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ABSTRACT

SYNTHESIS OF NANO/MICRO PARTICLES USING SUPERCRITICAL
FLUID METHOD AND PARTICLE CHARACTERIZATION

by
Abhijit Aniruddha Gokhale

The thesis work consists of the two parts, jet behavior of solvents (ethanol and

acetone) and the particle formation using SAS method. In the first part, the study of

the effects of process parameters like temperature, pressure, injection velocity and

internal diameter of nozzle on liquid jets are studied. The critical pressure for which

liquid jet of solvents changes to gas — like jet, is investigated.

In the second part, the experiments are done to study the process of the

particle formation using SAS method. Effects of process parameters like pressure,

injection velocity of solution, the inner diameter of nozzle on properties of particles

are studied. Few modifications are done in setup to make the experiments easy and

effective. Also, a few recommendations are proposed regarding process parameters

for future experiments as well as to improve set up.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

There is an increasing demand for ideal particles from pharmaceutical, nutraceutical,

cosmetic and specialty chemistry industries for various purposes. Conventional

particle formation processes have certain disadvantages like having less control on the

particle size distribution, particle morphology, purity and rusticity [1]. The new

methods of using supercritical fluid technologies for particle formation show great

promise in the area of pharmaceutical materials and drug delivery systems.

For drug delivery systems, particles formation methods should have the

following features:

• Operates with relatively small quantities of organic solvent(s),

• Molecular control of process,

• Single step and scalable process for solvent-free final product,

• Ability to control desired particle properties,

• Suitable for wide range of chemical types of therapeutic agents,

• Capability for preparing multi-component systems,

• GMP compliant process [2].

Supercritical Fluids methods prove to be very useful in manipulating these

properties of manufactured particles.

1
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1.2 Objectives

Although numerous papers which were published in the last decade, contributed to the

design of SAS apparatuses and the product development, SAS processes are still

optimized empirically since very little has been achieved in mastering quantitatively

the dynamics of phenomena underlying this process. A detailed analysis of the jet

flow is the first step in the development of a comprehensive model capable of

facilitating the design and optimization of the SAS technology. The objective of this

thesis is to study the behavior of liquid jets in binary system and the effects of

operating parameters on the jets as well as the particle formation using SAS method.



CHAPTER 2

REVIEW OF SUPERCRITICAL FLUIDS
TECHNOLOGIES AND APPLICATIONS

2.1 Supercritical Fluids — Properties and Applications

Concepts of Supercritical Fluids: 

Figure 2.1 Graph of pressure — temperature. Hatch lines show supercritical region.

Supercritical fluids (SF) are substances at temperatures and pressures above their critical

points [2]. SFs have density values that enable appreciable solvation power, whilst the

viscosity of solutes in SF is lower than in liquids and the diffusivity of solutes is higher,

which facilitates mass transfer. Also, and significantly for particle formation is that SFs

are highly compressible, particularly near the critical point, and their density and thus the

solvation power can be carefully controlled by small changes in temperature and/or

3
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pressure. In Figure 2.1, the region in pressure (P) — temperature (7) phase space is

defined where the fluid is supercritical according to the above definition, namely the

first quadrant. In P - T diagram, the vapor pressure curve indicates the conditions

under which the vapor and liquid coexist and the critical point corresponds to the

point where the distinction between vapor and liquid disappears [3]. In the Figure 2.1

the critical isotherm is indicated T = TT and critical isobar is indicated P = Pc . If the

liquid is heated at constant pressure exceeding the critical pressure, it expands and

reaches a vapor-like state without undergoing a phase transition. This phenomenon is

called as "the continuity of state".

Figure 2.2 Represents pressure — volume diagram of fluid. The hatched lines show
supercritical region.

Figure 2.2 represents the pressure — volume diagram of the same fluid. The region

corresponds to the supercritical states in Figure 2.1. The single vapor pressure curve

corresponds to a coexistence curve with two branches, one for the vapor and another

for the liquid; the branches meet in the critical point where the difference between the



5

two phases disappears. The critical isochore, V = Vc, is indicated. Coexisting vapor

and liquid states have the same pressure but different molar volume, so that the

isothermal compressibility is infinite throughout the two-phase region. The critical

point is the last point in two-phase region, and the only point in the one — phase

region, where the compressibility is infinite. All supercritical isotherm have finite

slope everywhere, but the slope may be very small (the compressibility very high) in

the vicinity of the critical isochore. The critical isotherm is the first isotherm to reach

zero slope which is the indication of infinite isothermal compressibility and incipient

instability.

Thus, a fluid is critical when the difference between coexisting liquid and

vapor phases disappears. At this point the isothermal compressibility of the one phase

fluid becomes infinite. In the supercritical region, a state of liquid-like density can

transform into one of vapor like-density by tuning the pressure or the temperature,

without the appearance of an interface. The further from the critical point, the easier it

is to gently manipulate the density by tuning pressure or temperature. In the

supercritical fluids, a range of intermediate-density states can be reached which are

not available at sub critical temperatures and pressures [3].



Properties Intermediate Between Those of Vapor and Liquid : 
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Figure 2.3 A graph of viscosity vs pressure Figure 2.4 A graph of viscosity vs
is shown.	 density is shown.

Since the supercritical fluid has densities intermediate between those of vapor

and liquid, its properties are also intermediate between these phases. Consider water

as an example (Fig 2.3). Its viscosity along an isotherm 3 K above 7', ascends pressure

abruptly from vapor-like to liquid-like values.

In Figure 2.4, the viscosity is shown as a function of density along the same

isotherm. Now the behavior is very simple and regular (the very weak critical

divergence of the viscosity is not visible on this scale). The difference between

Figures 2.3 and 2.4 is due to the diverging compressibility.

In Figure 2.5, the dielectric constant of water is plotted along the 25 MPa

isobar as a function of temperature. It drops from a value of 80 near the freezing

point to about 20 near 600 K. In the supercritical range, however, the dielectric

constant undergoes another steep drop as the critical isochore is crossed. The critical-

point value of the dielectric constant is about 4 and on the 25 MPa isobars it falls

below 2 beyond 700 K [3].
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Figure 2.5 A graph showing dielectric Figure 2.6 A graph showing dielectric
constant vs temperature for a supercritical constant vs density for a supercritical
fluid. fluid.

In those conditions, water is a low-dielectric fluid being a poor solvent for

electrolytes and a good solvent for organics. In Figure 2.6, the dielectric constant is

plotted versus density along the same 25 MPa isobar. The steep drop seen near the

critical point in the temperature dependence in Figure 2.5, which is due to the

diverging expansion coefficient, is replaced by a smooth and gradual decrease in the

density representation in Figure 2.6.

Properties Not Intermediate Between Those of Vapor and Liquid : 

The properties such as isothermal compressibility, expansion coefficient and heat

capacity, which display an extremum near the critical density, cannot be intermediate

between those of vapor and liquid. As example, in Figures 2.7 and 2.8 the isobaric

heat capacity of supercritical water is shown along an isobar. The sharp spike in

Figure 2.7, with temperature as the abscissa, is the equivalent of the broad maximum

in Figure 2.8, with the density as abscissa.



Figure 2.7 Isobaric heat capacity is of 	 Figure 2.8 Isobaric heat capacity is
supercritical water is shown against 	 of supercritical water is shown
temperature.	 against density.

The diverging expansion coefficient is the reason that a small change in

temperature causes a huge density change. Even for properties that reach very large

values, the behavior is easier to understand and characterize as a function of a density,

rather than a field variable. The thermal conductivity A of pure fluids diverges at the

critical point about half as strongly as the isobaric heat capacity, and therefore the

thermal diffusivity, A / ρCp, goes to zero as shown in Figure 2.9 and Figure 2.10.

The coefficient of self-diffusion does not have an anomaly near the critical

point. However, the mutual diffusion coefficient is the more important characteristics.

The binary diffusion coefficient approaches zero at the mixture critical point. In dilute

mixtures, the decrease of binary diffusion coefficient is not seen until the critical line

is approached very closely [3].



