to stat the handle EFSM. It waits

till the next schedule and starts up again.

Figure 4.2 Polling Schedule EFSM.
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Heap Variables used in Polling Schedule EFSM

curr_alarm of type natural numbers.

do_poll of type Boolean.

handle of type Boolean.

last_time of type natural numbers.

Input Variables used in Polling Schedule EFSM

poll_alarm of type natural numbers.

poll_ready of type Boolean.

resethandle of type Boolean.

timer of type natural numbers.

Transition Definitions for PollingSchedule EFSM

transdef "Schedule" "
Guard :Not(timer-last_time<#1 00)
Act :last_time<-- timer;
do_poll<-- true;

transdef "DonePolling" "
Guard:poll_ready=true
Act:curr_alarm <-- poll_alarm;
do_poll<-- false;
handle<-- true;"

transdef "Rhandle" "
Guard:resethandle=t- rue;
Act :handle<--false;

transdef "LoopBack" "
Guard:do_poll=false;
Act: Skip;

Handler EFSM: It starts when an alarm condition occurs, either when pollingschedule

EFSM sets the handle variable or clear EFSM sets the nextal variable. As it enters the

machine the name and number of the alarms are stored in heap variables alarmname and
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alarmno. It goes into pump unplugged state when the pump is unplugged. It stays there

till the pump is plugged back in. If the alarm occurring is the first alarm, then it goes into

the first alarm state. The alarm is added, and silencesound EFSM and thread EFSM are

started by setting the silencesound and threadstart variables. It stays there till a new alarm

occurs, and if a new alarm occurs then it goes back to the check state.

If it is not the first alarm, then the priority of the current alarm is checked against

the priority of the previous alarm in the NotFirst transition. If it is of higher priority, it

goes to the HigherPriority state otherwise it goes to the LowerPriority state. In the

HigherPriority the alarm is added, silencesound EFSM and thread EFSM are started. In

the LowerPriority state the alarm is just added. The machine remains in these states till a

new alarm occurs. When the new alarm condition occurs it goes back to the Check state.

If the alarm condition is found after clearing an alarm then it goes to the Resume

state after the check state. Here the current alarm is checked if it was suspended before. If

it was suspended before, it is resumed. If it was not suspended and is a new alarm, then

the alarm is added, and silencesound EFSM and thread EFSM are started. It remains in

that state till a new alarm occurs after which it will go to the Check state through the

AfterHigher and AfterLower transitions.
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Figure 4.3 Handler EFSM.

Heap Variables used in Handler EFSM

Cafterclear of type Boolean.



Nalarm of type Boolean.

add of type Boolean.

Cafterclear of type Boolean.

alarmname of type alarm.

alarmno of type natural numbers.

alarmonthread of type Boolean.

display of type Boolean.

namess is of type namesslist.

pump unplugged of type Boolean.

soundsilence of type Boolean.

threadstart of type Boolean.

Input Variables used in Handler EFSM

Cthreadstart of type Boolean.

afterclear of type Boolean.

curr_alarm of type natural numbers.

handle of type Boolean.

nextal of type Boolean.

silencesound of type Boolean.

i of type natural numbers.

Transition Definitions for Handler EFSM

transdef "process" "
Guard:handle=true
Act:alarmno<--curr_alarm;
alarmname<--namess!curr_alarm;
resethandle<--false;"
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transdef "ForClear" "
Guard:nextal
Act :alarmno<-4;
alarmname<--namess!i;
Nalarm<--true;
afterclear<--true;

transdef "NotPlugged"
Guard:alarmno=1
Act: display<--true;
pump_unplugged<--true,

transdef "Plugged" "
Guard:handle And Not(pump_unplugged)
Act:Skip;"

transdef "FirstAlarm" "
Guard:alarmonthread=false
Act: alarmonthread<--true;
add<--true;
threadstart<--true;
soundsilence<--true;
alarmname<--Active;"

transdef "Notfirst" "
Guard: alarmonthread
Act: Skip;"

transdef "AfterClear" "
Guard:afterclear And alarmonthread
Act:Cafterclear<--false;"

transdef "HigherPriority"
Guard:alannno<curralarm
Act:add<--true;
threadstart<--true;
soundsilence<--true;
alarmname<--Suspended;"

