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ABSTRACT

TREE BASED RELIABLE TOPOLOGY FOR
DISTRIBUTING LINK STATE INFORMATION

by
Ram Narayan Krishnan

Finding paths that satisfy the performance requirements of applications according to link

state information in a network is known as the Quality-of-Service (QoS) routing problem

and has been extensively studied. However, distributing link state information may

introduce a significant protocol overhead on network resources. In this thesis, the issue

on how to update link state information efficiently and effectively is investigated. A

theoretical framework is presented, and a high performance link state policy that is

capable of minimizing the false blocking probability of connections under a given update

rate constraint is proposed. Through theoretical analysis, it is shown that the proposed

policy outperforms the current state of the art in terms of the update rate and higher

scalability and reliability.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Link State Protocol is the standard and conventional intra-domain routing protocol. Each

router in the network advertises its link state information to its adjacent routers by what is

known as Link State Advertisement (LSA in OSPF). LSAs are normally cost parameters,

which might be a measure of anything like bandwidth, delay or for instance any traffic

engineering property. These costs are manually assigned to each link in the network. Any

change in the cost will necessitate flooding the entire network again, thus causing a ripple

effect. While some cost parameters like delay and bandwidth for one link might appear to

remain constant, it drastically changes when the network is perceived globally. For

example, in QoS (Quality of Service) routing, when bandwidth is allocated and de-

allocated on a particular path, the cost parameters keep changing dynamically forcing to

start flooding time and again. This problem magnifies when the network has to be scaled.

The network remains under-utilized since much time is spent on network stabilization

and convergence.

Assuming Router A changes its cost (Figure 1.1), it is observed that Router D

receives LSAs from Routers A, B and C, although D would discard the LSA that was

received later. Thus, on a large network, most of the LSAs are discarded as duplicates.

This is a serious impediment having a direct impact on scalability as the amount of

overhead involved might increase exponentially in a densely connected network.

The topology in Figure 1.2 (numerical values over the links indicate the costs) is

used for the purpose of all the forthcoming discussion.
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1.2 Background Information

Multiple and diverse applications with various quality of service (QoS) requirements are

expected to be supported by the broadband integrated services network. Accordingly, a

key issue is to select feasible paths that satisfy these (QoS) requirements. This problem is

known as QoS routing [1].

1.2.1 QoS Routing

Consumer applications such as streaming live videos, packetized voice, multiplayer

games, and Worldwide Web-based shopping, are now commonplace. Businesses also

depend on the network for providing electronic storefronts, support and service to their

customers, and a means to conduct day-to-day operations. The applications that deliver

these new services introduce new traffic characteristics and impose new requirements on

network performance, reliability, and availability. Yet, the Internet's fundamental service

consists only of a packet delivery system that makes no promise regarding reliability,

timeliness, or in-order delivery. The network follows a "best-effort" paradigm in which

all packets are treated identically, regardless of the user application. This 'one model for

all' architecture cannot carry on for long due to the proliferation of the above mentioned

applications. Supporting these new types of applications requires more sophisticated

mechanisms for link scheduling, buffer management, and route selection, all of which

play an important role in meeting the new demands on the network. Examples of QoS

include guarantees on network delay, throughput, or loss, for either individual application

flows, or groups of flows.
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1.2.2 Conventional Routing

Link-state protocol (e.g., OSPF or IS-IS) is the dominant type of IGP used in the current

Internet. Each link in the network is manually assigned a preconfigured cost that may

reflect the capacity or delay, for example. Each router in the network distributes

information about the cost of its incident links to all other routers in the domain. Since

the costs are relatively static quantities, this link-state information need not be distributed

frequently, thus limiting the control and computational overheads. Using the received

information, each router computes the shortest path to every other node in which the

distance is in terms of the link costs. Routers recompute paths relatively infrequently, for

example, only when new link-state information is received. These routes are stored in a

next-hop forwarding table so that when a packet arrives, the router simply looks up the

destination in the table and forwards the packet on the corresponding interface.

1.2.3 Providing QoS (Dynamic Routing)

While the conventional intra-domain routing described above is relatively simple, and

exhibits low overhead, it offers little flexibility in managing network traffic. At best, an

ISP may set link costs according to some notion of an expected traffic pattern such that

traffic is distributed evenly throughout the network. However, when the volume of traffic

between particular points shifts unexpectedly, the network load may become significantly

imbalanced, leading to poor performance and utilization. These fluctuations may arise,

for example, due to variations in user demand and changes in the network configuration,

including failures or reconfigurations in the networks of other service providers. Network

providers rely on coarse measurement tools to discover performance problems in the
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network, and when the problem requires adjustment of the network configuration, the ISP

typically has to manually reroute traffic.

These challenges have spurred increased interest in dynamic routing as a tool for

managing network traffic and providing QoS guarantees. By selecting paths based on link

utilization, dynamic routing responds to long and short timescale fluctuations in the

traffic pattern, and automates the process of redirecting traffic. In doing so, it balances

the network load and improves the overall network utilization. Furthermore, choosing

routes based on resource availability rather than static link weights provides the ability to

satisfy per-flow QoS requirements and improve application performance.

