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ABSTRACT

AN ANALYSIS OF THE PERIODICITY OF THE CELL CYCLE AND
APOPTOTIC REGULATORY PROTEINS IN PROSTATE XENOGRAFTS

USING ANOVA AND COSINOR METHODS

by
Aleen Hosdaghian

Circadian rhythms have been found in both plants and animals, in normal tissues as well

as in most tumors and human cancers. By following these rhythms in healthy and

cancerous tissue, it has been possible to find optimal times to deliver a dose of drug, such

that efficacy is maximized and toxicity to normal tissues is minimized. In this study, the

periodicity of several cell cycle and apoptotic regulatory proteins were studied in two

prostate cancer models against a dietary therapeutic agent, Selenium. The ALVA-31

(androgen-independent) and PC-3 (androgen-independent) prostate cancer cell lines were

grown in vivo, as a subcutaneous xenograft in mice and measured at seven different

Hours After Light Onset (HALO). Measurements were taken at 3, 7, 10, 13, 17, 20 and

23 HALO, which is equivalent to 10 AM, 1 PM, 4 PM, 7 PM, 11 PM, 2 AM and 5 AM.

The tumors were used to assess total expression of the protein of interest using an

immunoblotting method, and the results were assessed by densitometry. Statistical

analysis of the mice with the ANOVA and the COSINOR methods showed that selenium

treatment was most effective at HALO 13 at decreasing cell cycle and apoptosis-related

proteins for ALVA-31. For PC-3 tumor lines, HALO 7 proved to be of highest expression

while HALO 13 showed the lowest expression. The selenium treated tumors showed

inhibitory effects via lower expression levels throughout both tumor trials.
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CHAPTER 1

INTRODUCTION

The phase of cell cycle and apoptosis plays a critical role in chemosensitivity in cancer.

In this study, chronotherapy studies with human prostate cancer cell lines ALVA-31 and

PC-3 were used to determine the expression patterns of various cell cycle and apoptosis

regulatory proteins. Expression patterns were also studied using the dietary treatment

Selenium in the form of Sodium Selenite. The prostate tumor cell lines were grown as

subcutaneous xenografts in mice and their periodicity of expression compared to the

periodicity of normal tissue of lung and kidney. Results were assessed by a comparison

of the ANOVA and COSINOR methods.

1.1 Prostate Cancer

Prostate cancer is the most common cancer found in men in the United States. It was

diagnosed in an estimated 189,000 US men and led to the death of over 30,200 in 2002

(Pienta 2002). Prostate cancer may be diagnosed by means of tissue biopsy, however,

there is no universally agreed-upon strategic plan for its treatment nor for its

management. Individual chemotherapeutic agents for the majority of tumors have not

increased cure rates in cancer treatment (Shah 2001). In light of this, treatment of prostate

cancer increasingly involves approaches that combine local therapies directed at the

primary tumor together with systemic therapies to potentiate their effect and to control

subclinical metastatic disease. Therapies usually range with the stage of the cancer and

may include: monotherapy, minimal and maximal androgen blockade options,

radiotherapy, adjuvant therapy, and herbal treatment.

1
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Monotherapy is a common method of prostate cancer treatment. Monotherapy can

include chemotherapy or prescription drug treatment including anti-hormone therapy,

which interferes with the body's ability to make testosterone. Agents used include

diethylstilbestrol (Stilphostrol®), goserelin (Zoladex®), leuprolide (Lupron®), flutamide

(Eulexin®), bicalutamide (Casodex®), and ketoconazole (Nizoral®) (Healthnotes 2002).

Though the treatments cannot cure prostate cancer, they often slow the cancer's growth

and reduce the tumor size.

Minimal (Intermittent) and maximal androgen blockade options can be

accomplished using a variety of methods. The common methods used for primary

androgen withdrawal are bilateral orchiectomy, estrogen therapy, luteinizing hormone-

releasing hormone (LHRH) analog, and antiandrogens (Leewansangtong 1998).

Intermittent androgen suppression (IAS) involves a hormonal therapy for a limited

amount of time until the patient shows a predetermined response. This may vary per

individual but usually is associated with Prostate Specific Antigen (PSA) levels or

prostate cancer symptom improvement. Once this is achieved, the therapy is discontinued

until there is a sign of cancer progression. Applying the IAS method can include the

administration of a single hormonal drug (such as an LHRH analog) or a combination of

hormonal drugs (such as an LHRH analog and antiandrogen). There is no data to show

the long-term effectiveness of IAS, and this type of therapy is still considered

investigational (NCI 2002).

Radiotherapy can be one of many different procedures such as beams, permanent,

and temporary implants (Brachytherapy), all with varying dosage. Radiotherapy

traditionally includes the entire prostate, and sometimes the pelvic lymph nodes (Pienta
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2002). A recent study suggests that treating the lymph nodes may help patients at risk for

lymph node metastases. (Zaida et al., 1999). Brachytherapy for prostate cancer has been

delivered using temporary high-dose-rate devices in patients with locally advanced

disease (Pienta 2002). Long-term effects of this treatment are yet unclear. In patients

with aggressive T2 clinically localized prostate cancer, surgical removal of the prostate

(radical prostatectomy) may improve long-term survival (Pienta 2002).

Adjuvant therapy is a combination of various therapies with a goal of having an

overall increased recovery rate. Adjuvant therapy can be used with chemotherapy,

hormonal therapy, or radiation therapy can also be applied to add to the effectiveness of

surgery or radiation in preventing recurrence of the disease (Pienta 2002). Studies have

even examined the use of products such as PC-SPES, a combination of eight herbs in one

capsule, each with an anti-tumor effect. However, PC-SPES has recently been removed

from the market for containing Diethylstibestrol, (DES) a prescription estrogen

medication that is known to be effective in treating prostate cancer (Meyer et al., 2002).

1.2 Human Prostate Tumor Models

The cells of the prostate gland normally only grow and divide in the presence of male

hormones called androgens. Androgens and growth factors control the proliferation of

normal and cancerous cells. The same is true for cancerous cells. There are three known

AR gene polymorphisms: the "CAG" trinucleotide repeat, the "GGC" trinucleotide

repeat, and the R726L single nucleotide polymorphism (CDC 2003). Mainly, treatments

are used that block the affect of androgens and other growth factors to ultimately stop the

cells from dividing. In advanced prostate cancer, the cells are able to grow and divide
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without androgens and the blocking drugs have no affect on cancer growth.

Dihydrotestosterone (DHT) is necessary for initial growth of prostate cancer cells. It

functions by activation of the androgen receptor. Therapy of metastatic prostate cancer is

based on blockade of androgen receptor function by androgen depletion and by

antagonists (antiandrogens). Unfortunately, even following initial remission, the tumor

retains its ability to grow, and can lead to a relapse. In many tumors the androgen

receptor is still expressed and seems functionally active, even thought DHT is seemingly

absent or the androgen receptor is apparently blocked. In other tumors, the androgen

receptor pathway seems to be bypassed by other mechanisms of regulation of cell growth

and cell survival (CDC 2003).

Some prostatic cancer cell lines have shown resistance to therapy. This may be

because of protein expression such as HCP (not expressed in JCA1) or Bcl-2, Bax and

p53. With cycloheximide treatment, Fas-resistant cell lines can be converted to Fas-

sensitive cell lines. This intrinsic propensity to undergo Fas-mediated apoptosis could be

a target for therapeutic intervention in androgen-independent metastatic prostate cancer.