transdef "LowerPriority" "
Guard:curralarm<alarmno
add<--true;
alarmname<--Dormant;"
transdef "CheckSuspended" "
Guard:alarmname=Suspended
Act :afterclear<--false;
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alarmonthread<--false;
add<--true;
soundsilence<--true;
alarmname<--Active;"

transdef "NewAlarm" "
Guard:alarmname=Active Or alarmname=Dormant
Act: afterclear<--false;
alarmonthread<--false;
add<--true;
transdef "Cfirst" "
Guard:Cthreadstart
Act:threadstart<--false;

transdef "Chigher" "
Guard: Cthreadstart
Act:threadstart<--false;

transdef "Clower" "
Guard:Cthreadstart
Act:threadstart<--false;

transdef "Cnextalarm" "
Guard:Cthreadstart
Act:threadstart<--false;
threadstart<--true;
soundsilence<--true;"

transdef "AfterFirst" "
Guard:handle
Act: Skip;"

transdef "AfterHigher" "
Guard:handle
Act: Skip;"

transdef "AfterLower" "
Guard:handle
Act: Skip;"

transdef "AfterNextAlarm"
Guard:handle
Act:Skip;"
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Thread EFSM: It starts when an alarm condition occurs and the handler EFSM sets

input variable threadstart. If the alarm is to be suspended, then it goes to the

SuspendAlarm state after checking the variable suspend. It remains there until it is

resumed. While in that state it is constantly checked to see if the variable alarmname is

Suspended. Once alarm is resumed it goes to the Run state. If an alarm was not

suspended it directly goes to the Run state when the machine was started. The alarm

condition is constantly checked in the Run state. It remains in the Run state till the alarm

condition is removed. Once the alarm condition is removed it goes to the ClearAlarms

state. It remains in ClearAlarms state till a new alarm condition occurs and a thread is

started by the handler EFSM. When such a thing happens, it goes back into the Run state.

It may also go to the SuspendAlarm state if another alarm is suspended.

Figure 4.4 Thread EFSM.



Heap Variables used in Thread EFSM

Cthreadstart of type Boolean.

clear of type Boolean.

Input Variables used in Thread EFSM

threadstart of type Boolean.

resclear of type Boolean.

suspend of type Boolean.

alarmname of type alarm.

alarmno of type natural numbers.

Transition Definitions for Thread EFSM

transdef "Start " "
Guard :threadstart
Act: Skip;"

transdef "Suspend " "
Guard: suspend
Act: Skip;"

transdef "UntilResume " "
Guard : alarmname=Suspended
Act: Skip;"

transdef "Resume " "
Guard:Not(alarmname=Suspended)
Act: Skip;"

transdef "Clear "
Guard:Not(alarmname=Active)
Act: clear<--true;
Cthreadstart<--false;"

transdef "While " "
Guard : alarmname—Active
Act: Cthreadstart<--false"
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transdef "NextThread" "
Guard:threadstart
Act: Skip;"

transdef "NextSuspend " "
Guard: suspend
Act: Skip;"

Clear EFSM: It starts when an alarm is cleared and the variable clear is set in the thread

EFSM. It goes to the Check state. Here it is checked for the next higher priority alarm

starting from the highest priority. It goes through all the alarm conditions to find the next

alarm. If there is an alarm it goes to the ResetClear state where it sets a variable nextal so

that the variable clear is set to false in the handler EFSM. After this it goes to the

NextAlarm state and starts the Handler EFSM. It will remain in that state till some other

alarm is cleared and on such a situation it goes to the Check state again. If no alarm

condition exists after the Check state it goes to the NoAlarm state. It remains in that state

till a new alarm is cleared and on such a situation it goes to the Check state again.

Figure 4.5 Clear EFSM.



Heap Variables used in Clear EFSM

afterclear of type Boolean.

resclear of type Boolean.

nextal of type Boolean.

i of type natural numbers.

Input Variables used in Clear EFSM

Cafterclear of type Boolean.

Nalarm of type Boolean.

clear of type Boolean.

names of type namesslist.