Despite these potential advantages, however, most backbone networks still

employ static link state routing (e.g., based on routing protocols such as OSPF). Unlike

static routing, load-sensitive routing algorithms require accurate and frequently

distributed link-state information to make good routing decisions. Dynamic routing is

particularly sensitive to link-state staleness. When excessive staleness occurs, out-of-date

information leads routers to direct most traffic to a seemingly attractive path while an

alternative path lies under-utilized. A new update arriving to correct the view causes the

router to redirect all traffic to the underutilized path, reversing the roles of the routes.

Frequent distribution of link-state information prevents oscillation, but runs the risk of

flooding the network with control traffic. Similar issues apply to route computation.

Accurate route selection requires that routers compute paths using the latest link-state

information frequently (usually with more sophisticated and complex algorithms), which

incurs higher computational overhead.
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Recent research has focused primarily on three areas of dynamic and QoS routing.

Theoretical work proposes new algorithms for QoS routing that optimize multiple QoS

metrics (e.g., delay and throughput), or compute multicast routing trees subject to QoS

requirements. Performance evaluation work compares the performance of several route

selection algorithms, most often under specific network and traffic configurations.

Finally, protocol development efforts consider issues such as link-state distribution

policies, path set-up mechanisms, and integration into existing intra-domain routing

protocols.

In order to guarantee convergence of a link state routing protocol, it is vital to

ensure that link state Process Data Units or PDU (Link State Advertisements or LSAs in

the case of OSPF) are delivered to all routers within the flooding scope limits. The scope

can be an area or the whole AS depending on the protocol and the type of the link state

PDU. The method used by link state protocols to achieve this implies that a) PDUs are

transmitted reliably between any pair of routers, and b) whenever a new PDU is received,

it is sent across all interfaces other than the one it was received on.

To fulfill the first requirement, link state routing protocols keep retransmitting

new PDUs to the neighbors that have not acknowledged reception. As an example, in

OSPF, a link state retransmission list is maintained for every neighbor of each interface.

When an LSA is sent through an interface, it is put on the retransmission list of every

neighbor associated with this interface and is removed from it only after the neighbor has

acknowledged reception of the LSA.

Thus, in general, two issues are critical to QoS routing: state distribution and

routing strategy [2]. As already discussed, routing strategy is used to find a feasible path,
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which meets the QoS requirements; this has been extensively studied in the literature [3]-

[8]. State distribution addresses the issue of exchanging the state information throughout

the network and can be further decomposed into two sub-problems: when to update and

how to disseminate the link state information. In this thesis research, the state

distribution, especially on the latter sub-problem, is focused. A number of research works

have also been reported on when to disseminate the link state information [9]-[12], which

is, however, beyond the scope of this research.

1.2.4 Link State Flooding

Many existing link-state routing protocols recommend that link state information should

be disseminated by simply flooding or flooding-like approaches. As a result, they possess

the advantage of robustness, i.e., on the cases of link failures and node failures, link state

information is still reachable to all nodes as long as the network is connected. On the

other hand, because of the poor scalability of flooding, a large update interval has to be

adopted in order to reduce the protocol overhead on network resources. For instance, a

link disseminates its state information every 30 minutes in OSPF. Consequently, because

of the highly dynamic nature of link state parameters, the link state information known to

a node is often outdated. Hence, the effectiveness of the QoS routing algorithms may be

degraded significantly. Moreover, distributing link state information by flooding also

unnecessarily wastes network resources.
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1.2.5 Driving Force

If multiple links connect two routers, flooding of new information will cause

considerable overhead of link bandwidth and CPU time spent by the protocol. Consider

an example shown in Figure 1.3 [11] .

Figure 1.3 Illustration of Flooding Overhead.

When a new PDU is received at R1 from its LAN segment, it is stored in the

database of R1 and flooded through all of R1 's interfaces. Since flooding presumes

sending the new PDU over all interfaces except from the one it was received, routers end

up doing the following:

1) R1 sends not one, but N copies of the new PDU to R2.

2) Only the first copy of the PDU is actually installed in R2's data structure, but link

bandwidth and CPU cycles are spent to transmit and process all N copies.

3) Furthermore, when R2 receives the first copy of the LSA and installs it, it floods

back to R1 N-1 copies of it, again spending extra bandwidth and CPU time.
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4) If R1 receives an acknowledgment from R2 on some links, but not from others, it

will keep retransmitting unacknowledged LSAs though they are already in R2's

LSDB.

The solution described in this document provides a technique to minimize the

overhead that link state routing protocols cause in the described situation and use link

bandwidth more efficiently.

1.3 Brief Survey of Existing Solutions

Zinin and Shand's [11] proposed idea is to move the flooding algorithm from the per-

interface to per-neighbor basis. The technique is generic for all protocols utilizing reliable

flooding and is based on the observation that the ultimate goal of the flooding algorithm

is not to send link state PDUs over all interfaces, but to deliver them to all routers in the

network. To implement this optimization, it is necessary to maintain a list of neighbors

within an area. Whenever a new neighbor is discovered on an interface belonging to the

area, the corresponding interface neighbor data structure is linked to the corresponding

element in the list of neighbors. Based on the information in the list of neighbors, as well

as on the type of interfaces they use, interfaces within the area are marked either

flooding-active or flooding-passive. The process of election of flooding-active interfaces

takes into consideration the costs of interfaces, giving preference to faster interfaces.

