Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT
 THERMOCHEMISTRY AND KINETICS IN PYROLYSIS AND OXIDATION REACTIONS OF OXYGENATED CHLOROCARBONS, NEOPENTANE AND ORTHO-XYLENE

by
Hongyan Sun

Thermochemical properties of chlorinated alcohols, chlorinated hydroperoxides and corresponding alkoxy, hydroxy alkyl radicals, peroxy and hydroperoxy alkyl radicals are determined by $a b$ initio and density functional calculations for modeling and optimization of complex chemical processes for combustion or incineration of chlorinated hydrocarbons. The entropy and heat capacities from vibrational, translational, and external rotational contributions are calculated by statistical mechanics, and the hindered rotational contributions to $S^{0}{ }_{298}$ and $C_{p}(T)$'s are calculated by using direct integration over energy levels of the internal rotational potentials. The values of $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ are determined using isodesmic reactions with group balance. Groups for use in Benson type additivity estimations are determined for the carbon bonded to oxygen and chlorine(s). Hydrogen bond increment groups for the chloroalkoxy, hydroxy chloroalkyl radicals and interaction terms for peroxy group with chlorine(s) are developed for group additivity approach.

The reactions of alkyl radical with oxygen are important rate controlling processes in the low and intermediate temperature chemistry of hydrocarbon oxidation, especially the chemistry which occurs prior to ignition in internal combustion engines and in cool flames. Thermochemical properties for reactants, intermediates, products and transition states in neopentyl radical $+\mathrm{O}_{2}$ reaction system are analyzed with ab initio and density functional calculations to evaluate reaction paths and oxidation kinetics. Rate
constants to products and stabilized adducts of the chemically activated neopentyl-peroxy are calculated as function of pressure and temperature using Quantum Rice-RamspergerKassel analysis for $k(E)$ and a master equation analysis for pressure fall-off. An elementary reaction mechanism is constructed to model experimental OH and HO_{2} formation profiles.

Aromatic compounds are an important component of higher-octane automotive fuels and consequently they are present in emissions from incomplete combustion and other evaporation from solvents and fuels handling and storage. Oxidation reactions of ortho-xylene are studied to identify the important reaction channels of this class of highoctane aromatics. Elementary reactions, energy well depths, and absolute rate constants of benzylic radical derived from ortho-xylene, 2-methylbenzyl radical with O_{2}, are determined with computational chemistry at density functional levels.

THERMOCHEMISTRY AND KINETICS IN PYROLYSIS AND OXIDATION REACTIONS OF OXYGENATED CHLOROCARBONS, NEOPENTANE AND ORTHO-XYLENE

by
Hongyan Sun

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy

Department of
Chemistry and Environmental Science
August 2003

Copyright © 2003 by Hongyan Sun
ALL RIGHTS RESERVED

APPROVAL PAGE

THERMOCHEMISTRY AND KINETICS IN PYROLYSIS AND OXIDATION REACTIONS OF OXYGENATED CHLOROCARBONS, NEOPENTANE AND ORTHO-XYLENE

Hongyan Sun

Dr. Joseph W. Bozzelli, Dissertation Advisor
Date
Distinguished Professor of Chemistry, NJIT

Dr. Lev N. Krasnoperov, Committee Member
Date Professor of Chemistry, NJIT

Dr. Tamara M. Gund, Committee Member
Date
Professor of Chemistry, NJIT

Dr. Sanjay V. Malhotra, Committee Member
Assistant Professor of Chemistry, NJIT

Dr. Edward R. Ritter, Committee Member
Date
Associate Professor of Chemical Engineering, Villanova University

BIOGRAPHICAL SKETCH

Author:	Hongyan Sun
Degree:	Doctor of Philosophy
Date:	August 2003

Undergraduate and Graduate Education:

- Doctor of Philosophy in Chemistry, New Jersey Institute of Technology, Newark, NJ, 2003
- Master of Science in Applied Chemistry, New Jersey Institute of Technology, Newark, NJ, 2000
- Bachelor of Science in Chemical Engineering, Tianjin University, Tianjin, P. R. China, 1987

Major: Chemistry

Journal Publications:

Sun, H.; Bozzelli, J. W. "Thermochemical and Kinetic Analysis on the Reactions of Neopentyl and Hydroperoxy-Neopentyl Radicals with Oxygen: Part I OH Product Formation" Submitted to J. Phys. Chem. A 2003.

Sun, H.; Bozzelli, J. W. "Structures, Rotational Barriers, and Thermochemical Properties of β-Chlorinated Ethyl Hydroperoxides" J. Phys. Chem. A (2003),107(7), 1018 1024.

Sun, H.; Bozzelli, J. W. "Structures, Rotational Barriers, Thermochemical Properties, and Additivity Groups for 2-Propanol, 2-Chloro-2-Propanol and the Corresponding Alkoxy and Hydroxy-Alkyl Radical" J. Phys. Chem. A (2002), 106(15), 3947-3956.

Sun, H.; Bozzelli, J. W. "Structures, Intramolecular Rotation Barriers, and Thermochemical Properties: Ethanol, α-Monoethanols, Dichloroethanols, and Corresponding Radicals Derived from H Atom Loss" J. Phys. Chem. A (2001), 105(41), 9543-9552

Sun, H.; Bozzelli, J. W. "Structures, Intramolecular Rotation Barriers, and Thermochemical Properties of Radicals Derived from H Atom Loss in Mono-, Di-and Trichloromethanol and Parent Chloromethanols" J. Phys. Chem. A (2001), 105(18), 4504-4516.

Sun, H.; Chen, C.-J.; Bozzelli, J. W. "Structures, Intramolecular Rotation Barriers, and Thermodynamic Properties (Enthalpies, Entropies and Heat Capacities) of Chlorinated Methyl Hydroperoxides $\left(\mathrm{CH}_{2} \mathrm{ClOOH}, \mathrm{CHCl}_{2} \mathrm{OOH}\right.$, and $\left.\mathrm{CCl}_{3} \mathrm{OOH}\right)$ " J. Phys. Chem. A (2000), 104(35), 8270-8282.

Sun, H.; Tian, W. "Analysis of Main Impurity in Coupler COY-5," Liaoning Chemical Industry (1997), 26(1), 53-56.

Sun, H.; Ma, Y. "Separation and Identification of 1,3,4-trichloro-2-ethyl-5-nitrobenzene by HPLC," Image Science and Practice (1993), 2, 32-33, 62.

Conference Proceedings and Presentations:

Sun, H.; Bozzelli, J. W. "Kinetics and Thermochemistry for Dissociation of Chloromethanols and Chemical Activation Reactions of OH and Cl With Chloromethyl Radicals" Accepted by the 226th ACS National Meeting, Sep 7-11, 2003, New York, NY, USA

Sun, H.; Bozzelli, J. W. "Kinetic Analysis on the Reactions of Neopentyl Radical With Oxygen" Third Joint Meeting of The U.S. Sections of the Combustion Institute, March, 16-19, 2003, Kinetics Section, University of Illinois at Chicago, Chicago, Illinois, USA

Sun, H.; Bozzelli, J. W. "Thermochemical Properties, Reaction Pathways and Kinetics of Neopentyl $+\mathrm{O}_{2}$ Reaction System" AIChE Annual Meeting, Nov 3-8, 2002, Detailed Reaction and Reactor Modeling II Session, Indiana Convention Center, Indianapolis, Indiana, USA

Sun, H.; Bozzelli, J. W. "Determination of Thermochemical Parameters on β-Chlorinated Ethyl Hydroperoxides" AIChE Annual Meeting, Nov 3-8, 2002, Obtaining Physical and Chemical Properties for Process Design by Computational Chemistry Session, Indiana Convention Center, Indianapolis, Indiana, USA

Sun, H.; Chen, C.-J.; Bozzelli, J. W. "Thermochemical Properties, Reaction Pathways and Kinetic Analysis of Ortho-Xylene Oxidation Reactions" AIChE Annual Meeting, Nov 3-8, 2002, Understanding Reactivity Session, Indiana Convention Center, Indianapolis, Indiana, USA

Bozzelli, J. W.; Sun, H. "Thermochemical Properties, Reaction Pathways and Kinetics of Neopentyl $+\mathrm{O}_{2}$ Reaction System" 17th Internatinal Symposium on Gas Kinetics, Aug 24-29, 2002, Essen, Germany

Bozzelli, J. W.; Sun, H. "Thermochemical Properties and Internal Rotational Barriers of Chlorinated Alcohols" 17th IUPAC Conference on Chemical Thermodymics, July 28-Aug 02, 2002, University of Rostock, Postock, Germany

Sun, H.; Bozzelli, J. W. "Structures, Intramolecular Rotation Barriers, and Thermochemical Properties: Ethanol, α-Monoethanols, Dichloroethanols, and Corresponding Radicals Derived from H Atom Loss" 5th International Conference on Chemical Kinetics, July 16-20, 2001, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

Bozzelli, J. W. Sheng, C.; Sun, H. "Comparison of Chemical Activation Association Reactions: Chloromethyl and Methyl Radicals with OH " $16^{\text {th }}$ International Symposiun on Gas Kinetics, July 23-27, 2000, University of Cambridge, Cambridge, England.

Sheng, C.; Thipse, S.; Sun, H.; Bozzelli, J. W.; Booty, M. R.; Magee, R. S.; Hoecke, D. "A Pilot-Scale Incinerator for Evaluating the Combustion of Co-fired Plastics" Proc. Int. Conf. Incineration Therm. Treat. Technol. (1999), 83-88. Publisher: University of California, Irvine, California, USA.

Jung, D; Sun, H.; Chen, C.-J.; Bozzelli, J. W."Thermochemical Properties $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}, \Delta S_{298}$, and $\mathrm{C}_{\mathrm{p}}(\mathrm{T})$ of Chloro-Methyl oxychlorides and Chloromethanols: $\mathrm{CH}_{3} \mathrm{OX}$, $\mathrm{CH}_{2} \mathrm{ClOX}, \mathrm{CHCl}_{2} \mathrm{OX}$ and $\mathrm{CCl}_{3} \mathrm{OX}(\mathrm{X}=\mathrm{H}$ or Cl$)$, Density Functional and Ab Initio Calculations" 32nd Middle Atlantic ACS Regional meeting. May 17-19, 1999, Fairleigh Dicknsion University, Madison, NJ 07940, USA.

Thipse, S.; Sheng, C., Sun, H.; Bozzelli, J. W.; Booty, M. R.; Magee, R. S. "A Pilot-Scale Incinerator for Evaluating the Combustion of Co-fired Plastics" First Joint Meeting of the U. S. Sections of the Combustion Institute: Western States, Central States, Eastern States. March 14-17, 1999, The George Washington University, Washington DC, USA.

To

Dr. Joseph W. Bozzelli

who introduced me to the field of thermochemical kinetics during my graduate study at New Jersey Institute of Technology

ACKNOWLEDGEMENT

The research in this thesis would have taken far longer to complete without the encouragement and help from many others. It is a delight to acknowledge those who have supported me over the last three years.

I wish to express my exceptional appreciation to my dissertation advisor, Dr. Joseph W. Bozzelli, for his professional guidance, thoughtful insight, encouragement, patience, and kindness. I am deeply indebted to him for the opportunities that he made available to me.

I would like to thank to my dissertation committee members, Dr. Lev N. Krasnoperov, Dr. Tamara M. Gund, Dr. Sanjay V. Malhotra, and Dr. Edward R. Ritter for their critical corrections and comments.

This research was supported by the USEPA Northeast Regional Research Center and the USEPA Airborne Organics Research Center. This work would not have been possible without these supports.

The days would have passed far more slowly without the support of my colleagues at NJIT, especially, Dr. Chiung-Chu Chen, who provided such a rich source of friendship, assistance, and conversation, and made my time at NJIT much more enjoyable and productive.

Finally, I wish to thank for my parents, my husband, and my son for their love, patience, and strong support throughout my academic studies.

TABLE OF CONTENTS

Chapter Page
1 THERMOCHEMICAL KINETICS 1
1.1 Introduction 1
1.2 Computational Chemistry 2
1.3 Kinetics 6
1.3.1 Lindemann-Hinshelwood Mechanism for Unimolecular Reactions 7
1.3.2 RRK Theory of Unimolecular Reactions 11
1.3.3 RRKM Theory of Unimolecular Reactions 13
1.3.4 Chemical Activation Reactions 14
1.3.5 QRRK Analysis for Chemical Activation and Unimolecular Dissociation 17
2 THERMOCHEMICAL PROPERTIES OF CHLORINATED ALCOHOLS, HYDROPEROXIDES AND CORRESPONDING RADICALS 20
2.1 Background 20
2.2 Calculation Method 21
2.2.1 Computational Details 21
2.2.2 Enthalpies of Formation 22
2.3.2 Entropy and Heat Capacities 23
2.3α-Chlorinated Ethanols and Radicals 24
2.3.1 Geometries 24
2.3.2 Rotational Barriers 25
2.3.3 Enthalpy of Formation 32
2.3.4 Entropy and Heat Capacities 39
2.3.5 Group Additivity Values 42

TABLE OF CONTENTS (Continued)

Chapter

Page

2.3.6 Hydrogen Bond Increment Group Values 43
2.4α-Chlorinated Propanol and Radicals 45
2.4.1 Geometries 45
2.4.2 Rotational Barriers 47
2.4.3 Enthalpy of Formation 50
2.4.4 Entropy and Heat Capacities 53
2.4.5 Relative Stability of the Alkyl and Alkoxy Radicals 55
2.4.6 Group Additivity Values and HBI Group Values 56
2.5β-Chlorinated Ethyl Hydroperoxides and Radicals 59
2.4.1 Geometries 59
2.4.2 Rotational Barriers 61
2.4.3 Enthalpy of Formation 64
2.4.4 Entropy and Heat Capacities 65
2.4.5 Group Additivity Correction Terms 66
2.6 Summary 67
3 KINETIC ANALYSIS ON OH ASSOCIATION WITH CHLOROMETHYL RADICAL AND DISSOCIATION OF CHLOROMETHANOL 69
3.1 Background 69
3.2 Calculation Method 70
3.3 Results and Discussion 72
3.3.1 Potential Energy Surfaces of $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ 72
3.3.2 Reactions in $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ System 74

TABLE OF CONTENTS

(Continued)
Chapter
Page
3.3.3 Bimolecular Association of $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ 75
3.3.4 Decomposition of $\mathrm{CH}_{2} \mathrm{ClOH}$ 78
3.4 Summary 82
4 THERMOCHEMICAL AND KINETIC ANALYSIS ON THE REACTION OF NEOPENTYL RADICAL WITH MOLECULAR OXYGEN 84
4.1 Overview 84
4.2 Background 85
4.3 Calculation Method 90
4.3.1 Computational Details 90
4.3.2 Thermochemical Properties 90
4.3.3 Kinetic Analysis 91
4.4 Results and Discussion 93
4.4.1 Geometries 93
4.4.2 Thermochemical Properties 96
4.4.3 Chemical Activation Reaction Analysis 103
4.4.4 Unimolecular Dissociation of Neopentyl Radical 117
4.4.5 Model and Comparison with Experimental Result 117
4.5 Summary 120
5 KINETIC ANALYSIS OF 2-HYDROXY-1,1-DIMETHYLETHYL, 2-HYDROXY-2-METHYLPROPYL, AND 1,1-DIMETHYLPROPYL RADICALS OXIDATION 122
5.1 Overview 122
5.2 Background 123

TABLE OF CONTENTS
 (Continued)

Chapter
Page
5.3 Calculation Method 124
5.4 Results and Discussion 126
5.4.1 Geometries 126
5.4.2 Thermochemical Properties 129
5.4.3 Analysis for Chemical Activation Reactions 130
5.4.4 Comparison of Model and Experiment 140
5.5 Summary 143
6 THERMOCHEMICAL AND KINETIC ANALYSIS OF 2-METHYLBENZYL RADICAL OXIDATION REACTION 145
6.1 Background 145
6.2 Results and Discussion 146
6.2.1 Thermochemical Properties 146
6.2.2 Analysis of Internal Rotors 158
6.2.3 Reactivity of Ortho-, Meta, and Para-Xylenes 155
6.2.4 Kinetic Analysis of 2-Methylbenzyl $+\mathrm{O}_{2}$ System 153
6.2.5 Reaction of Ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet$ Isomer 156
6.2.6 Kinetic Parameters 156
6.3 Summary 160
APPENDIX A TABLES IN THE THERMOCHEMICAL AND KINETIC ANALYSIS OF CHLORINATED ALCOHOLS, HYDROPEROXIDES AND RADICALS 161
APPENDIX B TABLES IN THE THERMOCHEMICAL AND KINETIC ANALYSIS OF CHLORINATED ALCOHOLS, HYDROPEROXIDES AND RADICALS 173

TABLE OF CONTENTS

(Continued)

ChapterPage
APPENDIX C TABLES IN THE THERMOCHEMICAL AND KINETIC ANALYSIS OF REACTIONS OF ISOBUTENE ADDUCTS OXIDATION 206
APPENDIX D TABLES IN THE THERMOCHEMICAL AND KINETIC ANALYSIS ON REACTION OF 2-METHYLBENZYL RADICAL OXIDATION 241
REFERENCES 248

LIST OF TABLES

Table Page
$2.1 \Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ for Standard Species in Reaction Schemes 32
2.2 Reaction Enthalpies at 298 K and Calculated $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ 35
$2.3 \Delta H_{\mathrm{f} 298}^{\mathrm{o}}$ of Conformers and Relative Fraction 37
2.4 Bond Energies 38
2.5 Ideal Gas-phase Thermodynamic Properties 40
2.6 Harmonic Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$ 41
2.7 Group Values 43
2.8 Hydrogen Bond Increment (HBI) Group Values 44
2.9 Bond Energies 52
2.10 Bond Energy Derived from Monochloro-Alcohols 53
2.11 Ideal Gas-Phase Thermodynamic Properties 54
2.12 Bond Energy Derived from Monochloro-Alcohols 57
2.13 Recommended Hydrogen Bond Increment Group Values 58
2.14 Effects of Chlorine β-Substitution on Bond Length 59
2.15 Bond Energies 60
2.16 Reaction Enthalpies at 298 K and Calculated $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ 65
2.17 Ideal Gas-phase Thermodynamic Properties 66
2.18 Thermodynamic Properties of Peroxy-Chlorine(s) Interaction Group 67
3.1 Harmonic Vibrational Frequencies and Moments of Inertia 72
3.2 Reaction Enthalpies for Dissociation of Chloromethanol 74
3.3 Kinetic Parameters for QRRK Analysis in $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ System 78

LIST OF TABLES
 (Continued)

Table Page
4.1 Calculated $\Delta H_{\mathrm{f}}{ }^{0} 298$ Values for Species in $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$ System 96
4.2 The Reaction Enthalpies in the Reactions of Neopentyl $+\mathrm{O}_{2}$ 98
4.3 Comparison of Calculated $\Delta H_{f}^{o} 298$ With Experimental Values 99
4.4 Thermodynamic Properties for $\mathrm{C}_{3} \mathrm{CCOO} \cdot$ and $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ 101
4.5 Ideal Gas Phase Thermodynamic Properties 102
4.6 Kinetic Parameters for QRRK Analysis in $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$ System 105
4.7 Comparison and Estimation of Reaction Enthalpies for Similar Channels 112
4.8 Kinetic Parameters for QRRK and Master Equation Analysis in $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ system 114
$5.1 \Delta \Delta H_{\mathrm{f}}{ }^{\circ} 298$ for Standard Species in Isodesmic Reactions 129
5.2 Calculated Reaction Enthalpies 130
6.1 Reaction Enthalpies 148
6.2 Kinetic Parameters for QRRK in 2-Methylbenzyl Radical $+\mathrm{O}_{2}$ SYSTEM 157
A. 1 Geometrical Parameters for Ethanols 162
A. 2 Reaction Enthalpies at 298 K and Calculated $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ Values 165
A. 3 Geometrical Parameters for Propanols 166
A. 4 Reaction Enthalpies at 298 K and Calculated $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ Values 168
A. 5 Geometry Parameters for Ethyl Hydroperoxides 170
A. 6 Reaction Enthalpies at 298 K and Calculated $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$ Values 171
A. 7 Geometry Parameters for Ethyl Hydroperoxides 172
B. 1 Geometrical Parameters for Species in Neopentyl Oxidation System 174

LIST OF TABLES
 (Continued)

Table Page
B. 2 Harmonic Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$ for Species in Neopentyl Oxidation System 185
B. 3 Thermodynamic Analysis for Reactions of Neopentyl Oxidation 189
B. 4 Detailed Reaction Mechanism for Model OH Formation 199
C. 1 Geometrical Parameters for Species in Neopentyl Oxidation System 207
C. 2 Harmonic Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$ for Species in Neopentyl Oxidation System 210
C. 3 Calculated $\Delta H_{\mathrm{f}}{ }^{0}{ }_{298}$ Values 225
C. 4 Calculated Ideal Gas Phase Thermodynamic Properties 226
C. 5 Input and Output Kinetic Parameters for QRRK and Master Equation Analysis in $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ System 227
C. 6 Input and Output Kinetic Parameters for QRRK and Master Equation Analysis in $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ System 229
C. 7 Input and Output Kinetic Parameters for QRRK and Master Equation Analysis in $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{C}+\mathrm{O}_{2}$ System 231
C. 8 Detailed Reaction Mechanism 233
D. 1 Geometrical Parameters for Species in Ortho-Xylene Oxidation System 242
D. 2 Harmonic Vibrational Frequencies and Moments of Inertia 245
D. 3 Calculated $\Delta H_{\mathrm{f}}{ }^{0}{ }_{298}$ from Isodesmic Reaction Analysis 247

LIST OF FIGURES

Figure2.1 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{C}$ bondof $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CHClOH}, \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\circ}, \mathrm{CH}_{3} \mathrm{CHClO}^{\circ}$,$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\bullet}, \mathrm{CH}_{3} \mathrm{C}^{*} \mathrm{HOH}$, and $\mathrm{CH}_{3} \mathrm{C}^{\circ} \mathrm{ClOH}$26
2.2 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$ 27
2.3 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{CHClOH}$ and $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CHClOH}$ 28
2.4 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$ 29
2.5 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$ and $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$ 31
2.6 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{C}$ bond of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}^{\bullet},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\bullet}$, $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ 48
2.7 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ 49
2.8 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}, \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ 49
2.9 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{CH}_{3} \mathrm{CHClOH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ 62
2.10 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH}, \mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH}$, and $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OOH}$ 63
2.11 Potential barriers for internal rotation about the $\mathrm{O}-\mathrm{O}$ bond of $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH}, \mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH}$, and $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OOH}$ 63
3.1 Potential energy for $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ 73
3.2 Bond dissociation energy for $\mathrm{CH}_{2} \mathrm{ClOH} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ 76
3.3 Calculated association rate constant of $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ at $\mathrm{P}=1 \mathrm{~atm}$ 77

LIST OF FIGURES
 (Continued)

Figure Page
3.4 Calculated rate constants for $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ system at $\mathrm{P}=1 \mathrm{~atm}$ 79
3.5 Pressure dependent rate constant $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ at $\mathrm{T}=1000 \mathrm{~K}$ 80
3.6 Rate constants vs. T for dissociation of $\mathrm{CH}_{2} \mathrm{ClOH}$ at $\mathrm{P}=1 \mathrm{~atm}$ 80
3.7 Rate constant vs. P for dissociation of $\mathrm{CH}_{2} \mathrm{ClOH}$ at $\mathrm{T}=1000 \mathrm{~K}$ 81
4.1 Torsional potentials on the $\mathrm{C}-\mathrm{C}$ bond of neopentyl peroxy radical and hydroperoxy-neopentyl radical 100
4.2 Torsional potentials on the $\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{O}$ bonds of neopentyl peroxy radical and hydroperoxy-neopentyl radical 100
4.3 Torsional potentials on the $\mathrm{C} \cdot \mathrm{C}$ bond of hydroperoxy-neopentyl radical calculated at the B3LYP and MP2 levels 101
4.4 Potential energy diagram for $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$ reaction system 104
4.5 Calculated temperature dependent rate constants for chemical activated $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}$ system at $\mathrm{P}=1 \mathrm{~atm}$ 106
4.6 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$ system at $\mathrm{T}=300 \mathrm{~K}$ 107
4.7 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$ system at $\mathrm{T}=1000 \mathrm{~K}$ 108
4.8 Calculated temperature dependent dissociation rate constants for $\mathrm{C}_{3} \mathrm{CCOO} \cdot$ at $\mathrm{P}=1 \mathrm{~atm}$ 109
4.9 Calculated temperature dependent dissociation rate constants for $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ at $\mathrm{P}=1 \mathrm{~atm}$ 110
4.10 Potential energy diagram for $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ reaction system 111
4.11 Calculated temperature dependent rate constants for chemical activated $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ system at $\mathrm{P}=1 \mathrm{~atm}$ 115
4.12 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ system at $\mathrm{T}=700 \mathrm{~K}$ 116

LIST OF FIGURES
 (Continued)

FigurePage4.13 Comparison of the present model with the experimental OH LIF measurements of Hughes et al 118
4.14 Sensitivity analysis on OH formation at $\mathrm{T}=700 \mathrm{~K}$ and $\mathrm{P}=613.3$ torr 119
5.1 Potential energy diagram for $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ reaction system 131
5.2 Calculated temperature dependent rate constants for chemical activated $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ system at $\mathrm{P}=0.1 \mathrm{~atm}$ 132
5.3 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ system at $\mathrm{T}=700 \mathrm{~K}$ 133
5.4 Potential energy diagram for $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ reaction system 134
5.5 Calculated temperature dependent rate constants for chemical activated $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ system at $\mathrm{P}=0.1 \mathrm{~atm}$ 136
5.6 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ system at $\mathrm{T}=700 \mathrm{~K}$ 136
5.7 Potential energy diagram for $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ reaction system 137
5.8 Calculated temperature dependent rate constants for chemical activated $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2}$ system at $\mathrm{P}=0.1 \mathrm{~atm}$ 139
5.9 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2}$ system at $\mathrm{T}=700 \mathrm{~K}$ 139
5.10 Comparison of the present model with the experimental HO_{2} measurements of Taatjes et al 140
5.11 Comparison of the present model with the experimental HO_{2} measurements of Taatjes et al 141
5.12 Sensitivity analysis on HO_{2} formation at $\mathrm{T}=673 \mathrm{~K}, \mathrm{P}=59.3$ torr, and $\left[\mathrm{O}_{2}\right]=6.0 \times 10^{17}$ molecule cm^{-3} 142
6.1 The internal rotational potentials on the $\mathrm{C}_{\text {benzene }}-\mathrm{CH}_{3}$ bond in ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO}$ - 149

LIST OF FIGURES
 (Continued)

Figure Page
6.2 The internal rotational potentials on the $\mathrm{C}_{\text {benzene }}-\mathrm{CH}_{3}$ bond in ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \cdot$ 149
6.3 The rotational potentials on the $\mathrm{C}-\mathrm{C}_{\text {benzene }}$ bond
in ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \cdot$ 150
6.4 The rotational potentials on the $\mathrm{R}-\mathrm{OO} \bullet$ bond in ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \cdot$ radical 151
6.4 The calculated rotational potentials on the $\mathrm{RO}-\mathrm{OH}$ bond in ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \cdot$ radical 151
6.5 Potential energy diagram for the 2-methylbenzyl $+\mathrm{O}_{2}$ reaction system 153
6.6 Isomer ortho $-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet$ oxidation reaction system 153
6.7 Rate constants for chemical activation reaction: ${ }_{\mathrm{o}}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \bullet+\mathrm{O}_{2}$ at $\mathrm{P}=1 \mathrm{~atm}$ 157
6.8 Rate constants for chemical activation reaction: ${ }^{0}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \bullet+\mathrm{O}_{2}$ at $\mathrm{T}=1000 \mathrm{~K}$ 158
6.9 Rate constants for dissociation reaction: $\mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \cdot$ at $\mathrm{P}=1 \mathrm{~atm}$ 159
6.10 Rate constants for chemical activation reaction: ${ }^{\circ}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet+\mathrm{O}_{2}$ at $\mathrm{P}=1 \mathrm{~atm}$ 159

CHAPTER 1

THERMOCHEMICAL KINETICS

1.1 Introduction

Detail kinetic models using reaction mechanisms comprised of many elementary chemical reaction steps, based upon fundamental thermochemical and kinetic principles, are presently used and being developed by researchers attempting to optimize or more fully understand a number of chemical complex systems. These systems include combustion, flame inhibition, ignition, atmospheric smog formation, stratospheric ozone depletion, municipal and hazardous wastes incineration, chemical vapor deposition, semiconductor etching, rocket propulsion and other related fields.

One important requirement for modeling and simulation of these systems is accurate thermochemical property data such as enthalpies of formation $\left(\Delta H_{\mathrm{f}}{ }_{2}{ }^{0}\right.$,), entropy $\left(S_{298}^{0}\right)$, and heat capacities as functions of temperature $\left(C_{p}(T)\right.$'s) for reactants, intermediates, final products, and reaction transition states. These data allow determination of equilibrium, and reverse rate constants from the forward rate constant and the equilibrium constant. $A b$ initio and density functional calculations provide an opportunity to accurately calculate these thermochemical properties data which are often difficult or impossible to obtain through experiment.

1.2 Computational Chemistry

$A b$ initio molecular orbital theory is concerned with predicting the properties of atomic and molecular systems. It is based upon the fundamental laws of quantum mechanics and a variety of mathematical transformation and approximation techniques to solve the fundamental equations, i.e. Schrödinger equation,

$$
\hat{\mathrm{H}} \Psi=\mathrm{E} \Psi
$$

Here $\hat{\mathrm{H}}$ is the Hamiltonian, a differential operator representing the total energy. E is the numerical value of the energy of the state, i.e., the energy relative to a state in which the constituent particles (nuclei and electrons) are infinitely separated and at rest. Ψ is a many-electron wavefunction, and it depends on the Cartesian coordinates of all particles and also on the spin coordinates. The square of the wavefunction, Ψ^{2}, is the probability distribution of the particles within the molecule.

The many-electron Schrödinger equation cannot be solved exactly, and approximations need to be introduced to provide practical methods. The approximation of separating electronic and nuclear motions is Born-Oppenheimer approximation that is basic to quantum chemistry. The Hartree-Fock (HF) approximation treats electron interactions between individual electrons by interactions between a particular electron and the average field created by all the other electrons. The HF model does not include a full treatment of the effects of instantaneous electron correction, i.e. it does not include the energy contributions arising from electrons interacting with one another. This leads to overestimation of the electron-electron repulsion energy and to too high a total energy. ${ }^{1}$ Electron correction accounts for coupling or correction of electron motions, and leads to a lessening of the electron-repulsion energy and also leads to a lowering of the total energy.

The correction energy is defined as the difference between the Hartree-Fock energy and the experimental energy. A variety of theoretical methods, such as density functional, configuration interaction, and Møller-Plesset perturbation have been developed which include some effects of electron correction. Density functional models introduce an "approximate" correction term in an explicit manner, and they reduce computational cost than Hartree-Fork models. Configuration interaction models and Møller-Plesset models extend the flexibility of Hartree-Fock models by mixing ground-state and excited-state wavefunctions. They are significantly more costly than Hartree-Fock models. Traditionally, such methods are referred as post-SCF methods because they add this electron correlation correction to the basic Hartree-Fock model.

The density functional theory (DFT) is based on the fact that the sum of the exchange and correlation energies of a uniform electron gas can be calculated exactly knowing only its electron density. These DFT functionals partition the ground state electronic energy into several components: the kinetic energy, the electron-nuclear interaction, the Coulomb repulsion, and an exchange-correlation term, which accounts for the remainder of the electron-electron interactions. ${ }^{2}$ A variety of functionals have been defined, generally distinguished by the way that they treat exchange and correlation components: (1) Local exchange and correlation functions based on the local spin density approximation. (2) Gradient-corrected functionals based on the generalized gradient approximation or Hartree-Fock exchange functional. ${ }^{3}$

Any exchange functional can be combined with any correlation functional. A commonly used gradient-corrected exchange functional is proposed by Becke, ${ }^{4}$ and gradient-corrected correlation functional is the Lee, Yang and Parr (LYP) correlation
functional. The combination of the two functionals forms the B-LYP method. The notation B3LYP denotes a DFT calculation with the Becke functional and the Lee-YangParr correlation functional.

Configuration Interaction (CI) models calculate the correlation energy by mixing the ground-state (Hartree-Fock) wavefunction with "excited-state" wavefunctions. The configuration functions in a CI calculation are classified as singly excited, doubly excited, triply excited, \ldots, according to whether $1,2,3, \ldots$ electron are excited from occupied to unoccupied orbitals. It is reported that the first-order correction to the unperturbed (Hartree-Fock) wavefunction of a closed-shell state contains only double excited configuration functions, and the second-order correction to the Hartree-Fock function includes single, double, triple, and quadruple excitations. ${ }^{1}$ The singly excited configuration functions are less important than double excitations in affecting the wave function, but single excitations have a significant effect on one-electron properties. Therefore single excitations are usually included in a CI calculation, and the most common type is CISD calculation which includes the singly and doubly excited configuration functions. ${ }^{5}$ The $\mathrm{CISD}(\mathrm{T})$ method also includes the triple excited functions.

Another correction energy scheme is the second-order Møller-Plesset (MP2) model proposed by Møller-Plesset in 1934. The MP2 is a perturbation treatment of atoms and molecules in which the unperturbed wave function is the Hartree-Fock function. The perturbation is the difference between the true interelectronic repulsions and the HartreeFock interelectronic potential, and the molecular energy is taken as Hartree-Fock energy plus MP2 energy correction. The MP2 calculation are much fast than the CI calculations, but for species involving open-shell ground states, unrestricted SCF wave functions are
not eigenfunction of the total spin operator \hat{S}^{2}, and this "spin contamination" can sometimes produce serious errors in UMP-calculated quantities.

Currently available functionals in DFT can not compute a thermodynamic energy such as heat of atomization and the enthalpy of formation with accuracy of $1 \mathrm{kcal} / \mathrm{mol}$. High level configuration interaction methods with large basis sets can do this but too costly to be feasible except for small molecules. The composite CBS method ${ }^{6}$ is reported to achieve $1 \mathrm{kcal} / \mathrm{mol}$ accuracy with a computational time that allows calculation on molecules containing several nonhydrogen atoms. ${ }^{7}$ The CBS methods use special procedures designed to extrapolate calculated energies to the complete-basis-set limit. The CBS methods include several corrected calculations done at a geometry optimized at a lower level of theory. The highest-level calculation used is the $\operatorname{QCISD}(\mathrm{T}) / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ in the CBS-Q method.

Model chemistry is characterized by the combination of theoretical procedure and a basis set. A basis set is a mathematical representation of the molecular orbitals within a molecule. The basis set can be interpreted as restricting each electron to a particular region of space. Large basis sets impose fewer constraints on electrons to particular accurately approximate exact molecular orbitals. However, the computation of atomic or molecular properties with large basis sets requires correspondingly more and more computational resources.

Standard basis sets for electronic structure calculation use linear combinations of Gaussian functions to form the orbitals. Basis sets assign a group of basis functions to each atom within a molecule to approximate its orbitals. These basis functions themselves are composed of a linear combination of Gaussian functions. The linear
combined basis functions are refereed to as contracted functions, and the component Gaussian functions are referred to as primitives. A basis function consisting of a single Gaussian function is termed uncontracted. In the nomenclature of $6-31 \mathrm{G}$ basis set, " 6 " stands for using 6-component type d function, "31" stands for using two sets of function in the valence region (one function consisting of 3 primitive Gaussian, one consisting of 1 primitive Gaussian).

The $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ indicates that it is the polarized $6-31 \mathrm{G}$ basis set with one d function added to the heavy atoms and one p function added to hydrogen atoms. The 6$311+\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p})$ is the basis set with diffuse functions added to heavy atoms, as well as three d functions and one f function added to heavy atoms, and 2 p functions added to the hydrogen atoms. If $6-311++G(3 d f, 2 p)$, then it also adds diffuse functions to hydrogen atoms. ${ }^{2}$

1.3 Kinetics

Several important aspects are needed in order to understand the kinetics of unimolecular reactions. These include: (1) the formation of an energized molecule with energy E, (2) the intramolecular vibrational / rotational motion of high energized molecules; (3) unimolecular rate constants for dissociation of the energized molecules as a function of their energy $k(E)$; (4) intramolecular energy transfer to and from highly energized molecules; and (5) energy partitioning between unimolecular dissociation fragments.

There are a number of different theories to present these topics such as Lindemann-Hinshelwood theory, Slater theory, RRK theory, RRKM theory, and Quantum RRK theory. This section will focus on unimolecular reactions, and also discuss chemical activation reactions, which is of great importance to unimolecular reactions.

1.3.1 Lindemann-Hinshelwood Mechanism for Unimolecular Reactions

In 1922, Lindemann ${ }^{8}$ proposed a general theory for the thermal unimolecular reaction, which forms the basis for the current theory of thermal unimolecular rates. He proposed that a certain fraction of molecules become energized by bimolecular collisions, i.e. gain energy in excess of a critical quantity E_{0}; the rate of the energy transfer depends upon the rate of bimolecular collisions, and the energized molecules are also de-energized by collision; there is a time lag between the moment of collision energy transfer and the time the molecule decomposes, and an energized molecule can undergo deactivating collisions before decomposition occurs in this time period; this unimolecular dissociation occurs with a rate constant independent of the energy content of the energized molecules, i.e., all molecules with energy above threshold E_{0} dissociate with the same energy. The mechanism in Lindemann theory is written as:

$$
\begin{aligned}
& \mathrm{A}+\mathrm{M} \xrightarrow{k 1} \mathrm{~A}^{*}+\mathrm{M} \\
& \mathrm{~A}^{*}+\mathrm{M} \xrightarrow{k-1} \mathrm{~A}+\mathrm{M} \\
& \mathrm{~A}^{*} \xrightarrow{k 2} \text { Products }
\end{aligned}
$$

The asterisk represents that a molecule A contains sufficient energy to react with collider M . It is assumed that each $\mathrm{A}^{*}+\mathrm{M}$ collision is "strong" and thus leads to deenergizing of A ; this is known as "strong collision assumption" for de-energizing collisions. Therefore, this de-energized rate is taken to be energy-independent and is equated with the collision number Z_{1} by assuming that every collision of A^{*} leads to a deenergized state.

The overall concept can be expressed by the equations below, where M can represent a generic bath gas molecule ("inert" gas molecule); it may also represent a
second molecule of reactant or product. In the simple Lindemann theory k_{1}, along with k_{-1} and k_{2} are taken to be energy-independent and are calculated from the simple collision theory equation.

Application of the steady-state hypothesis to the concentration of A^{*}, allows the unimolecular rate constant and the high- and low-pressure limit rate and rate constants to be determined as follows:

$$
\begin{aligned}
& \text { Rate }=k_{\text {uni }}[\mathrm{A}]=k_{2}\left[\mathrm{~A}^{*}\right]=\frac{k_{1} k_{2}[\mathrm{~A}][\mathrm{M}]}{k_{-1}[\mathrm{M}]+k_{2}} \\
& k_{\mathrm{uni}}=k_{1} k_{2} \frac{k_{1} k_{2}[\mathrm{M}]}{k_{-1}[\mathrm{M}]+k_{2}}
\end{aligned}
$$

High-pressure limit rate, $[\mathrm{M}] \rightarrow \infty, k_{\mathrm{uni}}=k_{\infty}=\frac{k_{1} k_{2}}{k_{-1}}$
Low-pressure limit rate, $[\mathrm{M}] \rightarrow 0, k_{\mathrm{uni}}=k_{0}=k_{1}[\mathrm{M}]$
The unimolecular rate constant is then written as: $k_{\mathrm{uni}}=\frac{k_{\infty}}{1+k_{\infty} / k_{l}[\mathrm{M}]}$

One can expect the Lindemann theory to predict a linear change in the initial rate of a unimolecular reaction with respect to concentration of M at low pressure. The transition from high-pressure rate constant to low pressure is called "fall-off region". The k_{1} in the original Lindemann theory is taken from collision theory:

$$
k_{1}=Z_{1} \exp \left(-\frac{E_{0}}{k_{\mathrm{B}} T}\right)
$$

where $Z_{1}=\left(\frac{\sigma_{\mathrm{d}}{ }^{2} \mathrm{~N}_{\mathrm{A}}}{\mathrm{R}}\right)\left(\frac{8 \pi \mathrm{~N}_{\mathrm{A}} k_{\mathrm{B}}}{\mu}\right)^{1 / 2}\left(\frac{1}{\mathrm{~T}}\right)^{1 / 2}$. The unit for Z_{1} is in $\operatorname{Torr}^{-1}-\mathrm{s}^{-1}$ (consistent with [M] in Torr and k_{2} in s^{-1}). σ_{d} is collision diameter in $\mathrm{cm} ; \mu$ is reduced molar mass in
$\mathrm{g}-\mathrm{mol}^{-1}, \mu=\left(\frac{1}{\mathrm{M}_{\mathrm{A}}}+\frac{1}{\mathrm{M}_{\mathrm{B}}}\right)^{-1} ; T$ is temperature in Kelvin; N_{A} is Avogadro's number 6.022 $\times 10^{23} \mathrm{~mol}^{-1} ; \mathrm{R}$ is gas constant $6.2326 \times 10^{4} \mathrm{~cm}^{3}-$ Torr- $\mathrm{K}^{-1}-\mathrm{mol}^{-1} ; k_{\mathrm{B}}$ is Bolzmann constant $1.3805 \times 10^{-16} \mathrm{erg}-\mathrm{K}^{-1}$.

A major achievement of Lindemann's theory is its ability to explain the experimental finding that the unimolecular dissociation rate can be pressure dependent. However, it predicts the fall-off in $\mathrm{k}_{\text {uni }}$ to occur at much higher pressure than what is observed experimentally. In 1926 Hinshelwood 9 proposed that the internal degree of freedom can contribute to the threshold energy E_{0}. The probability that a molecule contains energy great than or equal to E_{0} increases with the number of internal degree of freedom, and such the energization rate constant k_{1} is larger for a complex reactant than for a simple one. Hinshelwood increases k_{1} by using a much higher probability of a molecule possessing total energy $\geq E_{0}$ in s classical degrees of freedom, $\left(E_{0} / k_{\mathrm{B}} \mathrm{T}\right)^{s-1} \exp (-$ $\left.E_{0} / k_{\mathrm{B}} \mathrm{T}\right) /(\mathrm{s}-1)!$, rather than the $\operatorname{simpler} \exp \left(-E_{0} / k_{\mathrm{B}} T\right)$ that Lindemann used. The result is

$$
k_{l}=\frac{Z_{l}}{(\mathrm{~s}-1)!}\left(\frac{E_{0}}{k_{B} T}\right)^{\mathrm{s}-1} \exp \left(\frac{-E_{0}}{k_{B} T}\right)
$$

Based on the Lindemann's suggestion that k_{1} could be increased by assuming that the required energy for energized molecules could be drawn in part from the internal degrees of freedom (mainly vibration) of the reactant molecule. Since k_{1} increases with s classical degrees of freedom in the Lindemann-Hinshelwood theory, then $k_{2}=k_{\infty} k_{-1} / k_{1}$ should decrease with s. Thus the lifetime of the energized molecule $t \approx 1 / k_{2}$ increases when the molecule can store energy among a large number of degrees of freedom. Then k_{2} is
expected to depend on the energy of A^{*}. Making k_{2} energy-dependent, expressed as $k(\mathrm{E})$, the energy interval from E to $E+d E$ is considered:

$$
\begin{aligned}
& \mathrm{A}+\mathrm{M} \xrightarrow{d k 1} \mathrm{~A}^{*}(\mathrm{E}, \mathrm{E}+\mathrm{dE})+\mathrm{M} \\
& \mathrm{~A}^{*}(\mathrm{E}, \mathrm{E}+\mathrm{dE})+\mathrm{M} \xrightarrow{k-1} \mathrm{~A}+\mathrm{M} \\
& \mathrm{~A}^{*}(\mathrm{E}, \mathrm{E}+\mathrm{dE}) \xrightarrow{k(\mathrm{E})} \text { Products }
\end{aligned}
$$

Applying the steady-state approximation to energized intermediate $A^{*}(E, E+d E)$ leads to the differential unimolecular rate constant:

$$
d k_{\mathrm{uni}}(\mathrm{E}, \mathrm{E}+\mathrm{dE})=\frac{\mathrm{k}(\mathrm{E})\left(\mathrm{dk}_{1} / \mathrm{k}_{-1}\right)}{1+\mathrm{k}(\mathrm{E}) / \mathrm{k}_{-1}[\mathrm{M}]}
$$

It is assumed that for all pressure $\mathrm{d} k_{1} / k_{-1}$ represents the equilibrium probability and that the A^{*} has energy between E and $E+d E$. This probability may be denoted $P(\mathrm{E}) \mathrm{dE}$. Also $k_{-1}[\mathrm{M}]$ is the collision frequency ω between an A^{*} molecular and collider M, this leads to the thermal unimolecular rate constant:

$$
\mathrm{k}_{\mathrm{uni}}=\omega \int_{k_{0}}^{\infty} \frac{k(E) P(E) d E}{k(E)+\omega}
$$

In order to make accurate quantitative predictions of the fall-off behavior of a unimolecular reaction, it is essential to take into account the energy dependence of the rate constant $k(\mathrm{E})$ for the conversion of energized molecules into activated complexes where products result from decomposition or reaction of the energized complex.

Two different approaches may be taken to determine $k(\mathrm{E})$. One is to consider the explicit nature of the intramolecular motion of highly energized molecules, such as Slater theory. The other approach is based on statistical assumptions, such as RRK theory and its extension, RRKM theory. Most modern theories of unimolecular reaction rates,
including the Slater theory, the RRK theory and the RRKM theory, are based on the fundamental Lindemann mechanism involving collision energy transfer of the reactant molecules, and more specifically on Hinshelwood's development.

1.3.2 RRK Theory of Unimolecular Reactions

The RRK theory was developed independently and nearly simultaneously by Rice and Ramsperger ${ }^{10}$ and by Kassel. ${ }^{11}$ in 1927 and 1928. Both Rice and Ramsperger theory and Kassel theory consider that a critical energy E_{0} must become concentrated in one part (a specific vibration) of the molecule for reaction to occur. They used the basic LindemannHinshelwood mechanism of collision energy transfer and de-energization, but assumed more realistically that the rate constant for conversion of an energized molecule into products is proportional to a specific probability. This is a finite statistical probability that energy, E_{0}, is found in the relevant part of the energized molecule which contains total energy, E, is greater than E_{0} since E of the molecule under consideration is assumed to be rapidly redistributed around the molecule. This probability will increase with E and make $k(\mathrm{E})$ a function of its energy content.

The difference between the Rice and Ramsperger model and Kassel model is twofold. First, Rice and Ramsperger used classical statistical mechanics throughout, while Kassel used classical methods and also developed a quantum treatment. The quantum method turns out to be much more realistic and accurate. Second, different assumptions were made about the part of the molecule into which the critical energy E_{0} has to be concentrated. The Kassel's model seems slightly more realistic by assuming the energy had to be concentrated into one oscillator. The quantum version of the Kassel theory serves as a theoretical basis for the most of calculations performed in this thesis.

The classical RRK theory is based on the notion that the probability that a molecule of s classical oscillators with total energy E has energy greater than E_{0} in one chosen oscillator, which is the critical mode leading to reaction. The assumptions used to derive the quantum RRK rate constant are similar to those for classical theory. In the single frequency quantum Kassel theory it is assumed there are s identical oscillators in the molecule, all having frequency v. The energized molecule has total n quanta, so $\mathrm{E}=$ $\mathrm{nh} \nu$. The critical oscillator must have m quanta for dissociation to occur, $\mathrm{m}=\mathrm{E}_{0} / \mathrm{h} \nu$.

The probability that one oscillator contains at least m quanta (probability of energy $\geq m$ quanta in one chosen oscillator) from probability theory ${ }^{12}$ is

$$
\text { Probability }=\frac{n!(n-m+s-1)!}{(n-m)!(n+s-1)!}
$$

Hence, rate constant $k_{\mathrm{a}}(\mathrm{E})$ for conversion of energized molecules to product is

$$
k_{\mathrm{a}}(n h v)=\mathrm{A} \frac{\mathrm{n}!(\mathrm{n}-\mathrm{m}+\mathrm{s}-1)!}{(\mathrm{n}-\mathrm{m})!(\mathrm{n}+\mathrm{s}-1)!}
$$

where A is Arrhenius pre-exponential parameter. The corresponding $k_{1}(E)$ of the Hinshelwood expression is now derived. It refers to energy transfer into a specific quantum state rather than into an energy range E to $E+d E$, as

$$
k_{1}(n h v)=k_{2} \alpha^{n}(1-\alpha)^{\mathrm{S}} \frac{(\mathrm{n}+\mathrm{s}-1)!}{\mathrm{n}!(\mathrm{s}-1)!}
$$

where $\alpha=\exp \left(-\mathrm{h} v / k_{\mathrm{B}} \mathrm{T}\right)$. Both classical and quantum versions of RRK theory were developed, and in the limit of a large excitation energy E the two versions become identical.

In RRK theory the assumption is made that the rate of conversion of energized molecules into products is related to the probability that the critical energy E_{0} is
concentrated in one part of the molecule, e.g. in one oscillator (Kassel theory) or in one squared term (Rice-Ramsperger theory). This probability is a function of the total energy E of the energized molecule, and the total vibrations among which the vibration energy quanta can be distributed.

1.3.3 RRKM Theory of Unimolecular Reactions

The RRKM theory was developed using the RRK model and was extended to consider explicit vibration and rotational energies and also include zero point energies. ${ }^{13}$ Several minor modifications of the theory have been made, primarily as a result of improved treatments of external degrees of freedom. ${ }^{14,15}$

RRKM theory is a microcanonical transition state theory, and it provides the connection between statistical unimolecular rate theory and the transition state theory of thermal chemical reaction rates. Isomerization or dissociation of an energized molecule A^{*} is assumed to occur via the mechanism

$$
\mathrm{A}^{*} \xrightarrow{k(E)} \mathrm{A}^{\neq} \rightarrow \text { Products }
$$

where A^{*} is the transition state. The energized molecule A^{*} contains both vibrational and external rotational energies by E_{v} and E_{r}, respectively. The sum of E_{v} and E_{r} is E. To treat the external rotational energy of a nonlinear molecule quantum mechanically, the specific rotational energy levels must be considered. The RRKM rate constant $k_{E J}$ is the microcanonical transition state theory rate constant, and is given by

$$
k_{E J}=\frac{N_{E J}^{\dagger}}{h \rho_{E J}}
$$

where N_{EJ} is the sum of states for the active degrees of freedom in the transition states and $\rho_{E J}$ is the density of states for the active degrees of freedom in the reactants. To
determine an RRKM rate constant requires evaluating the sum of states for the transition state and the density of states for the reactants. The information needed for calculating the sum and density of states includes the total reactant energy E, rotational energy E_{r}, the unimolecular threshold E_{0}. One also needs harmonic vibrational frequencies and moments of inertia for both the reactant and the transition states. This information can be obtained by either experimental data or ab initio calculations.

Different experimental techniques, including static pyrolysis, carrier (flow) techniques, shock tube methods, and very-low-pressure-pyrolysis, have been used to measure $\mathrm{k}_{\text {uni }}$ as a function of temperature and pressure. One of the most significant achievements of RRKM theory is its ability to match measurements of $\mathrm{k}_{\text {uni }}$ with pressure.

1.3.4 Chemical Activation Reactions

The energization methods other than by molecular collision, such as photoactivation and chemical activation, may produce a non-equilibrium situation in which molecules acquire energies far in excess of the average thermal energy. This presence of excess energy in the energized adduct makes chemical activation reactions much more important in these systems. A treatment for the rate of conversion, which includes decomposition of energized adduct to product(s) (including reverse back to reactants) and the competing rate of its collision stabilization, is needed.

An example of a chemically activated reaction system is neopentyl radical $\left(\mathrm{C}_{3} \mathrm{CC} \bullet\right)+\mathrm{O}_{2}$ system. As is discussed in Chapter $3, \mathrm{C}_{3} \mathrm{CC} \bullet$ radical reacts with O_{2} to form a chemically activated, energized adduct $\left[\mathrm{C}_{3} \mathrm{CCOO} \bullet\right]^{*}$, this process of forming adduct is much more efficient than that by thermal molecular collision, and adduct contains excess energy from the new bond formed in this chemical reaction. The energized adduct
$\left[\mathrm{C}_{3} \mathrm{CCOO} \bullet\right]^{*}$ could go back to reactant $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$, or could go to products $3,3-$ dimethyloxetane +OH via an intramolecular H shift. The QRRK analysis $(\mathrm{A}+\mathrm{BC} \rightarrow$ $A B C^{*}$) shows that the chemical activation process is more important than thermal dissociation process.

The basic idea of the treatment of a chemical activation system is that a vibration excited molecule $A B C^{*}$ formed by an association of reactants can reform reactants $A+$ BC with a rate constant $k^{\prime}(\mathrm{E})$, form decomposition products, $\mathrm{AB}+\mathrm{C}$, with a rate constant $k_{\mathrm{a}}(\mathrm{E})$ or be de-energized to stable molecules ABC .

In the strong collision assumption the first order rate constant for de-energization is equal to the collision frequency, $\omega=\mathrm{Zp}$ where p is the total pressure and Z is collision number. This assumes that stabilization occurs at energy collision.

Suppose that the fraction of molecules which are energized per unit time into the energy range between E and $E+d E$ is $f(E) d E$. To simplify, one can consider decomposition path (back to reactant, $\mathrm{A}+\mathrm{BC}$, as the decomposition path), then the fraction of ABC^{*} decomposing (path $\mathrm{A}+\mathrm{BC}$) compared with those stabilized (path $\mathrm{ABC})$ is $\mathrm{k}(\mathrm{E}) /[\mathrm{k}(\mathrm{E})+\omega]$. The fraction of molecules in the energy range between E and $E+d E$ decomposing to products is therefore $\{k(E) /[k(E)+\omega]\} f(E) d E$, and the total number of molecules decomposing per unit time (D), at all energies above the critical energy E_{0}, is: ${ }^{16}$

$$
\mathrm{D}=\int_{0_{0}}^{\infty} \frac{\mathrm{k}(E)}{\mathrm{k}(E)+\omega} \mathrm{f}(E) \mathrm{dE}
$$

Corresponding, the total rate of stabilization (S) is:

$$
\mathrm{S}=\int_{E_{0}}^{\infty} \frac{\omega}{\mathrm{k}(E)+\omega} \mathrm{f}(E) \mathrm{dE}
$$

Considering an average rate constant $<\mathrm{k}>$ for all energies above E_{0}, one would have:

$$
\frac{\langle\mathrm{k}\rangle}{\omega}=\frac{\mathrm{D}}{\mathrm{~S}}=\frac{\text { No. molecules decomposing per unit time }}{\text { No. of molecules being stabilized per unit time }}
$$

So,

$$
<\mathrm{k}>=\omega \frac{\int_{=0}^{\omega}\{\mathrm{k}(E) /[\mathrm{k}(E)+\omega]\} f(E) \mathrm{dE}}{\int_{E_{0}}^{\infty}\{\omega /[\mathrm{k}(E)+\omega]\} f(E) \mathrm{dE}}
$$

The $f(E)$ is the distribution function of energized molecules in the energy range between E and $\mathrm{E}+\mathrm{dE}$. In the thermal energy transfer systems, this distribution function is simply the thermal quantum Boltzmann distribution $K(E)$ and the rate of energy transfer into the energy range between E and $\mathrm{E}+\mathrm{dE}$ is $\mathrm{K}(E) \mathrm{dE}=\mathrm{d} k_{1} / k_{2}$. For the chemically activated system described here, the distribution function can be derived by applying the principle of detailed balancing to the reverse process to reactants. Consider a situation in which other processes can be ignored and equilibrium is established between A^{*} and reactants. Then the fraction of molecules with energy between E and $E+d E$ is Boltzmann distribution $\mathrm{K}(E) \mathrm{dE}$, so the rate of dissociation to reactants is then $\mathrm{k}^{\prime}(E) \mathrm{K}(E) \mathrm{dE}$, and by the principle of detailed balancing this also gives the rate of combination of reactants to give A^{*} in this energy range. The total rate of energy transfer to all levels above the minimum energy $E_{\text {min }}$ (the minimum energy of A^{*}) is:

$$
\text { Total rate of energization }=\int_{=0}^{\infty} \mathrm{k}^{\prime}(E) \mathrm{K}(E) \mathrm{dE}
$$

Therefore, the distribution function is given by:

$$
f(E) \delta \mathrm{E}=\frac{\mathrm{k}^{\prime}(E) \mathrm{K}(E) \mathrm{dE}}{\int_{\mathbb{E}_{0}^{\infty}}^{\infty} \mathrm{k}^{\prime}(E) \mathrm{K}(E) \mathrm{dE}}
$$

The $f(E) \mathrm{dE}$ can be incorporated into QRRK theory for $\mathrm{k}(E)$ and $\mathrm{k}_{1}(E)$ serves as a basis for the calculations for chemical activation reaction systems.

1.3.5 QRRK Analysis for Chemical Activation and Unimolecular Dissociation

1.3.5.1 Input Information Requirements for QRRK Calculation. Quantum Rice-Ramsperger-Kassel (QRRK) analysis, as initially presented by Dean ${ }^{17-19}$ combined with the modified strong collision approach of Gilbert et al., ${ }^{20,21}$ to compute rate constants for both chemical activation and unimolecular reactions, over a range of temperature and pressure. The computer program CHEMDIS is designed to calculate unimolecular and chemical activation reactions based on the QRRK theory and unimolecular dissociation and chemical activation formalism. The input parameters for CHEMDIS are: (1) Highpressure limit rate constants (Arrhenius A factor and activation energy E_{a}) for each reaction included for analysis; (2) A reduced set of three vibration frequencies and their associated degeneracy; (3) Lennard-Jones transport parameters, (s (Angstroms) and e/k (Kelvin)), and (4) molecular weight of well species.

High pressure limit rate constants k_{∞} 's are fitted by three parameters $\mathrm{A}_{\infty}, \mathrm{n}$, and E_{a} over temperature range from 298 to $2000 \mathrm{~K}, k_{\infty}=\mathrm{A}_{\infty}(\mathrm{T})^{\mathrm{n}} \exp \left(-E_{a} / \mathrm{R} T\right)$. Entropy differences between reactant and transition state are used to determine the pre-exponential factor, A , via canonical Transition State Theory (TST):

$$
\mathrm{A}=\left(k_{\mathrm{B}} T / h_{p}\right) \exp \left(\Delta S^{\not} / \mathrm{R}\right), \quad E_{a}=\Delta H^{\neq}
$$

where h_{p} is the Planck constant and k_{B} is the Boltzmann constant. $\Delta \mathrm{S}^{\neq}=\mathrm{S}(\mathrm{TST})-$ S (reactants) and $\Delta \mathrm{H}^{\neq}=\mathrm{H}(\mathrm{TST})-\mathrm{H}$ (reactants). Treatment of the internal rotors for S and $C_{p}(T)$ of reactants and the TST's is important here because these internal rotors are often lost in the cyclic transition state structures. Pre-exponential factors $\left(\mathrm{A}_{\infty}\right)$, are calculated
from structures determined by DFT or estimated from the literature and from trends in homologous series of reactions. Activation energies come from ab initio calculations plus evaluated endothermicity of reaction $\Delta \mathrm{U}_{\mathrm{rxn}}$, and from analogy to similar reactions with known energies.

Reduced sets of three vibration frequencies and their associated degeneracies are computed from fits to heat capacity data, as described by Ritter and Bozzelli et al. ${ }^{22,23}$ These have been shown by Ritter to accurately reproduce molecular heat capacities, $C p(T)$, and by Bozzelli et al. ${ }^{23}$ to yield accurate ratios of density of states to partition coefficient, $\rho(E) / Q$.

Lennard-Jones parameters, sigma (angstroms) and ε / k (Kelvin's), are obtained from tabulations ${ }^{24}$ and from a calculation method based on molar volumes and compressibility. ${ }^{25}$

1.3.5.2 Quantum RRK / Master Equation Calculation. The Quantum RRK / Master

 equation analysis is described by Chang et al. ${ }^{17,26}$ The QRRK code utilizes a reduced set of three vibration frequencies which accurately reproduce the molecule's (adduct) heat capacity; the code includes contribution from one external rotation in calculation of the ratio of the density of states to the partition coefficient $\rho(\mathrm{E}) / \mathrm{Q}$.Comparisons of ratios of these $\rho(E) / Q$ with direct count $\rho(E) / Q$'s are shown to be in good agreement. ${ }^{23}$ Rate constant results from the QRRK/Master equation analysis are shown to accurately reproduce experimental data on several complex systems. They also provide a reasonable method to estimate rate constants for numerical integration codes by which the effects of temperature and pressure can be evaluated in complex reaction systems.

Multifrequency QRRK analysis is used to calculate $k(\mathrm{E})$ with a master equation analysis 26 for fall-off. A 500 cal . energy grain interval is used for the energy intervals. Rate constants are obtained as a function of temperature and pressure for the chemical activation and dissociation reactions. The master equation analysis ${ }^{26}$ uses an exponentialdown model for the energy transfer function. Troe et al. ${ }^{27}$ reported that $(\Delta E)^{\circ}{ }_{\text {down }}$ is independent of temperature $(293-866 \mathrm{~K})$ for the rare and diatomic bath gases, and Hann et al. ${ }^{28}$ recently determined a value of $(\Delta E)^{\circ}{ }_{\text {down }}=500 \mathrm{~cm}^{-1}$ for matching the twodimensional master equation solutions to the experimental fall-off behavior in the $\mathrm{C}_{3} \mathrm{H}_{3}+$ O_{2} system with N_{2} bath gas. Knyazev and Slagle ${ }^{29}$ reported that $(\Delta E)^{\circ}{ }_{\text {down }}$ changes with temperature; they compared three models, two of which are $(\Delta E)^{\circ}{ }_{\text {down }}=\alpha \mathrm{T}$ and $(\Delta E)^{\circ}{ }_{\text {down }}$ $=$ constant, in reaction of $n-\mathrm{C}_{4} \mathrm{H}_{9} \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{4}$ with Helium as bath gas. The energy difference between the values of the barrier height needed to fit the experimental data with these two $(\Delta E)^{\circ}{ }_{\text {down }}$ models is only $0.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ over a relatively narrow temperature range $(560-620 \mathrm{~K})$. Constant values of $1000 \mathrm{cal} \mathrm{mol}^{-1}\left(\mathrm{~N}_{2}\right.$ as bath gas) and $570 \mathrm{cal} \mathrm{mol}^{-1}$ (He as bath gas) for $(\Delta E)^{\circ}{ }_{\text {down }}$ are used in this study.

CHAPTER 2

THERMOCHEMICAL PROPERTIES OF CHLORINATED ALCOHOLS, HYDROPEROXIDES AND CORRESPONDING RADICALS

2.1 Background

The incineration and atmospheric oxidation processes of chlorine-containing organic compounds are of major interest since such compounds can contribute to the transport of chlorine species to atmosphere and stratosphere. The oxidation of chlorinated hydrocarbon is initiated mainly by the reaction with OH radical to produce chloroalkyl radicals that will react with O_{2} to generate peroxy radicals. Chlorinated alkyl peroxy species are also formed in the atmosphere where chlorine atom can add to olefins and then react with O_{2}. Chloro-alkyl hydroperoxides are produced in the further reactions of alkylperoxy radicals with the hydroperoxy radical, HO_{2}, and are also formed via H -atom abstraction from other hydrocarbon species with weakly bonded hydrogen atoms. Chloroalkyl peroxy radicals are important intermediates in low-temperature oxidation such as in the initial stages of combustion and in the atmospheric photochemical oxidation of chlorohydrocarbons because peroxy radical reactions are the first step in the oxidation processes, these radicals will subsequently react with NO or another organic peroxy radical to form the corresponding chlorinated alkoxy radicals. ${ }^{30}$ The thermochemistry of the dissociation products of chlorinated alcohols and alkyl hydroperoxides are needed for understanding and predicting the reaction pathways, rate constants and equilibrium constants in order to assess the impact of chlorocarbon degradation products on the environment. Reliable thermochemical properties of these oxygenated chlorocarbon species are important in evaluation of kinetics or
thermodynamic equilibrium for both destruction and synthesis processes and in chemical engineering design.

2.2 Calculation Method

2.2.1 Computational Details

All of the density functional and $a b$ initio calculations are performed using the Gaussian 94/98 program. ${ }^{31,32}$ The geometry optimization, harmonic vibration frequencies and zeropoint vibrational energies (ZPVE) are computed at the B3LYP/6-31G(d,p) level. Three calculation methods are proposed obtain single point total electronic energies:

1. B3LYP/6-311+G(3df,2p)
2. $\operatorname{QCISD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$
3. $\mathrm{CBSQ} / / \mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$

The DFT method computes electron correlation via general functionals of the electron density. The best DFT methods achieve significantly greater accuracy than Hartree-Fock theory at only a modest increase in cost, and this is achieved by including some of the effects of electron correlation much less expensively than traditional correlated methods. ${ }^{1}$ The B3LYP with the basis set of $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ is used for geometry optimization and frequency calculation. Curtiss et al. ${ }^{33}$ reported that B3LYP/6-31G(d,p) provides highly accurate structures for compounds with elements up to atomic number ten. Durant ${ }^{34,35}$ has compared density functional calculations B3LYP and hybrid (BH and H) with MP2 and Hartree-Fock methods for geometry and vibration frequencies. He reports that these density functional methods provide excellent geometries and vibration frequencies, relative to MP2 at a reduced computational expense. Petersson et al. ${ }^{36}$
recommended use of B3LYP for geometry and frequencies in several of his CBS calculation methods. B3LYP/6-311+G(3df,2p) is chosen to see if this larger basis set with diffuse functions results in any improvement to the above commonly used density functional calculation method. ${ }^{37} \mathrm{QCISD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ is a configuration interaction method; but with a small, economical basis set. ${ }^{38,39}$ CBS-Q calculation is a high level composite method with an empirical correction reported compared with $\mathrm{QCISD}(\mathrm{T}) / 6$ $311+\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p}){ }^{40,41}$ CBS-Q ${ }^{6}$ attempts to approximate the energy of a species at the infinite basis set limit by an extrapolation of the energies of pair natural orbital at the MP2 level. The effects of going from MP2 to $\operatorname{QCISD}(T)$ are accounted for with an additivity scheme. The geometry is obtained at the MP2/6-31G level of theory, while the ZPE used is the scaled (by 0.9135) HF/6-31G value. For the open-shell systems, there is also a correction for spin contamination in the unrestricted Hartree-Fock wave function. The CBS-Q method has been shown to yield reliable $\Delta H_{\mathrm{f}}{ }^{0} 298$ values for small molecules. ${ }^{6}$ The CBSQ//B3LYP/6-31G(d,p) method differs from CBS-Q in that it employs improved geometry and ZPE at the B3LYP/6-31G(d,p) level with a correction for spin contamination for the open shell systems.

2.2.2 Enthalpies of Formation $\left(\Delta H_{f}{ }^{\mathbf{0}}{ }_{298}\right)$

The $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ are calculated using total energies and isodesmic reactions. Total energies are corrected by ZPVE, which are scaled by 0.9806 as recommended by Scott et al. ${ }^{42}$ Thermal correction is taken into account using the B3LYP structure and vibrations. Isodesmic reactions are hypothetical reactions where the number of electron pairs and the bonds of the same type are conserved on both sides of the equation, only the relationship among the bonds are altered. Density functional and ab initio calculations with ZPVE and
thermal correction are performed for all four compounds in each reaction, and enthalpy of reaction $\Delta H^{\circ}{ }_{\mathrm{rxn}, 298}$ is calculated. Since the enthalpies of formation of the three compounds, have been experimentally determined or theoretically calculated, the unknown enthalpy of the target compound is obtained.

Density functional and $a b$ initio calculations at the B3LYP/6-31G(d,p), B3LYP/6$311+\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p}), \operatorname{QCISD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and CBS-Q level of theory are performed on the most stable conformer of each compound, and the $\Delta H_{f}^{0} 298$ of this conformer is calculated using isodesmic reactions. $\Delta H_{\mathrm{f}}^{\mathrm{o}} 2988^{\prime} \mathrm{s}$ of other conformers, if present, are estimated with the same method. Final $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ values are calculated from a statistical distribution of rotational conformers.

2.2.3 Entropy and Heat Capacities

Contributions of vibration, translation, and external rotation to entropies and heat capacities are calculated from scaled vibrational frequencies and moments of inertia of the DFT optimized structures. Contributions from hindered rotors to S_{298}^{0} and $C_{p}(T)$'s are determined using direct integration over energy levels of the intramolecular rotational potential curves, which can be represented by a truncated Fourier series expansion. ${ }^{43}$ Potential barriers for internal rotations are determined at the B3LYP/6-31G(d,p) calculation level. A technique for calculation of thermodynamic functions from hindered rotations with arbitrary potentials is used to calculate hindered internal contributions to $S^{0}{ }_{298}$ and $C_{p}(T)$'s. ${ }^{43}$ This technique employs expansion of the hindrance potential in the Fourier series, calculation of the Hamiltonian matrix in the basis of wave functions of free internal rotation, and subsequent calculation of energy levels by direct diagonalization of the Hamiltonian matrix. The calculations are based on optimized
geometries, atom connectivity, and the coefficients of the Fourier expansion components from rotational potential curves. The torsional potential calculated at the discrete torsional angles is represented by a truncated Fourier series.

$$
\mathrm{V}(\Phi)=\mathrm{a}_{0}+\sum \mathrm{a}_{\mathrm{i}} \cos (\mathrm{i} \Phi)+\sum \mathrm{b}_{\mathrm{i}} \sin (\mathrm{i} \Phi) \quad \mathrm{i}=1,2,3,4,5
$$

Values of the coefficients a_{i} and b_{i} are calculated to provide the minimum and maxima of the torsional potentials with allowance of a shift of the theoretical extreme angular positions.

2.3α-Chlorinated Ethanols and Radicals

2.3.1 Geometries

The lowest energy conformation for the two chloroethanols and three hydroxyl chloroethyl radicals consistently has the hydroxyl H atom gauche to the maximum number of chlorine atoms as illustrated in the Appendix Table A.1, despite an apparent steric penalty. These lowest energy conformations exhibit the anomeric effect as those of chloromethanols reported by Schneider ${ }^{44}$, Omoto ${ }^{45}$ and Sun et al. ${ }^{46}$ This preference is ascribed to the delocalization of the lone pair e^{-}on the oxygen with the antibonding σ^{*} orbital of the $\mathrm{C}-\mathrm{Cl}$ bond; it is also supported by the electrostatic repulsion between the non-bonding e^{-}pair of oxygen and electronegative Cl atom(s) and intramolecular interaction between the hydroxyl H atom and the Cl atom. ${ }^{47}$

It can be seen from Table A. 1 that the $\mathrm{C}-\mathrm{O}$ bond length decreases significantly with chlorine substitution. This is due to the anomeric effect where the non-bonding e^{-} pair on oxygen is mixing with the antibonding orbital of the $\mathrm{C}-\mathrm{Cl}$ bond. ${ }^{44,45,48}$ In valence bond terminology, this would be described as:

The anomeric effect can also be seen in the $\mathrm{C}-\mathrm{Cl}$ bond length, which is longer than normal $\mathrm{C}-\mathrm{Cl}$ bond. The $\mathrm{O}-\mathrm{H}$ bond increases with increased chlorine substitution and bond strength gets stronger (see the bond energy discussion below).

The Density Functional structure predicts, planar $\left(s p^{2}\right)$ vs tetrahedral $\left(s p^{3}\right)$, on the hydroxyethyl and hydroxychloroethyl radicals. The $\angle \mathrm{H}_{\mathrm{c}}-\mathrm{C}-\mathrm{C}-\mathrm{H}_{\mathrm{c}}$ dihedral angle in $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ are 170.1° and 168.0°, which suggests a non-planar structure. However, the $\angle \mathrm{H}_{\mathrm{c}}-\mathrm{C}-\mathrm{C}-\mathrm{H}_{\mathrm{c}}$ and the $\angle \mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{H}$ dihedral angle in $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$ both are 180.0°, indicating there is a mirror plane between the two chlorine atoms, i.e. C_{s} symmetry in $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$. The inversion frequencies for $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$ are calculated in this work to be $458.2,666.5$ and $539.2 \mathrm{~cm}^{-1}$, respectively. The symmetry number is assigned as 1 for $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$, and two for $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$ on the basis of these data.

2.3.2 Rotational Barriers

Potential barriers for internal rotations of all the species are calculated at the B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level. Potential energy as function of dihedral angle is determined by scanning the torsion angles from 0° to 360° at 15° intervals and allowing the remaining molecular structural parameters to be optimized. Each minimum and maximum on the torsional potential are fully optimized. The barriers for internal rotations are calculated from the differences between the total energy of each conformation and that of the most stable conformer.

The calculated rotational barriers about the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, $\mathrm{CH}_{3} \mathrm{CHClOH}, \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{\bullet}, \mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}, \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\bullet}, \mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$ and $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$ are shown in Figure 2.1.

Figure 2.1 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, $\mathrm{CH}_{3} \mathrm{CHClOH}, \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\bullet}, \mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}, \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\bullet}, \mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$, and $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$.

All the curves for $\mathrm{C}-\mathrm{C}$ torsion potential are symmetric and show a threefold barrier except $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$, which shows a sixfold barrier. The barrier heights for $\mathrm{C}-\mathrm{C}$ torsion are: $3.62,3.61,4.91 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CHClOH}, \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH} ; 2.49$, $3.41,3.71 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{\bullet}, \mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}, \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\bullet} ; 1.82$, and $2.13 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$ and $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$. The above data show the barrier for the $\mathrm{C}-\mathrm{C}$ torsion increases with increasing α-chlorine substitution on ethanol, ethoxy, and α-hydroxy-ethyl radical. The barriers for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ vs $\mathrm{CH}_{3} \mathrm{CHClOH}$, are, however, quite similar, 3.62
and $3.61 \mathrm{kcal} / \mathrm{mol}$ at the B3LYP level. These two barriers are furture evaluated by using MP2(FULL)/6-31G(d) level calculation; the values are slightly higher, and are 4.04 and $4.28 \mathrm{kcal} / \mathrm{mol}$ respectively. The reason for the similarity in barriers for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CHClOH}$ is likely due to the anomeric effect ${ }^{45}$ in $\mathrm{CH}_{3} \mathrm{CHClOH}$. The data also show that $\mathrm{C}-\mathrm{C}$ torsion barriers for (chloro)ethanols are higher than those of the corresponding (chloro)ethoxy radicals, which may in part be due to steric hindrance of the hydroxyl hydrogen.

Figure 2.2 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$, $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$.

Figure 2.2 shows the calculated rotational barriers about the $\mathrm{C}-\mathrm{C}$ bond for $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$. These $\mathrm{C}-\mathrm{C}$ torsion potentials show a twofold barrier for both of the chlorinated hydroxy ethyl radicals; but a fourfold barrier in
$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$. The $\mathrm{H}--\mathrm{OH}$ eclipsed conformer is the most stable for the $\mathrm{C}-\mathrm{C}$ torsion of $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$ due to the interaction of H atom on the $-\mathrm{C}^{\bullet} \mathrm{H}_{2}$ group and the O atom (the interatomic distance $2.483 \AA$). In contrast, the $\mathrm{H}--\mathrm{OH}$ gauche structure (the $\angle \mathrm{H}_{\mathrm{c}}-\mathrm{C}-\mathrm{C}-\mathrm{Cl}$ dihedral 207.56°) lacks the above interaction due to a longer interatomic distance, 2.930 \AA. This gauche structure is $3.07 \mathrm{kcal} / \mathrm{mol}$ higher energy and corresponds to the maximum point on the potential curve. Similar maxima and minima structures exist in $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$. The $\mathrm{C}-\mathrm{C}$ rotation barrier in $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ calculated at the B3LYP level is $4.60 \mathrm{kcal} / \mathrm{mol}$, which is $1.53 \mathrm{kcal} / \mathrm{mol}$ higher than the barrier in $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$. MP2/6-31G(d) calculations in this work also show a decrease in barrier in $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$ relative to $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ and they also predict partial $s p^{2}$ geometry for the $-\mathrm{CH}_{2}{ }^{\text { }}$ groups.

Figure 2.3 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{CHClOH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$.

The higher barrier for $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ suggests that the $\mathrm{H}--\mathrm{OH}$ eclipsed conformer of $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ has extra stability. This $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$ radical exhibits hyperconjugation between the $-\mathrm{CH}_{2}{ }^{*}$ center and the $\sigma^{*}(\mathrm{C}-\mathrm{Cl})$ molecular orbital in its lowest energy conformer. ${ }^{21}$ This effective orbital overlap is possible because the dihedral $\angle \mathrm{H}_{\mathrm{c}}-\mathrm{C}-\mathrm{C}-\mathrm{H}_{\mathrm{c}}$ and $\angle \mathrm{H}_{\mathrm{c}}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ in the minimum energy conformer are 32.2° and -25.1° respectively, so the p orbital in the $-\mathrm{CH}_{2}{ }^{*}$ center and the $\sigma^{*}(\mathrm{C}-\mathrm{Cl})$ orbital are nearly parallel. This reduces the minima energy for $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ and gives it a higher barrier than either the parent or $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$.

Figure 2.4 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$.

The calculated rotational barriers about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{CHClOH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$ are shown in Figure 2.3. The torsion potential curves for rotation about the
$\mathrm{C}-\mathrm{O}$ bonds in $\mathrm{CH}_{3} \mathrm{CHClOH}$ and $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CHClOH}$ are similar. The most stable conformer is $\mathrm{R}-\mathrm{H}\left(\mathrm{R}=\mathrm{CH}_{3}\right.$ or $\left.\mathrm{CH}_{2}\right)$ anti conformer, and its energy is lower than that of the $\mathrm{R}-\mathrm{H}$ gauche conformer. This is because an oxygen non-bonding e^{-}pair eclipsed to the H atom on the α-carbon in the R --H anti conformer, but eclipsed to the R group on the α-carbon in the R --H gauche conformer. The maxima points on the potential curves correspond to the structures that the hydroxyl H atom is anti to the Cl atom on α-carbon because the two non-bonding e^{-}pairs from oxygen are gauche to the Cl atom. This preference can also be ascribed to anomeric effect, the delocalization of the lone pair e^{-}on the oxygen with the antibonding σ^{*} orbital of the $\mathrm{C}-\mathrm{Cl}$ bond. This phenomenon is similar to that in the chloromethanol, which is observed by our previous study. ${ }^{46}$

Figure 2.4 shows the calculated rotational barriers about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ and $\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$. The $\mathrm{C}-\mathrm{O}$ torsion potential curves for $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ and $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$ are similar and have the same maximum barrier of $5.68 \mathrm{kcal} / \mathrm{mol}$. The R--H anti structure is the stable conformation with the two non-bonding e^{-}pairs from oxygen gauche to the two Cl atoms. The $\mathrm{R}--\mathrm{H}$ gauche conformers have higher energies than those of the R--H anti conformers because of the three gauche interactions between two non-bonding e^{-}pairs and the Cl atom (only two of these interactions in the R--H anti conformers). The energy difference between the two conformers calculated at the CBS-Q level is: $3.27 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}, 2.68$ $\mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$. This is in agreement with the energy difference for similar conformers in $\mathrm{CHCl}_{2} \mathrm{OH}, 2.94 \mathrm{kcal} / \mathrm{mol}$ at the same level of calculation. These values support that a gauche interaction between a Cl atom and an O atom non-bonding e^{-}pair increases energy in the molecule by ca. $3 \mathrm{kcal} / \mathrm{mol} .^{46}$ The $\mathrm{C}-\mathrm{O}$ torsion potential for
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$ are also similar and they have lower barriers relative to $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ and $\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$.

Figure 2.5 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{C}^{*} \mathrm{HOH}$ and $\mathrm{CH}_{3} \mathrm{C}^{\circ} \mathrm{ClOH}$.

The calculated rotational barriers about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$ and $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$ are shown in Figure 2.5. The $\mathrm{C}-\mathrm{O}$ torsion potential for $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$ has a maximum corresponding to the structure with a $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{H}$ dihedral of 91.30°. In this structure, the two non-bonding e^{-}pairs from the O atom are eclipsed with the Cl atom and the $-\mathrm{CH}_{3}$ group, with energy increased by $4.97 \mathrm{kcal} / \mathrm{mol}$ relative to that of the stable conformer, which has the two non-bonding e- pairs gauche to the Cl atom and methyl group. The $\mathrm{C}-\mathrm{O}$ torsion potential for $\mathrm{CH}_{3} \mathrm{C} \cdot \mathrm{HOH}$ also has a similar curve; however, the $\mathrm{CH}_{3}--\mathrm{H}$ eclipsed structure for $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$ has energy $3.43 \mathrm{kcal} / \mathrm{mol}$ higher than that of
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$ are also similar and they have lower barriers relative to $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ and $\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$.

Figure 2.5 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$ and $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$.

The calculated rotational barriers about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$ and $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$ are shown in Figure 2.5. The $\mathrm{C}-\mathrm{O}$ torsion potential for $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$ has a maximum corresponding to the structure with a $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{H}$ dihedral of 91.30°. In this structure, the two non-bonding e^{-}pairs from the O atom are eclipsed with the Cl atom and the $-\mathrm{CH}_{3}$ group, with energy increased by $4.97 \mathrm{kcal} / \mathrm{mol}$ relative to that of the stable conformer, which has the two non-bonding e^{-}pairs gauche to the Cl atom and methyl group. The $\mathrm{C}-\mathrm{O}$ torsion potential for $\mathrm{CH}_{3} \mathrm{C} \cdot \mathrm{HOH}$ also has a similar curve; however, the $\mathrm{CH}_{3}--\mathrm{H}$ eclipsed structure for $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$ has energy $3.43 \mathrm{kcal} / \mathrm{mol}$ higher than that of
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$ are also similar and they have lower barriers relative to $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$.

Figure 2.5 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$ and $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$.

The calculated rotational barriers about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{3} \mathrm{C}^{*} \mathrm{HOH}$ and $\mathrm{CH}_{3} \mathrm{C}^{\circ} \mathrm{ClOH}$ are shown in Figure 2.5. The $\mathrm{C}-\mathrm{O}$ torsion potential for $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$ has a maximum corresponding to the structure with a C-C-O-H dihedral of 91.30°. In this structure, the two non-bonding e^{-}pairs from the O atom are eclipsed with the Cl atom and the $-\mathrm{CH}_{3}$ group, with energy increased by $4.97 \mathrm{kcal} / \mathrm{mol}$ relative to that of the stable conformer, which has the two non-bonding e^{-}pairs gauche to the Cl atom and methyl group. The $\mathrm{C}-\mathrm{O}$ torsion potential for $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$ also has a similar curve; however, the $\mathrm{CH}_{3}--\mathrm{H}$ eclipsed structure for $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$ has energy $3.43 \mathrm{kcal} / \mathrm{mol}$ higher than that of
the $\mathrm{CH}_{3}--\mathrm{H}$ eclipsed structure for $\mathrm{CH}_{3} \mathrm{C}^{\circ} \mathrm{HOH}$. This is because the non-bonding e^{-}pair from the O atom is eclipsed to the H atom in $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$; but eclipsed to the Cl atom in $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$.

