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ABSTRACT

TRANSPORT PROPERTIES OF NC-Si/A-Si02 SUPERLATTICES
AND THEIR APPLICATIONS IN NON-VOLATILE MEMORY

by
Lakshmi Susmitha Koneru

The dc current-voltage characteristics, ac conductivity, equivalent capacitance,

photocurrent transients of the n-Si/nanocrystalline-Si/amorphous-Si0 2/Al hetero-

structure were measured in a wide range of illumination intensities for temperatures from

4.2 K to 300 K. Electrical transport properties of the nanocrystalline-Si/amorphous-Si02

superlattices were discussed. The observed domination of the electron component at

negative bias and of the hole component at positive bias above 0.7 V in a dc current

allows to separate transport features of electrons and holes in a nc-Si/a-Si02 superlattices.

Transport of electrons is thermally activated if potential barrier at c-Si/SL interface of 70

meV is suppressed and several activation energies for different temperature regions were

determined. Transport of holes is well described by the Fowler-Nordheim tunneling

theory for a number of illumination intensities in the measured temperature region.

Tunneling mechanism is additionally supported by an independence of the photocurrent

decay on temperature. Two maxima in ac conductivity at 0 V and at 0.8 V were related to

trap-assisted conductivity and to alignment of energy levels in the heterostructure

(photoconductivity resonance), respectively. Time-dependent photocurrent measurements

proved a decrease of the photoconductivity due to a decreasing mobility of holes and

misalignment of the energy levels at bias above 0.8V. Density of traps of 3.5x10 11 cm-2

and trapping time of 30 ps were found. An application of nanocrystalline Si/amporphous

Si02 superlattices in non-volatile memory devices is discussed.
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CHAPTER 1

INTRODUCTION

1.1 Historic Overview

Modern computerized systems from simple appliances to complex networks contain

many different parts - processors, displays, modems and information storage devices.

Memory is that, which is capable of retaining information under certain conditions and

uses the information later. A variety of different memory types exists at present as none

of these types meet requirements for a universal memory cell. The main types of memory

on the market are mask read only memory (Mask ROM), Random Access Memory

(RAM), Read Only Memory (ROM) and Electrically-Alterable Non-Volatile Memory (E-

NVM). The increase in the world memory market for different classes of memory for the

last two decades is shown in Figure 1.1 [1]. There was a steady 10% market for the non-

volatile memory during 1980's and the market increased steadily during 1990's. This

increasing demand for non-volatility is stimulated by a fast growing market of mobile

devices. An intense research and constant development of novel concepts for non-volatile

memory devices show the possibility of using a non-volatile memory cell as an ideal cell.

However, the ideal memory system must have an optimized density, fast access time and

capability to retain data in a non-volatile condition (memory must not lose any data even

without external power). Not all of these demands are satisfied by non-volatile memory at

present. Further, the basic structure of memory cells including DRAM, SRAM and a non-

volatile Memory cell will be discussed.

1



Mask Read Only Memory

Electrically alterable-Non-Volatile Memory

80

Figure 1.1 World memory market of the last decade and its share by the major classes of
memory.

1.2 Random Access Memory (RAM)

Random Access Memory is the fastest memory type. That is why this memory is used in

a computer where the operating system, application programs, and data in current use are

kept and can be quickly accessed by the computer's process. Random Access Memory is

a volatile memory. That means this cannot retain data when there is no power. The data is

transferred to magnetic disk or other nonvolatile media for long-term storage purposes.

There are two important classes of Random Access Memory- Static RAM (SRAM) and

Dynamic RAM (DRAM).
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1.2.1 Dynamic Random Access Memory (DRAM)

Currently, computers have DRAM as their main internal memory. The basic memory unit

of DRAM is shown in Figure 1.2. It consists of a transistor and a storage capacitor. This

simplicity of the basic unit stipulates several advantages of DRAM. It is very dense,

simple to build, low cost memory.

Besides the advantages, there are disadvantages of DRAM. It has a shorter data

life time about four milliseconds. This is due to the discharge of the capacitor and

therefore, refreshment of the memory cell is necessary. Inspite of the fast access time of

about 4ns, data is lost after each "read" step. Therefore, the "write" cycle after "read"

step slows down the speed of its operation with a cycle time of about 60 ns.

There cannot be any further improvement for DRAM, as it has no more choice to

improve the density with one transistor per bit. And there is no further improvement for

its volatile nature because of its compromise with the density.

Figure 1.2 Basic DRAM cell.

1.2.2 Static Random Access Memory (SRAM)

Static Random Access Memory is used as cache for the computers as it has a faster

access time of approximately two to four ns. SRAM is a volatile memory like DRAM as

it can retain data only as long as the power is on. It does not need refreshing when it is

powered. Bits are stored as on/off switches as digital flip-flops. The major disadvantage
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of SRAM is its low density as it has a complex circuitry with 4-6 transistors per bit as

shown in Figure 1.3. And so, it is expensive to build.

Figure 1.3 Basic SRAM cell.

1.3 Non-Volatile Memory

Non-volatile memory is a solid-state memory that need not have its memory contents

periodically refreshed. That means the memory retains its data without loss even when

there is no power. This memory combines the best features of DRAM, which is denser,

and SRAM, which is faster. Characteristics of the ideal nonvolatile memory are: low

power consumption, high speed, high reliability, high density, low cost, and the

compatibility with any semiconductor circuit. Among potential applications are cellular

phones, pagers, palm PCs, digital clocks, microwaves, VCRs, answering machines,

calculators and integrated circuits in vehicles. A brief introduction to the basic operating

principle and the concept of non-volatile memory devices are discussed below.



1.3.1 Operating Principle of Non-volatile Memory Device

The basic operating principle of the nonvolatile memory devices is the storage of the

charges in the gate insulator of a MOSFET [1]. The structure of the basic cell is shown in

Figure 1.4. The threshold voltage of the transistor can be changed between two different

values, representing "0" (erased state) or "1" (programmed state) [1], as shown in Figure

1.5.
Gate

Figure 1.4 Basic MOSFET cell.

Figure 1.5 Transfer characteristics of non-volatile memory in two states
representing "0" and "1".