Multi-access interfaces need special treatment since they may be (usually are) associated

with more than one neighbor. However, if such an interface connects only two routers, it

still may be marked as flooding-passive. Whenever the number of entries in the list or

state of the adjacency in the list changes, the interface election algorithm is rerun. Note
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that since the flooding paradigm is changed from the per-interface to per-neighbor basis,

PDU retransmission is not performed for a specific neighbor on a specific interface, but is

instead done for a specific neighbor in general, and it is enough to receive a single

acknowledgment on any interface for sending router to stop retransmitting.

Kleinrock and Kamoun's [13] solution to this problem is to use the spanning tree

of the given topology. Figure 1.3 is the minimum spanning tree of the topology in Figure

1.2 computed using Prim's algorithm [14].

Figure 1.4 Minimum Spanning Tree for Distributing Link State Information.

Since a spanning tree is used, there are no redundant LSAs. Although it reduces

the overhead by eliminating redundant LSAs, it makes the network less reliable. When

any link goes down, the whole network might get divided into many forests. For instance,

if the link between routers A and D goes down, the network becomes two separate trees.

Any changes originating at routers A, B, C or E cannot be communicated to routers D, F
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and G and vice-versa. Thus, the objective is to propose a more reliable and robust

solution to this problem while guaranteeing minimum overhead.

Bellur and Ogier [15] proposed Topology Broadcast based on Reverse Path

Flooding (TBRPF) algorithm to broadcast topology information to all nodes of a

communication network. The basis for their algorithm is Reverse Path Flooding, in which

messages generated by a given source are broadcast in the reverse direction along the

directed spanning tree formed by the shortest paths from all nodes to the source. The

major difference is that it uses minimum-hop trees (based on number of hops) instead of

shortest-path trees (based on link costs) which results in less frequent changes in the

broadcast trees since the topology of the network does not change that rapidly.

Apparently, this disregard to the link costs is totally unfavorable for cost-effective

routing.

Cain [16] used Reverse Path Flooding again in Fast Link State Flooding

Algorithm. The convergence time of the network using conventional flooding is affected

due to various aspects like time for failure detection, the flooding time itself, and the

hold-down time (wait time to receive multiple LSAs before starting to calculate the

shortest paths). This algorithm uses the data forwarding paths of the routers to send the

Link State Updates (LSU). If a router detects a failure in one of its links, it sends a fast

LSU to the flooding address. When the router whose direct link was cut from the source

router receives the packet, it detects that it did not receive the packet on the interface that

is closest to the source and hence floods the LSA using conventional flooding. This

approach uses a combination of their algorithm with the existing conventional flooding

and concentrates more on faster convergence of the network.
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Chousdhury, Maunder and Sapozhnikova [17] discussed fast detection of failures.

The proposed idea shows that faster hello exchanges (for detection of existence of each

router), fast flooding and more frequent shortest path calculations reduces the scalability

and stability of network as the hello exchange packets cannot be distinguished from other

less critical packets by the receiving router. It proposes that marking such critical packets

like the hello exchange would enable the router to queue them separately and prioritize

them, thus improving network convergence time and stability.

Miyamura, Kurimoto and Aoki [18] proposed an improved solution to this

problem. The algorithm first finds the spanning tree of the given topology. It then adds a

new link to every node, which has a degree of one in the spanning tree but had a degree

greater than one in the original topology (the new link to be added is determined based on

its cost).

Most of the approaches for providing reliability do not make sure that the

cardinality of the set of minimum edge cut of the entire topology is at least two. This is

an essential condition to provide an alternate path for an LSA transfer through an

alternate router if the other router is busy processing some other request or the router

itself is temporarily unavailable for some reason. Thus, what is required is that at least

two edges need to be cut to split the network into two or more islands. This is an essential

condition to be satisfied for the topology to be robust.



CHAPTER 2

PROPOSED SCHEME

2.1 Objective

Intuitively, one would find a minimum Hamilton Circuit [14] from the given graph and

use the path to send the LSAs. Hamilton Circuit is a cycle that starts at a particular source

and passes through every vertex of a graph exactly once and reaches the source at the

end. The major disadvantage of this approach is that finding a minimum Hamiltonian

Circuit in a given graph is NP-complete, and hence would not be practical to use for fast

convergence in real time networks. Also, the topology would not be robust.

In this section, a simple scheme that makes the network robust while reducing

LSA related overhead as much as possible is proposed to enhance scalability [19]. The

spanning tree (Figure 1.4) of the given topology in Figure 1.2 has already been derived.

Now, a new graph is formed by removing the links present in the tree shown in Figure

1.4 from the original topology as shown in Figure 2.1. Note that some nodes (routers)

may be left out due to this operation and they are discarded, as "don't cares" (node A in

this case).

13
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A spanning tree of this graph in Figure 2.1 is found again, which is shown in

Figure 2.2. The final graph shown in Figure 2.3 is obtained by combining the two

spanning trees obtained in Figure 1.4 and 2.2. Now, Figure 2.3 is the topology that is

used to establish adjacencies for each node. Note that the degree of every node in this

graph is greater than one (for every node that had a degree greater than one in the original

topology in Figure 1.2) and the minimum edge cut of the graph is greater than or equal to

2. Another important thing to be noted is that when the Intermediate Graph need not be a

single graph. It could be multiple graphs. So, the spanning tree of each of those

Intermediate Graphs should be found and combined with the first spanning tree in Figure

1.4. This approach is referred to as Reliable Graph from Multiple Spanning Trees

(RGMST).