2.3.3 Enthalpy of Formation

The total electronic energies are determined at the B3LYP/6-31G(d,p), B3LYP/6$311+\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p}), \operatorname{QCISD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and CBSQ//B3LYP/6-31G(d,p) levels. The spin expectation values, $\left\langle S^{2}\right\rangle$, range from 0.760 to 0.781 for the eight target radicals. The values are close to the correct value of 0.75 and suggest no significant error (due to spin contamination) for these radicals.

Table $2.1 \Delta H_{\mathrm{f}}{ }^{\circ} 298$ for Standard Species in Reaction Schemes

species	$\Delta H_{\mathrm{f} 298}^{\mathrm{o}}(\mathrm{kcal} / \mathrm{mol})$	species	$\Delta H_{\mathrm{f} 298}^{\mathrm{o}}(\mathrm{kcal} / \mathrm{mol})$
CH_{4}	$-17.89^{49} \pm 0.07$	$\mathrm{C}^{*} \mathrm{Cl}_{2} \mathrm{OH}$	$-20.54{ }^{46} \pm 1.83$
$\mathrm{CH}_{3} \mathrm{Cl}$	$-19.60^{50} \pm 0.12$	$\mathrm{CH}_{3}{ }^{\circ}$	34.82 ± 0.2^{51}
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-22.83{ }^{52} \pm 0.29$	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\text {- }}$	28.80 ± 0.50^{51}
$\mathrm{CH}_{3} \mathrm{OH}$	$-48.08{ }^{52} \pm 0.05$	$\mathrm{CH}_{2} \mathrm{Cl}{ }^{\text {- }}$	$27.7 \pm 2 .{ }^{53}$
$\mathrm{C}_{2} \mathrm{H}_{6}$	$-20.24^{52} \pm 0.12$	$\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{OH}$	-3.97 ± 0.22^{54}
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	$-26.84{ }^{50} \pm 0.26$	$\mathrm{CH}_{3} \mathrm{C}^{*} \mathrm{HOH}$	$-13.34 \pm 0.84{ }^{46}$
$\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	$-31.09{ }^{50} \pm 0.29$	$\mathrm{CH}_{3} \mathrm{O}^{-}$	4.10 ± 1.0^{55}
$\mathrm{C}_{3} \mathrm{H}_{8}$	-25.02 ± 0.12^{56}	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\text {- }}$	-3.90 ± 1.27^{46}
$\mathrm{CH}_{3} \mathrm{CHClCH}_{3}$	$-35.00{ }^{52} \pm 0.56$	$\mathrm{CH}_{3} \mathrm{CHCl}{ }^{+}$	19.15 ± 2.0^{57}
$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{CH}_{3}$	$-42.23{ }^{58} \pm 1.0$	$\mathrm{CH}_{3} \mathrm{CCl}_{2}{ }^{-}$	12.43^{57}
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$-56.12{ }^{51} \pm 0.2$	$\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$-5.70 \pm 0.85{ }^{59}$
$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	-60.97 ± 0.12^{52}	$\mathrm{Cl}{ }^{-}$	28.92 ± 0.3^{51}
$\mathrm{CH}_{2} \mathrm{ClOH}$	$-58.07^{46} \pm 0.69$	H^{+}	$52.10 \pm 0.001{ }^{51}$
CHCl 2 OH	$-65.88{ }^{46} \pm 0.76$	OH^{*}	9.43 ± 0.3^{51}
$\mathrm{C}^{*} \mathrm{HClOH}$	$-14.46{ }^{46} \pm 1.75$		

The $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$'s for chloro-substituted species are estimated using total energies and isodesmic reactions. Density functional and ab initio calculations with ZPVE and thermal correction are performed for all four compounds in each reaction, and enthalpy of reaction $\Delta H_{\mathrm{rxn}, 298}^{0}$ is calculated. Since $\Delta H_{\mathrm{f}}{ }^{0} 298$ of three compounds, have been
experimentally determined or theoretical calculated, the unknown enthalpy of formation of target compound is obtained. The $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ and their respective uncertainties for standard species used in the working reactions are listed in Table 2.1.
2.3.3.1 Mono- and Dichloroethanols. The isodesmic reactions, reaction enthalpies, and $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ values for the monochloroethanols and dichloroethanols are tabulated in Appendix Table A.2. The results for $\Delta H_{\mathrm{f}}{ }^{0} 298$'s in Table A. 2 show very good consistency for $\mathrm{CH}_{3} \mathrm{CHClOH}$ over the seven reactions and all the calculation methods. The $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ for $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ derived from the seven reaction series show consistency over all reactions for the higher level Density Functional calculation; but the $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$'s for dichloroethanol derived from reaction series 1,2 and 3 in the CBSQ calculations result in values that are ca. $3 \mathrm{kcal} / \mathrm{mol}$ lower than values of reaction series $4,5,6$ and 7 . The density function results agree with CBSQ results in reactions 4 to 7 . The difference in CBSQ values is suggested due to the changes to the environment of the di-chlorinated carbon in the different reactions schemes. Specifically, the methyl group is retained on the $-\mathrm{CCl}_{2}$ - carbon in reaction series $4,5,6$ and 7 . The methyl group is substituted with a H atom on this $-\mathrm{CCl}_{2}$ - carbon, in reactions 1,2 and 3. The higher-level Density Functional calculations do not show this problem. This data suggests: (i.) substitution of a methyl group with a hydrogen atom does not lead to good cancellation of errors, and (ii.) reactions 4 to 7 are preferred.

The G3MP2 calculations with seven working reactions and MP2(FULL)/6$31 \mathrm{G}(\mathrm{d})$ geometries are used to further validate the enthalpy data. The results from G3MP2 calculation show good agreement in $\Delta H^{0}{ }_{\mathrm{rxn}, 298}$ and $\Delta H_{\mathrm{f}}{ }^{0} 298$ vs reaction set, with
the CBSQ//B3 data. The CBSQ values from the reaction series 4 to 7 are recommended values on both $\mathrm{CH}_{3} \mathrm{CHClOH}$ and $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$. The enthalpy on the pure enantiomer of lowest energy for $\mathrm{CH}_{3} \mathrm{CHClOH}$ is $-68.72 \pm 1.24 \mathrm{kcal} / \mathrm{mol}$ and for $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ is -75.75 $\pm 1.31 \mathrm{kcal} / \mathrm{mol}$.

2.3.3.2 Chloroethoxy and Hydroxy-Chloroethyl Radicals. The $\Delta \mathrm{H}_{\mathrm{f}}{ }^{0} 298$ values of

 chloroethoxy and hydroxy-chloroethyl radicals are calculated based on the $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ} 298$'s for the chloroethanols and several isodesmic reaction series and are listed in Table 2.2. Reaction series $4,5,6$, and 7 for the chloroethoxy radicals are isodesmic, while reactions 1, 2 and 3 are not. The $\Delta \mathrm{H}_{\mathrm{f}}{ }^{0} 298$ for the two chloroethoxy radicals show remarkable consistency at the CBSQ//B3 level for isodesmic reactions, where the standard deviation is within $0.2 \mathrm{kcal} / \mathrm{mol}$. The DFT and $\mathrm{QCISD}(\mathrm{T})$ calculations for the isodesmic reactions show deviation of ca. $\pm 1 \mathrm{kcal} / \mathrm{mol}$ with the CBSQ values.The DFT and QCISD(T) calculations result in still larger variations for nonisodesmic reaction series 1,2 and 3 . CBSQ//B3 calculation results for non-isodesmic reactions are in satisfactory agreement with the isodesmic reactions; but consistently result in $0.5 \mathrm{kcal} / \mathrm{mol}$ higher values for the two chloromethoxy radicals.

The recommended $\Delta H_{\mathrm{f}}{ }_{2}^{\mathrm{o}}$ 號 for the two chloroethoxy radicals are an average of four isodesmic reactions at the $\mathrm{CBSQ} / / \mathrm{B} 3$ calculation level. The $\Delta H_{\mathrm{f}}{ }^{0} 298$ are $-14.79 \pm$ 2.90 and $-21.85 \pm 2.82 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{CH}_{3} \mathrm{CHClO}^{\circ}$ and $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\circ}$ respectively.

The $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ on the pure enantiomer of lowest energy for the three hydroxy-chloroethyl radicals are an average over the five isodesmic reactions at the $\mathrm{CBSQ} / / \mathrm{B} 3$ level: $-25.92 \pm$ $2.13,-17.62 \pm 2.13$ and $23.85 \pm 2.13 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}, \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$, and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$, respectively. The CBSQ values show excellent agreement across the five
isodesmic reaction series with a standard deviation on the order of $0.01 \mathrm{kcal} / \mathrm{mol}$. The QCISD(T) also show very good agreement with CBSQ results.

Table 2.2 Reaction Enthalpies at 298 K and Calculated $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298{ }^{\text {a }}$

Reaction Series	$\begin{gathered} \text { B3LYP } \\ 16-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$		$\begin{gathered} \mathrm{B} 3 \mathrm{LYP} / 6- \\ 311+\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p}) \end{gathered}$		$\begin{aligned} & \hline \operatorname{QCISD}(\mathrm{T}) \\ & 16-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{aligned}$		$\begin{gathered} \hline \text { CBSQ//B3LYP } \\ / 6-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$	
	$\Delta H^{\text {cxa }}$	$\Delta H_{\mathrm{f}}{ }^{\circ} 288$	$\Delta H_{\text {rxn }}{ }^{\text {a }}$	$\Delta H_{f}{ }^{\circ} 298$	$\Delta H^{\circ}{ }_{\text {rn }}$	$\Delta H_{\mathrm{f}}{ }^{\circ}{ }^{\circ} \mathrm{g}$	$\Delta H_{\text {cn }}$	$\Delta H_{\mathrm{f}}{ }^{\circ} 298$
1. $\mathrm{CH}_{3} \mathbf{C H C l O}{ }^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}{ }^{+}+\mathrm{CH}_{3} \mathrm{CHClOH}$	6.28	-22.20	2.65	-18.57	2.23	-18.15	-1.78	14
2. $\mathrm{CH}_{3} \mathrm{CHClO}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}+\mathrm{CH}_{3} \mathrm{CHClOH}$	1.52	-21.11	-2.05	-17.54	-0.75	-18.84	-5.44	-14.15
3. $\mathrm{CH}_{3} \mathrm{CHClO}^{+}+\mathrm{CH}_{3} \mathrm{Cl} \longrightarrow \mathrm{CH}_{2} \mathrm{Cl}^{\bullet}+\mathrm{CH}_{3} \mathrm{CHClOH}$	0.24	-21.57	-3.44	-17.89	-2.82	-18.5	-7.16	-14.17
4. $\mathrm{CH}_{3} \mathrm{CHClO}^{+}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{O}^{\bullet}+\mathrm{CH}_{3} \mathrm{CHClOH}$	-1.19	-15.26	-0.74	-15.71	-2.33	-14.12	-1.83	-14.62
5. $\mathrm{CH}_{3} \mathrm{CHClO}^{+}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\bullet}+\mathrm{CH}_{3} \mathrm{CHClOH}$	-1.38	-15.03	-1.15	-15.26	-2.24	-14.17	1.78	-14.63
6. $\mathrm{CH}_{3} \mathbf{C H C l O}{ }^{+}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	11.14	-15.99	10.34	-15.19	9.77	-14.62	10.10	-14.95
7. $\mathrm{CH}_{3} \mathrm{CHClO}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	5.48	-15.98	4.94	-15.44	4.30	-14.80	4.44	-14.94
Average value and deviation ${ }^{\text {b }}$:								79 ± 0.19
1. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathbf{O}^{\mathbf{-}}+\mathrm{CH}_{4} \longrightarrow \mathrm{CH}_{3}{ }^{-}+\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$	1.40	-24.41	-1.56	-21.45	-2.66	-20.35	-1.68	-21.3
2. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\bullet}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}+\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$	-3.36	-23.32	-6.26	-20.42	-5.64	-21.04	-5.34	-21.34
3. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\bullet}+\mathrm{CH}_{3} \mathrm{Cl} \longrightarrow \mathrm{CH}_{2} \mathrm{Cl}^{+}+\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$	-4.64	-23.78	-7.65	-20.77	-7.71	-20.71	-7.06	-21.36
4. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\bullet}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{O}^{\mathbf{+}}+\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$	-6.07	-17.47	-4.95	-18.59	-7.22	-16.32	-1.74	-21.80
5. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\bullet}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\bullet}+\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$	-6.26	-17.24	-5.36	-18.14	-7.13	-16.37	-1.68	-21.82
6. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathbf{O}^{+}+\mathrm{CH}_{4} \longrightarrow \mathrm{CH}_{3} \mathrm{O}^{\boldsymbol{+}}+\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	9.07	-18.17	7.96	-17.06	8.16	-17.26	12.79	-21.89
7. $\mathbf{C H}_{3} \mathrm{CCl}_{2} \mathbf{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\bullet}+\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	3.41	-18.16	2.57	-17.32	2.68	-17.43	7.13	21

Average value and deviation ${ }^{\mathrm{b}}$:
-21.85 ± 0.04

	12.83	-28.75	11.7	27.71	10.02	-25.9	9.99	-25.9
2. $\mathrm{CH}_{3} \mathrm{C}^{*} \mathrm{ClOH}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}+\mathrm{CH}_{3} \mathrm{CHClOH}$	8.07	-27.66	7.14	-26.73	7.0	-26.63	6.33	25
3. $\mathrm{CH}_{3} \mathbf{C}^{*} \mathrm{ClOH}+\mathrm{CH}_{3} \mathrm{Cl} \longrightarrow \mathrm{CH}_{2} \mathrm{Cl}^{\bullet}+\mathrm{CH}_{3} \mathrm{CHClOH}$	6.79	-28.12	5.7	-27.05	4.9	-26.3	4.60	-25.93
4. $\mathrm{CH}_{3} \mathrm{C}^{*} \mathrm{ClOH}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{C}^{*} \mathrm{H}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CHClOH}$	2.25	6.7	2.23	-26.75	1.74	26.	1.42	-25.94
5. $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{C}^{*} \mathrm{HOH}+\mathrm{CH}_{3} \mathrm{CH}$	23	-26.05	0.21	-26.03	0.7	-26.57	0.10	-25.92
Average value and deviation ${ }^{\text {b }}$							-25.92 ± 0.01	
1. $\mathrm{C}^{*} \mathrm{H}_{2} \mathbf{C H C l O H}+\mathrm{CH}_{4} \longrightarrow \mathrm{CH}$	17	-21.09	4.42	-20.34	0.8	-16.7		-17.6
2. $\mathbf{C}^{*} \mathrm{H}_{2} \mathbf{C H C l O H}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}+\mathrm{CH}_{3} \mathrm{CHClOH}$	0.41	-20.0	-0.2	-19.36	-2.17	-17.42	-1.97	-17.62
3. $\mathrm{C}^{*} \mathbf{H}_{2} \mathbf{C H C l O H}+\mathrm{CH}_{3} \mathrm{Cl} \longrightarrow \mathrm{CH}_{2} \mathrm{Cl}^{\bullet}+\mathrm{CH}_{3} \mathrm{CHClOH}$	-0.8	-20.46	-1.66	-19.67	-4.2	17.0	-3.70	-17.63
4. $\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CHClOH}+\mathrm{CH}_{3} \mathrm{OH} 2 \mathrm{C}^{*} \mathrm{H}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CHClOH}$	-5.41	-19.11	-5.15	-19.37	-7.47	-17.05	-6.88	-17.6
5. $\left.\mathrm{C}^{*} \mathrm{H}_{2} \mathbf{C H C l O H}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) \mathrm{CH}_{3} \mathrm{C} \cdot \mathrm{HOH}+\mathrm{CH}_{3} \mathrm{CHCH}$	-7.42	-18.40	-7.16	-18.66	-8.46	-17.3	-8.	-17.62
verage value and deviation								

| 1. $\mathbf{C}^{\bullet} \mathbf{H}_{\mathbf{2}} \mathrm{CCl}_{2} \mathbf{O H}+\mathrm{CH}_{4} \longrightarrow \mathrm{CH}_{3}{ }^{\bullet}+\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ | 3.89 | -26.90 | 3.31 | -26.32 | -0.11 | -22.90 | 0.82 | $\mathbf{- 2 3 . 8 3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. $\mathbf{C}^{\bullet} \mathbf{H}_{2} \mathbf{C C l}_{2} \mathbf{O H}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5}{ }^{\bullet}+\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ | -0.87 | -25.81 | -1.34 | -25.34 | -3.09 | -23.59 | -2.84 | $\mathbf{- 2 3 . 8 4}$ |
| 3. $\mathbf{C}^{\bullet} \mathbf{H}_{\mathbf{2}} \mathrm{CCl}_{2} \mathbf{O H}+\mathrm{CH}_{3} \mathrm{Cl} \longrightarrow \mathrm{CH}_{2} \mathrm{Cl}^{\bullet}+\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ | -2.14 | -26.28 | -2.77 | -25.65 | -5.17 | -23.25 | -4.56 | $\mathbf{- 2 3 . 8 6}$ |
| 4. $\mathbf{C}^{\bullet} \mathbf{H}_{\mathbf{2}} \mathbf{C C l}_{\mathbf{2}} \mathbf{O H}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ | -6.69 | -24.92 | -6.26 | -25.35 | -8.39 | -23.22 | -7.75 | $\mathbf{- 2 3 . 8 6}$ |
| 5. $\mathbf{C}^{\bullet} \mathbf{H}_{\mathbf{2}} \mathbf{C C l}_{\mathbf{2}} \mathbf{O H}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}+\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ | -8.70 | -24.21 | -8.27 | -24.64 | -9.39 | -23.52 | -9.06 | $\mathbf{- 2 3 . 8 5}$ |

-23.85 ± 0.01
$\overline{{ }^{a}}$ Reaction enthalpies include thermal correction and zero-point energy. Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{b}}$ Average value calculated at the $\mathrm{CBSQ} / / \mathrm{B} 3$ level, and the deviation are between the isodesmic reactions.

The error limits of $\Delta H_{\mathrm{f}}{ }_{298}$ for above species are calculated by adding the deviations between the isodesmic reactions and the maximum uncertainties in the $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ of reference species.
2.3.3.3 Comparison with Literature Enthalpies. The $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ for monochloroethanol and the corresponding radicals are found in literature for comparisons. Sekušak et al. ${ }^{61}$ estimated $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ of $\mathrm{CH}_{3} \mathrm{CHClOH}$ to be $-69.7 \mathrm{kcal} / \mathrm{mol}$ by Benson's group additivity method, and this is in agreement with our recommend value, $-68.63 \pm 1.24 \mathrm{kcal} / \mathrm{mol}$. Sekušak et al. also calculated the $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ of $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CHClOH}$ at the MP2/aug-cc-pVTZ level to be $-23.0 \mathrm{kcal} / \mathrm{mol}$ by reaction $\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{OH}^{\bullet} \rightarrow \mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CHClOH}$, which is a nonisodesmic reaction. Wallington et al. ${ }^{62}$ estimated the $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ of $\mathrm{CH}_{3} \mathrm{CHClO}^{\circ}$ to be -18.9 $\mathrm{kcal} / \mathrm{mol}$ by assuming that the difference in the $\Delta H_{\mathrm{f} 298}^{\mathrm{o}}$ between chloromethoxy and methoxy radicals is the same as that between α-chloroethoxy and ethoxy radicals. Hou et al. ${ }^{63}$ calculated the $\Delta H_{\mathrm{f}}^{\mathrm{o}}{ }_{298}$ for $\mathrm{CH}_{3} \mathrm{CHClO}^{\circ}, \mathrm{CH}_{3} \mathrm{C}^{\circ} \mathrm{ClOH}$ and $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CHClOH}$ at the G2(MP2, SVP) level to be $-17.8,-29.7$, and $-21.3 \mathrm{kcal} / \mathrm{mol}$, respectively; however, they did not provide calculation details or indicate the method of analysis. The recommended $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ values for $\mathrm{CH}_{3} \mathrm{CHClO}^{*}, \mathrm{CH}_{3} \mathrm{C}^{\circ} \mathrm{ClOH}$ and $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CHClOH}$ are consistently 3 to 4 $\mathrm{kcal} / \mathrm{mol}$ higher than data estimated by Hou et al. ${ }^{9}$ The consistent difference between our values and those of Hou et. al. could result from the differences in $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ of the parent $\mathrm{CH}_{3} \mathrm{CHClOH}$, which is used in each working reaction.

The G3MP2 calculations for the two saturated chloroethanols show excellent agreement with the other calculations. The precision of our calculated enthalpies on $\mathrm{CH}_{3} \mathrm{CHClOH}$ over a range of calculation methods and working reactions does not provide any support for a different value. The good agreement observed over the several
calculation levels for α-chloroethanol and the corresponding radicals provides support that our calculations are consistent across different calculation methods. The QCISD(T) results also indicate that our values are consistent with HF and MP2 calculations. The high level $\operatorname{QCISD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p}), \mathrm{CBSQ} / / \mathrm{B} 3$, and G3MP2 calculations all predict very similar enthalpies. The recommended data are based on analysis of conformer energies from internal rotations and use of the lowest energy conformers.
2.3.3.4 Enthalpy of Rotational Conformers. Two conformers are present in chloroethanols and hydroxyl chloroethyl radicals (shown in Figures 2.3, 2.4 and 2.5); one is R-$\mathrm{H}\left(\mathrm{R}=\mathrm{CH}_{3}\right.$ or $\left.\mathrm{CH}_{2}\right)$ anti conformer and the other is $\mathrm{R}-\mathrm{H}$ gauche conformer. The total electronic energies of these conformers are calculated at the B3LYP/6-31G(d,p), B3LYP/6-311+G(3df,2p), \quad QCISD(T)/6-31G(d,p) and \quad CBSQ//B3LYP/6-31G(d,p) calculation levels. The energy differences between the conformers are listed in Table 2.3.

Table $2.3 \Delta H_{f}^{\mathrm{o}} 298$ of Conformers and Relative Fraction

	$\Delta \mathrm{E}$ of conformers ($\mathrm{kcal} / \mathrm{mol}$)				$\Delta H_{f}{ }^{\circ}{ }_{298}{ }^{\text {c }}$ ($\mathrm{kcal} / \mathrm{mol}$)	relativefraction (\%)	$\begin{gathered} \text { final } \\ \Delta H_{\mathrm{r}}{ }^{298} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$
	$\begin{gathered} \text { B3LYP } \\ 16-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$	$\begin{gathered} \text { B3LYP/6- } \\ 311+\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p}) \end{gathered}$	$\begin{gathered} \hline \operatorname{QCISD(T)} \\ / 6-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$	$\begin{gathered} \mathrm{CBSQ} / / \mathrm{B} 3 \mathrm{LYP} \\ / 6-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$			
$\mathrm{CH}_{3} \mathrm{CHClOH}(1)^{\text {a }}$					-68.72	59.18	
$\mathrm{CH}_{3} \mathrm{CHClOH}(1)^{\text {b }}$	0.17	0.44	0.24	0.22	-68.50	40.82	-68.63
$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}(1)^{\text {a }}$					-75.75	99.20	
$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}(2){ }^{\text {b }}$	4.07	3.66	3.49	3.27	-72.48	0.40	-75.72
$\mathrm{CH}_{3} \mathrm{C}^{\cdot} \mathrm{ClOH}(1)^{\text {a }}$					-25.92	98.79	
$\mathrm{CH}_{3} \mathrm{C}^{\circ} \mathrm{ClOH}(1)^{\text {b }}$	3.79	3.16	3.26	2.61	-23.32	1.21	-25.89
$\mathrm{C}^{\cdot} \mathrm{H}_{2} \mathrm{CHClOH}(1)^{\text {a }}$					-17.62	62.79	
$\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CHClOH}(1)^{\text {b }}$	0.59	0.75	0.36	0.31	-17.32	37.21	-17.51
$\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}(1)^{\text {a }}$					-23.85	97.88	
$\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}(2)^{\text {b }}$	3.76	3.45	2.05	2.68	-21.17	1.06	-23.79

${ }^{\mathrm{a}}$ The rotational conformer with the lowest energy. ${ }^{\text {b }}$ The rotational conformer with higher energy. ${ }^{\text {c }}$ Enthalpy of formation at 298 K calculated at the CBSQ//B3 level.

The $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ of the rotational conformers are determined from values calculated at the $\mathrm{CBSQ} / / \mathrm{B} 3$ level using isodesmic reaction schemes. The statistical distribution and
overall $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ of the chloroethanols and hydroxy-chloroethyl radicals are also listed in Table 2.3. It can be seen that energy difference between the conformers decreases for the higher level calculations. The energy differences at the CBSQ//B3 calculation level are used to calculate the statistical distribution of rotational conformers.
2.3.3.5 Bond Energies. The $\mathrm{RO}-\mathrm{H}, \mathrm{R}-\mathrm{OH}, \mathrm{R}-\mathrm{H}$, and $\mathrm{R}-\mathrm{Cl}$ bonds dissociation energies are presented in Table 2.4. They are estimated using the $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ of chloroethanols and the radicals from this work, plus reference radicals.

Table 2.4 Bond Energies

reaction series	bond energy (kcal/mol)
RO-H	
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{\bullet}+\mathrm{H}^{+}$	104.32
$\mathrm{CH}_{3} \mathrm{CHClOH} \rightarrow \mathrm{CH}_{3} \mathrm{CHClO}^{+}+\mathrm{H}^{\bullet}$	105.94
$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{*}+\mathrm{H}^{*}$	105.97
$\mathrm{R}-\alpha-\mathrm{H}$	
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{C}^{*} \mathrm{HOH}+\mathrm{H}^{\bullet}$	94.88
$\mathrm{CH}_{3} \mathrm{CHClOH} \rightarrow \mathrm{CH}_{3} \mathrm{C}^{*} \mathrm{ClOH}+\mathrm{H}^{*}$	94.84
$\mathrm{R}-\beta-\mathrm{H}$	
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}^{\bullet}$	102.52
$\mathrm{CH}_{3} \mathrm{CHClOH} \rightarrow \mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CHClOH}+\mathrm{H}^{*}$	103.22
$\begin{gathered} \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH} \rightarrow \mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}+\mathrm{H}^{+} \\ \mathrm{R}-\mathrm{Cl} \end{gathered}$	104.03
$\mathrm{CH}_{3} \mathrm{CHClOH} \rightarrow \mathrm{CH}_{3} \mathrm{C}^{*} \mathrm{HOH}+\mathrm{Cl}^{\bullet}$	84.21
$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{C}^{*} \mathrm{ClOH}+\mathrm{Cl}^{\bullet}$	78.75
R-ROH	
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3}{ }^{+}+\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{OH}$	86.97
$\mathrm{CH}_{3} \mathrm{CHClOH} \rightarrow \mathrm{CH}_{3}{ }^{+}+\mathrm{C}^{*} \mathrm{HClOH}$	88.99
$\underset{R--\mathrm{OH}}{\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3}{ }^{\circ}+\mathrm{C}^{\circ} \mathrm{Cl}_{2} \mathrm{OH}}$	90.00
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}+\mathrm{OH}^{\bullet}$	94.35
$\mathrm{CH}_{3} \mathrm{CHClOH} \rightarrow \mathrm{CH}_{3} \mathrm{CHCl}^{+}+\mathrm{OH}^{+}$	97.21
$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CCl}_{2}{ }^{\text {+ }} \mathrm{OH}^{+}$	97.58

The $\mathrm{R}-\mathrm{OH}$ bond energies increase from $94.35 \mathrm{kcal} / \mathrm{mol}$ in $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$ to 97 $\mathrm{kcal} / \mathrm{mol}$ in $\mathrm{CH}_{3} \mathrm{CHCl}-\mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CCl}_{2}-\mathrm{OH}$. The second chlorine does not appear to affect an increase on the $\mathrm{R}-\mathrm{OH}$ bond energies. This can be explained by a negative
hyperconjugation effect. The hydroxyl group includes two nonbonding e^{-}pairs centered on oxygen, one pair can interact strongly with $\sigma^{*}\left(\mathrm{C}-\mathrm{Cl}_{1}\right)$ orbital, however, the other pair cannot effectively overlap with $\sigma^{*}\left(\mathrm{C}_{-1} \mathrm{Cl}_{2}\right)$ orbital. The RO-H bond energy for mono, and dichloroethanol increases $1.6 \mathrm{kcal} / \mathrm{mol}$ relative to that of ethanol; this is because the $\mathrm{O}-\mathrm{H}$ bond is heterolytic rather than homolytic, and it is slightly stabilized by negative hyperconjugation even though the $\mathrm{O}-\mathrm{H}$ bond is not directly perturbed by the chlorine(s). ${ }^{44}$

The $\mathrm{C}-\mathrm{Cl}$ bond energies decrease from 84.21 to $78.75 \mathrm{kcal} / \mathrm{mol}$ with successive addition of chlorine. However, the $\mathrm{C}-\mathrm{COH}$ bond energy increases from 86.97 in $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}$ to 88.99 in $\mathrm{CH}_{3}-\mathrm{CHClOH}$ and to $90.00 \mathrm{kcal} / \mathrm{mol}$ in $\mathrm{CH}_{3}-\mathrm{CCl}_{2} \mathrm{OH}$. The $\mathrm{C}-\alpha-\mathrm{H}$ bond energies in ethanol and chloroethanol are quite similar; they show a very slight decrease from 94.88 to 94.84 with the mono-chlorine substitution. Normally it is expected a decrease in bond energy on the $\mathrm{C}-\alpha-\mathrm{H}$ bond in chloroethanol relative to ethanol using the trends of $\mathrm{C}-\mathrm{H}$ bond energies in the series: $\mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and CHCl_{3}, and $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{ClOH}$, and $\mathrm{CHCl}_{2} \mathrm{OH}$ studied previously. ${ }^{46}$ But no indication of this trend is found in the $\mathrm{C}-\alpha-\mathrm{H}$ bond strength of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CHClOH}$. In contrast, the $\mathrm{C}-\beta$ - H bond energies in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CHClOH}$ and $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ show a consistent increase: $102.52,103.22$ and $104.03 \mathrm{kcal} / \mathrm{mol}$, respectively.

2.3.4 Entropy and Heat Capacity

$S^{0}{ }_{298}$ and $C_{p}(T)$'s calculation results using the B3LYP/6-31G(d,p) determined geometries and harmonic frequencies are summarized in Table 2.5. Harmonic vibrational frequencies and moments of inertia are listed in Table 2.6.

Table 2.5 Ideal Gas-phase Thermodynamic Properties ${ }^{\text {a }}$

species		$\Delta H_{\mathrm{f}}{ }_{298}{ }^{\text {b }}$	$S_{298}{ }^{\text {c }}$	$C_{p} 300^{\text {c }}$	$C_{p} 400$	$C_{P} 500$	$C_{p} 600$	$C_{p} 800$	$C_{p} 1000$	$C_{p} 1500$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	TVR ${ }^{\text {d }}$		59.12	12.11	15.57	19.00	22.05	27.00	30.76	36.79
(3)*	I.R. ${ }^{\text {e }}$		3.66	2.17	2.26	2.21	2.08	1.81	1.60	1.31
	I.R. ${ }^{\text {f }}$		4.00	1.61	1.45	1.33	1.25	1.15	1.10	1.05
	Total ${ }^{\text {g }}$	-56.12 ± 0.2	66.78	15.89	19.29	22.54	25.38	29.97	33.47	39.15
$\mathrm{CH}_{3} \mathrm{CHClOH}$	TVR ${ }^{\text {d }}$		67.13	15.25	18.94	22.29	25.13	29.56	32.83	38.02
(3)*	I.R. ${ }^{\text {e }}$		4.22	2.07	2.17	2.12	2.01	1.76	1.57	1.30
(2) ${ }^{\wedge}$	I.R. ${ }^{\text {f }}$		2.52	1.80	2.05	2.15	2.17	2.07	1.90	1.56
	Total ${ }^{\mathrm{g}}$	-68.63 ± 1.24	75.22	19.12	23.15	26.56	29.31	33.39	36.31	40.88
$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$	TVR ${ }^{\text {d }}$		71.64	19.14	22.91	26.03	28.56	32.36	35.09	39.36
(3)*	I.R. ${ }^{\text {e }}$		3.93	1.91	2.09	2.16	2.15	2.01	1.83	1.49
	I.R. ${ }^{\text {f }}$		1.10	1.95	2.76	3.32	3.52	3.23	2.71	1.84
	Total ${ }^{\text {g }}$	-75.72 ± 1.31	76.77	23.00	27.75	31.51	34.23	37.60	39.63	42.68
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{\text {- }}$	TVR ${ }^{\text {d }}$		61.74	13.44	16.54	19.52	22.16	26.41	29.63	34.67
(3)*	I.R. ${ }^{\text {e }}$		4.59	2.08	1.98	1.82	1.67	1.45	1.31	1.15
	Total ${ }^{\mathrm{g}}$	-3.90 ± 1.27	66.33	15.52	18.52	21.34	23.83	27.86	30.94	35.82
$\mathrm{CH}_{3} \mathrm{CHClO}{ }^{\text {- }}$	TVR ${ }^{\text {d }}$		69.42	16.06	19.51	22.52	25.01	28.80	31.56	35.80
(3)*	I.R. ${ }^{\text {e }}$		4.21	2.07	1.96	1.90	1.84	1.73	1.63	1.42
	Total ${ }^{\mathrm{g}}$	-14.79 ± 2.90	73.63	18.13	21.47	24.42	26.85	30.53	33.19	37.22
$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\text {- }}$	TVR ${ }^{\text {d }}$		74.74	20.14	23.37	26.02	28.14	31.32	33.58	37.00
(3)*	I.R. ${ }^{\text {e }}$		4.19	2.07	2.18	2.14	2.04	1.80	1.60	1.31
	Total ${ }^{\text {g }}$	-21.85 ± 2.82	78.93	22.21	25.55	28.16	30.18	33.12	35.18	38.31
$\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$	TVR		60.39	12.30	15.28	18.11	20.58	24.54	27.55	32.42
(3)*	$\text { I.R. }{ }^{\mathrm{e}}$		5.22	1.57	1.42	1.32	1.25	1.16	1.11	1.05
	I.R. ${ }^{\text {f }}$		3.31	1.52	1.66	1.70	1.69	1.60	1.49	1.30
	Total ${ }^{\text {g }}$	-13.34 ± 0.84	68.92	15.39	18.36	21.13	23.52	27.30	30.15	34.77
$\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$	TVR ${ }^{\text {d }}$		67.03	15.00	18.14	20.91	23.23	26.80	29.43	33.57
(3)*	I.R. ${ }^{\text {e }}$		4.84	2.06	1.88	1.69	1.54	1.35	1.24	1.11
	I.R. ${ }^{\text {f }}$		1.25	2.18	2.99	3.41	3.45	2.98	2.45	1.68
	Total ${ }^{\text {g }}$	-25.89 ± 2.13	73.26	19.24	23.01	26.02	28.22	31.13	33.12	36.36
$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$	TVR ${ }^{\text {d }}$		60.84	12.94	15.97	18.77	21.17	24.99	27.88	32.58
(1)* ${ }^{\text {a }}$	$\text { I.R. }{ }^{\text {e }}$		4.86	1.42	1.29	1.21	1.15	1.09	1.06	1.02
	I.R. ${ }^{\text {f }}$		3.36	2.28	2.09	1.84	1.65	1.40	1.27	1.12
	Total ${ }^{\text {g }}$	-5.70 ± 0.85	69.06	16.64	19.35	21.82	23.97	27.48	30.21	34.72
$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$	TVR ${ }^{\text {d }}$		71.40	16.06	19.26	21.94	24.10	27.37	29.78	33.67
$(1)^{* a}$	I.R. ${ }^{\text {e }}$		3.21	2.05	2.27	2.34	2.30	2.09	1.86	1.48
$(2)^{\wedge}$	I.R. ${ }^{\text {f }}$		2.40	2.18	2.27	2.28	2.24	2.07	1.88	1.53
	Total ${ }^{\text {g }}$	-17.51 ± 2.13	78.33	20.29	23.80	26.56	28.64	31.53	33.52	36.68
$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$	TVR ${ }^{\text {d }}$		74.63	20.01	23.29	25.72	27.57	30.20	32.06	35.04
(2)*	I.R. ${ }^{\text {e }}$		4.13	1.79	1.82	1.76	1.68	1.52	1.39	1.21
	I.R. ${ }^{\text {f }}$		1.31	2.07	2.80	3.24	3.34	2.99	2.51	1.74
	Total ${ }^{g}$	-23.79 ± 2.13	80.30	23.87	27.90	30.72	32.59	34.71	35.96	37.99

${ }^{\mathrm{a}}$ Thermodynamic properties are referred to a standard state of an ideal gas of at 1 atm .
${ }^{\mathrm{b}}$ Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{c}}$ Units in $\mathrm{cal} / \mathrm{mol} / \mathrm{K}$. ${ }^{\mathrm{d}}$ The sum of contributions from translations, external rotations, and vibrations. ${ }^{\mathrm{e}}$ Contribution from internal rotation about the $\mathrm{C}-\mathrm{C}$ bond. ${ }^{\mathrm{f}}$ Contribution from internal rotation about the $\mathrm{C}-\mathrm{O}$ bond. ${ }^{\mathrm{g}}$ Symmetry number is taken into account ($-\mathrm{R} \ln$ (symmetry number)). * Symmetry number. ${ }^{*}{ }^{\text {a }}-\mathrm{CH}_{2}$ group is not planar. ${ }^{\wedge}$ Optical isomer number.

Table 2.6 Harmonic Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$

species											moments of inertia amu-Bohr ${ }^{\wedge} 2$	
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	270.2	317.1	420.1	807.4	892.8	1066.5	1082.6	1144.9	1288.0	1387.9	1412.4	52.5
	1432.9	1504.1	1508.0	1532.7	2987.0	3035.4	3082.5	3106.5	3127.0	3830.3		197.4
$\mathrm{CH}_{3} \mathrm{CHClOH}$												223.2
	249.1	310.2	356.2	438.7	481.0	604.3	927.3	1033.5	1074.1	1182.5	1298.1	200.8
	1304.0	1411.5	1463.3	1495.9	1502.1	3064.6	3077.6	3143.2	3167.6	3809.2		407.2
$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$												562.0
	255.7	260.5		361.9	372.9	427.8	478.3	557.9	655.6	965.5	1055.4	484.3
	1099.7	1236.8	1373	1431.3	1494.2	1492.6	3077.5	3157.9	3186.6	3788.3		728.3
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$ -												861.3
	199.2	333.0	434.0	870.5	896.2	1084.7	1100.9	1244.1	1354.8	1398.6	1420.6	45.7
	1501.1	1511.2	2896.4	2926.9	3049.2	3123.0	3133.9					189.5
$\mathrm{CH}_{3} \mathrm{CHClO}{ }^{\text {- }}$												213.0
	234.7	312.0	345.6	374.7	597.4	903.8	917.9	1019.5	1151.1	1175.3	1204.7	186.5
	1400.3	1487.3	1499.3	2950.4	3075.2	3166.2	3180.3					407.2
$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\text {- }}$												552.6
	198.9			339.3				588.6	930.0	1023.3	1086.3	447.8
	1243.4	1409.0	1485.6	1489.6	3072.7	3158.3	3178.1					737.1
$\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$												861.6
	200.7	355.0	407.4	603.1	920.4	1025.8	1064.8	1208.4	1319.8	1410.0	1448.5	40.7
		1502.5		3024.8	3114.6	3196.2	3801.4					192.6
$\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$												220.0
	193.0	318.1	378.5	391.0	472.5	587.4	961.2	1051.1	1057.2	1267.9	1358.1	192.1
	1424.1	1483	1492.9	3013.6	3103	3154.5	3793.4					388.7
$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$												560.4
	155.2	276.2	401.3	458.2	865.7	967.8	1071.6	1124.1	1221.4	1276.8	1430.8	45.0
	1475.6	1510.3	2876.7	2945.5	3173.4	3286.4	3822.8					180.6
$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}$												212.7
	246.8	266.0	314.4	425.1	448.3	508.5	666.5	938.4	1072.1	1163.4	1234.6	192.2
	1299.5	1436.1	1506.7	3113.3	3188.6	3306.9	3810.3					413.8
$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$												560.9
	16.1	247.6	250.9	345.4	372.9	414.9	449.8	539.2	556.2	665.6	957.3	471.5
	1056.9	1241.6		1458.0	3199.8	3330.3	3797.2					718.7
												854.6

The two lowest frequencies (one in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{\bullet}, \mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}$ and $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\bullet}$) are omitted in calculation of $S^{\circ}{ }_{298}$ and $C_{p}\left(T^{\prime}\right)^{\prime}$'s; but their contributions are placed by values from analysis of the internal rotations. TVR, represent the sum of the contributions from translation, vibration and external rotation for S_{298}^{0} and $C_{p}(T)$'s. I.R., represent the contributions from hindered internal rotations about $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds for $S^{0}{ }_{298}$ and $C_{p}(T)$'s. The calculations are based on optimized geometries and rotational potential
curves from the B3LYP/6-31G(d,p) data. There are differences in barrier height calculated at the B3LYP/6-31G(d,p) and the MP2(FULL)/6-31G(d) levels of theory, as discussed in the rotation barrier section. The resulting differences in $S^{0}{ }_{298}$ and $C_{p}(T)$'s are however small. In the most extreme case, the barrier height varies by $2 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$ in the two calculations.

The resulting difference in the contribution to $S^{0}{ }_{298}$ is ca. $0.7 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$, and the maximum difference for the contribution to $C_{p}(T)$'s is ca. $0.5 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$. This indicates that the maximum error for the contribution to $S^{0}{ }_{298}$ and $C_{p}(T)$'s from one internal rotor is less than $0.7 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$.

2.3.5 Group Additivity Values

Group additivity ${ }^{64}$ is a straightforward and reasonably accurate calculation method to estimate thermodynamic properties of hydrocarbons and oxygenated hydrocarbons; it is particularly useful for application to larger molecules and codes or databases for thermochemical properties and reaction mechanism generation. The $\mathrm{C} / \mathrm{C} / \mathrm{Cl} / \mathrm{H} / \mathrm{O}$ and $\mathrm{C} / \mathrm{C}^{2} \mathrm{Cl}_{2} / \mathrm{O}$ group values are derived from the thermodynamic property data of $\mathrm{CH}_{3} \mathrm{CHClOH}$ and $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}$ respectively. The group values for $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ and $C_{p}{ }^{\prime}$ s of $\mathrm{C} / \mathrm{C} / \mathrm{Cl} / \mathrm{H} / \mathrm{O}$ are calculated on the basis of:

$$
\left(\mathrm{CH}_{3} \mathrm{CHClOH}\right)=(\mathrm{C} / \mathrm{C} / \mathrm{Cl} / \mathrm{H} / \mathrm{O})+\left(\mathrm{C} / \mathrm{C} / \mathrm{H}_{3}\right)+(\mathrm{O} / \mathrm{C} / \mathrm{H})
$$

and $\mathrm{S}^{0}{ }_{298}$ of $\mathrm{C} / \mathrm{C} / \mathrm{Cl} / \mathrm{H} / \mathrm{O}$ is calculated on the basis of:

$$
\left(\mathrm{CH}_{3} \mathrm{CHClOH}\right)=(\mathrm{C} / \mathrm{C} / \mathrm{Cl} / \mathrm{H} / \mathrm{O})+\left(\mathrm{C} / \mathrm{C} / \mathrm{H}_{3}\right)+(\mathrm{O} / \mathrm{C} / \mathrm{H})+\mathrm{R} \ln (\mathrm{OI})-\mathrm{R} \ln (\sigma)
$$

where $\mathrm{R}=1.987 \mathrm{cal} / \mathrm{mol} \mathrm{K}$, OI stands for optical isomer number and σ symmetry number. The group values of $\mathrm{C} / \mathrm{C} / \mathrm{Cl}_{2} / \mathrm{O}$ are estimated in the same manner. The
thermochemical properties on $\mathrm{C} / \mathrm{C} / \mathrm{H}_{3}$ and $\mathrm{O} / \mathrm{C} / \mathrm{H}$ group are taken from the existing literature value. ${ }^{65}$ The two derived carbon-chlorine-oxygen group values are listed in Table 2.6, which shows that the group values for $\Delta H_{\mathrm{f}}{ }^{0} 298$ decrease with increased number of chlorine atom.

Table 2.7 Group Values

Groups	$\Delta H_{\mathrm{f} 298{ }^{\mathrm{o}}}{ }^{\mathrm{o}}$	$S_{298}{ }^{\mathrm{b}}$	$C_{p} 300^{\mathrm{b}}$	$C_{p} 400$	$C_{p} 500$	$C_{p} 600$	$C_{p} 800$	$C_{p} 1000$	$C_{p} 1500$
$\mathrm{C} / \mathrm{C} / \mathrm{H}_{3}{ }^{55}$	-10.20	30.41	6.19	7.84	9.40	10.79	13.02	14.77	17.58
$\mathrm{O} / \mathrm{C} / \mathrm{H}^{65}$	-37.90	29.07	4.30	4.50	4.82	5.23	6.02	6.61	7.44
$\mathrm{C} / \mathrm{C} / \mathrm{Cl} / \mathrm{H} / \mathrm{O}$	-20.53	16.54	8.63	10.81	12.34	13.29	14.35	14.93	15.86
$\mathrm{C} / \mathrm{C} / \mathrm{Cl}_{2} / \mathrm{O}$	-27.62	19.47	12.51	15.41	17.29	18.21	18.56	18.25	17.66

${ }^{\mathrm{a}}$ Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{b}}$ Units in $\mathrm{cal} / \mathrm{mol}-\mathrm{K}$.

2.3.6 Hydrogen Bond Increment Group Values

A method to estimate thermochemical properties for radicals from the corresponding properties of the parent with a H atom bonded to the radical site using a single group to modify the parent properties (hydrogen bond increment (HBI) group) has been reported by Lay et al. ${ }^{66}$ A HBI group for $\Delta H_{\mathrm{f}}{ }^{0} 298$ reflects the enthalpy change due to loss of a H atom ${ }^{66}$ from a stable parent molecule in the form of the $\mathrm{R}-\mathrm{H}$ bond energy. Hydrogen Bond Increment group values for the chloro-oxy-ethyl radicals are derived using the thermodynamic property data of chloroethoxy and hydroxy-chloroethyl radicals and parent chloroethanols.

As an example, the bond energy of $\mathrm{CH}_{3} \mathrm{CHClO}-\mathrm{H}$ is based on the $\Delta H^{\circ}{ }_{\mathrm{rxn}, 2} 298$ of the homolytic reaction: $\left(\mathrm{CH}_{3} \mathrm{CHClOH}\right)=\left(\mathrm{CH}_{3} \mathrm{CHClO}^{\circ}\right)+\mathrm{H}$
$\Delta S^{\circ}{ }_{298}$ and ΔC_{p} are determined more directly, as the differences in respective properties of the molecule versus the radical in such a way that the HBI values for $S^{\circ}{ }_{298}$ and $C_{p}(T)$ are added to the parent values to form the radical.

$$
\begin{aligned}
& \text { HBI } C_{p}\left(T_{i}\right)\left(\mathrm{CH}_{3} \mathrm{CHClO}^{\circ}\right)=C_{p}\left(T_{i}\right) \mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}-C_{p}\left(T_{i}\right)\left(\mathrm{CH}_{3} \mathrm{CHClOH}\right) \\
& \mathrm{HBI} S^{0}{ }_{298}\left(\mathrm{CH}_{3} \mathrm{CHClO}^{*}\right)=S^{\circ}{ }_{298}\left(\mathrm{CH}_{3} \mathrm{CHClO}^{*}\right)-S^{\circ}{ }_{298}\left(\mathrm{CH}_{3} \mathrm{CHClOH}\right)+\mathrm{R} \ln \left(\sigma_{\mathrm{CH} 3 \mathrm{CHCIO}} / \sigma_{\mathrm{CH} 3 \mathrm{CHClOH}}\right)
\end{aligned}
$$

Effects for changes in symmetry between the radical and parent are not included in the HBI group; but are included in evaluation of the entropy of each species separately. The following species have optical isomer number of two due to the different constituents on the carbon bonded with chlorine: $\mathrm{CH}_{3} \mathrm{CHClOH}, \mathrm{CH}_{3} \mathrm{CHClO}^{\circ}$, and $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CHClOH}$. The HBI values for other radical species are estimated in the same manner as $\mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}$ above and they are listed in Table 2.7.

Table 2.8 Hydrogen Bond Increment (HBI) Group Values

Groups	bond energy ${ }^{2}$	$S_{298}^{b^{b}}$	$C_{p} 300^{6}$	$C_{p} 400$	$C_{p} 500$	$C_{p} 600$	$C_{p} 800$	$C_{p} 1000$	$C_{p} 1500$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{\bullet}$	104.32	0.93	-0.37	-0.77	-1.20	-1.56	-2.11	-2.52	-3.33
$\mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}$	105.94	-1.59	-0.99	-1.68	-2.14	-2.46	-2.86	-3.12	-3.66
$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}$	105.97	2.16	-0.79	-2.20	-3.35	-4.05	-4.48	-4.45	-4.37
$\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$	94.88	2.14	-0.50	-0.93	-1.41	-1.87	-2.67	-3.31	-4.38
$\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$	94.84	-1.96	0.12	-0.14	-0.54	-1.09	-2.26	-3.19	-4.52
$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$	102.52	0.09	0.75	0.06	-0.72	-1.41	-2.48	-3.26	-4.42
$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CHClOH}^{2}$	103.22	0.93	1.17	0.65	0.00	-0.67	-1.86	-2.79	-4.20
$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}_{2} \mathrm{OH}$	104.03	2.73	0.88	0.16	-0.78	-1.64	-2.89	-3.68	-4.69

${ }^{\mathrm{a}}$ Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{b}}$ Units in $\mathrm{cal} / \mathrm{mol}-\mathrm{K}$.

The HBI group values for bond energy of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{\bullet}$ and $\mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}$ are similar to the values of $\mathrm{CH}_{3} \mathrm{O}^{\bullet}$ and $\mathrm{CH}_{2} \mathrm{ClO}^{\bullet}$ derived from previous work, ${ }^{46}$ ca. $105 \mathrm{kcal} / \mathrm{mol}$. The HBI group values for the bond energy of $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$ and $\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$ are similar to those of $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{OH}$ and $\mathrm{C}^{\bullet} \mathrm{HClOH},{ }^{46}$ ca. $95 \mathrm{kcal} / \mathrm{mol}$. The HBI group values of entropy for $\mathrm{CH}_{3} \mathrm{O}^{\bullet}$ and $\mathrm{CCl}_{3} \mathrm{O}^{\bullet}$ are -4.18 and $-0.58 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$ from the previous work, ${ }^{46}$ these two values did not include electronic orbital degeneracy of 2 by $C_{3 v}$ symmetry because the optimized geometries at the B3LYP/6-31G(d,p) level resulted in C_{s} symmetry for the two molecules. The C_{s} symmetry is due to the Jahn-Taller distortion and a vibronic coupling
where the asymmetric vibrational e modes couple to the degenerate E electronic states. ${ }^{67}$ Barckholtz et al. ${ }^{67}$ report that an effective electronic degeneracy of $\mathrm{CH}_{3} \mathrm{O}^{*}$ is 2 because of the dynamic nature of the Jahn-Taller effect and the relatively larger zero-point vibration energy in $\mathrm{CH}_{3} \mathrm{O}^{\circ}$ (degeneracy is in addition to the spin states). When the electronic orbital degeneracy for $\mathrm{CH}_{3} \mathrm{O}^{*}$ and $\mathrm{CCl}_{3} \mathrm{O}^{\bullet}$ is 2 , the $S^{0}{ }_{298}$ for $\mathrm{CCl}_{3} \mathrm{O}^{*}$ is $80.41 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$ rather than $79.03 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$, and the HBI group values for entropy of $\mathrm{CH}_{3} \mathrm{O}^{\circ}$ and $\mathrm{CCl}_{3} \mathrm{O}^{\circ}$ are 2.80 and $0.80 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$. For $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{\circ}$, the substitution of a hydrogen in $\mathrm{CH}_{3} \mathrm{O}^{\circ}$ with a methyl group perturbs the $\mathrm{C}_{3 v}$ geometry and thus slightly lifts the electronic degeneracy present in $\mathrm{CH}_{3} \mathrm{O}^{\circ}$. At room temperature, the HBI group value of entropy for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{\circ}$ is $-0.45 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$ without the electronic orbital degeneracy. However, Ramond et al. ${ }^{68}$ report that the splitting between the ground $\tilde{\mathrm{A}}^{2} \mathrm{~A}^{\prime \prime}$ and the first $\tilde{X}^{2} \mathrm{~A}^{\prime}$ excited states of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$ - is very small, $355 \pm 10 \mathrm{~cm}^{-1}$. The effective electronic degeneracy of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{\bullet}$ at room temperature can then be considered as 2 , and this gives the HBI group values of entropy for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{*}$ is $0.93 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$. The electronic degeneracy present in $\mathrm{CH}_{3} \mathrm{O}^{\bullet}$ for $\mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}$ and $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{O}^{\bullet}$ radicals will be removed by the orbital splitting.

2.4α-Chlorinated Propanol and Radicals

2.4.1 Geometries

The optimized geometric parameters along with vibrational frequencies and moments of inertia for six target species are presented in the Appendix (Table A.3). The lowest energy conformations of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\circ}$ and $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ exhibit the
anomeric effect, i.e., a delocalization of the lone pair electron on the oxygen with the antibonding σ^{*} orbital of the $\mathrm{C}-\mathrm{Cl}$ bond. Due to the anomeric effect, the $\mathrm{C}-\mathrm{O}$ bond length decreases significantly with chlorine substitution $\left(1.4296 \AA\right.$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$, $1.3843 \AA$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH} ; 1.3749 \AA$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}^{\bullet}, 1.3178 \AA$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\bullet} ; 1.4354$ \AA in $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $1.3674 \AA$ in $\left.\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}\right)$. The anomeric effect can also be seen in the $\mathrm{C}-\mathrm{Cl}$ bond length, which is longer than a normal $\mathrm{C}-\mathrm{Cl}$ bond $\left(1.8995 \AA\right.$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}, 1.9094 \AA$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\bullet}, 2.0598 \AA$ in $\left.\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}\right)$ as predicted by the DFT calculations. The $\mathrm{C}-\mathrm{Cl}$ bond in $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ is $0.1 \AA$ longer than in the other two chloro species due to hyperconjugation between $-\mathrm{CH}_{2}{ }^{\bullet}$ center and the $\sigma^{*}(\mathrm{C}-\mathrm{Cl})$ molecular orbital in its lowest energy conformer. Because $\mathrm{p}-\pi$ orbital overlap implies transfer of electron density, the $\mathrm{C}-\mathrm{Cl}$ bond becomes weaker and longer, while the $\mathrm{C}-\mathrm{C}$ bond gets stronger and shorter. The $\mathrm{C}-\mathrm{C}$ bond length in $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ is $1.44 \AA$ which shorter than the normal, $1.53 \AA$. The MP2(full)/6$31 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ geometry optimization predicts tight structures for these species, and gives the $\mathrm{C}-\mathrm{Cl}$ bond length $1.8299 \AA, 1.8294 \AA$, and $1.8640 \AA$, respectively; these data also suggest that an anomeric effect and hyperconjugation exist in these species.

The DFT calculations predict a non-planar structure for $-\mathrm{C}^{\circ} \mathrm{H}_{2}$ group in 2-hydroxy-propyl and 2-chloro-2-hydroxy-propyl radicals, where the inversion frequencies for the methylene group are 566.0 and $672.8 \mathrm{~cm}^{-1}$, respectively. The density functional optimized geometry for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ gives the $\angle \mathrm{H}_{\mathrm{c}}-\mathrm{C}-\mathrm{O}-\mathrm{H}_{0}$ dihedral angle 180.0°, indicating that there is a mirror plane between the two methyl groups, i.e., C_{s} symmetry in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$. The density functional structure also predicts C_{s} symmetry in
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}{ }^{\circ}$. The symmetry number is assigned as 18 for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}{ }^{\circ}$ on the basis of these data.

2.4.2 Rotational Barriers

Potential energy as a function of torsion angle was determined by scanning the dihedral angles from 0° to 360° at 15° increments and allowing the remaining molecular structural parameters to be optimized at the B3LYP/6-31G(d,p) level. The $\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ is an exception, here the $\mathrm{C}-\mathrm{Cl}$ bond length was constrained when scanning the $\mathrm{H}_{\mathrm{c}}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ and C-C-O-H dihedral angles in $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$. This is a result of the weak $\mathrm{C}-\mathrm{Cl}$ bond in this radical; it requires only $18 \mathrm{kcal} / \mathrm{mol}$ for β-scission to form 2-hydroxy propene +Cl atom. The barrier of a given rotation was then calculated as the difference between the highest points on the potential energy surface and the corresponding most stable conformer. The geometries at the points of minima and maxima were fully optimized when possible.

The calculated rotational barriers about the $\mathrm{CH}_{3}-\mathrm{C}_{\mathrm{sp} 3}$ bond of the six target species are shown in Figure 2.6. All the curves for $\mathrm{C}_{\mathrm{sp} 3} \mathrm{C}_{\mathrm{sp} 3}$ torsion potential are symmetric and show a 3 -fold symmetry with barriers between 2.72 and $4.26 \mathrm{kcal} / \mathrm{mol}$. The barriers for the $\mathrm{CH}_{3}-\mathrm{C}_{\mathrm{sp} 3}$ torsion of chloro-substituted species are higher than those of nonchlorinated species and the barriers for stable parent are higher than those of the corresponding radicals probably due to reduced steric effect by the radical carbon groups. Two $\mathrm{C}_{\mathrm{sp} 3}-\mathrm{C}_{\mathrm{sp} 3}$ rotational curves for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}$ are shown in Figure 2.6, and one is $0.55 \mathrm{kcal} / \mathrm{mol}$ higher than the other because the hydroxyl H atom orients toward one methyl group resulting in a steric interaction.

Figure 2.6 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{C}$ bond of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}^{\bullet},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\bullet}, \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$.

Figure 2.7 shows the two-fold rotational barriers about the $\mathrm{CH}_{2}-\mathrm{C}_{\text {sp } 3}$ bond for the $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ and the $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ radicals. The $\mathrm{H}--\mathrm{OH}$ eclipsed conformer of $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ has the lowest energy due to the interaction between the H atom in CH_{2} group and the O atom (interatomic distance is $2.528 \AA$). The barrier height for $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ is $3.6 \mathrm{kcal} / \mathrm{mol}$ higher than that of $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$, probably still due to the electrostatic interaction between the Cl atom and the H atom on the $-\mathrm{C}^{\bullet} \mathrm{H}_{2}$ group (the interatomic distance $2.83 \AA$) on the barrier top.

Figure 2.7 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$.

Figure 2.8 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}, \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$.

The calculated rotational barriers about the $\mathrm{C}-\mathrm{O}$ bond of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}$, $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$, and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ are shown in Figure 2.8. There are three conformers in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$; two are the $\mathrm{H}_{0}-\mathrm{H}_{\alpha}$ gauche conformers (subscript " o " stands for oxygen atom), and one is the $\mathrm{H}_{0}-\mathrm{H}_{\alpha}$ anti conformer. The energy for the $\mathrm{H}_{0}-$ H_{α} anti conformer is only $0.08 \mathrm{kcal} / \mathrm{mol}$ lower than that of the $\mathrm{H}_{0}-\mathrm{H}_{\alpha}$ gauche conformer, so the three conformers should be equally populated at room temperature. For $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$, there are two $\mathrm{H}_{0}-\mathrm{CH}_{2}$ gauche conformers and one $\mathrm{H}_{0}-\mathrm{CH}_{2}$ anti conformer. The energy for the $\mathrm{H}_{0}-\mathrm{CH}_{2}$ anti conformer is $1.16 \mathrm{kcal} / \mathrm{mol}$ higher than that of $\mathrm{H}_{0}-\mathrm{CH}_{2}$ gauche conformer. For $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$, the $\mathrm{H}_{0}-\mathrm{CH}_{2}$ gauche conformer is 0.29 $\mathrm{kcal} / \mathrm{mol}$ higher than that of the $\mathrm{H}_{0}-\mathrm{CH}_{2}$ anti conformer. The maxima on the potential curves of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}$ and $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ correspond to the structures where the hydroxyl H atom is anti to the Cl atom on the α-carbon due to anomeric effects. This phenomenon is similar to those in the chloromethanol and chloroethanol observed in the previous study. ${ }^{46,59}$

2.4.3 Enthalpy of Formation

The total electronic energies are determined at the B3LYP/6-31G(d,p), B3LYP/6$311+G(3 \mathrm{df}, 2 \mathrm{p})$ and $\mathrm{CBSQ} / / \mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ levels for chloropropanol and corresponding radicals. The spin expectation values, $\left\langle\mathrm{S}^{2}\right\rangle$, range from 0.760 to 0.786 for the target radicals, and suggest no significant error for pure doublet radicals due to spin contamination.

The $\Delta H_{f}{ }^{0}{ }_{298}$ values are estimated using total energies and isodesmic reactions. The accuracy of the enthalpies of formation obtained theoretically is controlled by several
factors: the level of sophistication applied to calculate the electronic energy, the reliability of the $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ of the reference compounds, the uncertainty of the ZPVEs and the thermal corrections, and the choice of the isodesmic reactions. The uncertainty of ZPVEs and thermal correction are small relative to other errors. Scott and Radom ${ }^{42}$ report rms errors $\pm 0.1 \mathrm{kcal} / \mathrm{mol}$ for ZPVE after scaling 0.9806 for B3LYP/6-31G(d) and rms errors of $\pm 0.01 \mathrm{kcal} / \mathrm{mol}$ for thermal correction from 0 to 298 K in DFT. We assume that the uncertainty from ZPVEs and the thermal correction in our calculation have the same error ranges and assign the cumulative ZPVEs and the thermal energy uncertainties to be $0.44 \mathrm{kcal} / \mathrm{mol}$ in an isodesmic reaction. The reaction enthalpies and $\Delta H_{\mathrm{f} 298}^{0}$ values for 6 target species obtained from 8 isodesmic reactions are tabulated in Table A.4. The results for $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ values in Table A. 4 show good consistency for 6 target species over eight working reactions and the three calculation methods. DFT calculations show good agreement with the high level ab initio calculations, indicating the errors inherent in computations for different types of molecule are canceled to a significant extent and lead to reliable results. Ab initio calculations show remarkable consistency at the CBSQ//B3 level where the standard deviation is within $0.3 \mathrm{kcal} / \mathrm{mol}$. The $\Delta H_{\mathrm{f}}{ }^{0} 298$ values for target radicals are based on the $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ values of the parent molecules in this work. The calculated $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ in this work is $-69.19 \mathrm{kal} / \mathrm{mol}$, which is similar to the results of Atkinson et al., ${ }^{69}-65.15$; Frenkel et al., ${ }^{50}-65.18$, Snelson et al., ${ }^{70}-65.19$, and Cohen, ${ }^{71}-65.20 \mathrm{kal} / \mathrm{mol}$. The $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{298}$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}^{\bullet}$ are calculated to be -11.87 $\mathrm{kal} / \mathrm{mol}$ at the $\mathrm{CBSQ} / / \mathrm{B} 3$ level, which shows agreement with Ramond et al.'s value, $11.0 \pm 1.2 \mathrm{kcal} / \mathrm{mol},{ }^{68}$ which derived from the $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ and electron affinities.

The recommended $\Delta H_{\mathrm{f}_{2}}^{\mathrm{o}}$. for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}^{\bullet}, \mathrm{C}^{\bullet} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CHOH}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}$ and $\mathrm{C}^{\circ} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ are $-69.19 \pm 2.2,-11.85 \pm 1.9,-$ $14.95 \pm 2.8,-79.83 \pm 2.1,-25.88 \pm 2.0$, and $-29.00 \pm 2.8 \mathrm{kcal} / \mathrm{mol}$, respectively, which are the average values from eight reactions for each species at the CBSQ//B3 calculation level, where the statistical distribution of rotational conformers is included.

The $\mathrm{RO}-\mathrm{H}, \mathrm{R}-\mathrm{OH}, \mathrm{R}-\mathrm{H}$ and $\mathrm{R}-\mathrm{Cl}$ bond dissociation energies in Table 2.8 were calculated using the $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ values and the $\Delta H_{\mathrm{f}}^{\circ} 298$ of reference radicals. These bond energies are very similar to those derived from chloromethanol and α-chloroethanol in previous work, ${ }^{46,59}$ and a comparison for these bond energies derived from monochloroalcohols is listed in Table 2.9. Bond energies on isopropanol for the methyl hydrogens are $102 \mathrm{kcal} / \mathrm{mol}$, and the hydroxyl hydrogen bond energy is $105 \mathrm{kcal} / \mathrm{mol}$. Bond energies in 2-chloro-2-propanol are $103 \mathrm{kcal} / \mathrm{mol}$ for the methyl hydrogens and $106 \mathrm{kcal} / \mathrm{mol}$ for the hydroxyl hydrogen.

Table 2.9 Bond Energies

reaction series	bond energy (kcal/mol)
RO-H	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}{ }^{\bullet}+\mathrm{H}^{\bullet}$	105.44
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}{ }^{+}+\mathrm{H}^{*}$	106.05
$\mathrm{R}_{\beta}-\mathrm{H}$	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH} \longrightarrow \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{H}^{+}$	102.34
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH} \longrightarrow \mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{H}^{\bullet}$	102.93
$\mathrm{R}-\mathrm{Cl}$	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}^{\circ} \mathrm{OH}+\mathrm{Cl}{ }^{\bullet}$	83.15
$\mathrm{R}-\mathrm{ROH}$	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH} \longrightarrow \mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}+\mathrm{CH}_{3}{ }^{\text { }}$	86.67
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH} \longrightarrow \mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}+\mathrm{CH}_{3}{ }^{\text {- }}$	88.76
$\mathrm{R}-\mathrm{OH}$	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}^{\circ} \mathrm{H}+\mathrm{OH}^{\bullet}$	96.15
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}^{\circ} \mathrm{Cl}+\mathrm{OH}^{+}$	95.94

Table 2.10 Bond Energy Derived from Monochloro-Alcohols

species	bond energy $(\mathrm{kcal} / \mathrm{mol})$					
	RO-H	$\mathrm{R}-\mathrm{OH}$	$\mathrm{R}-\mathrm{Cl}$	$\mathrm{R}-\mathrm{ROH}$	$\mathrm{R}_{\alpha}-\mathrm{H}$	$\mathrm{R}_{\beta}-\mathrm{H}$
$\mathrm{CH}_{3} \mathrm{OH}$	104.28	92.33	$*$	$*$	96.21	$*$
$\mathrm{CH}_{2} \mathrm{ClOH}$	105.04	95.20	83.02	$*$	95.71	$*$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	104.32	94.35	$*$	86.97	94.88	102.52
$\mathrm{CH}_{3} \mathrm{CHClOH}$	105.94	97.21	84.21	88.99	94.84	103.22
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$	105.44	96.15	$*$	86.67	91.69	102.34
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}$	106.05	95.94	83.15	88.76	$*$	102.93

*Bond does not exist.

2.4.4 Entropy and Heat Capacity

The $S^{\circ}{ }_{298}$ and $C_{p}(T)$'s ($300 \leq \mathrm{T} / \mathrm{K} \leq 1500$) calculation results using the B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ geometries and harmonic frequencies are summarized in Table 2.9. The torsion frequencies are omitted in the calculation of S_{298}^{0} and $C_{p}(\mathrm{~T})$; but we replace their contributions with values from analysis of the internal rotations. TVR, represents the sum of the contributions from translation, vibration and external rotation for $S^{\circ}{ }_{298}$ and $C_{p}(T)$'s and was calculated using the program "SMCPS". ${ }^{72}$ I. R., represents the contributions from hindered internal rotations about $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds for $S^{0}{ }_{298}$ and $C_{p}(T)$ and was calculated by the program "ROTATOR"."

This calculation is based on an optimized 3D atom coordinate for the lowest energy conformer, the respective connection to atoms of the bond about which rotation is occurring, and the coefficients of the Fourier expansion components from rotational potential curves.

The $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ radicals have an optical isomer number of two due to the different constituents on the central carbon. The thermochemical properties of 2-propanol in Table 2.9 show agreement with the values
calculated by Chao ${ }^{50}$ at TRC using the methods of statistical thermodynamics based on spectral data.

Table 2.11 Ideal Gas-Phase Thermodynamic Properties ${ }^{\text {a }}$

species		$\Delta H_{f}{ }^{\circ} 298{ }^{\text {b }}$	$S^{\circ}{ }_{298}{ }^{\text {c }}$	$C_{p} 300{ }^{\text {c }}$	$C_{p} 400$	$C_{P} 500$	$C_{p} 600$	$C_{p} 800$	$C_{p} 100$	$C_{p} 1500$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$	TVR ${ }^{\text {d }}$		60.44	15.86	20.86	25.64	29.83	36.56	41.65	49.75
$(18)^{\text {h }}$	I.R. ${ }^{\text {e }}$		4.21	2.23	2.25	2.16	2.02	1.69	1.40	0.89
	I.R. ${ }^{\text {e }}$		4.22	2.04	2.14	2.09	1.98	1.74	1.56	1.29
	I.R. ${ }^{\text {f }}$		4.02	1.58	1.45	1.34	1.26	1.16	1.11	1.05
	Total ${ }^{8}$	-65.19 ± 2.2	72.89	21.71	26.70	31.23	35.09	41.15	45.71	52.98
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}$	TVR ${ }^{\text {d }}$		67.81	19.56	24.65	29.23	33.12	39.23	43.77	50.99
$(9)^{\mathrm{h}}$	I.R. ${ }^{\text {e }}$		4.16	2.04	2.14	2.11	2.01	1.78	1.59	1.31
	I.R. ${ }^{\text {e }}$		3.99	1.97	2.13	2.16	2.10	1.90	1.71	1.39
	I.R. ${ }^{\text {f }}$		2.46	1.71	1.98	2.10	2.13	2.04	1.89	1.56
	Total ${ }^{\text {g }}$	-79.83 ± 2.1	78.43	25.27	30.91	35.60	39.37	44.95	48.96	55.26
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}{ }^{-}$	TVR ${ }^{\text {d }}$		61.94	16.19	21.08	25.61	29.51	35.69	40.30	47.50
$(18)^{\text {h }}$	I.R. ${ }^{\text {e }}$		4.52	2.23	2.13	1.96	1.79	1.53	1.36	1.08
	I.R. ${ }^{\text {f }}$		4.52	2.23	2.13	1.96	1.79	1.53	1.36	1.08
	Total ${ }^{\text {g }}$	-11.85 ± 1.9	70.98	20.66	25.34	29.52	33.09	38.75	43.02	49.66
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}{ }^{\circ}$	TVR ${ }^{\text {d }}$		70.57	20.45	25.19	29.37	32.88	38.33	42.36	48.66
$(9)^{\text {h }}$	$\text { I.R. }{ }^{\text {e }}$		5.31	2.19	2.23	2.15	2.02	1.75	1.53	1.14
	$\text { I.R. }{ }^{\text {f }}$		5.31	2.19	2.23	2.15	2.02	1.75	1.53	1.14
	Total ${ }^{\text {g }}$	-25.88 +2.0	81.18	24.84	29.65	33.67	36.92	41.84	45.42	50.93
$\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	TVR ${ }^{\text {d }}$		67.05	16.54	21.14	25.3	28.84	34.43	38.65	45.45
(3) ${ }^{\text {h }}$	I.R. ${ }^{\text {e }}$		4.64	1.74	1.54	1.39	1.29	1.18	1.12	1.05
(2) ${ }^{\text {i }}$	I.R. ${ }^{\text {e }}$		4.24	2.07	2.15	2.09	1.97	1.73	1.54	1.28
	I.R. ${ }^{\text {f }}$		3.49	2.19	1.97	1.75	1.58	1.36	1.24	1.11
	Total ${ }^{\text {g }}$	-14.95士2.8	81.19	22.54	26.79	30.53	33.69	38.70	42.55	48.90
$\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$	TVR ${ }^{\text {d }}$		73.44	20.21	24.81	28.72	31.95	36.94	40.65	46.61
$(3)^{h}$	I.R. ${ }^{\text {e }}$		4.07	2.01	2.16	2.17	2.10	1.89	1.69	1.38
(2) ${ }^{i}$	I.R. ${ }^{\text {e }}$		2.89	2.00	2.33	2.49	2.51	2.33	2.08	1.61
	I.R. ${ }^{\text {f }}$		3.44	2.16	2.20	2.19	2.16	2.06	1.93	1.65
	Total ${ }^{5}$	-29.00 ± 2.8	85.15	26.38	31.49	35.57	38.72	43.22	46.35	51.25

${ }^{\mathrm{a}}$ Thermodynamic properties are referred to a standard state of an ideal gas of at 1 atm . ${ }^{\mathrm{b}}$ Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{c}}$ Units in $\mathrm{cal} / \mathrm{mol} / \mathrm{K}$. ${ }^{\mathrm{d}}$ The sum of contributions from translations, vibrations, and external rotations. ${ }^{e}$ Contribution from internal rotation about the $\mathrm{C}-\mathrm{C}$ bond. ${ }^{\mathrm{f}}$ Contribution from internal rotation about the C - O bond. ${ }^{\mathrm{g}}$ Symmetry number is taken into account (-Rln(symmetry number)). ${ }^{\mathrm{h}}$ Symmetry number. ${ }^{\text {i }}$ Optical isomer number. $-\mathrm{CH}_{2}$ group is not planar, and the standard entropies include the entropy of mixing of rotational conformations or optical conformations.

2.4.5 Relative Stability of the Alkyl and Alkoxy Radicals

The $\mathrm{C}-\mathrm{Cl}$ bond is usually ca. $10 \mathrm{kcal} / \mathrm{mol}$ weaker than the $\mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{H}$ bonds and this should lead to interesting stabilities for the intermediate chloro-radicals in the atmosphere. Reaction scheme 1 shows the $\Delta H^{0}{ }_{\mathrm{rxn}}$ and E_{a} for the two non-chlorinated alkyl radicals undergoing β-scission to eliminate a methyl or an OH radical; the isopropoxy radical dissociation to $\mathrm{CH}_{3} \mathrm{CHO}$ and methyl has a lower $\Delta H^{\circ}{ }_{\mathrm{rxn}}$ value with the transition state lying $13.22 \mathrm{kcal} / \mathrm{mol}$ above $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}^{\circ}$ calculated at the $\mathrm{CBSQ} / / \mathrm{B} 3$ level.

Reaction Scheme 1

$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2}=\mathrm{CHCH}_{3}+\mathrm{OH}^{\bullet}$

$$
\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \rightarrow \text { syn }-\mathrm{CH}_{2}=\mathrm{CHOH}+\mathrm{CH}_{3}{ }^{\bullet}
$$

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}^{\bullet} \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CH}_{3}{ }^{\bullet}$

$$
\Delta H_{\mathrm{rxn}}^{0}(\mathrm{kcal} / \mathrm{mol}) \quad \mathrm{E}_{\mathrm{a}}(\mathrm{kcal} / \mathrm{mol})
$$

$$
28.62
$$

19.18
29.02 (CBSQ)
6.97
13.22 (CBSQ)

Reaction scheme 2 shows the $\Delta H_{\mathrm{rxn}}^{0}$ and E_{a} for Cl elimination from one secondary chlorocarbon radical where $\Delta H_{\mathrm{rxn}}^{0}$ is $18 \mathrm{kcal} / \mathrm{mol}$, but the chloro-isopropoxy radical has a similar bond strength for $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{CH}_{3}$.

Reaction Scheme 2

	$\Delta H_{\mathrm{rxn}}^{\circ}(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{E}_{\mathrm{a}}(\mathrm{kcal} / \mathrm{mol})$
$\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2}=\mathrm{C}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{Cl}^{\bullet}$	18.01	18.01
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO} \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{Cl}^{\bullet}$	2.57	2.57
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\bullet} \rightarrow \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{Cl}+\mathrm{CH}_{3}^{\bullet}$	2.67	$10.75(\mathrm{CBSQ})$

The alkyl-alkoxy and chloroalkoxy radical systems are both unstable with short atmospheric lifetimes. We note that there is no barrier (above the $\Delta H_{r \times n}^{0}$) for the Cl elimination reaction of $\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}$ and its half-life at 298 K can be qualitatively
estimated to be $\sim 1.1 \mathrm{~s}$; which is sufficient time for the radical to undergo association with O_{2} under atmospheric and low temperature combustion conditions. Wu and Carr ${ }^{74,75}$ reported the lifetime for $\mathrm{CH}_{2} \mathrm{ClO}^{\bullet}$ is less than 1 ms . Hou et al. ${ }^{63}$ reported that the threecenter elimination of HCl is the most favorable channel for $\mathrm{CH}_{3} \mathrm{CHClO}^{\circ}$ decomposition, and estimated the lifetime of $\mathrm{CH}_{3} \mathrm{CHClO}^{\circ}$ under the typical tropospheric condition to be $3.3 \mu \mathrm{~s}$. The stability of these chloroalkoxy radicals is low, but these intermediate radicals are formed by OH^{\bullet} radical addition to chloro-olefins in the atmosphere and by $\mathrm{OH}^{\bullet}, \mathrm{O}^{\bullet}$, and $\mathrm{HO}_{2}{ }^{\bullet}$ addition to unsaturated chlorocarbons in combustion environments. The thermochemical properties of these radicals are important in describing the reaction paths and the products of the first and second dissociation reactions.

2.4.6 Group Additivity Values and HBI Group Values

The $\mathrm{C} / \mathrm{C}_{2} / \mathrm{Cl} / \mathrm{O}$ group value in Table 2.12 was derived from the thermodynamic property data of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}$. The group values for $\Delta H_{\mathrm{f}}^{0} 298$ and $C_{p}(T)$ of $\mathrm{C} / \mathrm{C}_{2} / \mathrm{Cl} / \mathrm{O}$ were calculated on the basis of the reaction:

$$
\left(\mathrm{CH}_{3} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}\right)=\left(\mathrm{C} / \mathrm{C}_{2} / \mathrm{Cl} / \mathrm{O}\right)+2\left(\mathrm{C} / \mathrm{C} / \mathrm{H}_{3}\right)+(\mathrm{O} / \mathrm{C} / \mathrm{H})
$$

and $\mathrm{S}^{0}{ }_{298}$ of $\mathrm{C} / \mathrm{C}_{2} / \mathrm{Cl} / \mathrm{O}$ was calculated by considering symmetry correction:

$$
\left(\mathrm{CH}_{3} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}\right)=\left(\mathrm{C} / \mathrm{C}_{2} / \mathrm{Cl} / \mathrm{O}\right)+2\left(\mathrm{C} / \mathrm{C} / \mathrm{H}_{3}\right)+(\mathrm{O} / \mathrm{C} / \mathrm{H})-\mathrm{R} \ln (\sigma)
$$

where $\mathrm{R}=1.987 \mathrm{cal} / \mathrm{mol} \mathrm{K}, \sigma$ stands for symmetry number. The thermochemical properties for the $\mathrm{C} / \mathrm{C} / \mathrm{H}_{3}$ and $\mathrm{O} / \mathrm{C} / \mathrm{H}$ groups were taken from the literature. ${ }^{65} \Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ in the HBI implementation group is the bond enthalpy of $\mathrm{R}-\mathrm{H}$ cleavage reaction at the indicated site. $\Delta S^{0}{ }_{298}$ and $\Delta C_{p}(T)$ in HBI groups are the differences in respective properties of the molecule and the radical; such that when HBI increment groups for
$\Delta S^{0}{ }_{298}$ and $\Delta C_{p}(T)$ are added to the parent, the result is the corresponding value for the radical.

Table 2.12 Central Group and HBI Group Values

Central group	$\Delta H_{\mathrm{f}}{ }^{\circ} 98{ }^{\text {b }}$	$S^{\circ}{ }_{298}{ }^{\text {c }}$	$C_{p} 300^{\text {c }}$	$C_{P} 400$	$C_{P} 500$	$C_{p} 600$	$C_{P} 800$	$C_{p} 1000$	$C_{p} 1500$
Monocarbon-chloro-oxy-hydrocarbon central group									
$\mathrm{C} / \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}$	-20.17	36.55	8.88	11.18	13.02	14.35	16.09	17.27	19.19
$\mathrm{C} / \mathrm{Cl}_{2} / \mathrm{H} / \mathrm{O}$	-27.98	41.93	12.61	15.71	17.73	18.80	19.62	19.94	20.60
$\mathrm{C} / \mathrm{Cl}_{3} / \mathrm{O}$	-28.06	50.54	16.34	18.45	19.65	20.28	20.82	21.06	21.46
Dicarbon-chloro-oxy-hydrocarbon central group									
C/C/Cl/H/O	-20.53	16.54	8.63	10.81	12.34	13.29	14.35	14.93	15.86
$\mathrm{C} / \mathrm{C} / \mathrm{Cl}_{2} / \mathrm{O}$	-27.62	19.47	12.51	15.41	17.29	18.21	18.56	18.25	17.66
Tricarbon-chloro-oxy-hydrocarbon central group									
$\underline{\mathrm{C} / \mathrm{C}_{2} / \mathrm{Cl} / \mathrm{O}}$	-21.53	-15.82	8.59	10.73	11.98	12.56	12.89	12.81	12.66
HBI group ${ }^{\text {a }}$	Bond energy ${ }^{\text {b }}$	$S^{0}{ }_{298}{ }^{\text {c }}$	$C_{p} 300^{\text {c }}$	$C_{p} 400$	$C_{P} 500$	$C_{p} 600$	$C_{p} 800$	$C_{p} 1000$	$C_{p} 1500$
Alkoxy group									
$\mathrm{CH}_{3} \mathrm{O}^{\text {- }}$	104.28	-2.80	-0.88	-0.83	-1.02	-1.28	-1.79	-2.26	-3.16
CCO^{*}	103.65	-0.90	-0.52	-0.85	-1.24	-1.59	-2.11	-2.52	-3.32
$\mathrm{C}_{2} \mathrm{CO}{ }^{\text {- }}$	105.44	-1.90	-1.05	-1.36	-1.71	-2.00	-2.40	-2.69	-3.32
Chloroalkoxy HBI group									
CClO°	105.04	-0.94	-1.00	-1.41	-1.85	-2.20	-2.69	-3.02	-3.63
CCClO^{*}	105.94	-1.59	-0.99	-1.68	-2.14	-2.46	-2.86	-3.12	-3.66
$\mathrm{CCCl}_{2} \mathrm{O}^{\circ}$	105.97	2.16	-0.79	-2.20	-3.35	-4.05	-4.48	-4.45	-4.37
$\mathrm{C}_{2} \mathrm{CClO}{ }^{\circ}$	106.11	2.75	-0.44	-1.26	-1.93	-2.45	-3.11	-3.54	-4.32
Di, trichloromethoxy HBI group									
$\mathrm{CCl}_{2} \mathrm{O}^{\circ}$	110.33	1.17	-1.33	-2.50	-3.28	-3.63	-3.71	-3.65	-3.81
$\mathrm{CCl}_{3} \mathrm{O}^{\circ}$	109.01	0.80	-0.84	-1.30	-1.67	-1.95	-2.40	-2.77	-3.50
Hydroxy-alkyl HBI group									
$\mathrm{C}^{*} \mathrm{H}_{2} \mathrm{OH}$	96.21	-2.15	0.44	0.34	-0.10	-0.67	-1.77	-2.68	-4.10
$\mathrm{CC}{ }^{\circ} \mathrm{OH}$	94.88	2.14	-0.50	-0.93	-1.41	-1.87	-2.67	-3.31	-4.38
Hydroxy- α-chloroalkyl HBI group									
$\mathrm{C}^{\bullet} \mathrm{ClOH}$	95.71	0.10	0.70	0.72	0.19	-0.58	-2.04	-3.08	-4.47
$\mathrm{C}^{*} \mathrm{Cl}_{2} \mathrm{OH}$	97.44	2.26	-0.25	-1.97	-3.22	-3.90	-4.44	-4.64	-5.03
$\mathrm{CC}^{\circ} \mathrm{ClOH}$	94.84	-1.96	0.12	-0.14	-0.54	-1.09	-2.26	-3.19	-4.52
Hydroxy- β-(chloro)ethyl HBI group									
$\mathrm{C}^{*} \mathrm{COH}$	102.52	0.09	0.75	0.06	-0.72	-1.41	-2.48	-3.26	-4.42
$\mathrm{C}^{\circ} \mathrm{CClOH}$	103.22	0.93	1.17	0.65	0.00	-0.67	-1.86	-2.79	-4.20
$\mathrm{C}^{*} \mathrm{CCl}_{2} \mathrm{OH}$	104.03	2.73	0.88	0.16	-0.78	-1.64	-2.89	-3.68	-4.69
Hydroxy- β-(chloro)propyl HBI group									
$\mathrm{C}^{\circ} \mathrm{C}(\mathrm{OH}) \mathrm{C}$	102.26	4.74	0.83	0.10	-0.70	-1.40	-2.45	-3.16	-4.09
$\mathrm{C}^{*} \mathrm{CCl}(\mathrm{OH}) \mathrm{C}$	102.81	4.54	1.11	0.59	-0.03	-0.65	-1.74	-2.62	-4.01

${ }^{\mathrm{a}} \mathrm{H}$ atoms are assumed to fill in carbon. ${ }^{\mathrm{a}}$ Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{b}}$ Units in cal/mol-K.