1.3.2 Basic Types of Nonvolatile Memory Devices

Solid-state nonvolatile memory devices were introduced in the late sixties and

commercial exploitation followed quickly [1]. The history of this device started with a

basic MOSFET cell. The evolution of this cell led to the development of two devices - a

charge trapping device and a floating gate device.

1.3.2.1 Charge Trapping Device. As seen in Figure 1.6(a), in the charge-

trapping device called MNOS (Metal-Nitride-Oxide-Semiconductor), a thin dielectric

layer Si3N4 (<10nm) is introduced between the gate insulator and the gate. The oxide-

nitride layer interface contains a lot of traps, which can capture electrons and holes.

These traps do not leak any charge, as the individual charges are isolated from each other

by the nitride layer [1]. The energy band diagram of the MNOS cell is shown in Figure

1.6 (b). This class of memory cells is used only for military applications that must be

resistant for radiation. The MNOS device has the intrinsic advantage that both

programming and erasing can be achieved electrically. The chare transfer mechanism

used is discussed in the subsequent section [1.4] of this chapter.

Figure 1.6(a) Charge trapping (MNOS) device structure.



Figure 1.6(b) Energy Band Diagram of charge trapping device structure.

1.3.2.2 Floating Gate Device. The second device called floating gate (FG) or

stacked gate device has emerged as a dominant design for the nonvolatile memory

devices. Today, the stacked gate FG device structure continues to be the most prevailing

nonvolatile memory implementation, and is widely used in both stand alone and

embedded memories, and in both code and data storage applications [2].

In this floating gate device, there are two gates - the control gate and the floating

gate. The control gate is the poly-silicon layer through which the voltage is applied and

`write' and 'erase' operations are performed. The floating gate is located between the

control gate and the channel region and this gate is completely surrounded by the

dielectrics as shown in Figure 1.7(a). The information is stored in the form of charge on

the floating gate, and the charge is proportional to the threshold voltage of the FET.

7
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Figure 1.7 (a) Floating gate device.

This can be explained with the help of the energy band diagram of the floating

gate transistor. A quantum well is formed with the floating gate surrounded by the

dielectric layers as shown in figure 1.7(b). When a gate voltage is applied to program the

memory cell by a certain programming mechanism, the charge is stored in the quantum

well of the floating gate in the form of electrons. Tunneling describes the 'write' and

`erase' operations performed in the floating gate transistor either by increasing or

reducing the charge stored in the floating gate as shown in Figure 1.7(c).

Figure 1.7(b) Energy band diagram of Floating Gate Transistor.
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Figure 1.7(c) Transfer characteristics of the Floating Gate transistor.

1.3.2.3 Nano-crystalline Non-volatile Memory Devices. 	 Although there has been a

huge commercial success of the floating gate non-volatile memory devices, they have

their limitations, which prevent them from further scaling beyond the 65 nm node. This

scaling limitation comes from the extreme requirements on the tunnel oxide thickness [2].

On one hand, the oxide has to be thin enough to allow efficient charge transfer to and

from the gate, under low injection conditions, in order to enable fast, low voltage and low

power write and erase operations. On the other hand, the tunnel oxide must be thick

enough to provide sufficient isolation under retention conditions. Hence, the industry

standard compromise tunnel oxide thickness is of the order of 9-11 nm, which cannot be

further reduced.
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The solution of the non-volatility with allowed scaling is the concept of

distributed charge storage instead of single element charge storage [4]. Nano-crystalline

non-volatile memories, introduced in early nineties [3], are one particular implementation

of this concept. As seen in the Figure 1.8, in the nano-crystalline non-volatile device, the

charge is not stored on a continuous poly-Si layer, but instead on a layer of discrete,

mutually isolated, nano-crystalline dots. Each dot stores a few number of electrons.

There are many advantages of nano-crystalline memories compared to

conventional FG devices. The main one is the potential to use thinner oxide without

sacrificing non-volatility. A weak spot or defect in the oxide in these devices does not

create a fatal discharge path as in conventional devices, thereby maintaining good

retention time. Also, the fabrication process for these devices is simpler as compared to

the conventional FG devices reducing complex dual-poly processes. Further, it uses

shorter channel length and therefore, smaller cell area.

Figure 1.8 Nano-crystalline non-volatile memory cell.
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1.3.3 nc-Si/a-Si02 Superlattices in Non-Volatile Memories

This kind of devices has nano-crystalline Si/Si0 2 superlattices embedded in the non-

volatile memory devices. The nano-crystalline Silicon layers surrounded by Silicon-di-

oxide superlattices are the floating gates embedded between the control gate and the

source-drain conduction channel as shown in Figure 1.9(a).A similar structure was

demonstrated in a publication[5]. The energy band diagram of the metal-Superlattice-

Silicon structure is given in Figure 1.9(b). When a voltage is applied across the structure,

there occurs resonant tunneling between the quantum wells formed within the

superlattices and the charges tunnel through much thinner oxide into and off the

superlattices by which the device threshold gets shifted. During the charge storage, the

electrons are stored in the quantum well and there are no tunneling levels available for

the electrons to escape. Also, the gate insulator is thick enough to prevent any leakage of

the charge as shown in the band diagram in Figure 1.9(b). Hence, this makes the retention

period of the memory device up to ten years. The carrier transport mechanism by which

the conduction takes place is the objective of the thesis and is discussed in detail in the

next chapter.

Figure 1.9(a) Superlattice Structure of multi-layered Si/Si02.
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Figure 1.9(b) Si/Si02 superlattices embedded between the gate and the substrate.

1.4 Charge Transfer Mechanisms of Non-Volatile Memory

There are different mechanisms to change the charge content of the floating gate devices:

Fowler-Nordheim tunneling, enhanced Fowler- Nordheim tunneling, channel hot electron

injection and Frenkel-Poole emission.

1.4.1 Fowler-Nordheim Tunneling

Fowler-Nordheim tunneling is one of the most important mechanisms in the floating gate

devices, which is a field assisted electron tunneling. The energy band diagram of the Si-

Si02-Si structure is shown in the Figure 1.10. When a gate voltage is applied across the

structure, electrons in the silicon conduction band tunnel through a triangular energy

barrier of the insulator[1].