Figure 2.9 Thermal conductivity is shown Figure 2.10 Thermal conductivity is
against pressure for supercritical fluid. 	 shown	 against	 temperature	 for

supercritical fluid.

For many practical purposes, such as supercritical expansion and

chromatography, the mixture is dilute, and it can be assumed that the coefficient of

binary diffusion is intermediate between that in the vapor and that in the liquid. Since

the diffusion coefficient decreases roughly inversely proportional to the density,

diffusion in supercritical solvents is much more rapid than in liquid solvents, thus

increasing the speed of diffusion-controlled chemical processes [3].
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Supercritical Fluid Phase Behavior:  Binary fluid mixture phase diagrams are

represented as two-dimensional projections of the three-dimensional P-T-x diagram

onto the P-T plane, or as two-dimensional sections of the P-T-x diagram, with

variables T-x at constant P, P-x at constant T, or P-T at constant x. Here x is the mole

fraction of the second component (solute).

Type I binary fluid phase diagram : 

Temperature T

Figure 2.11 The figure explains different types of binary fluid phase diagrams.

The first diagram in Figure 2.11 shows a critical line connecting the two pure-

fluid critical points and no additional phase separation in the liquid phase. The

corresponding P-x and T-x diagrams are shown as sections for constant chosen

pressures, or temperatures, respectively. In the P-x and T-x diagrams, line parallel to

the composition axis connects true coexisting phases on the dew-bubble curves. The

liquid phase is richer in less volatile solute than the vapor phase. The constant x

isothermal compressibility KT x is finite in the two-phase mixture because the pressure
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rises as the two-phase mixture is compressed. It fallows that KT„ is finite as well at the

mixture critical point. For a mixture to display Type-I phase behavior, the two

components must not differ greatly in critical temperature, and the interactions

between unlike pairs must be stronger (more attractive) than the average of like-pair

interactions. As example, CO 2 with methanol, and with alkanes up to butane [3].

Type III Binary Fluid Phase Diagram : 

Figure 2.12 The graphs shows cases where critical line does not remain constant due
to volatility of solute as well as solvent and additional phase separation occurs in
liquid phase.

In many applications, the volatilities of solute and supercritical solvent are

very different. In those cases, the critical line usually does not remain connected, and

additional phase separation may occur in the liquid phase. Figure 2.12 shows a P-T

projection and in two partial P-x sections near and at the critical end point. This type

of phase behavior occurs in mixture with large difference in volatility, and in which

the attractions between unlike pairs are weaker than the average of those of like pairs.

In this type, the involatile solute has only limited solubility in the near-critical solvent.

The critical line breaks off at a critical end point (CEP). Additional solute added
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collects in a second liquid phase. A three-phase LLV line extends downwards from

the critical endpoint. At the solute critical point, a critical line starts that can either

move almost straight up to higher pressures, or may first appear to move to lower

temperature, but ultimately turns over and moves to higher pressures. On this critical

line, it is possible for both temperature and pressure to both is higher than those of the

solute. In that case, the critical line is said to be gas-gas, even though the two

coexisting supercritical phases may be quite dense due to the high pressures.

Applications of Supercritical Fluids

As supercritical fluid exists in a single phase with several advantageous properties of

both liquids and gases, SC fluids have numerous applications in various fields; few of

them are discussed here briefly.

Pharmaceutical Applications of Supercritical Fluids: 

Supercritical Fluid technology is very attractive for manufacturing therapeutic

particles, either of pure active compounds or mixtures of excipient and active

compounds. Drug formulation and Particle design using Supercritical Fluids can be

operated by several different processes, the choice between them depending on the

aimed particle structure, morphology and size distribution, opening new ways for

solving drug delivery problems [4].

Organic Synthesis in Supercritical Fluids:  The use of supercritical fluids in synthetic

organic chemistry remains the subject of increasing interest in the scientific

community.
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Hydrogenation, Friedel-Crafts alkylation, Etherification, Hydroformylation are few

of the types of organic synthesis.

Micelles and Micro emulsions: 

Micro emulsions are clear, thermodynamically stable solutions that generally contain

water, a surfactant, and "oil". The "oil" in this case is the supercritical fluid phase. The

water micro domains have characteristic structural dimensions between 5 and 100 nm.

Aggregates of this size are poor scatterers of visible light and hence these solutions

are optically clear. Water-in-"oil" (w/o) micro emulsions can have a multitude of

different microscopic structures including sphere, rod, or disc shaped aggregates.

Micro emulsions dramatically improve the solvent properties of CO2 and other

supercritical fluids to allow the dissolution of a wide range of polar species. Its use by

industry has been limited because, by itself, it will dissolve only a small number of

compounds having low polarity and low molecular weight. A micro emulsion

overcomes the major limitations of CO2 or other supercritical fluids by making it

possible to dissolve highly polar, ionic, high molecular weight species. Following

picture shows an example of extraction using micro emulsion.
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2.2 Supercritical CO2 as Antisolvent

Figure 2.13 Phase diagram (Volume — Pressure) of CO 2 .

Carbon Dioxide is most commonly used as an antisolvant because of its "ideal"

physical properties. As can be seen in Figure 2.13, it has very low critical temperature

(Tc=31.1°C) and pressure (Pc=73.8 bar) [5]. It is also a good solvent, non toxic, non

flammable, inexpensive, convenient critical temperature, cheap, chemically stable,

non flammable, stable in radioactive applications, easy to remove from the product

and environmentally benign. Very significant changes in density and hence solvating

properties can be achieved by comparatively small pressure and / or temperature

changes (Figure 2.14), particularly around the critical point [6, 7, 8, 9]. Its polar
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character as a solvent is intermediate between a truly non — polar solvent such as

hexane and weakly polar solvents. Pure CO2 can be used for many organic solute

molecules even if they have some polar characters. It has particular affinity for

fluorinated compounds and is useful for working with fluorinated compounds and is

useful for working with fluorinated metal complexes and fluoropolymers [10]. These

properties make it suitable for extracting. Large amount of CO 2 released accidentally

could constitute a working hazard, but hazard detectors are available.

Figure 2.14 Variation of carbon dioxide density with pressure.



Some properties [2] are listed below:

Average mixture critical properties 

Critical compressibility : 0.274

Critical density	 : 10.650 kgmol/m3

Critical pressure	 : 7380.000 kPa

Critical temperature 	 : 304.100 K

Normal freezing point : 216.600 K

Mixture properties at 308.15 K and 73.80 Bar

16

vapor density

liquid density

vapor enthalpy

liquid enthalpy

vapor heat capacity

liquid heat capacity

feed molecular weight

vapor molecular weight

liquid molecular weight

5.978 kgmole/m3

5.978 kgmole/m3

4195.590 kJ/kgmol

4195.590 kJ/kgmol

217.063 kJ/kgmol-K

217.063 kJ/kgmol-K

44.010 kg/kgmol

44.010 kg/kgmol

44.010 kg/kgmol
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2.3 Particle Formation Using Supercritical Fluids

Various techniques for the formation of micro/nano particles are described in the

literature. Most of them, such as organic phase separation [11, 12], spray drying [13]

or solvent evaporation [14], are based on the use of organic solvents for microsphere

preparation. The investigation of alternatives to organic solvents, especially in its

supercritical state, has attracted considerable interest recently because of its several

advantages (discussed in chapter 2.3.1) over traditional techniques.

Two main principles based on supercritical carbon dioxide for microsphere

production can be distinguished, namely its use as solvent or as anti-solvent. In the

RESS (rapid expansion of supercritical solutions) and SFN (supercritical fluid

nucleation) a polymer solution in a supercritical fluid is expanded across a nozzle at

supersonic velocities, leading to instantaneous particle formation by precipitation.