Entropy values are intrinsic, i.e., the correction for spin degeneracy of the electronic state and gain and loss of an optical isomer are included when appropriate, but symmetry for either parent or radical is not included in HBI groups. Table 2.12 lists chloro-oxy-alkyl central group data from mono, di, and tri-carbon chloro-alcohols by this work and previous work. ${ }^{46,59}$ The HBI group values for $\mathrm{C}_{2} \mathrm{CO}^{\bullet}, \mathrm{C}_{2} \mathrm{CClO}^{\bullet}, \mathrm{C}^{\bullet} \mathrm{C}(\mathrm{OH}) \mathrm{C}$, and $\mathrm{C}^{\bullet} \mathrm{CCl}(\mathrm{OH}) \mathrm{C}$ derived from this chapter are also listed in Table 2.12 for comparison with other HBI groups from $\mathrm{C}_{1}-\mathrm{C}_{2}$ chloro-alcohols. ${ }^{46,59}$ It can be seen from Table 2.12 that the enthalpy and heat capacity for HBI groups with similar chemical environments are similar; this suggests that these HBI groups can be used to predict accurate thermochemical properties of other radicals with similar chemical environments. The entropies are however slightly different even in the same series.

For example, in the alkoxy series, the HBI values for the entropy of $\mathrm{CH}_{3} \mathrm{O}^{\bullet}$, $\mathrm{CCO}^{\bullet}, \mathrm{C}_{2} \mathrm{CO}^{\bullet}$ are $-2.80,-0.90,-1.90 \mathrm{cal} / \mathrm{mol} . \mathrm{K}$ respectively, while bond energies and heat capacities remain similar. This is a result of the nature of intrinsic entropy in the different molecules. A complete set of recommended HBI values with average entropy for use in general group additivity applications is listed in Table 2.13.

Table 2.13 Recommended Hydrogen Bond Increment Group Values

HBI group $^{\mathrm{a}}$	Bond energy $^{\mathrm{b}}$	$S_{298}^{\mathrm{o}}{ }^{\mathrm{c}}$	$C_{p} 300^{\mathrm{c}}$	$C_{p} 400$	$C_{p} 500$	$C_{p} 600$	$C_{p} 800$	$C_{p} 1000$	$C_{p} 1500$
CCO^{\bullet}	104.55	-1.40	-0.79	-1.11	-1.48	-1.80	-2.26	-2.61	-3.32
CCClO^{\bullet}	106.03	0.58	-0.72	-1.47	-2.04	-2.46	-2.99	-3.33	-3.99
$\mathrm{CCCl}_{2} \mathrm{O}$	106.00	1.37	-0.75	-1.84	-2.69	-3.25	-3.73	-3.89	-4.18
$\mathrm{CC}^{\bullet} \mathrm{OH}$	100.44	1.76	-0.63	-1.38	-2.05	-2.56	-3.20	-3.60	-4.28
$\mathrm{CC}^{\bullet} \mathrm{ClOH}$	97.64	-0.10	-0.25	-0.76	-1.30	-1.83	-2.73	-3.40	-4.40
$\mathrm{C}^{\bullet} \mathrm{COH}$	102.39	2.42	0.79	0.08	-0.71	-1.41	-2.47	-3.21	-4.26
$\mathrm{C}^{\bullet} \mathrm{CClOH}$	103.02	2.74	1.14	0.62	-0.02	-0.66	-1.80	-2.71	-4.11
$\mathrm{C}^{\bullet} \mathrm{CCl}_{2} \mathrm{OH}$	103.52	2.73	1.01	0.39	-0.40	-1.15	-2.35	-3.19	-4.40

${ }^{a} \mathrm{H}$ atoms are assumed to fill valence. ${ }^{\mathrm{a}}$ Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{b}}$ Units in $\mathrm{cal} / \mathrm{mol}-\mathrm{K}$.

2.5 Chlorinated Ethyl Hydroperoxides and Radicals

2.5.1 Geometries

The fully optimized geometric parameters along with vibrational frequencies and moments of inertia calculated at the B3LYP/6-31G(d,p) level for the three chlorinated ethyl hydroperoxides are presented in Appendix (Table A.5). The calculation at the B3LYP/6-31G(d,p) level gives $\mathrm{O}-\mathrm{O}$ bond length $1.45 \AA$ in all three chlorinated ethyl hydroperoxides, which is in good agreement with the experimental data ($1.452 \AA$ for $\mathrm{H}_{2} \mathrm{O}_{2}$) of Khachkuruzov and Przhevalskii ${ }^{76}$ using IR spectroscopy.

Effects of chlorine β-substitution on molecular geometries can be seen from Table A.5. The $\mathrm{C}-\mathrm{C}$ bond lengths for β-chloroethyl hydroperoxides are increased with the increased chlorine substitution, but the $\mathrm{C}-\mathrm{O}$ bond lengths decrease with the increased chlorine substitution. This is because the Cl atom withdraws the electrons through its inductive effect; the lone pairs from the peroxy oxygen are oriented towards the $-\mathrm{CH}_{2}-$ group, making the $\mathrm{C}-\mathrm{O}$ bond length shorter than the normal $\mathrm{C}-\mathrm{O}$ bond.

Table 2.14 Effects of Chlorine β-Substitution on Bond Length

Species	$\mathrm{C}-\mathrm{C}(\AA)$	$\mathrm{C}-\mathrm{O}(\AA)$	$\mathrm{O}-\mathrm{H}(\AA)$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOH}$	1.5227	1.4266	0.9707
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH}$	1.5218	1.4213	0.9735
$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH}$	1.5317	1.4113	0.9728
$\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OOH}$	1.5458	1.4071	0.9727

As illustrated in Table A.5, the lowest energy conformation for the three chlorinated ethyl hydroperoxides has the -OOH group gauche to the maximum number of chlorine atoms, despite the apparent steric penalty incurred. This is because the gauche orientation of the peroxy group allows for intramolecular interaction between the peroxy H atom and a Cl atom on the chloroethyl group. The inter-atomic distances
between the peroxy H atom and a Cl atom in the chloroethyl group for $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH}$, $\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH}$, and $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OOH}$ are 2.642, 2.742, and $2.751 \AA$, respectively. These distances provide an indication to the degree of intramolecular hydrogen bonding present in these species.

Table 2.15 Bond Energies

reaction series	bond energy	reaction series	bond energy ${ }^{\text {a }}$
$\mathrm{OO}-\mathrm{H}$			$\mathrm{OO}-\mathrm{H}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OO} \bullet+\mathrm{H} \bullet$	85.00	$\mathrm{CH}_{3} \mathrm{OOH} \rightarrow \mathrm{CH}_{3} \mathrm{OO} \bullet+\mathrm{H} \bullet$	86.05
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH} \rightarrow \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OO} \bullet+\mathrm{H} \bullet$	86.38	$\mathrm{CH}_{2} \mathrm{ClOOH} \rightarrow \mathrm{CH}_{2} \mathrm{ClOO} \bullet+\mathrm{H} \bullet$	92.28
$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH} \rightarrow \mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OO} \bullet+\mathrm{H} \bullet$	87.12	$\mathrm{CHCl}_{2} \mathrm{OOH} \rightarrow \mathrm{CHCl}_{2} \mathrm{OO} \bullet+\mathrm{H} \bullet$	92.22
$\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OOH} \rightarrow \mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OO} \bullet+\mathrm{H} \bullet$	87.45	$\mathrm{CCl}_{3} \mathrm{OOH} \rightarrow \mathrm{CCl}_{3} \mathrm{OO} \bullet+\mathrm{H} \bullet$	92.21
$\mathrm{C}-\mathrm{H}_{\beta}$			C-H
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOH} \rightarrow \mathrm{C} \bullet \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OOH}+\mathrm{H} \bullet$	102.76	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}^{\bullet}$	102.52
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH} \rightarrow \mathrm{C} \bullet \mathrm{HClCH}_{2} \mathrm{OOH}+\mathrm{H} \bullet$	99.74	$\mathrm{CH}_{3} \mathrm{CHClOH} \rightarrow \mathrm{C} \bullet \mathrm{H}_{2} \mathrm{CHClOH}+\mathrm{H}^{*}$	103.22
$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH} \rightarrow \mathrm{C} \bullet \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{OOH}+\mathrm{H} \bullet$	95.56	$\mathrm{CHCl}_{2} \mathrm{OH} \rightarrow \mathrm{C}^{\bullet} \mathrm{Cl}_{2} \mathrm{OH}+\mathrm{H}^{\bullet}$	95.44
C-Cl			C-Cl
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH} \rightarrow \mathrm{C} \bullet \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OOH}+\mathrm{Cl} \bullet$	85.42	$\mathrm{CH}_{2} \mathrm{ClOH} \rightarrow \mathrm{C} \bullet \mathrm{H}_{2} \mathrm{OH}+\mathrm{Cl}^{\bullet}$	83.02
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH} \rightarrow \mathrm{C} \bullet \mathrm{HClCH}_{2} \mathrm{OOH}+\mathrm{Cl} \bullet$	80.08	$\mathrm{CHCl}_{2} \mathrm{OH} \rightarrow \mathrm{C} \bullet \mathrm{HClOH}+\mathrm{Cl}^{\bullet}$	80.34
$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH} \rightarrow \mathrm{C}^{\circ} \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{OOH}+\mathrm{Cl} \bullet$	73.74	$\mathrm{CCl}_{3} \mathrm{OH} \rightarrow \mathrm{C}^{\bullet} \mathrm{Cl}_{2} \mathrm{OH}+\mathrm{Cl}^{\bullet}$	72.34
C-O			C--O
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \bullet$ c $+\mathrm{HO}_{2} \bullet$	72.30	$\mathrm{CH}_{3} \mathrm{OOH} \rightarrow \mathrm{CH}_{3} \bullet+\mathrm{HO}_{2} \bullet$	70.12
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH} \rightarrow \mathrm{CH}_{2} \mathrm{ClCH}_{2}{ }^{\text {c }}+\mathrm{HO}_{2} \bullet$	73.10	$\mathrm{CH}_{2} \mathrm{ClOOH} \rightarrow \mathrm{CH}_{2} \mathrm{Cl} \bullet+\mathrm{HO}_{2} \bullet$	72.94
$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH} \rightarrow \mathrm{CHCl}_{2} \mathrm{CH}_{2}{ }^{\text {¢ }}+\mathrm{HO}_{2} \bullet$	74.25	$\mathrm{CHCl}_{2} \mathrm{OOH} \rightarrow \mathrm{CHCl}_{2} \bullet+\mathrm{HO}_{2} \bullet$	71.71
$\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OOH} \rightarrow \mathrm{CCl}_{3} \mathrm{CH}_{2} \bullet^{\text {d }}+\mathrm{HO}_{2} \bullet$	68.81	$\mathrm{CCl}_{3} \mathrm{OOH} \rightarrow \mathrm{CCl}_{3} \bullet+\mathrm{HO}_{2} \bullet$	67.61
$\mathrm{O}-\mathrm{O}$			O-O
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O} \bullet+\mathrm{OH} \bullet$	44.69	$\mathrm{CH}_{3} \mathrm{OOH} \rightarrow \mathrm{CH}_{3} \mathrm{O} \bullet+\mathrm{OH} \bullet$	45.33
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH} \rightarrow \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{O}{ }^{\text {d }}+\mathrm{OH} \bullet$	43.52	$\mathrm{CH}_{2} \mathrm{ClOOH} \rightarrow \mathrm{CH}_{2} \mathrm{ClO} \bullet+\mathrm{OH} \bullet$	46.37
$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH} \rightarrow \mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{O} \bullet{ }^{\text {d }}+\mathrm{OH} \bullet$	42.91	$\mathrm{CHCl}_{2} \mathrm{OOH} \rightarrow \mathrm{CHCl}_{2} \mathrm{O} \bullet+\mathrm{OH} \bullet$	48.58
d energy calculated in the previous studies ${ }^{46,59,77}$ are used for comparison. Units in			
$\mathrm{kcal} / \mathrm{mol}$. ${ }^{\text {c Enthalpy values from } \mathrm{S}}$	ula. ${ }^{78}$	om THERM group additivity	timation

Hydrogen bonding can occur when the distance between a hydrogen atom and an electronegative donor is significantly less the sum of the van der Waals radii. The van der Waals radii are $1.2 \AA$ and $1.8 \AA$ for H and Cl atoms, respectively. ${ }^{47}$ Due to the intramolecular hydrogen bonding between the peroxy H atom and a Cl atom, the $\mathrm{O}-\mathrm{H}$ bond lengths for the three β-chloroethyl hydroperoxides increase $0.03 \AA$ relative to
normal $\mathrm{O}-\mathrm{H}$ bond in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOH}$. This hydrogen bonding results in an increase in the $\mathrm{O}-\mathrm{H}$ bond strength by ca. $2 \mathrm{kcal} / \mathrm{mol}$ (as shown in Table 2.15). Additional chlorine substitutions on the ethyl hydroperoxides slightly decrease the $\mathrm{O}-\mathrm{H}$ bond lengths 0.007 $\sim 0.008 \AA$, and increase the $\mathrm{O}-\mathrm{H}$ bond strength by $1.2 \mathrm{kcal} / \mathrm{mol}$. These $\mathrm{O}-\mathrm{H}$ bond length decreases coincide with the increased inter-atomic $\mathrm{H} \cdots \mathrm{Cl}$ distances, which are due to the increased repulsion between the electronegative O and Cl atoms.

2.5.2 Rotational Barriers

Potential energy as function of torsion angle is determined by scanning the dihedral angles from 0° to 360° at 15° increments and allowing the remaining molecular structural parameters to be optimized at the B3LYP/6-31G(d,p) level. The barrier of a given rotation is then calculated as the difference between the highest points on the potential energy surface and the corresponding most stable conformer. The geometries at the points of minima and maxima are fully optimized. The calculated rotational barriers about the $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$, and $\mathrm{O}-\mathrm{O}$ bonds of the 3 chlorinated ethylhydroperoxides are shown in Figures 2.9, 2.10, and 2.11, respectively.

The calculated rotational barriers about the $\mathrm{C}-\mathrm{C}$ bond of the three target species are shown in Figure 2.9. All three curves show three minima and three maxima with barriers between 4.77 and $5.74 \mathrm{kcal} / \mathrm{mol}$; the curve for $\mathrm{CCl}_{3}-\mathrm{CH}_{2} \mathrm{OOH}$ shows 3-fold symmetry. These curves represent typical C-C bond rotational potentials, in which the eclipsed structures are corresponding to the maxima and the staggered structures are corresponding to the minima on the potential curves.

Figure 2.9 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{C}$ bond of $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH}, \mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH}$, and $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OOH}$.

Figure 2.10 shows the potential curves for rotational barriers about the $\mathrm{C}-\mathrm{O}$ bond for three chloroethyl hydroperoxides. The conformers with dihedral $\angle \mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{O} \approx$ 90° are most stable because of two electrostatic interactions. The first is the $\mathrm{O} \cdots \mathrm{H}$ interaction between the peroxy O atom and the H atom in the $-\mathrm{CH}_{2}$ - group, and the interatomic distance between them is $2.37 \AA$, which is significantly less than the sum of the van der Waals radii for O and H atoms $(2.70 \AA)$. The second is the $\mathrm{H} \cdots \mathrm{Cl}$ interaction between the peroxy H atom and the Cl atom in the chloroethyl group, and the interatomic distance is $2.63 \AA$ that is less than the sum of the van der Waals radii of H and Cl $(3.0 \AA) .{ }^{47}$ The conformers with dihedral $\angle \mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{O} \approx 180^{\circ}$ or 270° do not have the second $\mathrm{H} \cdots \mathrm{Cl}$ interactions, so they have $0.63 \sim 2.47 \mathrm{kcal} / \mathrm{mol}$ higher energy than the lowest energy conformers. The highest rotational barriers about the $\mathrm{C}-\mathrm{O}$ bond are $7.2 \sim$ $9.7 \mathrm{kcal} / \mathrm{mol}$, corresponding to the $\mathrm{OH}-\mathrm{CCl}_{\mathrm{x}}(\mathrm{x}=1 \sim 3)$ eclipsed structures.

Figure 2.10 Potential barriers for internal rotation about the $\mathrm{C}-\mathrm{O}$ bond of $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH}, \mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH}$, and $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OOH}$

Figure 2.11 Potential barriers for internal rotation about the $\mathrm{O}-\mathrm{O}$ bond of $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH}, \mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH}$, and $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OOH}$.

Figure 2.11 shows calculated rotational barriers about the $\mathrm{O}-\mathrm{O}$ bond of the three chlorinated ethyl hydroperoxides. The $\mathrm{HO}-\mathrm{OCCCl}_{\mathrm{x}}(\mathrm{x}=1 \sim 3)$ eclipsed structures for the three chlorinated ethyl hydroperoxides correspond to the highest rotational barriers, because the four non-bonding electron pairs on peroxy oxygen atoms eclipse to each other. While the conformers with the four non-bonding electron pairs on the peroxy oxygen atoms staggered to each other and with the nearest interatomic distances between the peroxy H atom and the Cl atom correspond to the most stable conformers.

2.5.3 Enthalpy of Formation

The $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ values are calculated using total energies and working isodesmic reactions. The reaction enthalpies and $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ values for three stable species obtained from three isodesmic reactions are tabulated in Table 2.16, and the $\Delta H_{\mathrm{f}}{ }^{0} 298$ values of corresponding radicals are tabulated in Table A.4. The results for $\Delta H_{\mathrm{f}}^{\mathrm{o}}{ }_{298}$ values in Table 4 show good consistency for the 3 chloroethyl hydroperoxides over 3 isodesmic reactions and the four calculation methods. The DFT calculations show good agreement with the high level $a b$ initio calculations, indicating the errors inherent in computations for different types of molecule are canceled to a significant extent and lead to reliable results.

The calculated $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ values in Table 2.16 and Table A. 5 are the enthalpy values for pure enantiomer of the lowest energy. The recommended $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ values for $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH}, \mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH}$, and $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OOH}$ are $-45.47 \pm 1.20,-48.92 \pm 1.50$ and $-50.21 \pm 1.36 \mathrm{kcal} / \mathrm{mol}$, respectively. Here the statistical distribution of rotational conformers are considered and calculated by $\Delta H_{\mathrm{f}}^{\mathrm{o}}{ }_{\text {mix }}=\mathrm{n}_{\mathrm{i}} \Delta H_{\mathrm{f}}{ }^{\mathrm{o}}$, where n_{i} and $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}}$ i are the Boltzmann equilibrium mole fraction and the enthalpy of formation of the i th conformer.

Manion ${ }^{79}$ in an extensive review, compared ab initio calculated values and experimental results on the relative $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$'s of the isomeric chlorinated C_{2} compounds with two to four chlorine atoms. He reports the theory and experiment are in good agreement with a largest deviation of $0.79 \mathrm{kcal} / \mathrm{mol}$. Based on this comparison, our calculated $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ values for the three chlorinated ethyl hydroperoxides should have similar accuracy.

Reaction Series	B3LYP		B3LYP		QCISD(T)		$\begin{gathered} \hline \text { CBSQ//B3LYP } \\ 16-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$	
	$\Delta H^{0}{ }_{\text {rn }}$	$\Delta H_{\mathrm{f}}{ }^{\text {d }}$ 988	$\Delta H_{\text {rx }}^{\circ}$	$\Delta H_{\mathrm{f}}{ }^{\circ} 298$	$\Delta H^{\circ} \mathrm{rat}$	$\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$		$\Delta H_{\mathrm{f}}{ }^{\circ} 298$
1. $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathbf{O O H}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{OOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	4.34	-45.09	3.35	-44.10	4.79	-45.54	5.10	-45.85
2. $\mathbf{C H}_{2} \mathrm{ClCH}_{2} \mathbf{O O H}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	-0.84	-45.46	-1.22	-45.08	-0.86	-45.44	-0.52	-45.78
3. $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathbf{O O H}+\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	-0.32	-46.27	-1.14	-45.45	-0.20	-46.39	-0.90	-45.69
Average value and deviation ${ }^{\text {b }}$								77 ± 1.20
1. $\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH}+\mathrm{CH}_{4} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOH}+\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1.71	-46.35	1.15	-45.79	3.44	-48.08	4.74	-49.38
2. $\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathbf{O O H}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{OOH}+\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.61	-47.97	-0.50	-46.86	1.89	-49.25	1.59	-48.95
3. $\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathbf{O O H}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOH}+\mathrm{CHCl}_{2} \mathrm{OH}$	-11.96	-45.54	-10.75	-46.75	-9.61	-47.89	-8.17	-49.33
Average value and deviation ${ }^{\text {b }}$:								22 ± 1.50
1. $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathbf{O O O H}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{OOH}+\mathrm{CH}_{3} \mathrm{CCl}_{3}$	1.51	-49.43	0.19	-48.11	2.62	-50.54	2.53	-50.45
2. $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathbf{O O O H}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOH}+\mathrm{CH}_{3} \mathrm{CCl}_{3}$	-3.67	-49.80	-4.38	-49.80	-3.03	-50.44	-3.08	-50.39
3. $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathbf{O O H}+\mathrm{C}_{3} \mathrm{H}_{8} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OOH}+\mathrm{CH}_{3} \mathrm{CCl}_{3}$	-3.15	-50.61	-4.30	-49.46	-2.37	-51.39	-3.47	-50.29
Average value and deviation ${ }^{\text {b }}$							-50.	38 ± 1.36

${ }^{\text {a }}$ Reaction enthalpies include thermal correction and zero-point energy. Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{b}}$ Average value and the deviation for pure enantiomer of the lowest energy at the CBSQ//B level.

2.5.4 Entropy and Heat Capacity

The $S^{0}{ }_{298}$ and $C_{p}(T)$'s ($300 \leq \mathrm{T} / \mathrm{K} \leq 1500$) for three chlorinated ethylhydroperoxides using the geometries and harmonic frequencies determined at the B3LYP/6-31G(d,p) level are summarized in Table 2.17. The torsion frequencies, corresponding to the $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$, and $\mathrm{O}-\mathrm{O}$ bond rotations, are omitted in calculation of $S^{\circ}{ }_{298}$ and $C_{p}(T)$'s; but we replace their contributions with values from analysis of the internal rotations. TVR, represent the sum of the contributions from translation, vibration and external rotation to $S^{0}{ }_{298}$ and
$C_{p}(T)$'s obtained by statistical mechanics. I.R., represent the contributions from hindered internal rotations about the $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{O}$ bonds to $S^{\mathrm{o}}{ }_{298}$ and $C_{p}(T)$'s.

Table 2.17 Ideal Gas-phase Thermodynamic Properties

species	$\Delta H_{\mathrm{f}}{ }^{\circ} 98{ }^{\text {b }}$	$S_{298{ }^{\circ}}{ }^{\text {c }}$	$C_{p} 300^{\circ}$	$C_{p} 400$	$C_{\rho} 500$	$C_{p} 600$	$C_{p} 800$	$C_{p} 1000$	$C_{p} 1500$
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OOH}$	TVR ${ }^{\text {d }}$	71.87	16.34	20.76	24.68	27.93	32.84	36.38	41.83
(1) ${ }^{\text {h }}$	I.R. ${ }^{\text {e }}$	6.47	2.62	2.29	1.97	1.68	1.21	0.89	0.46
(2) ${ }^{\text {i }}$	I.R. ${ }^{\text {f }}$	6.30	2.43	2.11	1.84	1.62	1.28	1.04	0.65
	I.R. ${ }^{\text {b }}$	2.06	3.01	3.07	2.82	2.54	2.11	1.82	1.45
	Total -45.47 ± 1.20	89.24	24.41	28.23	31.32	33.77	37.44	40.13	24.41
$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OOH}$	TVR ${ }^{\text {d }}$	77.82	19.73	24.22	27.99	31.01	35.42	38.49	43.11
(1) ${ }^{\text {h }}$	I.R. ${ }^{\text {e }}$	5.62	3.04	2.92	2.65	2.31	1.69	1.23	0.62
(2) ${ }^{\text {i }}$	I.R. ${ }^{\text {f }}$	5.27	3.77	3.36	2.77	2.27	1.61	1.22	0.71
	I.R. ${ }^{\text {g }}$	2.11	2.74	2.76	2.59	2.40	2.11	1.90	1.57
	Total $-\mathbf{4 8 . 9 2} \pm 1.50$	92.33	29.28	33.26	35.99	38.00	40.83	42.84	46.01
$\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OOH}$	TVR ${ }^{\text {d }}$	81.69	24.02	28.38	31.82	34.47	38.22	40.74	44.46
(3) ${ }^{\text {h }}$	I.R. ${ }^{\text {e }}$	6.80	1.75	1.69	1.61	1.49	1.20	0.94	0.53
(2) ${ }^{\text {i }}$	I.R. ${ }^{\text {f }}$	4.96	3.87	3.58	2.97	2.43	1.71	1.30	0.79
	I.R. ${ }^{\text {g }}$	2.43	2.66	2.46	2.24	2.09	1.90	1.77	1.54
	Total $\mathbf{- 5 0 . 2 1 \pm 1 . 3 6}$	96.86	32.30	36.10	38.64	40.48	43.03	44.75	47.32

${ }^{\mathrm{a}}$ Thermodynamic properties are referred to a standard state of an ideal gas of at 1 atm .
${ }^{\mathrm{b}}$ Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{c}}$ Units in $\mathrm{cal} / \mathrm{mol} / \mathrm{K}$. ${ }^{\mathrm{d}}$ The sum of contributions from translations, vibrations, and external rotations. ${ }^{e}$ Contribution from internal rotation about the $\mathrm{C}-\mathrm{C}$ bond. ${ }^{\mathrm{f}}$ Contribution from internal rotation about the $\mathrm{C}-\mathrm{O}$ bond. ${ }^{\mathrm{g}}$ Contribution from internal rotation about the $\mathrm{O}-\mathrm{O}$ bond. ${ }^{\mathrm{h}}$ Symmetry number. ${ }^{i}$ Optical isomer number.

2.5.5 Group Additivity Correction Terms

Group additivity ${ }^{64}$ is a straightforward and reasonably accurate calculation method to estimate thermodynamic properties of hydrocarbons and oxygenated hydrocarbons; but conventional group additivity does not work well for chlorocarbons or other halocarbons, as group additivity does not incorporate effects of next nearest neighbors. ${ }^{80}$ In this chapter, three sets of peroxy oxygen -- chlorine interaction terms are defined to be used with Benson type group additivity scheme for calculation of the thermodynamic properties of multichloro peroxy-hydrocarbons.

In the three chlorinated ethyl hydroperoxides, the nearest inter-atomic distances between the Cl atom and the O atom are $3.10 \sim 3.23 \AA$, so there are significant interactions between the electronegative Cl and the O atoms. The interaction values between chlorine(s) on the ethyl and the peroxy oxygen $\left(\mathrm{OO} / \mathrm{Cl}, \mathrm{OO} / \mathrm{Cl}_{2}\right.$, and $\left.\mathrm{OO} / \mathrm{Cl}_{3}\right)$ are calculated from differences between the sum of defined chlorinated ethyl hydroperoxides group values and the determined thermodynamic properties of the parent compounds. The calculated interaction values are listed in Table 2.18.

Table 2.18 Thermodynamic Properties of Peroxy-Chlorine(s) Interaction Group

interaction group	$\Delta H_{\mathrm{f} 298}^{\mathrm{o}}$	S_{298}^{b}	$C_{p} 300^{\mathrm{b}}$	$C_{p} 400$	$C_{p} 500$	$C_{p} 600$	$C_{p} 800$	$C_{p} 1000$
$\mathrm{INT} / \mathrm{OO} / \mathrm{Cl}$	2.72	3.20	1.15	0.88	0.46	-0.31	-0.85	-1.55
$\mathrm{INT} / \mathrm{OO} / \mathrm{Cl}_{2}$	3.51	-0.45	2.77	2.47	1.68	0.61	-0.40	-1.17
$\mathrm{INT} / \mathrm{OO} / \mathrm{Cl}_{3}$	5.02	0.48	1.95	1.43	0.61	-0.39	-1.17	-1.67

${ }^{2}$ Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{b}}$ Units in $\mathrm{cal} / \mathrm{mol} / \mathrm{K}$.

The interaction values in Table 2.18 indicate a several $\mathrm{kcal} / \mathrm{mol}$ increase in enthalpy due to destabilizing interaction of chlorine(s) on the ethyl group with the peroxy group. The group additivity corrections for the $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}}{ }^{9}$ are $2.72,3.51$, and $5.02 \mathrm{kcal} / \mathrm{mol}$ for the interaction group $\mathrm{OO} / \mathrm{Cl}, \mathrm{OO} / \mathrm{Cl}_{2}$, and $\mathrm{OO} / \mathrm{Cl}_{3}$, respectively. Interaction terms for entropies at 298 K and heat capacities listed in Table 2.18 are relatively small.

2.6 Summary

Structures and thermochemical properties on chlorinated alcohols, chlorinated hydroperoxides and corresponding alkoxy, hydroxy alkyl radicals, peroxy and hydroperoxy alkyl radicals are determined by $a b$ initio and density functional calculations. Molecular structures and vibration frequencies are determined at the

B3LYP/6-31G(d,p) density functional level, with single point calculations for the energy at the B3LYP/6-311+G(3df,2p), QCISD(T)/6-31G(d,p) and CBSQ//B3LYP/6-31G(d,p) levels. The S_{298}^{0} and $C_{p}(T)$'s ($300 \leq T / \mathrm{K} \leq 1500$) from vibrational, translational, and external rotational contributions are calculated using the rigid-rotor-harmonic-oscillator approximation based on the vibration frequencies and structures obtained from the density functional study. Potential barriers for the internal rotations are calculated at the B3LYP/6-31G(d,p) level, and hindered rotational contributions to $S^{0}{ }_{298}$ and $C_{p}(T)$'s are calculated by using direct integration over energy levels of the internal rotational potentials. The values of $\Delta H_{\mathrm{f}}{ }^{0} 298$ are determined using isodesmic reactions with group balance if possible. Groups for use in Benson type additivity estimations are determined for the carbon bonded to oxygen and chlorine(s). Hydrogen bond increment groups for the chloroalkoxy, hydroxy chloroalkyl radicals and interaction terms for peroxy group with chlorine(s) on a β carbon are developed for group additivity approach.

CHAPTER 3

KINETIC ANALYSIS ON OH ASSOCIATION WITH CHLOROMETHYL RADICAL AND DISSOCIATION OF CHLOROMETHANOL

3.1 Background

Oxygenated chloro-hydrocarbons play an important role in both industrial and environmental chemistry. The chemical activation reactions of $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ is considered to be a part of reaction mechanism for the oxidation of chloro-hydrocarbon in combustion and photochemical processes.

Wallington et al. ${ }^{81}$ studied the stability and infrared spectra of mono-, di-, and trichloromethanol prepared by UV irradiation of $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{Cl}_{2} / \mathrm{N}_{2}$ gas mixtures. They observed that the chlorinated methanols decayed with the first-order kinetics to HCl and the corresponding carbonyl compounds, and that the decomposition was heterogeneous since the decay rates increased with increased contact of the chloromethanols with the reactor walls. They reported the upper limit for chlorinated methanols decomposition of $1.05 \times 10^{-2} \mathrm{~s}$.

Wang et al. ${ }^{82}$ studied the unimolecular decomposition of vibrationally exited chloromethanol generated by excited $\mathrm{O}^{*}\left({ }^{1} \mathrm{D}\right)$ inserted in $\mathrm{C}-\mathrm{H}$ bond of $\mathrm{CH}_{3} \mathrm{Cl}$ at the G3(MP2) level, but they did not calculate any reaction rate constant.

Peyerimhoff et al. ${ }^{83}$ investigated photo-fragmentation of chloromethanol along $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{O}$ coordinates using multi-reference single- and double- excitation configuration interaction (MRD-CI) method. They reported that the reactions of $\mathrm{CH}_{2} \mathrm{ClOH} \rightarrow \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{ClOH} \rightarrow \mathrm{OH}+\mathrm{CH}_{2} \mathrm{Cl}$ are energetically not preferred
in the ground state, but the reverse reaction (association) is likely and no barrier is found for these formation processes.

The association reactions: $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ and $\mathrm{Cl}+\mathrm{CH}_{2} \mathrm{OH}$ form a chemically activated $\left[\mathrm{CH}_{2} \mathrm{ClOH}\right]^{*}$ adduct, which we show dissociates to $\mathrm{HCl}+\mathrm{CH}_{2} \mathrm{O}$ before it is stabilized. These reactions may serve as a termination reaction in combustion systems and may be a source for conversion of Cl to HCl in the stratosphere. ab initio, density functional, and variational transition state theory (VTST) calculations combined with QRRK theory are preformed in this study to predict the rate constants for association of OH with $\mathrm{CH}_{2} \mathrm{Cl}$ and both the activated and stabilized $\mathrm{CH}_{2} \mathrm{ClOH}$ dissociation kinetics to product channels.

3.2 Calculation Method

The geometries of the reactants, intermediates, transition states, and products for $\mathrm{CH}_{2} \mathrm{Cl}+$ OH reaction system are pre-optimized using PM3 in MOPAC program, ${ }^{84}$ followed by optimization and vibrational frequency calculation at the B3LYP/6-31G(d,p) level. The single point energies are calculated at the $\operatorname{QCISD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and $\operatorname{CBS}-\mathrm{Q}^{6,40}$ levels using Gaussian98 program. ${ }^{32}$ Vibrational frequencies are scaled by 0.9806 as recommended by Scott et al. ${ }^{42}$ Transition state geometries are identified by the existence of only one imaginary frequency in the normal mode coordinate analysis, evaluation of the TS geometry, and the reaction's coordinate vibration information.

The bimolecular association reaction of $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ does not have a well-defined transition state because of the absence of reaction barrier. To reliably predict this association rate, the flexible variational transition state approach originally developed by

Marcus et al. ${ }^{85-87}$ has been employed by means of VariFlex code ${ }^{88}$ that is aimed at calculating rates at high level of sophistication for barrier-less reactions. The component rates are evaluated at E, J-resolved level. The energy transfer rate coefficients were computed on the basis of the exponential down model with the $<\Delta \mathrm{E}>$ down value of 230 cm^{-1}. To achieve convergence in the integration over the energy range, an energy grain size of $100 \mathrm{~cm}^{-1}$ is used; this grain size provides numerically converged results for all temperature studies with energy spanning range from $15000 \mathrm{~cm}^{-1}$ below to $44900 \mathrm{~cm}^{-1}$ above the threshold. The total angular momentum J covered the range from 5 to 245 in steps of 10 for the E, J-resolved calculation. For loose, barrierless transition state, the Varshni potential: ${ }^{89}$

$$
V=D_{e}\left\{1-\frac{R_{0}}{R} \exp \left[-\beta\left(R^{2}-R_{0}^{2}\right)\right]\right\}^{2}-D_{e}
$$

is employed to represent the potential energy along the individual reaction coordinate. In the above equation, D_{e} is dissociation energy excluding zero-point vibrational energy, where R is the reaction coordinate, i.e., the distance between the two bonding atoms, and R_{0} is the equilibrium value of R.

For the dissociation reactions with saddle point transition states, high-pressure limit rate constants $\left(k_{\infty}\right)$ are determined using structural parameters and vibration frequencies from density functional and $a b$ initio calculations and then are fitted by three parameters A_{∞}, n, and E_{a} over temperature range from 298 to $2000 \mathrm{~K}: k_{\infty}=A(\mathrm{~T})^{\mathrm{n}} \exp (-$ E_{a} / RT). Entropy differences between reactants and TS are used to determine Arrhenius pre-exponential factor via canonical transition state theory ${ }^{12}$ for unimolecular reactions: $\mathrm{A}=(k \mathrm{~T} / h) \exp \left(\Delta \mathrm{S}^{\neq} / \mathrm{R}\right)$. Where h is Plank's constant, k is the Boltzmann constant.

Activation energy is determined as the difference in internal energy between reactant and TS at the CBS-Q level plus the endothermicity of reaction. Branching ratios of the energized adduct to stabilization and product channels are calculated using multifrequency Quantum Rice-Rampsperger-Kassel theory for $k(\mathrm{E})$ combined with master equation analysis for pressure fall-off. ${ }^{26}$

3.3 Results and Discussion

3.3.1 Potential Energy Surfaces of $\mathbf{C H}_{2} \mathbf{C l}+\mathbf{O H}$

The $\mathrm{CH}_{2} \mathrm{Cl}$ radical association with OH forms the chemically activated $\mathrm{CH}_{2} \mathrm{ClOH}^{*}$ adduct. The reaction channels of the $\mathrm{CH}_{2} \mathrm{ClOH}^{*}$ adduct include dissociation back to reactants, elimination via 4 -member ring or 3 -menber ring transition states, isomerization, and bond fission to dissociation products.

Table 3.1 Harmonic Vibrational Frequencies and Moments of Inertia
$\left.\begin{array}{crrrrrrc}\hline \text { species } & & & \text { frequencies }\left(\mathrm{cm}^{-1}\right)\end{array} \quad \begin{array}{c}\text { moments of inertia } \\ (\mathrm{amu}-\mathrm{Bohr} \text {) })\end{array}\right]$

The optimized geometries of six transition states at the B3LYP/6-31G(d,p) level are shown in Table A.7, and corresponding vibrational frequencies and moments of inertia are listed in Table 3.1.

The potential energy diagram for $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ reaction system calculated at the CBS-Q level is shown in Figure 3.1.

Figure 3.1 Potential energy for $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$.

Enthalpies for transition states in Figure 3.1 are calculated by two methods. The first method is straightforward using the $\Delta H_{\mathrm{f}, 298}$ value of stable adduct plus the difference of total energies between adduct and transition state. The second method takes an average of: (i) the calculated energy difference between transition state and adduct; and (ii) the difference between transition state and products plus enthalpy of reaction $\left(\Delta H^{\circ}{ }_{r x n}\right)$. The
reaction enthalpies for six transition states in $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ system determined by these two methods at three different levels are listed in Table 3.2. It can be seen that the reaction enthalpies calculated from forward reaction (Method 1) show good agreement with the average values (Method 2) for all the six reactions at the CBS-Q level. Enthalpies of formation for transition states calculated by first method at the CBS-Q level are used to calculate rate constants.

Table 3.2 Reaction Enthalpies for Dissociation of Chloromethanol ${ }^{\text {a }}$

	$\begin{gathered} \hline \text { B3LYP } \\ 16-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$	QCISD(T) 16-31G(d.p)	CBS-Q //B3LYP/6-31G(d,p)	$\begin{gathered} \text { B3LYP } \\ 16-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$	QCISD(T) /6-31G(d p)	CBS-Q //B3LYP/6-31G(d $\mathfrak{p})$
	$E_{a} \text {, forward }$	$\mathrm{E}_{\mathrm{a}} \text {, forward }$	$\mathrm{E}_{\mathrm{a}} \text {, forward }{ }^{\mathrm{b}}$	E_{a}, average ${ }^{\text {c }}$	E_{a}, average ${ }^{\text {c }}$	E_{a}, average ${ }^{\text {c }}$
TS1	33.59	41.49	39.50	33.71	42.98	39.48
TS2	54.84	63.11	60.02	53.45	63.18	59.55
TS3	74.15	75.90	81.27	69.56	68.01	80.82
TS4	86.12	92.19	87.77	87.15	93.79	88.27
TS5	84.18	87.18	98.92	84.80	88.54	99.43
TS6	97.69	102.38	123.57	101.36	106.43	123.15

${ }^{a}$ Units in kcal mol^{-1}. ${ }^{\mathrm{b}}$ The reaction enthalpies are calculated from forward reaction, ZPVE and thermal correction are included. ${ }^{\text {c }}$ The reaction enthalpies are calculated from the average enthalpy values of the forward, reverse, and $\Delta H_{r x n}^{0} . \mathrm{E}_{\mathrm{a}, \text { average }}=1 / 2\left(\mathrm{E}_{\mathrm{a}}\right.$, forward + E_{a}, reverse $\left.+\Delta H_{\mathrm{rxn}}^{0}\right)$.

3.3.2 Reactions in $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ System

3.3.2.1 Elimination. The $\mathrm{CH}_{2} \mathrm{ClOH}^{*}$ adduct can undergo molecular elimination of HCl via two different transition states TS1 and TS2. TS1 is the hydroxyl H and the Cl eliminated from $\mathrm{CH}_{2} \mathrm{ClOH}^{*}$ to form $\mathrm{HCl}+\mathrm{CH}_{2} \mathrm{O}$ with barrier of $39.50 \mathrm{kcal} \mathrm{mol}^{-1}$. The TS2 has the H and Cl atoms eliminate from chloromethyl group in $\mathrm{CH}_{2} \mathrm{ClOH}^{*}$ to form a siglet di-radical ${ }^{1} \mathrm{CHOH}$ plus HCl with barrier of $63.19 \mathrm{kcal} \mathrm{mol}^{-1}$.

Other elimination channels from the $\mathrm{CH}_{2} \mathrm{ClOH}^{*}$ adduct are: $\mathrm{H}_{2} \mathrm{O}$ elimination forming a diradical ${ }^{1}: \mathrm{CHCl}$ with barrier of $81.27 \mathrm{kcal} / \mathrm{mol} ; \mathrm{H}_{2}$ elimination forming formyl chloride CHClO with barrier of $87.77 \mathrm{kcal} \mathrm{mol}^{-1} ; \mathrm{H}_{2}$ elimination forming a diradical
${ }^{1} \mathrm{CClOH}$ with barrier of $98.92 \mathrm{kcal} \mathrm{mol}^{-1}$. These reaction paths with high barrier and tight transition states, are energetically unimportant in the atmospheric environmental chemistry.
3.3.2.2 Bond Fission. The $\mathrm{C}-\mathrm{Cl}, \mathrm{C}-\mathrm{H}$, and $\mathrm{O}-\mathrm{H}$ bond cleavage reactions from the $\mathrm{CH}_{2} \mathrm{ClOH}^{*}$ adduct will produce three radical sets: $\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OH}+\mathrm{Cl}, \mathrm{C} \cdot \mathrm{HClOH}+\mathrm{H}$, and $\mathrm{CH}_{2} \mathrm{ClO} \cdot+\mathrm{H}$, respectively. These bond fission reactions are the reverse process of the barrier-less radical-radical association. The bond dissociation energies are calculated as $81.36,94.91,104.58 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. These bond fission recctions will not occur at low and intermediate temperatures.
3.3.2.3 Isomerization. $\mathrm{CH}_{2} \mathrm{ClOH}$ can isomerize to methyl hypochlorite $\mathrm{CH}_{3} \mathrm{OCl}$ via TS6, which involves the migration of hydroxyl H atom to the C atom accompanied by migration of the Cl atom to the O atom. This is inferring a transition state structure with moving atoms on apposite side of a plane. The activation energy is calculated to be $123.57 \mathrm{kcal} / \mathrm{mol}$. It implies that $\mathrm{CH}_{3} \mathrm{OCl}$ is kinetically stable; however, the energy of $\mathrm{CH}_{3} \mathrm{OCl}$ is $42.66 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than that of $\mathrm{CH}_{2} \mathrm{ClOH}$. The high barrier indicates that this reaction is not important.

3.3.3 Bimolecular Association of $\mathrm{CH}_{2} \mathbf{C l}+\mathbf{O H}$

The potential energy for association of $\mathrm{CH}_{2} \mathrm{Cl}$ to OH was calculated by varying the equilibrium $\mathrm{C}-\mathrm{O}$ bond length $1.3742 \AA$ to $4.3742 \AA$ with interval of $0.1 \AA$ at the B3LYP/6-31G(d,p) level. A smooth energy potential is obtained as illustrated in Figure 3.2. The DFT calculated total energies at each point are fitted by a Varshni potential energy function ${ }^{89}$ with the parameters $\beta=0.4095 \AA$ and $D_{e}=99.90 \mathrm{kcal} / \mathrm{mol}$ (without ZPE correction). The dissociation energy D_{e} is predicted at the CBS-QB3 level of theory.

The Lennard-Jones parameters for $\mathrm{CH}_{2} \mathrm{ClOH} \cdots \mathrm{N}_{2}$ pair are assumed to be the same as those of the $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \cdots \mathrm{N}_{2}$ pair, $\sigma=3.62 \AA, \varepsilon / \mathrm{k}=97.5 \mathrm{~K} .{ }^{90}$

Figure 3.2 Bond dissociation energy for $\mathrm{CH}_{2} \mathrm{ClOH} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$.

The calculated bimolecular reaction rate constant vs. temperature for $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ at the atmospheric condition by VariFlex code is shown in Figure 3. The rate constant can be expressed in units of $\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at the temperature range of $300 \sim 3000 \mathrm{~K}$ by the equation: $k=8.44 \times 10^{12} \mathrm{~T}^{0.276} \exp (132.23 / \mathrm{T})$.

Humpfer et al. ${ }^{91}$ measured the association rate constant of $\mathrm{CH}_{3}+\mathrm{OH}$ by mass spectrometry at $\mathrm{T}=300 \sim 700 \mathrm{~K}$ and very low pressure range to be: $k=1.02 \times 10^{14} \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} \mathrm{~s}^{-1}$. Baulch et al. ${ }^{92}$ in an extensive literature review, reported this rate constant to be: $k=6.03 \times 10^{13} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. Fagerstrom et al. ${ }^{93}$ measured the rate constant for $\mathrm{C}_{2} \mathrm{H}_{5}$
+OH to be: $k=7.69 \times 10^{13} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $\mathrm{T}=200 \sim 400 \mathrm{~K}$ and $\mathrm{P}=0.247 \sim 0.987 \mathrm{~atm}$. Jungkamp et al. ${ }^{94}$ measured the association rate constant of $\mathrm{CH}_{3} \mathrm{O}+\mathrm{Cl}$ at 300 K using a discharge flow system with laser-induced fluorescence (LIF) and mass-spectrometric detection as: $k=6.02 \times 10^{13} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$, and Daele et al. ${ }^{95}$ measured it as: $k=1.17 \times 10^{13}$ $\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ using the same techniques. Compared with these experimental data, our theoretically predicted rate constant for $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ has reasonable accuracy.

Figure 3.3 Calculated association rate constant of $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ at $\mathrm{P}=1 \mathrm{~atm}$.

3.3.4 Decomposition of $\mathbf{C H}_{2} \mathbf{C l O H}$

The high-pressure limit rate constants $\left(\mathrm{k}_{\infty}\right)$ for the $\mathrm{CH}_{2} \mathrm{ClOH}$ dissociation are determined by canonical transition state theory using structural parameters and vibration frequencies of the transition states in this study. The thermochemical data of stable species are taken from our previous study, ${ }^{46}$ which is cooperated with internal rotation analysis. The highpressure limit rate constants used in QRRK analysis are fitted by three parameters A_{∞}, n, and E_{a} over temperature range from 298 to 2000 K ; these values are listed in Table 3.3, and barriers are shown in Figure 3.1.

Table 3.3 Kinetic Parameters for QRRK Analysis in $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ System

reaction	$A\left(\mathrm{~s}^{-1} \mathrm{or} \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$	n	$E_{a}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
$\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH} \Leftrightarrow \mathrm{CH}_{2} \mathrm{ClOH}$	1.44×10^{13}	0.29216	-0.12186
$\mathrm{CH} \mathrm{H}_{2} \mathrm{ClOH} \Leftrightarrow \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$	7.29×10^{16}	0.0	93.27
$\mathrm{CH}_{2} \mathrm{ClOH} \Leftrightarrow \mathrm{HCl}+\mathrm{CH}_{2} \mathrm{O}$	2.43×10^{12}	0.23405	39.50
$\mathrm{CH}_{2} \mathrm{ClOH} \Leftrightarrow \mathrm{HCl}+: \mathrm{CHOH}$	1.11×10^{12}	0.61016	63.11
$\mathrm{CH}_{2} \mathrm{ClOH} \Leftrightarrow \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$	2.90×10^{9}	1.37394	80.78
$\mathrm{CH}_{2} \mathrm{ClOH} \Leftrightarrow \mathrm{H}_{2}+\mathrm{CH}_{2} \mathrm{ClO}$	1.64×10^{10}	0.90475	88.26
$\mathrm{CH}_{2} \mathrm{ClOH} \Leftrightarrow \mathrm{Cl}+\mathrm{C} \bullet \mathrm{H}_{2} \mathrm{OH}$	$1.33 \times 10^{16 \mathrm{a}}$	0.0	81.91
$\mathrm{CH}_{2} \mathrm{ClOH} \Leftrightarrow \mathrm{H}+\mathrm{C} \bullet \mathrm{HClOH}$	$4.56 \times 10^{14 \mathrm{~b}}$	0.0	94.14
$\mathrm{CH}_{2} \mathrm{ClOH}$		frequency $/$ degeneracy	
${ }^{\mathrm{a}}$ Estimated from CH $\mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{M} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl}+\mathrm{M}, k=4.00 \times 10^{15} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~S}^{-1}$ from Lim			

The calculated temperature dependent rate constants for chemically activated $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ reaction system at 1 atm from the QRRK combined with Master equation analysis are illustrated in Figure 3.4. The dominant product-channel for $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ is the dissociation to $\mathrm{CH}_{2} \mathrm{O}+\mathrm{HCl}$ at all temperatures due to its low barrier. The next dominant product-channel is dissociation to $\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OH}+\mathrm{Cl}$ at all temperature range since it has relative higher A factor due to its reverse reaction is barrier-less radical-radical
association reaction. Figure 3.5 illustrates the calculated rate constants vs. pressure for the chemically activated reaction $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ at 1000 K ; it shows these rate constants have no pressure dependence over $0.001 \sim 10 \mathrm{~atm}$.

Figure 3.4 Rate constants vs. T for $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ system at $\mathrm{P}=1 \mathrm{~atm}$.

The unimolecular dissociation of stabilized $\mathrm{CH}_{2} \mathrm{ClOH}$ to products vs. temperature at 1 atm is shown in Figure 3.6, and its pressure dependent dissociation rate constants at $\mathrm{T}=1000 \mathrm{~K}$ is shown in Figure 3.7. The dominant product-channel for $\mathrm{CH}_{2} \mathrm{ClOH}$ is the dissociation to $\mathrm{CH}_{2} \mathrm{O}+\mathrm{HCl}$ at all temperatures, and this channel shows a small pressure dependence in the range of $0.001 \sim 10 \mathrm{~atm}$. The calculated rate constant for this dissociation is: $k=6.62 \times 10^{27} \mathrm{~T}^{-4.83} \exp (21801 / \mathrm{T}) \mathrm{s}^{-1}$ at 1 atm , which is well below than the upper limit inferred from the experiment results of Wallington et al. ${ }^{81}$

Figure 3.5 Pressure dependent rate constant $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ at $\mathrm{T}=1000 \mathrm{~K}$.

Figure 3.6 Rate constants vs. T for dissociation of $\mathrm{CH}_{2} \mathrm{ClOH}$ at $\mathrm{P}=1 \mathrm{~atm}$.

Wallington et al. reported that the first-order loss rates of $(3.4 \pm 0.2) \times 10^{-3} \mathrm{~s}^{-1}$ for $\mathrm{CH}_{2} \mathrm{ClOH},(5.5 \pm 0.3) \times 10^{-3}$ for $\mathrm{CHCl}_{2} \mathrm{OH}$, and $(9.9 \pm 0.2) \times 10^{-3}$ for $\mathrm{CCl}_{3} \mathrm{OH}$ in a chamber, and the decays of $\mathrm{CH}_{2} \mathrm{ClOH}$ and $\mathrm{CHCl}_{2} \mathrm{OH}$ rate is $(1.6 \pm 0.1) \times 10^{-3} \mathrm{~s}^{-1}$ and $(9.0$ $\pm 0.8) \times 10^{-3} \mathrm{~s}^{-1}$ at another different chamber. They ascribed such differences to heterogeneous decomposition, which is sensitive to the nature and history of the surface of chamber. Their experiments were performed at a total pressure of 700 Torr at 295 ± 2 K, and they concluded that the three chloromethanols have lifetimes of at least 100 seconds (and probably much longer) with respect to homogeneous decomposition in the gas phase, but can decompose rapidly on surface. We suspect they will also decompose rapidly in heterolysis reaction environments.

Figure 3.7 Rate constant vs. P for dissociation of $\mathrm{CH}_{2} \mathrm{ClOH}$ at $\mathrm{T}=1000 \mathrm{~K}$.

In this study, the half-life is calculated as 17.6 seconds for the homogeneous decomposition of chloromethanol at 600 K , but its half-life is much longer at room temperature. Our computational results and experimental data suggest that the reported stability and slow homogeneous decay of chloromethanol under atmospheric conditions, where heterogeneous and homogeneous decompositions presented are not inconsistent. However, the decomposition of $\mathrm{CH}_{2} \mathrm{ClOH}$ will be rapid in combustion environment or in a thermal heterogeneous / catalysis processes.

This dissociation of activated chloromethanol and other chlorinated methanols, may be a significant mechanism to convert Cl into HCl in stratosphere; particularly for trichloro-methyl radical, which has a little reaction with O_{2}.

3.4 Summary

Potential energy surfaces for $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ reaction system are calculated based on DFT B3LYP/6-31G(d,p), ab initio QCISD(T)/6-31G(d,p) and CBS-Q levels of theory. The rate constants for bimolecular association of OH with $\mathrm{CH}_{2} \mathrm{Cl}$ radical are calculated to be: $k=1.48 \times 10^{13} \mathrm{~T}^{0.292} \exp (61.46 / \mathrm{T}) \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ based on variational transition state theory. The high-pressure limit rate constants $\left(\mathrm{k}_{\infty}\right)$ for reactions with saddle point transition states are determined by canonical transition state theory. Branching ratios of the energized $\mathrm{CH}_{2} \mathrm{ClOH}$ adduct to stabilization and product channels are calculated using multi-frequency Quantum Rice-Rampsperger-Kassel (QRRK) theory for $k(\mathrm{E})$ combined with master equation analysis for pressure fall-off. Kinetic parameters for product channels of $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{OH}$ system are presented versus temperature and pressure. The activated $\mathrm{CH}_{2} \mathrm{ClOH}^{*}$ adduct dissociation to $\mathrm{CH}_{2} \mathrm{O}$ plus HCl is the most important
channel below 1500 K at pressure range of $0.001 \sim 10 \mathrm{~atm}$. The calculated rate constants are useful for predicting reaction paths in applications of combustion and atmospheric modeling regimes, where experimental data are not available.

CHAPTER 4

THERMOCHEMICAL AND KINETIC ANALYSIS ON THE REACTION OF NEOPENTYL RADICAL WITH MOLECULAR OXYGEN

4.1 Overview

Thermochemical properties for reactants, intermediates, products and transition states in the neopentyl radical $+\mathrm{O}_{2}$ reaction system are analyzed with $a b$ initio and density functional calculations to evaluate reaction paths and kinetics for neopentyl oxidation. Enthalpies of formation ($\Delta H_{f}^{o} 298$) are determined using isodesmic reaction analysis at the CBS-Q composite and density functional levels. The entropies $\left(S^{\circ}{ }_{298}\right)$ and heat capacities $C_{p}(T)$'s $(0 \leq T / \mathrm{K} \leq 1500)$ from vibrational, translational, and external rotational contributions are calculated using statistical mechanics based on the vibrational frequencies and structures obtained from the density functional study. Potential barriers for the internal rotations are calculated at the B3LYP/6-31G(d,p) level, and hindered rotational contributions to $S^{0}{ }_{298}$ and $C_{p}(T)$'s are calculated by using direct integration over energy levels of the internal rotational potentials. The kinetic analysis on reactions of neopentyl with O_{2} is preformed at the CBS-Q calculation level. The reaction forms a chemically activated neopentyl peroxy adduct with energy of $38.13 \mathrm{kcal} \mathrm{mol}^{-1}$. The energized adduct can be stabilized, dissociate back to reactants or isomerize to hydroperoxy-neopentyl radical. The isomer can dissociate to 3,3-dimethyloxetane +OH , to isobutene $+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$, to methyl + 2-methyl-2-propenyl-hydroperoxide, isomerize back to neopentyl peroxy radical, or further react with O_{2}. The ΔH_{f}^{o} 298 values for the neopentyl, neopentyl peroxy and hydroperoxy-neopentyl radicals are calculated as 10.52 , -27.61 , and $-9.43 \mathrm{kcal} \mathrm{mol}^{-1}$ at the CBS-Q level. Rate constants to products and
stabilized adducts (isomers) of the chemically activated neopentylperoxy are calculated as functions of pressure and temperature using quantum Rice-Ramsperger-Kassel (QRRK) analysis for $k(E)$ and a master equation analysis for pressure fall-off. An elementary reaction mechanism is constructed to model experimental OH formation profile; it shows that the further reactions of the hydroperoxy-neopentyl radical with O_{2} have contributions to the OH profile. Kinetic parameters for intermediate and product formation channels of the neopentyl $+\mathrm{O}_{2}$ system are presented versus temperature and pressure.

4.2 Background

Abstract

ion reactions that form alkyl radicals in atmospheric and combustion reaction systems are well characterized, relative to subsequent association reactions of the radical with O_{2}, which form a chemically activated peroxy radical that can undergo a number of isomerization and dissociation reactions before becoming stabilized. These $\mathrm{R} \cdot$ plus O_{2} reactions are relatively complex; they involve formation of a peroxy radical, which contains $30 \sim 40 \mathrm{kcal} \mathrm{mol}^{-1}$ of excess internal energy, this can either be lost via collision processes or used for further reaction before stabilization occurs. ${ }^{98}$ These reactions are important rate controlling processes in the low and intermediate temperature chemistry of hydrocarbon oxidation, especially the chemistry which occurs prior to ignition in internal combustion engines and in cool flames. The reactions of the alkyl peroxy radical intermediate are, in addition, considered essential to predict negative temperature coefficient (NTC) behavior. ${ }^{99}$ Many combustion reaction mechanisms consider the overall reaction of alkyl radicals with O_{2} to form conjugate alkenes plus HO_{2} to be

dominant processes over the 500 to 900 K temperature ranges, but the details of the pathway(s) are not treated consistently and in some cases the path is not correct. Some authors ${ }^{100,101}$ ascribe this reaction to the abstraction of a H atom by O_{2}, while others ${ }^{26,102,103}$ consider it a direct molecular elimination, still others consider it as an isomerization (hydrogen atom transfer) to a hydroperoxy-alkyl isomer that undergoes further reaction (β-scission) to products.

Two features of neopentyl radical facilitate a simpler interpretation of experimental results relative to most alkyl radical oxidation systems: (a) All the $\mathrm{C}-\mathrm{H}$ bonds in the methyl groups are identical, so only one alkyl radical is involved. (b) The carbon radical site is connected to a quartenary carbon, and the formation of C_{5} conjugate alkene $+\mathrm{HO}_{2}$ is structurally impossible by the above routes. This property of the neopentyl structure eliminates the concerted HO_{2} elimination path from the peroxy adducts, only reactions involving stabilization, dissociation by reverse reaction, isomerization and isomer decomposition are dominant here.

There are several experimental and modeling studies on neopentyl radical oxidation. ${ }^{104-114}$ Hughes et al ${ }^{104,105}$ measured the time dependence of OH radical from photolysis of neopentyl iodide in helium bath with varied concentrations of O_{2} at temperatures from 660 to 750 K . An exact analytical solution was postulated incorporating neopentyl decomposition, reversible peroxy formation, and irreversible hydrogen atom transfer isomerization based on the assumption of fast subsequent decomposition via various channels to OH , which given the low species concentration present would be lost primarily by diffusion out of the photolysis zone. OH radical concentration profiles versus time were obtained by laser-induced fluorescence (LIF) and
fitted to a biexponential function, which is combination with the proposed analytical solution allowed rate coefficients for the isomerization process to be extracted and hence, Arrhenius parameters to be calculated as an A factor of $1.58 \times 10^{12} \mathrm{~s}^{-1}$ and E_{a} of 29 kcal mol^{-1}.

The research group of Baldwin and Walker ${ }^{106}$ studied the reactions of neopentyl radical in an oxidizing environment using a flow reactor with reaction times ranging up to tens of seconds, with product analysis by gas chromatography. They reported the stable products 3,3-dimethyloxetane, acetone, isobutene, and formaldehyde as a function of oxygen concentration at temperatures from 653 to 793 K . They suggested a mechanism for quantitative interpretation of product yields using steady state and equilibrium relationships, and hence determined Arrhenius parameters for elementary reactions in their mechanism.

Bayes research group ${ }^{107,108}$ studied the rate constants of neopentyl radical with O_{2} at 266 to 374 K and low pressure of 3 to 3.5 torr. They monitored the pseudo-first-order decay of the neopentyl radicals as a function of partial pressure of O_{2} using mass spectrometric detection. Their experimental results show negative temperature dependence for the rate constant of neopentyl radical with O_{2}. They used an adiabatic channel model calculation to interpret their results with no fall-off analysis and reported the rate constant of this reaction as $k=\left\{1.3 \times 10^{12} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right\}(\mathrm{T} / 300 \mathrm{~K})^{-(2.1 \pm 0.4)}$.

Dagaut et al. ${ }^{111}$ studied the oxidation of neopentane in a jet-stirred reactor at pressures of 1,5 , and 10 atm , and temperatures of 800 to 1230 K using probe-sampling of stable species and off-line gas chromatograph analyses. They provided an elementary mechanism to model the concentration profiles of the reactants, stable intermediates, and
products such as $\mathrm{CO}, \mathrm{CO}_{2}$, and hydrocarbons. Their modeling focused on high temperature experiments and their studies were not sensitive to the reactions of peroxy radicals because the β-scission of neopentyl radical to isobutene plus methyl radical dominated at these temperatures.

Curran et al. ${ }^{114}$ published a detailed kinetic model on the oxidation of neopentane and compared the experimental results at 500 torr and 753 K by Baker et al, ${ }^{109,110}$ and later they modified their mechanism in conjunction with new data from high pressure flow reactor experiments. ${ }^{113}$ They estimated thermochemical and kinetic parameters using THERM ${ }^{115}$ and other techniques to model stable end-product profiles without transition state or fall-off analysis.

Taatjes et al. ${ }^{103}$ recently measured the time-resolved production of OH and HO_{2} in pulsed-photolytic Cl-initiated oxidation of neopentane between 573 and 750 K . They observed that their OH measurements are especially sensitive to the direct pathways from $\mathrm{R}+\mathrm{O}_{2}$ to QOOH and to $\mathrm{OH}+3,3$-dimethyloxetane. They also proposed a kinetic model based on comparison with their previous time-dependent master equation calculation of analogous processes in the reaction of n-propyl with O_{2} for modeling OH and HO_{2} concentration vs. time profiles at different temperatures.

Thermochemical and kinetic parameters in our theoretical model are based on $a b$ initio and density functional calculations, and the reaction mechanism for the neopentyl radical $+\mathrm{O}_{2}$ system is outlined in the following scheme:

Treatment of the energized complex reactions in our mechanism includes analysis of the decomposition back to reactants, intramolecular transfer of hydrogen atoms to form a hydroperoxy alkyl radical, which can dissociate to products before stabilization. Further isomerizations, dissociations of the stabilized neopentyl peroxy radical and the hydroperoxide alkyl isomer are also included along with a second O_{2} addition to the hydroperoxy-neopentyl radical. Several other important reaction paths, as illustrated above, are also included in the elementary reaction mechanism.

Thermochemical properties of reactants, intermediates, products and transition states for the elementary reactions are calculated by $a b$ initio and density functional calculations with analysis of internal rotation barriers at the DFT level. High-pressure limit rate constants are calculated by canonical transition state theory or evaluated from literature. Quantum RRK theory ${ }^{17,116-118}$ is used for analysis of $k(E)$ and a master equation ${ }^{26}$ analysis for fall-off in a kinetic analysis on the chemical activation and
unimolecular dissociation reaction systems. The rate constants are incorporated into a detailed elementary reaction mechanism and are shown to tmodel the experimental OH profile of Hughes et al ${ }^{104}$ well. The mechanism also models the experimental HO_{2} profile of Taatjes et al well. ${ }^{103}$

4.3 Calculation Method

4.3.1 Computational Details

The geometries of reactants, important intermediates, transition states and products in neopentyl $+\mathrm{O}_{2}$ reaction system are pre-optimized using PM3 MOPAC ${ }^{84}$ calculations, followed by optimizations and frequency calculations at the B3LYP/6-31G(d,p) level using the Gaussian 98 program. ${ }^{32}$ The optimized structure parameters are then used to obtain total electronic energies at the B3LYP/6-311++G(3df,2p) and CBS-Q single point levels of calculation. The potential energies for the neopentyl $+\mathrm{O}_{2}$ system are calculated at the CBS-Q level. For the secondary reaction system - addition of an O_{2} to the hydroperoxy neopentyl radical, the potential energies are calculated at the B3LYP/6$311++G(3 \mathrm{df}, 2 \mathrm{p})$ level due to the relatively large molecule size. For iodine-containing species, the effective core-potential basis sets and modified diffuse $s p$ functions and d polarization function are employed. ${ }^{119,120}$ Rotational barriers for the internal rotational potentials are calculated at the $\mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level.

4.3.2 Thermochemical Properties

Contributions from vibrational, translational, external rotational, and electronic to entropies and heat capacities are calculated by statistical mechanics based on the vibrational frequencies and moments of inertia from the DFT optimized structures. The
torsion frequencies are identified by viewing bond motions in the GaussView98 program, ${ }^{121}$ and these torsion frequencies are omitted in calculation of $S^{\circ}{ }_{298}$ and $C_{p}(T)$'s, and their contributions are replaced with values from analysis of the internal rotations. Contributions from hindered rotors to S_{298}^{0} and $C_{p}(T)$'s are determined by solving the Schrödinger equation with free rotor wave functions, and the partition coefficients are treated by direct integration over energy levels of the intramolecular rotational potential curves which are represented by a truncated Fourier series expansion. The $\Delta H_{\mathrm{f}}{ }_{298}{ }^{0}$ values for reactants, intermediate and products are calculated using total energies from ab initio and DFT calculations and isodesmic reactions with group balance when possible. Transition state (TS) geometries are identified by the existence of only one imaginary frequency in the normal mode coordinate analysis, evaluation of the TS geometry, and the reaction coordinate's vibrational motion. The $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ values of transition state structures are calculated by the $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ of the stable radical adducts from working isodesmic reaction analysis, plus the difference of total energies between the radical adducts and the transition states.

4.3.3 Kinetic Analysis

Unimolecular dissociation and isomerization reactions of the chemically activated and stabilized adducts resulting from addition or combination reactions are analyzed by first constructing potential energy diagrams for the reaction system. DFT and ab initio calculations are used to calculate transition state structures and activation energy for isomerization, β - scission, and dissociation reactions. The enthalpies and entropies are treated with conventional transition state theory to calculate Arrhenius pre-exponential factors and energies of activation that result in high-pressure limit rate constants $\left(k_{\infty}\right)$ as
functions of temperature. Nonlinear Arrhenius effects resulting from changes in the thermochemical properties of the respective transition state relative to its adduct with temperature are incorporated using two parameter Arrhenius pre-exponential factor (A, n) in $A T^{n}$. High-pressure limit pre-exponential factors for association reactions are obtained from the literature. Equilibrium constants $K_{e q}(T)$ are calculated from thermodynamic properties of reactants and products as a function of temperature. Reverse rate constants are calculated from the principle of microscopic reversibility. Branching ratios of the energized adduct to stabilization and product channels are calculated using multifrequency Quantum Rice-Rampsperger-Kassel (QRRK) analysis for $k(E)^{66,115}$ with the steady-state assumption on the energized adduct(s) in combination with a master equation analysis ${ }^{26,122}$ for pressure fall-off.

The QRRK calculation evaluates energy dependent rate constants, $k(\mathrm{E})$, of the energized adduct to each channel for the bimolecular chemical activation reaction and includes equilibrium in isomerization reactions. The QRRK analysis described by Chang et al. ${ }^{17}$ and Sheng et al. ${ }^{26}$ is shown to yield reasonable results and provides a framework by which the effects of temperature and pressure can be evaluated in these complex reaction systems. The QRRK code utilizes a reduced set of three vibration frequencies and their associated degeneracies which accurately reproduce the adduct heat capacity and include one external rotation in calculation of accurate ratios of density of states to partition coefficient, $\rho(\mathrm{E}) / Q .{ }^{18}$

Evaluations on the steady state QRRK chemical activation analysis we utilize indicate that it is valid at reaction times on the order of nanoseconds; analysis for longer
times of reaction may require use of the CHEMKIN analysis in order to include reactions of the stabilized adducts depending on temperature, pressure and rate constants.

A 0.5 kcal energy grain used to obtain rate constants as a function of temperature and pressure for chemical activation and dissociation reactions. $(\Delta E)^{\circ}$ down of 570 cal mol^{-1} is used in the master equation analysis with helium as the third body. LennardJones parameters, σ (Angstroms) and ε / κ (Kelvins), are obtained from tabulations ${ }^{90}$ and from an estimation method based on molar volumes and compressibility.

4.4 Results and Discussion

4.4.1 Geometries

The geometry optimizations for the reactants, transition states, adducts, and products in the neopentyl oxidation system are performed at the B3LYP/6-31G(d,p) level, and the effective core-potential basis sets and modified diffuse $s p$ functions and d polarization function ${ }^{120}$ are used for iodine-containing species. The optimized structural parameters for 33 species including transition state structures are listed in Appendix Table B.1. The corresponding unscaled vibrational frequencies and moments of inertia are listed in Table B.2. The notations of several important species in this system are defined as: $\mathrm{C}_{3} \mathrm{CC} \cdot$ (neopentyl radical), $\mathrm{C}_{3} \mathrm{CCOO} \cdot$ (neopentyl peroxy radical), $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ (hydroperoxyneopentyl radical), $\mathrm{C}_{2} \mathrm{CYCCOC}$ (3,3-dimethyloxetane), $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{COO} \cdot$ (hydroperoxyneopentylperoxy radical), $\quad \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{COOH})_{2} \quad$ (dihydroperoxide-neopentyl radical), $\mathrm{C}(\mathrm{COOH}) \mathrm{CYCCOC}$ (3-methyl,3-hydroperoxideoxetane), $\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}$ (isobutenyl hydroperoxide), $\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}$ (2-methyl isopropanal-2-methylhydroperoxide), $\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O}$ • (2-methyl isopropanal-2-methyoxy radical), and $\mathrm{C}_{3} \mathrm{CCI}$
(neopentyliodide). The transition states of important reactions in this oxidation system are identified as follows:

Alkyl peroxy radical isomerization

$\mathrm{C}_{3} \mathrm{CCOO} \cdot \rightarrow \mathrm{TS1} \rightarrow \mathrm{C}_{3} \cdot \mathrm{CCOOH}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{COO} \bullet \rightarrow \mathrm{TS} 7 \rightarrow \mathrm{C}_{2} \bullet \mathrm{C}(\mathrm{COOH})_{2}$
This reaction represents intramolecular, endothermic, transfer of a H atom from a primary methyl carbon atom to the peroxy oxygen radical site via a 6-member ring transition state including the H atom. The cleaving $\mathrm{C}-\mathrm{H}$ bond stretches to $1.40 \AA$ from $1.09 \AA$, and the forming $\mathrm{O}-\mathrm{H}$ bond length is $1.14 \AA$, which is longer than that of normal O-H bond, $0.978 \AA$.

Epoxide formation

$\mathrm{C}_{3} \cdot \mathrm{CCOOH} \rightarrow \mathrm{TS} 3 \rightarrow \mathrm{C}_{2} \mathrm{CYCCOC}+\mathrm{OH}$
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{COOH})_{2} \rightarrow \mathrm{TS} 9 \rightarrow \mathrm{C}(\mathrm{COOH}) \mathrm{CYCCOC}+\mathrm{OH}$
In this reaction type, the carbon radical in the $-\mathrm{CH}_{2} \bullet$ group attacks the peroxy oxygen to form 4-member ring transition state; while the weak $\mathrm{RO}-\mathrm{OH}$ bond is breaking. The cleaving $\mathrm{O}-\mathrm{O}$ bond length is $1.68 \AA$ and the forming $\mathrm{C}-\mathrm{O}$ bond length is
$1.99 \AA$. This reaction is responsible for a major fraction of the OH formation.
β-scission of alkyl radicals
$\mathrm{C}_{3} \mathrm{CC} \cdot \rightarrow \mathrm{TS} 0 \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{C}+\mathrm{CH}_{3}$
$\mathrm{C}_{3} \cdot \mathrm{CCOOH} \rightarrow \mathrm{TS} 4 \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{C}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$
$\mathrm{C}_{3} \cdot \mathrm{CCOOH} \rightarrow \mathrm{TS} 5 \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}+\mathrm{CH}_{3}$
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{COOH})_{2} \rightarrow \mathrm{TS} 10 \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$

These reactions involve cleavage of an alkyl or oxy-alkyl group moving perpendicular from a near planar isobutenyl structure with simultaneous formation of a π bond (olefin here) on the same carbon. For methyl group dissociation, the $\mathrm{C}-\mathrm{C}$ bond length stretches from $1.58 \AA$ to $2.31 \AA$, and the forming $\mathrm{C}=\mathrm{C}$ bond length is $1.37 \AA$ in the TS0 and TS5 structures.

At temperatures above $1200^{\circ} \mathrm{C}$, unimolecular dissociation of the neopentyl radical via TS0, is the primary reaction relative to reaction with O_{2}.

For the $\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$ elimination from $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ in TS 4 , the $\mathrm{C}-\mathrm{O}$ bond length in the leaving group is decreased slightly from 1.425 to $1.366 \AA$, and $\mathrm{O}-\mathrm{O}$ bond length is slightly increased in length from 1.457 to $1.470 \AA$.

In the structure of TS10, the $\mathrm{C}-\mathrm{O}$ bond length ($1.31 \AA$) is shorter than that of TS4 and the $\mathrm{O}-\mathrm{O}$ bond length $(1.78 \AA)$ is longer than that of TS4 due to interaction of the hydroperoxy H and O atoms between the two -COOH groups (see Table B .1).

OH elimination from alkyl peroxy group

$\mathrm{C}_{3} \mathrm{CCOO} \rightarrow \mathrm{TS} 2 \rightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{COO} \rightarrow \mathrm{TS} 8 \mathrm{~A} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}+\mathrm{OH}$
In this reaction group, the peroxy oxygen radical attacks the H atom in the nearest carbon via a 4 -member ring transition state. The reaction path passes through a transient intermediate $\mathrm{R}-\mathrm{C} \cdot \mathrm{OOH}$, where the carbon radical forms a π (carbonyl) bond with the oxygen (gaining ca. $80 \mathrm{kcal} \mathrm{mol}^{-1}$) and cleaves the weak $\mathrm{O}-\mathrm{OH}$ bond (requiring only ca. $45 \mathrm{kcal} \mathrm{mol}^{-1}$). The $\mathrm{C}-\mathrm{O}$ (forming), $\mathrm{O}-\mathrm{O}$ (cleaving), and $\mathrm{O}-\mathrm{H}$ bond lengths are 1.39 , 1.50 , and 1.27 A , respectively. The changes in these bond lengths between reactant and

TS suggest that the transition state reacts through the $\mathrm{R}-\mathrm{C} \cdot \mathrm{OOH}$ structure to the intermediate $\mathrm{R}-\mathrm{CH}(=\mathrm{O})+\mathrm{OH}$.

4.4.2 Thermochemical Properties

4.4.2.1 Enthalpies of Formation. The enthalpies of formation for reactants, intermediate adducts and products in the neopentyl oxidation system are calculated by isodesmic reactions analysis or taken from available literature.
$\frac{\text { Table 4.1 Calculated } \Delta H_{f}{ }^{\circ}{ }_{298} \text { Values for Species in } \mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2} \text { System }^{\mathrm{a}}}{\text { B3LYP }}$

Reaction Series	$16-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$		/6-311++G(3df,2p)		/6-31G(d,p)	
	$\Delta H_{\text {rxn }}$	$\Delta H_{\mathrm{f}}{ }^{\circ} 98 \mathrm{~g}$	$\Delta H^{\rho_{\mathrm{xn}}}$	$\Delta H_{\mathrm{f}}{ }^{\circ}{ }^{\circ} \mathrm{s}$	$\Delta H^{\text {cn }}$	$\Delta H_{\mathrm{f}}{ }^{\circ} 98$
1. $\mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{COH} \longrightarrow \mathrm{C}_{3} \mathrm{COH}+\mathrm{CCOOH}$	-10.29	-56.06	-10.10	-56.25	-7.65	-58.70
2. $\mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{CCOH} \longrightarrow \mathrm{C}_{3} \mathrm{COH}+\mathrm{CCCOOH}$	-6.12	-57.25	-6.33	-57.04	-4.83	-58.54
3. $\mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{CCOH} \longrightarrow \mathrm{C}_{3} \mathrm{CCOH}+\mathrm{CCOOH}$	-1.10	-58.54	-2.18	-57.46	-1.06	-58.58
Average $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{28}$ at CBS-Q level:					-58.60	
1. $\mathrm{C}_{3} \mathrm{CCOO} \bullet+\mathrm{CH}_{3} \mathrm{OOH} \longrightarrow \mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{CH}_{3} \mathrm{OO} \bullet$	0.52	-26.08	0.55	-26.10	2.08	-27.63
2. $\mathrm{C}_{3} \mathrm{CCOO} \bullet+\mathrm{CCOOH} \longrightarrow \mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{CCOO}$	0.81	-26.51	0.84	-26.54	1.83	-27.53
3. $\mathrm{C}_{3} \mathrm{CCOO} \bullet+\mathrm{C}_{2} \mathrm{COOH} \longrightarrow \mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{C}_{2} \mathrm{COO} \bullet$	0.24	-27.05	0.06	-26.88	0.84	-27.65
Average $\Delta H_{\mathrm{f}}{ }^{\circ} 288$ at $\mathrm{CBS}-\mathrm{Q}$ level:					-27.61	
1. $\mathrm{C}_{3} \bullet \mathrm{CCOOH}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{C}_{2} \mathrm{H}_{5}$	-0.51	-9.05	-0.65	-8.91	-0.12	-9.45
2. $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{CCOOH} \rightarrow \mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{C} \cdot \mathrm{COOH}$	-3.80	-7.42	-3.62	-7.59	-1.80	-9.41
3. $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{CCOH} \longrightarrow \mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{C} \cdot \mathrm{COH}$	1.16	-9.34	0.62	-8.81	1.26	-9.44
Average $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{28}$ at CBS-Q level:					-9.43	
1. $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{CH}_{4} \longrightarrow \mathrm{C}_{3} \mathrm{CC}+\mathrm{CH}_{3}$	3.73	8.80	3.53	9.00	2.01	10.52
2. $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{3} \mathrm{CC}+\mathrm{C}_{2} \mathrm{H}_{5}$	-1.03	9.89	-1.17	10.03	-1.65	10.51
Average $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ at CBS-Q level:					-10.52	
1. $\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{CH}_{4} \longrightarrow \mathrm{C}_{3} \mathrm{CC}+\mathrm{CH}_{2} \mathrm{O}$	11.76	-59.99	11.22	-59.45	10.30	-58.53
2. $\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{3} \mathrm{CC}+\mathrm{CH}_{3} \mathrm{CHO}$	0.22	-59.86	-0.52	-59.12	-0.69	-58.95
Average $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{29}$ at CBS-Q level:					-58.74	
1. $\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}+\mathrm{CH}_{4} \longrightarrow \mathrm{C}=\mathrm{CCOOH}+\mathrm{C}_{2} \mathrm{H}_{6}$	6.21	-19.93	5.79	-19.50	8.65	-22.36
2. $\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{C}=\mathrm{CCOOH}+\mathrm{CCOH}$	0.74	-20.16	0.79	-20.21	2.93	-22.34
Average $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ at CBS-Q level:					-22.35	
1. $\mathrm{CCC} \cdot(\mathrm{C}) \mathrm{COOH} \longrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOOH}$	6.36	-15.79	6.07	-15.50	0.98	-10.42
The $\Delta H_{\mathrm{f}}{ }^{\text {2 } 298}$ at CBS-Q level:					-10.42	

Table 4.1 lists the calculated reaction enthalpies and $\Delta H_{f}^{o} 298$ values for the species in the $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}$ system at three calculation levels. The calculated $\Delta H_{f}^{o}{ }_{298}$ values from
the DFT calculations show good agreement with the higher level ab initio calculations, indicating the errors in the computations for different molecules are canceled to a significant extent, ca. $\pm 2 \mathrm{kcal} \mathrm{mol}^{-1}$, by the working reactions. The agreement between the calculation levels and with the literature data suggests reasonable accuracy for the absolute enthalpy values. The average $\Delta H_{f}^{o} 298$ values from the higher level CBS-Q calculations are selected to construct our kinetic model.