Figure 1.10 Energy band representation of Fowler-Nordheim tunneling.

The Fowler-Nordheim current density is given by [1]

13

Where h - Planck's Constant

• Energy Barrier at the injecting interface (3.2 eV for Si-SiO2)

- Electric field at the injecting interface

Charge of a single electron (1.6 x 10 -19 C)

mass of a free electron (9.1 x 10-31 kg)

- Effective mass of an electron in the band gap of SiO2 (0.42 m)
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The Fowler-Nordheim current density is exponentially proportional to the applied electric

field as shown in Figure 1.11[1].

Figure 1.11 Fowler-Nordheim current as a function of applied field across the oxide.

1.4.2 Poly-oxide Conduction

This mechanism is also called enhanced Fowler-Nordheim tunneling as it enhances the

conduction through the oxide barrier in the Si-Si02-Si structure with a lower applied field

as compared to the Fowler-Nordheim tunneling [1]. Oxides thermally grown on the

polysilicon show an interface covered with asperities due to the rough texture of the

polysilicon. Enhanced tunneling of electrons is due to this local field enhancement at the

interface. The energy band diagram of the poly oxide conduction is shown in the Figure

1.12.

As it can be seen from the band diagram, large injection fields at the interface can

be obtained at moderate voltages even using relatively thick oxides.
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Figure 1.12 Energy band representation of enhanced Fowler-Nordheim tunneling.

1.4.3 Hot Electron Injection

Hot electron injection is the mechanism where the minority carriers (electrons in the p-

type device) get heated and their energy distribution is shifted higher due to the large

electric field at the drain surface. This causes impact ionization and electrons and holes

are generated. The heated electrons in the channel get enough energy to overcome the

insulator barrier into the gate. This current is called hot-carrier injection gate current as

seen in Figure 1.13. It is only possible to inject the electrons onto the floating gate, but

they cannot be erased wit the same mechanism.

The shape of the current-voltage characteristics is explained by both the drain and

gate voltages as shown in Figure 1.14. For gate voltages greater than the drain voltage,

the gate current is limited by the number of hot electrons that are injected. For V g>Vd, the
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gate current increases with decreasing gate voltage. For gate voltages smaller than the

drain voltage, the oxide field becomes repulsive for the injected electrons. The gate

current drops rapidly down with decreasing gate voltage.

Figure 1.13 Energy band diagram of hot electron injection.
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Figure 1.14 Hot electron injection current as a function of applied voltage.

1.4.4 Frenkel-Poole Emission

Frankel-Poole emission is the charge transfer mechanism used to write and erase the

MHOS cell. Figure 1.15 shows the basic band diagram of this mechanism. The current Jo

is due to the Fowler-Nordheim tunneling current through the oxide layer. The current J

through the silicon nitride is due to Frenkel-Poole emission given by [6]
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Figure 1.15 Band diagram of Frenkel-Poole emission.

1.5 Objective of the Thesis

The objective of the thesis was to find out the charge transport mechanism in the Si/Si02

Superlattice. The present non-volatile memory cell can have an improved performance by

embedding a Si/Si02 superlattice between the gate and the substrate, instead of a floating

gate layer surrounded by the insulator. Eight multi-layers of 2.5 nm thick Si and 5 nm

thick Si02 were used as the superlatitice. The superlattice sandwiched between the

Aluminium and the n-type Si substrate was the experimental hetero-structure used for

characterization. LABVIEW and Microcal ORIGIN were used for data acquisition.



CHAPTER 2

EXPERIMENTAL SETUP

This chapter details the fabrication of the samples in the first Section 2.1 and then the

experimental setup for various measurements is detailed in the next Section 2.2. The

fabrication of nano-crystalline multi-layers of Si/Si02 goes through several process steps.

First, the outline of the process steps is shown in a flowchart and then the fabrication

process is detailed.

2.1 Fabrication of nc-Si/a-Si02 Non-Volatile Superlattice

2.1.1 Flowchart for Fabrication Process

19
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2.1.2 Starting Material

An n-type silicon wafer (Phosphorous doped with resistivity 10 SZ cm with

crystallographic orientation (100) is taken. This material goes through several steps of

magnetron sputtering and annealing to form 8 amorphous multi-layers of 50 A thick Si /

25 A thick SiO2 layers [7,8].

2.1.3 Detailed Description of Fabrication

The step-by-step growth of amorphous Si / SiO2 multi-layers is described here [7]. The

amorphous silicon is prepared by passing the Silicon wafers initially through the first step

of radio-frequency magnetron sputtering which is done in a Perkin-Elmer 2400 sputtering

system. In the next step, the sputtered Silicon samples are oxidized using plasma

oxidation to produce SiO2 layers. The Si/Si02 multi-layers are thus formed by the

repetition of successive steps of magnetron sputtering and plasma oxidation. There are

eight layers with Silicon thickness of 50A and with SiO2 thickness of 25A formed on the

substrate.

Now, the growth of nano-crystalline superlattices is described through the

remaining steps. This is performed by the recrystallization of amorphous Si/Si02 multi-

layers formed. The thermal crystallization is performed in two steps [7]. First, the

sputtered and oxidized multi-layered sample is subjected to Rapid Thermal Annealing at
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800-900 °C. Nucleation starts in the amorphous-Si layers. And then in the second step,

the sample is sent through furnace annealing or quasi-equilibrium annealing (QEA) with

a slow increase of temperature from 600 to 1050 °C, which is done to improve surface

passivation. This is followed by 15 minutes of annealing at 1050 °C in the next step.

Also, strain in the multi-layers is released by QEA and slow Steam Oxidation. All these

annealing steps are done in Nitrogen atmosphere.

By going through these successive steps of thermal recrystallization, 8 multi-

layers of 50 A nano-crystalline Si/ 25 A SiO2 are prepared and the shape of the

nanocrystals is observed to be spherical which is due to the competition between surface

and volume tensions of the crystals [8]. The size of the nanocrystals and the thickness of

the insulator layer (-25 A) is determined by the expected quantum confinement in Silicon

nanocrystals and the relative transparency of the insulator layer that allows the charge

carriers to tunnel through.