(Oskar 1997). Methods to overcome resistance have proven to be one of the many

challenges in developing cancer therapeutics.

Alterations of the receptors for these factors might disrupt the growth regulations

that lead to cancer formation (Harris 1992). Among growth factor receptors, the most

frequently implicated in human cancer have been members of the class I receptor tyrosine

kinase family, the epidermal growth factor (EGF) receptor family. This receptor family

includes the EGF receptor (EGFR, erbB1), HER2/Neu (erbB2), erbB3, and erbB4

proteins (Kwong 1998).
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In order to study prostate cancer, several models have been studied and

established. Mainly rodent models were used in order to study tumors and their effects.

Some of the different model types are discussed below. One type of model studied is a

xenograft model. This is where human prostate tissue is transplanted into an animal in

order to test aspects in vivo. There can be models of transgenic mice that express a certain

antigen, for example, an SV40 T-antigen. A promoter that shows gene expression in

prostate tissue can then control these antigens (NCI 2003). Another model type that may

be used is a Syngraft, in which tissue (i.e. prostate precursor) from rodent embryos is

isolated, transfected with oncogenes, and then implanted into an adult host (NCI 2003).

Still yet, there may be rat models, which are hormonally induced susceptible to prostate

cancer following treatment with androgens, estrogens, and carcinogenic agents, either

alone or in combination. There exists a dog model, which spontaneously develops

prostate cancer as a high incidence of prostatic intraepithelial neoplasia (PIN). The in

vitro cell models, may be derived from prostate cancers and which have maintained

phenotypic characteristics of the tumor, and finally, in silico computer models, which can

mimic the proliferation of prostate tumors (NCI 2003).

Without a cure, scientists work mainly to achieve the goals of identifying and

monitoring levels of Prostate Specific Antigen (PSA) for detection and providing

therapies with lower thresholds of toxicity in hopes of reducing pain, and improving the

quality of life. Chronotherapy is an area of research that may help to attain these goals.

By mapping out the expression of proteins involved in cell cycle and apoptosis, one could

identify the points that tumor genes interact and intercede to block proliferation at a point

during the cell cycle or induce apoptosis of tumor cells by studying key apoptosis
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proteins. The two tumor carcinoma cell lines used in this study were ALVA-31 and

PC-3. Figure 1.1 shows the cell lines as they were grown in labs at UCLA. The cells

were grown in this manner to ensure promotion of specific cell membrane associated

adhesion within each other (UCLA 2003).

1.3 Cell Cycle and Apoptosis in Prostate Cancer

When administering a therapeutic agent to a patient, many issues must be taken into

account, aside from adversity to therapeutics, developing resistance is a concern. Cell

cycle and apoptosis regulation may be key factors in determining the efficacy of a

therapeutic agent. The cell cycle is the mechanism by which cells divide. It consists of

four general phases including: G1 (growth and preparation of the chromosomes for

replication), S (DNA synthesis), G2 (preparation for mitosis), and M (mitosis) phases.

The cell cycle is regulated by various proteins that include Cyclins, Cyclin-dependent

kinases (CDK's), and Cyclin-dependent kinase inhibitors (CDKI's or KIP's)

(See Figure 1.2). The levels of Cyclins rise and fall with the various stages of the cell

cycle (Kimball 2003). On the other hand, levels for CDK's remain stable (Shah 2001).

They can only be activated by binding to the appropriate Cyclin (See Figure 1.3). The

CDK/Cyclin complexes add phosphate groups to protein substrates, which in turn,
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control processes in the cell cycles (Kimball 2003). As a cell progresses through the cell

cycle, it is promoted by CDK's, which in turn are either positively or negatively

controlled by Cyclins (substrates which determine which are phosphorylated). The Figure

1.2 below represents the relationship between Cyclins and CDK's. Also important are

the CDK/Cyclin complexes. Figure 1.3 illustrates binding properties and structures of

Cyclin/kinases. Changing a substrate to either promote or inhibit binding, alteration of

residues and certain substrates could be a controlling factor in the cell cycle process to

control proliferation.

Throughout the process of cell division, various checkpoints may halt the process

and lead to cell cycle arrest. These factors include: DNA damage (G1 and G2 phase

arrest), unreplicated DNA (S phase arrest), and improper spindle formation (M phase

arrest). For examples, in order to exit Go growth signals must induce expression of

response genes, which in turn, phosphorylate transcription factors. Next, in order to exit

G1, E2F transcription factors induce Cyclins A, E, and CDK2. Also, E2F's are inhibited

by binding Rb. Cyclin D and CDK4/6 complexes phosphorylate Rb, which releases

E2F's.



This cycle of cell division plays an important role in the response of cancer cells

to therapy. Many anti-cancer therapies are designed with the intent to target a specific

phase in the cell cycle (See Table - 1.1). With synchronization, biopsy samples showed

the cell cycle genes CDK4, Cyclin D3, and RING3 had a clear pattern of circadian

expression (Grundschoeber 2003). Also, it is known that passage through G1 into the S

phase is regulated by Cyclins D, E, and A. Cyclin B 1 is involved in regulating the

transition from G2 to the M Stage (Bjarnason 1999).



As shown in Figure 1.4, there are many interactions involved in the cell cycle and

checkpoints that control the progression to the next phase. If these checkpoints are not

met, progression halts and proliferation does not ensue. Interactions of these proteins and

their inhibitors were studied. The proteins that were tested in this study include the

expression of Cyclin/CDK complexes at various cell cycle stages. In the G1 stage, the

Cyclin D1/CDK2, CDK4 complexes; in stage Late Gl, the Cyclin E/CDK2 complex; in

stage S, the Cyclin A/CDK2, complex; and in stage G2, Cyclin A, B1/CDK1 complex.

Also studied were the KIP's 21, 27, and 57, as well as the apoptosis proteins c-JUN and

PINK, and the proliferation marker PCNA.
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Apoptosis also plays a role in prostate cancer. Apoptosis is a normal series of events

in a cell that lead to its death (and then replacement). Studies have shown that apoptosis

occurs via two distinct cellular pathways. The "extrinsic" pathway is activated by the

absence of growth factors, hormones, or binding of death activator proteins to the cell

surface. The "intrinsic" pathway is activated by intracellular signals, such as damage

caused by radiation or cytotoxic factors. Both pathways converge inside the cell, and

activate a family of proteins known as caspases. Caspases function by cutting proteins

inside the cell and become activated early in apoptosis. Once a caspase is activated, the

cell death process is irreversible. Finding the trigger to activate the caspase would lead to

controlling cell death and survival (NCI 2003).
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Cancer cells normally avoid apoptosis (Harnessing Apoptosis to Destroy Cancer

Cells 2003). The goal of many cancer therapies is to induce apoptosis of the malignant

cells. Binding of death-activator proteins (i.e. TNF-alpha, TNF-beta, and FasL) to the cell

surface can trigger apoptosis. A protein of interest being studies is TRAIL from the TNF

family, particularly for its greater effect on cancer cells when compared with normal cells

(Weissman 2003). Factors such as cellular adaptations and mutations can prevent

apoptosis and create a resistance to therapies.