Enthalpies for transition states are calculated by use of two methods. The first method is straightforward using the $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ values of the stable radical adducts from the working reaction analysis, plus the difference of total energies between the radical adducts and the transition state. The second method takes an average of: (i) the calculated energy difference between the TST structure and the reactant; and (ii) the difference between TST and the products plus enthalpy of reaction $\left(\Delta H_{r x n}^{\circ}\right)$. The $\Delta H_{r x n}{ }^{\circ}$ values are calculated by the $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$ values of the reactant and product, which are determined on an absolute basis by the working reaction analysis. Enthalpies of formation for six transition states in the $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$ system determined by these two methods at the three different levels are listed in Table 4.2. It can be seen that the reaction enthalpies calculated from forward reaction (Method 1) show good agreement with the average values (Method 2) for all the six reactions at the CBS-Q level. The reaction enthalpies from DFT calculations only show good agreement with the values from CBS-Q level for the reactions with tight transition states (ring formation). Enthalpies of formation for transition states calculated from the first method at the CBS-Q level are used for the kinetic model. The $\Delta H_{f}^{o} 298$ of neopentyl radical is calculated as $10.52 \mathrm{kcal} \mathrm{mol}^{-1}$ at the CBS-Q level, which gives the $\mathrm{C}_{3} \mathrm{CC}-\mathrm{H}$ bond dissociation energy of $102.76 \mathrm{kcal} \mathrm{mol}^{-1}$
based on the published $\Delta H_{f}^{o} 298$ value for neopentane $\left(-40.14 \pm 0.15 \mathrm{kcal} \mathrm{mol}^{-1}\right) .{ }^{123}$ The above enthalpy value shows good agreement with the value, $10.36 \mathrm{kcal} \mathrm{mol}^{-1}$, reported recently by Sumathi el al. at the CBS-Q calculation level. ${ }^{124}$ Holmes el al. ${ }^{125}$ measured the heats of formation of alkyl radicals by monoenergetic electron impact, and they reported that their values agree with results from equivalent measurements using ESR spectroscopy. They reported $\Delta H_{f}^{o} 298$ of neopentyl radical as $10.1 \mathrm{kcal} \mathrm{mol}^{-1}$.

Table 4.2 The Reaction Enthalpies in the Reactions of Neopentyl $+\mathrm{O}_{2}{ }^{\mathrm{a}}$					
B3LYP	B3LYP	CBS-Q/B3LYP	B3LYP	B3LYP	CBS-Q/B3LYP

	$16-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$	16-311++G(3df,2p)	/6-31G(d, p)	$16-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$	$16-311++\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p})$	16-31G(d, p)
	E_{3}, forward ${ }^{\text {b }}$	E_{a}, forward ${ }^{\text {b }}$	E_{a}, forward ${ }^{\text {b }}$	E_{a}, average ${ }^{\text {c }}$	E_{a}, average ${ }^{\text {c }}$	E_{a}, average ${ }^{\text {c }}$
TS1	24.00	23.42	23.82	21.65	22.79	23.90
TS2	42.54	42.06	41.61	40.36	43.59	42.21
TS3	14.71	14.14	15.51	14.88	15.74	16.12
TS4	29.97	27.81	25.39	31.82	31.69	25.31
TS5	24.19	22.49	26.52	29.58	32.00	26.36
TS6	54.35	53.23	56.34	57.25	55.98	56.55

${ }^{\text {a }}$ Units in kcal mol ${ }^{-1}$. ${ }^{\mathrm{b}}$ The reaction enthalpies are calculated from forward reaction.
${ }^{\mathrm{c}}$ The reaction enthalpies are calculated from the average enthalpy values of the forward, reverse, and $\Delta H_{r x n}^{0} . \mathrm{E}_{\mathrm{a}}$,average $=1 / 2\left(\mathrm{E}_{\mathrm{a}}\right.$, forward $+\mathrm{E}_{\mathrm{a}}$, reverse $\left.+\Delta H_{\mathrm{rxn}}^{0}\right)$.

The $\Delta H_{f}^{o} 298$ of neopentyl peroxy is calculated as $-27.61 \mathrm{kcal} \mathrm{mol}^{-1}$ at the CBS-Q level; Curran et al. ${ }^{113}$ estimated it as $-26.80 \mathrm{kcal} \mathrm{mol}^{-1}$ by group additivity using THERM ${ }^{115}$. The reaction enthalpy of alkyl radicals $+\mathrm{O}_{2}$ are reported by Knyazev ${ }^{126}$ as $32.74,35.47,37.14,36.52 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, i-\mathrm{C}_{3} \mathrm{H}_{7}, t-\mathrm{C}_{4} \mathrm{H}_{9}$, respectively; which are obtained from the third-law treatment of the temperature dependencies of the equilibrium constants $K_{p}(T)$. Clifford et al. ${ }^{127}$ reviewed the thermochemistry of alkyl peroxy radicals, and gives the reaction enthalpy of tert-butyl $+\mathrm{O}_{2}$ as $-37 \pm 2 \mathrm{kcal} \mathrm{mol}^{-1}$. The well depth for $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}$ is calculated to be $38.13 \mathrm{kcal} \mathrm{mol}^{-1}$ in this work

The $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ values of hydrocarbons, substituted hydrocarbons, and corresponding radicals have been investigated in our previous studies, which show that the CBS-Q enthalpy values based on B3LYP/6-31G(d,p) optimized geometries are in agreement with accepted literature values. The CBS-Q enthalpies are more consistent than those from $\mathrm{QCISD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ single point calculations when the values for one species are compared through a series of different working reactions. A comparison of $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ values from CBS-Q calculations with experimental data or accepted literature data on several oxygenated hydrocarbons is listed in Table 4.3.

Table 4.3 Comparison of Calculated $\Delta \mathrm{H}_{\mathrm{f}}{ }^{0} 298$ With Experimental Values

Enthalpies of Formation $\left(\Delta H_{f}^{\circ} 298\right)$ in $\mathrm{kcal} / \mathrm{mol}$					
Species	CBS-Q	Literature	Species	CBS-Q	Literature
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOH}$	-39.9 ± 1.5	-39.7 ± 0.3^{128}	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O} \cdot$	-3.90 ± 1.27	-3.7 ± 0.8^{129}
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OO} \cdot$	-6.7 ± 2.3	-6.8 ± 2.3^{130}	$\mathrm{CH}_{3} \mathrm{CH} \cdot \mathrm{OH}$	-13.34 ± 0.84	-14.5 ± 3^{131}
$\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OOH}$	11.2 ± 2.1	10.96 ± 1.06^{128}	$\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \mathrm{OH}$	5.70 ± 0.85	-5.9^{132}
$\mathrm{CH}_{3} \mathrm{C} \cdot(=\mathrm{O})$	-3.08 ± 0.38	-2.90 ± 0.70^{55}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$	-69.19 ± 0.31	-69.15^{50}
$\mathrm{CH}_{2} \cdot \mathrm{OH}$	-3.97 ± 1.11	$-3.97 \pm 0.22^{133,134}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO} \cdot$	-11.85 ± 0.08	-11.0 ± 1.2^{68}

4.4.2.2 Internal Rotation Analysis. The calculated internal rotational potentials on the $\mathrm{C}-\mathrm{C}$ bonds of neopentyl peroxy radical and hydroperoxide neopentyl radical are shown in Figure 4.1, where the normal three-fold rotational barrier for rotation on the $\mathrm{CH}_{3}-\mathrm{C}$ bonds is illustrated. The barriers for methyl rotors are near 3.3, while the $\mathrm{C}_{3} \mathrm{C}-$ $\mathrm{COO} \bullet$ barriers are near $5 \mathrm{kcal} \mathrm{mol}^{-1}$. Figure 4.2 show the rotational potentials on the $\mathrm{C}-$ $\mathrm{OOH}, \mathrm{C}-\mathrm{OO} \cdot$ and $\mathrm{CO}-\mathrm{OH}$ bonds for the above two species, which have relatively high barriers, 4 to $7.5 \mathrm{kcal} \mathrm{mol}^{-1}$. The 6 and $7 \mathrm{kcal} \mathrm{mol}^{-1}$ barrier heights are typical of published data on these $\mathrm{CO}-\mathrm{OH}$ and $\mathrm{C}-\mathrm{OOH}$ bonds. ${ }^{77,135}$

Figure 4.1 Torsional potentials on the $\mathrm{C}-\mathrm{C}$ bond of neopentyl peroxy radical and hydroperoxy-neopentyl radical.

Figure 4.2 Torsional potentials on the $\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{O}$ bonds of neopentyl peroxy radical and hydroperoxy-neopentyl radical.

Figure 4.3 Torsional potentials on the C - C bond of hydroperoxy-neopentyl radical calculated at the B3LYP and MP2 levels.

Table 4.4 Thermodynamic Properties for $\mathrm{C}_{3} \mathrm{CCOO} \bullet$ and $\mathrm{C}_{3} \bullet \mathrm{CCOOH}^{\mathrm{a}}$

species		$\Delta H_{\mathrm{f}}{ }^{\circ} 98{ }^{\text {b }}$	$S^{\circ}{ }_{298}{ }^{\text {c }}$	$C_{p} 300^{\text {c }}$	$C_{p} 400$	$C_{p} 500$	$C_{p} 600$	$C_{p} 800$	$C_{p} 1000$	$C_{p} 1500$
	TVR ${ }^{\text {d }}$									
$\begin{gathered} \mathrm{C}_{3} \mathrm{CCOO} \bullet \\ { }^{(81)^{\mathrm{f}}} \end{gathered}$			69.17	24.39	32.62	40.25	46.84	57.22	64.9	76.8
	$\mathrm{C}-\mathrm{O}^{\text {e }}$		6.82	1.45	1.47	1.50	1.50	1.46	1.38	1.15
	C (neo)- $\mathrm{COO}^{\text {e }}$		6.63	2.19	2.28	2.29	2.22	1.95	1.65	1.06
	$\mathrm{C}-\mathrm{C}(\text { neo })^{\text {e }}$		4.30	2.07	2.14	2.07	1.95	1.70	1.52	1.27
	C-C(neo) ${ }^{\text {e }}$		4.30	2.07	2.14	2.07	1.95	1.70	1.52	1.27
	C-C(neo) ${ }^{\text {e }}$		4.30	2.07	2.14	2.07	1.95	1.70	1.52	1.27
$\mathrm{C}_{3} \mathrm{CCOO}$		-27.61	95.53	34.25	42.79	50.24	56.40	65.74	72.49	82.81
$\overline{\mathrm{C}_{3}} \cdot \mathrm{CCOOH}$ (9) ${ }^{\text {f }}$	TVR ${ }^{\text {d }}$		76.48	25.57	33.53	40.75	46.89	56.54	63.71	75.03
	$\mathrm{O}-\mathrm{O}^{\text {e }}$		3.59	1.39	1.41	1.44	1.46	1.47	1.45	1.34
	$\mathrm{C}-\mathrm{O}^{\text {c }}$		6.68	2.05	1.84	1.71	1.63	1.54	1.47	1.23
	$\begin{aligned} & \mathrm{C}(\text { neo })- \\ & \mathrm{COOH}^{\mathrm{c}} \end{aligned}$		6.37	2.10	2.16	2.19	2.16	1.98	1.75	1.22
	$\mathrm{C}-\mathrm{C}(\text { neo })^{\text {e }}$		4.34	2.08	2.13	2.05	1.93	1.68	1.50	1.26
	$\mathrm{C}-\mathrm{C}(\text { neo })^{\text {e }}$		4.34	2.08	2.13	2.05	1.93	1.68	1.50	1.26
	C-C(neo) ${ }^{\text {e }}$		5.15	1.06	1.03	1.02	1.01	1.00	1.00	1.00
$\mathrm{C}_{3} \cdot \mathrm{CCOOH}$		-9.43	106.95	36.33	44.23	51.20	57.00	65.90	72.37	82.33

${ }^{2}$ Thermodynamic properties are referred to a standard state of an ideal gas of at 1 atm .
${ }^{\mathrm{b}}$ Units in kcal mol^{-1} 。 ${ }^{\mathrm{c}}$ Units in cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$. ${ }^{\mathrm{d}}$ The sum of contributions from translations, vibrations, and external rotations. ${ }^{e}$ Contribution from internal rotations.
${ }^{\mathrm{f}}$ Symmetry number.

Table 4.5 Ideal Gas Phase Thermodynamic Properties ${ }^{\text {a }}$

Species	$\Delta H_{\mathrm{f} 298}^{\mathrm{o}}{ }^{\text {b }}$	$S_{298}{ }^{\text {c }}$	$C_{P} 300^{\text {c }}$	$C_{p} 400$	$C_{P} 500$	$C_{p} 600$	$\mathrm{C}_{2} 800$	$C_{p} 1000$	$C_{p} 1500$
TS0	62.49	91.15	32.08	39.15	45.32	50.54	58.78	65.00	74.95
TS1	40.26	82.48	29.21	36.30	42.35	47.42	55.40	61.51	71.51
TS2	-3.79	86.14	32.97	42.15	50.04	56.54	66.39	73.48	84.33
TS3	14.00	91.66	34.52	43.00	50.27	56.24	65.31	71.90	82.08
TS4	6.07	99.54	34.99	43.03	50.02	55.83	64.79	71.46	82.01
TS5	15.95	102.74	36.82	44.47	51.01	56.38	64.60	70.67	80.34
TS6	17.09	102.33	37.15	44.86	51.45	56.87	65.18	71.33	81.11
TS7	46.91	102.36	35.07	43.05	50.01	55.78	64.64	71.12	81.21
TS8	-19.99	112.00	44.19	53.85	62.21	69.04	79.20	86.32	96.94
TS8A	-1.61	110.13	40.86	50.43	58.62	65.25	75.05	81.92	92.21
TS9	-9.42	112.78	42.46	51.63	59.44	65.75	75.17	81.89	92.31
TS10	-10.21	114.33	44.45	53.09	60.47	66.50	75.61	82.19	92.49
TS11	-36.38	94.19	32.09	38.67	44.62	49.74	57.81	63.79	72.97
TS12	-11.60	93.56	34.10	41.24	47.40	52.55	60.56	66.43	75.38
TS13	23.56	77.43	22.73	27.89	32.53	36.50	42.79	47.45	54.64
$\mathrm{C}_{3} \mathrm{CC}$ -	10.52	81.80	29.13	36.45	42.77	48.05	56.31	62.56	72.65
$\mathrm{C}_{3} \mathrm{CCOOH}$	-58.60	96.20	35.65	44.34	51.95	58.23	67.80	74.78	85.70
$\mathrm{C}_{3} \mathrm{CCOO} \bullet$	-27.61	95.45	34.02	42.39	49.69	55.71	64.84	71.48	81.80
$\mathrm{C}_{3} \cdot \mathrm{CCOOH}$	-9.43	105.58	36.33	44.23	51.20	57.00	65.90	72.37	82.33
$\mathrm{C}_{2} \mathrm{CYCCOC}$	-35.43	81.19	27.04	34.90	42.01	48.02	57.35	64.21	74.77
$\mathrm{C}_{2} \mathrm{CYCCOC} \bullet$	$10.92{ }^{\text {d }}$	76.3	23.71	31.05	37.51	42.88	51.13	57.16	66.48
$\mathrm{C}_{3} \mathrm{CCHO}$	-58.74	84.46	30.19	37.07	43.21	48.45	56.77	63.02	72.81
$\mathrm{CCC}(\mathrm{C}) \mathrm{COOH}$	-10.42	103.92	34.02	41.91	48.99	54.93	64.07	70.74	81.05
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{COOH})_{2}$	-25.14	125.49	43.22	51.66	59.00	65.00	73.92	80.24	89.90
$\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}$	-76.83	107.03	37.03	44.58	51.33	57.00	65.71	71.98	81.53
$\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}$	-22.35	91.94	30.34	35.64	40.27	44.17	50.30	54.94	62.41
$\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{COO} \bullet$	-42.39	117.21	41.02	50.08	57.96	64.36	73.83	80.46	90.52
$\mathrm{C}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{O} \bullet\right) \mathrm{COO} \bullet$	-8.25	106.00	36.67	44.97	52.14	57.99	66.73	72.96	82.42
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CHO}$	-19.16	79.12	22.01	26.89	31.59	35.74	42.41	47.37	55.03
$\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO})_{2}$	-75.03	93.95	30.90	37.04	42.58	47.33	54.81	60.30	-75.03
$\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O} \bullet$	-40.63	96.15	32.53	39.60	45.80	50.97	58.94	64.72	73.53
$\mathrm{C}(\mathrm{COOH}) \mathrm{CYCCOC}$	-52.37	100.43	33.89	42.58	50.34	56.77	66.45	73.28	83.52
$\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{C}=\mathrm{O}$	-27.34	74.13	21.19	25.97	30.31	34.05	39.97	44.37	51.17
$\mathrm{C}_{3} \mathrm{CCI}$	-15.35	86.23	32.13	40.40	47.51	53.35	62.24	68.73	78.89
$\mathrm{C}_{3} \bullet \mathrm{CCI}$	36.07	93.63	32.07	39.81	46.33	51.61	59.52	65.29	74.34
$\mathrm{CH}_{2} \mathrm{I}$	55.00^{136}	66.30	11.58	12.55	13.30	13.86	14.58	15.00	15.47
1 O	27.70^{137}	57.43	7.89	8.24	8.45	8.59	8.73	8.80	8.88

${ }^{\mathrm{a}}$ Thermodynamic properties are referred to a standard state of an ideal gas of pure enantiometer at 1 atm . ${ }^{\mathrm{b}}$ Units in $\mathrm{kcal} \mathrm{mol}^{-1}$. ${ }^{\mathrm{c}}$ Units in cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$. ${ }^{\mathrm{d}}$ Based on the parent and bond energy calculation.

The torsional potential on the $\mathrm{CH}_{2} \bullet-\mathrm{C}\left(\mathrm{C}_{2}\right) \mathrm{COOH}$ bond in Figure 4.3 shows a very low, six fold barrier, where only two wells have depth over $0.3 \mathrm{kcal} \mathrm{mol}^{-1}$. This $\mathrm{CH}_{2} \cdot-\mathrm{C}\left(\mathrm{C}_{2}\right) \mathrm{COOH}$ rotor is nearly a free rotor. Figure 4.3 shows both UB3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and UMP2/6-31G(d,p) calculations, where the barriers are low and similar in
foldness, but the energies are somewhat different. The potential curve from the UB3LYP/6-31G(d,p) level is chosen to calculate the contribution from $\mathrm{CH}_{2} \bullet$ $\mathrm{C}\left(\mathrm{C}_{2}\right) \mathrm{COOH}$ internal rotor to $S^{0}{ }_{298}$ and $C_{p}(T)$'s for consistency. Table 4.4 illustrates the values from vibrational, translational, external rotational contributions and also each hindered internal rotational contribution to S_{298}° and $C_{p}(T)$'s for $\mathrm{C}_{3} \mathrm{CCOO}$ • and $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$. Table 4.5 lists the thermochemical properties of important reactants, transition states, adducts, and products.

4.4.3 Chemical Activation Reaction Analysis

4.4.3.1 $\mathbf{C}_{3} \mathbf{C C} \cdot+\mathrm{O}_{2}$. A potential energy diagram for the $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$ reaction system calculated at the CBS-Q level is shown in Figure 4.4. Neopentyl radical $\left(\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}=10.52\right.$ $\mathrm{kcal} \mathrm{mol}{ }^{-1}$) reacts with O_{2} to form a $\mathrm{C}_{3} \mathrm{CCOO} \cdot$ radical with a $38.13 \mathrm{kcal} \mathrm{mol}^{-1}$ well depth. Reaction channels for the energized adduct $\mathrm{C}_{3} \mathrm{CCOO} \bullet *$ include dissociation back to reactants, stabilization to $\mathrm{C}_{3} \mathrm{CCOO}^{\bullet}$, isomerization by hydrogen transfer to the peroxy radical site via $\mathrm{TS} 1\left(E_{a}=23.82 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to form a $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ isomer $\left(\Delta H_{f}{ }^{\circ}{ }_{298}=-9.43\right.$ $\left.\mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$, and dissociation to products $\left(\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH}\right)$ via $\mathrm{TS} 2\left(E_{a}=41.61 \mathrm{kcal} \mathrm{mol}^{-}\right.$ ${ }^{1}$). The barrier for $\mathrm{C}_{3} \mathrm{CCOO} \bullet$ isomerization to $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ is calculated as 23.82 kcal mol^{-1}, the chemically activated $\mathrm{C}_{3} \mathrm{CCOO}{ }^{*}$ adduct has sufficient energy for this isomerization to occur before it is stabilized or reacts back to reactants (reverse). Since the energy of TS3 is ca. $4 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ lower than that of the entrance channel, the chemically activated $\mathrm{C}_{3} \mathrm{CCOO}{ }^{*}$ adduct can isomerize and dissociate to the 3,3dimethyloxetane +OH directly.

Figure 4.4 Potential energy diagram for $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}$ reaction system.

The energized $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ isomer undergo unimolecular reaction through several forward channels that are important to products or revert back to the peroxy isomer. Forward reactions are dissociation to 3,3-dimethyloxetane +OH via TS3 $\left(E_{a}=15.50 \mathrm{kcal}\right.$ $\left.\mathrm{mol}^{-1}\right), \beta$-scission to $\mathrm{C}_{2} \mathrm{C}=\mathrm{C}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$ via TS4 $\left(E_{a}=25.38 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, and another β-scission (elimination) to $\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}+\mathrm{CH}_{3}$ via $\mathrm{TS} 5\left(E_{a}=26.52 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. The $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ isomer can also undergo a very interesting isomerization via TS6 ($E_{a}=56.34$ $\mathrm{kcal} \mathrm{mol}^{-1}$) shifting a methyl group onto the $-\mathrm{CH}_{2} \bullet$ radical site forming a tertiary radical; but the high barrier and tight transition state make this channel unimportant. The
dominant channel of this hydroperoxy-neopentyl isomer is reverse reaction back to the peroxy isomer, with a barrier of only $5.64 \mathrm{kcal} \mathrm{mol}^{-1}$.

The 3,3-dimethyloxetane is an important product; it can undergo abstraction reaction to lose a secondary H atom bonded on a carbon in the ring structure, the radical formed will undergo ring opening via $\mathrm{C}-\mathrm{O}$ bond cleavage to form $\mathrm{C}_{3} \cdot \mathrm{CCHO}$ radical with a lower barrier ${ }^{83}$, or via $\mathrm{C}-\mathrm{C}$ bond cleavage to form $\mathrm{C}_{2} \mathrm{C}=\mathrm{COC} \cdot \operatorname{radical}\left(\mathrm{E}_{\mathrm{a}}=33.13\right.$ $\mathrm{kcal} / \mathrm{mol}$). The $\mathrm{C}_{3} \cdot \mathrm{CCHO}$ radical undergoes β-scission leading to the formation of isobutene $+\mathrm{HCO}\left(\mathrm{E}_{\mathrm{a}}=18.77 \mathrm{kcal} / \mathrm{mol}\right)$, or methacrolein $+\mathrm{CH}_{3}\left(\mathrm{E}_{\mathrm{a}}=27.33 \mathrm{kcal} / \mathrm{mol}\right)$; the $\mathrm{C}_{2} \mathrm{C}=\mathrm{COC} \cdot$ radical undergoes β-scission to form $\mathrm{CH}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{C}=\mathrm{C} \cdot$ radical $\left(\mathrm{E}_{\mathrm{a}}=32.33\right.$ $\mathrm{kcal} / \mathrm{mol})$ which will undergo subsequently oxidation reactions. ${ }^{138}$

Table 4.6 Kinetic Parameters for QRRK Analysis in $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}$ System

reaction	$A\left(\mathrm{~s}^{-1}\right.$ or $\left.\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$	n	$E_{a}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
$\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2} \rightarrow \mathrm{C}_{3} \mathrm{CCOO} \bullet$	$1.99 \times 10^{17 \mathrm{a}}$	-2.1	0.0
$\mathrm{C}_{3} \mathrm{CCOO} \bullet \rightarrow \mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$	$6.17 \times 10^{13 \mathrm{~b}}$	0.0	36.28
$\mathrm{C}_{3} \mathrm{CCOO} \bullet \rightarrow \mathrm{C}_{3} \bullet \mathrm{CCOOH}$	1.24×10^{6}	1.68963	23.14
$\mathrm{C}_{3} \mathrm{CCOO} \bullet \rightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH}$	6.54×10^{8}	1.23510	41.48
$\mathrm{C}_{3} \cdot \mathrm{CCOOH} \rightarrow \mathrm{C}_{3} \mathrm{CCOO} \bullet$	2.07×10^{5}	1.12721	5.17
$\mathrm{C}_{3} \cdot \mathrm{CCOOH} \rightarrow \mathrm{C}_{2} \mathrm{CYCCOC}+\mathrm{OH}$	2.49×10^{10}	0.50717	15.14
$\mathrm{C}_{3} \cdot \mathrm{CCOOH} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{C}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	2.84×10^{11}	0.44359	25.91
$\underset{\mathrm{CH}_{3}}{\mathrm{C}_{3} \cdot \mathrm{CCOOH} \rightarrow \mathrm{C}(\mathrm{C}) \mathrm{CQOH}+}$	8.63×10^{7}	1.55502	26.10
$\mathrm{C}_{3} \cdot \mathrm{CCOOH} \rightarrow \mathrm{CCC} \cdot(\mathrm{C}) \mathrm{COOH}$	3.63×10^{9}	0.97602	56.17
	frequency / degeneracy		
$\mathrm{C}_{3} \mathrm{CCOO} \bullet$	455.3 / 17.809	1418.9 / 18.919	3681.3 / 8.773
$\mathrm{C}_{3} \cdot \mathrm{CCOOH}$	403.1/17.879	1388.0 / 18.733	3466.4 / 8.388
Lennard-Jones parameter	$\sigma(\AA)$	$\varepsilon / \mathrm{k}(\mathrm{K})$	
	5.86	632	

${ }^{\text {a }}$ From reference 7. ${ }^{\text {b }}$ From the principle of microscopic reversibility at 700 K .

The high-pressure limit rate constants for this $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$ system are calculated from canonical transition state theory and fitted by three parameters A_{∞}, n, and E_{a} over the temperature range from 298 to $2000 \mathrm{~K}, k_{\infty}=A T^{n} \exp \left(-E_{\alpha} / R T\right)$, by the THERMKIN ${ }^{72}$
program. These are important kinetic parameters and are used as input for QRRK and Master equation analysis. The values of these parameters are listed in Table 4.6, and the thermodynamic analysis for reactions of neopentyl oxidation by THERMKIN are illustrated in Table B. 3 .

Figures 4.5 Calculated temperature dependent rate constants for chemical activated $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}$ system at $\mathrm{P}=1 \mathrm{~atm}$.

The calculated temperature dependent rate constants for chemically activated $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}$ reaction system from 300 to 1500 K at 1 atm are illustrated in Figure 4.5. The dominant product-channel for $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}$ is stabilization to $\mathrm{C}_{3} \mathrm{CCOO} \cdot$ below 1000 K. The forward and reverse isomerization and reverse reaction (dissociation) occur
rapidly; the isomerization and the epoxide formation steps have relatively tight transition states with Arrhenius pre-exponential factors of ca. $10^{11} \mathrm{~s}^{-1}$ between $300 \sim 1000 \mathrm{~K}$ respectively, and the reverse isomerization is fast because of the very low barrier (5.64 kcal mol^{-1}). At the low temperatures of $700 \sim 800 \mathrm{~K}$, the stabilization and isomerization are the dominant channels with $3.1 \sim 10.3 \%$ of total forward reaction forming 3,3dimethyloxetane +OH . Reverse reaction and dissociation to 3,3-dimethyloxetane +OH are the important reactions of the $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ adduct above 1000 K ; this results in falloff by 1000 K .

Figures 4.6 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{3} \mathrm{CC}$ • $+\mathrm{O}_{2}$ system at $\mathrm{T}=300 \mathrm{~K}$.

Figures 4.6 and 4.7 illustrate the pressure dependence for the rate constants ($\log k$ vs P) of the chemically activated reactions, at 300 K and 1000 K . Stabilization to
$\mathrm{C}_{3} \mathrm{CCOO} \cdot$ is the dominant channel over all pressures at 300 K ; it is also the dominant product channel when pressure is over 1 atm at 1000 K . When pressure is below 1 atm , the dissociation back to $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}$ becomes the dominant channel at 1000 K , with the formation of 3,3-dimethyloxetane +OH competitive over the entire temperature range. The rate constants of other product channels decrease as the pressure increases. The next important reactions are formation of isobutene $+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$ and $\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}+\mathrm{CH}_{3}$, which have similar rates and are lower than the epoxide +OH channel over the entire temperature range.

Figures 4.7 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{3} \mathrm{CC} \cdot$ $+\mathrm{O}_{2}$ system at $\mathrm{T}=1000 \mathrm{~K}$.
4.4.3.2 Dissociation of Adduct. Stabilization of the neopentyl peroxy adduct is an important product in the chemical activation reaction system below 1000 K . There are two important reactions of stabilized $\mathrm{C}_{3} \mathrm{CCOO} \cdot$ radical at atmospheric pressure as shown in Figure 4.8. One is isomerization to $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$, and this channel is competitive with dissociation back to reactants $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$ above the temperature of 800 K . The isomer $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ has a very low barrier for reverse reaction and thus the neopentyl peroxy radical and the hydroperoxy-neopentyl isomer will exist in a quasi equilibrium, where the lower enthalpy peroxy radical will be the dominant isomer.

Figure 4.8 Calculated temperature dependent dissociation rate constants for $\mathrm{C}_{3} \mathrm{CCOO} \cdot$ at $\mathrm{P}=1 \mathrm{~atm}$.

There are four important reactions of stabilized $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ radical at atmospheric pressure as shown in Figure 4.9. The lowest barrier is the isomerization back to $\mathrm{C}_{3} \mathrm{CCOO}$ •, but the dissociation to 3,3-dimethyloxetane +OH is competitive with the
isomerization over the entire temperature range. The reaction channels for dissociation to $\mathrm{C}_{2} \mathrm{C}=\mathrm{C}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$ and dissociation to $\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}+\mathrm{CH}_{3}$ are similar and several orders of magnitude lower than the epoxide +OH channel over temperature of $300 \sim$ 1500 K.

Figure 4.9 Calculated temperature dependent dissociation rate constants for $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ at $\mathrm{P}=1 \mathrm{~atm}$.

The master equation analysis ${ }^{26}$ for isomerization or dissociation from stabilized adducts does not include reactions past the adjacent well(s), so it is necessary to account for further reaction of these products in the numerical kinetic integration (Chemkin analysis).
4.4.3.3 $\mathbf{C}_{3} \cdot \mathbf{C C O O H}+\mathbf{O}_{2}$. The potential energy surface for addition of a second O_{2} to hydroperoxy-neopentyl radical $\left(\mathrm{C}_{3} \cdot \mathrm{CCOOH}\right)$ calculated at the B3LYP/6-311++G(3df,2p) level is shown in Figure 4.10.

Figure 4.10 Potential energy diagram for $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ reaction system.

The $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ reacts with O_{2} to form a hydroperoxide-peroxy $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{COO} \cdot$ with a $32.96 \mathrm{kcal} \mathrm{mol}^{-1}$ well depth. Reaction channels for the chemically activated adduct $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{COO}^{*}$ include dissociation back to reactants, stabilization to $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{COO}$, isomerization via hydrogen shift via $\mathrm{TS} 7\left(E_{a}=22.58 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to form a dihydroperoxide isomer $\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{COOH})_{2}\left(\Delta H_{f}{ }^{\circ} 298=-25.14 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, and dissociation to products $\left(\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH}\right)$ via two different transition states: TS8 $\left(E_{a}=\right.$ $22.40 \mathrm{kcal} \mathrm{mol}^{-1}$) and TS8A ($E_{a}=41.23 \mathrm{kcal} \mathrm{mol}^{-1}$). The dihydroperoxide isomer
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{COOH})_{2}$ undergoes dissociation to 3-methyl,3-hydroperoxideoxetane +OH via TS9 ($E_{a}=14.35 \mathrm{kcal} \mathrm{mol}^{-1}$), β-scission to generate a hydroperoxide olefin $\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}$ and $\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$ via $\operatorname{TS10}\left(E_{a}=17.34 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. The stabilized $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{COO} \cdot$ peroxy undergoes homolytic dissociation via cleavage of the weak $\mathrm{O}-\mathrm{O}$ bond with barrier of $43.03 \mathrm{kcal} \mathrm{mol}^{-1}$. The stable vinyl hydroperoxide produced will also undergo homolytic cleavage of the weak $\mathrm{O}-\mathrm{O}$ bond in the peroxide moiety to generate OH and vinyl alkoxy (chain branching reaction), serving to accelerate the oxidation process. The vinyl alkoxy radical is an important reaction to form 2-methyl-2-propenal $(\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CHO})$ which was identified as an important product from neopentyl radical oxidation. ${ }^{105}$

A number of the reaction channels for $\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{COO} \bullet *$ adduct are similar to those of $\mathrm{C}_{3} \mathrm{CCOO}^{*}$ adduct due to the similarity between the two adduct structures. Table 4.7 lists calculated reaction enthalpies for similar reaction channels in Figure 4.4 and Figure 4.10. In Table 4.7, the barriers for the corresponding isomerization channels and dissociation channels in two reaction systems show agreement, especially for the channels with tight transition states (ring formation).

| Table 4.7 Comparison and Estimation of Reaction Enthalpies for Similar Channels ${ }^{\text {a }}$ | |
| :--- | :--- | :--- | :--- |
| B3LYP B3LYP \quad CBSQ/B3LYP | B3LYP \quad B3LYP |

	$16-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$	$16-311++\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p})$	$16-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$		$16-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$	$16-311++\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p})$	corrected $^{\mathrm{b}}$
TS1	24.00	23.42	23.82	TS7	22.79	22.58	22.98
TS2	42.54	42.06	41.61	TS8A	41.87	41.26	40.78
TS3	14.71	14.14	15.51	TS9	15.86	14.35	15.72
TS4	29.97	27.81	25.39	TS10	19.28	17.34	14.93
				TS8	22.93	22.40	

${ }^{\text {a }}$ Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\text {b }}$ Corrected reaction enthalpies according to the trend calculated from three different levels for the similar reaction channels.

In order to obtain more accurate reaction enthalpies in this second O_{2} addition system than those from the DFT calculations, we evaluate the deviation of enthalpies
between the DFT and the CBS-Q levels, and then correct the corresponding DFT level reaction enthalpies to CBS-Q level for these oxygenated species. The barriers calculated from the B3LYP/6-311++G(3df,2p) level in Figure 4.10 are corrected as 22.98, 15.72, 14.93, and $40.78 \mathrm{kcal} \mathrm{mol}^{-1}$ for TS7, TS9, TS10, and TS8A, respectively. The correction is $0.4 \sim 1.4 \mathrm{kcal} \mathrm{mol}^{-1}$ for the reactions with ring- formation transition states, and is 2.4 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ for the dissociation of $-\mathrm{CH}_{2} \mathrm{OOH}$ group with TS 10 .

One new important channel in Figure 4.10 , that is not in the $\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}$ system (Figure 4.4), is the exothermic formation of $\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}+\mathrm{OH}$ via a 6-member ring transition state (TS8) with a $22.40 \mathrm{kcal} \mathrm{mol}^{-1}$ barrier. In TS8, the peroxy radical abstracts the weakly bonded H atom in the $-\mathrm{CH}_{2} \mathrm{OOH}$ group; this $\mathrm{H}-\mathrm{C}\left(\mathrm{C}_{2}\right) \mathrm{HOOH}$ bond is weak because, as the H atom is leaving, a strong carbonyl bond (gain of $\sim 80 \mathrm{kcal} \mathrm{mol}^{-1}$) is forming with the weak $\mathrm{O}-\mathrm{OH}$ bond $\left(\sim 45 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ cleaving.

The chemical activated $\left[\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}\right]^{*}$ species can undergo dissociation to cleave the weak $\mathrm{RO}-\mathrm{OH}$ bond to form a 2-methyl isopropanal-2-methyoxy radical $\left(\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O} \cdot\right.$) plus a second OH (overall reaction $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2} \rightarrow$ $\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O} \cdot+2 \mathrm{OH}$), or it can be stabilized. While the branching ratio to the two products is a function of temperature, it is calculated to be near $1: 1$ at the conditions modeled in this study. The $\left[\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}\right]^{*}$ species has ca. $48 \mathrm{kcal} \mathrm{mol}^{-1}$ activation energy at the transition state point.

The stabilized $\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}$ can undergo bimolecular reaction (abstraction) and the product radicals can dissociate by low energy β-scission. For example, the weakly bonded H atom will be abstracted to form $\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{C} \cdot=\mathrm{O}$ radical, which will dissociate to CO and $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COOH}$, which will further dissociate to isobutene $+\mathrm{HO}_{2}$.

These are important chain branching channels at low temperature and also contribute to OH and HO_{2} product formation.

The 2-methyl isopropanal-2-methyoxy radical $\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O}$ • will undergo β scission to either $\mathrm{C}_{2} \mathrm{C} \cdot(\mathrm{CHO})+\mathrm{CH}_{2} \mathrm{O}$ via TS 11 , or to $\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO})_{2}+\mathrm{H}$ via TS 12 as outlined in the reaction mechanism scheme. The $\mathrm{C}_{2} \mathrm{C} \cdot(\mathrm{CHO})$ radical will undergo the β scission to $\mathrm{C}=\mathrm{CC}+\mathrm{HCO}$ via TS 13 A , or $\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CHO}+\mathrm{H}$ via TS 13 , which are important products that were observed in neopentane oxidation. ${ }^{113}$

Table 4.8 Kinetic Parameters for QRRK in $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ System

reaction A	$A\left(\mathrm{~s}^{-1} \mathrm{or} \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$	n	$E_{a}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
$\mathrm{C}_{3} \bullet \mathrm{CCOOH}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{COO} \bullet$	$8.0 \times 10^{11 \mathrm{a}}$	0.0	0.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{COO} \rightarrow \mathrm{C}_{3} \bullet \mathrm{CCOOH}+\mathrm{O}_{2}$	$6.38 \times 10^{14 \mathrm{a}}$	0.0	31.74
$\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{COO} \bullet \rightarrow \mathrm{C}_{2} \bullet \mathrm{C}(\mathrm{COOH})_{2}$	1.06×10^{8}	0.92093	23.00
$\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{COO} \bullet \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}+\mathrm{OH}$	H 5.36×10^{3}	2.87418	21.30
$\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{COO} \bullet \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}+\mathrm{OH}$	H 8.90×10^{6}	1.59523	40.30
$\begin{aligned} & \mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{COO} \bullet \mathrm{C}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{O} \bullet\right) \mathrm{COO} \bullet+ \\ & \mathrm{OH} \end{aligned}$	$1.0 \times 10^{16 \mathrm{a}}$	0.0	43.03
$\mathrm{C}_{2} \bullet \mathrm{C}(\mathrm{COOH})_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{COO} \bullet$	1.01×10^{4}	1.62435	5.09
$\mathrm{C}_{2} \bullet \mathrm{C}(\mathrm{COOH})_{2} \rightarrow \mathrm{C}(\mathrm{COOH}) \mathrm{CYCCOC}+\mathrm{OH}$	3.46×10^{5}	1.68617	15.31
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{COOH})_{2} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	H $\quad 1.28 \times 10^{5}$	1.98348	14.48
$\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O} \bullet+\mathrm{OH}$	3.20×10^{15}	0.00	45.09
$\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{CHO})_{2}+\mathrm{H}$	1.97×10^{7}	1.84217	28.52
$\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O} \bullet \rightarrow \mathrm{C}_{2} \mathrm{C} \bullet \mathrm{CHO}+\mathrm{CH}_{2} \mathrm{O}$	2.32×10^{11}	0.49609	4.56
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CHO} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CHO}+\mathrm{H}$	2.54×10^{9}	1.20614	42.68
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CHO} \rightarrow \mathrm{C}=\mathrm{CC}+\mathrm{HCO}$	$1.33 \times 10^{14 \mathrm{a}}$	0.0	39.93
	frequency / degeneracy		
$\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{COO} \bullet$	$341.0 / 19.431$	1445.4 / 25.704	4000.0 / 5.365
$\mathrm{C}_{2} \bullet$ C(COOH$)_{2}$	$386.0 / 21.049$	1447.6 / 21.746	3999.0 / 7.205
Lennard-Jones parameter	$\sigma(\AA)$	ع/k (K)	
	6.40	720.5	

${ }^{2}$ The A factor is by generic reaction or estimated by reverse reaction and microscopic reversibility. ${ }^{\mathrm{b}}$ Estimated as the sum of reverse E_{a} and $\Delta H_{\mathrm{rxn}}{ }^{\circ}$.

The high-pressure limit rate constants for the $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ system are fitted by three parameters A_{∞}, n, and E_{a} over the temperature range from 298 to 2000 K and these fits along with data are listed vs. temperature in Appendix Table B.3. Important
input kinetic parameters for QRRK and Master equation analysis for this system are listed in Table 4.8.

The calculated temperature dependent rate constants for the chemical activated $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ system are illustrated in Figure 4.11 for conditions of 300 to 1500 K at 1 atm . The dominant product for $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ is stabilization to $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{COO} \bullet$ below 800 K , but reverse reaction becomes the dominant channel above 800 K .

Figure 4.11 Calculated temperature dependent rate constants for chemical activated $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ system at $\mathrm{P}=1 \mathrm{~atm}$.

The most important new product channel for stabilized $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{COO} \cdot$ radical at atmospheric pressure is the formation of $\left[\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}\right]^{*}+\mathrm{OH}$ via TS 8 as shown in Figure 4.11 , this reaction is competitive with the reverse channel to $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$
below 800 K . The dissociation channel (chain branching) of $\left[\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}\right]^{*}$ to $\mathrm{C}_{2} \mathrm{C}(\mathrm{CO} \cdot) \mathrm{CHO}+2 \mathrm{OH}$ becomes slightly dominant above 800 K ; it is the important forward channel to products and is an important chain branching step at low and intermediate temperatures. The isomerization to $\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{COOH})_{2}$ is the next important forward channel below 600 K , and the homolytic cleavage of the weak $\mathrm{RO}-\mathrm{OH}$ bond in $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{COO} \cdot($ also a chain branching path $)$ becomes important above 600 K .

A plot of $\log \mathrm{k}$ vs pressure for the $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ system at 700 K is shown in Figure 4.12, which illustrates that stabilization to the peroxy radical and reverse reaction channels are dominant at all pressures. The dissociation to $\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}+\mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O} \cdot+2 \mathrm{OH}$ are the most important forward channels at all these pressures.

Figure 4.12 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}$ system at $\mathrm{T}=700 \mathrm{~K}$.

4.4.4 Unimolecular Dissociation of Neopentyl Radical

At higher reaction temperatures, the neopentyl radical will undergo unimolecular dissociation to isobutene + methyl radical in competition with the $\mathrm{R} \cdot+\mathrm{O}_{2}$ association reaction. The rate constant for unimolecular dissociation is calculated as $k=10^{13.68} \exp (-$ $\left.30.84 \mathrm{kcal} \mathrm{mol}^{-1} / \mathrm{RT}\right)^{-1}$ at the CBS-Q level. It shows good agreement with the experimentally determined rate constant by Slagle et al, ${ }^{139} k=10^{13.9} \exp (-30.9 \pm 1.0 \mathrm{kcal}$ $\left.\mathrm{mol}^{-1} / \mathrm{RT}\right)^{-1}$. The importance of this neopentyl radical unimolecular decomposition is also evaluated.

The OH radical generated by the neopentyl oxidation reactions and the methyl radical from the β-scission reaction above will add to isobutene forming new isobutene adducts: $\mathrm{C}_{3} \cdot \mathrm{COH}, \mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}$ and $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}$. These OH and CH_{3} addition reactions and the subsequent O_{2} addition reactions to these adducts have been calculated and included in our mechanism, but these reactions have little contribution to the OH formation profile. The reaction pathways and high pressure limit rate constants for the oxidation of these isobutene adducts will be discussed in the following chapter on modeling experimental HO_{2} formation profiles in the neopentyl oxidation system.

4.4.5 Model and Comparison with Experimental Result

A detailed reaction mechanism (258 reactions of which approximately 170 reactions are pressure dependent, 115 species) for the initial neopentyl oxidation is assembled in Appendix Table B.4, and the CHEMKIN II interpreter and integrator (version 3.1) ${ }^{140}$ is used to model the experimental OH formation profile for the reaction time of $0 \sim 3 \mathrm{~ms}$. Abstraction reactions are not considered pressure dependent and therefore do not require fall-off analysis. Abstraction reactions of $\mathrm{O}, \mathrm{OH}, \mathrm{HO}_{2}$, and $\mathrm{R} \cdot$ radicals are taken from
evaluated literature wherever possible. A procedure from Dean and Bozzelli ${ }^{141}$ is used to estimate abstraction rate constants by $\mathrm{H}, \mathrm{O}, \mathrm{OH}$, and CH_{3} radicals when no literature data are available.

Figure 4.13 Comparison of the present model with the experimental OH LIF measurements of Hughes et al.

The time dependence of OH radical formation profile predicted by our reaction mechanism compared with experimental data published by Hughes et al. ${ }^{105}$ is shown in Figure 4.13. The experiment was performed at $700 \mathrm{~K}, 613.3$ torr, with O_{2} pressure of 63.3 torr and $\mathrm{C}_{3} \mathrm{CC} \cdot$ radical concentration of 3×10^{11} molecule cm^{-3}. The solid curve in

Figure 4.13 represents our modeling result for the OH profile, and it shows good agreement with experimental data of Hughes et al. The reactions from the addition of the second $\mathrm{O}_{2},\left(\mathrm{C}_{3} \cdot \mathrm{CCOOH}+\mathrm{O}_{2}\right)$ contributes 0.9 to 6.4% of the total predicated OH formation from the model. Sensitivity analysis on the OH formation at the experimental temperature and pressure is shown in Figure 4.14. The reaction channel for the formation of 3,3-dimethyloxetane +OH is calculated to have the highest sensitivity for the formation of the OH radical, the isomerization to $\mathrm{C}_{3} \cdot \mathrm{CCOOH}$ from $\mathrm{C}_{3} \mathrm{CCOO} \cdot$ radical is the next, the well depth of the chemical activation reaction of $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{OH}$ for formation of neopentyl peroxy and 3,3-dimethyloxetane +OH and the unimolecular decomposition of neopentyliodide radical are also important.

Figure 4.14 Sensitivity analysis on OH formation at $\mathrm{T}=700 \mathrm{~K}$ and $\mathrm{P}=613.3$ torr.

The loss of OH radical, is most sensitive to wall reaction, and the unimolecular decomposition of neopentyl radical to isobutene $+\mathrm{CH}_{3}$ is also important, since it results in the loss of the OH precursor. The entropy of TS3 for the formation of 3,3dimethyloxetane +OH is calculated as $98.04 \mathrm{cal} / \mathrm{mol}$, and it is increased by $1.5 \mathrm{cal} \mathrm{mol}^{-1}$ K^{-1} to fit the OH formation profile with reaction time.

Overall, there are several major reactions responsible for the OH formation: (i) Dissociation of hydroperoxy-neopentyl radical to 3,3-dimethyloxetane +OH ; (ii) The addition of a second O_{2} to hydroperoxy-neopentyl radical with isomerization and subsequent dissociation reactions; and (iii) Reactions of CH_{3} from neopentyl dissociation. Importance of these reaction paths changes with concentrations, pressure and temperature. At a pressure of 613.3 torr and a temperature of 700 K , the formation of 3,3dimethyloxetane +OH is by far the most important channel to form OH radical.

4.5 Summary

Thermochemical properties of the neopentyl radical + oxygen reaction system and the hydroperoxy neopentyl radical $+\mathrm{O}_{2}$ reaction system are calculated using ab initio CBS-Q and density functional B3LYP/6-311++G(3df,2p) methods. The barriers for the isomerization of neopentyl peroxy and subsequent epoxide formation reactions are calculated as 23.82 and $15.50 \mathrm{kcal} / \mathrm{mol}$, respectively. Kinetic parameters for intermediate and product formation channels are calculated versus temperature and pressure. A mechanism describing reaction paths and kinetic parameters for the initial steps in the neopentyl oxidation reaction system is developed to model the experimental OH formation profile. Second O_{2} addition to the hydroperoxy neopentyl radical has a minor
contribution to the OH profile under the modeled condition, but can be important to chain branching. Several reactions are predicted to be important for OH formation profile. Thermodynamic equilibrium on the reactions of $\mathrm{C}_{3} \mathrm{CCOO} \bullet \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOOH}$ and reactions $\left(\mathrm{C}_{3} \cdot \mathrm{CCOOH} \rightarrow\right.$ 3,3-dimethyloxetane $\left.+\mathrm{OH}, \mathrm{C}_{2} \mathrm{C}=\mathrm{C}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}\right)$, serve to control oxidation rate in this 700 K and 613.3 torr reaction system.

CHAPTER 5

KINETIC ANALYSIS OF 2-HYDROXY-1,1-DIMETHYLETHYL, 2-HYDROXY-2-METHYLPROPYL, AND 1,1-DIMETHYLPROPYL RADICALS OXIDATION

5.1 Overview

The reaction systems of 2-hydroxy-1,1-dimethylethyl, 2-hydroxy-2-methylpropyl, and 1,1-dimethylpropyl radicals plus O_{2}, which are secondary reactions in neopentyl radical + O_{2} oxidation system, are analyzed with $a b$ initio and density functional calculations to evaluate reaction paths and kinetics important in neopentyl oxidation. Enthalpies of formation ($\Delta H_{f}^{o}{ }_{298}$) are determined using isodesmic reaction analysis at the CBS-Q//B3LYP/6-31G(d,p) level. The entropies ($S^{\circ}{ }_{298}$) and heat capacities $C_{p}(T)$'s $(0 \leq T / \mathrm{K} \leq$ 1500) from vibrational, translational, and external rotational contributions are calculated using statistical mechanics based on the vibrational frequencies and structures obtained from the density functional study. The hindered internal rotor contributions to $S^{0}{ }_{298}$ and $C_{P}(T)$'s are calculated from the analysis of rotational potentials. $\Delta H_{f}^{o} 298$ values for radicals $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}, \mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH}, \mathrm{C}_{3} \cdot \mathrm{COH}, \mathrm{C}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COO} \cdot$, and $\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}$ are calculated as $-22.22,-62.71,-24.12,-61.76$, and $-33.58 \mathrm{kcal} \mathrm{mol}^{-1}$ at the CBS-QB3 level. The potential energy surfaces of the three reaction systems are calculated at the CBS-QB3 level. Rate constants are calculated as function of pressure and temperature using quantum Rice-Ramsperger-Kassel (QRRK) analysis for $k(\mathrm{E})$ and master equation for pressure fall-off. Kinetic parameters for intermediate and product formation channels of above reaction systems are presented versus temperature and pressure. An elementary reaction mechanism is constructed to model experimental HO_{2} formation profiles at different O_{2} concentrations in the neopentane oxidation reactions.

5.2 Background

The reactions of neopentyl radical with molecular oxygen have been investigated for modeling the time dependence of the OH formation profile based on ab initio and density functional computation methods in Chapter 4. Taatjes et al. ${ }^{103}$ recently measured the time-resolved production of HO_{2} and OH in pulsed-photolytic Cl -initiated oxidation of neopentane between 573 and 750 K . They reported that: (a) significant HO_{2} formation is observed above 623 K , where the formation of HO_{2} increases with increasing temperature; (b) the HO_{2} produced also increases with increasing O_{2} at 673 K ; (c) their OH measurements are especially sensitive to the direct pathways from $\mathrm{R}+\mathrm{O}_{2}$ to QOOH and to $\mathrm{OH}+3,3$-dimethyloxetane. They also developed a kinetic model based on the comparison with their previous time-dependent master equation calculation of analogous processes in the reaction of n-propyl with O_{2}. Taatjes et. al performed B3LYP/6-31G(d,p) calculations for the stationary points on the neopentyl $+\mathrm{O}_{2}$ system (surface) and adjusted this DFT data by the difference between B3LYP/6-31G(d,p) and QCISD(T)/6$311++\mathrm{G}(3 \mathrm{df}, 2 \mathrm{pd})$ energies from their study on the n -propyl $+\mathrm{O}_{2}$ system. The well depth for neopentyl $+\mathrm{O}_{2}$ is estimated as $35 \mathrm{kcal} \mathrm{mol}^{-1}$.

The results of Taatjes et. al and from Chapter 4 both show that there is no direct neopentyl $+\mathrm{O}_{2}$ reaction to form HO_{2} that is important. The HO_{2} formation is therefore a secondary reaction product. The most significant reaction path producing HO_{2} in the mechanism of Taatjes et. al's is identified to be the reaction of OH with neopentylperoxy to form HO_{2} and neopentoxy radical. This radical-radical association reaction is expected to be barrier-less and slightly exothermic, and their estimate of the rate constant is taken from the rate of generic reaction $\mathrm{CF}_{3} \mathrm{OO} \cdot+\mathrm{OH}$. Their model comparison with
experimental HO_{2} concentration vs. time profiles at 673 K for three O_{2} concentrations show good agreement; but did not qualitatively reproduce the continued production of HO_{2} at longer times. They suggest that inclusion of additional reaction steps for the initial neopentyl $+\mathrm{O}_{2}$ products might improve the overall agreement.

The important initial, reactive products in the neopentyl radical reaction with O_{2} are: neopentyl peroxy radical, OH radical, plus methyl radical and isobutene from CH_{3} elimination of neopentyl radical. The addition of CH_{3} and OH to the isobutene can form three new radical products, which will undergo further oxidation by reaction with O_{2}. These radicals are 2-hydroxy-1,1-dimethylethyl radical, 2-hydroxy-2-methylpropyl radical, and 1,1-dimethylpropyl radical.

An elementary mechanism based on $a b$ initio and density functional calculations and our earlier mechanism ${ }^{142}$ for modeling OH formation is constructed to model HO_{2} formation profiles in this study. The mechanism includes OH addition to isobutene at both of the $\mathrm{CD} / \mathrm{H} 2$ and $\mathrm{CD} / \mathrm{C} 2$ carbon atoms and CH_{3} addition to the $\mathrm{CD} / \mathrm{H} 2$ carbon along with O_{2} association reactions with these isobutene adducts. The model is shown to predict well for the experimental time-dependent formation of HO_{2} profile at different O_{2} concentrations reported by Taatjes et. al ${ }^{103}$, and the important reaction pathways that effect on production of HO_{2} radical in the mechanism are illustrated.

5.3 Calculation Method

The geometries of reactants, intermediates, transition states and products in neopentyl + O_{2} reaction system are calculated at the $\mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level using the Gaussian 98 program. ${ }^{32}$ The optimized structure parameters are then used to obtain total electronic
energies at the B3LYP/6-311++G(3df,2p) and CBS-Q//B3LYP/6-31G(d,p) single point levels of calculation. Contributions from vibrational, translational, external rotational, and electronic to entropies and heat capacities are calculated by statistical mechanics based on the vibrational frequencies and moments of inertia from the DFT optimized structures. The torsion frequencies are omitted in calculation of $S^{0}{ }_{298}$ and $C_{p}(T)$'s, and their contributions are replaced with values from the analysis of internal rotations. The $\Delta H_{\mathrm{f}}^{\mathrm{o}} 298$ values for reactants, intermediate and products are calculated using total energies from ab initio CBS-Q and DFT calculations and use of isodesmic reactions with group balance when possible. The $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ values of transition state structures are calculated by the $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ of stable radical adducts from working isodesmic reaction analysis, plus the difference of total energies between transition states and radical adducts at the CBS-Q level.

Unimolecular dissociation and isomerization reactions of the chemically activated and stabilized adducts resulting from addition or combination reactions are analyzed by first constructing potential energy diagrams for the reaction system. DFT and ab initio calculations are then used to calculate transition state structures and activation energy for isomerization, β-scission, and dissociation reactions. The enthalpies and entropies of the reactants and transition state structures are treated with conventional transition state theory to calculate Arrhenius pre-exponential factors and energies of activation, which result in high pressure limit rate constants (k_{∞}) as function of temperature.

Branching ratios of the energized adduct to stabilization and product channels are then calculated using multi-frequency Quantum Rice-Rampsperger-Kassel (QRRK) analysis for $k(E)^{66,115}$ with the steady-state assumption on the energized adduct(s) in
combination with a master equation analysis for fall-off. ${ }^{26}$ A 0.5 kcal energy grain used to obtain rate constants as a function of temperature and pressure for chemical activation and dissociation reactions. $(\Delta E)^{\circ}$ down of $570 \mathrm{cal} \mathrm{mol}^{-1}$ is used in the master equation analysis with helium as the third body. Lennard-Jones parameters, σ (Angstroms) and ε / κ (Kelvins), are obtained from tabulations ${ }^{90}$ and from an estimation method based on molar volumes and compressibility.

5.4 Results and Discussion

5.4.1 Geometries

The geometry optimizations for the reactants, transition states, adducts, and products in the isobutene- OH and isobutene $-\mathrm{CH}_{3}$ adducts oxidation systems are performed at the B3LYP/6-31G(d,p) level. The optimized structural parameters for 41 species including transition state structures are listed in Appendix Table C.1. The corresponding un-scaled vibrational frequencies and moments of inertia are listed in Table C.2. The notations of several important reactants and products in these systems are defined as: $\mathrm{C}_{2} \cdot \mathrm{COH}$ (2-hydroxy-1,1-dimethylethyl), $\quad \mathrm{C}_{3} \cdot \mathrm{COH} \quad$ (2-hydroxy-2-methylpropyl), $\quad \mathrm{C}_{2} \cdot \mathrm{CCC}$ (1,1dimethylpropyl), $\quad \mathrm{C}_{2} \mathrm{C}=\mathrm{COH} \quad$ (2-methyl-1-propen-1-ol), $\quad \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH} \quad$ (2-methyl-2-propen-1-ol), $\quad \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{OH}$ (1-propen-2-ol), $\mathrm{C}_{2} \mathrm{C}=\mathrm{O}$ (acetone), $\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}$ (2-methyl-1butene), $\mathrm{C}_{2} \mathrm{C}=\mathrm{CC}$ (2-methyl-2-butene), and $\mathrm{C}_{2} \mathrm{CyCOCC}$ (2,2-dimethyl-oxetane). The transition states of important reactions in these oxidation systems are identified as follows:

Peroxy radical isomerization:

$\mathrm{C}_{2} \mathrm{C}\left(\mathrm{OO} \bullet \cdot \mathrm{COH} \rightarrow \mathrm{TS} 14 \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CH}_{2} \mathrm{O} \bullet\right.$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{TS} 15 \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{COH}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{TS} 16 \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COO} \rightarrow \mathrm{TS} 22 \rightarrow \mathrm{C}_{2} \mathrm{C}\left(\mathrm{O}^{\bullet}\right) \mathrm{COOH}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COO} \bullet \mathrm{TS} 23 \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{COOH}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \bullet) \mathrm{CC} \rightarrow \mathrm{TS} 28 \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{TS} 29 \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{TS} 30 \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}$

This class of reaction represents intramolecular, endothermic, transfer of an H atom from a OH or CH_{3} group to the peroxy oxygen radical site via a 5 or 6 -member ring transition state (includes the H atom). The cleaving $\mathrm{O}-\mathrm{H}$ bond stretches to $1.35 \sim 1.365$ \AA from $0.96 \AA$, and the cleaving $\mathrm{C}-\mathrm{H}$ bond stretches to $(1.34,1.37) \sim 1.42 \AA$ from $1.09 \AA$, and the forming $\mathrm{OO}-\mathrm{H}$ bond length is $1.08 \sim 1.14(1.20,1.25) \AA$, which is longer than the $\mathrm{OO}-\mathrm{H}$ bond of $0.97 \AA$.

Epoxide formation:

$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet \mathrm{TS} 31 \rightarrow \mathrm{C}_{2} \mathrm{CyCOCC}+\mathrm{OH}$
In this reaction, the carbon radical in the $-\mathrm{CH}_{2} \bullet$ group attacks the carbon bonded peroxy oxygen to form 4-member ring transition state, while the weak $\mathrm{RO}-\mathrm{OH}$ bond is breaking. The cleaving $\mathrm{O}-\mathrm{O}$ bond length is $1.67 \AA$ and the forming $\mathrm{C}-\mathrm{O}$ bond length is $1.99 \AA$.

$\mathbf{H O}_{2}$ group elimination (β-scission):

$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH} \rightarrow \mathrm{TS} 18 \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{COH} \rightarrow \mathrm{TS} 21 \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C} \rightarrow \mathrm{TS} 32 \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \rightarrow \mathrm{TS} 35 \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$
This reaction type represents the elimination (beta scission) of a HO_{2} radical from a hydroperoxide alkyl radical with olefin formation in the carbon backbone. The cleaving $\mathrm{C}-\mathrm{O}$ bond length is $1.94 \sim 1.99 \AA$, the forming $\mathrm{O}-\mathrm{OH}$ bond decreases from 1.46 to $1.40 \sim 1.42 \AA$ and the forming $\mathrm{C}=\mathrm{C}$ bond length is $1.38 \sim 1.39 \AA$ in the transition states.

Concerted HO_{2} elimination:

$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{TS} 19 \rightarrow \mathrm{C} 2 \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{TS} 20 \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{TS} 33 \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{TS} 34 \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$
This reaction class represents a concerted elimination of HO_{2} radical from its alkyl peroxy parent to form an olefin. The cleaving $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ bond lengths are $2.28 \sim 2.31 \AA$ and $1.340 \sim 1.36 \AA$ respectively; and the forming $\mathrm{C}=\mathrm{C}$ and $\mathrm{O}-\mathrm{O}$ bond lengths are $1.39 \sim 1.51 \AA$ and $1.28 \AA$.

Alkyl group elimination:

$\mathrm{C}_{2} \mathrm{C}(\mathrm{O} \cdot) \mathrm{COOH} \rightarrow \mathrm{TS} 24 \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$
$\mathrm{C}_{2} \mathrm{C}(\mathrm{O} \bullet) \mathrm{COOH} \rightarrow \mathrm{TS} 25 \rightarrow \mathrm{CC}(=\mathrm{O}) \mathrm{COOH}+\mathrm{CH}_{3}$
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{COOH} \rightarrow \mathrm{TS} 26 \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{OH}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$
This type of reaction represents an alkyl group or oxy-alkyl group leaving (perpendicular) from a near planar ethylene structure. For methyl dissociation in TS25, the $\mathrm{C}-\mathrm{C}$ bond length stretches from $1.58 \AA$ to $2.17 \AA$, and the forming $\mathrm{C}=\mathrm{O}$ bond length is $1.24 \AA$ in the TS structure.

For the $\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OOH}$ (immediately dissociates to $\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$) elimination in TS24 and TS26, the cleaving $\mathrm{C}-\mathrm{C}$ bond length in the leaving group stretches from $2.06 \sim 2.21$ \AA, and the $\mathrm{O}-\mathrm{O}$ bond length lengthens slightly from $1.45 \sim 1.47 \AA$.

5.4.2 Thermochemical Properties

The enthalpies of formation for reactants, intermediate and products are calculated by isodesmic reactions analysis or taken from available literature. The enthalpies of standard species used in isodesmic reaction analysis are listed in Table 5.1, and Appendix Table C. 3 lists the calculated reaction enthalpies and $\Delta H_{f}^{o} 298$ values for the species in above oxidation systems at the three calculation levels. The average $\Delta H_{f}^{o} 298$ values from highlevel CBS-Q calculations are used for the kinetic model.

Enthalpies of formation for transition states are calculated by using the $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$ values of stable radical adducts plus difference of total energies between the radical adducts and the transition states. The enthalpies of 21 transition states in the three isobutene adduct oxidation systems determined at the three different levels are listed in Table 5.2.

Table 5.1 $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{298}$ for Standard Species in Isodesmic Reactions

species	$\Delta H_{\mathrm{f} 298}^{0}(\mathrm{kcal} / \mathrm{mol})$		species	$\Delta H_{\mathrm{f} 298}^{\mathrm{o}}(\mathrm{kcal} / \mathrm{mol})$	
CH_{4}	-17.89 ± 0.07	(Cox) ${ }^{60}$	$\mathrm{CH}_{3} \mathrm{OO}{ }^{\bullet}$	-2.15 ± 1.22	(Knyazev) ${ }^{126}$
$\mathrm{CH}_{3}{ }^{\text {- }}$	34.82 ± 0.2	$(\text { Stull })^{51}$	CCOOH	-39.7 ± 0.3	(Chen) ${ }^{128}$
$\mathrm{C}_{2} \mathrm{H}_{6}$	-20.24 ± 0.12	$(\mathrm{Cox})^{60}$	$\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OOH}$	10.96 ± 1.06	(Chen) ${ }^{128}$
$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\text {- }}$	28.80 ± 0.50	(Marshall ${ }^{143}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OO}$ -	-6.8 ± 2.3	(Blanksby) ${ }^{130}$
$\mathrm{C}_{3} \mathrm{H}_{8}$	-25.02 ± 0.12	(Pedley) ${ }^{56}$	CCCOOH	-44.7 ± 0.41	(Chen) ${ }^{128}$
$\mathrm{CH}_{3} \mathrm{OH}$	-48.07 ± 0.05	(Cox) ${ }^{60}$	$\mathrm{C} \cdot \mathrm{CCOOH}$	2.44	(Chen) ${ }^{144}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	-56.21 ± 0.10	(Pedley) ${ }^{56}$	CCCOO.	-12.13	(Chen) ${ }^{144}$
$\mathrm{CH}_{3} \mathrm{C} \cdot \mathrm{HOH}$	-13.34 ± 0.84	(Sun) ${ }^{59}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COO} \cdot$	-17.2	(Chen) ${ }^{144}$
$\mathrm{C}_{2} \mathrm{COH}$	-65.19 ± 2.2	(Sun) ${ }^{145}$	$\mathrm{C}_{3} \cdot \mathrm{CCOOH}$	-9.43	(Sun) ${ }^{142}$
$\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	-14.95 ± 2.8	$(\text { Sun })^{145}$	$\mathrm{C}_{3} \mathrm{CCOOH}$	-58.60	(Sun) ${ }^{142}$
$\mathrm{C}_{3} \mathrm{COH}$	-74.72 ± 0.21	(Wiberg) ${ }^{146}$	$\mathrm{C}_{2} \mathrm{CYCCOC}$	-35.43 ± 0.40	(Ringner) ${ }^{147}$
$\mathrm{C}_{3} \mathrm{CO}{ }^{\bullet}$	-23.14	(Chen) ${ }^{102}$			

Table 5.2 Calculated Reaction Enthalpies ${ }^{\text {a }}$

	B3LYP $16-31 G(d, p)$	B3LYP	CBSQ//B3LYP		B3LYP	B3LYP	CBSQ/B3LYP
TS14	23.34	23.94	21.88	TS25	14.49	12.17	12.94
TS15	41.87	41.26	35.46	TS26	21.91	20.37	24.01
TS16	34.65	33.57	28.41	TS28	24.50	23.62	24.28
TS17	7.37	4.78	6.15	TS31	16.00	15.63	17.58
TS18	5.45	5.64	11.65	TS29	36.51	35.94	33.60
TS19	35.24	33.12	31.93	TS30	32.38	31.59	33.08
TS20	34.66	32.29	31.98	TS32	10.94	10.06	11.98
TS21	22.84	18.70	15.67	TS33	25.12	23.80	29.54
TS22	16.76	17.44	22.81	TS34	25.37	24.14	29.82
TS23	28.06	26.30	26.73	TS35	10.06	9.05	13.61
TS24	8.98	6.25	9.31				

${ }^{2}$ Units in kcal mol^{-1}.

Contributions from vibrational, translational, external rotational, and electronic degeneracy to $S^{\circ}{ }_{298}$ and $C_{p}(T)$'s are calculated by statistical mechanics, and the contributions from internal rotations are replaced with values from previous work ${ }^{142}$ by evaluation of similar internal rotations. Table C. 4 lists the thermochemical properties of reactants, transition states, intermediates, and products in the reaction systems calculated by this work.

5.4.3 Analysis for Chemical Activation Reactions

5.4.3.1 $\mathbf{C}_{2} \mathbf{C} \cdot \mathbf{C O H}+\mathbf{O}_{2}$. The potential energy diagram for the $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ reaction system calculated at the CBS-Q level is shown in Figure 5.1. The reaction channels for the energized adduct $\left[\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH}\right]^{*}$ include dissociation back to reactants, stabilization to $\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH}$, several isomerizations followed by dissociation to products, and the concerted HO_{2} elimination reaction. The $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}$ radical $\left(\Delta H_{\mathrm{f}}{ }^{\circ} 298=-\right.$ $22.22 \mathrm{kcal} \mathrm{mol}^{-1}$) reacts with O_{2} to form a chemically activated peroxy adduct $\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH}^{*}$ with a $40.49 \mathrm{kcal} \mathrm{mol}^{-1}$ well depth. This well depth allows the energized
peroxy adduct with sufficient energy to react over the barriers of two different concerted HO_{2} elimination paths and three H atom transfer isomerization reactions, followed by the isomers dissociation before stabilization. The three isomerization reactions for $\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH}$ adduct are: (1) hydrogen transfer from the hydroxyl group to the peroxy radical site via six-member ring $\operatorname{TS} 14\left(E_{a}=21.88 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to form a $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CH}_{2} \mathrm{O} \cdot\left(\Delta H_{f}{ }^{\circ}{ }_{298}=-43.52 \mathrm{kcal} \mathrm{mol}^{-1}\right) ;$ (2) H atom transfer from a methyl via five-member ring TS15 $\left(E_{a}=35.46 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to form a $\mathrm{C}_{2} \bullet \mathrm{C}(\mathrm{OOH}) \mathrm{COH}\left(\Delta H_{f}{ }^{\circ}{ }_{298}=-\right.$ $46.68 \mathrm{kcal} \mathrm{mol}^{-1}$); (3) H atom transfer from the alcohol carbon via five-member ring $\operatorname{TS16}\left(E_{a}=28.41 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to form a C ${ }_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH}\left(\Delta H_{f}{ }^{\circ}{ }_{298}=-49.16 \mathrm{kcal} \mathrm{mol}^{-1}\right)$.

Figure 5.1 Potential energy diagram for $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ reaction system.

The concerted HO_{2} elimination reactions for $\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \bullet) \mathrm{COH}$ adduct are: (1) via five-member ring TS19 $\left(E a=-31.93 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to $\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$; (2) via fivemember ring TS20 $\left(\mathrm{Ea}=-31.98 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to $\mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$.

The forming alkoxy $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CH}_{2} \mathrm{O}$ • isomer will undergo β-scission via TS17 $\left(E_{a}=6.15 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and rapidly decompose to acetone, formaldehyde, and OH radical. The resulting hydroperoxide-alkyl radicals will also undergo β-scissions $\left(\mathrm{HO}_{2}\right.$ elimination) to form vinyl alcohols plus HO_{2}. The $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH}$ isomer dissociates to $\mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$ via $\operatorname{TS} 18\left(E_{a}=11.65 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, and $\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{COH}$ isomer dissociates to $\mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$ via $\operatorname{TS} 21\left(E_{a}=15.67 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. The concerted elimination of HO_{2} radical from the peroxy $\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \bullet) \mathrm{COH}$ adduct also results in these same two vinyl alcohols.

Figure 5.2 Calculated temperature dependent rate constants for chemical activated $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ system at $\mathrm{P}=0.1 \mathrm{~atm}$,

The high-pressure limit rate constants from canonical transition state theory for $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ system are fitted by three parameters A_{∞}, n, and E_{a} over temperature range from 298 to $2000 \mathrm{~K}, k_{\infty}=A T^{n} \exp \left(-E_{\alpha} / R T\right)$, by THERMKIN code. ${ }^{72}$ The input and output kinetic parameters for QRRK and Master equation analysis are listed in Table C.5.

The calculated pressure dependent rate constants for the chemical activation product channels of $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ vs temperature at $\mathrm{P}=0.1$ atm are presented in Figure 5.2. This figure shows that the dominant product-channel for $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ is stabilization to $\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH}$ below 700 K and dissociation back to $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ becomes the dominant channel when temperature is over 700 K . Dissociation to $\mathrm{C}_{2} \mathrm{C}=\mathrm{O}$ $+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$ is the more important product channel relative to the channels generating HO_{2} and vinyl alcohols.

Figure 5.3 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ system at $\mathrm{T}=700 \mathrm{~K}$.

Figure 5.3 illustrates the pressure dependent rate constants of the chemically activated reactions at 700 K . The stabilization to the $\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH}$ is a dominant channel when pressure is over 0.1 atm at 700 K , and when pressure is lower than 0.1 atm , the dissociation back to $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ becomes the dominant channel.
5.4.3.2 $\mathbf{C}_{3} \cdot \mathbf{C O H}+\mathbf{O}_{2}$. The potential energy surface for the $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ reaction system calculated at the CBS-Q level is shown in Figure 5.4. The $\mathrm{C}_{3} \cdot \mathrm{COH}$ radical reacts with O_{2} to form a peroxy $\mathrm{C}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COO} \cdot$ adduct with a $37.64 \mathrm{kcal} \mathrm{mol}^{-1}$ well depth. Reaction channels for the energized adduct $\left[\mathrm{C}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COO} \cdot\right]^{*}$ include dissociation back to reactants, stabilization to $\mathrm{C}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COO}$ •, isomerization (hydrogen shift) via two different transition states to produce two hydroperoxide isomers: TS22 ($E_{a}=22.81 \mathrm{kcal}$ $\left.\mathrm{mol}^{-1}\right)$ to $\mathrm{C}_{2} \mathrm{C}(\mathrm{O} \cdot) \mathrm{COOH}\left(\Delta H_{f}{ }^{\circ}{ }_{298}=-41.30 \mathrm{kcal} \mathrm{mol}^{-1}\right), \mathrm{TS} 23\left(E_{a}=26.71 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to $\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{COOH}\left(\Delta H_{f}{ }^{\circ}{ }_{298}=-44.27 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$. The resulting alkoxy isomer $\mathrm{C}_{2} \mathrm{C}(\mathrm{O} \cdot) \mathrm{COOH}$ dissociates to $\mathrm{C}_{2} \mathrm{C}=\mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$ via $\mathrm{TS} 24\left(E_{a}=9.31 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, also dissociates to $\mathrm{CH}_{3}+\mathrm{CC}(=\mathrm{O}) \mathrm{COOH}$ via $\operatorname{TS} 25\left(E_{a}=12.94 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. The forming hydroperoxide alkyl radicals will undergo dissociations to vinyl alcohol or vinyl hydroperoxide. The stable vinyl hydroperoxide product will also undergo homolytic cleavage of the weak $\mathrm{O}-\mathrm{O}$ bond in the peroxide moiety to generate OH and vinyl alkoxy species.

The high-pressure limit rate constants for $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ system as shown above are fitted by three parameters A_{∞}, n, and E_{a} over temperature range from 298 to 2000 K . The input and output kinetic parameters for QRRK and Master equation analysis for this system are listed in Table C.6.

Unit: $\mathrm{kcal} / \mathrm{mol}$
Figure 5.4 Potential energy diagram for $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ reaction system.

The chemical activation calculated pressure dependent rate constants for the product channels of $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ versus temperature at 0.1 atm are shown in Figure 5.5. It shows that the dominant product is stabilization to $\mathrm{C}_{2}(\mathrm{COH}) \mathrm{COO} \cdot$ below 700 K , and dissociation back to $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ becomes the dominant channel when temperature is over 700 K . The reaction channel involving H -shift and dissociation to $\mathrm{C}_{2} \mathrm{C}=\mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+$ OH is the most important new product channel.

Figure 5.6 illustrates the pressure dependent rate constants of the chemically activated reaction at 700 K . The stabilization to $\mathrm{C}_{2}(\mathrm{COH}) \mathrm{COO} \cdot$ is a dominant channel when pressure is over 0.1 atm at 700 K , and when pressure is lower than 0.1 atm , the dissociation back to $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ becomes the dominant channel.

Figure 5.5 Calculated temperature dependent rate constants for chemical activated $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ system at $\mathrm{P}=0.1 \mathrm{~atm}$ 。

Figure 5.6 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{3} \cdot \mathrm{COH}$ $+\mathrm{O}_{2}$ system at $\mathrm{T}=700 \mathrm{~K}$.
5.4.3.3 $\mathrm{C}_{2} \mathbf{C} \cdot \mathrm{CC}+\mathrm{O}_{2}$. The potential energy diagram for the reactions of $\mathrm{C}_{3} \cdot \mathrm{CC}+\mathrm{O}_{2}$ calculated at the CBS-Q level is shown in Figure 7. A number of the reaction channels for $\left[\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}\right]^{*}$ adduct are similar to those of $\left[\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH}\right]^{*}$ adduct in Figure 1 due to the similarity between the two adduct structures. The $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$ value of $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}$ radical is adopted from Tsang et al. ${ }^{55}, 6.7 \mathrm{kcal} \mathrm{mol}^{-1}$, and this results a well depth of $40.28 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{C}_{3} \cdot \mathrm{CC}+\mathrm{O}_{2}$; it shows good agreement with the well depth of $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ as shown above. Chen and Bozzelli ${ }^{102}$ calculated the well depth of tertbutyl radical $+\mathrm{O}_{2}$ to be $36.88 \mathrm{kcal} \mathrm{mol}^{-1}$ at the CBS-q//MP2(full)/6-31 $\mathrm{G}(\mathrm{d}, \mathrm{p})$ level, and Knyazev et al. ${ }^{126}$ reported this well depth as $36.52 \mathrm{kcal} \mathrm{mol}^{-1}$ from the third-law of treatment of the temperature dependencies of equilibrium constants.

Figure 5.7 Potential energy diagram for $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2}$ reaction system.

As those of the other peroxy radicals reaction paths, the energized $\left[\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}\right]^{*}$ adduct include dissociation to reactants, stabilization, concerted HO_{2}
eliminations to products or isomerizations followed by dissociations to products. The important hydrogen transfer isomerization reactions are: (1) six-member ring TS28 ($E_{a}=$ $\left.24.28 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to form $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \cdot\left(\Delta H_{f}{ }^{\circ}{ }_{298}=-14.48 \mathrm{kcal} \mathrm{mol}^{-1}\right)$; (2) five-member ring TS29 $\left(E_{a}=33.31 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to form $\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}\left(\Delta H_{f}{ }^{\circ}{ }_{298}=-12.58 \mathrm{kcal} \mathrm{mol}^{-1}\right)$; (3) five-member ring $\operatorname{TS} 30\left(E_{a}=33.08 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to form $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}\left(\Delta H_{f}{ }^{\circ}{ }_{298}=-\right.$ $16.63 \mathrm{kcal} \mathrm{mol}^{-1}$). The concerted HO_{2} elimination reactions are: (1) TS 33 ($E a=29.54$ $\left.\mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$ to $\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$; (2) $\mathrm{TS} 34\left(E a=29.82 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to $\mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$.

The hydroperoxide alky radicals formed by hydrogen transfer reactions will undergo dissociation to form alkene plus HO_{2} and epoxide plus OH . The $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet$ isomer dissociates to $\mathrm{C}_{2} \mathrm{CyCOCC}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$ via $\mathrm{TS} 31\left(E_{a}=17.58\right)$, the $\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}$ isomer dissociates to $\mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$ via $\mathrm{TS} 32\left(E_{a}=11.98\right)$, and the $\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$ isomer dissociates to $\mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$ via TS35 $\left(E_{a}=13.61 \mathrm{kcal} \mathrm{mol}^{-1}\right)$.

The high-pressure limit rate constants for this $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2}$ system, fitted by three parameters A_{∞}, n, and E_{a} over temperature range from 298 to 2000 K , along with the input and output kinetic parameters for QRRK and Master equation analysis are listed in Table C.7.

The calculated pressure dependent rate constants for the product channels of $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2}$ vs. temperature at $\mathrm{P}=0.1 \mathrm{~atm}$ are illustrated in Figure 5.8. The dominant product-channel is stabilization to $\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}$ below 500 K and dissociation back to $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2}$ becomes dominant when temperature is over 500 K . The channels concerted eliminations of HO_{2} forming conjugate alkene are the most important product channels. Figure 5.9 illustrates the pressure dependence for the rate constants of the chemically activated reactions at 700 K . The dissociation back to $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2}$ is the
dominant channel at almost all the pressures, and the stabilization to the $\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}$ is the next dominant.

Figure 5.8 Calculated temperature dependent rate constants for chemical activated $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2}$ system at $\mathrm{P}=0.1 \mathrm{~atm}$.

Figure 5.9 Calculated pressure dependent rate constants for chemical activated $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}$ $+\mathrm{O}_{2}$ system at $\mathrm{T}=700 \mathrm{~K}$.

5.4.4 Comparison of Model and Experiment

A detailed reaction mechanism (314 reactions, 126 species) for this neopentyl oxidation system is assembled in Table C.8, and the CHEMKIN II interpreter and integrator (version 3.1) ${ }^{140}$ is used to model the experimental HO_{2} formation profile for reaction time range $0 \sim 40 \mathrm{~ms}, 673 \mathrm{~K}$, and 59.3 torr. Abstraction reactions of $\mathrm{O}, \mathrm{OH}, \mathrm{HO}_{2}$, and $\mathrm{R} \cdot$ radicals are taken from evaluated literature. A procedure from Dean and Bozzelli ${ }^{141}$ is used to estimate abstraction rate constants by $\mathrm{H}, \mathrm{O}, \mathrm{OH}$, and CH_{3} radicals when no literature data are available.

Figure 5.10 Comparison of the present model with the experimental HO_{2} measurements of Taatjes et al. ${ }^{2}$

Figure 5.10 illustrates the time dependence of HO_{2} radical formation profile predicted by our model compared with the experimental data published by Taajes et al. ${ }^{103}$ The experiment was performed at 673 K , and the typical concentration are reported as: $\left[\mathrm{Cl}_{2}\right]=2 \times 10^{15}$ molecule $\mathrm{cm}^{-3},[\mathrm{Cl}]_{0}=2 \times 10^{15}$ molecule $\mathrm{cm}^{-3},\left[\right.$ neo- $\left.\mathrm{C}_{5} \mathrm{H}_{12}\right]=1 \times 10^{15}$ molecule $\mathrm{cm}^{-3},\left[\mathrm{O}_{2}\right]=6.7 \times 10^{16} \sim 6.0 \times 10^{17}$ molecule cm^{-3}, with balance He up to a total density of 8.6×10^{17} molecule cm^{-3}. The green solid dot curve in Figure 5.10 represents our model for the HO_{2} formation profile at the higher oxygen concentration, $\mathrm{O}_{2}=6.0$ $\times 10^{17}$ molecule cm^{-3}; it shows good agreement with experimental data of Taajes et al. Figure 5.11 illustrates the predicted time dependence of the HO_{2} radical compared with experimental data at the lower oxygen concentration, $\mathrm{O}_{2}=6.7 \times 10^{16}$ molecule cm^{-3}; it shows good agreement with experimental data also.