2.2 Experimental Setup for Hetero-Structure Characterization

Several types of experiments were carried out to characterize transport properties of the

Al- (nc-Si/a-Si02)8-n-Si hetero-structure. The experimental setup for dc conductivity

measurements, impedance spectroscopy measurements and photocurrent transient

measurements is detailed in this section. Also, parameters of the measurements using the

equipment that was used in these experiments are also discussed.
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2.2.1 DC Conductivity Measurements

Figure 2.1 describes the experimental setup for dc conductivity measurements. The

current-voltage characteristics of the Al-(nc-Si/a-Si02)8-n-Si hetero-structure were

measured using KEITHLEY electrometer (Model 6517). The voltage was applied across

the hetero-structure and the current was measured in the circuit. Photocurrent-voltage

characteristics were measured by illuminating the hetero-structure sample from the side

of the top Al contact with the CW He-Ne laser (wavelength 632.8 nm, maximal

illumination intensity 5 mW).

Figure 2.1 Experimental setup for dc conductivity measurements.

The voltage step applied varied for various measurements and was within —1.5 V

to +2.5 V for all the dc measurements. The minimum voltage step was 5 mV. The delay

time for the voltage pulse also varied for various measurements. The minimum delay

time was given as 100 ms. The measurement of the current was done from 10pA to

0.1mA which was within the measurement capability of the electrometer (100aA to
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21mA). Control of the measurements and the data acquisition was done using a PC with

the IEEE 488 (GPIB) bus or the RS-232 interface.

2.2.2 Impedance Spectroscopy

2.2.2.1 Basics of Impedance Spectroscopy. 	 Impedance is the response, in terms of

the resultant ac voltage, of a circuit element to the application of an ac current. The ac

voltage is the potential difference between two points, which reverses its sign for a given

frequency as shown in Figure 2.2.

Figure 2.2 Applied ac voltage for a given frequency as a function of time.

The impedance for a parallel connection of a resistor and a capacitor is shown in Figure

2.3(a) and the phasor diagram is given in Figure 2.3(b).

Figure 2.3(a) Parallel connection of 	 Figure 2.3(b) Phasor
a resistor and capacitor.	 diagram of the impedance.
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The impedance for the Figure 2.3(a) is given by the expression

where Z- impedance of the circuit

R- resistance

C- capacitance

The Figure 2.3(b) has the impedance Z(w) with a real part of Z'(w) and an imaginary part

of Z"(w) and an angle of O. The measurements for the conductance and the capacitance

were done and presented in the next section 2.2.2.2.

2.2.2.2 Impedance Measurements. 	 Figure 2.2 describes the experimental setup for

the impedance spectroscopy measurements. AC photoconductivity and capacitance

measurements were measured for the hetero-structure by using Hewlett Packard Low

Frequency Impedance Analyzer (Model 4192A).

HeNe Laser

Figure 2.4 Experimental setup for impedance measurements.

The conductivity and the capacitance of the Si-SiO2 superlattice were measured in

the circuit by applying ac voltage of certain frequency across the Al -(nc-Si/a-SiO 2)8 - n-



25

Si hetero-structure. The ac voltage sweep in between —2 V and 2 V was applied for the

frequencies of 400 Hz and 1 kHz. In another set of measurements, the conductivity was

also measured as a function of frequency for several applied biases from 0 V to 1.5V. The

frequency range for these measurements varied from 100 Hz to 1 MHZ, which is within

the measurement range of the device (5 Hz-13 MHz). CW HeNe laser was used for the

illumination of the sample for the photoconductivity measurements.

2.2.3 Photocurrent Transient Measurements

Figure 2.5 Experimental setup for photocurrent transient measurements.

Figure 2.3 describes the experimental setup for photocurrent transient measurements of

the Al-(nc-Si/a-Si02)-n-Si hetero-structure. The excess charge carriers were excited by

sequential pulses of the AlGaInP laser diode (wavelength 690 nm) with pulse duration of

100 ns or 430 ns and 10 ms delay between pulses. The voltage applied to the hetero-
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structure was in the range of 0 V — 3 V (with the positive polarity applied to the c-Si

substrate). Low noise batteries were used as the voltage source. The photocurrent

transients were measured by the Hewlette-Packard digital oscilloscope (Model 54110D)

with vertical scale resolution of 10 mV using self-made current amplifier with the input

load resistance of 1 kΩ.



CHAPTER 3

EXPERIMENTAL RESULTS AND DISCUSSION

3.1 DC Dark and Photoconductivity at Room Temperature

Figure 3.1 shows dc current-voltage characteristics of (nc-Si/a-Si02)8 superlattice at room

temperature in dark (solid line) and under several intensities of a CW illumination. The

polarity of the voltage is that of the substrate. The illumination was performed by a

HeNe laser (wavelength 632.8 nm).

Figure 3.1 Dc current-voltage characteristics for 8 layer nc-Si/a-SiO2 superlattice at
room temperature in dark (solid line) and under several intensities of a CW illumination.
Illumination was performed by a HeNe laser (wavelength 632.8 nm).

27
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A steep increase of current at negative voltages up to 0.6V is observed and no

difference exists between the curves in dark and under illumination. After the steep

increase, the current increases linearly with the bias above 0.6V.

At positive bias, the current values are much smaller than those at negative

voltages and there is no saturation at higher voltages. There is no difference for the dark

current (solid line) and currents under different illuminations (dashed lines) until 0.6 —

0.8 V. This means the structure is sensitive to light only at positive bias higher than 0.6

V. As intensity of illumination increases from 20 μW/cm2 to 1.4 mW/cm 2 the value of

photocurrent increases from 5x 10 -8 A to 6x10 -7 A. The increase is almost linear, which

suggests that illumination is far from saturation.

Hence, there are some conclusions from the above current —voltage

characteristics. At negative bias, the current is limited by the rate of supply of majority

carriers (electrons) in the semiconductor [5]. And for different illuminations, photo

excited charge carrier concentration is much smaller than the equilibrium or their

separation is not effective (electric field drops over the whole substrate and there is no

sufficient field in the region of excess electron-hole pairs generation). Hence, there is no

change in the negative voltage characteristics for dark conditions and for illumination.