Apoptosis and cancer were first linked in 1988 (NCI 2003). Patients with

follicular lymphoma were found to have an overactive bcl-2 gene in B cells (an immune

cell). The bcl-2 gene is normally considered a "brake" gene, in that it produces a protein

that blocks apoptosis. When the gene was over actively expressed, anti-apoptosis proteins

were produced in abundance resulting in cancer cell growth. This led to the finding that

increased cell division could be attributed to cancer, however, cells could also promote

tumor growth by avoiding programmed cell death (NCI 2003). The protein bcl-2 found

on the mitochondria prevents apoptosis by blocking the release of cytochrome c from

inside the mitochondria resulting in resistance to many therapies such as cisplatin and

paclitaxel (Shah 2001). Often, Bcl-2 is present in abundance in cancers such as colon,

lymphoma and leukemia. By decreasing expression of Bcl-2 levels or increasing

expression levels of the pro-apoptotic protein BAX, and a natural inhibitor of Bcl-2,

sensitivity to therapy can be restored (Weissman 2003).

Another critical protein in regulating the cell cycle and apoptosis is the tumor

suppressor protein p53. The p53 protein is the gene most frequently disrupted in cancer.

The p53 protein acts as a tumor suppressor because it either blocks the cell division of a
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genetically damaged cell or triggers apoptosis by causing damage to the mitochondria

and cytochrome c release. In 55 to 70 percent of human cancers, however, genetic

mutations render the p53 protein deficient and cells with DNA damage can continue to

accumulate. Loss of p53 function is associated with tumor aggressiveness and resistance

to anti-cancer treatments (NCI 2003). Protein p53 serves as a checkpoint. At the time of

DNA damage or oncogene stimulation, the p53 sends a signal to halt the cell cycle to

prevent the cell from becoming cancerous. It is a DNA-binding protein involved in

regulating the expression of genes involved in cell cycle arrest. Both CDK1 and CDK2

are thought to keep p53 in the cytoplasm when the cell is not in Gl. Activity of CDK2

(by binding to Cyclin E or Cyclin A) is increased at the end of G1, which then

phosphorylates p53 and removes it from the nucleus so it does not interfere with DNA

synthesis. One such example includes tumor cells with a mutation in the p53 gene, which

has proven to show a resistance to apoptosis under chemotherapy. One of the functions of

p53 is to stimulate the expression of p21 cIP, which stops the transition from G1 to G2

until damage to the DNA is repaired. The mutant p53 allows the DNA damaged cells to

replicate.

Apoptosis proteins used in this study include: p21, p27, p57, PCNA, and c-JUN.

The protein p27 binds to Cyclin and CDK blocking entry into S phase (Ka et al., 1998).

All of the interactions between cell cycle and apoptosis have a controlled and patterned

rhythm. It is this rhythm which, when studied can lead to variations in cell proliferation

and apoptosis.



13

1.4 Circadian Rhythms

Circadian rhythms are repeating cycles with a period length of about 24-hours. In a

biological system, this means that there exists: a rhythmic fluctuation in gene expression

patterns, a rhythm that is endogenous, and a rhythm that can be reset by external stimuli.

These endogenous rhythms oversee our daily events such as sleep, activity, hormone

secretion, cellular proliferation, and metabolism (Healthlink 1999). Studies have shown

that between 2-10% of all mammalian genes are clock-controlled genes (Richardson

2003).

These circadian rhythms in the body are coordinated by the suprachiasmatic

nucleus (SCN), a biologic clock located at the bottom of the hypothalamus (Healthlink

1999). The main circadian rhythm is known as the rest-activity cycle. The SCN is able to

maintain an approximate 24-hour cycle of activity in vitro/in vivo and helps the organism

adjust to environmental cycles. The SCN receives input from the retinohypothalamic tract

(RHT), intergeniculate leaflet (IGL), raphe nuclei, the paraventricular thalamus and the

limbic telencephalon. The projections from the retina are received by the SCN via the

RHT, which comes from a subset of photoreceptors and retinal ganglion cells specialized

for sensitivity to luminescence (Richardson 2003).

The IGL plays a role in photic entrainment and projects back to the SCN,

terminating in areas that overlap the direct RHT-SCN projections. The IGL also plays an

important role in non-photic entrainment stimuli such as motor activity. Electrical

stimulation of the IGL produces phase shifts similar to those produced by activity

(Richardson 2003). Signals from the SCN travel to several brain regions, including the

pineal gland, which responds to light-induced signals by switching off production of the
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hormone melatonin (Healthlink 1999). The raphe nucleus communicates with the SCN to

show a direct suppressive effect of serotonin on SCN neuronal firing (Richardson 2003).

The duration of SCN cycles are calibrated by the alternation of light and darkness.

Cellular metabolism and proliferation also display rhythms in normal tissues,

which may be affected by the rest-activity cycle (See Figure 1.6). Because of the SCN's

control over metabolism and proliferation, further studies may allow us to observe central

and peripheral coordination of clock function and cancer growth, new vessel function,

and capillary permeability. A study with cultured fibroblasts showed a mechanism similar

to a circadian clock after synchronization with a serum shock treatment. With monitoring

every four hours for a total of 76 hours, this proved to be a simple model to research

circadian gene expression (Grundschober et al., Duffield et al., 2002). If one could learn

how to use predictable changes in cellular metabolism or proliferation along the 24-hour

timescale, one might be able to improve treatments for diseases such as cancer.
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1.5 Chronotherapy

Chronobiology is the branch of biology concerned with the periodicity occurring in living

organisms (Kobayashi et al., 2002). From learning about periodicities of various cell

cycle and apoptosis proteins, chronotherapy can be understood and developed.

Chronotherapy is a type of therapy used by administering a treatment as a function of

rhythms. Clinical trials have confirmed the overall ability to deliver higher doses of

chemotherapy and the improvement in clinical outcome by incorporating these
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chronobiological principles. Studies in different areas have been proven with these

principles. For example, a study was carried out measuring peak tumor uptake between

normal tissue and chemotherapeutics as a function of the time of day doses were given.

The dosing with chemotherapeutics had a peak tumor uptake at 11:00 PM and peak hour

of normal tissue dosing was at 5:00 PM. This was thought to be because of the unique

periodicity of tumor blood flow compared with the rhythm of normal tissue blood flow,

and both being dependant on the time of day (Blumenthal et al., 2001).

Tumor treatments with cytokine IL-12 were studied and found to be governed by

biological rhythms, which may be regulated by rhythmic change in the expression of IL-

12 receptor and interferon-gamma receptor (Alisauskas et al., 1999). Another tumor

treatment, the newly developed COX-2 inhibitory drug celecoxib has also been found to

incorporate principles of chronotherapy and chronotoxicity. (Blumenthal et al., 2002).