Figure 5.11 Comparison of the present model with the experimental HO_{2} measurements of Taatjes et al. ${ }^{2}$

The unique molecular structure of neopentane eliminates the reaction path for formation of C_{5} conjugate alkene plus HO_{2} in the low temperature oxidation reactions, so the formation of HO_{2} must be attributed to its secondary reactions. A sensitivity analysis by using CHEMKIN (version 3.6.1) ${ }^{148}$ on the HO_{2} at the experimental condition $(\mathrm{T}=673$ $\mathrm{K}, \mathrm{P}=59.3$ torr, $\left[\mathrm{O}_{2}\right]=6.0 \times 10^{17}$ molecule cm^{-3}) at the reaction time of $5,10,2030$ milliseconds is illustrated in Figure 5.12.

Figure 5.12 Sensitivity analysis on HO_{2} formation at $\mathrm{T}=673 \mathrm{~K}, \mathrm{P}=59.3$ torr, and $\left[\mathrm{O}_{2}\right]$ $=6.0 \times 10^{17}$ molecule cm^{-3}.

Figure 5.12 shows that neopentyl peroxy radical self-reaction which generates neopentoxy radical plus O_{2} is the most sensitive for HO_{2} formation before 7 milliseconds. This is because that the neopentoxy radical will rapidly decompose to formaldehyde plus t-butyl radical which reacts with O_{2} to form HO_{2} by HO_{2} elimination path, which is impossible in $\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}$ reaction system. Another important channel for HO_{2} formation
is OH reaction with 3,3-dimethyloxetane that is a main product for neopentyl radical oxidation $\left(\mathrm{C}_{2} \mathrm{CyCCOC}+\mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{CyCCOC} \bullet+\mathrm{H}_{2} \mathrm{O}\right),{ }^{142}$ since the resulting radical will undergo ring opening to generate HO_{2} precursors such as $\mathrm{HC} \cdot \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{CyCCOC} \bullet\right.$ $\left.\rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{C}+\mathrm{HC} \cdot \mathrm{O}\right)$. The next sensitive channel for HO_{2} formation is OH abstraction of H atoms from neopentane radical $\left(\mathrm{C}_{3} \mathrm{CC}+\mathrm{OH} \rightarrow \mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{H}_{2} \mathrm{O}\right)$. Other reactions pathways responsible for the formation of HO_{2} are: $\mathrm{C}_{2} \mathrm{CC}(\mathrm{OOH}) \mathrm{CHO} \rightarrow$ $\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O} \cdot+\mathrm{OH}$, which is responsible for chain branching and results in HO_{2} precursors; $\left(\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O} \bullet \rightarrow \mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CHO}+\mathrm{CH}_{2} \mathrm{O} ; \mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CHO} \rightarrow \mathrm{C}=\mathrm{CC}+\mathrm{HCO}\right)$; $\mathrm{C}_{3} \mathrm{CCOO} \bullet+\mathrm{OH} \rightarrow \mathrm{HO}_{2}+\mathrm{C}_{3} \mathrm{CCO} \cdot$ as reported by Taatjes et al.; $\mathrm{H}+\mathrm{O}_{2}+\mathrm{M} \rightarrow \mathrm{HO}_{2}+$ $\mathrm{M} ; \mathrm{CH}_{2} \mathrm{O}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HC} \cdot \mathrm{O}$, and $\mathrm{C}_{2} \mathrm{C}=\mathrm{C}+\mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}$. These reactions are responsible for either direct formation of HO_{2}, or the intermediates formation producing HO_{2}. A typical intermediate is $\mathrm{HC} \cdot \mathrm{O}$, which reacts with O_{2} to forming HO_{2} plus $\mathrm{CO} .{ }^{149}$

The $\mathrm{HO}_{2}+\mathrm{OH} \rightarrow \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ reaction is indicated to be the most sensitive channel for the loss of HO_{2}, and the neopentyl peroxy radical self-reaction which generates 2,2dimethylpropanal and 2,2-dimethylpropanol plus O_{2} is also sensitive. Other reactions paths sensitive for the loss of HO_{2} are: $\mathrm{HO}_{2}+\mathrm{HO}_{2} \rightarrow \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH} \rightarrow$ $\mathrm{C}_{3} \mathrm{CC} \cdot=\mathrm{O}+\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{3} \mathrm{CC} \cdot=\mathrm{O}+\mathrm{HO}_{2}, \mathrm{HO}_{2}+\mathrm{H} \rightarrow \mathrm{OH}+\mathrm{OH}$.

5.5 Summary

The potential energy surfaces on the reaction systems of 2-hydroxy-1,1-dimethylethyl, 2-hydroxy-2-methylpropyl, and 1,1-dimethylpropyl radicals plus O_{2} and thermochemical properties of the species in these reaction systems are calculated based on ab initio CBSQ and density functional theories. A mechanism describing reaction paths and kinetic
parameters for these oxidation reaction systems incorporating the mechanism in Chapter 4 are developed to model the experimental HO_{2} formation profiles. The kinetic parameters for intermediate and product formation channels of above systems are calculated versus temperature and pressure. Several reactions are predicted to be important for HO_{2} formation profile.

CHAPTER 6

THERMOCHEMICAL AND KINETIC ANALYSIS OF 2-METHYLBENZYL RADICAL OXIDATION REACTIONS

6.1 Background

Aromatic compounds are an important component of anthropogenic emissions from incomplete combustion and other evaporative emissions from solvents and fuels. Photochemical oxidation of aromatic hydrocarbons, such as benzene, toluene, and xylenes, is an important component in the chemistry of the reactive hydrocarbons in the atmosphere. ${ }^{150}$

Several reaction mechanisms have been proposed for interpretation of experimental laboratory and smog chamber photooxidation data. ${ }^{150-152}$ Emdee et al. ${ }^{153}$ studied the oxidation of o-xylene by flow reactor measurement at about 1150 K , and they proposed reaction pathways for oxidation of o-xylene at high temperature. They reported that ortho-xylene has higher reactivity compared with meta-xylene and para-xylene.

The reactions of the radicals from ortho xylene with O_{2} are important at low and intermediate temperature oxidations. A partial reaction mechanism for the 2methylbenzyl radical $+\mathrm{O}_{2}$ system is outlined in the scheme 1 . In this study, partial elementary reactions, energy well depths, and absolute rate constants for 2-methylbenzyl radical reactions with molecular oxygen are initially determined with computational chemistry at density functional levels. The reaction of 2-methylbenzyl radical (from ortho-xylene) with O_{2} is shown to have a more energetically favorable path for peroxy radical isomerization compared with its isomers: 3-methyl and 4-methyl - benzyl radicals. The resonance form of 2-methylbenzyl radical with radical site in benzene ring, can also
react with O_{2}, but the adduct formed in this reaction has a low barrier to reverse reaction ($18.2 \mathrm{kcal} \mathrm{mol}^{-1}$) and O_{2} will mostly add to the methyl group.

Scheme 1

6.2 Results and Discussion

6.2.1 Thermochemical Properties

The geometries of reactants, important intermediates, transition states and products in ortho-xylene radical $+\mathrm{O}_{2}$ system are optimized using PM3 MOPAC ${ }^{84}$ calculations, followed by optimizations and frequency calculations at the B3LYP/6-31G(d,p) level using the Gaussian 98 program. ${ }^{32}$ The optimized geometry parameters of adduct ortho-
$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO}$ - and six transition states are shown in Appendix Table D.1; the corresponding vibrational frequencies and moments of inertia are listed in Table D.2.

The optimized structure parameters are used to obtain total electronic energies at the B3LYP/6-311++G(3df,2p) level. Vibrational frequencies are scaled by 0.9806 as recommended by Scott et al. ${ }^{42}$ for zero-point vibrational energies and thermal energies.

Enthalpies of formation for reactants, intermediates, and products are calculated using isodesmic working reaction analysis. Table D. 3 lists the isodesmic reactions, reaction enthalpies and calculated $\Delta H_{f}^{o} 298$ values for the important species in 2 methylbenzyl $+\mathrm{O}_{2}$ system at two DFT calculation levels. In our previous study, the calculated $\Delta H_{f}^{o} 298$ values from the DFT calculations were shown good agreement with the higher-level ab initio CBS-Q//B3 results. ${ }^{142}$ The $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ values for ortho$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet$, ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet$, and ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet$ are calculated as $19.83,24.13$, and $5.81 \mathrm{kcal} \mathrm{mol}^{-1}$ at the B3LYP/6-311++G(3df,2p) level.

Enthalpies for transition states are calculated by using the $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ value of stable adduct plus the difference of total energy between adduct and transition state. In this study, the barriers for transition states are also calculated at the KMLYP/6-311+G(d,p) level, since KMLYP method ${ }^{154}$ is reported to accurately predict transition state barriers with smaller errors than B3LYP ${ }^{155}$, BHandHLYP, and G2. ${ }^{156}$ KMLYP/6-311+G(d,p) calculation are preformed for geometry optimization and vibrational frequencies. Transition state barriers are corrected by zero-point energies, while the enthalpy of reaction are adjusted for thermal corrections at 298 K . Zero-point energies and thermal corrections for KMLYP are obtained using un-scaled harmonic frequencies since transition state barriers are slightly affected by scaling factor. The reaction enthalpies for
seven transition states in 2-methylbenzyl $+\mathrm{O}_{2}$ system determined at the B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$, B3LYP/6-311++G(3df,2p), KMLYP/6-311+G(d,p) levels are listed in Table 6.1. The reaction enthalpies show good agreement at the three calculation levels. The data calculated at the B3LYP/6-311++G(3df,2p) are used to calculate rate constants.

Table 6.1 Reaction Enthalpies ${ }^{\text {a }}$

	B3LYP	B3LYP	KM
species	$/ 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$	$16-311++\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p})$	BLYP/6-311+G(d,p)
TS1	21.20	21.21	20.77
TS2	34.08	34.91	36.11
TS3	30.97	30.90	29.94
TS4	38.21	38.21	39.40
TS6	15.91	16.07	
TS7	30.21	29.90	27.88
TS8	23.31	21.59	
TSM	60.58	60.05	
TSP	75.18	73.62	
Units in kcal mol $^{-1}$. The reaction enthalpies are calculated from forward reaction,			
ZPVE and thermal correction are included.			

The entropies and heat capacity contributions from vibrational, translational, and external rotational contributions are calculated using statistical mechanics based on the vibrational frequencies and structures obtained from the density functional study. Potential barriers for the internal rotations are calculated at the B3LYP/6-31G(d,p) level, and hindered rotational contributions to entropies and heat capacities are calculated by using direct integration over energy levels of the internal rotational potentials.

6.2.2 Analysis of Internal Rotors

The calculated internal rotational potentials on the $\mathrm{C}_{\text {benzene }}-\mathrm{CH}_{3}$ bond in ortho$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet$ is shown in Figure 6.1. It shows the normal 3-fold rotational barrier for methyl rotation on the $\mathrm{C}_{\text {benzene }}-\mathrm{CH}_{3}$ bond; this radical has the lowest energy when the dihedral $\angle \mathrm{H}(13)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)=0$, this is due to the intramolecular interaction between
the peroxy $\mathrm{O}(18)$ atom and $\mathrm{H}(15)$ atom in the methyl group (see structure in Appendix Table D.1), since the intramolecular distance between these two atoms is $2.65 \AA$ which is near to the sum of the van der Waals radii of H and $\mathrm{O}(2.6 \AA)$.

Figure 6.1 The internal rotational potentials on the $\mathrm{C}_{\text {benzene }}-\mathrm{CH}_{3}$ bond in ortho$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet$.

The calculated rotational potentials for the $\mathrm{CH}_{2} \mathrm{COO} \bullet$ group rotation on the C $\mathrm{C}_{\text {benzene }}$ bond in ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet$ is shown in Figure 6.2. This radical has the highest energy when the peroxy central oxygen is near cis to the benzene bond of the ortho link (the dihedral $\angle \mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{O}(18)=-24.8^{\circ}$, and the dihedral $\angle \mathrm{C}(1)-\mathrm{C}(8)-$ $\left.\mathrm{O}(18)-\mathrm{O}(19)=174.5^{\circ}\right)$. The high energy is mostly due to steric effect between $\mathrm{CH}_{2} \mathrm{OO} \cdot$ group and the methyl group, as the carbon - oxygen bond is pointed toward the methyl group. The second maxima corresponds to the structure with the peroxy central oxygen pointed away from the methyl and again near cis with the benzene ring, the dihedral
$\angle \mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(8)=0^{\circ}, \angle \mathrm{C}(1)-\mathrm{C}(8)-\mathrm{O}(18)-\mathrm{O}(19)=180^{\circ}$. This orientation of the $\mathrm{CH}_{2} \mathrm{OO} \bullet$ group reduces the steric effect, and has a slightly reduced energy.

Figure 6.2 The rotational potentials on the $\mathrm{C}-\mathrm{C}_{\text {benzene }}$ bond in ortho$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet$.

Figure 6.3 shows the calculated rotational potentials for OO• group rotation on the $\mathrm{R}-\mathrm{OO} \bullet$ bond in ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet$ radical. It shows three-fold barrier that is highly non-symmetric with barrier height about $3.62 \mathrm{kcal} \mathrm{mol}^{-1}$.

The calculated rotational potentials for the OH group rotation on the $\mathrm{RO}-\mathrm{OH}$ bond in ortho $-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet$ radical is illustrated in Figure 6.4 ; the $5.65 \mathrm{kcal} \mathrm{mol}^{-}$ ${ }^{1}$ barrier height is typical of published data on the $\mathrm{RO}-\mathrm{OH}$ bond rotations. ${ }^{77,135}$

Figure 6.3 The rotational potentials on the $\mathrm{R}-\mathrm{OO} \bullet$ bond in ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet$ radical.

Figure 6.4 The calculated rotational potentials on the RO-OH bond in ortho$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet$ radical.

6.2.3 Reactivity of Ortho-, Meta, and Para-Xylenes

To compare the reactivity of ortho-, meta-, para-oxylene radicals, the activation energy for isomerization of the corresponding xylene peroxy radicals are calculated at the B3LYP/6-311++G(3df,2p) level. The activation energy for 2-methylbenzyl peroxy radical isomerization to 2-methylbenzyl methyl-hydroperoxide via a 7-member ring transition state is $21.21 \mathrm{kcal} \mathrm{mol}^{-1}$, but 3-methylbenzyl peroxy radical needs 60.05 kcal mol^{-1} activation energy via a 8-member ring transition state, and 4-methylbenzyl methylhydroperoxide needs $73.62 \mathrm{kcal} \mathrm{mol}^{-1}$ activation energy via a 9 -member ring transition state, to isomerize to the corresponding methylbenzyl methyl-hydroperoxides. The high barriers for meta- and pare-xylene radicals are because the meta-, para interactions in corresponding TS structures bend benzene rings out of a planar position (the dihedral angle for four carbon in benzene ring those involved in transition state are 25° and 32°), therefore, results in some loss of aromaticity. The activation energies for the isomerization of meta-, para-oxylene of peroxy radicals are also listed in Table 6.1. These data shows ortho-xylene is the most reactive compared with its meta-xylene and paraxylene isomers, and it shows agreement with the experimental results. ${ }^{153}$

6.2.4 Kinetic Analysis of 2-Methylbenzyl $+\mathrm{O}_{2}$ System

A potential energy diagram for the 2-methylbenzyl $+\mathrm{O}_{2}$ reaction system calculated at the B3LYP/6-311++G(3df,2p) level is shown in Figure 6.5. The 2-methylbenzyl radical reacts with O_{2} to form a chemically activated ortho $-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet *$ adduct, which can be stabilized, dissociate back to reactants, or isomerize via three different paths. TS1 is a H atom transfer to the peroxy radical forming 2-methylbenzyl methyl-hydroperoxide (ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet$) with activation energy of $21.21 \mathrm{kcal} \mathrm{mol}^{-1}$. This barrier is much lower than those of 3-methylbenzyl and 4-methylbenzyl radicals since the ortho interaction between the H atom and peroxy oxygen atom in the TS structure keep the benzene ring almost planar. This is a near thermoneutral reaction - abstraction of a benzyl H atom and formation of a hydroperoxide through a 7-member ring transition state. The barrier of $21 \mathrm{kcal} \mathrm{mol}^{-1}$ is similar to the well depth of O_{2} addition to orthoxylene radical.

Figure 6.5 Potential energy diagram for the 2-methylbenzyl $+\mathrm{O}_{2}$ reaction system.

The forming 2-methylbenzyl methyl-hydroperoxide will undergo dissociation via TS5 to produce major product isobenzofuran with barrier of $21.85 \mathrm{kcal} / \mathrm{mol}$. In TS2 the peroxy radical attacks the ipso aromatic carbon (carbon bonded to the $-\mathrm{CH}_{2} \mathrm{OO} \bullet$ group, via 4 -member ring transition state with a barrier of $34.91 \mathrm{kcal} \mathrm{mol}^{-1}$. This breaks the aromatic resonance and forms a bicylcic molecule with a cyclohexadienyl radical and a peroxide ring. This bicyclic can undergo reverse reaction or cleave a carbon - carbon bond to form ortho phenoxy radical and formaldehyde, $\mathrm{CH}_{2} \mathrm{O}$.

In TS3 the peroxy oxygen abstracts an H atom from an ortho position on the in benzene ring via 6 -member ring transition state with a barrier of $30.90 \mathrm{kcal} \mathrm{mol}^{-1}$. The peroxy ROO- H bond formed is only $86.5 \mathrm{kcal} \mathrm{mol}^{-1}$ and the phenyl- H bond cleaved is $113 \mathrm{kcal} \mathrm{mol}^{-1}$, thus the barrier is only $2.4 \mathrm{kcal} \mathrm{mol}^{-1}$ above the endothermicity. While the barrier of $30.9 \mathrm{kcal} \mathrm{mol}^{-1}$ is ca $10 \mathrm{kcal} \mathrm{mol}^{-1}$ above the energy of the initial xylene radical $+\mathrm{O}_{2}$ reactants, the reaction is important. It forms a phenyl radical, which reacts rapidly and is highly exoergic with O_{2}. The main products from the methyl substituted phenyl + O_{2} reaction will be ring opening to $\mathrm{CO}+\mathrm{HC} \equiv \mathrm{CH}+\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}+\mathrm{HC} \bullet \mathrm{O}$.

The reaction described as TS4 has the peroxy radical abstracting a H atom from the ipso (peroxy) carbon via a 4-member ring transition state to form an intermediate alkyl-hydroperoxide radical $(\mathrm{RC} \cdot \mathrm{OOH})$ that immediately dissociates via a β scission reaction to form a strong carbonyl and cleave the weak $\mathrm{RO}-\mathrm{OH}$ bond. The resulting products are ortho $-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}(=\mathrm{O})+\mathrm{OH}$, but the 4 -member ring transition state results in a barrier of $38.21 \mathrm{kcal} \mathrm{mol}^{-1}$.

6.2.5 Reaction of Ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{\mathbf{2}} \bullet$ Isomer

Figure 6.6 shows the further oxidation reactions of the isomer, ortho$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet$, as calculated at the B3LYP/6-311++G(3df,2p) level. This isomer reacts with a second O_{2} to form a chemically activated ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet *$ adduct, which can be stabilized or can isomerize and dissociate to new products.

TS6 has a 7 -member ring structure where the $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \mathrm{OO}$ - peroxy radical abstracts a H atom from the $\mathrm{CH}_{2} \mathrm{OOH}$ carbon, with a barrier of $16.07 \mathrm{kcal} \mathrm{mol}^{-1}$, a $\mathrm{RC} \cdot \mathrm{OOH}$ moiety is formed, which as in the case of TS4 above, immediately dissociates to ortho-methyl-hydroperoxide benzylaldehyde (ortho- $\left.\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CHO}\right)+\mathrm{OH}$.

Figure 6.6 Isomer ortho $-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet$ oxidation reaction system.

TS7 has a similar structure as that of TS3, in which the peroxy radical abstracts an H from an ortho position on the benzene ring. The barrier for TS7 is calculated to be $29.90 \mathrm{kcal} \mathrm{mol}^{-1}$. As above the phenyl radical formed will rapidly react with O_{2} and under go ring opening and dissociation to lower molecular weight products.

The stabilized ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet$ adduct and stable ortho$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CHO}$ undergo homolytic cleavage of the weak $\mathrm{O}-\mathrm{O}$ bonds with the barrier of ca. $44 \mathrm{kcal} \mathrm{mol}^{-1}$. The ortho $-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O}$ • radical will then undergo unimolecular dissociation via TS8 to ortho $-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CHO})_{2}+\mathrm{H}$ with barrier of 21.59 kcal mol^{-1}.

6.2.5 Kinetic Parameters

The high-pressure limit rate constants $\left(\mathrm{k}_{\infty}\right)$ for the chemically activated 2-methylbenzyl + O_{2} system are determined by canonical transition state theory using structural parameters and vibration frequencies. The high-pressure limit rate constants used in QRRK analysis are fitted by three parameters A_{∞}, n, and E_{a} over temperature range from 298 to 2000 K ; Lennard-Jones parameters, σ (Angstroms) and ε / κ (Kelvins), are estimated from tabulations, ${ }^{90}$ and these input data for QRRK analysis are listed in Table 6.2.

The calculated temperature dependent rate constants for 2-methylbenzyl $+\mathrm{O}_{2}$ reaction system at 1 atm from the QRRK combined with Master equation analysis are illustrated in Figure 6.7. The dominant product-channel is stabilization to ortho$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO}$ • below 800 K , and reverse reaction becomes dominant when temperature is above 800 K .

Table 6.2 Kinetic Parameters for QRRK in 2-Methylbenzyl Radical + O_{2} System

reaction	$A\left(\mathrm{~s}^{-1}\right.$ or $\left.\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$	s^{-1}) n	$E_{a}\left(\right.$ kcal mol ${ }^{-1}$)
$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \bullet+\mathrm{O}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet$	$1.09 \times 10^{10 \mathrm{a}}$	0.56725	2.29
$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \bullet+\mathrm{O}_{2}$	$2.28 \times 10^{12 \mathrm{~b}}$	0.0	20.38
$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet$	5.54×10^{4}	1.75768	20.71
$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet \rightarrow \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)$ cyCCOO	2.97×10^{8}	0.80402	35.03
$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet \rightarrow \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OOH}$	6.91×10^{6}	1.29173	30.64
$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}+\mathrm{OH}$	1.91×10^{7}	1.37657	37.90
$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \cdot$ Lennard-Jones parameter	frequency / degeneracy		
	$396.7 / 16.93613$	$312.3 / 24.033$	$3255.4 / 8.531$
	$\sigma(\AA)$	ε / k (K)	
	6.28	604	
$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet+\mathrm{O}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CQ}) \mathrm{CH}_{2} \mathrm{OO} \bullet$	$1.09 \times 10^{10} \mathrm{a}$	0.56725	2.29
$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CQ}) \mathrm{CH}_{2} \mathrm{OO} \bullet \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet+\mathrm{O}_{2}$	$2.28 \times 10^{12 \mathrm{~b}}$	0.0	16.88
$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CQ}) \mathrm{CH}_{2} \mathrm{OO} \bullet \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CQ}) \mathrm{CHO}+\mathrm{OH}$	5.04×10^{3}	1.73546	15.29
$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CQ}) \mathrm{CH}_{2} \mathrm{OO} \bullet \rightarrow \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \mathrm{OOH}$	3.70×10^{4}	1.49904	29.37
$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CQ}) \mathrm{CH}_{2} \mathrm{OO} \bullet \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COO} \bullet) \mathrm{CH}_{2} \mathrm{O} \bullet+\mathrm{OH}$	3.50×10^{15}	0.0	44.0

$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CQ}) \mathrm{CH}_{2} \mathrm{OO}$ -
frequency / degeneracy

Lennard-Jones parameter $360.9 / 21.323 \quad 1301.6 / 25.926 \quad 3496.3 / 7.251$

Lennar $\sigma(\AA) \quad \varepsilon / k(K)$
$\overline{{ }^{\mathrm{a}} \text { Estimated from } \mathrm{C}_{2} \bullet \mathrm{C}=\mathrm{C}+\mathrm{O}_{2} \text { by Chen et al. }{ }^{128}{ }^{6.60} \text { From the principle of microscopic }}$ reversibility at 700 K

Figure 6.7 Rate constants for chemical activation reaction: $0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \bullet+\mathrm{O}_{2}$ at $\mathrm{P}=$ 1 atm.

Figure 6.8 Rate constants for chemical activation reaction: $\mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \bullet+\mathrm{O}_{2}$ at $\mathrm{T}=$ 1000 K .

Figure 6.8 shows the calculated rate constants vs. pressure for the chemically activated reaction 2-methylbenzyl $+\mathrm{O}_{2}$ at 1000 K ; it shows the rate constants for stabilization and isomerization channel are increased with increased pressure, but other reaction channels have no pressure dependence over $0.001 \sim 10 \mathrm{~atm}$.

The calculated temperature dependent dissociation rate constants for stabilized ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \bullet$ radical reaction system at 1 atm are illustrated in Figure 6.9. The dominant channel is reverse back to ortho- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \bullet+\mathrm{O}_{2}$ at all temperatures, and the next dominant channel is the preoxy radical isomerization to ortho$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet$ radical.

Figure 6.9 Rate constants for dissociation reaction: $\mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OO} \cdot$ at $\mathrm{P}=1 \mathrm{~atm}$.

Figure 6.10 Rate constants for chemical activation reaction: o- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet+\mathrm{O}_{2}$ at $\mathrm{P}=1 \mathrm{~atm}$.

The calculated temperature dependent rate constants for $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \bullet+$ O_{2} reaction system at 1 atm are showed in Figure 6.10. The dominant product-channel is stabilization to ortho $-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{OOH}\right) \mathrm{CH}_{2} \mathrm{OO}$ • below 700 K and reverse reaction dominates at the temperatures above 700 K .

6.3 Summary

Thermochemical properties for reactants, intermediates, products and transition states important in 2-methylbenzyl radical $+\mathrm{O}_{2}$ reaction system are calculated at the density functional levels. Potential barriers for the internal rotations are calculated at the B3LYP/6-31G(d,p) level. Potential energy surfaces are calculated at the DFT B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and $\mathrm{B} 3 \mathrm{LYP} / 6-311++\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p})$ levels, and compared with the reaction enthalpies calculated at the KMLYP/6-311+G(d,p) level. Important initial product and intermediate channels in low temperature o-xylene oxidation system are stabilization, reverse dissociation, isomerization of the peroxy radical to the hydroperoxide isomer which dissociates to isobenzofuran plus OH . The intermediate stable products are predicted to be o-tolualdehyde, phthaladehyde, isobenzofuran, and o-xylylene.

APPENDIX A

TABLES IN THE THERMOCHEMICAL AND KINETIC ANALYSIS OF CHLORINATED ALCOHOLS, HYDROPEROXIDES AND RADICALS

This appendix lists the geometrical parameters, reaction enthalpies, and calculated enthalpies of formation for chlorinated alcohols, alkyl hydroperoxides, and corresponding radicals, as discussed in Chapter 2 and Chapter 3.

Table A. 1 Geometrical Parameters for Ethanols ${ }^{\text {a }}$
Molecule

[^0]Table A. 1 (Continued)
Molecule

Table A. 1 (Continued)

| Molecule | Bond Length | Bond Angle | Dihedral Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table A. 2 Reaction Enthalpies at 298 K and Calculated $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}}{ }_{298}$ Values

Reaction Series	$\begin{gathered} \hline \text { B3LYP } \\ 16-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \\ \hline \end{gathered}$		$\begin{gathered} \text { B3LYP } \\ / 6-311+G(3 \mathrm{df}, 2 \mathrm{p}) \end{gathered}$		$\begin{gathered} \hline \text { QCISD(T) } \\ 16-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { CBSQ//B3LYP } \\ / 6-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \\ \hline \end{gathered}$		G3MP2$/ / \mathrm{MP2}$ (full) $/ 6-31 \mathrm{G}(\mathrm{d})$	
	$\Delta H_{\text {rxn }}$	$\Delta H_{\mathrm{f}}{ }^{\text {o }} 298$	$\Delta H^{\circ} \mathrm{rxn}$	$\Delta H_{\mathrm{f}}{ }^{\text {² }} 298$	$\Delta H_{\text {rxn }}$	$\Delta H_{\mathrm{f}}{ }^{\text {o }} 298$	$\Delta H_{\text {rxn }}$	$\Delta H_{\mathrm{f}}{ }^{\text {2 }} 298$	$\Delta H_{\text {rn }}^{\circ}$	$\Delta H_{\mathrm{f}}{ }^{\text {² }}$ 298
1. $\mathrm{CH}_{3} \mathbf{C H C l O H}+\mathrm{CH}_{4} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{Cl}$	10.85	-68.68	10.22	-66.34	10.96	-68.79	11.22	-69.05	11.40	-69.23
2. $\mathrm{CH}_{3} \mathbf{C H C l O H}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{Cl}$	9.28	-69.61	8.72	-69.05	8.83	-69.16	8.44	-68.77	8.66	-68.99
3. $\mathrm{CH}_{3} \mathbf{C H C l O H}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{2} \mathrm{ClOH}$	1.65	-67.76	1.93	-68.04	2.62	-68.73	2.96	-69.07	2.98	-69.09
4. $\mathrm{CH}_{3} \mathbf{C H C l O H}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	12.33	-69.36	11.08	-68.11	12.10	-69.13	11.94	-68.97	12.16	-69.19
5. $\mathrm{CH}_{3} \mathrm{CHClOH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	6.86	-69.58	6.09	-68.81	6.54	-69.26	6.21	-68.93	6.42	-69.14
6. $\mathrm{CH}_{3} \mathbf{C H C l O H}+\mathrm{C}_{3} \mathrm{H}_{8} \longrightarrow \mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	6.90	-69.69	6.32	-69.11	6.62	-69.41	6.21	-69.00	6.49	-69.28
7. $\mathrm{CH}_{3} \mathrm{CHClOH}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CHClCH}_{3}$	8.20	-71.04	6.77	-69.61	6.58	-69.42	5.13	-67.97	5.73	-68.57
Average value and deviation ${ }^{\text {b }}$:							-68.72 ± 0.50		-69.05 ± 0.32	
1. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}+\mathrm{CH}_{4} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{2} \mathrm{Cl}_{2}$	15.53	-76.59	13.88	4	16.96	-78.02	17.28	-78.34	16.63	-77.69
2. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathbf{O H}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+\mathrm{CH}_{2} \mathrm{Cl}_{2}$	13.96	-77.52	12.38	-75.94	14.83	-78.39	14.51	-78.07	13.88	-77.44
3. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CHCl}_{2} \mathrm{OH}$	1.86	-75.78	1.98	-75.90	3.90	-77.82	4.38	-78.30	3.99	-77.91
4. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	15.14	-76.42	12.91	-74.19	15.38	-76.66	14.53	-75.81	14.51	-75.79
5. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	9.67	-76.64	7.93	-74.90	9.81	-76.78	8.81	-75.78	8.77	-75.74
6. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathbf{O H}+\mathrm{C}_{3} \mathrm{H}_{8} \longrightarrow \mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	9.71	-76.75	8.16	-75.20	9.89	-76.93	8.80	-75.84	8.84	-75.88
7. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{CH}_{3}$	10.40	-80.47	8.18	-78.25	8.23	-78.30	5.49	-75.56	5.63	-75.70
Average value and deviation ${ }^{\text {b }}$							-75.75 ± 0.13		-75.78 ± 0.08	

[^1]Table A. 3 Geometrical Parameters for Papanols

$\overline{{ }^{\text {a }}}$ Bond length in $\AA ;{ }^{b}$ bond angle in degree. ${ }^{c}$ Dihedral angle in degree. ${ }^{d}$ Frequencies in cm^{-1}. ${ }^{\mathrm{e}}$ Moments of inertia in amu.Bohr ${ }^{2}$.

Table A. 3 (Continued)

Table A. 4 Reaction Enthalpies at 298 K and Calculated $\Delta H_{\mathrm{f}}{ }^{0}{ }_{298}$ Values ${ }^{\text {a }}$

Table A. 4 (Continued)

Reaction Series	$\begin{gathered} \text { B3LYP } \\ / 6-31 G(\mathrm{~d}, \mathrm{p}) \end{gathered}$		B3LYP$16-311+\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p})$		$\begin{gathered} \text { CBSQ//B3LYP } \\ / 6-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$	
	$\Delta H^{\circ} \mathrm{rxn}$	$\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$	$\Delta H^{\circ} \mathrm{rxn}$	$\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$	$\Delta H_{\text {rxn }}^{\circ}$	$\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$
$4.1\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{CH}_{4} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+\mathrm{CH}_{3} \mathrm{Cl}$	11.21	-78.08	10.36	-77.23	13.03	-79.90
$4.2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{CH}_{4} \longrightarrow \mathrm{CH}_{2} \mathrm{ClOH}+\mathrm{C}_{3} \mathrm{H}_{8}$	11.27	-76.47	10.40	-75.60	14.88	-80.08
$4.3\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CHClOH}+\mathrm{C}_{2} \mathrm{H}_{6}$	5.76	-76.74	5.21	-76.19	8.97	-79.95
$4.4\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	7.22	-78.96	6.24	-77.98	8.02	-79.76
$4.5\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{3} \mathrm{CHClOH}+\mathrm{C}_{3} \mathrm{H}_{8}$	4.15	-77.56	3.49	-76.90	6.20	-79.61
$4.6\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+\mathrm{CH}_{2} \mathrm{ClOH}$	2.00	-77.18	2.07	-77.25	4.76	-79.94
$4.7\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{CHClOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	0.29	-76.96	0.23	-76.90	3.25	-79.92
$4.8\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{CH}_{2} \mathrm{ClOH} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CHClOH}$	-1.35	-77.84	-1.70	-77.49	0.29	-79.48
Average value and deviation ${ }^{\text {b }}$					79.83 ± 0.20	
$5.1\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\bullet}+\mathrm{CH}_{4} \longrightarrow \mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}+\mathrm{C}_{2} \mathrm{H}_{6}$	5.54	-22.68	5.11	-22.25	8.96	-26.10
$5.2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\bullet}+\mathrm{CH}_{4} \longrightarrow \mathrm{CH}_{2} \mathrm{ClO}+\mathrm{C}_{3} \mathrm{H}_{8}$	10.16	-22.42	9.16	-21.42	13.78	-26.04
$5.3\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}+\mathrm{C}_{3} \mathrm{H}_{8}$	3.92	-23.49	3.39	-22.96	6.19	-25.76
$5.4\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\bullet}+\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow \mathrm{CH}_{3} \mathrm{CHClO}^{\bullet}+\mathrm{iso}-\mathrm{C}_{4} \mathrm{H}_{10}$	3.14	-24.98	2.42	-24.26	3.90	-25.74
$5.5\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\bullet}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{O}^{\bullet}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}$	-1.41	-26.24	-0.84	-26.81	-1.85	-25.80
$5.6\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\bullet}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\bullet}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}$	-1.61	-26.00	-1.25	-26.36	-1.79	-25.81
$5.7\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}+\mathrm{CH}_{2} \mathrm{ClOH} \longrightarrow \mathrm{CH}_{2} \mathrm{ClO}^{\bullet}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}$	-1.11	-25.78	-1.23	-25.65	-1.10	-25.79
$5.8\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClO}^{\bullet}+\mathrm{CH}_{3} \mathrm{CHClOH} \longrightarrow \mathrm{CH}_{3} \mathrm{CHClO}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}$	-0.23	-25.76	-0.10	-25.89	-0.02	-25.97
Average value and deviation ${ }^{\text {b }}$					$\mathbf{2 5 . 8 8} \pm 0.14$	
$6.1 \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{CH}_{4} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{CH}_{3}{ }^{*}$	5.47	-32.59	4.74	-31.86	1.99	-29.10
$6.2 \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\text {- }}$	0.71	-31.50	0.04	-30.83	-1.67	-29.11
$6.3 \mathrm{C}^{*} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{Cl} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{CH}_{2} \mathrm{Cl}{ }^{*}$	-0.57	-31.96	-1.39	-31.13	-3.40	-29.13
$6.4 \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{OH}$	-5.11	-30.61	-4.92	-30.80	-6.58	-29.14
$6.5 \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{HOH}$	-7.12	-29.93	-6.95	-30.10	-7.90	-29.15
$6.6 \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH}$	2.38	-31.79	1.28	-30.68	-0.30	-29.11
$6.7 \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{ClOH} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{C}^{\bullet} \mathrm{HClOH}$	-5.89	-30.32	-5.50	-30.72	-7.16	-29.06
$6.8 \mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{CCl}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CHClOH} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClOH}+\mathrm{CH}_{3} \mathrm{C}^{\bullet} \mathrm{ClOH}$	-7.35	-29.73	-7.17	-29.92	-8.00	-29.09
Average value and deviation ${ }^{\text {b }}$	-29.11 ± 0.03					

Table A. 5 Geometry Parameters for Ethyl Hydroperoxides

${ }^{\text {a }}$ Bond length in $\AA ;{ }^{b}$ bond angle in degree. ${ }^{c}$ Dihedral angle in degree. ${ }^{d}$ Frequencies in cm^{-1}. ${ }^{\mathrm{e}}$ Moments of inertia in amu.Bohr ${ }^{2}$.

Table A. 6 Reaction Enthalpies ${ }^{\text {a }}$ at 298 K and Calculated $\Delta H_{\mathrm{f}}{ }^{\mathrm{o}} 298$ of Radicals

Reaction Series	$\begin{gathered} \text { B3LYP } \\ / 6-31 G(\mathrm{~d}, \mathrm{p}) \end{gathered}$		$\begin{gathered} \text { B3LYP } \\ / 6-311+G(3 \mathrm{df}, 2 \mathrm{p}) \end{gathered}$		$\begin{gathered} \text { QCISD(T) } \\ / 6-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$		$\begin{gathered} \text { CBSQ//B3LYP } \\ / 6-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \\ \hline \end{gathered}$	
	$\Delta H^{0}{ }_{\text {rxn }}$	$\Delta H_{\mathrm{f}}{ }^{\text {o }} 298$	$\Delta H^{\circ}{ }_{\text {rxn }}$	$\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$	$\Delta H^{\text {r }}$ - ${ }^{\text {an }}$	$\Delta H_{\mathrm{f}}{ }^{0} 298$	$\Delta H^{0}{ }_{\text {rxn }}$	$\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OO} \bullet+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OO} \bullet+\mathrm{CH}_{3} \mathrm{Cl}$	1.22	-9.73	0.80	-9.31	2.63	-11.14	2.74	-11.25
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OO} \bullet+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OO} \bullet+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	-2.77	-10.63	-2.77	-10.63	-1.79	-11.61	-2.27	-11.13
Average value and deviation ${ }^{\text {b }}$:								-11.19 ± 1.20
$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OO} \bullet+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{OO} \bullet+\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	0.75	-11.80	0.11	-11.16	2.19	-13.24	2.61	-13.66
$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{OO} \bullet+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OO} \bullet+\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	-4.65	-13.00	-5.29	-12.36	-3.29	-14.36	-3.50	-14.15
Average value and deviation ${ }^{\text {b }}$:								-13.90 ± 1.88
$\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OO} \bullet+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{OO} \bullet+\mathrm{CH}_{3} \mathrm{CCl}_{3}$	-1.98	-11.99	-2.54	-11.43	-0.32	-13.65	0.65	-14.62
$\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OO} \bullet+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OO} \bullet+\mathrm{CH}_{3} \mathrm{CCl}_{3}$	-7.38	-13.19	-7.94	-12.63	-5.80	-14.77	-5.46	-15.11
Average value and deviation ${ }^{\text {b }}$:								-14.86 ± 1.62
$\mathrm{C} \bullet \mathrm{HClCH}_{2} \mathrm{OOH}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{OOH}+\mathrm{CH}_{3} \mathrm{Cl}$	2.32	2.92	1.88	3.36	3.05	2.19	3.10	2.14
$\mathrm{C} \bullet \mathrm{HClCH}_{2} \mathrm{OOH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	-2.87	2.56	-2.69	2.38	-2.60	2.29	-2.51	2.20
Average value and deviation ${ }^{\text {b }}$:								2.17 ± 1.60
$\mathrm{C} \cdot \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{OOH}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{OOH}+\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	2.49	-3.97	1.77	-3.25	3.50	-4.98	4.01	-5.49
$\mathrm{C} \bullet \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{OOH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOH}+\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	-2.70	-4.33	-2.80	-4.23	-2.15	-4.88	-1.61	-5.42
Average value and deviation ${ }^{\text {b }}$:								-5.46 ± 1.67

${ }^{\text {a }}$ Reaction enthalpies include thermal correction and zero-point energy. Units in $\mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{b}}$ Average value and deviation for pure enantiomer of the lowest energy at the $\mathrm{CBSQ} / / \mathrm{B} 3$ level. The $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$ values for $\mathrm{CH}_{3-\mathrm{x}} \mathrm{Cl}_{\mathrm{x}} \mathrm{C} \bullet \mathrm{HOOH}(\mathrm{x}=1 \sim 3)$ are not presented because the species dissociate to the corresponding aldehyde +OH exothermically with little or no barrier to dissociation $\left(\mathrm{CH}_{3-\mathrm{x}} \mathrm{Cl}_{\mathrm{x}} \mathrm{C} \cdot \mathrm{HOOH} \rightarrow \mathrm{CH}_{3-\mathrm{x}} \mathrm{Cl}_{\mathrm{x}} \mathrm{CHO}+\mathrm{OH}\right)$. These secondary bond energies are estimated about $90 \mathrm{kcal} / \mathrm{mol}$, but we expect abstraction bond energies to be similar to those from abstraction or from resonantly stabilized radical sites.

Table A. 7 TS Geometrical Parameters of Chlorinated Methanol Dissociation

\begin{tabular}{|c|c|c|c|c|c|}
\hline Molecule \& definition \& value \& Molecule \& definition \& value

\hline \multirow[t]{12}{*}{TS1} \& r21 \& 1.2727 \& \multirow[t]{12}{*}{TS2

H} \& r21 \& 1.2837

\hline \& r31 \& 1.0902 \& \& r31 \& 1.0969

\hline \& r41 \& 1.0829 \& \& r41 \& 1.1650

\hline \& r54 \& 2.4030 \& \& r54 \& 1.7922

\hline \& r62 \& 1.0328 \& \& r62 \& 0.9763

\hline \& a312 \& 116.24 \& \& a312 \& 117.13

\hline \& a412 \& 121.92 \& \& a412 \& 118.25

\hline \& a541 \& 90.76 \& \& a541 \& 179.93

\hline \& a621 \& 102.64 \& \& a621 \& 114.35

\hline \& d4123 \& 187.90 \& \& d4123 \& 179.66

\hline \& d5412 \& 300.78 \& \& d5412 \& 286.23

\hline \& d6213 \& 203.27 \& \& d6213 \& 0.00

\hline \multirow[t]{12}{*}{$4^{\text {TS3 }}$} \& r21 \& 1.9829 \& \multirow[t]{12}{*}{TS4} \& r21 \& 1.2874

\hline \& r31 \& 1.7308 \& \& r31 \& 1.8557

\hline \& r41 \& 1.0959 \& \& r41 \& 1.0992

\hline \& r52 \& 1.1372 \& \& r51 \& 1.3937

\hline \& r62 \& 0.9717 \& \& r65 \& 0.9878

\hline \& a312 \& 106.13 \& \& a312 \& 119.56

\hline \& a412 \& 98.26 \& \& a412 \& 122.89

\hline \& a521 \& 39.86 \& \& a512 \& 108.35

\hline \& a621 \& 102.01 \& \& a651 \& 62.68

\hline \& d4123 \& 249.33 \& \& d4123 \& 136.93

\hline \& d5213 \& 241.46 \& \& d5123 \& 248.86

\hline \& d6213 \& 143.70 \& \& d6512 \& 354.26

\hline \multirow[t]{12}{*}{TS5} \& r21 \& 1.9829 \& \multirow[t]{12}{*}{TS6} \& r21 \& 1.0908

\hline \& r31 \& 1.7308 \& \& r31 \& 1.0924

\hline \& r41 \& 1.0959 \& \& r41 \& 3.0468

\hline \& r52 \& 1.1372 \& \& r51 \& 1.3464

\hline \& r62 \& 0.9717 \& \& r65 \& 1.1332

\hline \& a312 \& 106.13 \& \& a312 \& 118.99

\hline \& a412 \& 98.26 \& \& a412 \& 105.09

\hline \& a521 \& 39.86 \& \& a512 \& 118.43

\hline \& a621 \& 102.01 \& \& a651 \& 67.77

\hline \& d4123 \& 249.33 \& \& d4123 \& 242.75

\hline \& d5213 \& 241.46 \& \& d5123 \& 202.31

\hline \& d6213 \& 143.70 \& \& d6512 \& 239.57

\hline
\end{tabular}

${ }^{\mathrm{a}}$ Distance in angstrom, and angles in degree.

APPENDIX B

TABLES IN THE THERMOCHEMICAL AND KINETIC ANALYSIS OF REACTION OF NEOPENTYL RADICAL WITH MOLECULAR OXYGEN

This appendix lists the geometrical parameters, harmonic vibrational frequencies, thermodynamic analysis and detailed reaction mechanism for reactions of neopentyl radical oxidation, as discussed in Chapter 4.

Table B. 1 Geometrical Parameters for Species in Neopentyl Oxidation System

Species	$\begin{gathered} \text { Bond Length } \\ \AA \end{gathered}$		Bond Angle degree		Dihedral Angle degree	
TS0	r21	1.5179	a321	96.48	d4213	259.66
	r32	2.3111	a421	115.25	d5213	105.66
	r42	1.5179	a521	119.67	d6123	166.03
	r52	1.3696	a612	109.77	d7123	47.04
2, 13	r61	1.0983	a712	112.10	d8123	285.34
-1 12	r71	1.0935	a812	111.57	d9321	61.72
-	r81	1.0934	a932	101.96	d10321	301.78
	r93	1.0846	a1032	100.70	d11321	181.85
10	r103	1.0857	al132	101.96	d12421	53.28
4	r113	1.0846	a1242	112.10	d13421	294.29
3	r124	1.0935	a1342	109.77	d14421	174.98
	r134	1.0983	a1442	111.57	d15521	343.42
	r144	1.0934	a 1552	121.40	d16521	169.43
	r155	1.0859	a1652	121.40		
	r165	1.0859				
TS1	r21	1.5456	a321	110.55	d4213	240.86
	r32	1.5393	a421	107.76	d5213	122.75
6)	r42	1.5617	a521	110.79	d6521	143.68
	r52	1.5174	a652	99.41	d7652	330.69
	r65	1.4168	a765	152.23	d8421	184.12
	r76	1.1457	a842	110.06	d9123	179.86
	r84	1.4196	a912	111.44	d10123	59.46
	r91	1.0950	a1012	110.77	d11123	299.94
- 16	r101	1.0962	al112	110.62	d12321	62.57
4 - 18	r111	1.0941	a 1232	110.70	d13321	302.84
$)^{4}$	r123	1.0948	a1332	111.00	d14321	182.86
1514 ,	r133	1.0955	a 1432	110.76	d15421	68.03
-	r143	1.0931	a1542	110.76	d16421	305.86
3×9	r154	1.0954	al642	110.91	d17521	37.12
	r164	1.0971	a 1752	116.45	d18521	257.37
	r175	1.0912	a 1852	117.29		
19 11)		1.0899				
TS2	r21	1.5388	a321	110.68	d4213	238.56
	r32	1.5390	a421	110.02	d5213	121.42
	r42	1.5489	a521	108.55	d6521	186.14
	r52	1.5197	a652	117.01	d7652	115.68
	r65	1.3927	a765	89.20	d8123	301.67
	r76	1.5051	a812	111.29 111.55	$\text { d9 } 123$	180.95 61.35
	r81	$\begin{aligned} & 1.0952 \\ & 1.0959 \end{aligned}$	a912	$\begin{aligned} & 111.55 \\ & 110.33 \end{aligned}$	d10123 d11321	61.35 56.58
	r101	1.0945	al132	111.20	d12321	296.73
	r113	1.0946	a 1232	110.20	d13321	176.57
	r123	1.0946	a1332	110.75	d14421	61.91
	r133	1.0925	a1442	109.94	d15421	302.26
	r144	1.0955	a 1542	111.48	d16421	181.55
	r154	1.0953	al642	110.82	d17521	46.52
	r164	1.0938	a1752	117.60	d18765	358.67
	r175	1.0974	a1876	82.87		
	r187	1.2707				

	r21	1.5357	a321	113.46	d4213	234.07
	r32	1.5420	a421	111.28	d5213	108.54
	r42	1.5357	a521	113.29	d6321	139.95
	r52	1.5166	a632	98.17	d7123	184.00
	r63	1.4392	a712	110.94	d8123	64.37
	r71	1.0953	a812	110.68	d9123	304.39
	r81	1.0959	a912	111.34	d10321	23.39
	r91	1.0950	a1032	112.92	d11321	257.44
	r103	1.0988	al132	115.03	d12421	297.86
	r113	1.0949	a 1242	110.99	d13421	177.69
	r124	1.0955	a 1342	110.42	d14421	57.84
	r134	1.0942	a1442	110.79	d15521	123.77
	r144	1.0950	a1552	121.17	d16521	323.85
	r155	1.0847	a1652	119.37	d17632	167.40
	r165	1.0859	a1763	101.80	d181763	129.87
	r176	1.6862	a18176	94.58		
	r1817	0.9708				
TS4	r21	1.5179	a321	120.57	d4213	253.29
	r32	1.3667	a421	97.67	d5213	154.19
	r42	2.3149	a521	113.36	d6521	174.08
	r52	1.5225	a652	115.55	d7652	81.96
	r65	1.4224	a765	107.71	d8123	274.01
	r76	1.4605	a812	110.30	d9123	154.32
	r81	1.0983	a912	112.33	d10123	33.15
	r91	1.0942	a1012	111.01	d11321	342.43
	r101	1.0929	al132	120.60	d12321	168.62
	r113	1.0859	a 1232	121.40	d13421	71.06
	r123	1.0830	a1342	102.41	d14421	310.51
	r134	1.0843	a1442	102.12	d15421	190.74
	r144	1.0863	a1542	98.77	d16521	56.51
	r154	1.0838	a 1652	110.55	d17521	297.81
	r165	1.0962	a1752	109.76	d18765	120.13
	r175	1.0995	a1876	99.21		
	r187	0.9710				
TS5	r21	2.2725	a321	111.40	d4321	68.27
	r32	1.3662	a432	107.30	d5123	152.02
	r43	1.4741	a512	96.72	d6123	35.53
	r51	1.5201	a612	95.72	d7123	-86.35
	r61	1.5176	a712	102.54	d8215	38.89
	r71	1.3744	a821	99.52	d9215	-83.14
	r82	1.0877	a921	103.85	d10432	150.19
	r92	1.0898	a1043	98.11	d11512	72.00
	r104	0.9713	a1151	111.65	d12512	-49.90
	r115	1.0943	a 1251	112.32	d13512	-168.81
	r125	1.0945	a1351	109.97	d14612	47.22
	r135	1.0979	a1461	112.08	d15612	-73.72
	r146	1.0943	a 1561	111.20	d16612	166.42
	r156	1.0922	a1661	109.88	d17712	85.50
	r166	1.0980	a1771	121.29	d18712	-87.36
	r177	1.0847	a1871	121.26		
	r187	1.0864				

TS6	r21	1.5073	a321	114.18	d4321	300.16
	r32	1.4377	a432	107.30	d5123	242.67
	r43	1.4552	a512	114.11	d6123	105.98
	r51	1.8266	a612	117.06	d7123	319.33
	r61	1.5076	a712	116.48	d8213	235.54
	r71	1.4809	a821	110.65	d9213	114.12
	r82	1.0969	a921	112.39	d10432	94.94
	r92	1.1009	a 1043	100.01	d11512	112.40
	r104	0.9740	al151	137.73	$\mathrm{d} 12512$	348.20
	r115	1.1087	a1251	98.69	d13512	235.20
	r125	1.0946	a1351	97.67	d14612	48.93
	r135	1.0954	a1461	111.71	d15612	289.29
	r146	1.0957	a1561	110.48	d16612	169.70
	r156	1.0994	a1661	111.45	d17712	155.28
	r166	1.0963	a1771	120.03	d18712	352.09
	r177	1.0840	a1871	120.10		
	r187	1.0837				
	r21	1.5472	a312	107.77	d4123	237.48
	r31	1.5549	a412	109.80	d5123	118.27
	r41	1.5228	a512	107.60	$\mathrm{d} 6512$	164.33
	r51	1.5645	a651	111.32	$\mathrm{d} 7651$	290.11
	r65	1.4262	a765	107.08	$\mathrm{d} 8312$	153.04
	r76	1.4222	a831	116.16	d9831	66.86
	r83	1.4153	a983	108.08	d10213	55.58
	r98	1.4544	a1021	110.74	d11213	295.65
	r102	1.0945	al121	111.15	d12213	175.26
	r112	1.0958	a1221	110.96	d13312	38.24
	r122	1.0941	a1331	109.22	d14312	279.59
	r133	1.0976	a1431	110.04	d15412	117.49
	r143	1.0982	a1541	117.06	d16412	337.20
	r154	1.0879	a1641	116.25	d17765	55.38
	r164	1.0909	a1776	99.27	d18512	43.61
	r177	1.1540	al851	110.35	d19512	281.12
	r185	1.0952	a1951	111.04	d20983	260.31
	r195	1.0937	a2098	98.64		
	r209	0.9780				
	r21	1.5460	a312	108.90	d4123	235.61
	r31	1.5414	a412	109.85	d5123	116.17
	r41	1.5373	a512	108.38	d6512	186.85
	r51	1.5539	a651	110.20	d7651	71.98
	r65	1.4225	a765	106.75	d8312	268.69
	r76	1.4172	a831	121.28	d9831	284.84
	r83	1.3787	a983	108.68	d10213	63.12
	r98	1.4725	a 1021	110.46	d11213	302.91
	r102	1.0943	al121	111.68	d12213	182.61
	r112	1.0951	al221	110.65	d13765	306.06
	r122	1.0959	a1376	99.93	d14312	35.33
	r137	1.1912	a1431	113.49	d15412	62.08
	r143	1.0951	a1541	110.96	d16412	303.56
	r154	1.0939	al641	109.46	d17412	183.32
	r164	1.0956	a 1741	111.45	d18512	70.44
	r174	1.0902	a1851	110.50	d19512	308.51
	r185	1.0952	al951	111.35	d20983	137.04
	r195	1.0973	a2098	99.21		
	r209	0.9718				

TS9	r21	1.5158	a312	95.93	d4123	244.17
	r31	1.5420	a412	111.08	d5123	119.60
	r41	1.5342	a512	111.22	d6512	176.88
	r51	1.5397	a651	114.83	d7651	72.01
	r65	1.4214	a765	106.68	d8312	336.74
	r76	1.4609	a831	97.50	d9831	193.47
	r83	1.4420	a983	101.96	d10213	279.13
	r98	1.6859	a1021	119.45	d11213	119.93
	r102	1.0862	al121	120.87	d12312	93.30
	r112	1.0845	a1231	113.09	d13312	219.71
	r123	1.0956	a1331	115.20	d14412	57.35
	r133	1.0939	a1441	110.09	d15412	297.31
	r144	1.0935	a1541	111.01	d16412	177.58
	r154	1.0956	a1641	110.81	d17512	61.81
	r164	1.0932	a1751	109.85	d18512	302.00
	r175	1.0973	a1851	110.91	d19983	234.81
	r185	1.0978	a1998	94.77	d20765	235.23
	r199	0.9710	a2076	99.86		
	r207	0.9709				
TS10	r21	1.4102	a312	99.68	d4123	247.43
	r31	1.9213	a412	115.48	d5123	110.30
	r41	1.5278	a512	114.43	d6512	225.90
	r51	1.5488	a651	117.89	d7651	291.13
	r65	1.4132	a765	108.68	d8312	203.18
	r76	1.4537	a831	102.59	d9831	181.60
	r83	1.3137	a983	107.52	d10213	278.54
	r98	1.7859	a1021	121.48	d11213	90.15
	r102	1.0865	al121	121.04	d12312	82.45
	r112	1.0861	a 1231	99.13	d13312	324.55
	r123	1.0931	a1331	104.62	d14412	48.42
	r133	1.0959	a1441	111.25	d15412	289.32
	r144	1.0935	a1541	108.97	d16412	170.10
	r154	1.0958	a1641	111.20	d17512	100.66
	r164	1.0884	a1751	107.93	d18512	342.69
	r175	1.0984	a1851	109.67	d19983	239.83
	r185	1.0961	a1998	91.81	d20765	97.03
	r199	0.9730	a2076	98.44		
	r207	0.9826				
TS13	r21	1.4772	a321	119.94	d4213	195.76
	r32	1.5100	a 421	118.20	d5421	353.33
	r42	1.4657	a542	124.10	d6213	101.81
	r54	1.2281	a621	60.81	d7123	166.69
	r62	1.2353	a712	118.38	d8123	349.92
	r71	1.0817	a812	120.10	d9321	45.08
	r81	1.0817	a932	111.76	d10321	285.71
	r93	1.0946	al032	110.55	d11321	165.73
	r103	1.0969	al132	111.12	d12421	175.28
	r113	1.0940	a 1242	114.43		
	r124	1.1105				

TS8A	r21	1.5419	a321	111.08	d4213	240.37
	r32	1.5374	a421	107.01	d5213	121.93
	r42	1.5599	a521	107.89	d6521	194.18
	r52	1.5188	a652	118.31	d7652	110.91
	r65	1.3954	a765	89.73	d8123	302.23
	r76	1.5022	a812	110.88	d9123	181.70
	r81	1.0942	a912	111.77	d10123	61.67
	r91	1.0959	a 1012	110.56	d11321	62.34
	r101	1.0945	al132	110.99	d12321	302.36
	r113	1.0935	a 1232	110.13	d13321	182.50
	r123	1.0947	a1332	110.77	d14421	60.06
	r133	1.0910	a1442	108.02	d15421	301.08
	r144	1.0976	a 1542	111.10	d16521	52.74
	r154	1.0966	a1652	117.82	d17765	0.84
	r165	1.0957	a 1776	82.42	d18421	175.41
	r177	1.2733	a1842	115.42	d191842	81.87
	r184	1.4165	a19184	107.50	d201918	253.94
	r1918	1.4541	a201918	100.61	4	
	r2019	0.9745				
TS11	r21	1.5059	a321	104.45	d4213	246.22
	r32	2.0070	a421	117.39	d5213	104.37
	r42	1.5088	a521	115.54	d6521	353.69
	r52	1.4930	a652	123.37	d7321	181.25
	r65	1.2162	a732	105.87	d8123	178.70
	r73	1.2606	a812	109.34	d9123	60.09
	r81	1.0981	a912	111.51	d10123	296.77
	r91	1.0936	a1012	111.38	d11321	56.96
	r101	1.0918	a1 132	96.64	d12321	302.81
	r113	1.1058	a1232	91.63	d13421	52.11
	r123	1.1079	a1342	111.17	d14421	293.53
	r134	1.0941	a1442	109.83	d15421	173.10
	r144	1.0983	a1542	111.41	d16521	174.89
	r154	1.0922	a 1652	114.87		
	r165	1.1083				
TS12	r21	1.5463	a321	109.53	d4213	238.56
	r32	1.5130	a421	111.56	d5213	117.78
	r42	1.5403	a521	107.15	d6521	106.85
	r52	1.5320	a652	124.98	d7321	166.57
	r65	1.2077	a732	118.46	d8123	176.46
	r73	1.3914	a812	110.58	d9123	57.05
	r81	1.0935	a912	110.17	d10123	297.19
	r91	1.0949	a 1012	111.68	d11732	248.19
	r101	1.0953	a1173	58.25	d12321	315.54
	r117	1.2054	a 1232	117.55	d13421	55.79
	r123	1.0971	a 1342	110.61	d14421	295.31
	r134	1.0942	a 1442	110.13	d15421	176.19
	r144	1.0927	a1542	110.34	d16521	289.51
	r154	1.0928	a1652	114.04		
	r165	1.1155				

$\mathrm{C}_{3} \mathrm{CC} \bullet$	r21	1.5430	a321	108.96	d4213	240.74
	r32	1.5531	a421	109.73	d5213	119.75
	r42	1.5428	a521	109.89	d6123	178.76
	r52	1.5021	a612	111.02	d7123	58.55
	r61	1.0948	a712	110.94	d8123	298.72
	r71	1.0958	a812	111.02	d9321	60.10
	r81	1.0957	a932	111.06	d10321	300.15
	r93	1.0948	a1032	110.65	d11321	180.19
	r103	1.0972	al132	111.04	d12421	60.57
	r113	1.0948	a 1242	110.95	d13421	300.38
	r124	1.0957	a1342	111.02	d14421	180.41
	r134	1.0948	a1442	111.01	d15521	323.85
	r144	1.0957	a1552	120.62	d16521	155.91
	r155	1.0861	a1652	120.68		
	r165	1.0860				
$\mathrm{C}_{3} \mathrm{CCOO} \bullet$	r21	1.5416	a321	109.78	d4213	238.76
	r32	1.5392	a421	109.85	d5213	119.75
	r42	1.5402	a521	106.75	d6521	176.81
	r52	1.5391	a652	112.29	d7652	94.53
	r65	1.4584	a765	111.90	d8123	300.69
	r76	1.3249	a812	111.55	d9123	179.74
	r81	1.0957	a912	111.57	d10123	60.19
	r91	1.0958	a1012	110.18	d11321	58.64
	r101	1.0947	al132	111.36	d12321	298.92
	r113	1.0950	a 1232	110.09	d13321	179.02
	r123	1.0953	a1332	111.53	d14421	61.66
	r133	1.0931	a1442	110.44	d15421	302.02
	r144	1.0949	a1542	111.28	d16421	181.58
	r154	1.0960	a 1642	111.18	d17521	60.79
	r164	1.0936	al752	110.82	d18521	297.20
	r175	1.0952	a 1852	112.13		
	r185	1.0926				
$\mathrm{C}_{3} \bullet \mathrm{CCOOH}$	r21	1.5435	a321	110.08	d4213	239.04
	r32	1.5021	a421	109.25	d5213	120.22
	r42	1.5529	a521	107.58	d6521	179.49
	r52	1.5428	a652	108.01	d7652	182.72
	r65	1.4253	a765	106.74	d8123	299.93
	r76	1.4541	a812	111.37	d9123	178.95
	r81	1.0948	a912	111.22	d10123	59.51
	r91	1.0954	a1012	110.18	d11321	320.31
	r101	1.0949	a1132	119.92	d12321	153.26
	r113	1.0857	a1232	120.62	d13421	61.18
	r123	1.0840	a1342	110.38	d14421	301.63
	r134	1.0944	a1442	110.51	d15421	181.62
	r144	1.0969	a1542	111.03	d16521	59.73
	r154	1.0918	a1652	110.43	d17521	299.66
	r165	1.0979	al752	110.34	d18765	250.68
	r175	1.0994	a1876	100.10		
	r187	0.9716				

$\mathrm{C}_{2} \mathrm{CYCCOC}$	r21	1.4949	a321	120.2497	d4213	172.16
	r32	1.5008	a421	120.6432	d5421	132.90
	r42	1.4937	a542	114.0835	d6542	294.23
	r54	1.4375	a654	106.8393	d7654	242.96
	r65	1.4606	a765	99.2584	d8321	75.78
	r76	0.9711	a832	113.7766	d9123	164.31
	r83	1.5460	a912	111.7634	d10123	43.56
	r91	1.0950	a1012	111.2371	d11123	284.69
	r101	1.0981	a1112	112.7498	d12321	314.29
	r111	1.1036	a1232	109.4687	d13321	198.06
	r123	1.0990	a1332	109.0740	d14421	7.85
	r133	1.0957	a1442	111.5704	d15421	246.47
	r144	1.0982	a1542	112.1332	d16832	59.98
	r154	1.1037	a1683	111.2240	d17832	299.78
	r168	1.0953	a1783	111.4030	d18832	179.78
	r178	1.0949	a1883	110.8063		
	r188	1.0951				
$\mathrm{C}_{3} \mathrm{CCHO}$	r21	1.5450	a312	111.14	d4123	236.83
	r31	1.5325	a412	109.46	d5123	120.81
$13{ }^{1} 4$	r41	1.5450	a512	107.22	d6213	63.55
	r51	1.5249	a621	110.02	d7213	303.85
	r62	1.0950	a721	111.31	d8213	183.01
	r72	1.0947	a821	111.56	d9312	59.21
	r82	1.0958	a931	111.01	d10312	298.90
	r93	1.0934	a1031	110.45	d11312	178.60
	r103	1.0949	a1131	111.00	d12412	59.59
	r113	1.0934	a1241	110.02	d13412	300.14
	r124	1.0950	a1341	111.56	d14412	179.30
	r134	1.0958	a1441	111.31	d15512	238.76 58.75
	r144	1.0947	a1551	125.64	d16512	58.75
	r155	1.2106	a1651	113.83		
	r165	1.1167				
$\mathrm{CCC} \cdot(\mathrm{C}) \mathrm{COOH}$	r21	1.4949	a321	120.24	d4213	172.16
	r32	1.5008	a 421	120.64	d5421	132.90
	r42	1.4937	a542	114.08	d6542	294.23
	r54	1.4375	a654	106.83	d7654	242.96
	r65	1.4606	a765	99.25	d8321	75.78
	r76	0.9711	a832	113.77	d9123	164.31
	r83	1.5460	a912	111.76	d10123	43.56
	r91 r101	1.0950 1.0981	a1012	111.23 112.74	d11123	284.69 314.29
	r111	1.1036	a1232	109.46	d13321	198.06
	r123	1.0990	a1332	109.07	d14421	7.85
	r133	1.0957	a1442	111.57	d15421	246.47
	r144	1.0982	a1542	112.13	d16832	59.98
	r154	1.1037	a1683	111.22	d17832	299.78
	r168	1.0953	a1783	111.40	d18832	179.78
	r178	1.0949	a1883	110.80		
	r188	1.0951				

$\mathrm{C} 2 \cdot \mathrm{C}(\mathrm{COOH})_{2}$	r21	1.5028	a312	106.94	d4123	240.02
	r31	1.5542	a412	109.30	d5123	118.27
	r41	1.5444	a512	107.57	d6512	210.58
	r51	1.5629	a651	116.49	d7651	289.46
	r65	1.4197	a765	108.72	d8312	192.79
	r76	1.4539	a831	109.20	d9831	183.69
	r83	1.4356	a983	107.47	d10213	288.47
	r98	1.4491	a1021	120.83	d11213	100.05
	r102	1.0861	a1121	120.70	d12312	72.50
	r112	1.0848	a1231	110.19	d13312	312.02
	r123	1.0972	a1331	110.41	d14412	61.96
	r133	1.0954	a1441	110.66	d15412	302.86
	r144	1.0955	a1541	109.61	d16412	183.14
	r154	1.0945	a1641	111.83	d17512	84.20
	r164	1.0893	al751	109.87	d18512	325.30
	r175	1.0968	a1851	109.44	d19983	95.10
	r185	1.0970	a1998	100.72	d20765	94.89
	r199	0.9736	a2076	98.78		
	r207	0.9779				
$\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}$	r21	1.5332	a312	111.65	d4123	123.43
	r31	1.5475	a412	111.43	d5412	295.59
	r41	1.5449	a541	107.36	d6541	185.22
	r54	1.4233	a654	106.55	d7213	177.79
	r65	1.4539	a721	110.91	d8213	58.79
	r72	1.0936	a821	110.55	d9213	298.32
	r82	1.0929	a921	110.44	d10312	303.79
	r92	1.0925	a1031	110.56	d11312	183.46
	r103	1.0942	a1131	111.39	d12312	63.92
	rl13	1.0957	a1231	110.16	d13412	176.06
	r123	1.0916	al341	110.85	d14412	55.75
	r134	1.0983	al441	110.55	d15654	249.11
	r144	1.0997	a1565	100.09	d16123	241.11
	r156	0.9717	a1612	110.59	d171612	0.87
	r161	1.5285	a17161	125.14	d181612	179.79
	r1716	1.2096	a18161	114.19		
	r1816	1.1154				
$\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}$	r21	1.3369	a321	122.37	d4213	178.33
	r32	1.5075	a421	119.80	d5421	108.14
	r42	1.5132	a542	114.93	d6542	80.05
	r54	1.4326	a654	107.19	d7123	0.43
	r65	1.4619	a712	121.74	d8123	180.55
	r71	1.0866	a812	121.73	d9321	1.19
	r81	1.0865	a932	111.38	d10321	239.77
	r93	1.0932	a1032	111.33	d11321	122.04
	r103	1.0943	al132	110.86	d12421	352.70
	r113	1.0970	al242	110.29	d13421	232.20
	r124	1.0951	a1342	111.55	d14654	230.96
	r134 r14	1.0980	a1465	99.35		
	r146	0.9705				

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

| | r21 | 1.5378 | a 321 | 111.14 | d 4213 | 118.64 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table B. 2 Harmonic Vibrational Frequencies (cm^{-1}) for Species in Neopentyl Oxidation System

species	Frequencies (Based on B3LYP/6-31g(d,p) level)											moments of inertia (amu-Bohr^2)	
TS0	-485.11	109.39	173.30	213.56	238.50	241.63	372.01	391.89	422.67	522.03	548.94	618.97	405.41437
	790.30	814.37	883.98	957.75	977.08	1032.67	1069.87	1084.50	1292.63	1412.44	1421.86	1436.61	473.88436
	1439.96	1441.34	1493.65	1503.47	1507.11	1516.82	1584.74	3028.19	3032.51	3096.71	3098.59	3104.49	493.60732
	3130.11	3131.69	3151.30	3238.99	3259.89	3267.22							
TS1	-1563.34	111.25	230.78	248.18	275.55	306.21	324.00	391.09	430.54	455.26	485.42	547.60	456.05610
	646.99	761.84	886.89	914.94	943.33	947.19	971.96	1003.59	1030.97	1050.94	1073.62	1136.63	932.84675
	1210.05	1233.48	1251.31	1316.99	1364.74	1409.17	1428.12	1468.35	1481.05	1500.93	1507.06	1516.80	974.62749
	1523.98	1587.85	3034.62	3038.85	3045.85	3100.45	3104.70	3107.93	3113.45	3121.07	3134.33	3191.56	
TS2	-1817.17	79.73	114.33	213.42	233.82	259.55	279.25	304.19	342.54	385.83	410.37 .	532.89	459.49822
	650.11	767.32	810.05	887.92	931.92	940.89	950.78	971.58	1044.12	1056.86	1096.11	1141.45	1016.60904
	1227.51	1244.42	1285.79	1364.73	1406.32	1415.00	1444.81	1491.92	1501.54	1502.73	1516.25	1518.20	1062.51318
	1534.79	1960.47	3037.63	3040.59	3050.80	3062.27	3107.15	311124	3116.13	3120.64	3127.25	3142.12	
TS3	-777.50	72.42	137.26	154.53	212.94	245.90	285.63	314.09	327.81	398.35	413.75	427.44	395.25070
	543.50	570.59	781.29	826.49	913.17	930.38	959.69	971.06	1002.89	1013.59	1061.76	1100.58	1168.44288
	1187.72	1232.61	1248.88	1292.16	1350.40	1411.16	1427.48	1482.10	1501.50	1502.59	1515.46	1524.90	1190.10550
	1535.88	3018.99	3035.95	3042.21	3089.61	3107.06	3112.57	3114.11	3124.12	3153.81	3260.50	3788.59	
TS4	-485.40	59.24	130.89	138.40	181.94	196.74	207.24	225.53	271.69	353.03	377.09	436.66	513.80545
	519.29	545.51	574.19	621.92	809.44	830.90	869.74	885.72	948.70	996.88	1022.22	1062.12	1092.63266
	1076.28	1258.73	1296.11	1371.59	1400.45	1418.75	1435.46	1438.35	1445.89	1468.16	1501.91	1509.02	1189.71393
	1585.52	3015.30	3029.77	3078.18	3094.81	3103.85	3131.89	3162.93	3257.13	3266.58	3277.01	3756.28	
TS5	-472.74	35.20	93.45	144.98	157.03	191.94	204.85	225.44	260.02	371.19	383.06	418.08	485.44325
	452.48	566.35	599.73	779.42	796.02	812.00	941.52	957.47	975.99	1028.98	1066.77	1080.49	1135.07083
	1105.60	1207.09	1291.86	1392.94	1406.40	1418.21	1434.80	1452.32	1493.35	1500.73	1506.34	1514.48	1195.91466
	1569.99	3028.78	3033.05	3089.20	3091.13	3095.79	3119.32	3141.09	3153.01	3222.49	3245:10	3769.81	
TS6	-1255.04	55.30	93.68	130.94	190.39	251.39	265.35	323.18	357.34	376.24	397.07	497.80	459.09757
	596.42	628.35	688.87	802.97	871.59	946.08	954.44	960.50	975.78	1004.47	1045.25	1103.16	990.40575
	1244.11	1297.35	1325.08	1344.18	1373.17	1390.92	1420.03	1432.24	1464.45	1477.60	1500.55	1506.44	1100.35951
	1525.62	2841.82	2999.05	3006.97	3016.55	3065.99	3071.29	3099.60	3111.18	3161.48	3269.88	3698.43	
TS7	-1551.14	95.37	130.16	183.23	224.66	253.16	275.01	324.25	332.24	377.62	421.64	454.85	
	475.21	517.81	568.05	589.11	652.96	786.32	874.72	902.24	914.99	934.85	975.76	986.32	1044.60978
	1019.34	1032.64	1041.85	1086.02	1117.89	1160.56	1203.34	1240.88	1305.58	1326.28	1363.79	1400.05	1059.79955
	1420.51	1423.62	1463.86	1472.47	1488.86	1509.58	1513.28	1585.64	3024.97	3040.61	3058.57	3078.45	1562.24197

	3108.61	3113.72	3122.45	3130.66	3210.84	3644.90							
TS8	-1748.50	48.38	117.80	147.43	193.39	237.83	254.05	269.54	292.72	307.38	354.74	392.38	1004.94017
	424.29	484.95	499.46	569.22	652.96	759.50	821.56	881.40	912.91	944.64	959.06	991.62	1228.75072
	1015.70	1044.07	1073.38	1129.31	1185.73	1206.00	1225.37	1241.57	1313.77	1344.73	1373.21	1406.01	1663.99975
	1409.52	1435.59	1481.45	1499.82	1507.67	1517.52	1523.74	1588.51	3034.37	3039.28	3050.93	3094.13	
	3104.78	3109.46	3114.51	3121.02	3163.98	3763.87							
TS8A	-1809.25	72.40	88.29	126.19	178.66	202.14	226.93	237.18	251.67	286.88	353.41	376.77	1013.97087
	448.62	468.08	505.03	568.06	670.62	777.89	818.96	874.91	880.19	920.23	932.99	958.35	1210.00782
	1019.57	1034.47	1078.42	1093.08	1131.83	1194.58	1217.85	1247.68	1330.05	1353.19	1388.65	1398.21	1763.49835
	1415.49	1440.25	1467.90	1499.86	1502.66	1515.61	1523.61	1965.30	3033.33	3042.87	3058.30	3084.54	
TS9	-789.74	63.17	80.62	114.11	147.06	167.16	177.18	219.36	255.92	261.54	307.53	336.13	741.51363
	398.94	405.47	429.16	506.10	556.07	646.09	786.16	825.03	874.68	918.24	947.70	970.43	1833.89706
	983.74	1007.06	1025.41	1048.65	1090.89	1185.22	1211.08	1219.55	1265.28	1323.67	1343.16	1377.77	2152.48895
	1391.18	1420.99	1470.71	1480.30	1509.49	1515.93	1532.04	3029.49	3047.38	3050.76	3085.67	3107.02	
	3119.65	3137.36	3151.91	325939	3767.88	3787.02							
TS10	-811.72	59.77	107.71	153.55	165.73	195.97	203.80	231.17	236.12	267.74	297.08	316.87	1007.25816
	348.68	374.01	421.46	454.20	497.48	588.02	670.16	794.36	818.74	882.12	897.71	921.95	1421.41271
	939.94	978.28	1028.05	1056.96	1079.89	1159.11	1243.85	1262.20	1299.96	1317.79	1368.10	1395.36	1882.73360
	1424.75	1467.92	1485.43	1494.98	1508.92	1525.75	1540.38	3027.42	3035.55	3052.97	309025	311938	
TSII	-458.08	88.68	121.41	187.43	193.87	208.47	246.84	273.70	324.72	362.20	394.14	590.42	604.02445
	701.56	792.00	944.48	958.55	1001.96	1010.38	1015.29	1161.01	1237.65	1247.88	1296.94	1403.34	825.86966
	1416.44	1419.42	1428.59	1483.54	1484.13	1502.63	1507.91	1587.04	1771.40	2903.01	2955.75	2973.18	1006.13421
	3031.11	3037.82	3102.38	3105.21	3146.95	3151.86							
TS12	-2011.60	77.82	101.94	186.85	216.25	237.35	280.85	306.46	338.43	352.84	529.63	602.86	601.40317
	664.88	769.87	898.96	925.01	935.05	958.34	1012.47	1043.27	1158.91	1185.70	1230.04	1262.04	778.59064
	1360.15	1403.75	1414.60	1433.22	1494.58	1498.64	1513.72	1521.57	1839.64	2405.48	2869.82	3043.63	967.95605
	3055.81	3060.83	3113.95	3129.98	3134.19	3145.64							
TS13	-1664.57	174.00	214.21	267.36	352.07	432.48	496.38	594.33	687.99	835.91	927.05	967.60	207.48677
	1005.98	1056.81	1204.43	1269.70	1347.26	1415.77	1430.76	1443.37	1499.34	1514.39	1717.65	2247.23	457.88187
	2918.51	3035.37	3096.48	3122.04	3189.35	3315.69							643.63383
C3CC•	115.27	224.69	275.72	282.03	306.80	331.20	385.44	415.90	416.67	532.97	739.42	910.54	389.84934
	918.13	953.85	954.35	963.71	1036.18	1081.16	1207.65	1272.56	1286.08	1406.12	1410.20	1432.22	396.61134
	1476.84	1493.52	1498.59	1500.41	1517.07	1517.52	1532.50	3027.13	3031.88	3038.09	3097.82	3102.16	405.66953
	3106.62	3109.30	3114.16	3115.49	3143.88	3248.11							

$\mathrm{C}_{3} \mathrm{CCOO} \bullet$	70.91	107.25	222.21	232.58	270.51	274.06	307.78	337.78	391.14	409.08	477.41	560.35	447.25729
	742.15	889.42	920.54	939.39	948.84	965.86	970.39	1051.66	1088.86	1171.57	1239.04	1254.13	1034.49632
	1283.93	1324.86	1372.41	1414.61	1417.37	1446.68	1478.93	1495.13	1498.94	1502.93	1521.34	1521.86	1065.83164
	1533.04	3036.04	3040.27	3046.81	3063.96	310519	3108.59	3111.11	3116.43	3126.94	3132.07	3136.01	
$\mathrm{C}_{3} \cdot \mathrm{CCOOH}$	88.36	128.89	148.56	179.49	206.90	229.31	265.36	317.43	328.40	335.60	411.46	431.65	409.19180
	505.53	552.07	773.85	910.10	927.75	941.59	955.41	961.82	1010.72	1068.21	1080.34	1181.47	1191.78130
	1233.37	1263.49	1301.41	1366.93	1394.01	1406.78	1426.11	1470.20	1498.23	1499.33	1514.74	1522.24	1209.33621
	1534.09	3007.75	3035.17	3039.97	3058.13	310604	3112.26	3115.26	3144.49	3155.94	3266.07	3747.58	
$\mathrm{C}_{2} \mathrm{CYCCOC}$	45.31	224.94	264.57	313.76	342.36	390.66	407.16	639.18	850.61	887.82	929.68	944.97	349.91537
	965.68	977.10	1026.82	1043.39	1067.36	1161.64	1164.42	1227.82	1270.45	1300.44	1313.63	1390.52	575.31855
	1418.92	1437.76	1500.66	1502.78	1516.36	1517.89	1533.06	1553.87	3003.99	3014.83	3031.35	3037.83	638.70958
	3056.01	3057.50	3099.03	3104.38	3110.32	3112.34							
$\mathrm{C}_{3} \mathrm{CCHO}$	77.80	199.84	248.17	248.64	277.82	319.43	347.26	386.62	402.81	595.83	766.48	888.16	408.28679
	935.11	954.78	962.40	970.49	1061.72	1074.43	1235.43	1243.16	1300.02	1408.20	1416.50	1420.05	655.80077
	1448.68	1493.66	1497.99	1500.12	1515.13	1520.09	1531.72	1829.24	2859.75	3036.04	3039.51	3052.91	664.77166
	3107.30	311081	3116.46	3117.31	3125.16	3133.75							
$\mathrm{CCC} \cdot(\mathrm{C}) \mathrm{COOH}$	20.08	51.39	65.31	106.68	176.52	194.00	213.36	266.59	364.07	401.58	447.21	567.10	476.77613
	747.63	793.68	859.27	930.75	962.08	988.02	996.90	1014.23	1056.49	1071.44	1240.60	1257.19	1155.73397
	1298.00	1325.96	1360.11	1364.41	1399.78	1417.12	1423.00	1471.06	1483.03	1499.34	1504.36	1513.84	1365.88475
	1520.66	2967.29	2974.09	3020.35	3039.83	3041:14	3046.64	3080.09	3102.13	3110.77	3115.98	3756.92	
$\mathrm{C}_{2} \bullet \mathrm{C}(\mathrm{COOH})_{2}$	54.09	107.49	119.08	173.44	187.42	204.25	220.89	265.42	294.61	299.87	334.17	357.23	1019.99831
	402.92	424.43	480.40	544.47	583.41	627.07	786.50	880.35	901.22	937.63	947.32	966.39	1273.76709
	976.65	1018.50	1029.55	1077.17	1180.62	1211.53	1229.07	1284.76	1332.55	1374.48	1383.98	1399.95	1752.82245
	1426.05	1430.03	1465.64	1481.49	1505.64	1513.06	1522.83	3034.59	3037.28	3053.76	3089.41	3092.25	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{COOH}) \mathrm{CHO}$	59.83	84.02	107.48	170.66	206.55	220.98	230.69	274.22	316.16	335.07	369.86	405.40	498.06713
	454.73	662.04	777.73	891.49	934.35	943.29	954.70	972.56	1017.42	1062.09	1086.80	1203.85	1611.37533
	1224.83	1261.44	1305.61	1370.09	1398.56	1412.09	1419.68	1443.77	1495.76	1504.50	1512.69	1521.65	1678.11276
	1537.16	1831.02	2873.19	3005.49	3047.37	3054.37	3061.59	3116.31	3133.98	3143.63	3149.04	3748.15	
$\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COOH}$	52.12	130.61	181.82	206.56	275.93	389.75	418.68	442.63	591.22	734.33	833.75	881.79	333.65046
	943.65	979.31	983.31	1012.80	1068.92	1093.90	1267.71	1317.20	1372.42	1384.03	1421.84	1457.08	723.82040
	1478.77	1492.47	1512.23	1733.86	3031.55	3038.67	3087.70	3099.02	3131.32	3149.94	3234.30	3722.08	842.90740
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{COO}$	29.12	84.77	117.05	183.69	207.68	218.90	245.33	255.48	288.26	335.46	377.02	416.54	1061.18759
	454.35	462.15	515.30	576.59	780.14	872.41	898.46	930.55	944.67	953.17	959.89	1035.30	1234.76043
	1056.60	1075.76	1182.63	1188.06	1234.41	1257.07	1308.79	1343.66	1373.27	1398.70	1412.47	1416.27	1832.62622

	1439.46	1468.77	1492.13	1502.13	1506.59	$\begin{array}{r} 1519.11 \\ 3708.30 \\ \hline \end{array}$	1525.97	3032.92	3041.94	3049.29	3069.01	3087.54	
	3112.16	3114.38	3120.41	3138.42	3146.51								
$\mathrm{C}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{O} \bullet\right) \mathrm{CCOO} \bullet$	68.03	102.13	124.10	202.42	225.38	240.36	265.66	319.09	342.77	371.09	438.63	477.12	620.33544
	532.41	602.75	746.84	899.98	917.67	949.32	965.70	971.27	1036.29	1081.84	1100.07	1165.36	1293.46452
	1228.34	1244.04	1280.54	1320.77	1345.20	1371.91	1389.60	1416.71	1440.15	1485.04	1499.17	1506.19	1446.83928
	1521.08	1523.76	2893.71	2918.11	3038.10	3047.83	3062.31	3103.82	3118.61	3133.21	3141.69	3151.21	
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CHO}$	123.82	138.92	228.50	288.73	359.91	380.31	605.32	821.00	928.98	963.16	963.53	1024.84	216.60274
	1056.56	1277.58	1355.24	1402.92	1423.15	1433.19	1477.89	1478.99	1498.48	1514.42	1592.08	2930.79	453.41331
	3010.79	3018.44	3055.20	306080	3115.64	3154.07							647.80465
$\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO})_{2}$	61.33	70.80	192.44	222.74	239.50	287.69	315.42	334.52	364.26	547.88	622.60	770.80	589.02019
	899.11	926.23	954.49	967.10	1022.33	1057.32	1184.65	1237.11	1271.71	1406.46	1415.71	1422.98	756.16413
	1442.51	1496.46	1498.37	1514.71	1521.77	1819.26	1837.06	2877.94	2934.17	3043.72	3057.16	3116.64	940.39473
	3127.13	3132.67	3145.80										
$\mathrm{C}_{2} \mathrm{C}(\mathrm{CHO}) \mathrm{CH}_{2} \mathrm{O}$ -	76.92	104.75	206.00	216.34	236.75	281.03	298.81	343.60	361.52	513.78	550.02	606.77	600.32814
	774.16	898.89	922.96	961.85	994.79	1028.67	1082.40	1102.63	1196.32	1243.49	1299.85	1349.56	775.52722
	1376.95	1410.50	1420.07	1443.46	1498.66	1499.82	1515.32	1522.86	1836.34	2859.11	2890.36	2931.27	958.29590
	3038.02	3053.40	3105.21	3126.03	3127.79	3146.22							
$\mathrm{C}(\mathrm{COOH}) \mathrm{CYCCOC}$	56.14	71.69	123.55	192.49	238.66	251.40	295.06	372.70	395.07	397.42	516.97	709.66	517.24367
	850.99	868.60	908.50	936.77	952.94	966.25	1016.47	1032.04	1043.28	1049.89	1160.17	1163.73	1269.61211
	1192.63	1233.28	1291.38	1312.57	1334.11	1357.43	1390.07	1403.41	1430.54	1476.48	1506.91	1514.85	1382.67316
	1528.56	1552.57	2995.72	3011.41	3037.53	3043.31	3055.89	3068.72	308580	3110.79	3136.81	3754.82	
$\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{C}=\mathrm{O}$	127.68	184.14	263.28	400.97	438.41	627.73	705.91	833.87	969.67	978.55	1020.89	1042.07	209.78553
	1079.29	1335.12	1406.16	1426.97	1465.72	1486.90	1503.67	1713.39	1797.82	2902.13	3052.75	3111.83	411.02314
	3142.29	3153.49	3241.47										609.76017
$\mathrm{C}_{3} \mathrm{CCI}$	100.45	156.57	217.31	247.29	275.00	280.30	332.89	380.22	411.47	448.72	601.53	742.63	417.27297
	830.11	908.03	948.92	952.22	978.97	1046.82	1050.22	1141.54	1206.03	1268.26	1285.67	1311.29	2115.98775
	1428.31	1433.35	1457.73	1495.06	1510.24	1516.90	1517.49	1536.07	1537.10	1548.84	3041.14	3045.15	2121.31214
	3051.51	3107.94	3109.50	3111.69	311500	3118.38	3127.05	3131.19	3182.82				
$\mathrm{C}_{3} \cdot \mathrm{CCI}$	96.44	112.37	148.08	235.78	250.99	279.18	312.43	372.95	394.28	426.39	519.50	604.64	402.28476
	753.78	833.13	900.02	938.06	963.47	995.39	1036.08	1101.07	1159.33	1244.16	1280.32	1315.56	2059.70441
	1418.51	1438.62	1477.40	1498.18	1514.07	1517.89	1530.17	1538.84	3038.95	3050.50	3108.02	3114.21	2076.20218
	3116.48	3125.33	3136.31	3165.55	3183.61	3267.30							

Table B. 3 Thermodynamic Analysis for Reactions of Neopentyl Oxidation

$\mathrm{T}(\mathrm{K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$2.974 \mathrm{E}+01$	$2.974 \mathrm{E}+01$	$6.800 \mathrm{E}-01$	$3.029 \mathrm{E}-22$	$2.954 \mathrm{E}+01$
400.00	$2.973 \mathrm{E}+01$	$2.973 \mathrm{E}+01$	$6.491 \mathrm{E}-01$	$7.898 \mathrm{E}-17$	$2.947 \mathrm{E}+01$
500.00	$2.970 \mathrm{E}+01$	$2.970 \mathrm{E}+01$	$5.768 \mathrm{E}-01$	$1.396 \mathrm{E}-13$	$2.941 \mathrm{E}+01$
600.00	$2.964 \mathrm{E}+01$	$2.964 \mathrm{E}+01$	$4.810 \mathrm{E}-01$	$2.026 \mathrm{E}-11$	$2.935 \mathrm{E}+01$
800.00	$2.949 \mathrm{E}+01$	$2.949 \mathrm{E}+01$	$2.580 \mathrm{E}-01$	$1.001 \mathrm{E}-08$	$2.928 \mathrm{E}+01$
1000.00	$2.928 \mathrm{E}+01$	$2.928 \mathrm{E}+01$	$2.919 \mathrm{E}-02$	$4.041 \mathrm{E}-07$	$2.925 \mathrm{E}+01$
1200.00	$2.905 \mathrm{E}+01$	$2.905 \mathrm{E}+01$	$-1.805 \mathrm{E}-01$	$4.669 \mathrm{E}-06$	$2.927 \mathrm{E}+01$
1500.00	$2.871 \mathrm{E}+01$	$2.871 \mathrm{E}+01$	$-4.330 \mathrm{E}-01$	$5.269 \mathrm{E}-05$	$2.936 \mathrm{E}+01$
2000.00	$2.828 \mathrm{E}+01$	$2.828 \mathrm{E}+01$	$-6.839 \mathrm{E}-01$	$5.754 \mathrm{E}-04$	$2.965 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

Temp (K)	AF (T)	T_K^n	k_calc (T)	k_fit
300.00	$8.802 \mathrm{E}+12$	$2.951 \mathrm{E}+01$	$1.893 \mathrm{E}-09$	$1.870 \mathrm{E}-09$
400.00	$1.155 \mathrm{E}+13$	$3.501 \mathrm{E}+01$	$6.582 \mathrm{E}-04$	$6.665 \mathrm{E}-04$
500.00	$1.393 \mathrm{E}+13$	$3.997 \mathrm{E}+01$	$1.454 \mathrm{E}+00$	1.473E+00
600.00	$1.593 \mathrm{E}+13$	$4.453 \mathrm{E}+01$	$2.533 \mathrm{E}+02$	$2.548 \mathrm{E}+02$
800.00	$1.898 \mathrm{E}+13$	$5.282 \mathrm{E}+01$	$1.668 \mathrm{E}+05$	1.657E+05
1000.00	$2.114 \mathrm{E}+13$	$6.030 \mathrm{E}+01$	$8.421 \mathrm{E}+06$	$8.320 \mathrm{E}+06$
1200.00	$2.283 E+13$	$6.719 \mathrm{E}+01$	$1.168 \mathrm{E}+08$	$1.155 \mathrm{E}+08$
1500.00	$2.514 \mathrm{E}+13$	$7.671 \mathrm{E}+01$	$1.647 \mathrm{E}+09$	1.644E+09
2000.00	$2.954 \mathrm{E}+13$	$9.099 \mathrm{E}+01$	$2.398 \mathrm{E}+10$	$2.429 \mathrm{E}+10$

The model fitted is for uni-molecular reaction.