Again, SFN can be subdivided into various techniques like GAS, SAS, PCA, ASES,

PGSS, and SEDS. These techniques are discussed in this chapter.
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2.3.1 Methods of Particle Formation Using Supercritical Fluids

Rapid Expansion of Supercritical Fluid Solution: In the RESS process, the

supercritical fluid solution expands rapidly through a narrow capillary or orifice

nozzle, to a low pressure and low temperature state, which leads to a very high

supersaturation at an ultra-short time interval of about 10 -7 s. The steep increase of

supersaturation and rapid density drop prompt an outburst of homogeneous nuclei,

and ultra-fine particles with a narrow size distribution are expected to form [15].

Merits and Demerits: This process is relatively easy to implement and simple at least

at small scale when a single nozzle can be used. But to form larger number of

particles, it needs to have a multi nozzle device instead of single nozzle, which makes

it costly and difficult to maintain. Instead of using multi nozzle, one can use a porous

sintered disk through which pulverization occurs. But in both the cases, particle size

distribution is not easy to control, and may be much wider than in the case of a single

nozzle. Moreover, particle harvesting is complex, as it is in any process leading to

very small particles. The biggest limitation of RESS development lies in the too low

solubility of compounds in supercritical fluids, what precludes production at

acceptable costs, as, in most cases, use of a co-solvent to increase solubility in the

fluid is not feasible. Its application is restricted to products that present a reasonable

solubility in supercritical carbon dioxide (low polarity compounds) [2, 16].

Gas Antisolvent (Supercritical Fluid as Antisolvent): In this method, the solvent

power of a polar liquid solvent in which the substrate is dissolved is decreased by

saturating it with carbon dioxide in supercritical conditions, causing the substrate

precipitation or recrystallization. A batch of solution is expanded by mixing with a

dense gas in a vessel. Due to the dissolution of the compressed gas, the expanded
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solvent has a lower solvent strength than the pure solvent. The mixture becomes

supersaturated and solute precipitates in micro or nano particles. CO2 is kept flowing

through vessel conforming that obtained particles will be dry [16, 17, 18]. In the GAS

process, mass transfer typically occurs at low Re (<500) by the mechanism of

convection and molecular diffusion, leading to relatively small supersaturation for

many solutes.

Merits and Demerits: Although, theoretically, very slow expansion in the GAS

process should produce a homogeneous supersaturated solution, such expansion is

very difficult to control. In addition, it is impossible to achieve high supersaturation

levels in the GAS because of the faster process of nucleation [17]. This processes will

be having a bright future, especially for drug delivery systems, as it permit to monitor

the properties and composition of the particles with a great flexibility and for almost

any kind of compounds.

Aerosol Solvent Extraction System: The method involves spraying the solution

through an atomization nozzle as fine droplets into compressed carbon dioxide. The

dissolution of the supercritical fluid into the liquid droplets is accompanied by a large

volume expansion and, consequently, a reduction in the liquid solvent power, causing

a sharp rise in the supersaturation within the liquid mixture, and the consequent

formation of small and uniform particles. The supercritical fluid is pumped to the top

of the high pressure vessel by a high pressure pump. Once the system reaches steady

state (temperature and pressure), the active substance solution is introduced into the

high pressure vessel through a nozzle. To produce small liquid droplets in the nozzle,

the liquid solution is pumped at a pressure higher (typically —20 bar) than the vessel

operating pressure. Particles are collected on a filter at the bottom of the vessel. The
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fluid mixture (supercritical fluid plus solvent) exits the vessel and flows to a

depressurization tank where the conditions (temperature and pressure) allow gas-

liquid separation. After collection of a sufficient amount of particles, liquid solution

pumping is stopped and pure supercritical fluid continues to flow through the vessel

to remove residual solvent from the particles [16].

Merits and Demerits: The extraction properties of the gas depend on pressure,

temperature and the adjusted density. While particles can be produced with nearly

every kind of polymer using other methods, ASES seems to be limited to a small

number of slow degrading polymers, such as L-PLA and b-PHB only. Fast degrading

PLG does not lead to particle formation at all. The reasons for this behavior are not

clear.

PGSS: This acronym refers to 'Particles from Gas-Saturated Solutions (or

Suspensions). This process consists in dissolving a supercritical fluid into a liquid

substrate, or a solution of the substrate(s) in a solvent, or a suspension of the

substrate(s) in a solvent followed by a rapid depressurization of this mixture through a

nozzle causing the formation of solid particles or liquid droplets according to the

system.

As the solubility of compressed gases in liquids and solids like polymers are

usually high, and much higher than the solubilities of such liquids and solids in the

compressed gas phase, the process consists in solubilizing supercritical carbon

dioxide in melted or liquid-suspended substance(s), leading to a gas-saturated solution

/ suspension that is further expanded through a nozzle with formation of solid

particles. Typically, this process allows one to form particles from a great variety of

substances that need not to be soluble in supercritical carbon dioxide, especially with
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some polymers that absorb a large concentration (10-40 wt.%) of CO2 that either

swells the polymer or melts it at a temperature much below (10-50°C) its

melting/glass transition temperature [3, 19]. This process can also be used with

suspensions of active substrate(s) in a polymer or other carrier substance leading to

composite microspheres.

Particle design using the PGSS concept is already widely used at large scale,

at the difference with other process concepts presently under development yet. The

simplicity of this concept, leading to low processing costs, and the very wide range of

products that can be treated (liquid droplets or solid particles from solid material or

liquid solutions or suspensions) open wide avenues for development of PGSS

applications, not only for high-value materials but also perhaps for commodities, in

spite of limitations related to the difficulty to monitor particle size [16].

SEDS: A specific implementation of ASES consists in co-pulverizing the substrate(s)

solution and a stream of supercritical carbon dioxide through appropriate nozzles [20].

This method is used in order to achieve smaller droplet size and intense

mixing of supercritical fluid and solution for increased transfer rates. Indeed the

supercritical fluid is used both for its chemical properties and as 'spray enhancer' by

mechanical effect: a nozzle with two coaxial passages allows introducing the

supercritical fluid and a solution of active substance(s) into the particle formation

vessel where pressure and temperature are controlled. The high velocity of the

supercritical fluid allows breaking up the solution into very small droplets. Moreover,

the conditions are set up so that the supercritical fluid can extract the solvent from the

solution at the same time as it meets and disperses the solution [16].
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PCA: In the PCA-type process, the mass transfer is faster than in the GAS, however it

relies on the mixing between jet and reservoir fluid, which may not be fast enough to

compete with the nucleation and particle growth.
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2.3.2 Particle Formation Using SAS

The experimental apparatus mainly consists of two high-pressure pumps that deliver

the liquid and the antisolvent. An injection nozzle is used to produce a spray of the

liquid solution and a precipitation chamber with a stainless steel filter at the bottom

collecting the precipitated powder. A second vessel located after the precipitator is

operated at low pressures and used to recover the liquid solvent [21].

Figure 2.15 Schematic diagrams for SAS process.

In antisolvent processes, solute of interest is dissolved in a suitable organic

phase. This organic phase is then contacted with an antisolvent with a low affinity for

solutes and appreciable mutual solubility with the organic phase [1]. The principle of
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these processes is to decrease the solvent power of a liquid by addition of an

antisolvent in which the solute is insoluble. In this process, the mass transfer of the SF

into the sprayed droplet determines the rate of particle formation, whereas particle

agglomeration and aggregation phenomena are influenced by the rate of solvent mass

transfer into the SF from the droplet [2]. Supercritical CO2 is preliminarily fed to the

precipitator at a constant flow rate. An experiment starts when the liquid solvent is fed

to the precipitation chamber through the nozzle. The scope of this operation is to

assure steady state concentration of the supercritical solution in the precipitator at the

beginning of the precipitation process. After few minutes, the liquid solvent is stopped

and the liquid solution is fed through the injector. Supercritical CO2 continues to flow

through the chamber to wash the supercritical solution containing the liquid solvent.

This operation is very long (20 — 60 min) to avoid the re-condensation of the liquid

inside the chamber [21].