Studies are also being carried out evaluating chronotherapy using three dietary agents,

which are vitamin D3, curcumin, and Selenium (Blumenthal et al., 2002). These

experiments are aimed at detecting rhythmic changes in tumor response, host tolerance,

and drug pharmacology, evaluated with several chemotherapeutic agents in order to

determine the optimal time of day to dose a patient with a particular therapeutic agent

(Blumenthal et al., 2002). In addition, studies have shown that optimally timed cancer

chemotherapy with doxorubicin or pirarubicin (06:00h) and cisplatin (18:00h) enhanced

the control of advanced ovarian cancer while minimizing side effects (Kobayashi et al.,

2002).
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1.6 Selenium as a Therapeutic Agent

Selenium is an essential trace mineral found in the human body (National Research

Council, 1989). Selenium (Se) is a part of the enzyme glutathione peroxidase, which

metabolizes hydroperoxides (Combs et al., 1997). Generally, selenium functions as an

antioxidant that works in conjunction with Vitamin E. Plasma levels vary from 8 to 25

ug/dL (1.0 to 3.2 umo1/1_,), depending on selenium intake (Combs et al., 1998). Part of

selenium function is to protect cells against the effects of free radicals that are produced

during normal oxygen metabolism. The body has developed defenses such as

antioxidants to control levels of free radicals because they can damage cells and

contribute to the development of some chronic diseases (Combs et al., 1998). Selenium is

also needed for normal functioning of the immune system and thyroid gland, which is

important in various diseases including cancer. Some studies indicate that mortality from

cancer, including lung, colorectal, and prostate cancers, is lower among people with

higher selenium blood levels or selenium intake (Russo et al., 1997). The criteria for

chemopreventive agents are experimental and rely on epidemiological data showing

efficacy, safety on chronic administration, and a mechanistic rationale for activity (Clark

1998). At this time, selenium is seen more as a chemopreventative agent. However,

studies are in progress to prove that selenium may be used as a therapeutic agent against

prostate cancer. Selenium has been shown to influence the risk of cancer. PC-3 prostate

tumors in particular have been shown to be affected and their growth slowed (Combs et

al. 1998). Some studies on the effects of selenium on prostate cancer are described below.

Studies with a 200 mcg supplementation of selenium daily, did not affect recurrence of

skin cancer, but significantly reduced total mortality and mortality from additional
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cancers studied. The incidence of prostate cancer, colorectal cancer, and lung cancer was

lower in the group given the selenium supplements (Combs et al., 1997).

Dong et al., carried out experiments to test the cellular and molecular effects of

methylseleninic acid (MSA) against the human prostate carcinoma PC-3, in vitro (Dong

et al., 2003). Cells exposed to various concentrations of MSA, showed dose-dependant

and time-dependant growth inhibition. Cell cycle progression was slowed at multiple

time points without effect to cells in different phases. Results were analyzed using flow

cytometry, and annexin V- and propidium iodide-labeled cells demonstrated apoptosis

induction by MSA. The human genome chip U95A from Affymetrix was also used for

array analysis and then applied to profile the changes due to gene expression that might

change the effects of selenium. A timed array was set up to establish gene expression at

12, 24, 36, and 48 hours after selenium treatment. This identified a large number of genes

that had various biological functions, yet all were classified to be responsive to selenium.

Gene expression of 10 genes involved in cell cycle regulation was selected, and Western

Analysis was performed to support the information from the array data. There seemed to

be a 70% consensus between the two experiments. Dong concluded that genes such as

GADD153, CHK2, p21 wAF1 , Cyclin A, CDK1, and DHFR might change cell cycle

progression because of the interaction with MSA The information may also provide

insight to the effect of MSA on DNA repair, cell invasion, stimulation of growth factors,

and the overall biological effects of selenium. The work in my thesis will expand on these

studies to determine how selenium treatment at various times during a 24-hour day

affects expression of various cell cycle and apoptotic proteins.
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In another study, researchers compared the toenail selenium levels of nurses with

and without cancer. They did not find any apparent benefit of higher selenium levels

(Garland et al., 1995). These conflicting results emphasize the need for additional

research on the relationship between selenium and chronic diseases such as cancer. A

study that may help answer some of the questions about the effect of selenium

supplementation on cancer risk has started in France. The Supplementation en Vitamines

et Mineraux Antioxydants, or SU.VI.MAX Study, is a prevention trial that is providing

doses of antioxidant vitamins and minerals that are one to three times higher than

recommended intakes, including a daily supplement of 100 mcg selenium. More than

12,000 men and women are being followed for eight years to determine the effect of

supplementation on the incidence of chronic disease, such as cancers and cardiovascular

disease (Hercberg et al., 1998).

Yet further studies found selenium in the form of selenized brewer's yeast (200 g

Se/day) was associated with a 63% reduction in prostate cancer in a cohort with prior

nonmelanoma skin cancer compared to placebo-treated controls (Clark et al., 1998).

Selenium has been studied as a preventative medicine in all forms in more than one form

of cancer. This study focuses on the chronotherapy of selenium on human prostate

xenografts.



CHAPTER 2

MATERIALS AND METHODS

2.1 Cell Culture

Prostate cancer cell lines ALVA-31 and PC-3 were grown in Complete Dullbecco's

Modified Eagle's media, (DME, Irving Scientific, Santa Ana, CA). The solution was

made up of 10% (50 m1/500 ml) Fetal Bovine Serum (FBS, Ityclone, Logan, UT), and

1% (5 m1/500 ml) other additives including Nonessential amino acids, L-glutamine,

Penicillin/Streptomycin, and Sodium pyruvate. The cell lines grew confluent in between

1-2 weeks when the cultures were incubated (Forma Scientific, HEPA filter) at 37° C.

Trypsin (Irving Scientific, Santa Ana, CA) diluted to lx (3 ml) was used to harvest cell

lines. Equal volumes of media were added and centrifuged at 1400 rpm for 5-minutes.

When confluent, 8 111 of trypan blue dye (SIGMA Chemical Co., St. Louis, MO) and 8 Ill

of the suspension of ALVA-31 cells were placed into a culture tube. The solution was

mixed by pipette and 10 ul were counted using a hemacytometer (Bright-Line, Horsham,

PA). The cells were counted under a microscope (Olympus CK2, Newark, NJ) at a 6x

setting. Four by four blocks were added, averaged and then multiplied by 20,000 to set

cells/ml. Mice were injected with 1 x 10 7 cells/mouse.

To create a single suspension, the cells were passed through syringes of sizes 23-,

25-, and 27-gauge. Cell suspensions used for the injections were set up using equal

volumes (-5 ml) of cells suspended in media, and Matrigel Basement Membrane (BD

Biosciences, San Jose, CA).

20
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2.2 Chronotherapy Models

Severe Combined Immunodeficiency (SCID) mice were used in this study. These

mice lacked both T & B cells due to a defect in recombination, and therefore, easily

accepted foreign transplants. In general, they are very useful models for testing various

immunity and disease responses. They also demonstrate in vivo growth patterns of

normal and malignant tissue. Twenty-eight SCID mice per tumor line were placed into

rooms with defined 12 hour on and 12 hour off periods of light (see Table 2.1) two

weeks prior to subcutaneous implantation of 200 ul of PC-3 and ALVA-31 cell

suspension. The tumors were allowed to grow in their respective HALO for

approximately two weeks to a size of .500 g. A total of 56 mice were treated with

sodium selenite (28 for each prostate carcinoma line). The mice were given a dose of 30

micrograms of sodium selenite (98% purity) (Sigma Chemical) per mouse per day for

four days. Intraperitoneal injections (i.p.) were administered at one of seven HALO.