THERMODYNAMIC ANALYSIS for REACTION

Rx	C3CCOO. $=$ TS2	
Hf \{Kcal/mol\}	-27.610	14.000
$\mathrm{S}\{\mathrm{cal} / \mathrm{mol} \mathrm{K}\}$	95.450	91.660

$\mathrm{T}(\mathrm{K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$4.161 \mathrm{E}+01$	$4.161 \mathrm{E}+01$	$-3.787 \mathrm{E}+00$	$7.182 \mathrm{E}-32$	$4.275 \mathrm{E}+01$
400.00	$4.166 \mathrm{E}+01$	$4.166 \mathrm{E}+01$	$-3.641 \mathrm{E}+00$	$2.750 \mathrm{E}-24$	$4.312 \mathrm{E}+01$
500.00	$4.172 \mathrm{E}+01$	$4.172 \mathrm{E}+01$	$-3.515 \mathrm{E}+00$	$9.889 \mathrm{E}-20$	$4.348 \mathrm{E}+01$
600.00	$4.178 \mathrm{E}+01$	$4.178 \mathrm{E}+01$	$-3.410 \mathrm{E}+00$	$1.088 \mathrm{E}-16$	$4.382 \mathrm{E}+01$
800.00	$4.188 \mathrm{E}+01$	$4.188 \mathrm{E}+01$	$-3.256 \mathrm{E}+00$	$7.008 \mathrm{E}-13$	$4.449 \mathrm{E}+01$
1000.00	$4.197 \mathrm{E}+01$	$4.197 \mathrm{E}+01$	$-3.157 \mathrm{E}+00$	$1.369 \mathrm{E}-10$	$4.513 \mathrm{E}+01$
1200.00	$4.204 \mathrm{E}+01$	$4.204 \mathrm{E}+01$	$-3.092 \mathrm{E}+00$	$4.642 \mathrm{E}-09$	$4.575 \mathrm{E}+01$
1500.00	$4.213 \mathrm{E}+01$	$4.213 \mathrm{E}+01$	$-3.025 \mathrm{E}+00$	$1.584 \mathrm{E}-07$	$4.667 \mathrm{E}+01$
2000.00	$4.229 \mathrm{E}+01$	$4.229 \mathrm{E}+01$	$-2.935 \mathrm{E}+00$	$5.457 \mathrm{E}-06$	$4.816 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

THERMODYNAMIC ANALYSIS for REACTION

Rx	$\mathrm{C} 3 . \mathrm{CCQ}$	$=\mathrm{TS} 1$
$\mathrm{Hf}\{\mathrm{Kcal} / \mathrm{mol}\}$	-9.430	-3.790
$\mathrm{~S}\{\mathrm{Cal} / \mathrm{mol} \mathrm{K}\}$	105.580	86.140

dHr	\{kcal/mol\}	(298K)	$=$	5.64	dHr avg	(298	1500.		$=$		5.42
	(dE) \{kcal/mol\}	\} (")	$=$	5.64	dUr avg	(298	1500.		$=$		5.42
dSr	\{cal/mol K\}	(")	$=$	-19.44	dSx avg	(298	1500.			-20	0.05
dGr	\{kcal/mol\}	(")	$=$	11.44	dGr avg	(298	1500.		$=$		3.45
	Kc	")	=	4.135E-09	Kc avg	(298.	1500.			1.987 E	E-06
Fit	Af/Ar : A	$A=1$		$01 \mathrm{n}=-1$.	alpha $=$. 772 E	03 avg	er		7.30	
Fit	Af/Ar w/ddU: A	$A=5$.	17	$00 \mathrm{n}=-2$.	alpha =	3.064 E	03 avg	er	or	17.57	

$$
\begin{array}{lrcccc}
\mathrm{T}(\mathrm{~K}) & \mathrm{dH}(\mathrm{Kcal} / \mathrm{mol}) & \mathrm{dU}(\mathrm{Kcal} / \mathrm{mol}) & \mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{~K}) & \mathrm{Kc} & \mathrm{dG}(\mathrm{Kcal} / \mathrm{mol}) \\
300.00 & 5.634 \mathrm{E}+00 & 5.634 \mathrm{E}+00 & -1.946 \mathrm{E}+01 & 4.385 \mathrm{E}-09 & 1.147 \mathrm{E}+01
\end{array}
$$

400.00	$5.360 \mathrm{E}+00$	$5.360 \mathrm{E}+00$	$-2.026 \mathrm{E}+01$	$4.402 \mathrm{E}-08$	$1.346 \mathrm{E}+01$
500.00	$5.196 \mathrm{E}+00$	$5.196 \mathrm{E}+00$	$-2.063 \mathrm{E}+01$	$1.661 \mathrm{E}-07$	$1.551 \mathrm{E}+01$
600.00	$5.117 \mathrm{E}+00$	$5.117 \mathrm{E}+00$	$-2.077 \mathrm{E}+01$	$3.942 \mathrm{E}-07$	$1.758 \mathrm{E}+01$
800.00	$5.135 \mathrm{E}+00$	$5.135 \mathrm{E}+00$	$-2.075 \mathrm{E}+01$	$1.151 \mathrm{E}-06$	$2.174 \mathrm{E}+01$
1000.00	$5.309 \mathrm{E}+00$	$5.309 \mathrm{E}+00$	$-2.056 \mathrm{E}+01$	$2.215 \mathrm{E}-06$	$2.587 \mathrm{E}+01$
1200.00	$5.582 \mathrm{E}+00$	$5.582 \mathrm{E}+00$	$-2.031 \mathrm{E}+01$	$3.493 \mathrm{E}-06$	$2.996 \mathrm{E}+01$
1500.00	$6.126 \mathrm{E}+00$	$6.126 \mathrm{E}+00$	$-1.991 \mathrm{E}+01$	$5.693 \mathrm{E}-06$	$3.599 \mathrm{E}+01$
2000.00	$7.246 \mathrm{E}+00$	$7.246 \mathrm{E}+00$	$-1.927 \mathrm{E}+01$	$9.916 \mathrm{E}-06$	$4.579 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

Temp (K)	AF (T)	T_K^n	k_calc (T)	k_fit
300.00	$3.487 \mathrm{E}+08$	$6.198 \mathrm{E}+02$	$2.741 \mathrm{E}+04$	$2.888 \mathrm{E}+04$
400.00	$3.116 \mathrm{E}+08$	$8.571 \mathrm{E}+02$	$3.669 \mathrm{E}+05$	$3.486 \mathrm{E}+05$
500.00	$3.233 \mathrm{E}+08$	$1.102 \mathrm{E}+03$	$1.730 \mathrm{E}+06$	1.645E+06
600.00	$3.602 \mathrm{E}+08$	$1.354 \mathrm{E}+03$	$4.928 \mathrm{E}+06$	$4.805 \mathrm{E}+06$
800.00	$4.852 \mathrm{E}+08$	$1.872 \mathrm{E}+03$	$1.918 \mathrm{E}+07$	$1.963 \mathrm{E}+07$
1000.00	$6.678 \mathrm{E}+08$	$2.408 \mathrm{E}+03$	$4.616 \mathrm{E}+07$	$4.837 \mathrm{E}+07$
1200.00	$9.078 \mathrm{E}+08$	$2.957 \mathrm{E}+03$	$8.735 \mathrm{E}+07$	$9.162 \mathrm{E}+07$
1500.00	1.390E+09	$3.803 \mathrm{E}+03$	$1.779 \mathrm{E}+08$	$1.817 \mathrm{E}+08$
2000.00	$2.559 E+09$	$5.259 E+03$	$4.132 \mathrm{E}+08$	$3.876 \mathrm{E}+08$

$\mathrm{T}(\mathrm{K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$1.550 \mathrm{E}+01$	$1.550 \mathrm{E}+01$	$-6.048 \mathrm{E}+00$	$2.439 \mathrm{E}-13$	$1.731 \mathrm{E}+01$
400.00	$1.537 \mathrm{E}+01$	$1.537 \mathrm{E}+01$	$-6.425 \mathrm{E}+00$	$1.581 \mathrm{E}-10$	$1.794 \mathrm{E}+01$
500.00	$1.524 \mathrm{E}+01$	$1.524 \mathrm{E}+01$	$-6.698 \mathrm{E}+00$	$7.449 \mathrm{E}-09$	$1.859 \mathrm{E}+01$
600.00	$1.513 \mathrm{E}+01$	$1.513 \mathrm{E}+01$	$-6.913 \mathrm{E}+00$	$9.521 \mathrm{E}-08$	$1.927 \mathrm{E}+01$
800.00	$1.490 \mathrm{E}+01$	$1.490 \mathrm{E}+01$	$-7.233 \mathrm{E}+00$	$2.223 \mathrm{E}-06$	$2.069 \mathrm{E}+01$
1000.00	$1.470 \mathrm{E}+01$	$1.470 \mathrm{E}+01$	$-7.459 \mathrm{E}+00$	$1.433 \mathrm{E}-05$	$2.216 \mathrm{E}+01$
1200.00	$1.453 \mathrm{E}+01$	$1.453 \mathrm{E}+01$	$-7.613 \mathrm{E}+00$	$4.884 \mathrm{E}-05$	$2.367 \mathrm{E}+01$
1500.00	$1.438 \mathrm{E}+01$	$1.438 \mathrm{E}+01$	$-7.730 \mathrm{E}+00$	$1.641 \mathrm{E}-04$	$2.597 \mathrm{E}+01$
2000.00	$1.438 \mathrm{E}+01$	$1.438 \mathrm{E}+01$	$-7.734 \mathrm{E}+00$	$5.472 \mathrm{E}-04$	$2.985 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

THERMODYNAMIC ANALYSIS for REACTION

| Rx | $\mathrm{C} 3 . \mathrm{CCQ}$ | $=\mathrm{TS} 4$ |
| :--- | ---: | ---: | ---: |
| $\mathrm{Hf}\{\mathrm{Kcal} / \mathrm{mol}\}$ | -9.430 | 15.950 |
| $\mathrm{~S}\{\mathrm{Cal} / \mathrm{mol} \mathrm{K}\}$ | 105.580 | 102.740 |

dHr	\{kcal/mol\}	(298K)	$=$	25.38	dHr avg	(298	1500		$=$	25.20
	(dE) \{kcal/mol\}	\} (")		25.38	dUr avg	1298	1500		$=$	25.20
dSr	\{cal/mol K\}	(")	=	-2.84	dSr avg	(298	1500		=	-3.06
dGr	\{kcal/mol \}	(")	=	26.23	dGr avg	(298	1500		$=$	27.95
	Kc	$\left({ }^{\prime}\right.$	=	5.939E-20	Kc avg	(298.	1500.		$=$	$1.601 \mathrm{E}-07$
Fit	Af/Ar : A	$A=8$		2 n	alpha =	9.172 E	04 av	er		3.62%
Fit	Af/Ar w/ddU: A	$A=9$.	145	$2 \mathrm{n}=$	alpha =	1.359 E	03 av	er	or	7.40%

$\mathrm{T}(\mathrm{K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$2.538 \mathrm{E}+01$	$2.538 \mathrm{E}+01$	$-2.836 \mathrm{E}+00$	$7.734 \mathrm{E}-20$	$2.623 \mathrm{E}+01$
400.00	$2.542 \mathrm{E}+01$	$2.542 \mathrm{E}+01$	$-2.724 \mathrm{E}+00$	$3.275 \mathrm{E}-15$	$2.651 \mathrm{E}+01$
500.00	$2.541 \mathrm{E}+01$	$2.541 \mathrm{E}+01$	$-2.747 \mathrm{E}+00$	$1.963 \mathrm{E}-12$	$2.678 \mathrm{E}+01$
600.00	$2.536 \mathrm{E}+01$	$2.536 \mathrm{E}+01$	$-2.842 \mathrm{E}+00$	$1.388 \mathrm{E}-10$	$2.706 \mathrm{E}+01$
800.00	$2.515 \mathrm{E}+01$	$2.515 \mathrm{E}+01$	$-3.126 \mathrm{E}+00$	$2.781 \mathrm{E}-08$	$2.766 \mathrm{E}+01$
1000.00	$2.487 \mathrm{E}+01$	$2.487 \mathrm{E}+01$	$-3.447 \mathrm{E}+00$	$6.482 \mathrm{E}-07$	$2.831 \mathrm{E}+01$
1200.00	$2.452 \mathrm{E}+01$	$2.452 \mathrm{E}+01$	$-3.760 \mathrm{E}+00$	$5.149 \mathrm{E}-06$	$2.903 \mathrm{E}+01$
1500.00	$2.395 \mathrm{E}+01$	$2.395 \mathrm{E}+01$	$-4.188 \mathrm{E}+00$	$3.940 \mathrm{E}-05$	$3.023 \mathrm{E}+01$
2000.00	$2.289 \mathrm{E}+01$	$2.289 \mathrm{E}+01$	$-4.797 \mathrm{E}+00$	$2.822 \mathrm{E}-04$	$3.248 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.
The 3 parameters for the model equation of $A(T)$
Aprime $=2.8350 \mathrm{E}+11$

THERMODYNAMIC ANALYSIS for REACTION

Rx	$\mathrm{C} 3 . \mathrm{CCQ}$	$=$	TS 5
$\mathrm{Hf}\{\mathrm{Kcal} / \mathrm{mol}\}$	-9.430	17.090	
$\mathrm{~S}\{\mathrm{Cal} / \mathrm{mol} \mathrm{K}\}$	105.580	102.330	

$T(\mathrm{~K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$2.652 \mathrm{E}+01$	$2.652 \mathrm{E}+01$	$-3.244 \mathrm{E}+00$	$9.295 \mathrm{E}-21$	$2.749 \mathrm{E}+01$
400.00	$2.659 \mathrm{E}+01$	$2.659 \mathrm{E}+01$	$-3.036 \mathrm{E}+00$	$6.388 \mathrm{E}-16$	$2.781 \mathrm{E}+01$
500.00	$2.664 \mathrm{E}+01$	$2.664 \mathrm{E}+01$	$-2.927 \mathrm{E}+00$	$5.178 \mathrm{E}-13$	$2.811 \mathrm{E}+01$
600.00	$2.669 \mathrm{E}+01$	$2.669 \mathrm{E}+01$	$-2.831 \mathrm{E}+00$	$4.538 \mathrm{E}-11$	$2.839 \mathrm{E}+01$
800.00	$2.687 \mathrm{E}+01$	$2.687 \mathrm{E}+01$	$-2.586 \mathrm{E}+00$	$1.242 \mathrm{E}-08$	$2.894 \mathrm{E}+01$
1000.00	$2.715 \mathrm{E}+01$	$2.715 \mathrm{E}+01$	$-2.276 \mathrm{E}+00$	$3.707 \mathrm{E}-07$	$2.942 \mathrm{E}+01$
1200.00	$2.749 \mathrm{E}+01$	$2.749 \mathrm{E}+01$	$-1.961 \mathrm{E}+00$	$3.662 \mathrm{E}-06$	$2.985 \mathrm{E}+01$
1500.00	$2.800 \mathrm{E}+01$	$2.800 \mathrm{E}+01$	$-1.582 \mathrm{E}+00$	$3.750 \mathrm{E}-05$	$3.037 \mathrm{E}+01$
2000.00	$2.881 \mathrm{E}+01$	$2.881 \mathrm{E}+01$	$-1.115 \mathrm{E}+00$	$4.050 \mathrm{E}-04$	$3.104 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

Temp (K)	AF (T)	T_K^n	k_calc (T)	k_fit
300.00	1.221E+12	7.112E+03	$5.810 \mathrm{E}-08$	5.914E-08
400.00	1. $808 \mathrm{E}+12$	$1.112 \mathrm{E}+04$	$5.324 \mathrm{E}-03$	5.251E-03
500.00	$2.388 \mathrm{E}+12$	$1.574 \mathrm{E}+04$	$5.394 \mathrm{E}+00$	$5.289 \mathrm{E}+00$
600.00	$3.008 \mathrm{E}+12$	$2.090 \mathrm{E}+04$	$5.674 \mathrm{E}+02$	$5.599 \mathrm{E}+02$

800.00	$4.535 \mathrm{E}+12$	$3.269 \mathrm{E}+04$	$2.071 \mathrm{E}+05$	$2.087 \mathrm{E}+05$
1000.00	$6.628 \mathrm{E}+12$	$4.624 \mathrm{E}+04$	$7.724 \mathrm{E}+06$	$7.877 \mathrm{E}+06$
1200.00	$9.318 \mathrm{E}+12$	$6.140 \mathrm{E}+04$	$9.157 \mathrm{E}+07$	$9.339 \mathrm{E}+07$
1500.00	$1.410 \mathrm{E}+13$	$8.687 \mathrm{E}+04$	$1.172 \mathrm{E}+09$	$1.180 \mathrm{E}+09$
2000.00	$2.377 \mathrm{E}+13$	$1.359 \mathrm{E}+05$	$1.688 \mathrm{E}+10$	$1.648 \mathrm{E}+10$

The model fitted is for uni-molecular reaction.

The 3 parameters for the model equation of $A(T)=A p r i m e * T^{\wedge} n * \exp (-E a / R T)$ Aprime $=3.6326 \mathrm{E}+09 \quad \mathrm{n}=\quad .97602 \mathrm{Ea}=\quad 5.6165 \mathrm{E}+04$

Temp (K)	$A F(T)$	$T _K^{\wedge} n$	$k _c a l c(T)$	k fit
300.00	$1.232 \mathrm{E}+12$	$2.617 \mathrm{E}+02$	$1.109 \mathrm{E}-29$	$1.143 \mathrm{E}-29$
400.00	$1.379 \mathrm{E}+12$	$3.465 \mathrm{E}+02$	$2.639 \mathrm{E}-19$	$2.571 \mathrm{E}-19$
500.00	$1.523 \mathrm{E}+12$	$4.308 \mathrm{E}+02$	$4.532 \mathrm{E}-13$	$4.391 \mathrm{E}-13$
600.00	$1.690 \mathrm{E}+12$	$5.147 \mathrm{E}+02$	$6.608 \mathrm{E}-09$	$6.484 \mathrm{E}-09$
800.00	$2.148 \mathrm{E}+12$	$6.815 \mathrm{E}+02$	$1.105 \mathrm{E}-03$	$1.119 \mathrm{E}-03$
1000.00	$2.793 \mathrm{E}+12$	$8.474 \mathrm{E}+02$	$1.582 \mathrm{E}+00$	$1.631 \mathrm{E}+00$
1200.00	$3.606 \mathrm{E}+12$	$1.012 \mathrm{E}+03$	$2.100 \mathrm{E}+02$	$2.166 \mathrm{E}+02$
1500.00	$5.006 \mathrm{E}+12$	$1.259 \mathrm{E}+03$	$2.956 \mathrm{E}+04$	$2.994 \mathrm{E}+04$
2000.00	$7.782 \mathrm{E}+12$	$1.667 \mathrm{E}+03$	$4.585 \mathrm{E}+06$	$4.407 \mathrm{E}+06$

THERMODYNAMIC ANALYSIS for REACTION

Rx	C2CCQCQ.	$=$ TS7
Hf $\{\mathrm{Kcal} / \mathrm{mol}\}$	-42.390	-19.410
$\mathrm{~S}\{\mathrm{cal} / \mathrm{mol} \mathrm{K}\}$	117.210	105.760

dHr	\{kcal/mol\}	(298K)		22.98	dHr avg	(298	1500		$=$			2.96
	(dE) $\{\mathrm{kcal} / \mathrm{mol}\}$	\} (")		22.98	dUr avg	(298	1500		$=$			2.96
dSr	\{cal/mol K\}	(")		-11.45	dSr avg	(298	1500					1.53
dGr	\{kcal/mol\}	")	=	26.39	dGr avg	(298	1500					3.33
	Kc	(")		4.479E-20	Kc avg	(298	500.	K)			13 E	E-09
Fit	Af/Ar : A	$A=3$	430	$03 \mathrm{n}=$	alpha =	8.825 E	5 av	er			. 14	4 \%
Fit	Af/Ar w/ddU: A	$A=3$	169	$03 \mathrm{n}=-$.	alpha =	1.386 E	4 avg	er	ror		. 41	1%

$\mathrm{T}(\mathrm{K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$2.298 \mathrm{E}+01$	$2.298 \mathrm{E}+01$	$-1.146 \mathrm{E}+01$	$5.690 \mathrm{E}-20$	$2.642 \mathrm{E}+01$
400.00	$2.290 \mathrm{E}+01$	$2.290 \mathrm{E}+01$	$-1.169 \mathrm{E}+01$	$8.556 \mathrm{E}-16$	$2.758 \mathrm{E}+01$
500.00	$2.290 \mathrm{E}+01$	$2.290 \mathrm{E}+01$	$-1.168 \mathrm{E}+01$	$2.720 \mathrm{E}-13$	$2.874 \mathrm{E}+01$
600.00	$2.293 \mathrm{E}+01$	$2.293 \mathrm{E}+01$	$-1.163 \mathrm{E}+01$	$1.271 \mathrm{E}-11$	$2.991 \mathrm{E}+01$
800.00	$2.296 \mathrm{E}+01$	$2.296 \mathrm{E}+01$	$-1.158 \mathrm{E}+01$	$1.565 \mathrm{E}-09$	$3.223 \mathrm{E}+01$
1000.00	$2.289 \mathrm{E}+01$	$2.289 \mathrm{E}+01$	$-1.166 \mathrm{E}+01$	$2.806 \mathrm{E}-08$	$3.455 \mathrm{E}+01$
1200.00	$2.276 \mathrm{E}+01$	$2.276 \mathrm{E}+01$	$-1.178 \mathrm{E}+01$	$1.905 \mathrm{E}-07$	$3.690 \mathrm{E}+01$
1500.00	$2.261 \mathrm{E}+01$	$2.261 \mathrm{E}+01$	$-1.190 \mathrm{E}+01$	$1.276 \mathrm{E}-06$	$4.045 \mathrm{E}+01$
2000.00	$2.260 \mathrm{E}+01$	$2.260 \mathrm{E}+01$	$-1.190 \mathrm{E}+01$	$8.483 \mathrm{E}-06$	$4.641 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

$\mathrm{T}(\mathrm{K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$4.078 \mathrm{E}+01$	$4.078 \mathrm{E}+01$	$-7.082 \mathrm{E}+00$	$5.519 \mathrm{E}-32$	$4.290 \mathrm{E}+01$
400.00	$4.079 \mathrm{E}+01$	$4.079 \mathrm{E}+01$	$-7.069 \mathrm{E}+00$	$1.475 \mathrm{E}-24$	$4.361 \mathrm{E}+01$
500.00	$4.085 \mathrm{E}+01$	$4.085 \mathrm{E}+01$	$-6.931 \mathrm{E}+00$	$4.255 \mathrm{E}-20$	$4.431 \mathrm{E}+01$
600.00	$4.095 \mathrm{E}+01$	$4.095 \mathrm{E}+01$	$-6.753 \mathrm{E}+00$	$4.056 \mathrm{E}-17$	$4.500 \mathrm{E}+01$
800.00	$4.119 \mathrm{E}+01$	$4.119 \mathrm{E}+01$	$-6.404 \mathrm{E}+00$	$2.222 \mathrm{E}-13$	$4.631 \mathrm{E}+01$
1000.00	$4.146 \mathrm{E}+01$	$4.146 \mathrm{E}+01$	$-6.105 \mathrm{E}+00$	$4.020 \mathrm{E}-11$	$4.756 \mathrm{E}+01$
1200.00	$4.174 \mathrm{E}+01$	$4.174 \mathrm{E}+01$	$-5.847 \mathrm{E}+00$	$1.316 \mathrm{E}-09$	$4.876 \mathrm{E}+01$
1500.00	$4.222 \mathrm{E}+01$	$4.222 \mathrm{E}+01$	$-5.493 \mathrm{E}+00$	$4.443 \mathrm{E}-08$	$5.046 \mathrm{E}+01$
2000.00	$4.305 \mathrm{E}+01$	$4.305 \mathrm{E}+01$	$-5.014 \mathrm{E}+00$	$1.582 \mathrm{E}-06$	$5.308 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

Temp (K)	AF (T)	T_K^n	k_calc (T)	k_fit
300.00	1.770E+11	$8.945 \mathrm{E}+03$	3.450E-19	$3.501 \mathrm{E}-19$
400.00	$2.376 \mathrm{E}+11$	$1.415 \mathrm{E}+04$	$1.230 \mathrm{E}-11$	1.210E-11
500.00	$3.184 \mathrm{E}+11$	$2.021 \mathrm{E}+04$	$4.433 \mathrm{E}-07$	$4.374 \mathrm{E}-07$
600.00	$4.177 \mathrm{E}+11$	$2.703 \mathrm{E}+04$	$5.071 \mathrm{E}-04$	$5.046 \mathrm{E}-04$
800.00	$6.642 \mathrm{E}+11$	$4.277 \mathrm{E}+04$	$3.704 \mathrm{E}+00$	$3.731 \mathrm{E}+00$
1000.00	$9.647 \mathrm{E}+11$	$6.105 \mathrm{E}+04$	$8.376 \mathrm{E}+02$	$8.476 \mathrm{E}+02$
1200.00	1.318E+12	$8.166 \mathrm{E}+04$	$3.290 E+04$	$3.329 \mathrm{E}+04$
1500.00	1. $969 \mathrm{E}+12$	$1.166 \mathrm{E}+05$	$1.389 \mathrm{E}+06$	$1.396 \mathrm{E}+06$
2000.00	$3.342 \mathrm{E}+12$	$1.845 \mathrm{E}+05$	$6.593 \mathrm{E}+07$	$6.486 \mathrm{E}+07$

$\mathrm{T}(\mathrm{K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$2.241 \mathrm{E}+01$	$2.241 \mathrm{E}+01$	$-5.192 \mathrm{E}+00$	$3.480 \mathrm{E}-18$	$2.396 \mathrm{E}+01$
400.00	$2.275 \mathrm{E}+01$	$2.275 \mathrm{E}+01$	$-4.218 \mathrm{E}+00$	$4.459 \mathrm{E}-14$	$2.443 \mathrm{E}+01$
500.00	$2.314 \mathrm{E}+01$	$2.314 \mathrm{E}+01$	$-3.330 \mathrm{E}+00$	$1.428 \mathrm{E}-11$	$2.481 \mathrm{E}+01$
600.00	$2.356 \mathrm{E}+01$	$2.356 \mathrm{E}+01$	$-2.570 \mathrm{E}+00$	$7.167 \mathrm{E}-10$	$2.510 \mathrm{E}+01$
800.00	$2.436 \mathrm{E}+01$	$2.436 \mathrm{E}+01$	$-1.423 \mathrm{E}+00$	$1.083 \mathrm{E}-07$	$2.550 \mathrm{E}+01$
1000.00	$2.506 \mathrm{E}+01$	$2.506 \mathrm{E}+01$	$-6.402 \mathrm{E}-01$	$2.418 \mathrm{E}-06$	$2.570 \mathrm{E}+01$
1200.00	$2.570 \mathrm{E}+01$	$2.570 \mathrm{E}+01$	$-5.210 \mathrm{E}-02$	$2.029 \mathrm{E}-05$	$2.576 \mathrm{E}+01$
1500.00	$2.673 \mathrm{E}+01$	$2.673 \mathrm{E}+01$	$7.085 \mathrm{E}-01$	$1.822 \mathrm{E}-04$	$2.566 \mathrm{E}+01$
2000.00	$2.858 \mathrm{E}+01$	$2.858 \mathrm{E}+01$	$1.774 \mathrm{E}+00$	$1.838 \mathrm{E}-03$	$2.503 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

The model fitted is for uni-molecular reaction.

Rx	$\mathrm{C} 2 . \mathrm{CQCQ}$	$=\mathrm{TS} 9$
$\mathrm{Hf}\{\mathrm{Kcal} / \mathrm{mol}\}$	-25.140	-9.420
$\mathrm{~S}\{\mathrm{Cal} / \mathrm{mol} \mathrm{K}\}$	125.490	112.780

	\{kcal/mol\} ((298K)		15.72	dHr av	(298., 1500. K)	$=$	16.14
	(dE) $\{\mathrm{kcal} / \mathrm{mol}\}$	\} (")	=	15.72	dUr av	(298., 1500. K)		16.14
dS	\{cal/mol K\}	("	=	-12.71	dSr avg	(298., 1500. K)	$=$	-11.95
dG	\{kcal/mol \}	")	$=$	19.51	dGr avg	(298., 1500. K)		26.88
	Kc	"	$=$	4.989E-15	Kc avg	(298., 1500. K	$=$	$2.913 \mathrm{E}-07$
Ei	Af/Ar : A	$A=2$	95	$5 \mathrm{n}=$	alpha =	$2.399 \mathrm{E}-05 \mathrm{avg}$ er	ror	1.42 \%
Fi	Af/Ar w/ddU: A	A	87	$06 \mathrm{n}=1$	lpha	$3.631 \mathrm{E}-04 \mathrm{avg}$ er	ror	2.86%

$T(\mathrm{~K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$1.572 \mathrm{E}+01$	$1.572 \mathrm{E}+01$	$-1.270 \mathrm{E}+01$	$5.876 \mathrm{E}-15$	$1.953 \mathrm{E}+01$
400.00	$1.584 \mathrm{E}+01$	$1.584 \mathrm{E}+01$	$-1.238 \mathrm{E}+01$	$4.379 \mathrm{E}-12$	$2.079 \mathrm{E}+01$
500.00	$1.598 \mathrm{E}+01$	$1.598 \mathrm{E}+01$	$-1.205 \mathrm{E}+01$	$2.395 \mathrm{E}-10$	$2.201 \mathrm{E}+01$
600.00	$1.614 \mathrm{E}+01$	$1.614 \mathrm{E}+01$	$-1.176 \mathrm{E}+01$	$3.541 \mathrm{E}-09$	$2.320 \mathrm{E}+01$
800.00	$1.644 \mathrm{E}+01$	$1.644 \mathrm{E}+01$	$-1.134 \mathrm{E}+01$	$1.075 \mathrm{E}-07$	$2.551 \mathrm{E}+01$
1000.00	$1.668 \mathrm{E}+01$	$1.668 \mathrm{E}+01$	$-1.106 \mathrm{E}+01$	$8.631 \mathrm{E}-07$	$2.774 \mathrm{E}+01$
1200.00	$1.691 \mathrm{E}+01$	$1.691 \mathrm{E}+01$	$-1.086 \mathrm{E}+01$	$3.529 \mathrm{E}-06$	$2.994 \mathrm{E}+01$
1500.00	$1.729 \mathrm{E}+01$	$1.729 \mathrm{E}+01$	$-1.058 \mathrm{E}+01$	$1.478 \mathrm{E}-05$	$3.315 \mathrm{E}+01$
2000.00	$1.805 \mathrm{E}+01$	$1.805 \mathrm{E}+01$	$-1.014 \mathrm{E}+01$	$6.479 \mathrm{E}-05$	$3.833 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

THERMODYNAMIC ANALYSIS for REACTION

Rx	$\mathrm{C} 2 . \mathrm{CQCQ}$	$=\mathrm{TS} 10$
$\mathrm{Hf}\{\mathrm{Kcal} / \mathrm{mol}\}$	-25.140	-10.210
$\mathrm{~S}\{\mathrm{cal} / \mathrm{mol} \mathrm{K}\}$	125.490	114.330

$\mathrm{T}(\mathrm{K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$1.494 \mathrm{E}+01$	$1.494 \mathrm{E}+01$	$-1.114 \mathrm{E}+01$	$4.824 \mathrm{E}-14$	$1.828 \mathrm{E}+01$
400.00	$1.522 \mathrm{E}+01$	$1.522 \mathrm{E}+01$	$-1.033 \mathrm{E}+01$	$2.673 \mathrm{E}-11$	$1.935 \mathrm{E}+01$
500.00	$1.549 \mathrm{E}+01$	$1.549 \mathrm{E}+01$	$-9.729 \mathrm{E}+00$	$1.270 \mathrm{E}-09$	$2.035 \mathrm{E}+01$
600.00	$1.573 \mathrm{E}+01$	$1.573 \mathrm{E}+01$	$-9.278 \mathrm{E}+00$	$1.741 \mathrm{E}-08$	$2.130 \mathrm{E}+01$
800.00	$1.614 \mathrm{E}+01$	$1.614 \mathrm{E}+01$	$-8.683 \mathrm{E}+00$	$4.913 \mathrm{E}-07$	$2.309 \mathrm{E}+01$
1000.00	$1.646 \mathrm{E}+01$	$1.646 \mathrm{E}+01$	$-8.329 \mathrm{E}+00$	$3.818 \mathrm{E}-06$	$2.479 \mathrm{E}+01$
1200.00	$1.673 \mathrm{E}+01$	$1.673 \mathrm{E}+01$	$-8.082 \mathrm{E}+00$	$1.535 \mathrm{E}-05$	$2.643 \mathrm{E}+01$
1500.00	$1.717 \mathrm{E}+01$	$1.717 \mathrm{E}+01$	$-7.758 \mathrm{E}+00$	$6.350 \mathrm{E}-05$	$2.881 \mathrm{E}+01$
2000.00	$1.804 \mathrm{E}+01$	$1.804 \mathrm{E}+01$	$-7.256 \mathrm{E}+00$	$2.768 \mathrm{E}-04$	$3.256 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

Temp (K)	AF (T)	T_K^n	k_calc (T)	k_fit
300.00	$2.294 \mathrm{E}+10$	8.190E+04	3.015E-01	$2.957 \mathrm{E}-01$

400.00	$4.602 \mathrm{E}+10$	$1.449 \mathrm{E}+05$	$2.228 \mathrm{E}+02$	$2.269 \mathrm{E}+02$
500.00	$7.788 \mathrm{E}+10$	$2.256 \mathrm{E}+05$	$1.323 \mathrm{E}+04$	$1.350 \mathrm{E}+04$
600.00	$1.173 \mathrm{E}+11$	$3.239 \mathrm{E}+05$	$2.176 \mathrm{E}+05$	$2.199 \mathrm{E}+05$
800.00	$2.109 \mathrm{E}+11$	$5.731 \mathrm{E}+05$	$8.189 \mathrm{E}+06$	$8.103 \mathrm{E}+06$
1000.00	$3.150 \mathrm{E}+11$	$8.921 \mathrm{E}+05$	$7.955 \mathrm{E}+07$	$7.799 \mathrm{E}+07$
1200.00	$4.281 \mathrm{E}+11$	$1.281 \mathrm{E}+06$	$3.838 \mathrm{E}+08$	$3.771 \mathrm{E}+08$
1500.00	$6.300 \mathrm{E}+11$	$1.994 \mathrm{E}+06$	$1.985 \mathrm{E}+09$	$1.978 \mathrm{E}+09$
2000.00	$1.081 \mathrm{E}+12$	$3.528 \mathrm{E}+06$	$1.153 \mathrm{E}+10$	$1.179 \mathrm{E}+10$

$\mathrm{T}(\mathrm{K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$4.249 \mathrm{E}+00$	$4.249 \mathrm{E}+00$	$-1.963 \mathrm{E}+00$	$2.987 \mathrm{E}-04$	$4.838 \mathrm{E}+00$
400.00	$4.179 \mathrm{E}+00$	$4.179 \mathrm{E}+00$	$-2.162 \mathrm{E}+00$	$1.754 \mathrm{E}-03$	$5.044 \mathrm{E}+00$
500.00	$4.075 \mathrm{E}+00$	$4.075 \mathrm{E}+00$	$-2.392 \mathrm{E}+00$	$4.962 \mathrm{E}-03$	$5.271 \mathrm{E}+00$
600.00	$3.955 \mathrm{E}+00$	$3.955 \mathrm{E}+00$	$-2.611 \mathrm{E}+00$	$9.739 \mathrm{E}-03$	$5.522 \mathrm{E}+00$
800.00	$3.712 \mathrm{E}+00$	$3.712 \mathrm{E}+00$	$-2.962 \mathrm{E}+00$	$2.181 \mathrm{E}-02$	$6.081 \mathrm{E}+00$
1000.00	$3.502 \mathrm{E}+00$	$3.502 \mathrm{E}+00$	$-3.197 \mathrm{E}+00$	$3.435 \mathrm{E}-02$	$6.699 \mathrm{E}+00$
1200.00	$3.336 \mathrm{E}+00$	$3.336 \mathrm{E}+00$	$-3.349 \mathrm{E}+00$	$4.576 \mathrm{E}-02$	$7.354 \mathrm{E}+00$
1500.00	$3.143 \mathrm{E}+00$	$3.143 \mathrm{E}+00$	$-3.493 \mathrm{E}+00$	$6.006 \mathrm{E}-02$	$8.382 \mathrm{E}+00$
2000.00	$2.919 \mathrm{E}+00$	$2.919 \mathrm{E}+00$	$-3.623 \mathrm{E}+00$	$7.746 \mathrm{E}-02$	$1.017 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

$T(\mathrm{~K})$	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$2.903 \mathrm{E}+01$	$2.903 \mathrm{E}+01$	$-2.580 \mathrm{E}+00$	$1.922 \mathrm{E}-22$	$2.981 \mathrm{E}+01$
400.00	$2.919 \mathrm{E}+01$	$2.919 \mathrm{E}+01$	$-2.119 \mathrm{E}+00$	$3.847 \mathrm{E}-17$	$3.004 \mathrm{E}+01$
500.00	$2.935 \mathrm{E}+01$	$2.935 \mathrm{E}+01$	$-1.763 \mathrm{E}+00$	$6.075 \mathrm{E}-14$	$3.023 \mathrm{E}+01$
600.00	$2.951 \mathrm{E}+01$	$2.951 \mathrm{E}+01$	$-1.472 \mathrm{E}+00$	$8.463 \mathrm{E}-12$	$3.040 \mathrm{E}+01$
800.00	$2.984 \mathrm{E}+01$	$2.984 \mathrm{E}+01$	$-1.006 \mathrm{E}+00$	$4.251 \mathrm{E}-09$	$3.064 \mathrm{E}+01$
1000.00	$3.017 \mathrm{E}+01$	$3.017 \mathrm{E}+01$	$-6.317 \mathrm{E}-01$	$1.850 \mathrm{E}-07$	$3.080 \mathrm{E}+01$

1200.00	$3.052 \mathrm{E}+01$	$3.052 \mathrm{E}+01$	$-3.114 \mathrm{E}-01$	$2.357 \mathrm{E}-06$	$3.090 \mathrm{E}+01$
1500.00	$3.107 \mathrm{E}+01$	$3.107 \mathrm{E}+01$	$9.812 \mathrm{E}-02$	$3.115 \mathrm{E}-05$	$3.093 \mathrm{E}+01$
2000.00	$3.197 \mathrm{E}+01$	$3.197 \mathrm{E}+01$	$6.160 \mathrm{E}-01$	$4.370 \mathrm{E}-04$	$3.074 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

THERMODYNAMIC ANALYSIS for REACTION

RX	C2C.CHO	$=$ TS13
Hf $\{\mathrm{Kcal} / \mathrm{mol}\}$	-19.160	23.560
S $\{\mathrm{Cal} / \mathrm{mol} \mathrm{K}\}$	79.120	77.430

T (K)	$\mathrm{dH}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dU}(\mathrm{Kcal} / \mathrm{mol})$	$\mathrm{dS}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	Kc	$\mathrm{dG}(\mathrm{Kcal} / \mathrm{mol})$
300.00	$4.272 \mathrm{E}+01$	$4.272 \mathrm{E}+01$	$-1.686 \mathrm{E}+00$	$3.210 \mathrm{E}-32$	$4.323 \mathrm{E}+01$
400.00	$4.280 \mathrm{E}+01$	$4.280 \mathrm{E}+01$	$-1.453 \mathrm{E}+00$	$1.969 \mathrm{E}-24$	$4.338 \mathrm{E}+01$
500.00	$4.290 \mathrm{E}+01$	$4.290 \mathrm{E}+01$	$-1.246 \mathrm{E}+00$	$9.474 \mathrm{E}-20$	$4.352 \mathrm{E}+01$
600.00	$4.298 \mathrm{E}+01$	$4.298 \mathrm{E}+01$	$-1.084 \mathrm{E}+00$	$1.273 \mathrm{E}-16$	$4.363 \mathrm{E}+01$
800.00	$4.312 \mathrm{E}+01$	$4.312 \mathrm{E}+01$	$-8.917 \mathrm{E}-01$	$1.060 \mathrm{E}-12$	$4.383 \mathrm{E}+01$
1000.00	$4.317 \mathrm{E}+01$	$4.317 \mathrm{E}+01$	$-8.330 \mathrm{E}-01$	$2.415 \mathrm{E}-10$	$4.400 \mathrm{E}+01$
1200.00	$4.315 \mathrm{E}+01$	$4.315 \mathrm{E}+01$	$-8.481 \mathrm{E}-01$	$9.023 \mathrm{E}-09$	$4.417 \mathrm{E}+01$
1500.00	$4.306 \mathrm{E}+01$	$4.306 \mathrm{E}+01$	$-9.124 \mathrm{E}-01$	$3.356 \mathrm{E}-07$	$4.443 \mathrm{E}+01$
2000.00	$4.287 \mathrm{E}+01$	$4.287 \mathrm{E}+01$	$-1.020 \mathrm{E}+00$	$1.235 \mathrm{E}-05$	$4.492 \mathrm{E}+01$

The model fitted is for uni-molecular reaction.

Table B. 4 Detailed Reaction Mechanism for Model OH Formation ${ }^{\text {aa }}$

No.	Reactions	A	n	E_{a}	ref
1	$\mathrm{C}_{3} \mathrm{CCl}<\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{I}$	$1.00 \mathrm{E}+16$	0.0	51370	a
2	$\mathrm{C}_{3} \mathrm{CCI}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCl}+\mathrm{H}_{2} \mathrm{O}$	$1.08 \mathrm{E}+07$	2.0	2415	a
3	$\mathrm{C}_{3} \mathrm{CCI}+\mathrm{H} \Leftrightarrow>\mathrm{H}_{2}+\mathrm{C}_{3} \cdot \mathrm{CCI}$	$2.16 \mathrm{E}+09$	1.5	8973	a
4	$\mathrm{C}_{3} \cdot \mathrm{CCI}<\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{CH}_{2} \mathrm{I}$	$1.57 \mathrm{E}+26$	-4.2	32137	b
5	$\mathrm{CH}_{2} \mathrm{I}+\mathrm{O}_{2} \Longleftrightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{IO}$	$1.00 \mathrm{E}+13$	0.0	29000	a
6	$\mathrm{CH}_{2} \mathrm{I}+\mathrm{I}<\mathrm{CH}_{2} \mathrm{I}_{2}$	$8.00 \mathrm{E}+13$	0.0	0	c
7	$\mathrm{CH}_{3}+\mathrm{I}<\mathrm{CH}_{3} \mathrm{I}$	$7.05 \mathrm{E}+12$	0.0	0	d
8	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}<\gg \mathrm{C}_{3} \mathrm{CCOO} \bullet$	$4.85 \mathrm{E}+39$	-9.1	8039	b
9	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH}$	$7.09 \mathrm{E}+25$	-4.2	21757	b
10	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}<>\mathrm{C}_{3} \cdot \mathrm{CCQ}$	$2.17+166$	-50.0	52203	b
11	$\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O}_{2}<>\mathrm{C}_{2} \mathrm{CYCCOC}+\mathrm{OH}$	$1.03 \mathrm{E}+55$	-12.7	29656	b
12	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{CH}_{3}$	$7.04 \mathrm{E}+49$	-11.2	32249	b
13	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}<=>\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$2.03 \mathrm{E}+46$	-10.1	32343	b
14	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2} \Leftrightarrow \mathrm{CCC} \cdot(\mathrm{C}) \mathrm{COOH}$	$4.72 \mathrm{E}+55$	-14.1	55712	b
15	$\mathrm{C}_{3} \mathrm{CCOO} \bullet \Leftrightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH}$	$8.33 \mathrm{E}+35$	-7.3	51070	b
16	$\mathrm{C}_{3} \mathrm{CCOO} \bullet \stackrel{\mathrm{C}_{3} \bullet}{ }$ CCQ	$2.52 \mathrm{E}+08$	1.0	23989	b
17	$\mathrm{C}_{3} \cdot \mathrm{CCQ} \Longleftrightarrow \mathrm{C}_{2} \mathrm{CYCCOC}+\mathrm{OH}$	$4.81 \mathrm{E}+36$	-7.9	23960	b
18	$\mathrm{C}_{3} \cdot \mathrm{CCQ} \Longleftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{CH}_{3}$	$2.04 \mathrm{E}+56$	-14.2	38563	b
19	$\mathrm{C}_{3} \cdot \mathrm{CCQ} \Leftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$1.49 \mathrm{E}+53$	-13.2	38842	b
20	$\mathrm{C}_{3} \cdot \mathrm{CCQ} \Leftrightarrow$ CCC. $(\mathrm{C}) \mathrm{COOH}$	$1.31+102$	-31.1	74604	b
21	$\mathrm{C}_{2} \mathrm{CYCCOC}+\mathrm{OH} \Longleftrightarrow \mathrm{C}_{2} \mathrm{CYCCOC} \bullet+\mathrm{H}_{2} \mathrm{O}$	$4.80 \mathrm{E}+06$	2.0	-120	a
22	$\mathrm{C}_{2} \mathrm{CYCCOC} \bullet=\mathrm{C}_{3} \bullet \mathrm{CCHO}$	$4.08 \mathrm{E}+78$	-20.2	45563	b
23	$\mathrm{C}_{2} \mathrm{CYCCOC} \bullet \Rightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{COC} \bullet$	$6.69 \mathrm{E}+68$	-19.0	46097	b
24	$\mathrm{C}_{3} \cdot \mathrm{CCHO}<\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{HCO}$	$7.13 \mathrm{E}+39$	-8.8	28753	b
25	$\mathrm{C}_{3} \cdot \mathrm{CCHO} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CHO}+\mathrm{CH}_{3}$	$3.48 \mathrm{E}+57$	-14.2	42446	b
26	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{COC} \cdot \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C} \bullet+\mathrm{CH}_{2} \mathrm{O}$	$4.13 \mathrm{E}+39$	-8.2	49345	b
27	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C} \cdot+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{CQ} \bullet$	$2.83 \mathrm{E}+62$	-15.8	16487	e_{1}
28	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C} \cdot+\mathrm{O}_{2}<>\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{C} * \mathrm{O}+\mathrm{O}$	$7.03 \mathrm{E}+39$	-7.9	16137	e_{1}
29	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}^{+}+\mathrm{O}_{2}<=>\mathrm{C}_{2} . \mathrm{C} * \mathrm{CQ}$	$1.02 \mathrm{E}+32$	-12.4	22545	e_{1}
30	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C} \cdot+\mathrm{O}_{2}<=>\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{C} * \mathrm{O}+\mathrm{OH}$	$7.07 \mathrm{E}+35$	-7.5	15904	e_{1}
31	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C} \cdot+\mathrm{O}_{2}<=>\mathrm{C}^{*} \mathrm{C} * \mathrm{CQ}+\mathrm{CH} 3$	$6.11 \mathrm{E}-17$	6.8	13033	e_{1}
32	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C} \cdot+\mathrm{O}_{2}<=>\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CYCOO}$	$1.14 \mathrm{E}+56$	-15.9	13744	e_{1}
33	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C} \cdot+\mathrm{O}_{2}<=>\mathrm{C}_{2} \mathrm{C} * \mathrm{O}+\mathrm{HCO}$	$3.45 \mathrm{E}+34$	-7.0	16395	e_{1}
34	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C} \cdot+\mathrm{O}_{2}<=>\mathrm{C}_{2} \mathrm{CYCOOC} \cdot$	$1.69 \mathrm{E}+52$	-16.0	12305	e_{1}
35	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C} \cdot+\mathrm{O}_{2}<=>\mathrm{C}_{2} \mathrm{C} * \mathrm{O}+\mathrm{HCO}$	$1.13 \mathrm{E}+40$	-8.7	15835	e_{1}
36	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{CQ} \cdot .<\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{C}^{*} \mathrm{O}+\mathrm{O}$	$2.92 \mathrm{E}+59$	-14.4	50439	e_{1}
37	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{CQ} \cdot \stackrel{ }{\bullet} \mathrm{C}_{2} \bullet \mathrm{C}^{*} \mathrm{CQ}$	$4.24 \mathrm{E}+49$	-12.2	47059	e_{1}
38	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{CQ} \cdot<\Rightarrow \mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CYCOO}$	$5.36 \mathrm{E}+32$	-6.5	30293	e_{1}
39	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{CQ} \cdot<=>\mathrm{C}_{2} \mathrm{CYCOOC} \cdot$	$6.88 \mathrm{E}+48$	-11.8	44333	e_{1}
40	$\mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{CQ}<\Rightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{C}^{*} \mathrm{O}+\mathrm{OH}$	$2.90 \mathrm{E}+13$	-1.1	1416	e_{1}
41	$\mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{CQ}<\gg \mathrm{C}^{*} \mathrm{C}^{*} \mathrm{CQ}+\mathrm{CH}_{3}$	$1.93 \mathrm{E}-32$	-0.1	55647	e_{1}
42	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CYCOO}<\Rightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{O}+\mathrm{HCO}$	$2.43 \mathrm{E}+39$	-11.4	25432	e_{1}

43	$\mathrm{C}_{2} \mathrm{CYCOOC} \bullet<>\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{O}+\mathrm{HCO}$	$3.19 \mathrm{E}+52$	-12.8	26592	e_{1}
44	$\mathrm{C}_{3} \cdot \mathrm{CCQ}+\mathrm{O}_{2}<\Rightarrow \mathrm{C}_{2} \mathrm{CCQCQ} \bullet$	$2.42+124$	-35.3	39761	b
45	$\mathrm{C}_{3} \cdot \mathrm{CCQ}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{CCQCHO}+\mathrm{OH}$	$1.20 \mathrm{E}+54$	-12.3	25565	b
46	$\mathrm{C}_{3} \cdot \mathrm{CCQ}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{CCQCHO}+\mathrm{OH}$	$2.90 \mathrm{E}+43$	-10.1	29722	b
47	$\mathrm{C}_{3} \cdot \mathrm{CCQ}+\mathrm{O}_{2} \Longleftrightarrow \mathrm{C}_{2} \mathrm{CCO} \cdot \mathrm{CQ} \bullet+\mathrm{OH}$	$3.81 \mathrm{E}+49$	-10.9	29988	b
48	$\mathrm{C}_{3} \cdot \mathrm{CCQ}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{C}_{2} \cdot \mathrm{CQCQ}$	$1.98+236$	-72.0	77237	b
49	$\mathrm{C}_{3} \cdot \mathrm{CCQ}+\mathrm{O}_{2}<\Rightarrow \mathrm{CCQCCOC}+\mathrm{OH}$	$7.38+105$	-28.6	53434	b
50	$\mathrm{C}_{3} \cdot \mathrm{CCQ}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$5.75+107$	-28.9	53893	b
51	$\mathrm{C}_{2} \mathrm{CCQCQ} \bullet<=>\mathrm{C}_{2} \mathrm{CCQCHO}+\mathrm{OH}$	$2.79 \mathrm{E}+32$	-6.1	31485	b
52	$\mathrm{C}_{2} \mathrm{CCQCQ} \bullet<>\mathrm{C}_{2} \mathrm{CCQCHO}+\mathrm{OH}$	$1.07 \mathrm{E}+89$	-24.4	68021	b
53	$\mathrm{C}_{2} \mathrm{CCQCQ} \cdot<=>\mathrm{C}_{2} \mathrm{CCQCHO}+\mathrm{OH}$	$4.12+104$	-28.1	72157	b
54	$\mathrm{C}_{2} \mathrm{CCQCQ} \bullet \Leftrightarrow \mathrm{C}_{2} \cdot \mathrm{CQCQ}$	$1.23 \mathrm{E}+41$	-9.4	34718	b
55	$\mathrm{C}_{2} \cdot \mathrm{CQCQ} \Leftrightarrow$ CCQCCOC +OH	$5.93 \mathrm{E}+31$	-6.6	24397	b
56	$\mathrm{C}_{2} \cdot \mathrm{CQCQ} \Longleftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$1.70 \mathrm{E}+30$	-5.9	23280	b
57	$\mathrm{C}_{2} \mathrm{CCQCHO}<\gg 2 \mathrm{CCO} \cdot \mathrm{CHO}+\mathrm{OH}$	$2.26 \mathrm{E}+25$	-3.1	48703	b
58	$\mathrm{C}_{2} \mathrm{CCO} \cdot \mathrm{CHO} \Longleftrightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{CHO})_{2}+\mathrm{H}$	$5.40 \mathrm{E}+18$	-1.7	32647	b
59	$\mathrm{C}_{2} \mathrm{CCO} \cdot \mathrm{CHO} \Leftrightarrow \mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CHO}+\mathrm{CH}_{2} \mathrm{O}$	$2.32 \mathrm{E}+11$	0.5	4560	b
60	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CHO} \Longleftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CHO}+\mathrm{H}$	$1.94 \mathrm{E}+30$	-5.4	49854	b
61	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CHO} \Leftrightarrow \mathrm{C}^{*} \mathrm{CC}+\mathrm{HCO}$	$2.40 \mathrm{E}+30$	-5.1	45570	b
62	$\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{COOH} \Leftrightarrow>\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CO} \cdot+\mathrm{OH}$	$6.84 \mathrm{E}+45$	-9.6	53480	b
63	$\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CO} \cdot=>\mathrm{C} * \mathrm{C}(\mathrm{C}) \mathrm{CHO}+\mathrm{H}$	$1.28 \mathrm{E}+23$	-4.0	13622	b
64	$\mathrm{C}_{3} \mathrm{CC} \cdot \Leftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{CH}_{3}$	$5.70 \mathrm{E}+34$	-6.6	38207	b
65	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{OH}<=>\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}$	$5.03 \mathrm{E}+60$	-15.1	15552	e_{2}
66	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{2} \mathrm{CCO} \cdot$	$4.48 \mathrm{E}+50$	-16.5	13800	e_{2}
67	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{OH} \Longleftrightarrow \mathrm{C}_{2} \mathrm{CC} * \mathrm{O}+\mathrm{H}$	$1.97 \mathrm{E}+28$	-5.4	18402	e_{2}
68	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{OH} \Longleftrightarrow \mathrm{CC}^{\bullet} \mathrm{C}+\mathrm{CH}_{2} \mathrm{O}$	$2.56 \mathrm{E}+33$	-6.6	16652	e_{2}
69	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{2} \bullet \mathrm{CCOH}$	$6.01 \mathrm{E}+60$	-16.4	29006	e_{2}
70	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{OH} \Leftrightarrow \mathrm{C}^{*} \mathrm{CC}+\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{OH}$	$2.72 \mathrm{E}+40$	-9.4	28236	e_{2}
71	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH} \Leftrightarrow \mathrm{C}_{2} \mathrm{CCO} \bullet$	$2.99 \mathrm{E}+46$	-11.3	41056	e_{2}
72	$\mathrm{C}_{2} \mathrm{CCO} \cdot \Leftrightarrow \mathrm{C}_{2} \mathrm{CC} * \mathrm{O}+\mathrm{H}$	$4.00 \mathrm{E}+25$	-6.8	17987	e_{2}
73	$\mathrm{C}_{2} \mathrm{CCO} \cdot \stackrel{\text { - }}{ } \mathrm{CC}^{\bullet} \mathrm{C}+\mathrm{CH}_{2} \mathrm{O}$	$1.86 \mathrm{E}+32$	-6.8	14390	e_{2}
74	$\mathrm{C}_{2} \cdot \mathrm{CCOH} \Leftrightarrow \gg{ }^{*} \mathrm{CC}+\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{OH}$	$1.93 \mathrm{E}+41$	-8.8	36044	e_{2}
75	$\mathrm{C}_{2} \cdot \mathrm{CCOH} \Leftrightarrow \mathrm{C}_{2} \mathrm{CCO} \cdot$	$4.33 \mathrm{E}+25$	-4.8	27397	e_{2}
76	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{OH} \Longleftrightarrow \mathrm{C}_{3} \cdot \mathrm{COH}$	$1.08 \mathrm{E}+63$	-15.8	16152	e_{2}
77	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CO} \cdot$	$4.63 \mathrm{E}+42$	-15.5	14354	e_{2}
78	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{O}+\mathrm{CH}_{3}$	$4.95 \mathrm{E}+36$	-7.6	16849	e_{2}
79	$\mathrm{C}_{3} \cdot \mathrm{COH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CO} \bullet$	$1.28 \mathrm{E}+54$	-13.6	43214	e_{2}
80	$\mathrm{C}_{3} \mathrm{CO} \cdot<=>\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{O}+\mathrm{CH}_{3}$	$2.71 \mathrm{E}+26$	-5.1	10840	e
81	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}<=>\mathrm{C}_{2} \mathrm{CQ} \cdot \mathrm{COH}$	$4.73 \mathrm{E}+70$	-18.3	20096	b
82	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$6.90 \mathrm{E}+37$	-7.5	19851	b
83	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{COH}+\mathrm{HO}_{2}$	$2.54 \mathrm{E}+42$	-9.0	20150	b
84	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}<\gg \mathrm{C}_{2} \mathrm{CQCO} \cdot$	$5.43 \mathrm{E}+49$	-14.5	13613	b
85	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$5.14 \mathrm{E}+41$	-8.7	18330	b
86	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}<=>\mathrm{C}_{2} \bullet \mathrm{CQCOH}$	$5.15+115$	-32.5	46957	b

87	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}<\gg \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{Q}+\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OH}$	$5.91 \mathrm{E}+63$	-15.6	36375
88	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{C} * \mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$2.22 \mathrm{E}+61$	-14.9	34645
89	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{CQC} \cdot \mathrm{OH}$	$4.26+158$	-46.2	56824
90	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{COH}+\mathrm{HO}_{2}$	$1.59 \mathrm{E}+65$	-15.9	30672
91	$\mathrm{C}_{2} \mathrm{CQ} \cdot \mathrm{COH} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$1.47 \mathrm{E}+30$	-5.4	39896
92	$\mathrm{C}_{2} \mathrm{CQ} \cdot \mathrm{COH} \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{COH}+\mathrm{HO}_{2}$	$3.37 \mathrm{E}+37$	-7.8	41899
93	$\mathrm{C}_{2} \mathrm{CQ} \cdot \mathrm{COH} \Leftrightarrow \mathrm{C}_{2} \mathrm{CQCO} \bullet$	$7.46 \mathrm{E}+14$	-1.0	24636
94	$\mathrm{C}_{2} \mathrm{CQ} \cdot \mathrm{COH} \Longleftrightarrow \mathrm{C}_{2} \cdot \mathrm{CQCOH}$	$2.65 \mathrm{E}+44$	-10.2	47925
95	$\mathrm{C}_{2} \mathrm{CQ} \cdot \mathrm{COH}<\gg \mathrm{C}_{2} \mathrm{CQC} \cdot \mathrm{OH}$	$1.98 \mathrm{E}+29$	-5.4	35761
96	$\mathrm{C}_{2} \mathrm{CQCO} \bullet \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$6.90 \mathrm{E}+38$	-9.0	16669
97	$\mathrm{C}_{2} \cdot \mathrm{CQCOH} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{Q}+\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{OH}$	$1.39 \mathrm{E}+55$	-13.2	40389
98	$\mathrm{C}_{2} \cdot \mathrm{CQCOH} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$1.49 \mathrm{E}+48$	-11.2	33692
99	$\mathrm{C}_{2} \mathrm{CQC} \cdot \mathrm{OH} \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{COH}+\mathrm{HO}_{2}$	$2.42 \mathrm{E}+38$	-8.5	23759
100	$\mathrm{C}_{3} \cdot{\mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{COHCQ} \cdot}^{\bullet}$	$4.92 \mathrm{E}+56$	-13.9	15170
101	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{C}_{2} \mathrm{CO} \cdot \mathrm{CQ}$	$1.57 \mathrm{E}+30$	-8.3	7340
102	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}<\Rightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$6.98 \mathrm{E}+38$	-8.1	18972
103	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2} \ll>\mathrm{CH}_{3}+\mathrm{CC}^{*} \mathrm{OCQ}$	$6.06 \mathrm{E}+40$	-8.8	21436
104	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}<\gg \mathrm{C}_{2} \cdot \mathrm{COHCQ}$	$5.27+174$	-50.9	65216
105	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{OH}$	$1.67 \mathrm{E}+68$	-16.6	40006
106	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{OH}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$3.78 \mathrm{E}+59$	-14.0	35077
107	$\mathrm{C}_{2} \mathrm{COHCQ} \cdot \Leftrightarrow \mathrm{C}_{2} \mathrm{CO} \cdot \mathrm{CQ}$	$4.61 \mathrm{E}+14$	-1.3	25483
108	$\mathrm{C}_{2} \mathrm{COHCQ} \cdot \stackrel{\mathrm{C}_{2}}{ }{ }^{\bullet} \mathrm{COHCQ}$	$1.34 \mathrm{E}+20$	-2.8	31200
109	$\mathrm{C}_{2} \mathrm{CO} \cdot \mathrm{CQ} \Leftrightarrow>\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$3.48 \mathrm{E}+47$	-11.5	23382
110	$\mathrm{C}_{2} \mathrm{CO} \cdot \mathrm{CQ} \Leftrightarrow \mathrm{CH}_{3}+\mathrm{CC} * \mathrm{OCQ}^{2}$	$3.47 \mathrm{E}+46$	-11.6	23523
111	$\mathrm{C}_{2} \cdot \mathrm{COHCQ} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{OH}$	$3.33 \mathrm{E}+64$	-15.9	46543
112	$\mathrm{C}_{2} \cdot \mathrm{COHCQ} \Longleftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{OH}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$6.61 \mathrm{E}+34$	-7.2	29287
113	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{CCC}^{\bullet} \mathrm{C}_{2}$	$2.51 \mathrm{E}+11$	0.0	6691
114	$\mathrm{CCC} \cdot{ }^{\cdot} \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{C}_{2} \mathrm{COO} \cdot{ }^{\bullet} \mathrm{CC}$	$2.71+109$	-30.9	31090
115	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{CCC}^{*}(\mathrm{C}) \mathrm{C}+\mathrm{HO}_{2}$	$1.64 \mathrm{E}+51$	-12.3	18955
116	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{CC}^{*} \mathrm{CC}_{2}+\mathrm{HO}_{2}$	$3.16 \mathrm{E}+49$	-11.9	18285
117	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{C}_{2} \mathrm{CQCC} \bullet$	$1.07 \mathrm{E}+79$	-24.3	17586
118	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2}<\gg \mathrm{C}_{2} \mathrm{CYCCCO}+\mathrm{OH}$	$3.02 \mathrm{E}+29$	-5.9	15794
119	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \cdot \mathrm{CQCC}$	$7.01+152$	-45.7	52226
120	$\mathrm{CCC} \cdot{ }^{\bullet} \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow \mathrm{CCC}^{*}(\mathrm{C}) \mathrm{C}+\mathrm{HO}_{2}$	$6.70 \mathrm{E}+54$	-13.7	25414
121	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{C}_{2} \mathrm{CQC} \cdot \mathrm{C}$	$2.64 \mathrm{E}+98$	-29.8	27851
122	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow \mathrm{CC}^{*} \mathrm{CC}_{2}+\mathrm{HO}_{2}$	$1.31 \mathrm{E}+44$	-10.5	17506
123	$\mathrm{C}_{2} \mathrm{COO} \cdot \mathrm{CC} \Leftrightarrow \mathrm{CCC}^{*}(\mathrm{C}) \mathrm{C}+\mathrm{HO}_{2}$	$6.46 \mathrm{E}+66$	-16.9	48457
124	$\mathrm{C}_{2} \mathrm{COO} \cdot \mathrm{CC}<\mathrm{CC}^{*} \mathrm{CC}_{2}+\mathrm{HO}_{2}$	$4.79 \mathrm{E}+72$	-18.8	51113
125	$\mathrm{C}_{2} \mathrm{COO} \cdot \mathrm{CC} \Leftrightarrow \mathrm{C}_{2} \mathrm{CQCC} \cdot$	$3.17 \mathrm{E}+48$	-11.4	37954
126	$\mathrm{C}_{2} \mathrm{COO} \cdot \mathrm{CC} \Leftrightarrow \mathrm{C}_{2} \cdot \mathrm{CQCC}$	$2.22 \mathrm{E}+78$	-21.0	57149
127	$\mathrm{C}_{2} \mathrm{COO} \cdot \mathrm{CC} \Leftrightarrow \mathrm{C}_{2} \mathrm{CQC} \cdot{ }^{\bullet}$	$1.73 \mathrm{E}+76$	-20.2	54123
128	$\mathrm{C}_{2} \mathrm{CQCC} \cdot \stackrel{\mathrm{C} 2 \mathrm{CYCOCC}+\mathrm{OH}}{ }$	$4.60 \mathrm{E}+37$	-9.7	19612
129	$\mathrm{C}_{2}{ }^{\bullet} \mathrm{CQCC} \Leftrightarrow \mathrm{CCC}^{*}(\mathrm{C}) \mathrm{C}+\mathrm{HO}_{2}$	$2.08 \mathrm{E}+75$	-19.5	40298
130	$\mathrm{C}_{2} \mathrm{CQC} \cdot \mathrm{C}<\mathrm{CC}^{*} \mathrm{CC}_{2}+\mathrm{HO}_{2}$	$9.45 \mathrm{E}+57$	-14.4	28532

131	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{OH}<\Rightarrow \mathrm{C}_{2} \bullet \mathrm{C} * \mathrm{C}+\mathrm{H}_{2} \mathrm{O}$	$7.80 \mathrm{E}+12$	0.0	0	g
132	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{O}_{2}<>\mathrm{C}_{2} \cdot \mathrm{C} * \mathrm{C}+\mathrm{HO}_{2}$	$4.79 \mathrm{E}+12$	0.0	38528	h
133	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{H}<=>\mathrm{C}_{2} \bullet$ CC	$6.45 \mathrm{E}+13$	0.0	2700	a
134	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{H}<\gg \mathrm{H}_{2}+\mathrm{C}_{2} \bullet \mathrm{C}^{*} \mathrm{C}$	$5.50 \mathrm{E}+13$	0.0	7600	a
135	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{CH}_{3}<\Rightarrow>\mathrm{CH}_{4}+\mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{C}$	$1.86 \mathrm{E}+06$	1.9	1219	a
136	$\mathrm{C}_{3} \mathrm{CC}+\mathrm{OH} \Longrightarrow \mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{H}_{2} \mathrm{O}$	$1.44 \mathrm{E}+07$	2.0	2115	a
137	$\mathrm{C}_{3} \mathrm{CC}+\mathrm{O} \Longleftrightarrow \mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{OH}$	$9.20 \mathrm{E}+13$	0.0	7154	i
138	$\mathrm{C}_{3} \mathrm{CC}+\mathrm{O}_{2} \ll>\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{HO}_{2}$	$1.03 \mathrm{E}+13$	0.0	55640	j
139	$\mathrm{C}_{3} \mathrm{CC}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{C}_{3} \mathrm{CC} .+\mathrm{H}_{2} \mathrm{O}_{2}$	$3.01 \mathrm{E}+04$	2.5	15500	k
140	$\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{H} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC}$	$1.00 \mathrm{E}+14$	0.0	0	
141	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCOH}$	$1.00 \mathrm{E}+13$	0.0	0	a
142	$\mathrm{C}_{3} \mathrm{CC} \bullet+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \bullet$	$1.54 \mathrm{E}+22$	-8.3	8333	b
143	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}<\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H}$	$6.33 \mathrm{E}+11$	0.1	1084	b
144	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \mathrm{C} \bullet+\mathrm{CH}_{2} \mathrm{O}$	$2.04 \mathrm{E}+14$	0.0	0	b
145	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \bullet \mathrm{CCOH}$	$1.72 \mathrm{E}-25$	4.9	-10668	b
146	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{C} \bullet \mathrm{H}_{2} \mathrm{OH}$	$1.06 \mathrm{E}+11$	0.1	654	b
147	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Leftrightarrow \mathrm{C} * \mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{CH}_{3}$	$2.18 \mathrm{E}+09$	0.1	934	b
148	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}$	$4.69+106$	-32.4	23221	b
149	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H}$	$4.06 \mathrm{E}+11$	0.0	1128	b
150	$\mathrm{C}_{3} \mathrm{CCO} \bullet \Leftrightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H}$	$2.28 \mathrm{E}+50$	-15.3	33867	b
151	$\mathrm{C}_{3} \mathrm{CCO} \bullet \Leftrightarrow \mathrm{C}_{3} \mathrm{C} \cdot+\mathrm{CH}_{2} \mathrm{O}$	$3.97 \mathrm{E}+59$	-14.9	29772	b
152	$\mathrm{C}_{3} \mathrm{CCO} \cdot \Leftrightarrow \mathrm{C}_{3} \bullet \mathrm{CCOH}$	$8.37 \mathrm{E}+51$	-14.9	30488	b
153	$\mathrm{C}_{3} \mathrm{CCO} \cdot \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}$	$2.36 \mathrm{E}+50$	-15.3	33557	b
154	$\mathrm{C}_{3} \cdot \mathrm{CCOH} \Leftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OH}$	$3.83 \mathrm{E}+88$	-23.1	51259	b
155	$\mathrm{C}_{3} \cdot \mathrm{CCOH} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{CH}_{3}$	$2.58 \mathrm{E}+86$	-23.1	51253	b
156	$\mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H}$	$6.03 \mathrm{E}+14$	-0.7	31424	b
157	$\mathrm{C}_{3} \mathrm{CCOO}^{\bullet}+\mathrm{C}_{3} \mathrm{CCOO}^{\bullet} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO}^{\bullet}+\mathrm{C}_{3} \mathrm{CCO} \bullet+\mathrm{O}_{2}$	$2.41 \mathrm{E}+11$	0.0	0	m
158	$\mathrm{C}_{3} \mathrm{CCOO}^{\bullet}+\mathrm{C}_{3} \mathrm{CCOO}^{\bullet} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O}_{2}$	$3.61 \mathrm{E}+11$	0.0	0	m
159	$\mathrm{C}_{3} \mathrm{CCOO} \cdot+\mathrm{HO}_{2} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{O}_{2}$	$8.61 \mathrm{E}+10$	0.0	-2742	n
160	$\mathrm{C}_{3} \mathrm{CCOO} \cdot+\mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO}^{\bullet}+\mathrm{HO}_{2}$	$2.41 \mathrm{E}+11$	0.0	0	a
161	$\mathrm{C}_{3} \mathrm{CCOOH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \cdot+\mathrm{OH}$	$1.67 \mathrm{E}+56$	-12.8	57175	b
162	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{H} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{H}_{2}$	$2.16 \mathrm{E}+09$	1.5	7400	a
163	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{H} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{H}_{2}$	$4.80 \mathrm{E}+08$	1.5	3357	a
164	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{H} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \bullet+\mathrm{H}_{2}$	$2.40 \mathrm{E}+08$	1.5	9324	a
165	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{OH}$	$1.53 \mathrm{E}+09$	1.5	5410	a
166	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{OH}$	$3.40 \mathrm{E}+08$	1.5	2186	a
167	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \bullet+\mathrm{OH}$	$1.70 \mathrm{E}+08$	1.5	7630	a
168	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{H}_{2} \mathrm{O}$	$1.08 \mathrm{E}+07$	2.0	1205	a
169	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}$	$2.40 \mathrm{E}+06$	2.0	537	a
170	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \bullet+\mathrm{H}_{2} \mathrm{O}$	$1.20 \mathrm{E}+06$	2.0	2685	a
171	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{CH}_{4}$	$7.29 \mathrm{E}+06$	1.9	10587	a
172	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{CH}_{4}$	$1.62 \mathrm{E}+06$	1.9	6544	a
173	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \bullet+\mathrm{CH}_{4}$	$8.10 \mathrm{E}+05$	1.9	12511	a
174	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{HO}_{2} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{H}_{2} \mathrm{O}_{2}$	$9.64 \mathrm{E}+10$	0.0	12579	a