Nucleation and growth of crystals from this solute—organic—antisolvent system

is governed by two mechanisms: diffusion of the antisolvent inside the organic phase

and the evaporation of the organic solvent into the antisolvent phase. Antisolvent

diffusion decreases the solute solubility within the organic phase, whereas the solvent

evaporation increases its concentration. Therefore, high supersaturation can be

achieved. Morphology can be controlled by manipulating process variables, such as

temperature, flow rate, agitation rate and pressure. Crystals of small size and of

narrow size distribution are usually obtained when solute are consumed mainly by

nucleation, thus for concentrated solutions or large diffusion rates. On reverse,

crystals of larger average size and sizes distribution will be formed in conditions

where only few nuclei are formed and grown [1].
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The SAS process has better control on particle size and size distribution than

traditional methods and as it's a one step process better quality of the particles can be

maintained easily.
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2.3.3 Factors Influencing Particle Properties For SAS Technique

Different researchers have done many experiments. Different approaches and designs

have been considered to get micro / nano particles with narrow size distribution.

Though the morphology of the resulting solid material depends on the material

structure (crystalline or amorphous, composite or pure etc.) [16], the particle size

varies with process parameters. So the effects of parameters on particle size and

particle size distribution is being studied and presented in different papers. Here the

effect of parameters on particle size and different approaches used by different

researchers are discussed.

1. Pressure: Effect of pressure on particle size is being studied by varying pressure
in large units. Pressure as low as 90 bar to as high as 400 bar is used to study the
effect on particle size by different researchers. Many researchers concluded that as
working pressure increases, particle size decreases [22, 23, 24, 25 and 26] but there
are contradictions to these statements. M Rantakyala [37] showed that if pressure
increases, the particle size increases. D. Dixon showed that there would not be any
effect of pressure on particle size above 120 Bar [24]. Thus there is no conviction in
results but a general conclusion can be drawn which will be agreed by most of people
that as pressure increases particle size decreases. This statement may be contradictory
for few solutes but in general these results can be defended.

2. Temperature: Temperature is always being a special concern as very high
temperature would be unfavorable as it may exceed glass transition temperature
affecting crystallinity. Most of the time, 35 °C is used when antisolvent is CO2 in the
process. Particle size seems to have a strong correlation with temperature. An
explanation for the strong temperature effect on particle size is that the assumption of
one agglomerated particle developing from each droplet is not adequate. The droplets
are possibly colliding with each other and combining or some droplets are breaking
up. Another explanation may be that several particles, which later agglomerate, are
born inside each droplet. Therefore, the final particle size is possibly determined more
by the mass transfer of CO 2 into the droplet. The change of temperature affects the
density of CO 2 and therefore also the mass transfer between liquid and CO 2 [27]. So,
studies shows as increase in temperature results in increases in particle size [27, 28]
but is contradicted by K. Krober [36]. E. Reverchon affirmed first particle size
increases with increase in temperature but then decreases with further increase in
temperature [6].
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3. CO2 density: Effect of CO2 density on particle size is studied in different
experimentations using different materials and solvents. Perhaps, there are many
inconsistencies in the results. D. Dixon as well T. Randolf [25, 28] stated that as
density of CO 2 is directly proportional to particle size that is, if density increases
particle size increases. But this statement is contradicted by M. Rantaklya, who
showed exact opposite results in a paper [27]. There may be upcoming results, which
can focus well on the relation between CO 2 density and particle size.

4. Reynolds Number: B. Shekunov has focused on the influence of Reynolds number
on particle size. He concluded that particle size decreases due to establishment of
super saturation profile at Re<10 ^4. At higher Re, particle size increases as Re
increases [27, 29].

5. Initial Drop Formed: As particles formed by disintegration of drops, drop size is
important for final particle size. But it is been found that there is no effect of initial
droplet formed at nozzle end on final particle size. Equation is been formulated and
proved by M. Rantaklya [27].

6. Nucleation: Particle size is inversely proportional to nucleation. If nucleation and
crystal growth takes place at slow rate then particle size increases [30]. Thus it is
favorable to have nucleation as fast as possible to get smaller particle size.

7. Solution Flow Rate: Particle size depends on CO2 diffusion in solution. To have
good diffusion between solution and CO2 it is desirable to have lower concentration
of solution. Lower flow rate helps better diffusion of CO 2 in solution. Thus, lower
particle size can be obtained by lowering flow rate [30, 31].

8. Velocity difference: Velocity difference between solution and CO2 does not play
any important role in particle size [27].

9. Nozzle Diameter: As far as nozzle is of same shape, there is no effect of nozzle
diameter in particle size or morphology [23]. Apart from just showing relations
between different process parameters and particle size, researchers are now using
different techniques like using co-axial nozzles, ultrasonic nozzles, nozzles having pre
mixing facilities etc. Also formulas are getting derived showing relations between
different parameters and particle size.
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2.4 Effect of Jet Breakup Processes on The Particle Formation

To study whether the diameter of particles formed in Supercritical As Antisolvent

(SAS) process as a result of droplet disintegration is depend on diameter of droplets

and uniform diameter size distribution of droplets, jet behavior, droplet disintegration

regime and droplet disintegration is studied by changing various parameters like

nozzle diameter, velocity of jets, temperature and pressure. The study of relationship

between particle diameter and size distribution with operating conditions is being

special interest of research in this area. So a detailed analysis of the jet flow is the first

step in the development of a comprehensive model capable of facilitating the design

and optimization of the SAS technology.

Figure 2.16 The isothermal phase diagram of a binary mixture, P vs. molar
composition, x, for a temperature above the critical temperature of the light
component A, but below the critical temperature of the heavy component, B.
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Figure 2.16 shows the simplest isothermal phase diagram of a binary mixture

in terms of pressure, P versus molar composition x, for a temperature above the

critical temperature of the light component, but, still below the critical temperature of

the heavy component [32]. The fluids are completely miscible for a pressure greater

than the critical pressure of a mixture, P„, but are only partially miscible for a

pressure lower than P„, . If the heavy component is injected into a chamber

containing the light component at a pressure below Pcr,m, the jet pattern typical of two

immiscible fluids can be expected. On the other hand, if the chamber pressure is

above P„,„, the jet pattern typical of two miscible fluids is expected. While numerous

previous studies have demonstrated this drastic difference in the jet behavior below

and above the critical pressure, very little information is available in the literature on

the transformation of the jet structure from a two-phase pattern typical of immiscible

fluids to a single-phase pattern typical of miscible fluids with an increase in the

chamber pressure over a pressure range close to the critical point of a mixture.

The pressure-composition diagram at the operating temperature of 35°C

(being above the critical temperature of CO 2) calculated with the use of Soave-

Redlich-Kwong equation of state, and plotted in Figure 2.17.



Figure 2.17 Equilibrium phase diagram "pressure vs. CO2 mole fraction" at 308 K
computed for the carbon dioxide-ethanol mixture.

Considering Ethanol – CO2 system for example, as can be seen in Figure 2.18,

the solubility of CO2 in liquid ethanol and the solubility of ethanol vapor in gaseous

CO2 are relatively low at low pressure. With increasing the pressure, the solubility of

carbon dioxide in ethanol increases sharply whereas the solubility of ethanol vapor in

CO2 does not exceed at a reduced pressure of P/Pcr,m =0.9. Above the critical pressure

of a mixture, ethanol and carbon dioxide become completely miscible.

Flow regimes of ethanol injected into stagnant carbon dioxide for the

chamber pressure below the critical pressure of a mixture were found to be typical of

jets when a liquid is injected into another immiscible liquid [33, 34, 35]. In particular,

presented in Figure 2.18 images show the appearance of liquid jets at various

velocities for subcritical chamber pressure, P/Pcr,m —0.83. At low flow rates [Figure

2.18] drops are formed individually at the tip of the nozzle, and break off when they

attain a particular size (dripping flow). At larger velocities, jetting flow forms [Figure

2.18]. For velocities below approximately 4-5 m/s, drops detach the jet tip at some

distance downstream of the nozzle because of the growth of long-wavelength
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disturbances. These disintegration regimes correspond to the Rayleigh and wind-

induced breakup [35]. Presented in Figure 2.18 photos taken at various distances

below the nozzle demonstrate that drops formed at subcritical pressure do not dissolve

in CO2, as they fall down, for at least several seconds.