Transition Definitions for Clear EFSM

transdef "IfClear " "
Guard:clear
Act: Skip;"

transdef "FindNext " "
Guard: (names!i=NotActive)
Act:i<-4+1;"

transdef "NoNext " "
Guard:Not(i<#15)
Act:resclear<--true;"

transdef "ResetClear " "
Guard: (names!i=Active)
Act:nextal<--true;
afterclear<--true;"

transdef "Next" "
Guard: Nalarm
Act:nextal<--false;"

transdef "AfterNextAlarm " "
Guard: Cafterclear
Act:afterclear<--false;"

34



35

SilenceSound EFSM: It starts when a variable silencesound is set in the Handler EFSM.

The function of this machine is to silence or sound the alarm. If an alarm is to be silenced

it will go to the Silence state if the variable silence is set or it will go to the Sound state if

the variable sound is set. It will remain in the Silence state till the silence time of the

current alarm is not expired. If silence time of the current alarm expires then it goes into

the Sound state and sound variable is set. It may go back to the SilenceSound state if a

new alarm condition occurs. After the alarm is sounded it remains in the Sound state till a

new alarm condition occurs and on such a case it goes back to the SilenceSound state.

Figure 4.6 SilenceSound EFSM.

Heap Variables used in SilenceSound EFSM

currtime of type natural numbers.

silence of type Boolean.

sound of type Boolean.

siltimes is of type array.
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Input Variables used in SilenceSound EFSM

alarmno of type natural numbers.

systime of type natural numbers.

soundsilence of type Boolean.

Transition Definitions for SilenceSound EFSM

transdef "IfSilence" "
Guard: silence
Act: currtime<--systime;"
transdef "IfSound" "
Guard: sound
Act: Skip;"

transdef "AfterSilence"
Guard: soundsilence
Act: sound<--false;
silence<--false;"

transdef "AfterSound" "
Guard: soundsilence
Act: sound<--false;
silence<--false;"

transdef "SilTime" "
Guard:Not((systime-currtime) < (siltimes! alarmno))
Act: sound<--true;"

4.2 Safety Properties

Safety properties are those properties that hold true at any state of the finite state

machine. In other words at all finite points in time nothing bad has happened to the

system. Liveness properties also exist in a system like safety properties. Informally it can

be stated as "something good will eventually happen". For example the second safety

property in the following list of safety properties might be a Liveness property.

Safety properties are identified from the original specifications given and written

down in English.
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The Safety Properties identified from the original specifications are as follows.

1. Always the alarm that is sounding is the highest priority alarm that is active.

2. If pump is unplugged eventually only pump unplugged alarm will remain or
become active.

3. Alarm silence/reset button is active only if the alarm is triggered.

4. Alarm sounds only if it becomes active.

One of the widely used specification languages to do formal specification of concurrent

programs is Linear Temporal Logic (LTL).

So the safety properties is written in reverse Linear Temporal Logic (LTL) and is as

follows

1. Never has the alarm been sounding for an alarm condition other than the one of
highest priority.

2. Never is any other alarm active if pump is unplugged.

3. Never has there been an option for silence/sound if an alarm was not active.

4. Never has an alarm sounded if it is not active.

Now the safety properties are written in Linear Temporal Logic as follows

1.

Alarm Sounding 4

((Priority(current alarm)) > (priority(other active alarm)))

2.

unplugged and unplugged alarm

from then on

((sometime pluggedin) V Not(other alarm))

3
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Always (silence sound option)

4 sometime active

4.

Always (sounded)

4 sometime active

Future Work: The safety properties defined above in LTL are to be defined as properties

in the product of all the EFSM machines described in the previous section. Using the

DOVE tool the properties are to be verified. In other words the product must be proved or

disproved using the safety properties.



APPENDIX A

PROCEDURES USED

This section gives the pseudo code for the procedures used, that was provided in the

requirements [2].

procedure Add Alarm(NewAlarm : BooleanAlarms);

begin

ActivateAlarms : = ActiveAlarms + { NewAlarm };

SilenceButton : = true;

ResetButton : = true;

Display Alarms;

end;

procedure Clear Alarm(FixedAlarm : BooleanAlarms);

begin

if FixedAlarm in ActiveAlarms then do

if FixedAlarm in PolledAlarms then do

wait until ResetAlarms = = true; % user must reset for polled values

od;

ActiveAlarms : = ActiveAlarms — FixedAlarm };

if ActiveAlarms < > } then DisplayAlarms else do

begin

clear screen;
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SilenceButton : = false;

ResetButton : = false;

end;

od;

od;

end;

procedure Display Alarms( );

begin

ListAlarms : list of alarm;