2.2 Algorithm RGMST

1. Find the minimum spanning tree (T1) of the original topology, G1

2. Remove each edge present in T1 from Gl. This gives a new graph G2

3. Find the minimum spanning tree (T2) of the graph G2

15
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4. Combine the spanning trees Ti and T2 which gives G. (A simple procedure is to

add each link present in T2 to Ti)

5. Graph G is the target graph which is used to establish adjacencies for each node

Now, the way flooding occurs in this graph is discussed. Each node sends out

LSAs to its adjacent nodes, say first as per the spanning tree in Figure 1.4 and then again

as per the spanning tree in Figure 2.2. Assume that the origination of an LSA is node A.

Consider node D. At some time t, node D first sends LSA to nodes F and G according to

the adjacency established in Figure 1.4. Next, it sends LSA to node E according to the

adjacency established in Figure 2.2. If no adjacency exists for a node in one of the

spanning trees, obviously no LSAs are sent to that node in its spanning tree. For example,

node A does not have adjacent nodes in the second spanning tree (Figure 2.2) and hence

no LSAs are sent.

2.3 Complexity Analysis

The graph can be represented by two ways [l4]:

1. Adjacency Lists- Each node has a linked list associated with it. The list contains the set

of adjacent nodes of this node.

2. Adjacency Matrix- If a link is present between two nodes, the corresponding value in

the row-column is set to 1 else to 0.

The complexity of the algorithm varies as per the way the graph is represented.

Assuming Prim's algorithm is used to construct the minimum spanning tree. Adjacency

Matrix representation is used, and hence the complexity would be of 0 (elog(n)) (e is the

number of edges, n is the number of nodes).
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Suppose E and N are the sets of edges and nodes in the given graph G, and Et and

NI (i>=1) the sets of edges and nodes in one or more of the intermediate graphs. The

complexity of step 1 of our algorithm is ElogN, and that of step 3 would be E ilog NI (i

varies from 1 to n, where n is the number of intermediate graphs). Hence, the complexity

of our algorithm RGMST would be 0 (ElogN) where E is the max (E (i varies from 1 to

n) and N is max(Ni) (from the basic algorithm theory that if T i (n)=f(n) and T2(n)=g(n),

then T j(n)+T2(n)=0(max(f(n),g(n))). Thus, the complexity of RGMST remains pretty

much comparable to that of a regular spanning tree algorithm for dense graphs (where E

is very large).

2.4 Proof of the RGMST

In this section, the proposed solution is defined and proved by mathematical analysis.

2.4.1 Definitions

Minimum Edge Cut: Given a graph (G, E), the set minimum edge cut is defined as a set

with the least number of edges, Em (Em is a subset of E), such that only when we remove

all the edges in Em from the graph G, G can be split into two or more sub-graphs.

Reliable Graph: A reliable graph is defined as a Graph Gr with c(Em) ?_ 2 where c(Em) is

the cardinality of its minimum edge cut.

2.4.2 Problem Formulation

Given a network topology G with a cardinality of the set of minimum edge-cut greater

than or equal to two, Algorithm RGMST produces a topology with the minimum edge cut

of cardinality of at least two.
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2.4.3 Proof

Let Eg be the minimum edge cut set of the given graph G. Let Eg={el,e2, en } . Thus,

c(Eg)=n, n 2 (this is the basic assumption). The validity of the proposed solution is

established by proof by contradiction. Hence, assume that the solution does not hold the

formulated problem. Thus, c(E,n)=1 (Em is the minimum edge cut of the final topology in

the proposed solution); arbitrarily assume two nodes m and n that are not directly

connected, and m is a member of G1 and n is a member of G2. Since c(Eg)=n, the given

graph G can be drawn as shown in Figure 2.4. G can be split into two parts as G1 and G2

connected by all the edges in Eg. Thus, if the edges el, e2, ..., en are removed, the graph G

will be split into two parts GI and G2.

As per step 1 of the algorithm RGMST, the spanning tree T1 of the graph G is

found, as shown in Figure 2.5. As per definition of a spanning tree, there must be at least

one edge, env, connecting G1 and G2.



Figure 2.5 Spanning Tree of Given Topology.
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Now, the vertices m and n are not directly connected as shown in Figure 2.5. As

per step 2 of the algorithm, edge et ,, of T1 would surely be removed from G to form a set

of intermediate graphs G. This should leave all the edges other than e u,, from Eg in the set

of intermediate graphs G' as shown in Figure 2.6. Note that G' should contain the edge e3

connecting the nodes m and n.

Now one of the spanning trees of the sub-graphs in G' should have a path from m

to n, and hence the path should necessarily include an edge-cut, say ep . Thus, in the final

step of the algorithm when all the spanning trees are combined, the nodes m and n are

connected by two edges (not necessarily a direct connection); ein, from the spanning tree

T1 and ep. Note that eu,, and ep are members of Em, and Em is a subset of Eg. This

contradicts the basic assumption that c(Em)=1. Thus, the reliable graph G,. that is found by

the algorithm RGMST should have a minimum edge cut of two.



CHAPTER 3

CONCLUSION

A simple yet robust and efficient link state dissemination algorithm has been proposed.