Presented in Figure 2.19 photos show the flow patterns of ethanol injected at

various velocities into carbon dioxide for the chamber pressure above the critical

pressure of a mixture, P/Pcr ,m =1.15. These images strongly resemble a cone-like

structure of single-phase jets (the jet width increases nearly proportional to the

distance from the nozzle orifice) when a gas injected into gas [36]. The thread-like

surfaces disturbances ("ligaments") grow downstream but in contrast to jets for

subcritical pressure do not break up into drops under these conditions. The observed

cone-like jet structures are consistent with the appearance of jets of cryogenic liquids

injected into supercritical surroundings [37] and jets in binary systems above the

critical pressure of a mixture when both fluids are miscible [38, 39].

Images presented in Figure 2.20 show flow patterns of ethanol injected at

different velocities at the chamber pressure slightly above the critical pressure of a

mixture, P/Pcr ,m =1.03. They appear to be similar to those observed for subcritical

chamber pressures, varying from dripping to jetting with the Rayleigh and wind-

induced breakup regimes, as the jet velocity increases [Figure 2.18] the injected liquid

disintegrates into drops, which gradually disappear as they fall down. With increasing

the velocity, the drops become smaller and disappear faster. Comparison of flow

structures presented in Figures 2.18 and 2.20 shows that the disappearance of falling

drops is the main difference in the flow structures of ethanol injected below and

slightly above the critical pressure of a mixture. This similarity in the flow patterns

clearly demonstrates the presence of a transient surface tension at the liquid-
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surroundings interface slightly above Pc, • This fact is consistent with data on the

development of instabilities at the interface between two miscible liquids at

atmospheric pressure for a variety of hydrodynamic situations [40], which indicate the

presence of a transient surface tension governing these processes, whereas the

equilibrium surface tension at this interface is zero.

Experimental data on the dependence of the jet breakup length, L, on the jet

velocity, U, for the range of chamber pressures below and slightly above P c„ when

jets disintegrate into drops, i.e., exhibit behavior typical of immiscible fluids, are

presented in Figure 2.21. Beyond the dripping flow regime, the jet length at first

increases with increasing the jet velocity (Rayleigh's breakup) and then, reaching a

maximum, decreases (the wind-induced breakup).
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Figure 2.18 Photos of ethanol injected into carbon dioxide at 70 bar and 35 ° C for
velocities: (A) 0.50 m/s, (B) 0.64 m/s, (C) 2.50 m/s, and (D) 4.05 m/s, which were
taken at different locations below the nozzle: 0 (1 St row); 4 mm (2 nd row); 8 mm (3rd

row); and 12 mm (4 th row). The nozzle diameter is 127 μm.
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Figure 2.19 Photos of ethanol injected into carbon dioxide at 35 ° C and pressure 90
bar for velocities: (A) 0.22 m/s, (B) 1.45 m/s, and (C) 2.50 m/s, which were taken at
different locations below the nozzle: 0 (1 st row); 4 mm (2nd row); 8 mm (3 rd row); a 12

mm (4 th row). The nozzle diameter is 127



Data for 80 bar

35

Figure 2.20 Photos of ethanol injected into carbon dioxide at 35 ° C and pressures 80
bar for velocities: (A) 0.78 m/s which were taken at 0, 4 mm, 8 mm, and 12 mm below
the nozzle, and (B) 1.25 m/s which were taken at 0, 4 mm, 8 mm, 12 mm, and 16 mm
below the nozzle. The nozzle diameter is 127 urn.



Figure 2.21 Experimental data (symbols) on the dependence of the jet length, L/D, on
the jet velocity, U, for 57 bar (diamonds), 70 bar (squares), 74 bar (triangles), and 80
bar (crosses). D =127 μm is the nozzle diameter. Predictions (solid lines) obtained by
using (a) o and (b) σ3 for surface tension in the equation for the growth of
disturbances.
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Experiments performed on the disintegration of ethanol injected into a

pressurized carbon dioxide over a pressure ranging from below to above the critical

point of the ethanol-carbon dioxide mixture, P„, , indicate that the flow patterns

below P„, appear to be the same as those typical of immiscible fluids (varying from

dripping flow to the Rayleigh and wind-induced breakup and then to spraying with

increasing the jet velocity), whereas the jet structures far above P,, strongly

resemble a cone-like structure of single-phase gaseous jets. However, the flow

patterns for pressures slightly above Pcr , m were found to be similar to those observed

below P„, .

Due to a short pre-breakup period, 1— 2 μs the effect of the mass transfer

between the liquid and the surroundings on the jet stability was found to be

insignificant. Therefore, a classical theory for the breakup of a viscous liquid jet was

invoked for interpreting experimental data on the Rayleigh and wind-induced

breakup. The diffusion of carbon dioxide into falling drops was shown to play the

major role in mass transfer for subcritical chamber pressures, thereby leading to

slowly mixing of the injected liquid with CO2. The faster mixing of injected liquid at

pressures above P„,,„ was found to be caused by a significant increase in diffusion

when the liquid becomes miscible with the surroundings and by additional

hydrodynamic mixing since, under these conditions, the mass transfer is not limited

by diffusion inside drops.



CHAPTER 3

EXPERIMENTAL RESULTS OF JET BEHAVIOR
OF LIQUIDS IN BINARY SYSTEM

3.1 Experimental Setup

Figure 3.1 A setup equipped with a flow visualization system.

An experimental setup [Figure 3.1 and Figure 3.2] comprises of two systems —

particle formation system and visualization system. The particle formation system

consists of high-pressure view cell, which can sustain high-pressure upto 3000 psi. A red

38
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flow line represents the flow path of solution and aqua represents for the flow path of

CO2. A high pressure-metering pump (Prep 100, Scientific Systems) pumps solution

into view cell (with a cross-sectional area of 12.7mm x 12.7mm) of 75 ml in capacity

(Jerguson Gauge, T19-32). The view cell has double-sided (front and back) sapphire

windows (320mm x 16mm) for flow visualization. The view cell can withstand

pressures of up to 200 atm (3,000 psi) and temperatures up to 200°C. Velocity of

injected solution can be adjusted from 0.1 ml/min to 100 ml/min. The flow rate of

supercritical CO2 is controlled by backpressure regulator (max 4000 psi, Tescom). A

cyclone separator located after the backpressure regulator is used to recover the liquid

that is accumulated in a collector placed at the bottom of the separator. Rotameter

(VA22440, Dwyer) is put in the flow line of CO2 to measure the quantity of CO2

delivered. Heating pads (SRFG-512 and FGH051-060, Omega) are attached to the

view cell, which keeps the temperature of . view cell constant. Heating tapes are

wounded to the CO2 and solution buffers (SS316L-50DF4-150, Swagelok) to increase

the temperature to desire value through proportional-integral-derivative controllers

(D85011, Dwyer). Pressure gauges are connected to view cell to read pressure and

pressure regulator is connected to CO2 cylinder (Bone-dry, 99.9%, supplied by Messer

Inc) to control pressure. A high-pressure pump (M1/3, HP, Haskel) is connected to

CO2 flow line before CO2 heating buffer to increase CO2 pressure to desired value.

Thermocouples (SMPW-T-M, Omega) are connected in view cell as well as after

buffers to read temperature of CO2 and solution after passing through buffers and in

the view cell. A flexible tube is connected between filter and pressure regulator to

remove and connect filter with ease. Whole setup is wounded with insulating tape to

control the temperature.
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Figure 3.2 Photograph showing experimental setup.