175	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}_{2}$	$3.01 \mathrm{E}+04$	2.5	15500
176	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{HO}_{2}$	$9.05 \mathrm{E}+13$	0.0	53800
177	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O}_{2} \Longleftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{HO}_{2}$	$1.37 \mathrm{E}+13$	0.0	47580
178	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \cdot+\mathrm{HO}_{2}$	$3.10 \mathrm{E}+08$	1.3	57560
179	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H} \Longleftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCHO}+\mathrm{H}_{2}$	$2.16 \mathrm{E}+09$	1.5	7400
180	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \bullet * \mathrm{O}+\mathrm{H}_{2}$	$4.00 \mathrm{E}+13$	0.0	4206
181	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{O} \Longleftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCHO}+\mathrm{OH}$	$1.53 \mathrm{E}+09$	1.5	5410
182	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{O}<\mathrm{C}_{3} \mathrm{CC} \cdot * \mathrm{O}+\mathrm{OH}$	$1.70 \mathrm{E}+08$	1.5	1729
183	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH} \Longleftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCHO}+\mathrm{H}_{2} \mathrm{O}$	$1.08 \mathrm{E}+07$	2.0	1205
184	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \bullet * \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$	$9.51 \mathrm{E}+12$	0.0	-622
185	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{CH}_{3} \Leftrightarrow=\mathrm{C}_{3} \cdot \mathrm{CCHO}+\mathrm{CH}_{4}$	$7.29 \mathrm{E}+06$	1.9	10587
186	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot * \mathrm{O}+\mathrm{CH}_{4}$	$8.10 \mathrm{E}+05$	1.9	2819.5
187	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot * \mathrm{O}+\mathrm{HO}_{2}$	$3.01 \mathrm{E}+13$	0.0	41850
188	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{C}_{3} \bullet \mathrm{CCHO}+\mathrm{H}_{2} \mathrm{O}_{2}$	$3.01 \mathrm{E}+04$	2.5	15500
189	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{HO}_{2}<=>\mathrm{C}_{3} \mathrm{CC} \cdot * \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2}$	$3.01 \mathrm{E}+12$	0.0	8000
190	$\mathrm{CH}_{3} \mathrm{OO}+\mathrm{H} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OOH}$	$9.53 \mathrm{E}-20$	4.1	-6261
190	$\mathrm{CH}_{3} \mathrm{OO}+\mathrm{H} \Leftrightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{OH}$	$9.64 \mathrm{E}+13$	0.0	0
192	$\mathrm{CH}_{3} \mathrm{OOH} \Leftrightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{OH}$	$6.22 \mathrm{E}+45$	-10	52063
193	$\mathrm{C}_{3} \mathrm{COO} \cdot+\mathrm{H}<>\mathrm{C} 3 \mathrm{COOH}$	$1.19 \mathrm{E}+67$	-17.3	14992
194	$\mathrm{C}_{3} \mathrm{COO} \cdot+\mathrm{H} \Leftrightarrow>\mathrm{C} 3 \mathrm{CO} \cdot+\mathrm{OH}$	$1.06 \mathrm{E}+30$	-4.8	8186
195	$\mathrm{C}_{3} \mathrm{COOH}<=>\mathrm{C} 3 \mathrm{CO} \cdot+\mathrm{OH}$	$5.04 \mathrm{E}+25$	-3.1	51114
196	$\mathrm{CH}_{3} \mathrm{OO}+\mathrm{CH}_{3}<\gg \mathrm{COOC}$	$1.69 \mathrm{E}+71$	-23.2	8560
197	$\mathrm{CH}_{3} \mathrm{OO}+\mathrm{CH}_{3}<=>\mathrm{CH} 3 \mathrm{O}+\mathrm{CH}_{3} \mathrm{O}$	$2.42 \mathrm{E}+13$	0	1
198	$\mathrm{COOC}<=>\mathrm{CH}_{3} \mathrm{O}+\mathrm{CH}_{3} \mathrm{O}$	$2.75 \mathrm{E}+62$	-14.9	53672
199	$\mathrm{CH}_{3} \mathrm{OO}+\mathrm{CH}_{3} \mathrm{OO}=>\mathrm{CH}_{3} \mathrm{O}+\mathrm{CH}_{3} \mathrm{O}+\mathrm{O}_{2}$	$2.47 \mathrm{E}+11$	0.0	0
200	$\mathrm{CH}_{3}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{CH}_{3} \mathrm{OOH}$	$6.98 \mathrm{E}+17$	-7.5	6281
201	$\mathrm{CH}_{3}+\mathrm{HO}_{2} \Leftrightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{OH}$	$1.84 \mathrm{E}+13$	0	2
202	$\mathrm{CH}_{3} \mathrm{OOH}<\gg \mathrm{CH}_{3} \mathrm{O}+\mathrm{OH}$	$5.43 \mathrm{E}+45$	-10	52062
203	$\mathrm{CH}_{3}+\mathrm{CH}_{3}<\gg \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}$	$4.14 \mathrm{E}+32$	-6.2	5671
204	$\mathrm{CH}_{3}+\mathrm{CH}_{3} \ll>\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$	$4.89 \mathrm{E}+20$	-2.5	12422
205	$\mathrm{C}_{2} \mathrm{H}_{6} \Leftrightarrow \Rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}$	$2.22 \mathrm{E}+16$	-1.9	14880
206	$\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$	$1.51 \mathrm{E}+42$	-8.6	105111
207	$\mathrm{CH}_{3}+\mathrm{CH}_{3} \ll \mathrm{C}_{2} \mathrm{H}_{6}$	$5.52 \mathrm{E}+44$	-10.4	109969
208	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{O} \Leftrightarrow \mathrm{OH}+\mathrm{HCO}$	$4.16 \mathrm{E}+11$	0.6	2762
209	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{H} \Leftrightarrow>\mathrm{H}_{2}+\mathrm{HCO}$	$2.29 \mathrm{E}+10$	1.1	3279
210	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}\left\langle=\mathrm{H}_{2} \mathrm{O}+\mathrm{HCO}\right.$	$3.49 \mathrm{E}+09$	1.2	-447
211	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2} \Leftrightarrow \mathrm{O}_{2}+\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OH}$	$3.39 \mathrm{E}+12$	0.0	19121
212	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{HCO}+\mathrm{CH}_{4}$	$4.09 \mathrm{E}+12$	0.0	8843
213	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{O} 2 \Leftrightarrow>\mathrm{HO}_{2}+\mathrm{HCO}$	$6.03 \mathrm{E}+13$	0.0	40658
214	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OH} \Longleftrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCO}$	$5.49 \mathrm{E}+13$	2.8	5862
215	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{O} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCO}$	$3.39 \mathrm{E}+12$	0.0	19121
216	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{C}_{3} \mathrm{C} \bullet \Leftrightarrow \mathrm{C}_{3} \mathrm{C}+\mathrm{HCO}$	$3.01 \mathrm{E}+11$	0.0	6498
217	$\mathrm{CH}_{4}+\mathrm{HO}_{2}<=>\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{CH}_{3}$	$9.04 \mathrm{E}+12$	0.0	24641
218	$\mathrm{CH}_{4}+\mathrm{O}<\Rightarrow>\mathrm{CH}_{3}+\mathrm{OH}$	$6.92 \mathrm{E}+08$	1.6	8485
219	$\mathrm{CH}_{3}+\mathrm{O}_{2}<\gg \mathrm{CH}_{3} \mathrm{OO}$	$8.61 \mathrm{E}+31$	-6.6	4931
220	$\mathrm{CH}_{3}+\mathrm{O}_{2}<\Rightarrow>\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$2.85 \mathrm{E}+08$	1.0	12526

221	$\mathrm{CH}_{3}+\mathrm{HO}_{2}=\mathrm{CH}_{4}+\mathrm{O}_{2}$	$3.61 \mathrm{E}+12$	0.0	0	r
222	$\mathrm{CH}_{3} \mathrm{O}=\mathrm{CH}_{2} \mathrm{O}+\mathrm{H}$	$6.13 \mathrm{E}+28$	-5.7	31351	b
223	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{HO}_{2}=\mathrm{CH}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2}$	$3.01 \mathrm{E}+11$	0.0	0	r
224	$\mathrm{CH}_{3}+\mathrm{H}<>\mathrm{CH}_{4}$	$2.11 \mathrm{E}+14$	0.0	0	m
225	$\mathrm{HCO}+\mathrm{O}_{2}<\gg \mathrm{HCQ}^{\bullet *} \mathrm{O}$	$2.89 \mathrm{E}+28$	-9.2	203	b
226	$\mathrm{HCO}+\mathrm{O}_{2}<>\mathrm{CO}+\mathrm{HO}_{2}$	$9.32 \mathrm{E}+09$	0.8	-694	b
227	$\mathrm{HCO}+\mathrm{O}_{2}<>\mathrm{O} * \cdot \mathrm{C} \cdot \mathrm{OOH}$	$4.10 \mathrm{E}-02$	-2.3	8558	b
228	$\mathrm{HCO}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{CO}+\mathrm{HO}_{2}$	$1.45 \mathrm{E}-02$	3.7	4331	b
229	$\mathrm{HCO}+\mathrm{O}_{2}<\Rightarrow \mathrm{CO}_{2}+\mathrm{OH}$	$4.75 \mathrm{E}+01$	2.8	4818	b
230	$\mathrm{HCQ}{ }^{\bullet} \mathrm{O}<>\mathrm{CO}+\mathrm{HO}_{2}$	$1.22 \mathrm{E}+36$	-7.8	28675	b
231	HCQ ${ }^{*} \mathrm{O}<>\mathrm{O}^{*} \mathrm{C} \cdot \mathrm{OOH}$	$2.54 \mathrm{E}+24$	-9.4	42771	b
232	$\mathrm{O}^{*} \mathrm{C} \cdot \mathrm{OOH} \Leftrightarrow \mathrm{CO}+\mathrm{HO}_{2}$	$4.69 \mathrm{E}+27$	-6.9	23860	b
233	$\mathrm{O} * \cdot \mathrm{C} \cdot \mathrm{OOH} \Leftrightarrow=\mathrm{CO}_{2}+\mathrm{OH}$	$1.36 \mathrm{E}+32$	-6.7	20498	b
234	$\mathrm{OH}+\mathrm{HCO}<\gg \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$	$1.02 \mathrm{E}+14$	0.0	0	o
235	$\mathrm{HCO} \Leftrightarrow \mathrm{H}+\mathrm{CO}$	$1.57 \mathrm{E}+14$	0.0	15758	t
236	$\mathrm{CO}+\mathrm{O} \Leftrightarrow \mathrm{CO}_{2}$	$6.17 \mathrm{E}+14$	0.0	3001	r
237	$\mathrm{CO}+\mathrm{OH}<\gg \mathrm{CO}_{2}+\mathrm{H}$	$6.32 \mathrm{E}+06$	1.5	-497	0
238	$\mathrm{CO}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{CO}_{2}+\mathrm{OH}$	$1.51 \mathrm{E}+14$	0.0	23650	r
239	$\mathrm{CO}+\mathrm{O}_{2} \Leftrightarrow \mathrm{CO}_{2}+\mathrm{O}$	$2.53 \mathrm{E}+12$	0.0	47693	r
240	$\mathrm{H}+\mathrm{O}_{2}+\mathrm{M}<\mathrm{HO}_{2}+\mathrm{M}$	$6.17 \mathrm{E}+17$	-0.8	0	t
241	$\mathrm{H}+\mathrm{HO}_{2} \Leftrightarrow \mathrm{H}_{2}+\mathrm{O}_{2}$	$1.25 \mathrm{E}+13$	0.0	0	o
242	$\mathrm{H}+\mathrm{HO}_{2}<>\mathrm{OH}+\mathrm{OH}$	$1.69 \mathrm{E}+14$	0.0	874	0
243	$\mathrm{HO}_{2}+\mathrm{H}<\Rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}$	$3.01 \mathrm{E}+13$	0.0	1721	o
244	$\mathrm{O}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{O}_{2}+\mathrm{OH}$	$3.25 \mathrm{E}+13$	0.0	0	o
245	$\mathrm{HO}_{2}+\mathrm{OH}<\gg \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$	$2.89 \mathrm{E}+13$	0.0	-497	o
246	$\mathrm{HO}_{2}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}$	$1.87 \mathrm{E}+12$	0.0	1540	o
247	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H} \Leftrightarrow=\mathrm{H}_{2}+\mathrm{HO}_{2}$	$4.82 \mathrm{E}+13$	0.0	7949	r
248	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}<\Rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{OH}$	$2.41 \mathrm{E}+13$	0.0	3974	r
249	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}<\Rightarrow \mathrm{OH}+\mathrm{HO}_{2}$	$9.63 \mathrm{E}+06$	2.0	3974	r
250	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{OH}<=>\mathrm{HO}_{2}+\mathrm{H}_{2} \mathrm{O}$	$7.83 \mathrm{E}+12$	0.0	1331	o
251	$\mathrm{H}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{OH}+\mathrm{O}$	$1.99 \mathrm{E}+14$	0.0	16802	0
252	$\mathrm{H}_{2}+\mathrm{OH} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}$	$9.31 \mathrm{E}+11$	1.6	3299	o
253	$\mathrm{OH}+\mathrm{OH} \Leftrightarrow \mathrm{O}^{+} \mathrm{H}_{2} \mathrm{O}$	$1.51 \mathrm{E}+09$	1.1	99	o
254	$\mathrm{OH}+\mathrm{OH}+\mathrm{M} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{M}$	$2.90 \mathrm{E}+17$	-0.76	0	o
255	$\mathrm{O}+\mathrm{H}_{2} \ll>\mathrm{OH}+\mathrm{H}$	$5.11 \mathrm{E}+04$	2.7	6280	o
256	$\mathrm{O}+\mathrm{O}+\mathrm{M} \Leftrightarrow>\mathrm{O} 2+\mathrm{M}$	$1.89 \mathrm{E}+13$	0.0	-1788	r
257	$\mathrm{H}+\mathrm{O}+\mathrm{M}<\Rightarrow \mathrm{OH}+\mathrm{M}$	$4.71 \mathrm{E}+18$	-1.0	0	r
258	$\mathrm{OH} \Rightarrow \mathrm{X}$	$8.80 \mathrm{E}+01$	0.0	0	u

${ }^{\text {aa }} k=A \mathrm{~T}^{\mathrm{n}} \exp \left(-E_{\mathrm{a}} / \mathrm{RT}\right)$. Units of s^{-1} for first order reactions, $\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ for second order reactions, $\mathrm{cm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$ for third order reactions. Ea in cal mol ${ }^{-1}$. ${ }^{*}$ Stands for double bond, Q stands for -OOH group, and Y stands for cyclic structure. ${ }^{\text {a }}$ Estimated in this study by Dean and Bozzelli. ${ }^{\text {b }}$ From QRRK calculation at $\mathrm{P}=0.807 \mathrm{~atm}$ and $\mathrm{T}=500 \sim 900 \mathrm{~K} .{ }^{\mathrm{c}}$ Hunter, T.F.; Kristjansson, K. S J. Chem. Soc. Faraday Trans. 2: 78, 2067 (1982). ${ }^{\text {d }}$ Mulenko, S.A. Rev. Roum. Phys. 32, 173 (1987). ${ }^{\text {el }}$ The reaction mechanism from reference 51. ${ }^{\text {e2 }}$ The reaction mechanism from reference 5. ${ }^{\text {f }}$ Seres, L.; Nacsa, A.; Arthur, N.L. Int. J. Chem. Kinet. 26, 227-246 (1994). ${ }^{\text {g }}$ Baker, R. R.; Baldwin, R. R.; Walker, R. W. J. Chem. Soc. Faraday Trans. 1: 74, 2229 (1978). ${ }^{\text {h }}$ Ingham,T.; Walker, R.W.; Woolford, R. E. Symp. Int. Combust. Proc. 25, 767-774 (1994). ' Herron, J.T. J. Phys. Chem. Ref. Data 17, 967 (1988). ${ }^{\text {J }}$ Estimated from isobutane $+\mathrm{O}_{2}$ reaction. ${ }^{\mathrm{k}}$ Estimated from isobutane $+\mathrm{HO}_{2}$ reaction. ${ }^{\text { Allara D. L.; Shaw R. } J .}$

Phys. Chem. Ref. Data 9, 523, (1980). ${ }^{m}$ Wallington, T. J.; Andino, J. M.; Potts, A. R. Int. J. Chem. Kinet. 24, 649-663 (1992). " Rowley, D. M.; Lesclaux, R.; Lightfoot, P. D.; Hughes, K.; Hurley, M. D.; Rudy, S.; Wallington, T. J. J. Phys. Chem. 96, 7043-7048 (1992). ${ }^{\circ}$ Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just, Th.; Kerr, J. A.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 21, 411-429 (1992). ${ }^{\mathrm{p}}$ Tsuboi, T.; Hashimoto, K. Combust. Flame 42, 61 (1981). ${ }^{\text {q }}$
Tsang, W. J. Phys. Chem. Ref. Data 16, 471 (1987). ${ }^{\text {r }}$ Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data 15, 1087 (1986). ${ }^{\text {s }}$ Tsang, W. J. Phys. Chem. Ref. Data 19, 1-68 (1990). ${ }^{\text {t }}$ Baulch,D. L.; Cobos, C. J.; Cox, R. A.; Frank, P.; Hayman, G.; Just, Th.; Kerr, J. A.; Murrells, T.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 23, 847-1033 (1994). " OH Wall reaction from reference 8.

APPENDIX C

TABLES IN THE THERMOCHEMICAL AND KINETIC ANALYSIS OF REACTIONS OF ISOBUTENE ADDUCTS OXIDATION

This appendix lists the geometrical parameters, harmonic vibrational frequencies, thermodynamic analysis and detailed reaction mechanism for reactions of isobutene adducts (2-Hydroxy-1,1-Dimethylethyl, 2-Hydroxy-2-

Methylpropyl, and 1,1-Dimethylpropyl radicals) oxidation, as discussed in Chapter 5.

Table C. 1 Optimized Geometrical Parameters for Species in Neopentyl Oxidation System

		r21	1.5025	a 321	119.02	d 4213	250.15

TS20	r21	1.5026	a312	121.83	d4123	192.92
	r31	1.3940	a412	115.25	d5123	95.86
	r41	1.5140	a512	92.92	d6512	238.26
	r51	2.2770	a651	98.32	d7412	173.49
	r65	1.2817	a741	115.49	d8213	92.12
	r74	1.4135	a821	109.85	d9213	332.72
	r82	1.0990	a921	111.37	d10213	211.32
	r92	1.0922	a1021	111.66	d11312	348.81
	r102	1.0941	al131	118.11	d12312	201.75
	r113	1.0892	a1231	118.11	d13651	359.47
	r123	1.0878	a1365	97.94	d14412	48.38
	r136	1.2598	a1441	107.47	d15412	293.41
	r144	1.1053	a1541	109.22	d16741	287.71
	r154	1.0946	a1674	108.01		
	r167	0.9658				
TS21	r21	1.5217	a321	118.68	d4213	205.93
	r32	1.3906	a421	116.36	d5213	106.72
	r42	1.5092	a521	97.08	d6521	304.65
	r52	1.9398	a652	112.22	d7123	199.20
-	r65	1.4031	a712	113.14	d8123	80.99
	r71	1.4102	a812	108.67	d9123	324.14
- 8	r81	1.0973	a912	108.53	d10321	193.64
	r91	1.1003	a1032	121.20	d11321	18.99
11	r103	1.0850	a1132	121.03	d12421	71.27
	r113	1.0858	a 1242	109.56	d13421	312.90
3×13	r124	1.0964	a1342	110.51	d14421	191.13
	r134	1.0907	a1442	111.27	d15652	257.24
	r144	1.0925	al565	102.39	d16712	51.94
	r156	0.9722	a1671	104.84		
	r167	0.9703				
TS22	r21	1.5382	a321	112.71	d4213	242.64
	r32	1.5432	a421	109.21	d5213	126.42
	r42	1.6227	a521	112.33	d6123	294.34
	r52	1.3642	a612	109.04	d7123	175.57
	r61	1.0936	a712	110.22	d8123	54.19
	r71	1.0922	a812	111.91	d9321	59.56
	r81	1.0951	a932	108.94	d10321	300.14
	r93	1.0935	a1032	111.45	d11321	178.27
	r103	1.0946	a1132	110.36	d12421	173.33
	r113	1.0926	a 1242	107.99	d13421	50.43
	r124	1.0931	a1342	109.63	d14521	95.42
	r134	1.0926	a1452	106.05	d15421	294.00
	r145	1.3527	a1542	108.41	d161452	16.41
	$\begin{gathered} \text { r154 } \\ \text { r1614 } \end{gathered}$	$\begin{aligned} & 1.3934 \\ & 1.0846 \end{aligned}$	a16145	154.61		

TS23	r21	1.5316	a321	111.78	d4213	239.14
	r32	1.5116	a421	110.27	d5213	119.79
	r42	1.5661	a521	111.30	d6123	181.30
	r52	1.4345	a612	110.70	d7123	62.03
	r61	1.0967	a712	110.44	d8123	301.27
	r71	1.0938	a812	110.45	d9321	259.73
	r81	1.0932	a932	99.74	d10321	150.99
	r93	1.4256	a1032	114.57	d11321	11.15
	r103	1.0888	a1132	117.64	d12421	312.23
	r113	1.0889	a1242	110.71	d13421	190.73
	r124	1.0963	a1342	109.18	d14521	55.90
	r134	1.0952	a1452	107.62	d15421	68.72
	r145	0.9681	a1542	110.39	d16932	339.58
	r154	1.4172	a1693	153.49		
	r169	1.1387				
TS24	r21	1.5321	a321	115.0619	d4213	253.6634
	r32	1.5324	a421	99.0851	d5213	151.0871
	r42	2.0740	a521	119.2168	d6123	294.5864
	r52	1.2584	a612	108.4474	d7123	176.7685
	r61	1.0972	a712	109.9508	d8123	53.9382
	r71	1.0924	a812	112.6298	d9321	67.7001
	r81	1.0937	a932	108.1731	d10321	308.1463
	r93	1.0975	a 1032	112.9753	d11321	185.3877
	r103	1.0924	al132	109.9412	d12421	293.8213
	r113	1.0920	a1242	98.1524	d13421	173.7203
	r124	1.0864	a1342	100.1658	d14421	49.2779
	r134	1.0859	a1442	115.2497	d151442	90.5122
	r144	1.3630	a15144	108.4566	d161514	210.0241
	r1514	1.4564	a161514	99.0019	4	
	r1615	0.9718				
TS25	r21	1.5253	a321	98.4602	d4213	253.04
	r32	2.1662	a421	116.3899	d5213	102.15
	r42	1.5468	a521	121.3369	d6123	290.98
	r52	1.2482	a612	109.4841	d7123	173.45
	r61	1.0913	a712	107.9044	d8123	54.84
	r71	1.0975	a812	112.8872	d9321	54.44
	r81	1.0907	a932	99.3476	d10321	293.38
	r93	1.0836	a 1032	100.0943	d11321	173.09
	r103	1.0830	a1132	99.9516	d12421	265.89
	r113	1.0839	a 1242	105.7667	d13421	148.72
	r124	1.0981	al342	111.1581	d14421	19.20
	r134	1.0947	a 1442	116.5535	d151442	78.31
	r144	1.4201	al5144	108.3782	d161514	116.16
	r1514	1.4584	a161514	99.6610	4	
	r1615	0.9710				

	r21	1.5316	a312	110.74	d4123	230.06
	r31	1.5386	a412	111.63	d5123	112.65
	r41	1.5385	a512	110.08	d6512	284.46
	r51	1.4567	a651	103.92	d7412	182.17
	r65	1.4260	a741	115.85	d8213	64.52
	r74	1.5316	a821	110.98	d9213	304.07
	r82	1.0946	a921	110.02	d10213	184.64
	r92	1.0923	a 1021	110.09	d11312	334.42
	r102	1.0935	a 1131	117.94	d12312	192.26
	r113	1.0889	a 1231	117.02	d13651	327.95
	r123	1.0894	a1365	94.61	d14412	58.19
	r136	1.1905	a 1441	107.57	d15412	304.55
	r144	1.0970	a 1541	106.95	d16741	293.39
	r154	1.0973	a1674	112.05	d17741	54.22
	r167	1.0946	a1774	110.91	d18741	174.04
	r177	1.0925	a1874	110.15		
	r187	1.0942				
TS30	r21	1.5277	a312	112.30	d4123	230.36
	r31	1.5303	a412	113.12	d5123	120.21
	r41	1.5486	a512	105.79	d6512	163.61
	r51	1.4528	a651	103.71	d7412	95.77
	r65	1.4269	a741	122.04	d8213	63.16
	r74	1.5022	a821	110.34	d9213	303.80
	r82	1.0943	a921	110.44	d10213	183.63
	r92	1.0945	a 1021	110.66	d11312	296.57
	r102	1.0930	a1131	111.51	d12312	175.23
	r113	1.0942	a1231	110.37	d13312	56.22
	r123	1.0920	a1331	109.35	d14412	315.43
	r133	1.0934	a1441	111.56	d15651	326.03
	r144	1.0946	a1565	93.65	d16741	292.46
	r156	1.2156	a1674	111.04	d17741	52.57
	r167	1.1012	a1774	112.40	d18741	173.99
	r177	1.0935	a1874	110.86		
	r187	1.0944				
TS31	r21	1.5489	a312	100.15	d4213	345.78
	r31	1.5037	a421	95.48	d5312	272.52
	r42	1.4705	a531	120.16	d6312	111.21
	r53	1.0840	a631	120.99	d7421	181.09
	r63	1.0836	a742	104.38	d8742	129.61
	r74	1.6773	a874	93.80	d9213	100.01
	r87	. 9702	a921	112.85	d10921	310.80
	r92	1.5270	a 1092	110.60	d11921	70.81
	r109	1.0942	al192	110.38	d12921	191.08
	r119	1.0957	a 1292	110.23	d13213	229.70
	r129	1.0917	a1321	113.78	d141321	173.80
	r132	1.5248	a14132	110.66	d151321	294.21
	r1413	1.0912	a15132	110.16	d161321	53.60
	r1513	1.0958	a16132	110.23	d17123	239.19
	r1613	1.0946	a1712	112.46	d18123	117.64
	r171	1.0964	a1812	111.10		
	r181	1.0937				

TS32	r21	1.5110	a321	115.53	d4213	205.61
	r32	1.5112	a421	118.69	d5213	102.56
	r42	1.3948	a521	94.42	d6521	187.25
	r52	1.9479	a652	112.42	d7421	173.01
	r65	1.4025	a742	124.72	d8123	301.73
	r74	1.4943	a812	110.34	d9123	181.25
	r81	1.0937	a912	111.38	d10123	60.93
	r91	1.0927	a 1012	110.42	d11321	39.13
	r101	1.0969	al132	110.63	d12321	279.76
	r113	1.0935	a1232	110.65	d13321	160.28
	r123	1.0970	a1332	111.58	d14421	342.21
	r133	1.0932	a1442	116.99	d15652	82.39
	r144	1.0874	a1565	102.95	d16742	310.46
	r156	0.9734	a1674	112.68	d17742	69.43
	r167	1.0962	a1774	109.70	d18742	188.81
	r177	1.1012	a 1874	111.44		
	r187	1.0931				
TS33	r21	1.5033	a312	120.79	d4123	191.86
	r31	1.3945	a412	117.53	d5123	96.07
	r41	1.5092	a512	93.44	d6512	239.06
	r51	2.3026	a651	97.47	d7412	197.09
	r65	1.2852	a741	109.22	d8213	95.97
	r74	1.0951	a821	109.85	d9213	336.84
	r82	1.0988	a921	111.55	d10213	215.03
	r92	1.0927	a 1021	111.53	d11312	349.07
	r102	1.0935	al131	118.44	d12312	202.45
	rl13	1.0897	a1231	118.23	d13651	359.90
	r123	1.0900	a1365	98.20	d14412	313.98
	r136	1.2491	a1441	109.57	d15412	75.78
	r144	1.0953	a1541	112.29	d161541	59.36
	r154	1.5420	a16154	111.17	d171541	179.13
	r1615	1.0944	a17154	110.24	d181541	298.74
	r1715	1.0942	a18154	111.69		
	r1815	1.0945				
TS34	r21	1.3486	a312	99.64	d4123	241.83
	r31	1.0933	a412	104.19	d5412	303.00
	r41	1.5243	a541	112.24	d6412	182.04
	r54	1.0939	a641	111.77	d7412	62.49
	r64	1.0966	a741	110.41	d8123	115.80
	r74	1.0939	a812	94.52	d9812	267.04
	r81	1.4009	a981	119.92	d10981	20.32
	r98	1.5033	a 1098	111.78	d11981	142.34
	r109	1.0929	al198	111.57	d12981	261.07
	r119	1.0935	a1298	109.49	d13812	99.87
	r129	1.0998	a1381	122.68	d141381	207.93
	r138	1.5024	a14138	111.24	d151381	329.89
	r1413	1.0930	a15138	112.49	d161381	89.23
	r1513	1.0913	a16138	109.46	d17213	239.65
	r1613	1.1001	a1721	115.22	d18213	234.72
	r172 r182	$\begin{aligned} & 1.9197 \\ & 1.2700 \end{aligned}$	a1821	156.68		

TS35	r21	1.5206	a321	118.157	d4213	206.90
	r32	1.3916	a421	117.685	d5213	105.50
	r42	1.5114	a521	100.865	d6521	315.77
	r52	1.9411	a652	111.606	d7123	194.33
	r65	1.3998	a712	116.262	d8123	71.76
	r71	1.5311	a812	107.055	d9123	317.62
	r81	1.0995	a912	107.772	d10321	191.52
	r91	1.0948	a1032	121.184	d11321	18.17
	r103	1.0848	al132	121.023	d12421	58.80
	r113	1.0858	al242	110.006	d13421	299.36
	r124	1.0968	a1342	110.973	d14421	178.57
	r134	1.0920	al442	111.193	d15652	253.86
	r144	1.0928	a 1565	102.343	d16712	177.16
	r156	. 9721	a1671	110.029	d17712	296.40
	r167	1.0944	a1771	111.989	d18712	57.40
	r177	1.0947	a1871	110.755		
	r187	1.0918	d4213			
C2C $\cdot \mathrm{COH}$	r21	1.4957	a312	119.18	d4123	199.01
	r31	1.4966	a412	119.37	d5412	207.44
	r41	1.4999	a541	113.70	d6213	73.42
	r54	1.4291	a621	112.08	d7213	314.76
	r62	1.1047	a721	111.52	d8213	193.36
	r72	1.0972	a821	112.02	d9312	49.44
	r82	1.0958	a931	111.74	d10312	290.69
	r93	1.0972	a 1031	111.55	d11312	171.08
	r103	1.1046	al131	110.99	d12412	90.11
	r113	1.0931	a1241	111.28	d13412	332.75
	r124	1.1031	a1341	109.77	d14541	55.82
	r134	1.1027	a1454	106.60		
	r145	0.9672				
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot \mathrm{COH}$${ }^{12}$-3	r21	1.5255	a312	113.2116	d4123	231.37
	r31	1.5239	a412	111.2346	d5123	115.77
	r41	1.5395	a512	102.4045	d6512	171.23
	r51	1.4981	a651	113.5832	d7412	171.45
	r65	1.3217	a741	114.5654	d8213	58.96
	r74	1.4091	a821	109.8530	d9213	299.54
	r82	1.0933	a921	110.5156	d10213	179.15
	r92	1.0932	a1021	111.1949	d11312	54.83
	r102	1.0940	al131	110.5817	d12312	295.05
	r113	1.0934	a1231	109.6459	d13312	176.09
	r123	1.0939	al331	110.4902	d14412	52.77
	r133	1.0904	a1441	107.7986	d15412	297.13
	r144	1.0957	a1541	107.8774	d16741	55.60
	r154	1.1020	a1674	105.6181		
	r167	0.9703				

$\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}$	r21	1.3350	a321	123.22	d4213	179.79
	r32	1.5069	a421	121.72	d5421	7.90
	r42	1.5155	a542	115.15	d6123	. 58
(2 , 3	r54	1.4160	a612	121.54	d7123	181.83
	r61	1.0858	a712	121.08	d8321	121.39
713	r71	1.0849	a832	111.12	d9321	. 90
	r83	1.0979	a932	111.54	d10321	239.93
1	r93	1.0927	a 1032	111.34	d11421	248.91
96	r103	1.0977	a1142	109.40	d12421	133.64
	r114	1.0980	a1242	108.79	d13542	60.21
18 早	r124	1.1046	a1354	107.07		
-	r135	0.9668				
$\mathrm{C}_{2} \mathrm{C}=\mathrm{COH}$	r21	1.3406	a321	119.94	d4213	180.00
	r32	1.5070	a421	123.97	d5123	179.99
	r42	1.5077	a512	128.36	d6123	. 00
10. $\frac{1}{2}$	r51	1.3674	a612	121.49	d7321	. 00
$\mathrm{H}_{4} \mathrm{Mr}^{\text {l }}$	r61	1.0860	a732	111.78	d8321	239.41
	r73	1.0940	a832	111.44	d9321	120.57
	r83	1.0986	a932	111.44	d10421	359.97
* $2^{\text {P }}$	r93	1.0986	a 1042	113.94	d11421	239.29
$3, ~ 3^{2} \times$	r104	1.0962	al 142	111.09	d12421	120.65
	rl14	1.0978	a 1242	111.09	d13512	0.00
	r124	1.0978	al351	109.18		
	r135	. 9667				
$\mathrm{C}_{3} \cdot \mathrm{COH}$	r21	1.5372	a321	110.7134	a 1452	-124.25
	r32	1.5382	a421	111.3469	d4213	-245.52
	r42	1.4984	a521	109.6840	d5213	-57.99
	r52	1.4443	a612	110.0284	d6123	182.30
	r61	1.0932	a712	110.7150	d7123	62.47
3 3) $4<13$	r71	1.0959	a812	111.2711	d8123	59.77
8	r81	1.0952	a932	109.6817	d9321	-60.54
	r93	1.0950	a 1032	110.9394	d10321	-181.08
	r103	1.0935	al132	110.1478	d11321	18.58
6.	r113	1.0931	a1242	121.9550	d12421	191.41
18	r124	1.0849	a 1342	119.0240	d13421	68.23
(4)	r134	1.0853	a1452		d14521	
7	r145	0.9674				
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COO}$	r21	1.5370	a321	111.15	d4213	239.53
	r32	1.5326	a421	111.44	d5213	117.24
$12^{-13} 3^{11}$	r42	1.5411	a521	110.54	d6123	301.42
	r52	1.4247	a612	109.09	d7123	182.32
	r61	1.0929	a712	111.01	d8123	61.49
	r71	1.0931	a812	111.72	d9321	63.84
	r81	1.0953	a932	108.84	d10321	303.96
	r93	1.0931	a1032	111.60	d11321	182.21
	r103	1.0940	al 132	110.75	d12421	190.50
	r113	1.0940	a1242	110.18	d13421	66.95
	r124	1.0932	al342	112.09	d14521	76.29
	r134	1.0927	a 1452	106.85	d15421	311.13
	r145	0.9708	a1542	113.15	d161542	297.09
	r154	1.4606	al6154	112.27		
	r1615	1.3255				

$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}$	r21	1.0968	a312	105.86	d4123	244.13
	r31	1.1039	a412	108.78	d5412	178.94
4	r41	1.5424	a541	111.40	d6412	59.05
	r54	1.0948	a641	110.95	d7412	298.80
	r64	1.0953	a741	110.95	d8123	118.72
	r74	1.0946	a812	109.69	d9812	357.61
	r81	1.5046	a981	120.23	d10981	33.83
	r98	1.4968	a 1098	111.88	d11981	155.17
11	r109	1.0959	a1198	111.75	d12981	274.19
	r119	1.0972	a1298	112.23	d13812	194.40
	r129	1.1058	a 1381	119.17	d141381	207.70
	r138	1.4980	a14138	111.83	d151381	329.07
	r1413	1.0971	a15138	112.26	d161381	88.70
	r1513	1.0954	a16138	111.80		
	r1613	1.1054				
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \bullet) \mathrm{CC}$	r21	1.0947	a312	106.70	d4123	240.90
	r31	1.0970	a412	109.55	d5412	173.71
	r41	1.5318	a541	112.23	d6412	54.13
15	r54	1.0942	a641	110.12	d7123	114.65
	r64	1.0941	a712	106.98	d8712	304.47
	r71	1.5370	a871	111.49	d9871	57.03
	r87	1.5272	a987	110.26	d10871	177.31
	r98	1.0921	a 1087	110.72	d11871	297.07
	r108	1.0938	a1187	110.01	d12712	176.06
	r118	1.0940	a1271	114.18	d131271	180.07
	r127	1.5265	a13127	110.52	d141271	300.44
	r1312	1.0935	a14127	111.40	d151271	60.61
	r1412	1.0922	a15127	109.90	d16712	62.65
	r1512	1.0940	a1671	108.28	d171671	299.91
	r167	1.4996	a17167	112.84	d18412	294.83
	r1716	1.3198	$\text { a } 1841$	111.08		
	r184	1.0936				
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet$	r21	1.1027	a312	104.71	d4123	241.11
	r31	1.1001	a412	110.21	d5412	253.39
	r41	1.4905	a541	120.99	d6412	69.48
	r54	1.0843	a641	120.63	d7123	115.35
	r64	1.0843	a712	107.87	d8712	312.54
	r71	1.5452	a871	111.11	d9871	62.07 181.86
	r87	1.5307	a987	110.38	d10871	181.86
	r98	1.0921	a 1087	110.29	d11871	301.87
	r108	1.0936	a1187	110.61	d12712	187.49
	r118	1.0949	a 1271	111.80	d131271	185.62
	r127	1.5329	al3127	110.27	d141271	306.23
	r1312	1.0933	a14127	111.24	d151271	66.21
	r1412	1.0928	a 15127	109.73	d16712	74.80
	r1512	1.0940	a1671	110.26	d171671	299.81
	r167	1.4491	a17167	109.19	d181716	101.80
	r1716	1.4555	a181716	100.11	7	
	r1817	0.9720				

$\mathrm{C}_{2} \bullet \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$	r21	1.5416	a321	111.08	d4213	234.65
	r32	1.4944	a421	113.11	d5213	122.33
	r42	1.5389	a521	110.50	d6521	295.59
	r52	1.4629	a652	108.69	d7123	180.85
	r65	1.4587	a712	115.40	d8123	57.40
	r71	1.5309	a812	107.84	d9123	303.28
	r81	1.0970	a912	107.12	d10321	178.92
	r91	1.0954	a 1032	119.23	d11321	8.03
	r103	1.0848	al132	121.59	d12421	57.90
	r113	1.0841	a1242	109.82	d13421	297.47
	r124	1.0934	a1342	111.05	d14421	177.47
	r134	1.0930	a1442	110.17	d15652	114.91
	r144	1.0928	a1565	99.67	d16712	52.96
	r156	. 9708	a1671	111.16	d17712	172.86
	r167	1.0946	a1771	110.58	d18712	292.67
	r177	1.0943	a1871	112.11		
	r187	1.0941				
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}$	r21	1.0868	a312	119.11	d4312	157.96
	r31	1.4897	a431	111.96	d5312	36.03
	r43	1.0951	a531	111.61	d6123	188.98
	r53	1.0956	a612	118.18	d7612	10.32
	r61	1.5016	a761	111.75	d8761	60.04
	r76	1.5325	a876	110.26	d9761	180.65
	r87	1.0926	a976	110.56	d10761	300.53
	r97	1.0944	a1076	110.44	d11612	245.10
	r107	1.0943	al161	111.95	d121161	185.33
	r116	1.5417	a12116	110.43	d131161	305.63
	r1211	1.0946	a13116	110.88	d141161	65.51
	r1311	1.0925	al4116	109.64	d15612	133.42
	r1411	1.0931	a1561	110.60	d161561	301.05
	r156	1.4583	a16156	108.76	d171615	246.85
	r1615	1.4589	a171615	99.76	6	276.43
	r1716	. 9706	a1831	111.11	d18312	
	r183	1.1015				
$\mathrm{C}_{2} \mathrm{CYCOCC}$	r21	1.5534	a312	115.55	d4123	113.01
	r31	1.5237	a412	90.75	d5412	. 00
	r41	1.4659	a541	91.91	d6213	131.02
	r54	1.4440	a621	114.99	d7213	2.95
	r62	1.0927	a721	114.99	d8312	45.91
	r72	1.0927	a831	110.70	d9312	285.40
	r83	1.0939	a931	110.90	d10312	165.48
	r93	1.0958	a1031	110.26	d11123	226.02
	r103	1.0949	al112	115.55	d121112	194.50
	r111	1.5237	a12111	110.26	d131112	314.08
	r1211	1.0949	a13111	110.70	d141112	74.58
	r1311	1.0939	a14111	110.90	d15541	241.11
	r1411	1.0958	al 554	111.99	d16541	118.89
	rl55	1.0975	al654	111.99		
	r165	1.0975				

Table C. 2 Harmonic Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$ for Species in Neopentyl Oxidation System

species	Frequencies (Based on B3LYP/6-31g(d,p) level)											moments of inertia (amu-Bohr^2)	
TS14	-776.61	165.48	188.15	206.19	269.29	290.53	337.35	391.16	446.09	502.98	534.59	610.79	541.66730
	660.85	813.50	906.77	953.06	961.08	979.07	1029.10	1081.60	1177.30	1211.72	1240.13	1256.81	733.31647
	1284.10	1325.01	1410.91	1428.48	1489.58	1496.17	1506.65	1516.39	1523.67	1870.56	2944.57	3003.81	862.66991
	3061.28	3066.88	3134.38	3140.22	3146.18	3180.42							
TS15	-2170.79	139.14	191.74	208.93	246.98	303.44	357.35	386.73	427.34	525.11	565.10	591.25	587.46774
	636.36	797.92	841.51	888.83	926.49	968.79	1003.14	1022.52	1103.96	1128.97	1140.38	1218.65	685.89141
	1253.22	1266.31	1391.16	1416.57	1450.13	1466.49	1496.72	1506.83	1511.94	1701.18	2997.46	3054.71	906.08543
	3076.91	311997	3127.81	3143.55	3223.87	3746.00							
TS16	-1879.45	136.98	187.81	229.07	255.19	274.56	301.53	347.40	432.26	467.31	515.25	575.74	618.66169
	653.17	746.05	862.56	923.68	941.40	954.79	967.58	1025.42	1160.08	1183.22	1215.83	1250.58	725.72391
	1255.04	1316.08	1403.53	1420.27	1434.56	1490.71	1501.83	1510.59	1522.93	1760.77	3044.43	3053.91	928.86352
	3119.28	3123.30	3128.74	3139.61	314184	3788.71							
TS17	-166.98	93.81	100.59	139.27	167.22	186.32	217.49	221.32	292.91	339.28	385.39	395.04	560.58426
	532.02	631.94	795.53	911.00	960.66	993.02	1005.06	1075.03	1141.65	1249.67	1269.50	1288.43	970.64327
	1398.02	1414.28	1422.70	1480.11	1487.92	1488.89	1502.81	1509.25	1655.56	2892.87	2945.38	3018.84	1104.13205
	3028.67	3109.51	3123.58	3148.64	3170.40	3769.47							
TS18	-370.95	145.54	152.69	176.66	193.83	225.77	268.59	314.37	318.69	375.31	402.83	456.17	622.32056
	583.74	661.21	768.65	805.53	918.48	972.70	1004.27	1044.34	1083.80	1228.89	1245.05	1326.73	778.14761
	1354.76	1402.56	1421.58	1429.20	1486.92	1499.68	1501.50	1516.13	1580.93	3038.00	3044.07	3103.51	982.89549
	3106.70	3134.57	3142.34	3180.88	3545.29	3709.15							
TS19	-1084.93	125.55	150.84	161.94	197.52	208.22	238.46	255.11	285.54	364.75	419.48	541.69	701.35466
	572.80	636.99	827.77	938.89	972.59	1013.23	1030.97	1098.35	1136.95	1231.29	1268.30	1315.79	773.05938
	1335.96	1367.22	1421.07	1425.54	1479.99	1484.11	1489.56	1508.24	1581.05	1620.14	3013.43	3023.81	1055.28550
	3069.26	3097.76	3103.65	313557	3161.31	3795.45							
TS20	-1044.30	68.92	132.90	185.66	200.87	210.73	283.36	324.34	376.14	443.72	520.89	539.23	620.22709
	628.62	654.75	830.69	916.52	983.69	1010.16	1050.74	1064.90	1108.31	1215.82	1267.50	1308.93	891.49241
	1340.46	1396.31	1406.91	1419.89	1436.08	1486.33	1491.43	1502.59	1580.13	1621.83	2953.46	3025.75	1091.90899
	3089.68	3098.49	3120.48	3141.79	3206.73	3816.85							
TS21	-444.47	92.45	140.36	165.52	172.39	237.31	277.78	322.04	379.09	406.63	431.31	496.11	662.30445
	523.03	573.23	786.88	792.16	921.01	940.50	973.29	1036.44	1059.93	1112.57	1222.89	1307.12	741.77636
	1344.87	1376.92	1404.77	1430.82	1447.49	1487.15	1503.39	1505.25	1536.65	3007.46	3052.16	3066.33	986.96888
	3123.27	3155.88	3161.36	3253.41	3719.92	3759.19							

TS22	-862.96	109.00	206.01	232.00	261.11	311.22	359.28	425.38	458.25	494.71	548.92	600.38	433.02091
	686.90	805.85	918.89	922.98	954.75	987.66	1023.12	1061.61	1107.86	1158.75	1200.43	1238.88	912.79366
	1299.60	1314.46	1395.96	1420.30	1471.67	1489.84	1498.58	1507.01	1516.15	1853.24	3048.59	3053.40	939.12601
	3071.39	3123.61	3130.51	3142.55	3146.49	3155.67							
TS23	-1555.19	97.65	240.24	271.82	293.03	325.89	336.33	398.75	446.70	464.85	494.75	538.92	443.88667
	654.05	766.28	900.17	920.62	953.05	967.22	986.27	1015.42	1054.73	1107.70	1151.61	1184.19	922.24501
	1227.69	1270.16	1339.89	1382.59	1415.09	1459.74	1479.79	1505.12	1512.75	1596.19	3039.29	3047.19	971.51846
	311.55	3114.33	3120.59	3139.34	3218.04	3785.61							
TS24	-344.82	42.86	111.48	131.99	177.39	197.08	214.48	226.76	320.43	393.20	428.42	470.51	466.37029
	498.92	697.45	766.96	881.95	894.06	955.13	1003.26	1073.70	1099.03	1155.16	1196.72	1220.87	1118.81473
	1390.69	1401.36	1420.27	1444.07	1471.00	1482.98	1488.04	1503.31	1550.26	3036.35	3041.80	3108.01	1175.06671
	3116.39	313388	3145.69	3153.61	3260.33	3767.57							
TS25	-439.69	55.10	129.81	167.66	177.04	205.92	219.84	238.39	261.32	386.96	428.28	466.92	518.74301
	546.92	612.03	624.98	755.30	860.81	927.55	948.84	1003.50	1042.54	1079.11	1212.12	1275.39	975.78742
	1351.22	1375.46	1400.60	1431.61	1442.40	1451.33	1482.81	1490.99	1572.58	3043.27	3045.96	3105.08	1077.96484
	3120.13	3125.79	3171.12	3284.16	3301.16	3761.68							
TS26	-528.42	68.50	139.62	154.16	189.44	211.88	245.55	286.30	380.81	405.48	427.30	487.48	470.71667
	545.85	608.83	630.56	722.91	797.02	824.95	944.39	965.19	1031.01	1058.52	1072.60	1198.21	1053.75330
	1268.66	1317.72	1389.25	1416.07	1432.80	1440.40	1496.43	1507.14	1572.35	3045.81	3098.10	3112.96	1108.50657
	3136.03	3179.42	3231.13	3279.02	3751.02	3778.86							
TS27	-79.90	41.58	132.98	144.90	158.51	189.76	206.42	267.90	352.56	362.84	380.60	436.10	494.47096
	574.11	673.41	679.31	838.45	865.34	910.26	958.22	982.25	1022.63	1051.41	1079.38	1269.59	1070.02016
	1297.67	1369.51	1403.58	1409.24	1438.94	1439.51	1480.63	1492.94	1641.94	3010.21	3021.82	3079.22	1158.26576
	3085.38	3122.78	3157.69	325321	3748.80	3778.49							
TS28	-1507.76	146.51	192.12	221.35	261.36	283.50	346.12	391.75	408.54	463.35	501.62	539.41	555.63902
	638.46	730.89	825.08	854.98	930.64	943.83	985.18	1011.80	1020.11	1067.16	1076.54	1131.44	759.55005
	1192.35	1231.67	1247.70	1269.19	1356.25	1413.00	1428.04	1464.32	1487.09	1494.97	1503.17	1505.65	895.42886
	1526.03	1590.51	3012.97	3055.61	3061.11	3096.82	311592	3128.15	3134.92	3137.93	3159.15	3204.49	
TS29	-2191.00	86.35	165.36	226.39	238.05	265.27	294.25	345.98	405.13	433.17	537.17	562.09	515.14009
	632.32	758.68	785.02	859.24	917.01	928.19	944.22	999.98	1011.44	1068.10	1074.81	1107.90	856.28738
	1180.52	1214.53	1259.33	1321.71	1382.52	1414.58	1427.19	1466.44	1485.76	1504.46	1513.24	1514.71	995.21417
	1524.87	1719.05	3038.36	3054.92	3055.38	3075	3117.43	3122.02	. 3128.36	3142.88	3146.42	3213.23	
TS30	-2106.41	122.42	171.67	189.23	240.80	243.44	271.22	308.37	347.75	450.13	495.27	531.54	628.98505
	645.26	719.74	799.11	848.80	922.21	938.98	941.58	1003.60	1051.08	1062.27	1122.01	1167.46	747.35410
	1179.67	1245.75	1257.34	1371.36	1408.26	1419.34	1424.36	1485.64	1491.51	1497.95	1501.58	1510.82	955.77916

	1520.90	1729.04	3003.23	3050.49	3058.23	3086.64	3095.20	3122.28	3128.60	3132.05	3137.53	3147.91	
$\operatorname{TS} 31$	-789.67	66.52	149.68	201.33	222.07	246.87	257.64	327.32	338.01	384.42	443.98	462.56	585.80013
	543.92	591.92	752.56	791.47	812.00	900.78	933.63	973.35	995.52	1046.56	1054.85	1073.07	768.57659
	1176.60	1224.52	1254.80	1284.38	1318.72	1408.08	1421.11	1481.49	1486.89	1503.59	1504.99	1507.47	935.31001
	1526.99	3043.99	3044.45	3051.71	3104.25	3112.54	3118.15	3148.80	3153.01	3171.30	3274.19	3793.74	
TS32	-445.83	90.06	114.40	131.26	171.52	190.66	227.48	260.39	278.36	319.49	386.08	411.63	724.43943
	447.78	529.01	705.63	767.11	944.58	961.53	975.26	1009.84	1020.79	1079.38	1082.80	1132.72	748.90072
	1245.77	1354.93	1371.80	1410.99	1419.11	1425.73	1477.53	1489.74	1495.93	1503.03	1503.72	1524.37	1040.89366
	1547.90	3002.99	3039.55	3043.48	3069.84	3105.39	3108.87	3122.16	3133.86	3138.79	3173.95	3691.77	
TS33	-1047.23	76.88	116.45	162.84	179.20	195.57	230.05	261.09	388.18	425.27	469.81	602.41	476.86830
	610.72	666.13	781.43	807.48	945.33	1005.41	1010.48	1027.04	1045.82	1091.13	1112.17	1267.07	1160.72481
	1288.60	1321.39	1330.93	1362.23	1418.05	1421.50	1443.48	1490.63	1491.76	1508.95	1513.92	1524.78	1210.57056
	1578.71	1622.59	3029.01	3048.57	3054.91	3095.35	3100.48	3108.76	3122.60	3126.46	3140.06	3190.94	
TS34	-1016.99	112.31	139.41	159.87	168.69	197.32	205.25	228.39	291.49	385.77	421.81	520.26	726.51330
	538.98	630.12	782.12	870.84	950.53	977.49	1008.79	1066.08	1088.92	1098.23	1120.22	1252.29	788.64732
	1286.81	1329.24	1364.48	1420.25	1428.83	1435.22	1480.72	1485.13	1491.30	1504.83	1512.70	1516.65	1086.76603
	1578.35	1618.93	3017.90	3022.68	3040.70	3096.32	3099.13	3104.34	3105.09	3125.77	3137.97	3151.39	
TS35	-455.08	88.17	122.64	161.59	181.92	222.85	266.19	275.44	321.91	384.74	413.40	432.98	694.13142
	498.12	535.31	756.46	774.58	782.26	927.89	958.67	1009.24	1015.24	1055.95	1095.75	1109.49	757.19334
	1289.40	1317.26	1340.78	1373.38	1411.17	1428.13	1436.44	1481.10	1492.57	1507.40	1519.26	1528.60	1023.77418
	1537.80	3023.24	3046.27	3054.70	3088.04	3116.05	3117.58	3146.76	3150.73	3154.81	3251.71	3714.93	
$\mathrm{C} 2 \mathrm{C} \cdot \mathrm{COH}$	84.24	126.26	145.49	238.07	300.03	357.89	378.99	504.09	773.48	918.06	944.23	976.88	240.17783
	1002.57	1052.45	1063.68	1190.42	1268.72	1304.17	1380.02	1401.26	1414.89	1432.96	1483.42	1486.39	509.37807
	1501.02	1504.09	1509.29	2956.74	2960.23	2968.69	2992.52	3046.14	3053.80	3096.81	3126.81	3795.31	686.37155
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \bullet) \mathrm{COH}$	100.45	168.96	200.85	234.63	255.65	282.14	345.31	372.94	422.75	459.28	560.66	584.64	601.35747
	746.49	817.41	897.23	952.25	1002.89	1037.66	1111.59	1158.19	1210.33	1241.78	1260.83	1278.57	719.05489
	1395.57	1417.78	1430.49	1454.68	1491.85	1496.63	1507.08	1510.59	1521.90	2993.16	3058.10	3064.58	912.22639
	3083.34	3133.91	3134.92	3141.84	3166.34	3751.83							
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CO} \bullet$	149.37	187.07	208.26	227.47	272.81	286.07	345.40	376.74	409.63	434.83	497.30	573.17	577.22072
	637.28	812.23	847.96	947.64	949.55	976.91	1017.24	1067.04	1200.24	1221.51	1236.89	1276.16	719.06446
	1310.13	1408.99	1425.82	1484.19	1489.13	1494.95	1505.07	1517.07	1537.60	2939.11	3003.55	3062.09	883.39998
	3067.23	3134.03	3141.73	3147.93	3185.75	3323.72							
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH}$	33.79	137.47	208.42	215.83	236.63	251.50	264.61	312.28	347.21	392.59	444.35	489.07	562.97230
	567.96	657.52	753.94	871.82	922.22	936.11	973.43	1015.71	1150.25	1182.43	1197.53	1273.82	853.90607

	1308.93	1363.92	1395.46	1410.25	1433.84	1491.35	1501.05	1513.93	1524.93	3045.77	3050.24	3115.57	1002.43359
	3126.51	3141.50	3143.21	320004	3758.51	3809.77							
$\mathrm{C}_{2} \bullet \mathrm{C}(\mathrm{OH}) \mathrm{COOH}$	80.18	106.77	172.13	204.63	220.34	257.50	289.48	323.50	356.37	379.71	436.71	490.50	625.58632
	568.56	603.99	758.34	843.67	894.20	925.53	963.85	994.13	1084.81	1132.90	1227.76	1247.11	707.82806
	1285.99	1361.79	1391.95	1414.44	1435.73	1472.81	1498.46	1508.48	1515.27	3019.35	3062.20	3093.83	934.23151
	3135.97	3155.38	3159.00	3263.79	3751.35	3780.59							
$\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}$	121.45	172.72	281.07	353.09	387.08	433.24	538.10	722.86	840.37	928.88	959.20	984.67	203.01225
	1020.02	1076.41	1105.54	1220.36	1274.76	1388.12	1421.10	1425.49	1448.22	1493.70	1501.43	1510.18	492.55125
	1737.96	2958.88	3025.44	3050.84	3073.37	3129.49	3160.89	3247.56	3804.26				666.42133
$\mathrm{C}_{2} \mathrm{C}=\mathrm{COH}$	102.80	199.95	282.78	288.27	345.91	365.43	486.46	576.90	807.50	891.50	979.94	1021.79	219.96658
	1049.92	1102.10	1181.35	1213.77	1319.92	1414.05	1431.90	1443.54	1480.55	1496.73	1509.76	1517.83	485.51161
	1761.63	3012.07	3018.84	3055.95	306982	3084.92	311311	3201.37	3808.93				683.14805
$\mathrm{C}_{3} \bullet \mathrm{COH}$	114.89	226.45	269.93	319.94	333.18	351.79	404.43	444.88	463.86	546.37	762.46	903.65	368.40326
	924.93	943.57	989.44	1022.43	1133.43	1221.43	1267.90	1348.00	1404.18	1421.73	1466.94	1491.70	380.18490
	1496.85	1511.46	1520.11	3039.92	3049.34	3108.11	3124.17	3133.32	3138.25	3155.65	3266.64	3794.13	391.15873
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COO}$	79.17	179.32	224.21	237.38	261.78	312.61	352.48	399.41	445.72	458.67	487.57	609.17	432.88110
	765.39	873.81	928.94	941.51	950.95	1014.09	1032.43	1156.47	1167.43	1225.98	1249.68	1312.97	955.27980
	1355.45	1405.58	1421.19	1434.47	1474.97	1492.47	1503.92	1515.28	1524.16	3050.25	3055.47	3080.39	980.57601
	3124.98	3130.66	3138.24	3141.89	3149.88	3734.28							
$\mathrm{C}_{2} \mathrm{C}(\mathrm{O} \cdot \mathrm{COOH}$	82.00	106.60	177.64	200.03	215.91	229.27	248.32	331.66	340.57	358.79	454.67	520.50	396.63418
	752.03	893.41	918.55	930.41	946.22	968.22	996.09	1075.91	1134.32	1185.66	1239.81	1259.17	1185.78468
	1364.24	1378.23	1382.90	1412.21	1483.05	1494.61	1500.32	1518.78	1534.94	3021.56	3057.70	3061.79	1199.40993
	3080.57	3137.74	3145.62	3150.80	3158.67	3746.23							
$\mathrm{C}_{2} \bullet \mathrm{C}(\mathrm{OH}) \mathrm{COOH}$	68.58	156.70	180.53	200.30	243.66	255.58	295.36	372.18	390.93	405.95	453.71	494.92	440.31437
	541.40	602.77	766.03	860.03	906.74	919.05	972.67	1002.99	1018.87	1134.64	1180.87	1221.59	960.11607
	1300.26	1367.58	1392.95	1407.15	1416.82	1452.43	1464.39	1505.07	1508.17	3047.69	3051.11	3111.89	1002.80513
	3122.31	3145.75	3171.31	3289.29	3755.54	3780.26							
$\mathrm{CC}(=\mathrm{O}) \mathrm{COOH}$	64.30	130.52	153.41	194.18	261.38	389.18	466.31	498.89	570.48	770.24	852.63	908.50	64.30
	1003.84	1057.91	1109.81	1236.07	1280.35	1347.05	1379.13	1399.16	1442.82	1473.69	1484.43	1822.40	1003.84
	3037.36	3055.08	3095.03	3120.90	3170.04	3754.34							3037.36
$\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CO}$	75.73	178.33	262.51	390.12	409.93	559.03	702.51	795.48	818.46	932.43	971.58	1024.45	226.76715
	1063.65	1087.45	1142.01	1284.00	1332.24	1359.31	1420.83	1463.34	1488.94	1508.48	1736.55	2834.95	441.77374
	2962.50	3034.40	3097.76	3138.62	3149.64	3232.57							617.94217
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}$	33.35	105.73	122.26	199.27	233.99	343.21	380.14	428.88	736.93	783.93	938.43	946.14	262.47640

	985.46	1013.55	1027.81	1061.18	1085.71	1254.93			1373.68			1430.64	531.23194
	1484.71	1486.89	1493.50	1499.78	1506.49	1515.45	1520.60	2942.12	2950.31	2964.90	3041.63	3045.02	695.62378
	3049.36	3058.64	3095.71	3099.87	3111.59	3118.69							
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \bullet) \mathrm{CC}$	76.79	137.78	188.00	206.83	230.56	263.25	300.67	334.30	368.51	399.06	507.82	541.71	627.14289
	716.00	772.14	810.14	927.09	941.30	1010.98	1014.77	1074.94	1085.33	1178.77	1220.99	1230.12	750.12716
	1280.74	1336.83	1384.34	1409.22	1427.24	1429.98	1484.20	1496.29	1501.12	1507.68	1516.75	1520.24	957.38786
	1529.24	3048.08	3053.52	3056.79	3062.47	3095.41	3121.53	3128.28	3132.16	3135.14	3145.82	3149.40	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet$	48.54	174.60	194.75	201.23	222.49	239.06	293.43	323.27	337.24	364.96	404.26	450.55	657.63453
	519.86	547.01	725.96	838.08	867.56	927.39	948.47	955.47	1003.48	1028.22	1103.57	1135.91	700.81277
	1219.36	1249.70	1301.58	1363.62	1373.64	1410.00	1426.26	1464.50	1471.10	1493.27	1501.33	1507.53	939.25691
	1524.80	2978.35	3021.52	30533.35	3059.56	3124.82	3134.70	3141.45	3146.76	3165.47	3270.42	3736.66	
$\mathrm{C}_{2} \bullet \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$	78.52	92.49	152.33	192.72	216.42	229.24	257.60	283.30	330.33	362.17	397.56	485.80	631.60489
	530.84	583.05	733.37	780.39	843.04	925.49	939.35	979.28	1011.31	1018.23	1080.56	1167.74	751.21860
	1236.48	1261.67	1319.97	1360.34	1383.27	1413.59	1424.47	1470.49	1492.93	1497.62	1508.32	1516.30	969.18555
	1526.88	3046.90	3049.53	3060.10	3086.68	311881	312185	3139.44	3140.77	3160.56	3271.29	3757.94	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \bullet \mathrm{C}$	81.03	85.97	141.09	203.14	216.45	228.33	261.56	280.24	303.35	343.72	399.86	422.50	658.15366
	533.69	566.01	746.41	844.61	919.51	927.42	942.40	992.66	1015.05	1047.16	1128.68	1169.52	720.77823
	1215.59	1267.36	1357.45	1387.43	1403.54	1418.42	1420.31	1481.38	1489.74	1497.03	1501.52	1510.79	963.37973
	1525.06	299386	3050.31	3055.06	3064.78	3109.43.	3123.03	3130.95	313926	3143.57	3181.03	3762.66	
$\mathrm{C}_{2} \mathrm{CYCOCC}$	71.55	207.36	252.21	315.84	346.81	398.31	436.66	650.81	792.47	856.61	865.99	922.72	354.33387
	967.10	970.85	1007.63	1030.34	1036.60	1165.38	1182.66	1216.78	1245.22	1291.60	1294.60	1361.17	549.78273
	1414.39	1425.38	1488.28	1496.01	1502.98	1508.78	1520.26	1549.93	3022.48	3038.61	3044.45	3060.27	608.23003
	3080.97	3110.85	3117.78	3122.38	3125.60	3136.01							

Table C. 3 Calculated $\Delta H_{\mathrm{f}}{ }^{0}{ }_{298}$ Values ${ }^{\text {a }}$

Reaction Series	$\begin{gathered} \text { B3LYP } \\ 16-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$		$\begin{gathered} \text { B3LYP } \\ 11++G(3 \mathrm{df}, 2 \mathrm{p}) \end{gathered}$		$\begin{gathered} \text { CBSQ//B3LYP } \\ \hline 6-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \\ \hline \end{gathered}$	
	$\Delta H^{\circ}{ }_{\text {rxn }}$	$\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$	$\Delta H_{\text {rxn }}^{0}$	$\Delta H_{\mathrm{f}}{ }^{\text {² }} 298$	$\Delta H_{\text {rxn }}^{0}$	$\Delta H_{f}{ }^{\circ}{ }_{298}$
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{COH}+\mathrm{CH}_{3}$	6.08	-28.09	5.15	-27.16	0.21	-22.22
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{COH}+\mathrm{C}_{2} \mathrm{H}_{5}$	1.32	-27.00	0.46	-26.14	-3.45	-22.23
						-22.22
$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{COH}+\mathrm{C}_{2} \mathrm{H}_{5}$	3.79	-22.29	3.48	-21.98	6.65	-25.15
$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{COH}+\mathrm{C}_{2} \mathrm{H}_{5}$	-0.80	-24.88	-1.11	-24.57	-1.56	-24.12
						-24.64
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH}+\mathrm{CH}_{4} \rightarrow \mathrm{COO} \cdot+\mathrm{C}_{3} \mathrm{COH}$	13.73	-68.41	11.08	-65.76	8.03	-62.71
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CCOO} \cdot+\mathrm{C}_{3} \mathrm{COH}$	8.33	-69.61	5.68	-66.96	1.92	-63.20
						-62.96
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COO} \cdot+\mathrm{CH}_{4} \rightarrow \mathrm{COO} \cdot+\mathrm{C}_{3} \mathrm{COH}$	6.76	-61.44	4.48	-59.16	6.83	-61.51
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COO} \bullet+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CCOO} \cdot+\mathrm{C}_{3} \mathrm{COH}$	1.36	-62.64	-0.91	-60.37	0.72	-62.00
						-61.76
$\mathrm{C}_{2} \mathrm{C}(\mathrm{O} \cdot) \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{CO} \cdot+\mathrm{CCOOH}$	-0.96	-41.64	-2.11	-40.49	-1.38	-41.22
$\mathrm{C}_{2} \mathrm{C}(\mathrm{O} \cdot) \mathrm{COOH}+\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow \mathrm{C}_{3} \mathrm{CO} \cdot+\mathrm{CCCOOH}$	-0.65	-42.24	-1.63	-41.26	-1.52	-41.37
						-41.30
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{COH}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \cdot \mathrm{COH}+\mathrm{CCOOH}$	5.19	-41.95	2.47	-39.23	7.50	-44.26
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{COH}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \cdot \mathrm{COH}+\mathrm{CCCOOH}$	3.89	-43.37	1.24	-40.72	4.59	-44.07
						-44.16
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{COOH}+\mathrm{CH}_{4} \rightarrow \mathrm{C} \cdot \mathrm{COOH}+\mathrm{CCCOH}$	6.59	-42.93	4.16	-40.50	10.34	-46.68
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{COOH}+\mathrm{CH}_{4} \rightarrow \mathrm{C} \cdot \mathrm{CCOOH}+\mathrm{CCOH}$	2.00	-45.52	-0.42	-43.10	2.13	-45.65
						-46.17
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{COOH}+\mathrm{CC} \cdot \mathrm{OH}$	1.17	-45.58	-0.16	-44.25	4.75	-49.16
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH} \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{COOH}$	4.47	-48.74	4.86	-49.13	4.36	-48.63
						-48.90
$\mathrm{C}_{2} \mathrm{C}\left(\mathrm{OO} \cdot \mathrm{CCC}^{+} \mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{COO} \cdot+\mathrm{C}_{3} \mathrm{H}_{8}\right.$	3.65	-27.98	2.92	-27.25	9.51	-33.84
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CCCOO} \cdot \mathrm{i}-\mathrm{C}_{3} \mathrm{OH}$	-1.01	-28.34	-1.29	-28.06	4.51	-33.86
						-33.58
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet \rightarrow \mathrm{C}_{3} \cdot \mathrm{CCOOH}$	5.99	-15.42	5.19	-14.62	2.04	-14.34
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{CH}_{3} \cdot$	10.24	-16.13	9.24	-15.13	8.73	-14.62
						-14.48
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \rightarrow \mathrm{C}_{3} \cdot \mathrm{CCOOH}$	3.67	-13.10	2.87	-12.30	3.14	-12.57
$\mathrm{C}_{2}{ }^{\bullet} \mathrm{C}(\mathrm{OOH}) \mathrm{CC}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{CH}_{3}{ }^{\bullet}$	7.91	-13.80	6.92	-12.81	6.69	-12.58
						-12.58
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C} \rightarrow \mathrm{C}_{3} \cdot \mathrm{CCOOH}$	8.90	-18.33	8.07	-17.50	7.19	-16.62
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{CH}_{3}{ }^{\text {• }}$	13.14	-19.03	12.12	-18.01	10.74	-16.63
						-16.63
$\mathrm{C}_{2} \mathrm{CYCOCC} \rightarrow \mathrm{C}_{2} \mathrm{CYCCOC}$	5.81	-41.24	5.45	-40.88	4.34	-39.77
$\mathrm{C}_{2} \mathrm{CYCOCC}+\mathrm{CH}_{3} \mathrm{OOH} \rightarrow \mathrm{CCQCYCOCC}+\mathrm{CH}_{4}$	1.11	-39.95	2.03	-40.87		

${ }^{2}$ Units in kcal mol ${ }^{-1}$.

Table C. 4 Calculated Ideal Gas Phase Thermodynamic Properties ${ }^{\mathrm{a}}$

Species	$\Delta H_{\mathrm{f} 298}{ }^{\text {b }}$	$S^{\circ}{ }_{298}{ }^{\text {c }}$	$\mathrm{C}_{P} 300{ }^{\text {c }}$	$C_{p} 400$	$C_{p} 500$	$C_{p} 600$	$C_{P} 800$	$\mathrm{C}_{P} 1000$	$\mathrm{C}_{p} 1500$
TS14	-40.83	86.63	32.89	40.87	47.65	53.2	61.51	67.35	75.97
TS15	-27.25	89.32	32.15	39.96	46.52	51.85	59.78	65.44	74.10
TS16	-34.3	89.09	32.34	39.9	46.32	51.56	59.5	65.19	73.96
TS17	-37.37	94.07	34.28	40.97	46.84	51.8	59.54	65.29	74.35
TS18	-37.51	88.65	33.63	40.79	46.85	51.84	59.48	65.13	74.11
TS19	-30.78	82.75	27.74	34.8	41.03	46.26	54.26	60.05	68.92
TS20	-30.73	88.09	30.36	37.86	44.46	49.97	58.35	64.38	73.56
TS21	-31.01	92.64	34.00	41.36	47.48	52.43	59.92	65.41	74.20
TS22	-38.95	85.15	31.10	39.16	45.97	51.54	59.92	65.90	74.97
TS23	-35.03	87.89	31.64	39.64	46.42	51.92	60.13	65.95	74.84
TS24	-31.99	94.60	34.21	41.24	47.24	52.19	59.78	65.39	74.30
TS25	-28.36	95.56	34.92	41.73	47.55	52.35	59.69	65.09	73.68
TS26	-20.26	97.60	35.60	42.52	48.30	53.01	60.19	65.51	74.15
TS28	-9.10	85.78	33.26	42.46	50.33	56.78	66.54	73.57	84.34
TS29	2.36	88.38	33.72	42.73	50.46	56.83	66.52	73.53	84.32
TS30	-0.50	88.78	34.22	43.00	50.52	56.73	66.17	73.03	83.60
TS31	5.00	91.45	35.65	44.21	51.43	57.32	66.34	73.00	83.64
TS32	-4.65	93.85	36.33	44.18	50.99	56.68	65.56	72.20	82.81
TS33	-4.04	91.96	34.02	42.47	49.98	56.30	66.08	73.20	84.15
TS34	-3.76	91.39	34.76	42.95	50.21	56.33	65.81	72.75	83.46
TS35	1.03	92.47	35.76	43.90	50.93	56.79	65.89	72.67	83.49
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}$	-22.22	86.95	25.21	30.47	35.62	40.22	47.71	53.40	62.47
$\mathrm{C}_{2} \mathrm{C}\left(\mathrm{OO} \cdot \mathrm{COH}^{\text {coser }}\right.$	-62.71	96.31	32.88	40.05	46.21	51.26	58.87	64.38	73.01
$\mathrm{C}_{2}{ }^{\circ} \mathrm{C}(\mathrm{OOH}) \mathrm{COH}$	-46.68	103.72	34.91	41.62	47.29	51.92	58.95	64.09	72.29
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH}$	-49.16	100.02	35.27	42.32	48.23	52.99	60.05	65.07	72.90
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CO} \cdot$	-43.52	95.94	34.35	41.71	47.89	52.90	60.41	65.77	73.95
$\mathrm{C}_{2} \mathrm{C}=\mathrm{COH}$	-49.50	80.02	25.98	31.14	35.75	39.73	46.12	51.01	58.89
$\mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}$	-39.81	83.04	24.68	29.78	34.45	38.49	44.97	49.91	57.83
$\mathrm{C}(\mathrm{C}=\mathrm{O}) \mathrm{COOH}$	-68.21	90.1	27.6	32.56	36.75	40.15	45.18	48.7	54.05
$\mathrm{C}_{3}{ }^{\circ} \mathrm{COH}$	-24.12	85.52	27.71	33.73	38.84	43.07	49.69	54.73	62.97
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COO} \cdot$	-61.76	98.71	32.63	39.89	46.08	51.11	58.59	63.97	72.33
$\mathrm{C}_{2} \mathrm{C}\left(\mathrm{O} \cdot \mathrm{CQQ}^{\text {Cl }}\right.$	-41.30	99.14	34.46	41.64	47.77	52.76	60.15	65.35	73.27
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{CQ}$	-44.27	102.41	35.39	42.44	48.27	52.95	59.90	64.90	72.74
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}$	-33.58	91.05	34.81	43.26	50.65	56.82	66.39	73.47	84.58
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \cdot$	-12.58	96.27	37.49	45.84	52.99	58.89	67.99	74.74	85.51
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$	-14.48	93.80	37.33	45.79	53.00	58.94	68.07	74.83	85.58
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}$	-16.63	93.22	37.40	45.61	52.73	58.67	67.86	74.68	85.52
$\mathrm{C}_{2} \mathrm{CYCOCC}$	-39.77	80.17	27.29	35.27	42.39	48.35	57.56	64.32	74.78

${ }^{2}$ Thermodynamic properties are referred to a standard state of an ideal gas of pure enantiometer at 1 atm . Units in kcal mol ${ }^{-1}$. ${ }^{\text {c }}$ Units in cal mol ${ }^{-1} \mathrm{~K}^{-1}$. ${ }^{\text {d }}$ Furuyama, S.; Golden, D. M.; Benson, S. W. Int. J. Chem.
Kinet. 1969, 1(3), 283. ${ }^{\text {e }}$ Bedjanian, Y.; Bras, G. L.; Poulet, G. J. Phys. Chem. 1997, 101, 4088.

Table C. 5 Input and Output Kinetic Parameters for QRRK and Master Equation Analysis in $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}$ System

$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$	$5.43 \mathrm{E}+63$	-15.45	30741	1.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$	$2.10 \mathrm{E}+17$	-0.80	19224	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$4.21 \mathrm{E}+52$	-12.48	47354	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$2.00 \mathrm{E}+28$	-4.78	39256	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$1.68 \mathrm{E}+12$	0.27	33611	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$	$6.38 \mathrm{E}+60$	-15.15	49549	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$	$3.62 \mathrm{E}+35$	-7.14	41228	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$	$1.59 \mathrm{E}+18$	-1.69	35161	10.0
$\mathrm{C}_{2} \mathrm{C}\left(\mathrm{OO} \cdot \mathrm{COH} \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CH}_{2} \mathrm{O} \cdot\right.$	$1.69 \mathrm{E}+28$	-5.22	29320	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CH}_{2} \mathrm{O} \cdot$	$8.49 \mathrm{E}+13$	-0.73	24300	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CH}_{2} \mathrm{O} \cdot$	$1.17 \mathrm{E}+07$	1.41	21827	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{COH}$	$3.06 \mathrm{E}+69$	-18.20	55850	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{COH}$	$1.55 \mathrm{E}+42$	-9.49	47186	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{COH}$	$1.19 \mathrm{E}+21$	-2.83	39925	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH}$	$5.71 \mathrm{E}+49$	-11.90	42683	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH}$	$4.60 \mathrm{E}+27$	-4.92	35193	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{COH} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH}$	$1.67 \mathrm{E}+14$	-0.71	30433	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CH}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$1.98 \mathrm{E}+37$	-8.81	16178	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CH}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$1.05 \mathrm{E}+39$	-9.01	16753	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CH}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$1.06 \mathrm{E}+41$	-9.29	18012	10.0
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{COH} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$1.18 \mathrm{E}+61$	-15.39	37591	0.1
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{COH} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$9.98 \mathrm{E}+39$	-8.64	31028	1.0
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{COH} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$1.79 \mathrm{E}+32$	-6.22	28209	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$	$2.60 \mathrm{E}+45$	-10.97	24741	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$	$8.21 \mathrm{E}+37$	-8.33	23716	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{COH}+\mathrm{HO}_{2}$	$1.19 \mathrm{E}+25$	-4.22	19661	10.0

${ }^{\text {a }}$ Estimated from CCC• $+\mathrm{O}_{2}$, Atkinson, R.; Baulch, D. L.; Cox, R. A.; R. F. Hampson, J.; Kerr, J. A.; Troe, J. J. Chem. Ref. Data 1989, 18, 881. ${ }^{b}$ From the principle of microscopic reversibility, and $\mathrm{E}_{\mathrm{a}}=$ $\Delta H_{\mathrm{rxn}}^{\mathrm{o}}-\mathrm{RT}$.

Table C. 6 Input and Output Kinetic Parameters for QRRK and Master Equation Analysis in $\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}$ System

$\mathrm{C}_{2} \mathrm{C}(\mathrm{O} \cdot) \mathrm{CQ} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$7.25 \mathrm{E}+50$	-12.13	25820	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{O} \cdot) \mathrm{CQ} \rightarrow \mathrm{CH}_{3}+\mathrm{C}(\mathrm{C}=\mathrm{O}) \mathrm{CQ}$	$2.13 \mathrm{E}+44$	-11.24	22449	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{O} \cdot) \mathrm{CQ} \rightarrow \mathrm{CH}_{3}+\mathrm{C}(\mathrm{C}=\mathrm{O}) \mathrm{CQ}$	$7.19 \mathrm{E}+46$	-11.68	23705	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{O} \cdot) \mathrm{CQ} \rightarrow \mathrm{CH}_{3}+\mathrm{C}(\mathrm{C}=\mathrm{O}) \mathrm{CQ}$	$8.23 \mathrm{E}+49$	-12.18	26352	10.0
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{CQ} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{OH}$	$1.37 \mathrm{E}+62$	-16.28	41988	0.1
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{CQ} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{OH}$	$8.58 \mathrm{E}+64$	-16.02	49015	1.0
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{CQ} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{OH}$	$6.83 \mathrm{E}+36$	-7.06	40010	10.0
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{CQ} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{OH}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$3.59 \mathrm{E}+37$	-8.49	27453	0.1
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{CQ} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{OH}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$1.27 \mathrm{E}+31$	-5.95	28130	1.0
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OH}) \mathrm{CQ} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{OH}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$7.35 \mathrm{E}+13$	-0.51	22271	10.0

${ }^{\text {a }}$ Estimated from CCC $\bullet+\mathrm{O}_{2}$, Atkinson, R.; Baulch, D. L.; Cox, R. A.; R. F. Hampson, J.; Kerr, J. A.; Troe, J. J. Chem. Ref. Data 1989, 18, $881 .{ }^{\text {b }}$ From the principle of microscopic reversibility, and $\mathrm{E}_{\mathrm{a}}=\Delta H_{\mathrm{rxn}}^{0}-\mathrm{RT} .{ }^{\text {c }}$ Chen, C.-J.; Bozzelli, J. W. J. Phys. Chem. A 1999, 103, 9731.

Table C. 7 Input and Output Kinetic Parameters for QRRK and Master Equation Analysis in $\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{C}+\mathrm{O}_{2}$ System

	QRRK input parameters				
adducts	frequency / degeneracy				
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}$	481.5 / 19.682	1533.1/19.160		$3900.0 / 9.159$	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \cdot$	452.8 / 20.449	$1467.6 / 18.005$		$3711.9 / 9.546$	
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}$	437.4 / 19.987	1471.3/18.509		3709.6 / 9.504	
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$	445.6 / 20.315	1464.9 / 18.046		3708.0 / 9.639	
Lennard-Jones parameter	$\sigma(\AA)$	ε / k (K)			
	5.86	632			
reaction	$A\left(\mathrm{~s}^{-1}\right.$ or cm $\left.{ }^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$		$\begin{aligned} & E_{a}(\mathrm{kcal} \\ & \left.\mathrm{mol}^{-1}\right) \end{aligned}$		
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}$	$3.60 \times 10^{12 \mathrm{a}}$	0.0	0.0		
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2}$	$3.49 \times 10^{16 \mathrm{~b}}$	0.0		38.06	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet$	1.90×10^{7}	1.57887		23.83	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$	1.03×10^{8}	1.53572		35.38	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}$	2.30×10^{10}	0.81833		33.21	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	3.46×10^{9}	1.28816		29.62	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	2.23×10^{11}	0.68558		31.24	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}$	3.31×10^{8}	0.72840		3.20	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{CYCOCC}+\mathrm{OH}$	1.89×10^{9}	0.94503		17.39	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}$	1.20×10^{12}	0.03464		16.59	
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C} \rightarrow \mathrm{CC}=\mathrm{CC}_{2}+\mathrm{HO}_{2}$	5.75×10^{13}	-0.10708		12.76	
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}\left(\mathrm{OO} \cdot \mathrm{COH}^{\circ}\right.$	1.78×10^{9}	0.68525		14.74	
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	2.84×10^{10}	0.62675		13.65	
	QRRK output parameters				
	$A\left(\mathrm{~s}^{-1} \mathrm{or} \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right) \quad n$		$E_{a}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$		$\mathrm{P}(\mathrm{atm})$
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}$	$6.97+118$	-34.24	32313		0.1
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}$	$1.06+108$	-30.42	3079		1.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC}$	$5.27 \mathrm{E}+86$	-23.42	2514		10.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$2.10 \mathrm{E}+42$	-9.75	13187		0.1
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$6.96 \mathrm{E}+51$	-12.46	1947		1.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$1.18 \mathrm{E}+52$	-12.28	2285		10.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$2.02 \mathrm{E}+39$	-8.94	12132		0.1
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$2.02 \mathrm{E}+50$	-12.11	1886		1.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$5.24 \mathrm{E}+52$	-12.60	23042		10.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \cdot$	$1.95+102$	-31.63	27090		0.1
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \cdot$	$5.97 \mathrm{E}+75$	-23.26	1612		1.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \cdot$	$2.00 \mathrm{E}+69$	-21.20	11178		10.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{CyCOCC}+\mathrm{OH}$	$1.55 \mathrm{E}+16$	-1.97	9133		0.1
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{CyCOCC}+\mathrm{OH}$	$1.27 \mathrm{E}+31$	-6.40	16648		1.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{CyCOCC}+\mathrm{OH}$	$2.33 \mathrm{E}+49$	-11.70	27392		10.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$	$1.85+127$	-38.46	38402		0.1
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$	$2.52+155$	-46.39	53726		1.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$	$1.09+166$	-48.79	64364		10.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$8.41 \mathrm{E}+30$	-6.65	13140		0.1
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$2.91 \mathrm{E}+57$	-14.51	26862		1.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$1.40 \mathrm{E}+73$	-18.83	38853		10.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}$	$1.19 \mathrm{E}+96$	-29.60	25599		0.1
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}$	$1.54 \mathrm{E}+99$	-30.00	28320		1.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}$	$2.63+118$	-35.27	38576		10.0

$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$3.19 \mathrm{E}+32$	-7.10	10964	0.1
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$1.48 \mathrm{E}+45$	-10.79	18170	1.0
$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CC}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$9.97 \mathrm{E}+52$	-12.93	24568	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$9.21 \mathrm{E}+74$	-19.68	49994	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$4.37 \mathrm{E}+65$	-16.50	48163	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$5.75 \mathrm{E}+49$	-11.37	43513	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$9.40 \mathrm{E}+79$	-21.39	52146	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$3.77 \mathrm{E}+71$	-18.46	50864	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$6.48 \mathrm{E}+55$	-13.33	46470	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \cdot$	$1.73 \mathrm{E}+58$	-14.58	40698	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet$	$2.00 \mathrm{E}+47$	-11.03	37584	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \cdot$	$1.65 \mathrm{E}+33$	-6.55	32996	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$	$1.17 \mathrm{E}+83$	-22.90	56781	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$	$3.09 \mathrm{E}+77$	-20.73	57045	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC}$	$1.71 \mathrm{E}+63$	-15.95	53812	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}$	$2.22 \mathrm{E}+82$	-22.46	54497	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot{ }^{\text {C }}$	$1.74 \mathrm{E}+75$	-19.88	53938	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OO} \cdot) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{C} \cdot \mathrm{C}$	$9.76 \mathrm{E}+59$	-14.85	50013	10.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet \rightarrow \mathrm{C}_{2} \mathrm{CyCOCC}+\mathrm{OH}$	$1.85 \mathrm{E}+34$	-9.03	18124	0.1
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet \rightarrow \mathrm{C}_{2} \mathrm{CyCOCC}+\mathrm{OH}$	$1.48 \mathrm{E}+38$	-9.83	19889	1.0
$\mathrm{C}_{2} \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \bullet \rightarrow \mathrm{C}_{2} \mathrm{CyCOCC}+\mathrm{OH}$	$1.58 \mathrm{E}+38$	-9.08	22656	10.0
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$1.29 \mathrm{E}+72$	-18.80	38219	0.1
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$4.41 \mathrm{E}+75$	-19.59	40547	1.0
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \rightarrow \mathrm{C}=\mathrm{C}(\mathrm{C}) \mathrm{CC}+\mathrm{HO}_{2}$	$4.81 \mathrm{E}+66$	-16.47	38956	10.0
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$5.07 \mathrm{E}+56$	-14.30	27993	0.1
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$1.48 \mathrm{E}+58$	-14.46	28633	1.0
$\mathrm{C}_{2} \cdot \mathrm{C}(\mathrm{OOH}) \mathrm{CC} \rightarrow \mathrm{C}_{2} \mathrm{C}=\mathrm{CC}+\mathrm{HO}_{2}$	$2.19 \mathrm{E}+61$	-15.16	30483	10.0

${ }^{\text {a }}$ Estimated from CCC• $+\mathrm{O}_{2}$, Atkinson, R.; Baulch, D. L.; Cox, R. A.; R. F. Hampson, J.; Kerr, J. A.; Troe, J. J. Chem. Ref. Data 1989, 18, 881. ${ }^{\text {b }}$ From the principle of microscopic reversibility, and $\mathrm{E}_{\mathrm{a}}=\Delta H_{\mathrm{rxn}}^{0}-\mathrm{RT}$.