Times of injection are shown in the Table 2.1. Animal weight, tumor size, and

temperature in the HALO rooms were monitored. If there were any signs of lethargy,

weight loss (<14.0 g), or death, the mice were removed from their respective HALO.
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Placing the mice two weeks prior was to ensure the synchronization of the

biologic rhythms to a new light/dark regimen. The Hours After Light Onset (HALO) was

determined by the hour the light went on in the room. The HALOs were selected so that

various time point studies could be carried out in span of a normal workday (See Table

2.2). The temperature in each room was approximately uniform at about 22+/- 2° C. Four

mice per tumor per treatment (tumors ALVA-3 and PC-3 treated with sodium selenite,

tumors ALVA-31 and PC-3 untreated) were placed in each HALO to be studied. Black

triangles (See Table 2.1) show the times of the injections. The gray area depicts the times

and the rooms for injections, while the black shaded boxes represent times in each room

where the HALO cycle signified darkness (night).

2.3 Tissue Homogenization and Protein Content

After 2-5 weeks the SCID models were sacrificed and the organs (lung and kidney) were

removed from the untreated models of ALVA-31. The organs were washed, blotted,

weighed, and flash frozen with 100% alcohol. All tumors samples (treated and untreated)

were also removed in the same manner. For homogenization, Y2  ml of extraction buffer

was prepared per 100 mg of tissue. The extraction buffer consisted of: 25 mM Tris

(SIGMA Chemical Co., St. Louis, MO) at a pH of 7.4, 100 mM of NaC1 (SIGMA

Chemical Co., St. Louis, MO), and 20 mM of NH4HCO3. The extraction buffer was

added to the samples in amounts based on the weight of the tumor and the sample/extract
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was homogenized using a PRO300PC Programmable Laboratory Benchtop Homogenizer

(Monroe, CT). The 2 ml samples were centrifuged at 10,000 rpm for 20 minutes at 4 °C

(Eppendorf Centrifuge 5417R). The supernatants were then placed into 3 ml eppendorf s

and stored in a —20 °C freezer.

Bradford Reagent (SIGMA Chemical Co., St. Louis, MO) was used to determine

total protein concentration in solution. Two sets of test tubes were labeled, and a five-fold

dilution was prepared with 100 IA of samples in the first set of test tubes. Next, 200 l of

extraction buffer was added and 5 l of protease inhibitor Leupeptin(3) serine and cystein

proteases, soluble in H20 (1 mg/ml). For the standard curves, 100 mg/ml of Bovine

Serum Albumen was used for the dilutions. The standard curve of net absorbance was

determined by setting up an assay (See Table 2.3).

The Bovine Serum Albumen standards used were: 0, 0.25, 0.5, 0.75, and 1.0

mg/ml. Then, 3 ml of Bradford Reagent was added to the 100 p.1 of protein. The binding

of the dye to protein caused the peak absorbance of the dye. Unbound Brilliant-Blue G

dye absorbs light maximally at a wavelength of 465 nm, while the absorption maximum
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is at 595 nm when the dye is bound to protein. The absorbance of light by the dye-protein

complex at 595 nm is proportional to the amount of protein bound. The reagent formed a

complex between the dye (Brilliant blue G) and the proteins. The samples were vortexed

for 2 seconds for uniform mixing and allowed to incubate for 40 minutes at room

temperature. The samples were then transferred to cuvets and results were read by

Beckman (Memory Pac Module) at an absorbance of 595 nm (A595). Absorbance was

recorded and the concentration was determined by comparison to a standard curve. The

protein-dye complex lost stability after 60 minutes; therefore, the absorbance of the

samples must have been recorded within that allotted time limit. This was used as a direct

correlation to the concentration of the sample. After obtaining the results, plotting the

absorbance vs. protein concentration created a standard curve for protein content. In

theory, the amount of absorption should be proportional to the protein present. To

determine the amount of protein concentration in each sample, the formula below was

applied to the data sets using the equation from the plotted standards.

Each sample was then diluted with additional extraction buffer (total volume =

300 l with a final concentration of 6 ug/3u1 using the formula shown below. These

sample dilutions would then be used for multiple sets of antibody immunoblotting

without having to thaw the original samples. This figure was then subtracted from the

total volume to yield the amount of extraction buffer needed for the solution. Next, 300

l samples were made and used throughout the immunoblots.



2.4 Immunoblots

Protein electro-blotting (Western blotting) is a technique, first used in the 1970's to

identify protein antigens that bound to specific antibodies. Since then, a modified protein

blotting procedure called dot-blotting or immunoblotting has been developed whereby the

protein extraction is applied directly to the nitrocellulose membrane as a small spot.

Immunoblotting is a widely used technique for detection and identification of proteins

using antibodies. Because the time-consuming steps of gel electrophoresis are no longer

an issue, dot blotting has the advantages of being simple and rapid. Moreover, dot

blotting is reported to be approximately 10- to 1000-fold more sensitive than western

blotting. The antibodies bind to the proteins and secondary antibodies, detect them.

For this work, both apoptosis and cell cycle regulatory proteins were studied.

Expression studies of the cell cycle proteins included: Cyclin A, B1, Dl, E as well as

Cyclin-dependant kinases (CDK's) 1, 2, 4, and 6 and KIPs: p21, p27, and p57.

Expression of the apoptosis proteins c-JUN and PJNK and the proliferation marker,

PCNA were also assessed.
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A nitrocellulose membrane (Optitran, Scheicher & Schuell, Keene, NH) with a

pore size of 0.45 1.11 was used to create a 7 x 4 grid (See Figure 2.1) of the protein samples

in accordance to the number of samples used. Approximately 3 p.1 of each of the protein

samples were placed on the membrane and allowed to dry for 30-minutes in a humidified

chamber.
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The membrane was then placed in Trizma Buffered Saline (TBS). This was made

in 2000 ml solution using 24.8 g Trizma Base (SIGMA Chemical Co., St. Louis, MO),

18.0 g Sodium Chloride (SIGMA Chemical Co., St. Louis, MO) 28.0 ml HCL (SIGMA

Chemical Co., St. Louis, MO), and brought up to 2000 ml with distilled H2O. The

solution was then calibrated to a pH of 7.5 and used throughout the procedure.

Next, the membrane was placed in 100 ml of blocking solution, which consisted

of 5% dry non-fat milk (Nestle Carnation Instant Dry Milk, Solon, OH) in TBS for a two

hour shaking wash on a rotating table at a speed of 60 rpm. This rotation speed was

constant throughout the procedure. The blocking solution was then poured off and the

membrane was then incubated with a (1:2000) dilution of a primary antibody (See Table

2.4) for 1 hour on the rotating table. The antibody was rinsed with TBS, followed by two

5 minute shaking washes with TBS. The membrane was then incubated with a (1:2000)

dilution of the corresponding biotinylated secondary antibody (Vector Labs, Burlingame,

CA) for 30 minutes on the rotating table (See Table 2.4). The secondary antibody, made

in goat, came in 1 mg/ml concentrations and diluted in PBS. During the incubation, an

Avidin and Biotinylated horseradish-peroxidase macromolecular Complex (ABC)

reaction (Vectastain Peroxidase Standard PK-4000, Vector Laboratories, Burlingame,

CA) was made and left to incubate for 30 minutes. This was used to create a horseradish

peroxidase conjugate. At the end of the 30 minute secondary antibody incubation, the

membrane was rinsed with TBS followed by three 5 minute shaking washes on the

rotating table. The ABC reaction was then brought up to 50 ml with TBS and poured on

the membrane for 30 minutes. Another set of three 5 minute washes with TBS followed

the ABC incubation. In order to detect antigens conjugated to the horseradish-peroxidase
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antibodies, Luminol (ECL Plus Western Blotting, Detection Reagents, Amersham

Biosciences) was prepared with a 40:1/A:B ratio with a final volume of 0.1 ml/cm2. In a

non-polystyrene 15 ml conical vial, 2.73 ml of Solution A was added and 68.3 of

Solution B. The total volume of the solution was 2.8 ml and the luminol was pipetted

directly onto the membrane for 6 minutes.