The optical visualization system is comprised of microscope lens (Zoom 160,

Optem), a high-speed CCD camera (LaVision, Germany) and a computer with the

image capture software (Davis 6.5, LaVision, Germany). The view field varies from

0.3 mm x 0.4 mm to 20 mm x 27 mm; the working distance can be adjusted from 52

mm to 114 mm. Two different high-speed cameras were used. The first one employs a

uniform illumination by a diffused light and takes pictures at the rate of 85 frames per
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second in an exposure time less than 100 μs. The pixel resolution is 648 x 484 per

frame. The second one (LaVision, Germany) employs an Nd: YAG dual cavity pulsed

laser (Solo 50 PIV, New Wave Research) and takes double shots with an exposure

time of 0.5 !is and a 15-1.1s delay. The images have a pixel resolution of 1280 x 1024

per frame. A relatively large difference in refractive indexes between the solution and

CO2 (1.05 - 1.25, depending on density) provides with a capability of visualizing the

jet structure with a resolution of several microns.

Modifications Done In the Experimental Setup 

The major problem in the field of supercritical fluids is particle collection. Many

researchers are adopting different methods to make particle collection effective. The

methods include in-line filters, collecting particles on sticky tapes, collecting them on

glass rods etc. In all the methods, biggest problem is particles agglomerate. In the

existing setup in our lab, we have in-line filter. It was difficult to collect particles as

in-line filter being blocking due to particle segregation. To avoid blocking, an

auxiliary glass fiber filter (200 ηm) is placed in front of stainless steel filter (2 μm) so

that it could be easily replaced every time. The filter is made horizontal so that

collected particles can slide on each other giving way to CO2 to flow thought filter

without blocking it. Also while depressurizing the chamber, some solution used to

come out of nozzle, dissolving particles on the filter. To exterminate this problem, a

valve is placed in between the chamber and the filter so that by closing the valve,

filter can be taken out without depressuring chamber and particles are collected

successfully.

Also, few proposals are been made to modify flow lines to reduce the distance

between buffer and nozzle for solution and increase in CO2 buffer as exist buffer is

too small for current experiments. The CO2 flow line could be modified by using
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flexible metal tube to allow CO2 flow through nozzle as well as existing way. By this

modification it would be easy to get rid of solution in the nozzle to eliminate nozzle-

blocking problems. In combination with this, both of the in-line valves can be placed

very near to nozzle so that CO2 as well as solution would not be accumulating in the

lines before nozzle causing nozzle blocking.
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3.2 Breakup of the Ethanol Jet Injected Into CO2

As a first step of studying effect of jet breakup process on particle formation break up

of ethanol jet into CO2 is studied at different injection velocities at different CO2

pressures and temperatures as stated in Chapter 2.4. The complete data of the

experiment is presented quantitatively in this chapter including snap shots of jet break

up for different process parameters showing different kinds of jets and graph of jet

lengths at different process parameters. Four different jet patterns are investigated for

every pressure, namely, dripping flow, symmetric jet, sinusoidal jet and spray. For

every pressure, every kind of jet pattern is shown in following photographs.

According to pressure, the velocity of jet for which the pattern changes, changes. To

avoid repetition, photographs of dripping flow are not shown for every pressure.

Snapshots for pressure 34, 57 and 60 bar for temperature 35 °C are shown

below. For all other operating conditions, they are placed in the Appendix.



3.2.1 Snap Shots of Ethanol Jets
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(A) v = 0.5 m/s	 (B) v = 1.27 m/s	 (C) v = 2.05 m/s (D) v = 7.78 m/s

Figure 3.3 Photos of ethanol injected into carbon dioxide at 34 bar and 35 ° C for
velocities: (A) 0.50 m/s, (B) 1.27 m/s, (C) 2.05 m/s, and (D) 7.78 m/s, which were
taken at different locations below the nozzle: 0 (1 St row); 4 mm (2 nd row); 8 mm (3 rd

row); and 12 mm (4 th row). The nozzle diameter is 1271.1m.
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Figure 3.4 Photos of ethanol injected into
velocities: (A) 1.45 m/s, (B) 2.37 m/s, (C)
locations below the nozzle: 0 (1 st row); 4 mm
row). The nozzle diameter is 127

carbon dioxide at 57 bar and 35 ° C for
5.43 m/s, which were taken at different
(2nd row); 8 mm (3 rd row); and 12 mm (4th
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Figure 3.5 Photos of ethanol injected into carbon dioxide at 60 bar and 35 ° C for
velocities: (A) 1.32 m/s, (B) 2.88 m/s, (C) 5.43 m/s, which were taken at different
locations below the nozzle: 0 (1 St row); 4 mm (2 nd row); 8 mm (3 rd row); and 12 mm
(4th row).) The nozzle diameter is 127 1.1,m.
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3.2.2 Graphs of Jet Lengths at Different Pressures

The systematic study of jet behavior is carried out and graph of liquid jet is plotted

with L/Dnozzle ratio versus injection velocity (in m/s). In this chapter graph of ethanol

jet at different pressures and temperatures is been presented and certain conclusions

are drawn accordingly showing the relation between jet length and temperature.

Graphs for pressure 7, 34, 57 and 60 bar for temperature 35 °C are shown

below. For all other operating conditions are placed in Appendix.

1. For Temperature 35° C

Figure 3.6 Pressure = 7 Bar, Temperature = 35 C, Velocity of injected ethanol varies
from 0.91 m/s to 7.78 m/s.



Figure.3.7 Pressure = 34 Bar, Temperature = 35 C, Velocity of injected ethanol
varies from 0.9 m/s to 7.78 m/s.
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Figure 3.8 Pressure = 57 Bar, Temperature = 35 C, Velocity of injected ethanol
varies from 0.78 m/s to 7.78 m/s.



49

3.2.3 Effect of Parameters on Jet Length

The main results of the experiments are as follows:

1. As pressure increases, jet length for any injection velocity decreases, also, highest
jet length for the particular pressure and temperature also decreases.

2. For a given pressure, as velocity increases, jet length increases till certain velocity
and then decreases, change in jet pattern is observed when jet length starts
decreasing after achieving maximum jet length.

3. As temperature increases, jet length increases for the injection velocity and the
pressure.

4. As pressure increases, highest length of jet shifts towards lower velocity.

5. For ethanol, at 88 bar, liquid jet changes to gas like jet.

6. Pressure increases, all four types of jet flows (dripping, systematic, wavy, spread)
shifts towards lower velocity.

7. After a particular injection velocity, jet turns into spray. This critical velocity
reduces with increase in pressure.
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3.3 Breakup of the Acetone Jet Injected Into CO2

For many solutes, acetone is an alternative as a solvent instead of ethanol so it was

been necessary to collect information about acetone — CO2 system as a first step of

studying effect of jet breakup process on particle formation break up of acetone jet

into CO2. So this phenomenon is studied at different injection velocities at different

CO2 pressures and temperatures. The complete data of the experiment is presented

quantitatively in this chapter including snap shots of jet break up for different process

parameters showing different kinds of jets and graph of jet lengths at different process

parameters. Four different jet patterns are investigated for every pressure, namely,

dripping flow, symmetric jet, sinusoidal jet and spray. For every pressure, every kind

of jet pattern is shown in following photographs. According to pressure, the velocity

of jet for which the pattern changes, changes. To avoid repetition, photographs of

dripping flow are not shown for every pressure.

Snapshots for pressure 57 and 60 bar for temperature 35 °C are shown below.

For all other operating conditions, they are placed in Appendix.



3.3.1 Snap Shots of Jets

1. For Temperature = 35° C,
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Figure 3.9 Photos of acetone injected into carbon dioxide at 57 bar and 35 ° C for
velocities: (A) 1.19 m/s, (B) 1.98 m/s, (C) 4.59 m/s, which were taken at different
locations below the nozzle: 0 (1 st row); 4 mm (2'1 row); 8 mm (3 1-d row); and 12 mm
(4 th row). The nozzle diameter is 127 μm.
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Figure 3.10 Photos of acetone injected into carbon dioxide at 60 bar and 35 ° C for
velocities: (A) 0.91 m/s, (B) 1.72 m/s, (C) 5.14 m/s, which were taken at different
locations below the nozzle: 0 (1 st row); 4 mm (2 nd row); 8 mm (3 rd row); and 12 mm
(4th row).) The nozzle diameter is 127 pm.
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3.3.2 Graphs of Jet Length at Different Pressures

Acetone jet length is studied at different pressures for 35 °C and comparison is made

between ethanol jet length and acetone jet length for this temperature.