TopAlarm : Alarm;

clear screen;

AudibleAlarm = false;

ListAlarms : = sort (ActiveAlarms) % sort alarms in order of priorities and

% display them in this order

if ListAlarms = = TopAlarm : : ListAlarms then do

begin

display(TopAlarm); % prints out alarm type and how to fix it

Sound Alarm(TopAlarm); % activates audible alarm

while ListAlarms = / = } do

begin
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ListAlarms = = TopAlarm : : ListAlarms;

display(TopAlarm);

sound(TopAlarm);

end;

od;

end;

od;

end;

procedure Sound Alarm(NewAlarm : Alarm);

begin

if NewAlarm.level = = 2 then sound level2 else % 5 high — pitch "bings"

if AudibleAlarm = = false then do

begin

AudibleAlarm : = true;

sound level 1;

end;

od;

end;

procedure Silence Alarms( );

begin

timer : clock;
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sil : int;

timer : = 0;

sil : = min(ActivateAlarms. silence); % find minimum temp. silence period

until timer = = sil

do

AudibleAlarm : = false; % signal to stop audible alarms

od;

AudibleAlarm : = true;

SilenceButton : = false;

end;

procedure Reset Alarms ( );

begin

if ActiveAlarms = } then do

begin

clear screen;

AudibleAlarm : = false;

end;

od;

else do

begin

Display Alarms;

SilenceButton : = false;

42
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od;

end;



APPENDIX B

PROGRAM CODE FOR SIMULATION OF ALARMS UNIT

This section gives the program code used in the implementation for the simulation of

alarms unit.

import java.io.*;

import java.util.Random;

import java.util.Vector;

import java.util.Timer;

import java.util.TimerTask;

public class alarm

public static Vector alarmslist=new Vector(15); // contains list of alarms

public static int[] siltime=new int[15];

public static boolean pumpplugged=false;

public static File outputFile = new File("log 1 .doc");

public static NewThread curr=null;

public static NewThread tl=null;

public static void main(String args[ ])

{

int a1armno;

for(int i=0;i<16,i++) II initialization of alarms list
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alarmslist.insertElementAt("none",i);

1

for(int i=0;i<16;i++) // initialization of alarms array

{

globals.alarmsarray[i]=false;

for(int i=0;i<16;i++) l/ initialization of alarms array

{

globals.alarmsuspend[i]=false;

new test(0,500);

new pollingschedule(0,10);

}

public static void process(int alno, boolean resume)

{

globals. silenceall=false;

globals.pronce=a1no;

globals.alarmno=a1no;

siltime[0]=2;

siltime[ 1 ]=5;

siltime[2]=2;

siltime[3]=2;
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siltime[4]=2;

siltime[5]=5;

siltime[6]=7;

siltime[7]=7;

siltime[8]=7;

siltime[9]=7;

siltime[10]=7;

siltime[ 11 ]=7;

siltime[12]=7;

String input=" S";

iffglobals.alarmno==1)

{

globals.display=-tnie;

displayalarms();

=2) {globals.alarmname="Continuity Fault";globals.priority=2;}

=3) {globals.alarmname="Impedence fault";globals.priority=3;}

=4) {globals.alarmname="Occulusion fault";globals.priority=4;}

=5) fglobals.alarmname="FallingBP fault";globals.priority=5;}

=6) globals.alaminame="fail fault";globals.priority=6;}

=7) tglobals.alarmname="LossBP fault";globals.priority=7;}

—8) {globals.alarmname="NoBP fault";globals.priority=8;
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if(globals. alarmno=

if(globals.alarmno=

if(globals. alarmno=

if(globals.alarmno=

if(globals. alarmno=

if(globals. alarmno=

if(globals. alarmno
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if(globals.alarmno==9) {globals.alarmname="No Cuff pressure

fault";globals.priority=9;}

if(globals. alarmno— 1 0) {globals.alarmname="Invalid cuff fault" ;globals. priority= 1 0;

if(globals.alarmno-11) fglobals.alarmname="Not able to measure BP

fault" ,globals.priority= 1 1;1

if(globals.alarmno==12) {globals.alarmname="No BP source fault";globals.priority=12;1

if(globals.alarmno-13) globals.alarmname="Non Control BP

fault",globals.priority=13;}

if(!globals.alarmonthread)