Table C. 8 Detailed Reaction Mechanism ${ }^{a d}$

No.	Reactions	A	n	E_{a}	ref
1	$\mathrm{Cl}+\mathrm{Cl}+\mathrm{M}=>\mathrm{Cl}_{2}+\mathrm{M}$	$2.00 \mathrm{E}+15$	0.0	0	a
2	$\mathrm{Cl}+\mathrm{C}_{3} \mathrm{CC}<>\mathrm{C}_{3} \mathrm{CC} .+\mathrm{HCl}$	$7.96 \mathrm{E}+13$	0.0	70	a
3	$\mathrm{OH}+\mathrm{Cl}<=>\mathrm{O}+\mathrm{HCl}$	$5.90 \mathrm{E}+12$	0.0	5683	a
4	$\mathrm{OH}+\mathrm{Cl}<\Rightarrow \mathrm{ClO}+\mathrm{H}$	$1.25 \mathrm{E}+17$	-0.7	38017	b
5	$\mathrm{OH}+\mathrm{Cl}_{2}<=>\mathrm{HOCl}+\mathrm{Cl}$	$8.43 \mathrm{E}+11$	0.0	1788	a
6	$\mathrm{HO}_{2}+\mathrm{Cl}<=>\mathrm{ClO}+\mathrm{OH}$	$2.47 \mathrm{E}+13$	0.0	894	c
7	$\mathrm{Cl}+\mathrm{HO}_{2}<\Rightarrow \mathrm{HCl}+\mathrm{O}_{2}$	$1.08 \mathrm{E}+13$	0.0	-340	d
8	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}<=>\mathrm{C}_{3} \mathrm{CCOO} \bullet$	$9.07 \mathrm{E}+77$	-21.1	21221	b
9	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}<\Rightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH}$	$5.19 \mathrm{E}+47$	-11.2	26797	b
10	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2}<\gg \mathrm{C}_{3} \cdot \mathrm{CCQ}$	$3.83 \mathrm{E}+95$	-28.8	20237	b
11	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2} \ll>\mathrm{C}_{2} \mathrm{CYCCOC}+\mathrm{OH}$	$1.22 \mathrm{E}+63$	-15.5	27359	b
12	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2} \Longleftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{CH}_{3}$	$3.89 \mathrm{E}+59$	-14.6	30830	b
13	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2} \Longleftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$8.68 \mathrm{E}+55$	-13.4	30887	b
14	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}_{2} \Leftrightarrow>\mathrm{CCC} \cdot(\mathrm{C}) \mathrm{COOH}$	$8.40 \mathrm{E}+41$	-10.0	48579	b
15	$\mathrm{C}_{3} \mathrm{CCOO} \bullet \Leftrightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH}$	$2.29 \mathrm{E}+68$	-17.5	61948	b
16	$\mathrm{C}_{3} \mathrm{CCOO} \bullet \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCQ}$	$4.34 \mathrm{E}+21$	-3.2	28736	b
17	$\mathrm{C}_{3} \cdot \mathrm{CCQ} \Leftrightarrow>\mathrm{C}_{2} \mathrm{CYCCOC}+\mathrm{OH}$	$1.98 \mathrm{E}+13$	-1.2	12419	b
18	$\mathrm{C}_{3} \cdot \mathrm{CCQ} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{CH}_{3}$	$2.24 \mathrm{E}+12$	-1.6	17148	b
19	$\mathrm{C}_{3} \cdot \mathrm{CCQ} \Longleftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$7.47 \mathrm{E}+08$	-0.5	17263	b
20	$\mathrm{C}_{3} \cdot \mathrm{CCQ} \Leftrightarrow$ CCC $\cdot(\mathrm{C}) \mathrm{COOH}$	$3.42 \mathrm{E}+16$	-8.3	34105	b
21	$\mathrm{C}_{2} \mathrm{CyCCOC}+\mathrm{H} \Leftrightarrow \mathrm{C}_{2} \mathrm{CyCCOC} \cdot+\mathrm{H}_{2}$	$9.60 \mathrm{E}+08$	1.5	5677.5	a
22	$\mathrm{C}_{2} \mathrm{CyCCOC}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{2} \mathrm{CyCCOC} \bullet+\mathrm{H}_{2} \mathrm{O}$	$4.80 \mathrm{E}+06$	2.0	-120	a
23	$\mathrm{C}_{2} \mathrm{CyCCOC}+\mathrm{O} \Longleftrightarrow \mathrm{C}_{2} \mathrm{CyCCOC} \bullet+\mathrm{OH}$	$6.80 \mathrm{E}+08$	1.5	3422.5	a
24	$\mathrm{C}_{2} \mathrm{CyCCOC}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{C}_{2} \mathrm{CyCCOC} \bullet+\mathrm{CH}_{4}$	$3.24 \mathrm{E}+06$	1.9	8864.5	a
25	$\mathrm{C}_{2} \mathrm{CyCCOC}+\mathrm{O}_{2}<>\mathrm{C}_{2} \mathrm{CyCCOC} \bullet+\mathrm{HO}_{2}$	$1.81 \mathrm{E}+13$	0.0	51150	a
26	$\mathrm{C}_{2} \mathrm{CyCCOC}+\mathrm{Cl} \Longleftrightarrow \mathrm{C}_{2} \mathrm{CyCCOC} \bullet+\mathrm{HCl}$	$2.56 \mathrm{E}+13$	0.0	825	a
27	$\mathrm{C}_{2} \mathrm{CyCCOC} \bullet<\mathrm{C}_{3} \cdot \mathrm{CCHO}$	$2.75 \mathrm{E}+77$	-20.2	45152	b
28	$\mathrm{C}_{2} \mathrm{CyCCOC} \bullet<=>\mathrm{C} \mathrm{C}^{*} \mathrm{COC} \bullet$	$3.30 \mathrm{E}+66$	-18.6	45287	b
29	$\mathrm{C}_{3} \cdot \mathrm{CCHO} \Longleftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{HCO}$	$3.14 \mathrm{E}+50$	-12.4	30888	b
30	$\mathrm{C}_{3} \cdot \mathrm{CCHO} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CHO}+\mathrm{CH}_{3}$	$1.02 \mathrm{E}+65$	-17.2	41717	b
31	$\mathrm{C}_{2} \mathrm{C} * \mathrm{COC} \bullet \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C} \bullet+\mathrm{CH}_{2} \mathrm{O}$	$5.36 \mathrm{E}+42$	-9.1	50471	b
32	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C} \cdot+\mathrm{O}_{2}<=>\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{CQ} \cdot$.	$5.49 \mathrm{E}+68$	-18	17646	e
33	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C} \cdot+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{C} \cdot \mathrm{C}^{*} \mathrm{O}+\mathrm{O}$	$4.81 \mathrm{E}+38$	-7.7	13996	e
34	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C} \cdot+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{CQ}$	$1.33 \mathrm{E}+33$	-8.5	14202	e
35	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C} \bullet+\mathrm{O}_{2} \Leftrightarrow>\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{C}^{*} \mathrm{O}+\mathrm{OH}$	$1.34 \mathrm{E}+36$	-7.8	14337	e
36	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C} \cdot+\mathrm{O}_{2} \Longleftrightarrow \mathrm{C}^{*} \mathrm{C}^{*} \mathrm{CQ}+\mathrm{CH}_{3}$	$1.78 \mathrm{E}-20$	7.8	11502	e
37	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C} \cdot+\mathrm{O}_{2}<>\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{CyCOO}$	$5.56 \mathrm{E}+39$	-9.5	10274	e
38	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C} \cdot+\mathrm{O}_{2}<>\mathrm{C}_{2} \mathrm{C} * \mathrm{O}+\mathrm{HCO}$	$5.67 \mathrm{E}+29$	-5.7	12936	e
39	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C} \bullet+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{CyCOOC} \bullet$	$4.40 \mathrm{E}+40$	-10.6	11402	e
40	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C} \cdot+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{O}+\mathrm{HCO}$	$2.85 \mathrm{E}+41$	-9.3	14739	e
41	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{CQ} \cdot \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{\bullet} \mathrm{C}^{*} \mathrm{O}+\mathrm{O}$	$1.81 \mathrm{E}+60$	-14.5	51298	e
42	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{CQ} \bullet \Leftrightarrow \mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{CQ}$	$3.89 \mathrm{E}+45$	-12.5	47086	e
43	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{CQ} \cdot<=>\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{C}^{*} \mathrm{O}+\mathrm{OH}$	$1.36 \mathrm{E}+49$	-11.9	47445	e

$\left.\begin{array}{llllll}49 & \mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{CQ} \Leftrightarrow>\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{C}^{*} \mathrm{O}+\mathrm{OH} & 8.71 \mathrm{E}+10 & -0.8 & -260 & \mathrm{e} \\ 50 & \mathrm{C}_{2} \cdot{ }^{\bullet} * \mathrm{CQ} \Leftrightarrow=\mathrm{C}^{*} \mathrm{C}^{*} \mathrm{CQ}+\mathrm{CH} \\ 5\end{array}\right)$

93	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \ll \mathrm{C}_{2} \mathrm{CQCO} \cdot$	$2.94 \mathrm{E}+92$	-28.0	28851
94	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$1.17 \mathrm{E}+58$	-14.0	21219
95	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2}<\Rightarrow \mathrm{C}_{2} \bullet \mathrm{CQCOH}$	7.01+153	-45.1	54916
96	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \Longleftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{Q}+\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OH}$	$1.27 \mathrm{E}+57$	-14.0	28025
97	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$1.58 \mathrm{E}+75$	-19.7	33538
98	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{CQC} \cdot \mathrm{OH}$	$5.53+141$	-42.0	43302
99	$\mathrm{C}_{2} \mathrm{C} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{COH}+\mathrm{HO}_{2}$	$6.25 \mathrm{E}+59$	-14.7	22783
100	$\mathrm{C}_{2} \mathrm{CQ} \cdot \mathrm{COH} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$5.17 \mathrm{E}+55$	-13.5	48335
101	$\mathrm{C}_{2} \mathrm{CQ} \cdot \mathrm{COH} \Longleftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{COH}+\mathrm{HO}_{2}$	$9.04 \mathrm{E}+63$	-16.2	50534
102	$\mathrm{C}_{2} \mathrm{CQ} \cdot \mathrm{COH} \Leftrightarrow \mathrm{C}_{2} \mathrm{CQCO} \cdot$	$2.19 \mathrm{E}+30$	-5.9	30046
103	$\mathrm{C}_{2} \mathrm{CQ} \cdot \mathrm{COH} \Leftrightarrow \mathrm{C}_{2} \cdot \mathrm{CQCOH}$	$5.40 \mathrm{E}+72$	-19.3	56810
104	$\mathrm{C}_{2} \mathrm{CQ} \cdot \mathrm{COH}<=>\mathrm{C}_{2} \mathrm{CQC} \cdot \mathrm{OH}$	$4.70 \mathrm{E}+52$	-12.8	43633
105	$\mathrm{C}_{2} \mathrm{CQCO} \bullet \Leftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$1.43 \mathrm{E}+37$	-8.8	16154
106	$\mathrm{C}_{2} \cdot \mathrm{CQCOH} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{Q}+\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{OH}$	$1.02 \mathrm{E}+74$	-19.5	44429
107	$\mathrm{C}_{2} \cdot \mathrm{CQCOH} \mu \mathrm{C} * \mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{HO}_{2}$	$1.13 \mathrm{E}+62$	-15.7	37694
108	$\mathrm{C}_{2} \mathrm{CQC} \cdot \mathrm{OH} \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{COH}+\mathrm{HO}_{2}$	$2.13 \mathrm{E}+47$	-11.6	25252
109	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{COHCQ} \bullet$	$1.14 \mathrm{E}+81$	-21.8	22474
110	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}<>\mathrm{C}_{2} \mathrm{CO} \cdot \mathrm{CQ}$	$1.97 \mathrm{E}+68$	-20.3	21900
111	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}<=>\mathrm{C}_{2} \mathrm{C} * \mathrm{O}^{+}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$2.25 \mathrm{E}+50$	-11.9	20157
112	$\mathrm{C}_{3} \cdot \mathrm{COH}^{+\mathrm{O}_{2}<=>\mathrm{CH}_{3}+\mathrm{CC} * \mathrm{OCQ}}$	$7.34 \mathrm{E}+46$	-10.9	20439
113	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}<>\mathrm{C}_{2} \cdot \mathrm{COHCQ}$	$2.53+160$	-47.5	52291
114	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2}<\Rightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{OH}$	$1.46 \mathrm{E}+57$	-13.7	30033
115	$\mathrm{C}_{3} \cdot \mathrm{COH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{OH}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$1.69 \mathrm{E}+63$	-15.6	29954
116	$\mathrm{C}_{2} \mathrm{COHCQ} \bullet \Leftrightarrow \mathrm{C}_{2} \mathrm{CO} \cdot \mathrm{CQ}$	$9.72 \mathrm{E}+26$	-5.2	29781
117	$\mathrm{C}_{2} \mathrm{COHCQ} \bullet \Leftrightarrow \mathrm{C}_{2} \cdot \mathrm{COHCQ}$	$2.10 \mathrm{E}+36$	-7.9	36705
118	$\mathrm{C}_{2} \mathrm{CO} \cdot \mathrm{CQ} \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{O}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$3.41 \mathrm{E}+45$	-11.2	22380
119	$\mathrm{C}_{2} \mathrm{CO} \cdot \mathrm{CQ} \Leftrightarrow \mathrm{CH}_{3}+\mathrm{CC} * \mathrm{OCQ}$	$1.35 \mathrm{E}+44$	-11.2	22381
120	$\mathrm{C}_{2} \bullet \mathrm{COHCQ} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ}+\mathrm{OH}$	$2.46 \mathrm{E}+58$	-15.1	38598
121	$\mathrm{C}_{2} \bullet$ - $\mathrm{COHCQ} \ll \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{OH}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$7.77 \mathrm{E}+38$	-9.0	27493
122	$\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{CH}_{3}<\gg \mathrm{CCC} \cdot \mathrm{C}_{2}$	$2.51 \mathrm{E}+11$	0.0	6691
123	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2}<>\mathrm{C}_{2} \mathrm{COO} \cdot \mathrm{CC}$	$3.34+119$	-34.5	32301
124	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{CCC}^{*}(\mathrm{C}) \mathrm{C}+\mathrm{HO}_{2}$	$1.17 \mathrm{E}+41$	-9.4	12471
125	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{CC}^{*} \mathrm{CC}_{2}+\mathrm{HO}_{2}$	$9.10 \mathrm{E}+37$	-8.5	11396
126	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2}<\Rightarrow \mathrm{C}_{2} \mathrm{CQCC} \cdot$	$8.01+103$	-32.2	27639
127	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{CYCCCO}+\mathrm{OH}$	$9.39 \mathrm{E}+14$	-1.6	8547
128	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \cdot \mathrm{CQCC}$	$3.95+124$	-37.7	37019
129	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{CCC}^{*}(\mathrm{C}) \mathrm{C}+\mathrm{HO}_{2}$	$4.18 \mathrm{E}+28$	-6.0	12008
130	$\mathrm{CCC}^{\bullet} \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{CQC} \cdot{ }^{\circ} \mathrm{C}$	$1.34 \mathrm{E}+96$	-29.7	25479
131	$\mathrm{CCC} \cdot \mathrm{C}_{2}+\mathrm{O}_{2} \Leftrightarrow \mathrm{CC}^{*} \mathrm{CC}_{2}+\mathrm{HO}_{2}$	$1.24 \mathrm{E}+31$	-6.7	10227
132	$\mathrm{C}_{2} \mathrm{COO} \cdot \mathrm{CC} \Leftrightarrow \mathrm{CCC}^{*}(\mathrm{C}) \mathrm{C}+\mathrm{HO}_{2}$	$4.22 \mathrm{E}+75$	-19.9	50055
133	$\mathrm{C}_{2} \mathrm{COO} \cdot \mathrm{CC}<\mathrm{CC}^{*} \mathrm{CC}_{2}+\mathrm{HO}_{2}$	$3.43 \mathrm{E}+80$	-21.6	52151
134	$\mathrm{C}_{2} \mathrm{COO} \cdot \mathrm{CC} \Longleftrightarrow \mathrm{C}_{2} \mathrm{CQCC} \cdot$	$1.45 \mathrm{E}+59$	-14.9	40925
135	$\mathrm{C}_{2} \mathrm{COO} \cdot \mathrm{CC} \Longleftrightarrow \mathrm{C}_{2} \bullet$ CQCC	$2.43 \mathrm{E}+83$	-23.0	56656
136	$\mathrm{C}_{2} \mathrm{COO} \cdot \mathrm{CC} \Leftrightarrow \mathrm{C}_{2} \mathrm{CQC} \cdot{ }^{\circ}$	$6.14 \mathrm{E}+82$	-22.6	54438

137	$\mathrm{C}_{2} \mathrm{CQCC} \cdot<\mathrm{C}_{2} \mathrm{CyCOCC}+\mathrm{OH}$	$1.06 \mathrm{E}+34$	-9.0	18050
138	$\mathrm{C}_{2} \cdot \mathrm{CQCC} \Leftrightarrow \mathrm{CCC}^{*}(\mathrm{C}) \mathrm{C}+\mathrm{HO}_{2}$	$7.10 \mathrm{E}+71$	-18.8	38055
139	$\mathrm{C}_{2} \mathrm{CQC} \cdot \mathrm{C} \Leftrightarrow \mathrm{CC}^{*} \mathrm{CC}_{2}+\mathrm{HO}_{2}$	$3.86 \mathrm{E}+56$	-14.3	27964
140	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{OH} \Leftrightarrow>\mathrm{C}_{2} \bullet \mathrm{C}^{*} \mathrm{C}+\mathrm{H}_{2} \mathrm{O}$	$7.80 \mathrm{E}+12$	0.0	0
141	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{O}_{2}<=>\mathrm{C}_{2} \bullet \mathrm{C}^{*} \mathrm{C}+\mathrm{HO}_{2}$	$4.79 \mathrm{E}+12$	0.0	38528
142	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{H}<\gg \mathrm{C}_{2} \cdot \mathrm{CC}$	$6.45 \mathrm{E}+13$	0.0	2700
143	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{H}<=>\mathrm{H}_{2}+\mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{C}$	$5.50 \mathrm{E}+13$	0.0	7600
144	$\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{CH}_{3}<=>\mathrm{CH}_{4}+\mathrm{C}_{2} \cdot{ }^{\bullet}{ }^{*} \mathrm{C}$	$1.86 \mathrm{E}+06$	1.9	1219
145	$\mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{C}+\mathrm{O}_{2}<=>\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ} \cdot$	$1.35 \mathrm{E}+86$	-23.9	25535
146	$\mathrm{C}_{2} \bullet \mathrm{C}^{*} \mathrm{C}+\mathrm{O}_{2}<=>\mathrm{C} * \mathrm{C}(\mathrm{C}) \mathrm{CO} \cdot+\mathrm{O}$	$2.27 \mathrm{E}+18$	-1.9	41733
147	$\mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{C}+\mathrm{O}_{2}<\gg \mathrm{C}^{*} \mathrm{CICC} * \mathrm{O}^{+} \mathrm{OH}$	$7.17 \mathrm{E}+07$	0.8	18587
148	$\mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{C}+\mathrm{O}_{2}<\Rightarrow>\mathrm{C} * \mathrm{C}\left(\mathrm{C} \cdot \mathrm{CQ}^{\text {en }}\right.$	$3.23 \mathrm{E}+51$	-12.7	21132
149	$\mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{C}+\mathrm{O}_{2}<\gg \mathrm{C}^{*} \mathrm{CyCCOC}+\mathrm{OH}$	$2.10 \mathrm{E}+40$	-9.3	35411
150	$\mathrm{C}_{2} \bullet \mathrm{C}^{*} \mathrm{C}+\mathrm{O}_{2}<=>\mathrm{C}^{*} \mathrm{C}(\mathrm{C} \cdot) \mathrm{CO} \cdot+\mathrm{OH}$	$3.08 \mathrm{E}+43$	-9.3	36490
151	$\mathrm{C}_{2} \cdot{ }^{\bullet} *{ }^{*}+\mathrm{O}_{2}<=>\mathrm{C}^{*} \mathrm{C} * \mathrm{C}+\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{OOH}$	$1.29 \mathrm{E}+39$	-8.4	41307
152	$\mathrm{C}_{2} \bullet \mathrm{C}^{*} \mathrm{C}+\mathrm{O}_{2} \ll>\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{C} * \mathrm{O}+\mathrm{OH}$	$8.34 \mathrm{E}+29$	-6.6	40938
153	$\mathrm{C}_{2} \cdot \mathrm{C} * \mathrm{C}+\mathrm{O}_{2}<\Rightarrow$ CCYC.COOC	$2.87 \mathrm{E}+79$	-25.3	23912
154	$\mathrm{C}_{2} \cdot{ }^{\bullet}{ }^{*} \mathrm{C}+\mathrm{O}_{2} \ll>\mathrm{CC} . \mathrm{C}^{*} \mathrm{O}+\mathrm{CH}_{2} \mathrm{O}$	$4.01 \mathrm{E}-04$	3.2	15802
155	$\mathrm{C}_{2} \cdot \mathrm{C} * \mathrm{C}+\mathrm{O}_{2}<=>\mathrm{CCyC} \cdot \mathrm{CO}+\mathrm{CH}_{2} \mathrm{O}$	$1.07 \mathrm{E}+16$	-2.1	11712
156	$\mathrm{C}_{2} \bullet \mathrm{C}^{*} \mathrm{C}+\mathrm{O}_{2}<\Rightarrow \mathrm{C}_{2} \bullet \mathrm{C}^{*} \mathrm{O}+\mathrm{CH}_{2} \mathrm{O}$	$7.10 \mathrm{E}+04$	1.3	14567
157	$\mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{C}+\mathrm{O}_{2}<=>\mathrm{CCYC} \cdot \mathrm{CO}+\mathrm{CH}_{2} \mathrm{O}$	$1.05 \mathrm{E}+03$	2.0	15823
158	$\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ} \cdot \stackrel{\text { - }}{ }{ }^{\text {C }}$ * $\mathrm{C}(\mathrm{C}) \mathrm{CO} \cdot+\mathrm{O}$	$1.97 \mathrm{E}+61$	-20.9	65742
159	$\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ} \cdot<=>\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{C}^{*} \mathrm{O}+\mathrm{OH}$	$1.35 \mathrm{E}+72$	-21.5	50937
160		$9.79 \mathrm{E}+50$	-12.9	33778
161	$\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ} \bullet<=>\mathrm{CCyC} \cdot \mathrm{COOC}$	$7.17 \mathrm{E}+66$	-18.7	43243
162	$\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{CQ}{ }^{\bullet}<=>\mathrm{C} 2 . \mathrm{CYCCOO}$	$4.48 \mathrm{E}+68$	-19.4	44814
163	$\mathrm{C}^{*} \mathrm{C}(\mathrm{C} \cdot) \mathrm{CQ}<\mathrm{C}^{*} \mathrm{CYCCOC}+\mathrm{OH}$	$5.02 \mathrm{E}+66$	-17.5	59429
164	$\mathrm{C}^{*} \mathrm{C}\left(\mathrm{C}^{\bullet}\right) \mathrm{CQ}<=>\mathrm{C}^{*} \mathrm{C}\left(\mathrm{C}^{\bullet}\right) \mathrm{CO} \cdot+\mathrm{OH}$	$1.11 \mathrm{E}+71$	-17.9	61056
165	$\mathrm{C}^{*} \mathrm{C}(\mathrm{C} \bullet) \mathrm{CQ}<=>\mathrm{C}^{*} \mathrm{C} * \mathrm{C}+\mathrm{C}^{\bullet} \mathrm{H}_{2} \mathrm{OOH}$	$2.55 \mathrm{E}+80$	-21.4	71001
166	$\mathrm{CCyC} \cdot \mathrm{COOC}<>\mathrm{CC} \cdot \mathrm{C}^{*} \mathrm{O}+\mathrm{CH}_{2} \mathrm{O}$	$2.36 \mathrm{E}+35$	-11.8	35866
167	$\mathrm{CCyC} \cdot \mathrm{COOC} \Longleftrightarrow \mathrm{CCyC} \cdot \mathrm{CO}+\mathrm{CH}_{2} \mathrm{O}$	$1.35 \mathrm{E}+45$	-11.0	23306
168	$\mathrm{C}_{2} \cdot \mathrm{CYCCOO}<>\mathrm{C}_{2} \cdot \mathrm{C} * \mathrm{O}+\mathrm{CH}_{2} \mathrm{O}$	$5.22 \mathrm{E}+56$	-15.0	31984
169	$\mathrm{C}_{2} \cdot \mathrm{CYCCOO}<=>\mathrm{CCYC} . \mathrm{CO}+\mathrm{CH}_{2} \mathrm{O}$	$1.97 \mathrm{E}+55$	-14.6	31962
170	$\mathrm{C}^{*} \mathrm{C}(\mathrm{C} \cdot) \mathrm{CO} \bullet<=\mathrm{C}^{*} \mathrm{C} * \mathrm{C}+\mathrm{CH} 2 \mathrm{O}$	$9.89 \mathrm{E}+13$	-1.6	6589
171	$\mathrm{C}^{*} \mathrm{C}\left(\mathrm{C}^{\bullet}\right) \mathrm{CO} \bullet \bullet \mathrm{C}^{*} \mathrm{C}\left(\mathrm{C}^{\bullet}\right) \mathrm{C}^{*} \mathrm{O}+\mathrm{H}$	$5.86 \mathrm{E}+13$	-1.3	16907
172	$\mathrm{CCyC} \cdot \mathrm{CO} \Leftrightarrow \mathrm{C}_{2}{ }^{\bullet} \mathrm{C}^{*} \mathrm{O}$	$4.90 \mathrm{E}+40$	-8.6	14883
173	$\mathrm{CCyC} \cdot \mathrm{CO}<>\mathrm{C}^{*} \mathrm{C} * \mathrm{O}+\mathrm{CH}_{3}$	$1.41 \mathrm{E}+29$	-4.4	17943
174	$\mathrm{C}_{2} \cdot \mathrm{C}^{*} \mathrm{O} \Leftrightarrow \mathrm{C}^{*} \mathrm{C} * \mathrm{O}+\mathrm{CH}_{3}$	$4.12 \mathrm{E}+38$	-8.1	47640
175	$\mathrm{C}_{2} \mathrm{CyC}_{2} \mathrm{O}\left\langle=>\mathrm{CCyC} \cdot \mathrm{CO}+\mathrm{CH}_{3}\right.$	$7.32 \mathrm{E}+18$	-0.2	88879
176	$\mathrm{C}_{3} \mathrm{CC}+\mathrm{OH} \Leftrightarrow>\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{H}_{2} \mathrm{O}$	$1.44 \mathrm{E}+07$	2.0	2115
177	$\mathrm{C}_{3} \mathrm{CC}+\mathrm{O}<\gg \mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{OH}$	$9.20 \mathrm{E}+13$	0.0	7154
178	$\mathrm{C}_{3} \mathrm{CC}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{HO}_{2}$	$1.03 \mathrm{E}+13$	0.0	55640
179	$\mathrm{C}_{3} \mathrm{CC}+\mathrm{HO}_{2}<>\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{H}_{2} \mathrm{O}_{2}$	$3.01 \mathrm{E}+04$	2.5	15500
180	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{H} \Leftrightarrow>\mathrm{C}_{3} \mathrm{CC}$	$1.00 \mathrm{E}+14$	0.0	0

181	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{OH}<=>\mathrm{C}_{3} \mathrm{CCOH}$	$1.00 \mathrm{E}+13$	0.0	0
182	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \bullet$	$1.48 \mathrm{E}+21$	-8.3	8332
183	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H}$	$6.32 \mathrm{E}+11$	0.1	1083
184	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}<\gg \mathrm{C}_{3} \mathrm{C} \cdot+\mathrm{CH}_{2} \mathrm{O}$	$2.04 \mathrm{E}+14$	0.0	0
185	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Longleftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOH}$	$1.44 \mathrm{E}+19$	-8.7	9606
186	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Longleftrightarrow \mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OH}$	$1.06 \mathrm{E}+11$	0.1	654
187	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{CH}_{3}$	$2.17 \mathrm{E}+09$	0.1	933
188	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O} \Longleftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}$	$2.42+101$	-34.9	12130
189	$\mathrm{C}_{3} \mathrm{CC} \cdot+\mathrm{O}<>\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H}$	$2.39 \mathrm{E}+11$	0.1	1024
190	$\mathrm{C}_{3} \mathrm{CCO} \bullet<\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H}$	$2.06 \mathrm{E}+46$	-14.5	34560
190	$\mathrm{C}_{3} \mathrm{CCO} \bullet \Leftrightarrow \mathrm{C}_{3} \mathrm{C} \bullet+\mathrm{CH}_{2} \mathrm{O}$	$2.73 \mathrm{E}+58$	-14.8	29436
192	$\mathrm{C}_{3} \mathrm{CCO} \cdot \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOH}$	$4.59 \mathrm{E}+49$	-14.6	29985
193	$\mathrm{C}_{3} \mathrm{CCO} \cdot\left\langle\mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}\right.$	$2.82 \mathrm{E}+46$	-14.5	34157
194	$\mathrm{C}_{3} \cdot \mathrm{CCOH} \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OH}$	$3.62 \mathrm{E}+87$	-23.1	51238
195	$\mathrm{C}_{3} \cdot \mathrm{CCOH} \Leftrightarrow \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{COH}+\mathrm{CH}_{3}$	$2.44 \mathrm{E}+85$	-23.1	51232
196	$\mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H}$	$7.13 \mathrm{E}+29$	-5.4	36736
197	$\mathrm{C}_{3} \mathrm{CCOO} \cdot+\mathrm{C}_{3} \mathrm{CCOO} \bullet \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \cdot+\mathrm{C}_{3} \mathrm{CCO} \cdot+\mathrm{O}_{2}$	$2.41 \mathrm{E}+11$	0.0	0
198	$\mathrm{C}_{3} \mathrm{CCOO} \bullet+\mathrm{C}_{3} \mathrm{CCOO} \bullet \Leftrightarrow \mathrm{C}_{3} \mathrm{CCHO}+\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O}_{2}$	$3.61 \mathrm{E}+11$	0.0	0
199	$\mathrm{C}_{3} \mathrm{CCOO} \cdot+\mathrm{HO}_{2} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCOOH}+\mathrm{O}_{2}$	$8.61 \mathrm{E}+10$	0.0	-2742
200	$\mathrm{C}_{3} \mathrm{CCOO} \bullet+\mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \bullet+\mathrm{HO}_{2}$	$2.40 \mathrm{E}+11$	0.0	0
201	$\mathrm{C}_{3} \mathrm{C} \cdot+\mathrm{O}_{2}<>\mathrm{C}_{3} \mathrm{COO} \bullet$	$8.54 \mathrm{E}+92$	-25.9	23848
202	$\mathrm{C}_{3} \mathrm{C} \cdot+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{3} \mathrm{CO} \cdot+\mathrm{O}$	$4.07 \mathrm{E}+12$	-0.1	25661
203	$\mathrm{C}_{3} \mathrm{C} \cdot+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{HO}_{2}$	$1.73 \mathrm{E}+40$	-8.8	11464
204	$\mathrm{C}_{3} \mathrm{C} \cdot+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{COOH}$	$1.74 \mathrm{E}+95$	-27.7	27734
205	$\mathrm{C}_{3} \mathrm{C} \cdot+\mathrm{O}_{2} \Leftrightarrow>\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{HO}_{2}$	$2.62 \mathrm{E}+29$	-5.9	10469
206	$\mathrm{C}_{3} \mathrm{C} \cdot+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{2} \mathrm{CyC}_{2} \mathrm{O}+\mathrm{OH}$	$1.39 \mathrm{E}+27$	-5.4	10278
207	$\mathrm{C}_{3} \mathrm{C} \cdot+\mathrm{O}_{2}<\gg \mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{Q}+\mathrm{CH}_{3}$	$5.75 \mathrm{E}+07$	1.0	19576
208	$\mathrm{C}_{3} \mathrm{COO} \bullet \Leftrightarrow \mathrm{C}_{3} \mathrm{CO} \bullet+\mathrm{O}$	$1.41 \mathrm{E}+77$	-25.1	69290
209	$\mathrm{C}_{3} \mathrm{COO} \bullet \bullet \mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{HO}_{2}$	$1.14 \mathrm{E}+61$	-15.3	43307
210	$\mathrm{C}_{3} \mathrm{COO} \bullet<>\mathrm{C}_{3} \cdot \mathrm{COOH}$	$2.17 \mathrm{E}+69$	-18.5	49811
211	$\mathrm{C}_{3} \cdot \mathrm{COOH}<>\mathrm{C}_{2} \mathrm{C}^{*} \mathrm{C}+\mathrm{HO}_{2}$	$8.31 \mathrm{E}+66$	-17.2	37206
212	$\mathrm{C}_{3} \cdot \mathrm{COOH} \Leftrightarrow \Rightarrow \mathrm{C}_{2} \mathrm{CyC}_{2} \mathrm{O}+\mathrm{OH}$	$3.24 \mathrm{E}+65$	-17.1	37199
213	$\mathrm{C}_{3} \cdot \mathrm{COOH}<=>\mathrm{C}^{*} \mathrm{C}(\mathrm{C}) \mathrm{Q}+\mathrm{CH}_{3}$	$1.94 \mathrm{E}+59$	-17.7	41599
214	$\mathrm{C}_{3} \mathrm{C} \cdot+\mathrm{HO}_{2} \ll>\mathrm{C}_{3} \mathrm{COOH}$	$1.01+108$	-33.4	21083
215	$\mathrm{C}_{3} \mathrm{C} \cdot+\mathrm{HO}_{2}<=>\mathrm{C}_{3} \mathrm{CO} \cdot+\mathrm{OH}$	$3.67 \mathrm{E}+12$	0.0	3
216	$\mathrm{C}_{3} \mathrm{COOH}<\Rightarrow \mathrm{C}_{3} \mathrm{CO} \cdot+\mathrm{OH}$	$5.02 \mathrm{E}+65$	-15.8	59047
217	$\mathrm{C}_{3} \mathrm{CCOOH}<\gg \mathrm{C}_{3} \mathrm{CCO} \cdot+\mathrm{OH}$	$1.67 \mathrm{E}+56$	-12.8	57175
218	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{H} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{H}_{2}$	$2.16 \mathrm{E}+09$	1.5	7400
219	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{H} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{H}_{2}$	$4.80 \mathrm{E}+08$	1.5	3357
220	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{H}<\gg \mathrm{C}_{3} \mathrm{CCO} \cdot+\mathrm{H}_{2}$	$2.40 \mathrm{E}+08$	1.5	9324
221	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O}<\gg \mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{OH}$	$1.53 \mathrm{E}+09$	1.5	5410
222	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O} \Longleftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{OH}$	$3.40 \mathrm{E}+08$	1.5	2186
223	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \cdot+\mathrm{OH}$	$1.70 \mathrm{E}+08$	1.5	7630
224	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{H}_{2} \mathrm{O}$	$1.08 \mathrm{E}+07$	2.0	1205

225	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{OH} \Longleftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}$	$2.40 \mathrm{E}+06$	2.0	537	a
226	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{OH} \Longleftrightarrow>\mathrm{C}_{3} \mathrm{CCO} \cdot+\mathrm{H}_{2} \mathrm{O}$	$1.20 \mathrm{E}+06$	2.0	2685	a
227	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{CH}_{4}$	$7.29 \mathrm{E}+06$	1.9	10587	a
228	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{CH}_{4}$	$1.62 \mathrm{E}+06$	1.9	6544	a
229	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \bullet+\mathrm{CH}_{4}$	$8.10 \mathrm{E}+05$	1.9	12511	a
230	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{H}_{2} \mathrm{O}_{2}$	$9.64 \mathrm{E}+10$	0.0	12579	a
231	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}_{2}$	$3.01 \mathrm{E}+04$	2.5	15500	a
232	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O}_{2}<\gg \mathrm{C}_{3} \cdot \mathrm{CCOH}+\mathrm{HO}_{2}$	$9.05 \mathrm{E}+13$	0.0	53800	a
233	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot \mathrm{OH}+\mathrm{HO}_{2}$	$1.37 \mathrm{E}+13$	0.0	47580	a
234	$\mathrm{C}_{3} \mathrm{CCOH}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCO} \bullet+\mathrm{HO}_{2}$	$3.10 \mathrm{E}+08$	1.3	57560	a
235	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H} \Leftrightarrow \mathrm{C}_{3} \bullet \mathrm{CCHO}+\mathrm{H}_{2}$	$2.16 \mathrm{E}+09$	1.5	7400	a
236	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{H} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \bullet * \mathrm{O}+\mathrm{H}_{2}$	$4.00 \mathrm{E}+13$	0.0	4206	a
237	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \bullet \mathrm{CCHO}+\mathrm{OH}$	$1.53 \mathrm{E}+09$	1.5	5410	
238	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{O} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \bullet * \mathrm{O}+\mathrm{OH}$	$1.70 \mathrm{E}+08$	1.5	1729	a
239	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH} \Longleftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCHO}+\mathrm{H}_{2} \mathrm{O}$	$1.08 \mathrm{E}+07$	2.0	1205	a
240	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{OH} \Leftrightarrow \mathrm{C}_{3} \mathrm{CCC} \bullet * \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$	$9.51 \mathrm{E}+12$	0.0	-622	a
241	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{CH}_{3} \Leftrightarrow \Rightarrow \mathrm{C}_{3} \cdot \mathrm{CCHO}+\mathrm{CH}_{4}$	$7.29 \mathrm{E}+06$	1.9	10587	a
242	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot * \mathrm{O}+\mathrm{CH}_{4}$	$8.10 \mathrm{E}+05$	1.9	2819.5	a
243	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{O}_{2} \Leftrightarrow \mathrm{C}_{3} \mathrm{CC} \cdot * \mathrm{O}+\mathrm{HO}_{2}$	$3.01 \mathrm{E}+13$	0.0	41850	a
244	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{HO}_{2} \Leftrightarrow \mathrm{C}_{3} \cdot \mathrm{CCHO}+\mathrm{H}_{2} \mathrm{O}_{2}$	$3.01 \mathrm{E}+04$	2.5	15500	a
245	$\mathrm{C}_{3} \mathrm{CCHO}+\mathrm{HO}_{2}<\gg \mathrm{C}_{3} \mathrm{CC} \bullet * \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2}$	$3.01 \mathrm{E}+12$	0.0	8000	a
246	$\mathrm{CH}_{3} \mathrm{OO}+\mathrm{H}<\mathrm{CH}_{3} \mathrm{OOH}$	$9.08 \mathrm{E}-21$	4.1	-6264	b
247	$\mathrm{CH}_{3} \mathrm{OO}+\mathrm{H} \Leftrightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{OH}$	$9.64 \mathrm{E}+13$	0.0	0	b
248	$\mathrm{CH}_{3} \mathrm{OOH} \Longleftrightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{OH}$	$4.84 \mathrm{E}+44$	-10.0	50869	b
249	$\mathrm{C}_{3} \mathrm{COO} \cdot+\mathrm{H}<=>\mathrm{C} 3 \mathrm{COOH}$	$5.75 \mathrm{E}+85$	-24.4	16400	b
250	$\mathrm{C}_{3} \mathrm{COO} \cdot+\mathrm{H}<\Rightarrow \mathrm{C} 3 \mathrm{CO} \cdot+\mathrm{OH}$	$2.23 \mathrm{E}+16$	-0.7	1092	b
251	$\mathrm{C}_{3} \mathrm{COOH}<\Rightarrow \mathrm{C} 3 \mathrm{CO} \cdot+\mathrm{OH}$	$1.11 \mathrm{E}+44$	-8.9	57560	b
252	$\mathrm{CH}_{3} \mathrm{OO}+\mathrm{CH}_{3} \Leftrightarrow>\mathrm{COOC}$	$5.74 \mathrm{E}+50$	-18.6	3865	b
253	$\mathrm{CH}_{3} \mathrm{OO}+\mathrm{CH}_{3} \ll>\mathrm{CH} 3 \mathrm{O}+\mathrm{CH}_{3} \mathrm{O}$	$2.42 \mathrm{E}+13$	0.0	,	b
254	$\mathrm{COOC}<=>\mathrm{CH}_{3} \mathrm{O}+\mathrm{CH}_{3} \mathrm{O}$	$1.55 \mathrm{E}+69$	-17.3	54398	b
255	$\mathrm{CH}_{3} \mathrm{OO}+\mathrm{CH}_{3} \mathrm{OO} \Leftrightarrow>\mathrm{CH}_{3} \mathrm{O}+\mathrm{CH}_{3} \mathrm{O}+\mathrm{O}_{2}$	$2.47 \mathrm{E}+11$	0.0	0	-
256	$\mathrm{CH}_{3}+\mathrm{HO}_{2}<>\mathrm{CH}_{3} \mathrm{OOH}$	$1.51 \mathrm{E}+40$	-14.5	17430	b
257	$\mathrm{CH}_{3}+\mathrm{HO}_{2} \Leftrightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{OH}$	$1.84 \mathrm{E}+13$	0.0	2	b
258	$\mathrm{CH}_{3} \mathrm{OOH} \Leftrightarrow>\mathrm{CH}_{3} \mathrm{O}+\mathrm{OH}$	$4.71 \mathrm{E}+44$	-10.0	50868	b
259	$\mathrm{CH}_{3}+\mathrm{CH}_{3}<\gg \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}$	$2.51 \mathrm{E}+40$	-8.8	7596	b
260	$\mathrm{CH}_{3}+\mathrm{CH}_{3} \Leftrightarrow>\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$	$6.68 \mathrm{E}+16$	-1.4	9461	b
261	$\mathrm{C}_{2} \mathrm{H}_{6} \Leftrightarrow>\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}$	$3.68 \mathrm{E}+13$	-1.1	13326	b
262	$\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$	$6.00 \mathrm{E}+46$	-10.6	104822	b
263	$\mathrm{CH}_{3}+\mathrm{CH}_{3} \Leftrightarrow \Rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$	$2.87 \mathrm{E}+46$	-12.0	108550	b
264	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{O} \Leftrightarrow \mathrm{OH}+\mathrm{HCO}$	$4.16 \mathrm{E}+11$	0.6	2762	o
265	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{H} \Longleftrightarrow \mathrm{H}_{2}+\mathrm{HCO}$	$2.29 \mathrm{E}+10$	1.1	3279	o
266	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH} \Longleftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCO}$	$3.49 \mathrm{E}+09$	1.2	-447	o
267	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2}<=>\mathrm{O}_{2}+\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OH}$	$3.39 \mathrm{E}+12$	0.0	19121	p
268	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{3} \Leftrightarrow>\mathrm{HCO}+\mathrm{CH}_{4}$	$4.09 \mathrm{E}+12$	0.0	8843	\bigcirc
269	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{O}_{2} \Leftrightarrow \mathrm{HO}_{2}+\mathrm{HCO}$	$6.03 \mathrm{E}+13$	0.0	40658	0

270	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{C} \cdot \mathrm{H}_{2} \mathrm{OH}<>\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCO}$	$5.49 \mathrm{E}+13$	2.8	5862	q
271	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{O} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCO}$	$1.02 \mathrm{E}+11$	0.0	2981	r
272	$\mathrm{CH}_{2} \mathrm{O}+\mathrm{C}_{3} \mathrm{C} \cdot \Leftrightarrow \mathrm{C}_{3} \mathrm{C}+\mathrm{HCO}$	$3.01 \mathrm{E}+11$	0.0	6498	s
273	$\mathrm{CH}_{4}+\mathrm{HO}_{2}<=>\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{CH}_{3}$	$9.04 \mathrm{E}+12$	0.0	24641	\bigcirc
274	$\mathrm{CH}_{4}+\mathrm{O}<>\mathrm{CH}_{3}+\mathrm{OH}$	$6.92 \mathrm{E}+08$	1.6	8485	o
275	$\mathrm{CH}_{3}+\mathrm{O}_{2}<\gg \mathrm{CH}_{3} \mathrm{OO}$	$8.61 \mathrm{E}+31$	-6.6	4931	b
276	$\mathrm{CH}_{3}+\mathrm{O}_{2}<=>\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}$	$2.85 \mathrm{E}+08$	1.0	12526	b
277	$\mathrm{CH}_{3}+\mathrm{HO}_{2}=\mathrm{CH}_{4}+\mathrm{O}_{2}$	$3.61 \mathrm{E}+12$	0.0	0	r
278	$\mathrm{CH}_{3} \mathrm{O}=\mathrm{CH}_{2} \mathrm{O}+\mathrm{H}$	$6.13 \mathrm{E}+28$	-5.7	31351	b
279	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{HO}_{2}=\mathrm{CH}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2}$	$3.01 \mathrm{E}+11$	0.0	0	r
280	$\mathrm{CH}_{3}+\mathrm{H} \Leftrightarrow \mathrm{CH}_{4}$	$2.11 \mathrm{E}+14$	0.0	0	m
281	$\mathrm{HCO}+\mathrm{O}_{2} \Leftrightarrow=\mathrm{HCQ}^{*} \mathrm{O}$	$2.21 \mathrm{E}+20$	-7.2	914	b
282	$\mathrm{HCO}+\mathrm{O}_{2} \ll>\mathrm{CO}+\mathrm{HO}_{2}$	$9.37 \mathrm{E}+09$	0.8	-693	b
283	$\mathrm{HCO}+\mathrm{O}_{2}<=>\mathrm{O}{ }^{*} \cdot \mathrm{OOH}$	$2.54 \mathrm{E}-01$	-2.8	9430	b
284	$\mathrm{HCO}+\mathrm{O}_{2}<\Rightarrow \mathrm{CO}+\mathrm{HO}_{2}$	$1.43 \mathrm{E}-02$	3.7	4329	b
285	$\mathrm{HCO}+\mathrm{O}_{2} \Leftrightarrow \mathrm{CO}_{2}+\mathrm{OH}$	$4.70 \mathrm{E}+01$	2.8	4816	b
286	$\mathrm{HCQ} \cdot * \mathrm{O}<\gg \mathrm{CO}+\mathrm{HO}_{2}$	$1.03 \mathrm{E}+34$	-7.5	27407	b
287	$\mathrm{HCQ} \cdot * \mathrm{O} \Leftrightarrow \mathrm{O}^{*} \mathrm{C} \cdot \mathrm{OOH}$	$3.37 \mathrm{E}+16$	-7.6	43943	b
288	O * $\cdot \mathrm{OOHH} \Leftrightarrow \mathrm{CO}+\mathrm{HO}_{2}$	$5.31 \mathrm{E}+26$	-6.9	24018	b
289	$\mathrm{O}^{*} \mathrm{C} \cdot \mathrm{OOH}\left\langle=>\mathrm{CO}_{2}+\mathrm{OH}\right.$	$1.25 \mathrm{E}+31$	-6.7	20473	b
290	$\mathrm{OH}+\mathrm{HCO} \Leftrightarrow \Rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$	$1.02 \mathrm{E}+14$	0.0	0	o
291	$\mathrm{HCO} \Leftrightarrow \mathrm{H}+\mathrm{CO}$	$1.57 \mathrm{E}+14$	0.0	15758	t
292	$\mathrm{CO}+\mathrm{O}<>\mathrm{CO}_{2}$	$6.17 \mathrm{E}+14$	0.0	3001	r
293	$\mathrm{CO}+\mathrm{OH} \Leftrightarrow>\mathrm{CO}_{2}+\mathrm{H}$	$6.32 \mathrm{E}+06$	1.5	-497	o
294	$\mathrm{CO}+\mathrm{HO}_{2}<\gg \mathrm{CO}_{2}+\mathrm{OH}$	$1.51 \mathrm{E}+14$	0.0	23650	r
295	$\mathrm{CO}+\mathrm{O}_{2} \Leftrightarrow=\mathrm{CO}_{2}+\mathrm{O}$	$2.53 \mathrm{E}+12$	0.0	47693	r
296	$\mathrm{H}+\mathrm{O}_{2}+\mathrm{M}<\mathrm{HO}_{2}+\mathrm{M}$	$2.11 \mathrm{E}+18$	-0.8	0	t
297	$\mathrm{H}+\mathrm{HO}_{2} \Leftrightarrow \mathrm{H}_{2}+\mathrm{O}_{2}$	$4.28 \mathrm{E}+13$	0.0	1411	o
298	$\mathrm{H}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{OH}+\mathrm{OH}$	$3.01 \mathrm{E}+13$	0.0	1721	o
299	$\mathrm{HO}_{2}+\mathrm{H}<\Rightarrow>\mathrm{H}_{2} \mathrm{O}+\mathrm{O}$	$1.69 \mathrm{E}+14$	0.0	874	0
300	$\mathrm{O}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{O}_{2}+\mathrm{OH}$	$3.25 \mathrm{E}+13$	0.0	0	0
301	$\mathrm{HO}_{2}+\mathrm{OH} \Leftrightarrow>\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$	$2.89 \mathrm{E}+13$	0.0	-497	o
302	$\mathrm{HO}_{2}+\mathrm{HO}_{2} \Leftrightarrow>\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}$	$1.87 \mathrm{E}+12$	0.0	1540	o
303	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H} \Leftrightarrow \mathrm{H}_{2}+\mathrm{HO}_{2}$	$4.82 \mathrm{E}+13$	0.0	7949	r
304	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}<=>\mathrm{H}_{2} \mathrm{O}+\mathrm{OH}$	$2.41 \mathrm{E}+13$	0.0	3974	r
305	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O} \ll>\mathrm{OH}+\mathrm{HO}_{2}$	$9.63 \mathrm{E}+06$	2.0	3974	r
306	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{OH}<=>\mathrm{HO}_{2}+\mathrm{H}_{2} \mathrm{O}$	$7.83 \mathrm{E}+12$	0.0	1331	o
307	$\mathrm{H}+\mathrm{O}_{2} \Leftrightarrow>\mathrm{OH}+\mathrm{O}$	$1.99 \mathrm{E}+14$	0.0	16802	0
308	$\mathrm{H}_{2}+\mathrm{OH}<=\mathrm{H}_{2} \mathrm{O}+\mathrm{H}$	$9.31 \mathrm{E}+11$	1.6	3299	0
309	$\mathrm{OH}+\mathrm{OH}<\gg \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$	$1.51 \mathrm{E}+09$	1.1	99	o
310	$\mathrm{OH}+\mathrm{OH}+\mathrm{M}<=>\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{M}$	$2.90 \mathrm{E}+17$	-0.8	0	0
311	$\mathrm{O}+\mathrm{H}_{2}<=>\mathrm{OH}+\mathrm{H}$	$5.11 \mathrm{E}+04$	2.7	6280	o
312	$\mathrm{O}+\mathrm{O}+\mathrm{M}<>\mathrm{O} 2+\mathrm{M}$	$1.89 \mathrm{E}+13$	0.0	-1788	r
313	$\mathrm{H}+\mathrm{O}+\mathrm{M}<=>\mathrm{OH}+\mathrm{M}$	$4.71 \mathrm{E}+18$	-1.0	0	r
314	$\mathrm{OH} \Rightarrow>\mathrm{X}$	$8.80 \mathrm{E}+01$	0.0	0	u

${ }^{\text {aa }} k=A \mathrm{~T}^{\mathrm{n}} \exp \left(-E_{\mathrm{a}} / \mathrm{RT}\right)$. Units of s^{-1} for first order reactions, $\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ for second order reactions, cm^{6} $\mathrm{mol}^{-2} \mathrm{~s}^{-1}$ for third order reactions. Ea in cal mol^{-1}. * Stands for double bond, Q stands for -OOH group, and Y stands for cyclic structure. ${ }^{\text {a }}$ Estimated in this study by Dean and Bozzelli. * stand for double bond, and Q stand for -OOH group. ${ }^{b}$ From QRRK calculation at $\mathrm{P}=0.807 \mathrm{~atm}$ and $\mathrm{T}=500 \sim 900 \mathrm{~K}$. ${ }^{\mathrm{c}}$ Hunter, T.F.; Kristjansson, K. S J. Chem. Soc. Faraday Trans. 2: 78, 2067 (1982). ${ }^{\text {d }}$ Mulenko, S.A. Rev. Roum. Phys. 32, 173 (1987). ${ }^{\text {e }}$ The mechanism from Chen, C-J; Bozzelli, J.W. J. Phys. Chem. A 2000, 104, 9715. el The mechanism from Chen, C.-J.; Bozzelli, J. W. J. Phys. Chem. A 1999, 103, 9731. ${ }^{\mathrm{f}}$ Seres, L.; Nacsa, A.; Arthur, N.L. Int. J. Chem. Kinet. 26, 227-246 (1994). ${ }^{\text {g }}$ Baker, R. R.; Baldwin, R. R.; Walker, R. W. J. Chem. Soc. Faraday Trans. 1: 74, 2229 (1978). ${ }^{\text {h }}$ Ingham,T.; Walker, R.W.; Woolford, R. E. Symp. Int. Combust. Proc. 25, 767-774 (1994). ${ }^{\text {i }}$ Herron, J.T. J. Phys. Chem. Ref. Data 17, 967 (1988). ${ }^{j}$ Estimated from isobutane $+\mathrm{O}_{2}$ reaction.). ${ }^{\mathrm{k}}$ Estimated from isobutane $+\mathrm{HO}_{2}$ reaction. ${ }^{1}$ Allara D. L.; Shaw R. J. Phys. Chem. Ref. Data 9, 523, (1980). ${ }^{m}$ Wallington, T. J.; Andino, J. M.; Potts, A. R. Int. J. Chem. Kinet. 24, 649-663 (1992). ${ }^{\text {n }}$ Rowley, D. M.; Lesclaux, R.; Lightfoot, P. D.; Hughes, K.; Hurley, M. D.; Rudy, S.; Wallington, T. J. J. Phys. Chem. 96, 7043-7048 (1992). ${ }^{\circ}$ Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just, Th.; Kerr, J. A.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 21, 411-429 (1992). ${ }^{\mathrm{p}}$ Tsuboi, T.; Hashimoto, K. Combust. Flame 42, 61 (1981). ${ }^{\text {q }}$ Tsang, W. J. Phys. Chem. Ref. Data 16, 471 (1987). ${ }^{\text {r }}$ Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data 15, 1087 (1986). ${ }^{\text {s }}$ Tsang, W. J. Phys. Chem. Ref. Data 19, 1-68 (1990). ${ }^{\text {t }}$ Baulch,D. L.; Cobos, C. J.; Cox, R. A.; Frank, P.; Hayman, G.; Just, Th.; Kerr, J. A.; Murrells, T.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 23, 847-1033 (1994). "OH Wall reaction by Hughes, K. J.; Lightfoot, P. D.; Pilling, M. J. Chemical Physics Letters 1992, 191, 581.

APPENDIX D
 TABLES IN THE THERMOCHEMICAL AND KINETIC ANALYSIS ON REACTION OF 2-METHYLBENZYL RADICAL OXIDATION

This appendix lists the geometrical parameters, harmonic vibrational frequencies, isodesmic reaction analysis for calculation of enthalpy values on reaction of 2methylbenzyl radical oxidation, as discussed in Chapter 6.

Table D. 1 Geometrical Parameters for Species in Ortho-Xylene Oxidation System

		r21	1.3816	a 21	125.71	d 4321	0.67

Table D. 2 Harmonic Vibrational Frequencies and Moments of Inertia

species	frequencies (cm^{-1})							moments of inertia (amu-Bohr^2)	
$\mathrm{CH}^{\mathrm{CH}_{3}} \mathrm{CH}_{2} 00^{\circ}$	42.44	80.38	112.89	131.44	198.37	298.92	325.71	362.21	694.61878
	426.73	463.20	527.57	554.05	633.88	733.93	764.10	772.65	2015.78601
	859.45	883.13	924.02	952.79	977.44	994.06	1014.46	1065.32	2560.57186
	1080.04	1143.08	1192.48	1193.02	1209.28	1217.28	1253.88	1322.26	
	1353.59	1377.68	1427.95	1484.78	1497.92	1507.41	1515.89	1536.99	
	1634.90	1664.92	3040.16	3077.87	3102.38	3134.41	3136.77	3175.79	
	3180.22	3193.83	3208.29						
TS1	-1765.45	105.90	148.43	253.49	311.25	335.12	347.28	451.02	688.81149
	480.01	507.39	525.93	590.86	600.16	642.85	749.81	759.22	1725.23316
	775.76	862.93	884.14	900.80	951.39	992.10	1003.33	1014.70	2242.90001
	1023.34	1073.04	1080.29	1147.89	1190.24	1201.25	1215.41	1251.36	
	1274.17	1318.02	1348.17	1365.68	1469.52	1489.01	1495.27	1510.77	
	1530.95	1610.75	1647.17	3056.34	3097.92	3115.55	3176.43	3181.79	
	3185.30	3195.22	3209.01						
TS2	-551.11	106.16	111.41	185.18	201.44	220.19	315.07	362.97	837.83035
	413.63	463.49	485.26	548.27	651.44	663.02	744.81	782.19	1402.53256
	833.22	855.38	884.40	938.70	977.52	994.15	1005.56	1040.90	1946.39862
	1054.69	1061.55	1138.19	1175.05	1179.90	1197.95	1214.75	1310.89	
	1341.04	1368.19	1418.49	1453.01	1481.01	1492.29	1507.75	1534.27	
	1564.20	1617.50	3032.39	3039.08	3085.89	3094.12	3132.59	3180.52	
	3190.87	3203.28	3212.68						
TS3	-1107.07	89.26	134.21	154.11	230.40	237.71	345.17	382.82	860.78963
	436.38	478.45	489.73	496.67	558.22	660.84	683.71	761.88	1578.74509
	788.67	824.00	894.79	913.08	966.81	974.82	1010.84	1041.00	2380.69828
	1066.15	1082.04	1097.67	1183.86	1196.74	1242.85	1266.96	1279.34	
	1323.73	1371.18	1427.40	1447.58	1477.25	1498.93	1500.29	1507.13	
	1580.10	1649.12	1670.03	3023.04	3037.10	3090.66	3110.00	3128.95	
	3177.77	3192.85	3206.61						
TS4	-1755.52	77.79	94.76	157.39	174.13	212.57	262.84	320.87	800.66118
	446.47	455.91	507.80	527.09	600.72	646.66	721.38	769.93	1849.88356
	794.75	854.34	859.32	885.95	925.96	968.25	998.42	1010.26	2523.69901
	1061.70	1072.53	1085.90	1143.23	1180.87	1189.82	1213.94	1250.62	
	1312.73	1340.82	1386.69	1428.57	1481.60	1499.68	1513.47	1521.33	
	1617.31	1646.95	1968.82	3037.24	3089.75	3092.63	3131.64	3179.25	
	3192.82	3206.38	3225.72						
TS5	-733.12	45.16	121.02	141.13	153.67	223.54	243.43	322.49	580.08551
	400.61	424.98	478.58	500.38	521.05	565.38	631.72	718.62	2095.79765
	757.74	788.73	823.77	867.07	881.17	940.67	986.79	1005.60	2599.48124
	1016.41	1037.71	1063.61	1115.21	1135.06	1187.62	1213.18	1220.30	
	1265.80	1300.00	1337.13	1373.93	1477.36	1494.53	1519.28	1526.46	
	1626.00	1652.12	2995.77	3087.09	3151.17	3176.72	3183.30	3194.84	
	3206.99	3244.36	3787.19						
TS6	-1656.85	57.77	71.58	114.12	165.80	170.29	223.64	258.47	1503.01847
	301.03	313.13	386.10	414.59	451.72	479.62	510.34	605.84	2249.12767

	633.51	652.00	715.29	764.67	794.59	861.53	882.36	931.39	3600.90293
	633.51	652.00	715.29	764.67	794.59	861.53	882.36	931.39	
	945.17	953.63	990.44	996.84	1028.64	1058.64	1084.54	1107.81	
	1166.86	1194.17	1206.26	1222.60	1246.79	1294.27	1305.25	1324.47	
	1353.30	1391.07	1394.24	1469.05	1485.36	1528.39	1620.71	1649.16	
	1654.10	3028.27	3077.89	3086.94	3167.40	3189.71	3205.22	3225.24	
	3743.66								
TS7	-1043.73	53.42	78.46	109.43	140.42	191.29	233.66	279.21	1574.83997
	295.49	357.93	384.60	442.88	455.20	477.03	493.69	528.66	2184.96227
	605.79	660.72	732.12	776.30	794.49	829.83	879.21	909.13	3422.65907
	913.86	970.82	973.68	989.00	1027.10	1051.04	1083.64	1098.96	
	1185.84	1199.13	1244.65	1254.81	1277.83	1290.10	1338.52	1365.09	
	1373.19	1383.66	1450.45	1478.90	1491.36	1497.28	1579.62	1645.93	
	1689.31	3029.81	3056.51	3106.47	3139.60	3179.69	3193.19	3205.97	
	3741.97								
TS8	-820.88	92.74	100.67	125.09	210.80	233.87	258.09	352.33	1073.20552
	411.23	434.22	456.43	469.63	504.38	629.10	700.07	728.31	1404.42516
	785.82	823.73	840.24	917.45	989.87	1013.08	1018.52	1023.44	2455.33346
	1066.69	1104.73	1186.09	1207.76	1221.26	1294.11	1360.82	1406.12	
	1455.58	1486.98	1518.63	1619.23	1641.13	1681.43	1788.59	2937.62	
	2973.58	3190.20	3204.36	3219.49	3222.16				

Table D. 3 Calculated $\Delta H_{f}{ }^{0}{ }_{298}$ from Isodesmic Reaction Analysis ${ }^{\text {a }}$

REFERENCES

1. Hehre, W.; Radom, L.; Schleyer, P. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley \& Sons: New York, 1986.
2. Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996.
3. Levine, 1. N. Quantum Chemistry, 5th ed.; Prentice Hall: Upper Saddle River, NJ 07485, 2000.
4. Becke, A. D. Physical Review A: Atomic, Molecular, and Optical Physics 1988, 38, 3098.
5. Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
6. Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. J. Chem. Phys. 1996, 104, 2598.
7. Hehre, W. J. A Guide to Molecular Mechanics and Quantum Chemical Calculations; Wavefunction, Inc.: Irvine, CA 92612, 2003.
8. Lindemann, F. A. Trans. Faraday Soc. 1922, 17, 598.
9. Hinshelwood, C. N. Proc. Roy. Soc. A 1927, 114, 84.
10. Rice, O. K.; Ramsperger, H. C. J. Am. Chem. Soc. 1927, 49, 1617.
11. Kassel, L. S. J. Phys. Chem. 1928, 225.
12. Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; Prentice-Hall, Inc.: Englewood Cliffs, New Jersey 07632, 1989.
13. Marcus, R. A. J. Chem. Phys. 1952, 20, 359.
14. Marcus, R. A. J. Chem. Phys. 1965, 43, 2658.
15. Marcus, R. A. 1970, 52, 1018.
16. Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; Wiley-Interscience, 1971.
17. Chang, A. Y.; Bozzelli, J. W.; Dean, A. M. Zeitschrift fuer Physikalische Chemie (Muenchen) 2000, 214, 1533.
18. Dean, A. M.; Bozzelli, J. W.; Ritter, E. R. Combustion Science and Technology 1991, 80, 63.
19. Dean, A. M. J. Phys. Chem. 1985, 89, 4600.
20. Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions.; Blackwell Scientific Publ., Oxford, UK, 1990.
21. Gilbert, R. G.; Smith, S. C.; M. J. T. Jordan. UNIMOL Program Suite (Calculation of Fall-off Curve for Unimolecular and Recombination Reactions); Sidney, 1993.
22. Ritter, E. R. Journal of Chemical Information and Computer Sciences 1991, 31, 400.
23. Bozzelli, J. W.; Chang, A. Y.; Dean, A. M. International Journal of Chemical Kinetics 1997, 29, 161.
24. Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; Wiley, London, 1963.
25. Reid, R. C.; Prausnitz, J. M.; Polling, B. E. Properties of Gases and Liquids; McGraw-Hill, New York, 1989.
26. Sheng, C. Y.; Bozzelli, J. W.; Dean, A. M.; Chang, A. Y. Journal of Physical Chemistry A 2002, 106, 7276.
27. Heymann, M.; Hippler, H.; Troe, J. Journal of Chemical Physics 1984, 80, 1853.
28. Hahn, D. K.; Klippenstein, S. J.; Miller, J. A. Faraday Discussions Combustion Chemistry: Elementary Reactions to Macroscopic Processes 2001, 119, 79.
29. Knyazev, V. D.; Slagle, I. R. Journal of Physical Chemistry 1996, 100, 5318.
30. Atkinson, R.; Baulch, D. L.; Cox, R. A.; R. F. Hampson, J.; Kerr, J. A.; Troe, J. J. Chem. Ref. Data 1989, 18, 881.
31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.;

Gonzalez, C.; Pople, J. A. Gaussian 94; Revision D. 4 ed.; Gaussian, Inc.: Pittsburgh, 1995.
32. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; J. A. Montgomery, J.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Danies, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; A. D. Rabuck; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; G. Liu, A. L.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; M. A. Al-Laham; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Revision A. 9 ed.; Gaussian, Inc.: Pittsburgh, 1998.
33. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063.
34. Durant, J. L.; Rohlfing, C. M. J. Chem. Phys. 1993, 98, 8031.
35. Durant, J. L. Chem. Phys. Lett. 1996, 256, 595.
36. Petersson, G. A.; Malick, D. K.; Wilson, W. G. J. Chem. Phys. 1998, 109, 10570.
37. Andino, J. M.; Smith, J. N.; Flagan, R. C.; Goddard, W. A.; Seinfield, J. H. J. Phys. Chem. 1996, 100, 10967.
38. Wong, M. W.; Radom, L. J. Phys. Chem. A 1998, 102, 2237.
39. Cioslowski, J.; Liu, G.; Moncrieff, D. J. Phys. Chem. A 1998, 102, 9965.
40. Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1994, 101, 5900.
41. Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081.
42. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.
43. Lay, T. H.; Krasnoperov, L. N.; Venanzi, C. A.; Bozzelli, J. W.; Shokhirev, N. V. J. Phys. Chem. 1996, 100, 8240
44. Schneider, W. F.; Nance, B. I.; Wallington, T. J. J. Am. Chem. Soc. 1995, 117, 478
45. Omoto, K.; Marusaki, K.; Hirao, H.; Imade, M.; Fujimoto, H. J. Phys. Chem. A 2000, 104, 6499
46. Sun, H.; Bozzelli, J. W. J. Phys. Chem. A 2001, 105, 4504.
47. Pauling, L. The Nature of the Chemical Bond; Cornell University Press: USA, 1947.
48. Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L. J. Phys. Chem. A 2001, 105, 6750.
49. Chase, M. W., Jr. J. Phys. Chem. Ref. Data 1998, Monograph 9.
50. Frenkel, M.; Kabo, G. J.; Marsh, K. N. Thermodynamics of Organic Compounds in the Gas State; Thermodynamic Research Center, Texas A\&M university: College Station,TX., 1994.
51. Stull, D. R.; Prophet, H. JANAF Thermochemical Tables, 2nd ed.; U.S. Government Printing Office: Washington D.C., 1970.
52. Stull, D. R.; Westrum, E. F.; Sinke, G. C. The Chemical Thermodynamic of Organic Compounds; Robert E. Kireger Publishing Company: Malabar, FL, 1987.
53. Holmes, J. L.; Lossing, F. P. J. Am. Chem. Soc. 1988, 110, 7343.
54. Mayer, P. M.; Glukhovtsev, b. M. N.; Gauld, c. J. W.; Radom, L. J. Am. Chem. Soc. 1997, 119, 12889.
55. Tsang, W.; Martinho Simoes, J. A.; Greenberg, A.; Liebman, J. F., Eds Heats of Formation of Organic Free Radicals by Kinetic Methods in Energetics of Organic Free Radicals; Blackie Academic and Professional: London, 1996.
56. Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds, 2nd ed; Chapman and Hall: London: New York, 1986.
57. Cioslowski, J.; Liu, G.; Moncrieff, D. J. Am. Chem. Soc. 1997, 119, 11452.
58. Shevtsova, L. A.; Rozhnov, A. M.; Andreevskii, D. N. Russ. J. Phys. Chem. (Engl. Transl.) 1970, 44, 852.
59. Sun, H.; Bozzelli, J. W. J. Phys. Chem. A 2001, 105, 9543.
60. Cox, J. D.; Pilcher, G. Thermochemistry of Organic \& Organometallic Compounds; Academic Press: London, New York, 1970.
61. Sekuak, S.; Liedl, K. R.; Sablji, A. J. Phys. Chem. A 1998, 102, 1583.
62. Shi, J.; Wallington, T. J.; Kaiser, E. W. J. Phys. Chem. 1993, 97, 6184.
63. Hou, H.; Wang, B.; Gu, Y. J. Phys. Chem. A 2000, 104, 1570.
64. Benson, S. W. Thermochemical Kinetics, 2nd ed.; Wiley Inter-science: New York, 1976.
65. Cohen, N. J. Phys. Chem. Ref. Data 1996, 25, 1411.
66. Lay, T. H.; Bozzelli, J. W.; Dean, A. M.; Ritter, E. R. J. Phys. Chem. 1995, 99, 14514.
67. Barckholtz, T. A.; Miller, T. A. Int. Rev. Phys. Chem. 1998, 17, 435.
68. Ramond, T. M.; Davico, G. E.; Schwartz, R. L.; Lineberger, W. C. J. Chem. Phys. 2000, 112, 1158.
69. Atkinson, R. B., D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data 1997, 26, 1329.
70. Snelson, A.; Skinner, H. A. Trans. Faraday Soc. 1961, 57, 2125.
71. Cohen, N. J. Phys. Chem. Ref. Data 1995, 25, 141.
72. Sheng, C. Representative Hydrocarbon Oxidation Model and Detailed Mechanism for Combustion of a Complex Solid Fuel in a Pilot Scale Incinerator. Ph.D. Dissertation, New Jersey Institute of Technology, 2002.
73. Shokhirev, N. V.; Krasnoperov, L. N. ROTATOR; http://www.chem.arizona.edu/ faculty/walk/nikolai/programs, 1999.
74. Wu, F.; Carr, R. W. J. Phys. Chem. A 2001, 105, 1423.
75. Wu, F.; Carr, R. W. Chem. Phys. Lett. 1999, 305, 44.
76. Khachkuruzov, G. A.; Przheval'skii, I. N. Opt. Spektrosk. 1974, 36, 299.
77. Sun, H.; Chen, C.-J.; Bozzelli, J. W. J. Phys. Chem. A 2000, 104, 8270.
78. Seetula, J. A. Phys. Chem. Chem. Phys. 2000, 2, 3807.
79. Manion, J. A. Journal of Physical and Chemical Reference Data 2002, 31, 123.
80. Chen, C.-J.; Wong, D.; Bozzelli, J. W. J. Phys. Chem. A 1998, 102, 4551.
81. Wallington, T. J.; Schneider, W. F.; Barnes, I.; Becker, K. H.; Sehested, J.; Nielsen, O. J. Chem. Phys. Lett. 2000, 322, 97
82. Wang, S.-K.; Zhang, Q.-Z.; Hou, H.; Wang, B.; Liu, F.-X.; Gu, Y.-S. Chinese Journal of Chemistry 2001, 19, 729.
83. Schnell, M.; Muhlhauser, M.; Peyerimhoff, S. D. Chemical Physics Letters 2001, 344, 519.
84. Stewart, J. J. P. MOPAC 6.0; Frank J. Seiler Research Lab, U.S. Air Force Academy: Colorado, 1990.
85. Wardlaw, D. M.; Marcus, R. A. Chemical Physics Letters 1984, 110, 230.
86. Wardlaw, D. M.; Marcus, R. A. Journal of Chemical Physics 1985, 83, 3462.
87. Klippenstein, S. J.; Marcus, R. A. Journal of Chemical Physics 1987, 87, 3410.
88. Klippenstein, S. J.; Wagner, A. F.; Dunbar, R. C.; Wardlaw, D. M.; Robertson, S. H. VARIFLEX; VERSION 1.00 ed.; Argonne National Laboratory: Argonne, IL 60439, 1999.
89. Varshni, Y. P. Reviews of Modern Physics 1957, 29, 664.
90. Ben-Amotz, D.; Herschbach, D. R. Journal of Physical Chemistry 1990, 94, 1038.
91. Humpfer, R.; Oser, H.; Grotheer, H.-H.; Just, T. Proc. Combust. Inst., 1994, 721.
92. Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Frank, P.; Hayman, G.; Just, T.; Kerr, J. A.; Murrells, T.; Pilling, M. J. Combustion and Flame 1994, 98, 59.
93. Fagerstroem, K.; Lund, A.; Mahmoud, G.; Jodkowski, J. T.; Ratajczak, E. Chemical Physics Letters 1993, 208, 321.
94. Jungkamp, T. P. W.; Kukui, A.; Schindler, R. N. Berichte der BunsenGesellschaft 1995, 99, 1057.
95. Daele, V. L., Gerard; Poulet, Gilles. International Journal of Chemical Kinetics 1996, 28, 589.
96. Lim, K. P.; Michael, J. V. Symp. Int. Combust. Proc. 1994, 25, 809.
97. Dobe, S.; Berces, T.; Temps, F.; Wagner, H. G.; Ziemer, H. J. Phys. Chem. 1994, 98, 9792.
98. Bozzelli, J. W.; Dean, A. M. Journal of Physical Chemistry 1990, 94, 3313.
99. Bozzelli, J. W.; Pitz, W. J. Symp. Int. Combust. Proc. 1994, 25, 783.
100. Norton, T. S.; Dryer, F. L. International Journal of Chemical Kinetics 1992, 24, 319.
101. Warnatz, J. Proc. Combust. Inst., 1985, 20, 845.
102. Chen, C.-J.; Bozzelli, J. W. J. Phys. Chem. A 1999, 103, 9731.
103. DeSain, J. D.; Klippenstein, S. J.; Taatjes, C. A. Physical Chemistry Chemical Physics 2003, 5, 1584.
104. Hughes, K. J.; Lightfoot, P. D.; Pilling, M. J. Chemical Physics Letters 1992, 191, 581.
105. Hughes, K. J.; Halford-Maw, P. A.; Lightfood, P. D.; Turanyi, T.; Pilling, M. J. Symp. Int. Combust. Proc. 1992, 24, 645.
106. Baldwin, R. R.; Hisham, M. W. M.; Walker, R. W. J. Chem. Soc. Faraday Trans. 1982, 78, 1615.
107. Wu, D. B., Kyle D. International Journal of Chemical Kinetics 1986, 18, 547.
108. Xi, Z.; Han, W. J.; Bayes, K. D. Journal of Physical Chemistry 1988, 92, 3450.
109. Baker, R. R.; Baldwin, R. R.; Everett, C. J.; Walker, R. W. Combust. Flame 1975, 25, 285.
110. Baker, R. R.; Baldwin, R. R.; Walker, R. W. Combust. Flame 1976, 27, 147.
111. Dagaut, P.; Cathonnet, M. Combustion and Flame 1999, 118, 191.
112. Tsuzuki, S.; Uchimaru, T.; Tanabe, K.; Hirano, T. J. Phys. Chem. 1993, 97, 1346.
113. Wang, S. M., David L.; Cernansky, Nicholas P.; Curran, Henry J.; Pitz, William J.; Westbrook, Charles K. Combustion and Flame 1999, 118, 415.
114. Curran, H. J.; Pitz, W. J.; Westbrook, C. K.; Hisham, M. W. M.; Walker, R. W. Symp. Int. Combust. Proc. 1996, 26,641.
115. Ritter, E. R.; Bozzelli, J. W. International Journal of Chemical Kinetics 1991, 23, 767.
116. Westmoreland, P. R. Combustion Science and Technology 1992, 82, 151.
117. Dean, A. M.; Westmoreland, P. R. International Journal of Chemical Kinetics 1987, 19, 207.
118. Bozzelli, J. W.; Dean, A. M. Journal of Physical Chemistry 1993, 97, 4427.
119. McGrath, M. P.; Radom, L. Journal of Chemical Physics 1991, 94, 511.
120. Glukhovtsev, M. N.; Pross, A.; McGrath, M. P.; Radom, L. Journal of Chemical Physics 1995, 103, 1878.
121. GaussView; 2.1 ed.; Gaussian, Inc.: Pittsburgh, 1998.
122. Gilbert, R. G.; Luther, K.; Troe, J. Ber. Bunsenges. Phys. Chem. 1983, 87, 169.
123. Good, W. D. J. Chem. Thermodynamics 1970, 2, 237.
124. Sumathi, R.; Carstensen, H.-H.; Green, W. H., Jr. Journal of Physical Chemistry A 2001, 105, 6910.
125. Holmes, J. L.; Lossing, F. P.; Maccoll, A. Journal of the American Chemical Society 1988, 110, 7339.
126. Knyazev, V. D.; Slagle, I. R. J. Phys. Chem. 1998, 102, 1770.
127. Clifford, E. P.; Wenthold, P. G.; Gareyev, R.; Lingberger, W. C.; Depuy, C. H.; Bierbaum, V. M.; Ellison, G. B. J. Chem. Phys 1998, 109, 10293.
128. Chen, C.-J.; Bozzelli, J. W. J. Phys. Chem. A 2000, 104, 4997.
129. Ervin, K. M. G., Scott; Barlow, S. E.; Gilles, Mary K.; Harrison, Alex G.; Bierbaum, Veronica M.; DePuy, Charles H.; Lineberger, W. C.; Ellison, G. Barney. J. Am. Chem. Soc. 1990, 112, 5750.
130. Blanksby, S. J.; Ramond, T. M.; Davico, G. E.; Nimlos, M. R.; Kato, S.; Bierbaum, V. M.; Lineberger, W. C.; Ellison, G. B.; Okumura, M. J. Am. Chem. Soc. 2001, 123, 9585
131. Holmes, J. L.; Lossing, F. P.; Mayer, P. M. J. Am. Chem. Soc. 1991, 113, 9723.
132. Curtiss, L. A.; Lucas, D. J.; Pople, J. A. J. Chem. Phys. 1995, 102, 3292.
133. Ruscic, B.; Berkowitz, J. J. Phys. Chem. 1993, 97, 11451.
134. Dobe, S. B., T. ; Turanyi, T. M., F. ; Grussdorf, J.; Temps, F.; Wagner, H. G. J. Phys. Chem. 1996, 100, 19864.
135. Sun, H.; Bozzelli, J. W. J. Phys. Chem. A 2003, 107, 1018.
136. Furuyama, S.; Golden, D. M.; Benson, S. W. Int. J. Chem. Kinet. 1969, 1, 283.
137. Bedjanian, Y.; Bras, G. L.; Poulet, G. J. Phys. Chem. 1997, 101, 4088.
138. Chen, C.-J.; Bozzelli, J. W. J. Phys. Chem. A 2000, 104, 9715.
139. Slagle, I. R.; Batt, L.; Gmurczyk, G. W.; Gutman, D.; Tsang, W. Journal of Physical Chemistry 1991, 95, 7732.
140. Chemkin II; version 3.1 ed.; Sandia National Labs, Combustion Research Facility: Livermore,CA, 1990.
141. Dean, A. M.; Bozzelli, J. W. In Gas-Phase Combustion Chemistry II, Chapter 2: Combustion Chemistry of Nitrogen; Springer-Verlag: New York, 1999.
142. Sun, H.; Bozzelli, J. W. Submitted to J. Phys. Chem. 2003.
143. Marshall, P. J. Phys. Chem. A 1999, I03, 4560.
144. Chen, C.-J.; Bozzelli, J. W. Unpublished Data.
145. Sun, H.; Bozzelli, J. W. Journal of Physical Chemistry A 2002, 106, 3947.
146. Wiberg, K. B.; Hao, S. J. Org. Chem 1991, 56, 5108.
147. Ringner, B.; Sunner, S.; Watanabe, H. Acta Chem. Scand. 1971, 25, 141.
148. Chemkin III; version 3.6.2 ed.; Reaction Design, Inc: San Diego, CA, 92121, 2001.
149. Hsu, C.-C.; Mebel, A. M.; Lin, M. C. Journal of Chemical Physics 1996, 105, 2346.
150. Leone, J. A.; Flagan, R. C.; Grosjean, D.; Seinfeld, J. H. International Journal of Chemical Kinetics 1985, 17, 177.
151. Atkinson, R. C., William P. L.; Darnall, Karen R.; Winer, Arthur M.; Pitts, James N., Jr. International Journal of Chemical Kinetics 1980, 12, 779.
152. Atkinson, R. L., Alan C. Journal of Physical and Chemical Reference Data 1984, 13, 315 .
153. Emdee, J. L. B., K.; Glassman, I. Symp. Int. Combust. Proc. 1990, 23, 77.
154. Kang, J. K.; Musgrave, C. B. Journal of Chemical Physics 2001, 115, 11040.
155. Becke, A. D. Journal of Chemical Physics 1993, 98, 5648.
156. Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. Journal of Chemical Physics 1991, 94, 7221.

[^0]: ${ }^{a}$ Distance in Angstrom, Angles in Degree.

[^1]: ${ }^{a}$ Reaction enthalpies include thermal correction and zero-point energy. Units in $\mathrm{kcal} / \mathrm{mol}$.
 ${ }^{\mathrm{b}}$ The deviation are between the isodesmic reactions (see text).