Graphs for pressure 57 and 60 bar for temperature 35 °C are shown below. For

all other operating conditions are placed in Appendix.

Temperature = 35 C

Figure 3.11 Pressure = 57 bar, Temperature = 35 C, Velocity of injected ethanol
varies from 0.64 m/s to 5.14 m/s.



54

Figure 3.12 Pressure = 60 Bar, Temperature = 35 C, Velocity of injected ethanol varies
from 0.64 m/s to 4.88 m/s.

Figure 3.13 Pressure = 74 bar, Temperature = 35 C, Velocity of injected ethanol varies
from 0.64 m/s to 2.76 m/s.



55

Figure 3.14 Pressure = 80 Bar, Temperature = 35 C, Velocity of injected ethanol varies
from 0.22 m/s to 2.10 m/s.

Figure 3.15 Pressure = 90 Bar, Temperature = 35 C, Velocity of injected ethanol varies
from 0.36 m/s to 2.30 m/s.
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3.3.3 Effect of Parameters on Jet Length

The main results of the experiments are as follows:

1. As pressure increases, jet length for any injection velocity decreases, also, highest
jet length for the particular pressure and temperature also decreases.

2. For a given pressure, as velocity increases, jet length increases till certain velocity
and then decreases, change in jet pattern is observed when jet length starts
decreasing after achieving maximum jet length.

3. As temperature increases, jet length increases for the injection velocity and the
pressure.

4. As pressure increases, highest length of jet shifts towards lower velocity.

5. Pressure increases, all four types of jet flows (dripping, systematic, wavy, spread)
shifts towards lower velocity.

6. After a particular injection velocity, jet turns into spray. This critical velocity
reduces with increase in pressure.



CHAPTER 4

THE SAS METHOD FOR THE PARTICLE FORMATION

As described previously in Section 2.3.1, solution is injected in supercritical

antisolvent and dry particles are collected. The major advantage of this process over

others is ease in controlling particle size and size distribution.

Numerous researchers, to understand the process of particle formation performed

various experiments by 'using combinations of different polymers and solvents. The

process parameters like pressure, solution injection velocity were widely varied

synthesis nano/micro particles. So to understand the process and relations between

process parameters and physical properties of particles, different polymers like

polylactic acid and its co-polymers, eudragit, chitosan, polyethylene glycol, lidocaine,

dextran are used with the combination of different solvents like dichloromethane,

ethanol, acetone, dimethyl sulfoxide and chloroform to study the process of particle

formation. Using visualization system, the process of particle formation and effect of

process parameters are studied carefully and certain conclusions are drawn.

Few experiments and the results are listed below. For whole list of experiments please

refer Appendix.
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Characterization of particles formed in lab and snapshots of the process for

Polylactic Acid — Dichloromethane — CO 2 systems

Polylactic Acid (Birmingham Polymers, Inc.) is used as a solute and Dichloromethane

(Acros, new jersey. 99.6 % purity) is used as a solvent. Liquid carbon dioxide is

bought from Messer, PA. 99.5 %.

Figure 4.1 Original powder of L-PLA from Birmingham.



Condition 1
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Figure 4.2 Injection of solution into the view cell P = 100 Bar, T = 35 C, Vsol = 0.4

ml/min, v = 1.18 m/s, Dnozzle= 127 pm, VCO2 = 60, (CO2 pulsations are not induced).
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Figure 4.3 SEM images of particles formed P = 100 Bar, T = 35 C, V sol = 0.4 ml/min,
v = 1.18 m/s, Dnozzle = 127 μm, VCO2 = 60, (CO2 pulsations are not induced).
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Figure 4.4 Particle size distribution (LS 200 microscope) P = 100 Bar, T = 35 C,
Vsol = 0.4 ml/min, v = 1.18 m/s, Dnozzie = 127 1.1m, VCO2 = 60, (CO2 pulsations are not
induced).



CHAPTER 5

CONCLUSION

A detailed study of ethanol and acetone injection in supercritical as well as subcritical

CO2 is done. Effect of process parameters on jet length and jet pattern is studied.

Based on experiments done for particle formation using SAS method, it is

found that particles form with injection of gas like jet and not liquid jet. Critical

pressure for ethanol as well as acetone is investigated experimentally for which the

liquid jet changes to gas like jet. Effect of process parameters on particle size and

shape are studied. Less agglomerated particles formed when CO2 as well as solution is

injected in pulsations rather than continuous injection.
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APPENDIX A

BREAKUP OF THE ETHANOL JET INJECTED INTO CO2

Studying effect of jet breakup process on particle formation break up of ethanol jet

into CO2 is studied at different injection velocities at different CO2 pressures and

temperatures. The complete data of the experiment is presented quantitatively

including snap shots of jet break up for different process parameters showing different

kinds of jets at different process parameters. For every pressure, every kind of jet

pattern is shown in following photographs. According to pressure, the velocity of jet

for which the pattern changes, changes. To avoid repetition, photographs of dripping

flow are not shown for every pressure.
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Figure A.1 Photos of ethanol injected into carbon dioxide at 65 bar and 35 ° C for
velocities: (A) 1.32 m/s, (B) 2.5 m/s, (C) 5.43 m/s, which were taken at different
locations below the nozzle: 0 (1 st row); 4 mm (2nd row); 8 mm (3 rd row); and 12 mm
(4 th row). The nozzle diameter is 127 vim.
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Figure A.2 Photos of ethanol injected into carbon dioxide at 70 bar and 35 ° C for
velocities: (A) 0.78 m/s, (B) 2.24 m/s, (C) 3.273 m/s, which were taken at different
locations below the nozzle: 0 (1 st row); 4 mm (2 nd row); 8 mm (3 rd row); and 12 mm
(4th row). The nozzle diameter is 127 μm.
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Figure A.3 Photos of ethanol injected into carbon dioxide at 74 bar and 35 ° C for
velocities: (A) 1.05 m/s, (B) 1.32 m/s, (C) 3.01 m/s, which were taken at different
locations below the nozzle: 0 (1 St row); 4 mm (2 nd row); 8 mm (3 rd row); and 12 mm
(4th row).) The nozzle diameter is 127 p.m.



Figure A.4 Photos of ethanol injected into carbon dioxide at 80 bar and 35 ° C for
velocities: (A) 0.78 m/s, (B) 1.2 m/s, (C) 2.89 m/s, which were taken at different
locations below the nozzle: 0 (1 st row); 4 mm (2 nd row); 8 mm (3 rd row); and 12 mm
(4th row).) The nozzle diameter is 127 pm.
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Figure A.5 Photos of ethanol injected into carbon dioxide at 57 bar and 40 ° C for
velocities: (A) 1.72 m/s, (B) 2.63 m/s, (C) 5.43 m/s, which were taken at different
locations below the nozzle: 0 (1 St row); 4 mm (2 nd row); 8 mm (3 rd row); and 12 mm
(4th row).) The nozzle diameter is 127 1.1m.
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Figure A.6 Photos of ethanol injected into carbon dioxide at 60 bar and 40 ° C for
velocities: (A) 1.97 m/s, (B) 2.5 m/s, (C) 5.43 m/s, which were taken at different
locations below the nozzle: 0 (1 st row); 4 mm (2nd row); 8 mm (3 rd row); and 12 mm
(4th row). The nozzle diameter is 127 [an.
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Figure A.7 Photos of ethanol injected into carbon dioxide at 70 bar and 40 ° C for
velocities: (A) 1.45 m/s, (B) 2.11 m/s, (C) 4.32 m/s, which were taken at different
locations below the nozzle: 0 (1st row); 4 mm (2 nd row); 8 mm (3 rd row); and 12 mm
(4 th row). The nozzle diameter is 127 1.1m.