Afterwards, the membrane was drained of excess luminal and wrapped in plastic

and exposed to a sheet of film (Kodak X-OMAT AR, Scientific Imaging, Rochester, NY)

in the darkroom for 10 minutes, and the film developed. Three blots per antibody were

tested for statistical analysis. The film was scanned into the computer using a basic

PhotoEd program included in the Windows system, and saved as a picture (.jpg) image.

The program Un-Scan-It was used to calculate pixel density and quantify results. From

the drop-down menu, Digitize was selected and Image (gel) was chosen. Next, the saved

file was opened and "Segment Analysis Positive" was selected. On the next menu ODC

(log) was checked and the screen showed the digitized sample. Boxes were placed around

each immunoblot sample in order from 1 — 28 down each column until all the samples

were boxed. The "Digitize" button was selected and then the "Exit" button. From the File

menu, the gel data was saved including: Column titles, Pixel Total, Background,

Maximum Pixel, and Average Pixel. This data was copied into an Excel spreadsheet for

further analysis. The data was plotted and graphed in excel by means, medians, and

standard deviations. The ANOVA and COSINOR methods were applied to these data

sets to find correlations between the groups of treated tumors, untreated tumors, and

organ sets.
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2.5 ANOVA and COSINOR

Statistical analysis of results was performed by a one-way ANOVA, a two-way factorial

ANOVA or one-tailed Student's t test, as stated. Cosinor analysis was used to analyze

general rhythmic parameters, i.e., Acrophase (the maximum of the cosine function fit to

the experimental data), Mesor (the statistical estimate of the 24-h time series mean) and

Amplitude (half the difference between maximal and minimal values of the derived

cosine curve). Percent of rhythm defined the part of variation that could be explained by a

cosine function. Statistical significance of the derived cosine curves was tested against

the null hypothesis (i.e., amplitude = 0); p values lower than 0.05 were considered

evidence for statistical significance.

The acronym ANOVA is the ANalysis Of VAriance between groups. ANOVA

performs comparisons like the t-Test, but for an arbitrary number of factors. Each factor

can have an arbitrary number of levels. In addition, each factor combination can have any

number of replicates. ANOVA works on a single dependent variable, and the factors

must be discrete. Generally, multiple t-tests are carried out, but are difficult to use

because as the number of groups grows, the number of needed pair comparisons grows

quickly, and the numbers lose significance. The likely range of variation is given by

thestandard deviation of the estimated means by using the calculation of the formula

below:
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This is where a is the standard deviation of the size of all the samples and N is the

number of samples in a group. The comparison between the actual variation of the group

averages and that expected from the above formula is expressed in terms of the F ratio:

Thus, if the null hypothesis is correct, F should be near one, whereas F greater

than one, would indicate a location effect. The P-value reports the significance level. The

number of degrees of freedom (d.f.) for the numerator (found variation of group

averages) is one less than the number of groups. The number of degrees of freedom for

the denominator (expected variation) is the total number of leaves minus the total number

of groups. The F ratio can be computed from the ratio of the mean sum of squared

deviations of each group's mean from the overall mean and the mean sum of the squared

deviations of each item from that item's group mean ANOVA puts all the data into one

number (F) and gives one (P) for the null hypothesis.

The COSINOR method involves the least squares fit to the data of a model that

consists of one or more cosine curves with one or more periods anticipated to find trends.

Cosinor analysis estimates the parameter of a cyclic phase. The data does not have to be

in equal intervals. The analysis does require that the data can reasonably be considered to

take the form of a deterministic cycle with a known period. Cosinor analysis entails

curve-fitting the 24 hour profile to a cosine function, with estimates of the Acrophase

(time of maximal concentrations), Mesor (mean level about which the 24 hour rhythm

oscillates), and Amplitude. The calculation of the Mesor provides a more accurate

estimate of the overall mean value, when compared with the arithmetic mean (which may
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contain bias when the data are non-equidistant). When data are equidistant, the Mesor

provides a smaller standard error. Measurement of the Acrophase allows a stable measure

of timing of the overall high values, rather than time of a single value-based maximum.

Once the three factors (Mesor, Amplitude, and Acrophase) are determined for the 7 time

points of the various cell cycle and apoptotic antibodies, clustering of the amplitude-

acrophase pairs can be estimated by the population mean cosinor method. This can be

applied to multiple series from an antibody as well as the entire group of cell cycle or

apoptosis antibodies. For this experiment P = 24 hours.



CHAPTER 3

RESULTS

3.1 Protein Concentration

The absorbance vs. protein content are plotted for ALVA-31, PC-3 individually as well

as with the Selenium treatment And for the normal organs (See Figure 3.1). The objective

was to have a linear correlation graph. All graphs showed a two-point intercession on the

slope of the standard curve. Plots with the tumor line PC-3 showed the closest

relationship to the standard. The results showed a correlation to then help determine the

dilutions needed for immunoblotting. The correlation coefficient of the r2 value (See

Formula 3.1) yielded the measurements in Table 3.1. If the plots were not towards a

linear pattern and under the value of 0.900, then the dilutions were re-calculated. The

lowest value was found to be among the ALVA-31 treated samples with an r2 value of

.9331 but still remained an acceptable value for the studies.
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3.2 Immunoblot Data

Following the protocol for immunoblotting, the results varied greatly. Initially, results for

PC-3 blotting showed that the chemiluminescent bound to the surfaces exposed around

the protein blots but not to the blots themselves (See Figure 3.2). Also found was an

unusual amount of background (See Figure 3.3). In order to address these (and following)

issues, variables were changed until there were measurable results for analysis.

For the PC-3 blot shown in Figure 3.2, there was an issue with non-specific

binding. Primary antibodies were checked to make sure that the correlating secondary

biotinylated antibodies were being used. Some blots showed results like that seen in

Figure 3.3. This problem was addressed by first trying to use a TBS solution from

another laboratory, then by increasing the amount and timing of the TBS rinses. Also, the

pH of the TBS was constantly checked to ensure a calibration of 7.4. Film exposure time
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was increased from 10 minutes to an overnight exposure (16-18 hours). Increasing the

amount of TBS, solved the problem of high background.

The ALVA-31 tumor blots treated with selenium yielded results, which showed

very faint pixel density, if any (See Figure 3.4). The proteins CDK2 and CDK4

immunoblots were repeated, however still showed especially faint results with pixel

densities scanned in between 0 — 8. These results were not included in this study but

suggest that expression of these two CDKs was dramatically decreased to a level that

could not be quantified.

For these blots, additional primary and secondary antibodies (-25 111) were added

to the incubations. Also the lumigen used, SuperSignal West Pico Chemiluminescent

Substrate (Pierce, Rockford, IL) was discarded and new lumigen was purchased. The

ECL plus Western Blotting Detection System (Amersham Biosciences,

Buckinghamshire, England) was used as a replacement lumigen. Fresh blocking solution

was also created every morning to ensure that there was no contamination when left

overnight. New nitrocellulose membrane was also ordered. Blotting was attempted with

Dp-1, an additional cell cycle antibody, but the results remained the same. A test was run
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using the DAB process with the c-JUN antibody, which yielded promising results and

indicated that there was no problem with the original selenium treated samples.