The proposed algorithm provides many properties that are required for QoS-based

routing, which involves frequent dissemination of several dynamic parameters. In

contrast to earlier works, algorithm RGMST involves less computation and more

importantly makes the network robust. It makes sure that the number of edges in the

minimum edge cut set of the given network topology is at least two. This provides extra

reliability for the network and gives a lot of room for load balancing. A future work

would be to demonstrate the algorithm's efficiency along with OSPF.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Link State Protocol is the standard and conventional intra-domain routing protocol. Each

router in the network advertises its link state information to its adjacent routers by what is

known as Link State Advertisement (LSA in OSPF). LSAs are normally cost parameters,

which might be a measure of anything like bandwidth, delay or for instance any traffic

engineering property. These costs are manually assigned to each link in the network. Any

change in the cost will necessitate flooding the entire network again, thus causing a ripple

effect. While some cost parameters like delay and bandwidth for one link might appear to

remain constant, it drastically changes when the network is perceived globally. For

example, in QoS (Quality of Service) routing, when bandwidth is allocated and de-

allocated on a particular path, the cost parameters keep changing dynamically forcing to

start flooding time and again. This problem magnifies when the network has to be scaled.

The network remains under-utilized since much time is spent on network stabilization

and convergence.

Assuming Router A changes its cost (Figure 1.1), it is observed that Router D

receives LSAs from Routers A, B and C, although D would discard the LSA that was

received later. Thus, on a large network, most of the LSAs are discarded as duplicates.

This is a serious impediment having a direct impact on scalability as the amount of

overhead involved might increase exponentially in a densely connected network.

The topology in Figure 1.2 (numerical values over the links indicate the costs) is

used for the purpose of all the forthcoming discussion.
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1.2 Background Information

Multiple and diverse applications with various quality of service (QoS) requirements are

expected to be supported by the broadband integrated services network. Accordingly, a

key issue is to select feasible paths that satisfy these (QoS) requirements. This problem is

known as QoS routing [1].

1.2.1 QoS Routing

Consumer applications such as streaming live videos, packetized voice, multiplayer

games, and Worldwide Web-based shopping, are now commonplace. Businesses also

depend on the network for providing electronic storefronts, support and service to their

customers, and a means to conduct day-to-day operations. The applications that deliver

these new services introduce new traffic characteristics and impose new requirements on

network performance, reliability, and availability. Yet, the Internet's fundamental service

consists only of a packet delivery system that makes no promise regarding reliability,

timeliness, or in-order delivery. The network follows a "best-effort" paradigm in which

all packets are treated identically, regardless of the user application. This 'one model for

all' architecture cannot carry on for long due to the proliferation of the above mentioned

applications. Supporting these new types of applications requires more sophisticated

mechanisms for link scheduling, buffer management, and route selection, all of which

play an important role in meeting the new demands on the network. Examples of QoS

include guarantees on network delay, throughput, or loss, for either individual application

flows, or groups of flows.
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1.2.2 Conventional Routing

Link-state protocol (e.g., OSPF or IS-IS) is the dominant type of IGP used in the current

Internet. Each link in the network is manually assigned a preconfigured cost that may

reflect the capacity or delay, for example. Each router in the network distributes

information about the cost of its incident links to all other routers in the domain. Since

the costs are relatively static quantities, this link-state information need not be distributed

frequently, thus limiting the control and computational overheads. Using the received

information, each router computes the shortest path to every other node in which the

distance is in terms of the link costs. Routers recompute paths relatively infrequently, for

example, only when new link-state information is received. These routes are stored in a

next-hop forwarding table so that when a packet arrives, the router simply looks up the

destination in the table and forwards the packet on the corresponding interface.

1.2.3 Providing QoS (Dynamic Routing)

While the conventional intra-domain routing described above is relatively simple, and

exhibits low overhead, it offers little flexibility in managing network traffic. At best, an

ISP may set link costs according to some notion of an expected traffic pattern such that

traffic is distributed evenly throughout the network. However, when the volume of traffic

between particular points shifts unexpectedly, the network load may become significantly

imbalanced, leading to poor performance and utilization. These fluctuations may arise,

for example, due to variations in user demand and changes in the network configuration,

including failures or reconfigurations in the networks of other service providers. Network

providers rely on coarse measurement tools to discover performance problems in the
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network, and when the problem requires adjustment of the network configuration, the ISP

typically has to manually reroute traffic.

These challenges have spurred increased interest in dynamic routing as a tool for

managing network traffic and providing QoS guarantees. By selecting paths based on link

utilization, dynamic routing responds to long and short timescale fluctuations in the

traffic pattern, and automates the process of redirecting traffic. In doing so, it balances

the network load and improves the overall network utilization. Furthermore, choosing

routes based on resource availability rather than static link weights provides the ability to

satisfy per-flow QoS requirements and improve application performance.

Despite these potential advantages, however, most backbone networks still

employ static link state routing (e.g., based on routing protocols such as OSPF). Unlike

static routing, load-sensitive routing algorithms require accurate and frequently

distributed link-state information to make good routing decisions. Dynamic routing is

particularly sensitive to link-state staleness. When excessive staleness occurs, out-of-date

information leads routers to direct most traffic to a seemingly attractive path while an

alternative path lies under-utilized. A new update arriving to correct the view causes the

router to redirect all traffic to the underutilized path, reversing the roles of the routes.