At positive bias, there exist two regions in the current curves under illumination-

one sensitive to light and the other insensitive to light and remains the same part of the

curve as in dark. The minority carrier (holes) transport is the leading charge carrier

mechanism in the structure under positive bias. Excess holes are extracted from the

substrate and transport through the superlattice to the top Aluminum contact. At a high

positive bias: level of saturation current between dark curve and for different illumination
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intensities increases with illumination: as c-Si substrate is an n-type crystalline Si which

is 10 orders of magnitude smaller than the majority carrier concentration. Therefore,

saturation level and its increase with illumination intensity (and, therefore, minority

carrier concentration) are expected.

As the saturation value depends on the illumination intensity, an electron

component of a current from the Al to substrate is negligible. A barrier of 0.7 eV is

expected at the metal interface, therefore only 1022 cm-3 exp(-0.7eV/0.026eV)=2x10 10

-3 
CM is negligible under illumination, but it can not be completely neglected in dark, and

dark current before 0.6 V is more probably related to the flow of electrons.

Therefore, an analogy to a MIS diode with semitransparent insulator layer can be

made. n-Si/SiO2 hetero-stucture may be treated in terms of standard MS or MIS theories

depending on the relative input of insulator layer. Further, analysis of the theories of MIS

capacitor structure for thick SiO2 layers (not tunnel-transparent for charge carriers) and

M/S theories (Schottky-barrier diode) for thin (tunnel transparent) will be applied with

prior discussion of their applicability.

There is no photocurrent at zero applied bias. This means there is no built-in

electric field. However, diffusion length of photo-excited charge carriers should be larger

than the thickness of the superlattice (SL), in order to see any photocurrent. As

conductivity of the superlattice is much less than that of the p-n junction, the same order

of magnitude built-in potential as in the junction is hard to observe. Further more, a

potential barrier for holes, which may exists at the nc-Si/a-SiO2 interface could also

hinder movement of excess holes toward the Al contact.
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Because of the qualitative difference between dc conductivity behavior at positive

and negative bias at low temperatures, which is related to the respective transport of

electrons and holes as was discussed above. DC conductivity at low temperatures for

negative and positive biases will be discussed in the following section [3.2].

3.2 DC Conductivity at Low Temperature

3.2.1 Electron Current at Negative Bias

Figure 3.2 shows dc conductivity as a function of the applied negative bias for nc-Si/a-

SiO2 SL in a range of temperature from 15K to 300K. The starting point of the bias

sweep was at the negative voltage of 1.5 V.

Several temperature ranges with qualitative difference in a dc current behavior

could be selected. In the first region (I) from 299 K to 250 K, dc current decreases below

0.7 V and increases above 0.7 V with decreasing temperature. The experimental curves

could be well — fitted by exponential laws (note semi-logarithmic scale). In the second

temperature range (II) from 250 K to 190 K, dc current decreases with temperature below

1.0 V and remains constant above 1.0 V. As temperature decreases from 190 K to 125 K

(third region, III), dc current decreases in the whole measured voltage range and becomes

below our measurements capability of the electrometer below 125 K (forth region, W).

Surprisingly, an increase of the dc current (lines with symbols) is observed at

temperatures below 30K (fifth region, V).
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Figure 3.2 DC current — voltage characteristics of nc-Si/a-SiO2 SL at different
temperatures. The sweep of the applied bias was performed from —1.5 to zero.

The theoretical expression for the current density of a MIS tunnel diode is given by [10,

11]

where A* - is the effective Richardson constant, aT — depends on the effective mass of

charge carrier in the insulator layer, OT - tunneling barrier height, (DB — barrier height for

Schottky emission.

As can be seen, this expression combines MS interface characteristic with

tunneling factors. Independence of the tunneling component on temperature allows to use



32

temperature dependent measurements of dc current to determine the barrier height at

V=0. And vice versa, for positive bias dependence on the electric field could be neglected

(minority carrier transport in the surface space charge region, no barrier) and field

dependence of the tunneling current may be separately considered. With the sweep of the

applied bias change from -1.5 V to 0 V, the shift of the voltage value at which zero of

current occur from OV at room temperature to -1.3 V at 30 K, which shows strong

charging effects at low temperatures. The trapped charge creates built-in electric field or

interface dipoles that partially compensate an external electric field. It is observed that

there are two extreme cases: near-zero bias at temperatures slightly below room

temperature and at large negative bias (-1.5 V) in the whole measured temperature range.

Charging effects do not change the interface potential significantly essentially at

temperatures slightly below room temperature.

Figure 3.3 shows a plot of ln(J/T 2) vs. 1/T for determination of barrier height

based on theory of Schottky barrier. A good approximation was obtained by a straight

line which represents the Arrhenius behaviour. It is supposed that the potential barrier of

70 meV (derived from the plot) exists at the interface between the bottom of the

conduction band in the n-Si and first nc-Si layer.

The dark dc current-voltage characteristics in Figure 3.1 and Figure 3.2 at 299K

are different. No barrier for the experimental structure is observed in Figure 3.1. At high

negative bias, the barrier at the n-Si/SL interface is straightened as well as there is no

potential drop in the interface. Therefore, the properties of the hetero-structure at -1.5 V

is related to the properties of the superlattice.
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Figure 3.3 An Arrhenius plot of the dc current in the voltage range from 0 V to 0.4 V.

Figure 3.4 An Arrhenius plot of a dc current at the applied voltage of 1.5 V. The five
temperature regions (see discussion to Fig.3.2) are marked.
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Figure 3.4 shows an arrhenius plot of a dc current at applied voltage of 1.5 V.

Five regions of temperature for the dc current are marked for discussion. In the region I,

the dc current increases as the temperature decreases. The dc current is almost

independent of temperaure in the region II. And the dc current decreases as the

temperature decreases in the region III. And the current is so low that it is beyond the

measurement capability in the region IV. In region V, the current increases linearly as the

temperature decreases.