For immunoblotting with both lung and kidney organ samples, a problem found

was that the blots were over expressed (See Figure 3.5).

To remedy this, the exposure time of the film was tested at 30 seconds, 1 minute,

and 5 minutes. The optimal time of exposure for organ blotting resulted somewhere

between 15-30 seconds to obtain some type of blot variation. Also, the amounts of

primary and secondary antibody were reduced to 12.5 ul. By repeating the Immunoblot

process and by changing variables as described standard blots were obtained for pixel

density analysis (See Figure 3.6).
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Patterns of Cyclin and CDK expression for the cell cycle immunoblots varied

with the progression of cells through the cell cycle. The expression for the apoptosis

antibodies also showed variation. Organs expressed 255 pixel densities when left to

expose over 1 minute, however showed variation at 15 seconds.

3.3 Organs: Lung and Kidney Analysis

Expression patterns for the lung and kidney were more stable than both the ALVA-31

and the PC-3 lines. There were high expression levels at every HALO for the organs.

Although the cyclic expression rhythm found in the organs was not as great as the

tumors, there were differences (low/high) points, which were studied. This pattern

continued through cell cycle proteins for the lung, while the kidney results for cell cycle

were more dispersed. The kidney tissues expressed CDK1 and Cyclin A with similar

expression patterns. These two proteins interact during the G2 phase of the cell cycle.

The ANOVA analysis was performed on normal tissue sets and the mesor, amplitude,

mean, and acrophase were determined. These results were showed in Table 3.2 and Table

3.3. The values were segregated according to the phase of the cell cycle (G1, Late G1, S,

and G2/M), or within Apoptosis or KIP categories.

In general, expression levels of antibodies used on kidney were more closely

related in terms of acrophase as well as overall cyclic patterns. Although expression

patterns of lung did not have many similarities, the overall range of pixel density was

very close.
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3.4 ALVA-31 Analysis

The means, standard deviations and medians were calculated from the scanned pixel data

of the tumors and normal tissue. Bar graphs representing the medians of each HALO at

various pixel densities were plotted (See Figures 3.15-3.18). The blue bars representing

the untreated tumor, the red bars representing the tumors treated with sodium selenite,

and the yellow bars representing the immunoblot data for the kidney. The same data

values (acrophase, mesor, mean and amplitude) were also calculated for untreated and

treated samples of ALVA-31 (See Tables 3.4 and 3.5).

For the HALO expression points of untreated ALVA-31, there was a clear pattern,

in particular with the apoptosis and KIP's proteins, which showed a low expression at

HALO 23 (5:00 AM). In general, for all cell cycle untreated ALVA-31 tumors, HALO 17

(1:00 PM) showed a low point of expression while HALO 13 (7:00 PM) showed a

consistent pattern of high expression. The Cyclin A/CDK1 complex that forms in phase

G2 had a consistent expression in ALVA-31 untreated samples across all HALOS. Both

had a low expression point of HALO 17 (1:00 PM) and a high expression point of HALO

13 (7:00 PM). The Cyclin A/CDK2 complex that is seen during the S phase of the cell

cycle also had a consistent expression pattern of the same HALO low and high points for

the untreated ALVA-31. The protein p57 had similar expression patterns to that of Cyclin

E, where they would interact in the late G1 phase. Also similar were expression patterns

of p57 with CDK4, which interact during the G1 phase of the cell cycle. The apoptosis

protein c-JUN had a similar pattern to p57, CDK4, and Cyclin E. The proliferation

marker PCNA correlated with Cyclin B1 showing a low of HALO 3, and a high of

HALO 13.
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Table 3.4 ALVA-31: Untreated Expression Points
ALVA-31 UNTREATED

Apoptosis Low High
PCNA 3 13
c-JUN 23 7
KIP Low High
p21 23 20
p27 23 13
p57 23 7
Cell Cycle Low High
G1 Phase
Cyclin D1 10 13
CDK2 17 13
CDK4 23 7
Late GlPhase Low High
Cyclin E 23 7
CDK2 17 13
S Phase Low High
Cyclin A 17 13
CDK2 17 13
G2/M Phase Low High
Cyclin A 10 17
Cyclin B1 3 13
CDK1 17 13

Table 3.5 ALVA-31: Selenium Treated Expression Points
ALVA-31 TREATED

Apoptosis Low High Mesor Amp.
PCNA 3 20 30.4 25.2
c-JUN 3 17 64 39
KIP Low High Mesor Amp.
p21 13 10 See Graph
p27 23 3 See Graph
p57 10 23 See Graph
Cell Cycle Low High
G1 Phase
Cyclin D1 3 10 25.6 12.3
CDK2 N/A N/A N/A N/A
CDK4 N/A N/A N/A N/A
Late G1 Phase Low High
Cyclin E 23 13 20.5 31.3
CDK2 N/A N/A N/A N/A
S Phase Low High
Cyclin A 20 13 63.2 20
CDK2 N/A N/A N/A N/A
G2/M Phase Low High
Cyclin A 20 13 See Graph
Cyclin B1 20 3 75 8.4
CDK1 13 17 63.8 4.5
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The KIP'S p21, p27 and p57 were plotted for ALVA-31. Proteins p27 and p57

had similar expression patterns where the expression in treated tumor was higher than in

untreated ALVA-31 tumors, while p21 had higher expression in the untreated tumor

blots, except for HALO 10 where the treated tumor expression is higher. This is also the

highest point of expression for p21.

For the treated ALVA-31 tumors, there was not a consistent pattern between the

low and high points of expression between each protein marker. There was a consistency

however with the low points of the treated samples PCNA, c-JUN, p27, Cyclin D1 and

Cyclin E in the untreated samples of ALVA-31. The high point of Cyclin A untreated and

treated correlated.
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Expression levels FOR WHAT is higher in kidney and lung than in both treated

and untreated tumors, but does not show any significant circadian rhythm. For the KIP'S

(p27 and p57) it seemed that the normal tissue was very close to the treated samples.
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3.5 PC-3 Analysis

The same data (amplitude, mesor, acrophase and low point) were determined from the

data and the graphs (See Tables 3.6 and 3.7). For the PC-3 analysis the G1 phase

proteins are expressed and had an acrophase in the early HALO's (3, 7 and 10), the Late

G1 and S phase proteins in the middle HALO's (10, 13 and 17) and the G2/M phase

proteins in the later HALO's (17, 20 and 23). The amplitude and mesor of the proteins

that were related in the same cycle exhibited similar values. The PCNA and Cyclin B1

acrophase during HALO 3, but both should be expressed during a later HALO. This

discrepancy may be due to problems with the immunoblots, such as uneven drying of the

samples (See Figures 3.25-3.27).
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For PC-3 tumors there seemed to be a correlation of untreated tumors with low

expression points of HALO 10 and 23 (4:00 PM and 5:00 AM respectively) for most

proteins. This shows a diurnal cyclic pattern for every 12 hours in the untreated tumors.