{

NewThread t l=new NewThread(globals.alarmname,globals.alarmno);

System.out.println("First occurence Alarm priority is : " +globals.priority);

try

BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));

System.out.println("Do you want to silence alarm YIN " );

input = stdin.readLine();

}

catch ( I0Exception e) {System.out.println (e);}

addalarm(globals.alartnname,globals.priority);

globals.alarmonthread=true;

globals.curralarm=globals.alarmno;

curr----t 1 ;



t 1 . start();

if(input.equals("Y") input.equals("y"))

silencealarm(globals. alarmno, glob al s. alarmname);

}

else

{

soundalarm(globals.alarmno);

}

}

else igglobals.alarmresume && globals.alarmonthread)

{

if(globals.alarmsuspend[globals.priority])

{

System.out.println("Current thread is " +curr.name );

curr.resume();

}

else

{

NewThread tl=new NewThread(globa1s.alarmname,globals.alarmno);

curr=t 1;

t 1. start();
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globals.alarmresume=false;

globals.alarmonthread=false;

System.out.println("After clear Alarm priority is : " +globals.priority);

try

{

BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));

System.out.println("Do you want to silence alarm YIN ");

input = stdin.readLineO;

}

catch ( IOException e) {System.out.println (e);)

addalarm(globals.alarmname,globals.priority);

globals.alarmonthread=true;

globals.curralarm=globals.alarmno;

if(input.equals("Y") JJ input.equals("y"))

{

silencealarm(globals.alarmno,globals.alarmname);

}

else

{

soundalarm(globals.alarmno);

}

}
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{

NewThread tl=new NewThread(globals.alarmname,globals.alarmno);

if(globals.priority<globals.curraIarm)

{

globals.alarmsuspend[globals.curralarm]=true;

cum suspend();

addalarm(globals.alarmname,globals.priority);

globals.curralarm=globals.alarmno;

System.out.println("Higher Priority Alarm priority is : " +globals.priority);

try

{

BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));

System.out.println("Do you want to silence alarm Y/N ");

input = stdin.readLine();

}

catch ( IOException e) System.out.println (e); }

curr=t 1;

t 1. start();

iginput.equals("Y") input.equals("y"))

{

silencealarm(globals.alarmno,globals.alarmname);

}

else

50



soundalarm(globals.alarmno);

}

}

else

{

addalarm(globals. alarmname,globals.priority);

}

}

public static int polling()

{

//Alarms checking

for(int i=1;i<16;i++)

{

if(globals.alarmsarray[i]) return i;

}

return 99;

}

static void addalarm(String newalarm, int position)

{

alarmslist.remove(position);

if(position!=globals.once)
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try

FileWriter out = new FileWriter(outputFile,true);

out.write("Alarm with priority "+position+" being added \n");

out.flushO;

catch ( IOException e) {System.out.println (e);)

I
alarmslist.insertElementAgnewalarm,position);

globals. silencebutton=true;

globals.resetbutton=true;

globals.once=position;

static void silencealarm(int num, String name)

System.out.println("Alarm to be silenced");

globals.alarmsarray[num]=false;

new Reminder(siltime[num- 1 ],name, num);

try

{

FileWriter out = new FileWriter(outputFile,true);

out.write("Alarm with priority "+num+" being silenced \n");
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out.flush();

catch ( IOException e) System. out.println (e);)

globals.audiblealarm=true;

globals. silencebutton=false;

}

static void soundalarm(int num)

{

System.out.println("Alarm to be sounded");

try

{

FileWriter out = new FileWriter(outputFile,true);

out.write("Alarm with priority "+num+" being silenced \n"

out.flush();

}

catch ( IOException e) { System.out.println (e);}

if (globals. audiblealarm — false )

{

globals.audiblealarm=true;

System.out.println("Level 2 alarm");

}

}

static void clearalarms(String fixedalarm,int fixedno)
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{

System.out.println("Alarm to be cleared " +fixedno);

globaIs.alarmsuspend[fixedno]=false;

try

FileWriter out = new FileWriter(outputFile,true);

out.write("Alarm with priority "+fixedno+" being cleared \n");

out. flush();

}

catch ( IOException e) System.out.println (e);}

boolean empty=true;

// for polled alarms

/*if(fixedno==2 I I fixedno==3)