3.2.2 Separation of Electron and Hole Components at Positive Bias

Figure 3.5 Dc current — voltage characteristics at positive bias for different
temperatures.
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Figure 3.5 describes the dc dark current measured for the voltage sweep from 0 to 2 V for

different temperatures (180K-299K). Decrease of the dark current with decreasing

temperature may be explained by the decrease in the electron carrier concentration in the

metal and also due to the simultaneous decrease of the hole concentration in the

semiconductor substrate. As it is difficult to determine the exact barrier height of the

metal-superlattice interface due to the involvement of both the hole and electron

transport, it cannot be known whether the decrease in the dc current is due to the decrease

in hole concentration or electron concentration. Note that a dc current step exists at about

0.7 V at 270K and 290K. This increase of the current may be caused by an onset of the

second current mechanism. In order to check this idea, activation energy is determined

for the applied biases of 0.3V, 0.5 V, 1V, and 2 V.

Figure 3.6 An Arrhenius plot of a dark dc current at positive applied bias of 0.3 V,0.5
V,1 V and 2 V.
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An Arrhenius plot of the dark dc current for these voltages is shown in Fig.3.6.

The logarithmic plot of current versus the inverse temperature for dc voltages of 0.3 V,

0.5V, 1V, 2V is graphed. The activation energy is the slope of the logarithmic scaled

curves. The slope of the ln(I) vs 1/T gradually changes from 0.14eV at 0.3 V to 0.3eV

for 2 V. This shows that the activation energies of the metal-superlattice-semiconductor

structure changes gradually for varying dc voltages. And there is no difference in the

activation energy variation for the bias voltage below and above 0.7 V where the step in

current is observed in Figure 3.5.

3.2.3 Fowler-Nordheim Tunneling of Holes at Positive Bias

No difference between dark and photocurrent was observed for applied negative bias.

Therefore, dc photocurrent will be discussed only for positive bias.

Figure 3.7 Dc photocurrent-voltage characteristics of nc-Si/a-SiO2 SL measured at
different temperatures for positive bias on the substrate.
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Figure 3.7 shows typical dc photocurrent-voltage characteristics of nc-Si/a-SiO2 SL

measured at different temperatures. Here, two regions of the characteristic current for

bias voltage below and above 0.6v are observed. Below 0.6V, dc current is insensitive to

light as discussed in section 3.1 and this dark current depends on the temperature in the

way similar to that of dark current discussed before in section 3.2.1. The dc dark current

decreases with decreasing temperature in the range from 300 K to 190 K and becomes

impossible to measure for lower temperatures.

Above 0.6 V the behavior of the current is more complicated, as the current is the

sum of dark component (equilibrium carriers) and photocurrent (photo-excited carriers).

Dominating dark current is expected for temperatures close to room temperature. The

current decreases in the temperature range from 300 K to 230 K. However, as

temperature decreases further, an increase of the current is observed. With decreasing

temperature, scattering of charge carriers on phonons decreases, increasing the mobility

of charge carriers and therefore, the current. The increase of the photocurrent with further

decrease of the temperature could be attributed to a reduced scattering of holes on the

phonons.

A shift of the onset of photocurrent towards negative voltage with decreasing

temperature can be observed. As starting point of the voltage sweep was at negative

voltage, charging takes place. This is supported by the shift of zero-current point toward

negative bias. Therefore, built-in potential due to the trapped charge at the interface

shifts the voltage scale.
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No decrease of the photocurrent with decreasing temperature shows that

photocurrent is not thermally activated and tunneling of photo-excited charge carriers can

be proposed as a transport mechanism.

Figure 3.8 Fowler-Nordheim approximation of a photocurrent (Figure 3.1) for different
illumination intensities.

A steep increase of the photocurrent above 0.6 V is suggested by transport of

holes through a superlattice. The barriers of approximately 4 eV exist between Si

nanoparticles. An expression of a theory for tunneling by Fowler and Nordheim is given

in Section 1.3.1. Additional evidence for tunneling will be given in the dimensions of

temperature dependent photocurrent transients (Section 3.5). The interception of the

curves in Figure 3.8 with a vertical scale at 1/E would give a value of the potential
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barrier. However, this procedure demands an exact knowledge of the current density, in

this case the absolute current is used because the active area of the device is not really

known. Assuming the active area of the device to be 0.02 cm 2 the non-realistically small

value of 0.357 meV was obtained. If the area of the device was smaller, this would

increase the value of the potential barrier. In order to get a more realistic value, the area

for tunneling current should be much smaller than the contact one. This means, only

certain chains of nano-particles constitute the transport chains [15].

Tunneling probability for triangular and parabolic barriers has been calculated [6].

Both the expressions contain reciprocal exponents of electric field, which could be

considered as general (independent of a barrier shape). The exact expression for the

constant in the exponent power strongly depends on the shape of the barrier. Therefore

for the extraction of the barrier height the knowledge of the barrier shape is necessary,

while to prove tunneling only field dependence may be enough.

In a wide range of the photocurrent in the voltage range from 0.4 to 1.1 V, the

photocurrent divided by square of the electric field increases linearly, which suggests

tunneling of excess holes through the superlattice.

3.3 Nature of the ac Photoconductivity Resonance

Figure 3.9 shows the ac differential conductivity of the Si/SiO2 superlattice at modulation

frequency of 400 Hz and illumination intensity of 0.43 mW/cm 2 . There are three maxima

observed in the curve at —0.71V, -0.029V and 0.81V successively. In these measurements

a 400 Hz ac voltage with amplitude of X V was applied. The first two maxima at —

0.71V and —0.029V are the same when measured in dark and under illumination. But the
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third maximum 0.81V is observed only under illumination. The insert shows that the

photoconductivity increases from 0.5112S to 1.7512S for an increase in the illumination

from 0.1 to 1.13mW/cm2 respectively. Measured ac conductivity vs. applied bias is in

good agreement with the dc conductivity measurements (compared to Figure 3.1).

Figure 3.9 AC differential photoconductivity of Si/SiO2 superlattice at modulation
frequency of 400 Hz and illumination intensity of .43 mW/cm2 . Insert shows ac
photoconductivity for different illumination intensities at modulation frequency of 1 kHz.
Dark ac conductivity is shown for comparison.