Frequent distribution of link-state information prevents oscillation, but runs the risk of

flooding the network with control traffic. Similar issues apply to route computation.

Accurate route selection requires that routers compute paths using the latest link-state

information frequently (usually with more sophisticated and complex algorithms), which

incurs higher computational overhead.
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Recent research has focused primarily on three areas of dynamic and QoS routing.

Theoretical work proposes new algorithms for QoS routing that optimize multiple QoS

metrics (e.g., delay and throughput), or compute multicast routing trees subject to QoS

requirements. Performance evaluation work compares the performance of several route

selection algorithms, most often under specific network and traffic configurations.

Finally, protocol development efforts consider issues such as link-state distribution

policies, path set-up mechanisms, and integration into existing intra-domain routing

protocols.

In order to guarantee convergence of a link state routing protocol, it is vital to

ensure that link state Process Data Units or PDU (Link State Advertisements or LSAs in

the case of OSPF) are delivered to all routers within the flooding scope limits. The scope

can be an area or the whole AS depending on the protocol and the type of the link state

PDU. The method used by link state protocols to achieve this implies that a) PDUs are

transmitted reliably between any pair of routers, and b) whenever a new PDU is received,

it is sent across all interfaces other than the one it was received on.

To fulfill the first requirement, link state routing protocols keep retransmitting

new PDUs to the neighbors that have not acknowledged reception. As an example, in

OSPF, a link state retransmission list is maintained for every neighbor of each interface.

When an LSA is sent through an interface, it is put on the retransmission list of every

neighbor associated with this interface and is removed from it only after the neighbor has

acknowledged reception of the LSA.

Thus, in general, two issues are critical to QoS routing: state distribution and

routing strategy [2]. As already discussed, routing strategy is used to find a feasible path,
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which meets the QoS requirements; this has been extensively studied in the literature [3]-

[8]. State distribution addresses the issue of exchanging the state information throughout

the network and can be further decomposed into two sub-problems: when to update and

how to disseminate the link state information. In this thesis research, the state

distribution, especially on the latter sub-problem, is focused. A number of research works

have also been reported on when to disseminate the link state information [9]-[12], which

is, however, beyond the scope of this research.

1.2.4 Link State Flooding

Many existing link-state routing protocols recommend that link state information should

be disseminated by simply flooding or flooding-like approaches. As a result, they possess

the advantage of robustness, i.e., on the cases of link failures and node failures, link state

information is still reachable to all nodes as long as the network is connected. On the

other hand, because of the poor scalability of flooding, a large update interval has to be

adopted in order to reduce the protocol overhead on network resources. For instance, a

link disseminates its state information every 30 minutes in OSPF. Consequently, because

of the highly dynamic nature of link state parameters, the link state information known to

a node is often outdated. Hence, the effectiveness of the QoS routing algorithms may be

degraded significantly. Moreover, distributing link state information by flooding also

unnecessarily wastes network resources.



8

1.2.5 Driving Force

If multiple links connect two routers, flooding of new information will cause

considerable overhead of link bandwidth and CPU time spent by the protocol. Consider

an example shown in Figure 1.3 [11] .

When a new PDU is received at R1 from its LAN segment, it is stored in the

database of R1 and flooded through all of R1 's interfaces. Since flooding presumes

sending the new PDU over all interfaces except from the one it was received, routers end

up doing the following:

1) R1 sends not one, but N copies of the new PDU to R2.

2) Only the first copy of the PDU is actually installed in R2's data structure, but link

bandwidth and CPU cycles are spent to transmit and process all N copies.

3) Furthermore, when R2 receives the first copy of the LSA and installs it, it floods

back to R1 N-1 copies of it, again spending extra bandwidth and CPU time.
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4) If R1 receives an acknowledgment from R2 on some links, but not from others, it

will keep retransmitting unacknowledged LSAs though they are already in R2's

LSDB.

The solution described in this document provides a technique to minimize the

overhead that link state routing protocols cause in the described situation and use link

bandwidth more efficiently.

1.3 Brief Survey of Existing Solutions

Zinin and Shand's [11] proposed idea is to move the flooding algorithm from the per-

interface to per-neighbor basis. The technique is generic for all protocols utilizing reliable

flooding and is based on the observation that the ultimate goal of the flooding algorithm

is not to send link state PDUs over all interfaces, but to deliver them to all routers in the

network. To implement this optimization, it is necessary to maintain a list of neighbors

within an area. Whenever a new neighbor is discovered on an interface belonging to the

area, the corresponding interface neighbor data structure is linked to the corresponding

element in the list of neighbors. Based on the information in the list of neighbors, as well

as on the type of interfaces they use, interfaces within the area are marked either

flooding-active or flooding-passive. The process of election of flooding-active interfaces

takes into consideration the costs of interfaces, giving preference to faster interfaces.

Multi-access interfaces need special treatment since they may be (usually are) associated

with more than one neighbor. However, if such an interface connects only two routers, it

still may be marked as flooding-passive. Whenever the number of entries in the list or

state of the adjacency in the list changes, the interface election algorithm is rerun. Note
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that since the flooding paradigm is changed from the per-interface to per-neighbor basis,

PDU retransmission is not performed for a specific neighbor on a specific interface, but is

instead done for a specific neighbor in general, and it is enough to receive a single

acknowledgment on any interface for sending router to stop retransmitting.