The high points of expression for untreated PC-3 seemed to be HALO 3 and 13 (10:00

AM and 7:00 PM). For sodium selenite treated PC-3, tumors showed that every protein

was expressed at HALO 7 (1:00 PM). The highest expression in the treated PC-3 tumors,

for the apoptosis proteins were at HALO 23 (5:00 AM) and the cell cycle proteins were

uniformly expressed at HALO 10 (4:00 pm) with the exception of CDK1 (HALO23).
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CHAPTER 4

DISCUSSION

Identification of tumor expression based on circadian rhythms can be advantageous in the

field of oncology. In general, there are biochemical effects not shown that can alter the

clinical trial outcome. Multiple genetic changes may result in activating oncogenes,

increasing expression of growth factors, and losing function of various genes such as

tumor suppressors. The interaction between the tumor cell and host is lost; therefore

researchers need as much information as possible to lead to a better understanding of

tumor behavior in order to develop accurate therapeutics. Even if this information is

provided, two patients with similar tumors and diagnosis may respond differently to the

same therapeutic. Studies focused on identifying all properties (size, life cycle,

proliferation patterns, ect) of tumors, and in differentiation can result in a formulation of

a tumor classification system which can better diagnose and treat patients with cancer.

This will guide treatment to derive methods that are more targeted to the individual and

the administration of chronotherapeutics.

There are many ways in which chronotherapy may be beneficial. The circadian

timing of surgery, anticancer drugs, radiation therapy, and biologic agents can result in

improved toxicity profiles, tumor control, and host survival. Using chronobiological

principles, clinical trials have confirmed that patients may receive higher levels of

chemotherapy and a positive response during this administration (Hrushesky et al., 1993).

In support of these results, Grundschober found that 2% (85 genes) of all expressed genes

followed a circadian pattern, suggesting a direct link between circadian rhythm and cell
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cycle. Bjarnason conducted further studies to relate significant variation of circadian

rhythms to high points of expression. For example, p53 expressed in the Late G1 phase

(10:56 h), Cyclin E expressed between Gl/S phase (14:59 h). In comparison to

Bjarnason's studies, the result of this study showed supporting evidence with Cyclin E

expression at (13:00 h) for ALVA-31 untreated tumors and (16:00 h) for PC-3 tumors

treated with selenium. Furthest results were (19:00 h) for ALVA-31 treated with

selenium along with PC-3 tumors. For Bjarnason's study, Cyclin A was expressed in G2

(16:09 h). In comparison, this study found that Cyclin A expressed at a similar time

(16:00 h) in PC-3 tumors treated with selenium. Cyclin A had lowest expression at (16:00

h) for ALVA-31 tumors. Both ALVA-31 treated with selenium and PC-3 tumors showed

the furthest relation with high points of expression at (19:00 h). Cyclin B in Bjarnason's

study was expressed in M (21:13 h). This time frame is between HALO 13 and HALO 17

of this study. The ALVA-31 tumors showed a correlation to this with expression points at

(19:00 h). The expression of PC-3 treated with selenium was at (16:00 h). Values that

did not correlate with Bjarnason were ALVA-31 treated with Selenium and PC-3 tumors

which both expressed at (11:00 h).

There were general differences between the two untreated prostate tumor

xenografts ALVA-31 and PC-3, such as the untreated ALVA-31 being higher than the

treated. The reverse was true for PC-3 tumors. The apoptosis proteins PCNA and c-JUN

showed similar results regarding ALVA-31 treated vs. untreated tumors. The untreated

expression of PCNA was higher and the reverse was true for c-JUN suggesting that

treatment decreased tumor proliferation and increased apoptosis at all HALOs. The

ANOVA can be thought of as an extension of the t-Test to an arbitrary number of factors
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and levels. It can also be thought of as a linear regression model whose independent

variables are restricted to a discrete set.

From the studies with both ALVA-31 and PC-3, selenium in the sodium selenite

form was shown to have inhibitory effects on cell proliferation. With the ALVA-31

samples, all 3 KIPs up-regulated at HALO 10 for selenium treated tumor samples. This

might lead one to postulate that HALO 10 dosing with selenium would give maximal

therapeutic effects. In an initial therapy study, HALO 10 and 17 dosing gave the best

responses. Results were very consistent between treated and untreated tumors; therefore

complex information was not relevant. From the data, selenium showed to have

inhibitory effects on the cell cycle, while the untreated tumor cells did not have as much

of an effect in PC-3 tumors. This could have led to the inference that the untreated tumors

kept proliferating without these inhibitory effects. Exceptions to the treatment effects on

expression were the KIP's and c-JUN for ALVA-31 since they reflect inhibitory control

of tumor growth. For the PC-3 tumors, a majority of the selenium treatments at HALO 13

were exceptions to the selenium trend and showed lower levels of expression. These

results need to be compared with other studies carried out with sodium selenite and

prostate cancer to be compared. The next step would be to go through trials mice with

different phases of time, and testing with other types of normal tissue (GI tract, marrow,

ect). In humans, one could implement Phase I chrono-dose testing to identify properties

and adverse effects in humans. Additional studies could be carried out to determine

whether the sodium selenite prevents the occurrence of prostate cancer in various animal

models
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The main difficulty of this study was to obtain consistent patterns of immunoblot

data. From repeating the blots, trends developed among the tumor lines, the sodium

selenite treated blots, and the organs. Each group had different properties and therefore

the immunoblot process changed with the handling of each group. Between the ANOVA

and COSINOR methods, the COSINOR method proved to show more accurate results in

plotting while both displayed the Mean, Mesor, Amplitude and Acrophase of the data.

Also, the protein PCNA was used for the ALVA-31 tumor lines and tested with treated

vs. untreated, while the PC-3 tumor lines were tested with the PJNK protein. This led to

inconsistency in data because although they were both apoptosis regulating proteins, they

can not be used in a direct comparison. Another complication was the inflexibility of the

COSINOR program which did not allow adjustments of the axis, and therefore did not

show consistency in displaying the results. Problems that lie ahead would be to find a

standard to quantify these results. Testing selenium in conjunction with new treatments

that are becoming available could be a next step towards continuing the studies and

effects of selenium as a supplementary therapy to a primary therapeutic.

New treatments are becoming available or are currently undergoing clinical trials

in various pharmaceutical discovery companies. For Example, VelcadeTM, is a new agent

currently in clinical trials, and is aimed at building BAX levels to inhibit bcl-2 for the cell

to ultimately undergoes apoptosis (NCI 2003). Another agent in clinical trials that

induces apoptosis is GenasenseTM. Androgen suppression is a therapy which may reduce

levels of male hormones. Adjunct use of these forthcoming or existing treatments with

selenium treatment may impact prostate cancers or slow their growth.
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Time related dosing can result in improved quality of life. This study examined

the effect of the treatment selenium on two prostate tumor xenografts, and compared the

untreated tumor to the treated tumors, as well as normal tissue of lung and kidney. The

normal tissue comparison did not show significant differences to be notable. Further

studies could be carried out in order to try and determine significant differences. A high

level of expression could infer continuous presence of the proteins in both lung and

kidney. For the ALVA-31 tumor models, there were significant results in comparison of

all Cyclin's against Apoptosis proteins. The PC-3 tumor models all consistently showed a

higher expression of treated tumors when compared to untreated. Particularly, HALO 10

as the highest level of expression for sodium selenite treated tumors. The more our

understanding of cycles and their involvement of biological processes such as cell and

apoptosis, the more effective chemotherapeutic treatments may become, to ultimately

improve clinical efficacy and reach a level of acceptable clinical toxicity.
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