The first maximum in the Figure 3.9 can be explained like this. The potential

barrier for the metal-superlattice contact decreases for the increasing negative voltage

applied resulting in an increase in the conductivity of the structure. And further increase

in the negative voltage leads to a saturation of the ac conductivity. The properties of the

electron current in the SL were discussed for Figure 3.4. The appearance of the second
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maximum is related to the loss of energy of applied ac voltage on interface traps between

the silicon substrate and the Superlattice. Majority carriers (electrons) are captured and

emitted changing the occupancy of the interface trap levels on the surface causing an

energy loss at frequencies close to inverse value of their time constant. A Fermi level of

semiconductor at the interface should cross the energy position of interface states.

Therefore, a narrow maximum in ac conductivity vs. voltage shows narrow energy

distribution of interface states. A frequency dependence of the ac conductivity can give

time response constant of the traps and will be shown later. And the third maximum is

due to the photoconductivity resonance caused by the alignment of the energy levels in c-

Si, nc-Si/SiO2 SL and Fermi-level in Al contact.

An extraction of the density of interface states and time constant is possible from

the frequency dependence of the second ac conductance peak. But prior behavior of the

surface band bending and condition of the surface space charge region (accumulation,

depletion or inversion) at a given applied bias should be understood. This information

could be obtained from the complementary measurements of the capacitance as a

function of the applied bias. These data are given in the following section.

3.3.1 Depletion of the Hetero-Structure at Positive Bias

Figure 3.10 describes the capacitance measured for the frequency of 1KHz as a function

of the bias voltage applied to the Al-nc-Si/SiO2 SL —c-Si structure for different

illumination intensities. There are several maxima observed for these curves.
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Figure 3.10 Capacitance-Voltage curves of the metal-superlattice-semiconductor for
different illumination intensities measured for a frequency of 1 KHz.

The equivalent capacitance of the structure is a series of superlattice capacitance

C s and the capacitance of an interface space charge in depletion region Ca.

The first maximum appears in all the curves for the dark and for the illumination.

The curve for the dark has no other maximum but a shoulder at higher voltages. The first

maximum is explained for these curves as follows. For small negative voltages, the

depletion of interface space charge region (SCR) changes to accumulation extending the
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width of the SCR and therefore, dramatically decreasing Cd. The total capacitance of the

structure equals the depletion capacitance as C S>>Cd. No injection of charge carriers from

c-Si into SL was observed at small positive voltages. The capacitance of the SL can be

considered as constant with voltage and for positive voltages, the equivalent capacitance

is similar to that of the metal-insulator—semiconductor structure capacitance. As

capacitance of SCR decreases with increasing positive bias, the equivalent capacitance

also decreases. Saturation of the equivalent capacitance is expected at voltages where

depletion is changed to inversion. No saturation at higher voltages for frequencies of 1

KHz was observed and interface SCR is in depletion region for the applied voltages up to

1.5 V. The redistribution of the applied voltage between SL and SCR is the reason for

depletion of SCR at such a high voltage.

The domination of C s and Cd in their respective regions can be justified from the

following analysis. The capacitance of the interface space charge region of a metal-

semiconductor interface is given

where q — electronic charge,

Es - permittivity of the semiconductor

ND-donor concentration

Vbi-built in potential

V-applied voltage

kT-thermal voltage
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(3.4)

Doping profile can be given from (3.3)

The doping profile of the semiconductor can be obtained by the differential

capacitance method by plotting the differential of 1/C 2 (C(V) curve is shown in Figure

3.10) as a function of voltage. Hence the doping profile (ND) can be plotted as a function

of bias voltage as shown in the Figure 3.11.

The doping profile (squares) measured under dark is clearly seen as a constant at

ND= 1.1 x 10 15 through out the voltage range which is equal to the donor concentration

of the n-type Si substrate. The deviation of Nd(V) from the horizontal line (constant

doping level) under illumination shows that the capacitance of the SL can not be

neglected in this case and theory for the capacitance of metal-semiconductor interface is

not applied. However, an increase of the equivalent capacitance at 0.5 V and 1.2 V

(Figure 3.10) and respective increase in a charge carrier concentration (Figure 3.11)

shows an injection of excess holes from the c-Si substrate into the SL in between these

two maxima and above the second maximum.

The second and third maxima in the C(V) plot at higher voltages can be explained

by the resonant tunneling of holes from the semiconductor through the superlattice in the

structure in between the second and third maxima and at voltages above the third

maximum. The capacitance of the total structure equals the superlattice capacitance as

Cd>>Cs . The resonant tunneling is explained by the alignment of the energy levels in the

quantum wells of the Si/SiO2 superlattice. This phenomenon explains the successive

second and third maxima in the capacitance—voltage curve in Figure 3.10. For positive
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bias, the minimum in between the second and third is related to the alignment of the first

energy

Figure 3.11 Doping profile of the n-Si-(Si/SiO2) structure as a function of voltage.

levels of the quantum wells in the superlattice. Further increase in the positive bias leads

to the misalignment of the first and second energy levels of the successive quantum

wells, which explains the still decrease after the third maximum in the curve.

AC conductivity due to interface states strongly depends on the frequency of the

applied ac signal.
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3.3.2 Analysis of the Parameters for the Interface Traps

Figure 3.12 shows the ac conductance as a function of the frequency for nc-Si/a-SiO2 SL.

A maximum in ac conductance is clearly observed at frequency of 5200 Hz for applied

bias of 1.5 V. The frequency at which the ac conductivity maximum appears decreases

with decreasing bias and only a shoulder appears for 0.7 V and 0 V.

The change in the occupancy of the interface traps with frequency best explains

the shape of the curves[12-15]. At low frequency (with respect to inverse

trapping/detrapping time) interface traps change occupancy according to the applied ac

gate voltage maintaining equilibrium. Therefore, there is no energy loss and ac

conductance due to interface states is zero. As frequency increases, energy loss occurs as

the interface traps lag behind the ac gate voltage and this causes an increase in the

conductance. The conductance value goes on increasing until it reaches the maximum. As

frequency increases further, the response of interface traps decreases thus decreasing the

energy loss and the value of conductance.
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Figure 3.12 AC conductance over frequency as a function of frequency for several
applied biases.