Kleinrock and Kamoun's [13] solution to this problem is to use the spanning tree

of the given topology. Figure 1.3 is the minimum spanning tree of the topology in Figure

1.2 computed using Prim's algorithm [14].

Figure 1.4 Minimum Spanning Tree for Distributing Link State Information.

Since a spanning tree is used, there are no redundant LSAs. Although it reduces

the overhead by eliminating redundant LSAs, it makes the network less reliable. When

any link goes down, the whole network might get divided into many forests. For instance,

if the link between routers A and D goes down, the network becomes two separate trees.

Any changes originating at routers A, B, C or E cannot be communicated to routers D, F
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and G and vice-versa. Thus, the objective is to propose a more reliable and robust

solution to this problem while guaranteeing minimum overhead.

Bellur and Ogier [15] proposed Topology Broadcast based on Reverse Path

Flooding (TBRPF) algorithm to broadcast topology information to all nodes of a

communication network. The basis for their algorithm is Reverse Path Flooding, in which

messages generated by a given source are broadcast in the reverse direction along the

directed spanning tree formed by the shortest paths from all nodes to the source. The

major difference is that it uses minimum-hop trees (based on number of hops) instead of

shortest-path trees (based on link costs) which results in less frequent changes in the

broadcast trees since the topology of the network does not change that rapidly.

Apparently, this disregard to the link costs is totally unfavorable for cost-effective

routing.

Cain [16] used Reverse Path Flooding again in Fast Link State Flooding

Algorithm. The convergence time of the network using conventional flooding is affected

due to various aspects like time for failure detection, the flooding time itself, and the

hold-down time (wait time to receive multiple LSAs before starting to calculate the

shortest paths). This algorithm uses the data forwarding paths of the routers to send the

Link State Updates (LSU). If a router detects a failure in one of its links, it sends a fast

LSU to the flooding address. When the router whose direct link was cut from the source

router receives the packet, it detects that it did not receive the packet on the interface that

is closest to the source and hence floods the LSA using conventional flooding. This

approach uses a combination of their algorithm with the existing conventional flooding

and concentrates more on faster convergence of the network.
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Chousdhury, Maunder and Sapozhnikova [17] discussed fast detection of failures.

The proposed idea shows that faster hello exchanges (for detection of existence of each

router), fast flooding and more frequent shortest path calculations reduces the scalability

and stability of network as the hello exchange packets cannot be distinguished from other

less critical packets by the receiving router. It proposes that marking such critical packets

like the hello exchange would enable the router to queue them separately and prioritize

them, thus improving network convergence time and stability.

Miyamura, Kurimoto and Aoki [18] proposed an improved solution to this

problem. The algorithm first finds the spanning tree of the given topology. It then adds a

new link to every node, which has a degree of one in the spanning tree but had a degree

greater than one in the original topology (the new link to be added is determined based on

its cost).

Most of the approaches for providing reliability do not make sure that the

cardinality of the set of minimum edge cut of the entire topology is at least two. This is

an essential condition to provide an alternate path for an LSA transfer through an

alternate router if the other router is busy processing some other request or the router

itself is temporarily unavailable for some reason. Thus, what is required is that at least

two edges need to be cut to split the network into two or more islands. This is an essential

condition to be satisfied for the topology to be robust.



CHAPTER 2

PROPOSED SCHEME

2.1 Objective

Intuitively, one would find a minimum Hamilton Circuit [14] from the given graph and

use the path to send the LSAs. Hamilton Circuit is a cycle that starts at a particular source

and passes through every vertex of a graph exactly once and reaches the source at the

end. The major disadvantage of this approach is that finding a minimum Hamiltonian

Circuit in a given graph is NP-complete, and hence would not be practical to use for fast

convergence in real time networks. Also, the topology would not be robust.

In this section, a simple scheme that makes the network robust while reducing

LSA related overhead as much as possible is proposed to enhance scalability [19]. The

spanning tree (Figure 1.4) of the given topology in Figure 1.2 has already been derived.

Now, a new graph is formed by removing the links present in the tree shown in Figure

1.4 from the original topology as shown in Figure 2.1. Note that some nodes (routers)

may be left out due to this operation and they are discarded, as "don't cares" (node A in

this case).

13
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A spanning tree of this graph in Figure 2.1 is found again, which is shown in

Figure 2.2. The final graph shown in Figure 2.3 is obtained by combining the two

spanning trees obtained in Figure 1.4 and 2.2. Now, Figure 2.3 is the topology that is

used to establish adjacencies for each node. Note that the degree of every node in this

graph is greater than one (for every node that had a degree greater than one in the original

topology in Figure 1.2) and the minimum edge cut of the graph is greater than or equal to

2. Another important thing to be noted is that when the Intermediate Graph need not be a

single graph. It could be multiple graphs. So, the spanning tree of each of those

Intermediate Graphs should be found and combined with the first spanning tree in Figure

1.4. This approach is referred to as Reliable Graph from Multiple Spanning Trees

(RGMST).
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2.2 Algorithm RGMST

1. Find the minimum spanning tree (T1) of the original topology, G1

2. Remove each edge present in T1 from Gl. This gives a new graph G2

3. Find the minimum spanning tree (T2) of the graph G2
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4. Combine the spanning trees Ti and T2 which gives G. (A simple procedure is to

add each link present in T2 to Ti)

5. Graph G is the target graph which is used to establish adjacencies for each node

Now, the way flooding occurs in this graph is discussed. Each node sends out

LSAs to its adjacent nodes, say first as per the spanning tree in Figure 1.4 and then again

as per the spanning tree in Figure 2.2. Assume that the origination of an LSA is node A.