// check if the alarm is really cleared

// get value from pump monitor

I */

if(alarmslist.contains(fixedalarm))

{

alarmslist.remove(fixedalarm);

alarmslist.insertElementAt("none",fixedno);

for(int i=1;i<16;i++)
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if(globals.alarmsarray[i]) {empty=false;globals.val=i;break;}

igempty=-- f- alse)

{

globals.alarmresume=true;

if(globals.val==globals.pronce)

global s. pronce I =false;

else

globals. pronce 1 =true;

if(globals.proncel)

process(globals.val,globals.alarmresume);

}

else

{

globals. silencebutton=false;

globals.resetbutton=false;

globals.alarmonthread=false;

}

}

static void displayalarms()

{

System.out.println("Alarm to be displayed");
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try

FileWriter out = new FileWriter(outputFile,true);

out.write("Alarms to be displayed\n");

out.flush();

catch ( IOException e) System. out. 	 (e); }

int alarmsLen = alarmslist.size();

for (int i=0; i < alarmsLen; i++)

{

if(alarmslist.elementAt (i)!="none")

System.out.println (alarmslist. elementAt (i));

}

for(int i=0;i<16;i++) // reinitialization of alarms list

{

alarmslist.insertElementAt("none",i);

}

for(int i=0;i<16;i++) // reinitialization of alarms array

{

globals.alarmsarray[i]=false;

for(int i=0;i<16;i++) 1/ reinitialization of alarms array
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globals.alarmsuspend[i]=false;

System.out.println("Pump is unplugged");

System.exit(0);

}

}

class globals

public static int alarmno=0;

public static String alarmname;

public static int priority;

public static boolean alarmonthread=false;

public static int curralarm;

public static NewThread t 1;

public static boolean hold--true;

public static boolean x=true;

public static boolean silencebutton=true;

public static boolean resetbutton=true;

public static boolean audiblealarm=false;

public static boolean[] alarmsarray=new boolean[l 7];

public static boolean[] alarmsuspend=new boolean[l 7];

public static int temp=0;

public static boolean display=false;
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public static int once=0;

public static int val=0;

public static boolean alarmresume=false;

public static int pronce=0;

public static boolean prone 1 =true;

public static boolean silenceall=t- rue;

}

class NewThread extends Thread

public String name;

Thread t;

public int threadno;

public String alarmname;

NewThread(String threadname, int runno)

name = threadname;

t=new Thread(this,name);

threadno=runno;

alarmname=threadname;

public void run()

while(globals.alarmsarray[threadno])
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yield();

alarm. clearalarms(alarmname,threadno);

}

}

class Reminder

{

Timer timer;

public String aname;//alarm name to be used for printing.

public int alno,// alarm number to be used for interrupting printing.

public Reminder(int seconds, String name,int no)

{

timer = new Timer();

aname=name;

alno=no;

timer. schedule(new RemindTaskO, seconds* 1000);

}

class RemindTask extends TimerTask

{

public void run()

{

globals.alarmsarray[alno]=true;
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timer.cance10; //Terminate the timer thread

}

}

class pollingschedule

{

Timer timer;

public pollingschedule(int seconds,int delay)

{

timer = new Timer();

timer. schedule(new RemindTask°, seconds*1000,delay*100);

}

class RemindTask extends TimerTask

{

public void run()

{

int value=alarm.polling();

if(value	 globals.pronce)

globals. proncel=fal se;

else

globals.proncel=true;

if(value != 99)

globals.alarmsuspend[value]=false;
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if(value!=0 && value!=99 && globals. proncel)

{

alarm.process(value,globals.alarmresume);

}

}

}

class test

{

Timer timer;

public test(int seconds, int delay)

{

timer = new Timer();

timer. schedule(new TestTask(), seconds* 1000, delay* 10);

}

class TestTask extends TimerTask

{

public void run()

Random r=new Random();

Random rn = new Random();

int rand=Math.abs(r.nextInt())%15;

int randl—(rand+3);

int rand2=(rand-3);
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if(rand ! =0 && rand! =l) globals. alarmsarray[rand]=ranextBoolean();

if(randl>1 && randl<16 && rand !=l) globals.alarmsarray[randl]=rn.nextBoolean();

if(rand2>1 && rand2<16 && rand ! =1) global s. alarmsarray[rand2]=rn.nextBoolean();

}

}

}
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