As referred to the discussion of Figure 3.10, the interface between c-Si and SL is

in depletion. The equivalent circuit of the interface in depletion is shown in Figure

Figure 3.13(a) Equivalent circuit of the	 (b) Parallel conductance and capacitance
Al-Si/Si02-n-Si structure in depletion.	 of the A1-Si/SiO2-n-Si structure in depletion.
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The admittance of the structure in Figure 3.12(a) becomes

Ys consists of the depletion layer capacitance shunted by series combination of CT and Gn

The equivalent circuit given in Figure 3.13 (a) can be presented in terms of the equivalent

parallel conductance Gp and capacitance Cp, given in Figure 3.13(b), that are related to

the initial parameters as

Figure 3.12 has a maximum at wt=1 and the value of Gp/w at maximum is equal to C T/2.

The density of traps involved into ac conductivity [9] at applied voltage of 1.5V is given

by

(3.6)

The trapping/de-trapping time of interface states near the Fermi-level at the applied

voltage of 1.5V is given by

T=1/f=1/5170=3.1x10 -5 s	 (3.7)

As the frequency at which the maximum appears decreases and the absolute value

of maximum increases for decreasing bias, the trapping/de-trapping time and density of

interface state increases.
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3.3.3 Photocurrent Transients as a Measure of Transit Time

The conductivity of a semiconductor is a function of density and mobility of charge

carriers

Where q - electronic charge, n — density of charge carriers, and p, - mobility of charge

carriers

From the definition of mobility, it is the coefficient of the velocity of charge

carriers V and the electric field E.

Also, the velocity of the charge is inversely proportional to the time if the distance

is constant. Therefore, decay time of a photocurrent can serve as a characteristic time for

a flight of photo-generated charge carriers through a SL.

Figure 3.14 describes the photocurrent as a function of time in nc-Si/a-SiO2 SL

for several applied voltages at room temperature. The photocurrent is measured with the

Al-Si/SiO2/n-Si structure excited with a laser pulse (wavelength 690nm and duration 430

ns).
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Figure 3.14 Measured photocurrent (symbols) and as a function of time in nc-Si/a-SiO2
SL for several applied bias and fit of the curves by expression (3.10).

The experimental curves are fitted by a sum of mono-exponential and stretched

exponential decays

where Al and A2 are amplitudes and it and T2 time constants of the photocurrent.
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Two components (with respect to decay time) are present in the photo current

curves — slow component and fast component. The transient time for these components

varies for different bias applied as shown in the insert to Figure 3.14. The decrease of

conductivity from the third maximum toward positive bias (Figure 3.10) is justified by

the increasing ratio between slow and fast components for increasing bias from 0.7 V to

2.9 V. The decrease of the slow component is much more pronounced than that of the fast

components. This shows that the conditions for the photocurrent mechanism described by

the slow component are more preferable at higher voltages.

Tunneling of holes was assumed as a transport mechanism of holes in nc-Si/a-

SiO2 SL. The energy band diagram of the tunneling mechanism is given further in

section 3.3.4. Temperature dependence of photocurrent decay can give information about

transient time at different temperatures. Figure 3.15 describes the photocurrent as a

function of time for temperatures of 90 K and 4.2 K at a fixed applied bias of 0.75V.
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Figure 3.15 Photocurrent as a function of time for different temperatures.

The fast component in photocurrent decay as a function of temperature is given in

the insert to Figure 3.15. This fast component is almost independent of temperature, and

therefore can be associated with tunneling. Hence, it is concluded that resonance

tunneling with fast time constant (100 ns) is the carrier transport process in the Al-

Si/SiO2-n-Si structure. The independence of the fast component with temperature proves

that the main conduction mechanism is the resonant tunneling in the superlattice. The

decay time of the slow component, on the other hand, is temperature dependent, its

absolute value changes from 50 μs at 1.5 V to 10 1.1s at 2.9 V. The temperature
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dependence of the slow component is not monotonical function of temperature. The

decay time constant of the slow component is very close to the time constant of interface

traps of 31 [Ls at 1.5 V and their voltage dependence (decrease with increasing bias).

Therefore, slow component of photo-current can be related to the interface traps.

3.3.4 Resonance Tunneling of Holes in nc-Si/a-Si02 Superlattice

Figure 3.16 Energy band representation of the A1-(nc-Si/a-SiO2 SL)-n-Si for
no voltage applied to the substrate.

Figure 3.17 Energy band representation of the Al-(nc-Si/a-SiO 2 SL)-n-Si for
a positive voltage applied to the substrate.



Figure 3.18 Energy band representation of the Al-(nc-Si/a-SiO2 SL)-n-Si for
a negative voltage applied to the substrate.

The energy band diagram of the heterostructure is shown in Figure 3.16 when there is no

voltage applied to the substrate. When a positive voltage is applied to the substrate, the

Fermi level of the substrate lowers with respect to the Fermi level of the Aluminum. The

energy levels of the Si/SiO2 superlattice align so that the electrons from the Aluminium

tunnel through the energy levels to the substrate and holes from the substrate tunnel

through the energy levels to the Aluminium. When a negative voltage is applied to the

substrate, the energy levels of the Si/SiO 2 align themselves such that the holes from the

substrate tunnel through the energy levels to the substrate and electrons from the

substrate tunnel through the energy level to the Aluminium.



CHAPTER 4

CONCLUSIONS

The electron component at negative bias and hole component at positive bias above 0.6 V

were found to be dominating in the current through nc-Si/a-Si superlattices with 8 bi-

layers. A potential barrier of 70 meV exists at the interface of c-Si substrate and SL.

Electron transport is thermally activated and several activation energies of dark dc current

were determined. The tunneling mechanism is proved to be the leading hole current

mechanism in the nc-Si/a-SiO 2 SL at positive bias. The unusual increase of the dc

photocurrent at 0.6V and the maximum of the ac conductivity at 0.8 V suggest the onset

of hole tunneling due to alignment of the energy levels in the c-Si/nc-Si/SiO2/Al

heterostructure. The time of photocurrent decay, which can be used as a measure of the

operation speed of memory cell, can be varied in a range from 100 ns for aligned energy

levels in resonance to 100 μs for the system out of resonance. The conductivity due to the

interface traps with a density of 3.75x10 11 cm2 and trapping/detrapping time of 301.1s was

determined at the interfaces of the superlattice. This path is competing with the charge

carriers tunneling through the heterostruture and should be blocked for proper operation

of the memory cell.
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