Consider node D. At some time t, node D first sends LSA to nodes F and G according to

the adjacency established in Figure 1.4. Next, it sends LSA to node E according to the

adjacency established in Figure 2.2. If no adjacency exists for a node in one of the

spanning trees, obviously no LSAs are sent to that node in its spanning tree. For example,

node A does not have adjacent nodes in the second spanning tree (Figure 2.2) and hence

no LSAs are sent.

2.3 Complexity Analysis

The graph can be represented by two ways [l4]:

1. Adjacency Lists- Each node has a linked list associated with it. The list contains the set

of adjacent nodes of this node.

2. Adjacency Matrix- If a link is present between two nodes, the corresponding value in

the row-column is set to 1 else to 0.

The complexity of the algorithm varies as per the way the graph is represented.

Assuming Prim's algorithm is used to construct the minimum spanning tree. Adjacency

Matrix representation is used, and hence the complexity would be of 0 (elog(n)) (e is the

number of edges, n is the number of nodes).
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Suppose E and N are the sets of edges and nodes in the given graph G, and Et and

NI (i>=1) the sets of edges and nodes in one or more of the intermediate graphs. The

complexity of step 1 of our algorithm is ElogN, and that of step 3 would be E ilog NI (i

varies from 1 to n, where n is the number of intermediate graphs). Hence, the complexity

of our algorithm RGMST would be 0 (ElogN) where E is the max (E (i varies from 1 to

n) and N is max(Ni) (from the basic algorithm theory that if T i (n)=f(n) and T2(n)=g(n),

then T j(n)+T2(n)=0(max(f(n),g(n))). Thus, the complexity of RGMST remains pretty

much comparable to that of a regular spanning tree algorithm for dense graphs (where E

is very large).

2.4 Proof of the RGMST

In this section, the proposed solution is defined and proved by mathematical analysis.

2.4.1 Definitions

Minimum Edge Cut: Given a graph (G, E), the set minimum edge cut is defined as a set

with the least number of edges, Em (Em is a subset of E), such that only when we remove

all the edges in Em from the graph G, G can be split into two or more sub-graphs.

Reliable Graph: A reliable graph is defined as a Graph Gr with c(Em) ?_ 2 where c(Em) is

the cardinality of its minimum edge cut.

2.4.2 Problem Formulation

Given a network topology G with a cardinality of the set of minimum edge-cut greater

than or equal to two, Algorithm RGMST produces a topology with the minimum edge cut

of cardinality of at least two.
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2.4.3 Proof

Let Eg be the minimum edge cut set of the given graph G. Let Eg={el,e2, en } . Thus,

c(Eg)=n, n 2 (this is the basic assumption). The validity of the proposed solution is

established by proof by contradiction. Hence, assume that the solution does not hold the

formulated problem. Thus, c(E,n)=1 (Em is the minimum edge cut of the final topology in

the proposed solution); arbitrarily assume two nodes m and n that are not directly

connected, and m is a member of G1 and n is a member of G2. Since c(Eg)=n, the given

graph G can be drawn as shown in Figure 2.4. G can be split into two parts as G1 and G2

connected by all the edges in Eg. Thus, if the edges el, e2, ..., en are removed, the graph G

will be split into two parts GI and G2.

As per step 1 of the algorithm RGMST, the spanning tree T1 of the graph G is

found, as shown in Figure 2.5. As per definition of a spanning tree, there must be at least

one edge, env, connecting G1 and G2.



Figure 2.5 Spanning Tree of Given Topology.
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Now, the vertices m and n are not directly connected as shown in Figure 2.5. As

per step 2 of the algorithm, edge et ,, of T1 would surely be removed from G to form a set

of intermediate graphs G. This should leave all the edges other than e u,, from Eg in the set

of intermediate graphs G' as shown in Figure 2.6. Note that G' should contain the edge e3

connecting the nodes m and n.

Now one of the spanning trees of the sub-graphs in G' should have a path from m

to n, and hence the path should necessarily include an edge-cut, say ep . Thus, in the final

step of the algorithm when all the spanning trees are combined, the nodes m and n are

connected by two edges (not necessarily a direct connection); ein, from the spanning tree

T1 and ep. Note that eu,, and ep are members of Em, and Em is a subset of Eg. This

contradicts the basic assumption that c(Em)=1. Thus, the reliable graph G,. that is found by

the algorithm RGMST should have a minimum edge cut of two.



CHAPTER 3

CONCLUSION

A simple yet robust and efficient link state dissemination algorithm has been proposed.

The proposed algorithm provides many properties that are required for QoS-based

routing, which involves frequent dissemination of several dynamic parameters. In

contrast to earlier works, algorithm RGMST involves less computation and more

importantly makes the network robust. It makes sure that the number of edges in the

minimum edge cut set of the given network topology is at least two. This provides extra

reliability for the network and gives a lot of room for load balancing. A future work

would be to demonstrate the algorithm's efficiency along with OSPF.
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