71

Figure A.8 Photos of ethanol injected into carbon dioxide at 74 bar and 40 ° C for
velocities: (A) 1.18 m/s, (B) 1.85 m/s, (C) 4.59 m/s, which were taken at different
locations below the nozzle: 0 (1 st row); 4 mm (2 nd row); 8 mm (3 rd row); and 12 mm
(4th row).) The nozzle diameter is 127 pm.
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Figure A.9 Photos of ethanol injected into carbon dioxide at 80 bar and 40 ° C for
velocities: (A) 1.32 m/s, (B) 1.59 m/s, (C) 3.4 m/s, which were taken at different
locations below the nozzle: 0 (1 St row); 4 mm (2 nd row); 8 mm (3 rd row); and 12 mm
4th row).) The nozzle diameter is 127 μm.



APPENDIX B

GRAPHS OF ETHANOL JET LENGTHS AT DIFFERENT PRESSURES

Graphs of jet lengths of ethanol into supercritical CO2 are shown for different

pressures and temperatures with wide velocity range.

1. For Temperature 35°C

Figure B.1 Pressure = 60 Bar, Temperature = 35 C, Velocity of injected ethanol
varies from 0.78 m/s to 7.78 m/s.

Figure B.2 Pressure = 65 Bar, Temperature = 35 C, Velocity of injected
ethanol varies from 0.84 m/s to 7.78 m/s.
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Figure B.3 Pressure = 70 Bar, Temperature = 35 C, Velocity of injected
ethanol varies from 0.64 m/s to 3.40 m/s.
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Figure B.4 Pressure = 74 Bar, Temperature = 35 C, Velocity of injected
ethanol varies from 0.64 m/s to 7.78 m/s.



Figure B.5 Pressure = 78 Bar, Temperature = 35 C, Velocity of injected
ethanol varies from 0.38 m/s to 3.20 m/s.
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Figure B.6 Pressure = 80 Bar, Temperature = 35 C, Velocity of injected
ethanol varies from 0.20 m/s to 2.20 m/s.
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Figure B.7 Comparison of Jet Lengths at Different Pressures for Temperature = 35°C.



2. For Temperature 40°C
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Figure B.8 Pressure = 57 Bar, Temperature = 40C, Velocity of injected
ethanol varies from 0.78 m/s to 7.78 m/s.

Figure B.9 Pressure = 60 Bar, Temperature = 40C, Velocity of injected
ethanol varies from 0.78 m/s to 7.78 m/s.



Figure B.10 Pressure = 70 Bar, Temperature = 40C, Velocity of injected ethanol varies
from 0.78 m/s to 7.78 m/s.

Figure B.11 Pressure = 74Bar, Temperature = 40C, Velocity of injected ethanol varies
from 0.64 m/s to 7.78 m/s.
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Figure B.12 Pressure = 80 Bar, Temperature = 40C, Velocity of injected ethanol varies
from 0.50 m/s to 3.40 m/s.

Figure B.13 Comparison between jet lengths at different pressures.



3. For Temperature 50°C
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Figure B.14 Pressure = 57 bar, Temperature = 50C, Velocity of injected ethanol varies
from 0.91 m/s to 7.78 m/s.

Figure B.15 Pressure = 60 Bar, Temperature = 50C, Velocity of injected ethanol varies
from 0.78 m/s to 7.78 m/s.
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Comparison of Jet Lengths at Different Temperatures

Figure B.16 Pressure = 57 Bar, Temperatures = 35, 40, 50C, Velocity of injected
ethanol varies from 0.91 m/s to 7.78 m/s.

Figure B.17 Pressure = 60 Bar, Temperatures = 35, 40, 50C, Velocity of injected
ethanol varies from 0.78 m/s to 7.78 m/s.
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Figure B.18 Pressure = 70 Bar, Temperatures = 35, 40 °C Velocity of injected ethanol
varies from 0.64 m/s to 6.94 m/s.

Figure B.19 Pressure = 74 Bar, Temperatures = 35, 40 °C, Velocity of injected ethanol
varies from 0.64 m/s to 7.78 m/s.
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Figure B.20 Pressure = 80 bar, Temperatures = 35, 40C, Velocity of injected ethanol
varies from 0.20 m/s to 3.01 m/s.



APPENDIX C

BREAKUP OF THE ACETONE JET INJECTED INTO CO2

Studying effect of jet breakup process on particle formation break up of acetone jet

into CO2 is studied at different injection velocities at different CO2 pressures and

temperatures. The complete data of the experiment is presented quantitatively

including snap shots of jet break up for different process parameters showing different

kinds of jets at different process parameters. For every pressure, every kind of jet

pattern is shown in following photographs. According to pressure, the velocity of jet

for which the pattern changes, changes. To avoid repetition, photographs of dripping

flow are not shown for every pressure.
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Figure C.1 Photos of acetone injected into carbon dioxide at 74 bar and 35 ° C for
velocities: (A) 0.78 m/s, (B) 1.05 m/s, (C) 4.59 m/s, which were taken at different
locations below the nozzle: 0 (1 st row); 4 mm (2 nd row); 8 mm (3 rd row); and 12 mm
(4th row). The nozzle diameter is 127 1.1111.
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Figure C.2 Photos of acetone injected into carbon dioxide at 80 bar and 35 ° C for
velocities: (A) 0.5 m/s, (B) 0.64 m/s, (C) 5.43 m/s, which were taken at different
locations below the nozzle: 0 (1 St row); 4 mm (2nd row); 8 mm (3 rd row); and 12 mm
(4th row). The nozzle diameter is 127 μm.



APPENDIX D

COMPARISON OF ACETONE AND ETHANOL JET LENGTHS FOR 35°C

Graphs of jet lengths of acetone into supercritical CO 2 are shown for different

pressures and temperatures with wide velocity range.

Figure D.1 Pressure = 57 Bar, Temperature = 35C, Velocity of injected ethanol and acetone varies

from 0.78 m/s to 7.78 m/s.
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Figure D.2 Pressure = 60 Bar, Temperature = 35C, Velocity of injected ethanol and
acetone varies from 0.78 m/s to 7.78 m/s.

Figure D.3 Pressure = 74 Bar, Temperature = 35C, Velocity of injected ethanol and
acetone varies from 0.78 m/s to 7.78 m/s.
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Figure D.4 Pressure = 80 Bar, Temperature = 35C, Velocity of injected ethanol and
acetone varies from 0.22 m/s to 2.10 m/s.
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E. Particle formation using SAS method

The experiments are done for synthesis and characterization of particle formation

using SAS (supercritical as antisolvent) method. Below is the list of experiments done

and the results obtained from the experiments.

Figure E.1 Injection of solution into view cell P = 120 Bar, T = 35 C, V soi = 0.4
ml/min, v = 1.18 m/s, Dnozzle 127 pm, VCO2 60, (CO2 pulsations are not induced).
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Figure E.2 SEM images of particles formed, P = 120 Bar, T = 35 C, Vsol = 0.4
ml/min, v = 1.18 m/s, Dnozzle = 127 μm, VCO2 = 60, (CO2 pulsations are not induced).
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Figure E.3 Particle size distribution (LS 200 microscope) P = 120 Bar, T = 35 C, Vsol
= 0.4 ml/min, v = 1.18 m/s, Dnozzle = 127 μm, VCO2 = 60, (CO2 pulsations are not
induced).



Condition 3
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Figure E.4 Injection of solution into the view cell, P = 100 Bar, T 35 C, V sol= 0.4

ml/min, v = 1.18 m/s, Dnozzie = 127 1.1m, VCO2 = 60, CO2 is injected with pulsations
using 20 rpm pump.
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Figure E.5 SEM images of particles formed, P = 100 Bar, T = 35 C, Vsol = 0.4

ml/min, v = 1.18 m/s, Dnozzle = 127 p.m, Van = 60, CO2 is injected with pulsations
using 20 rpm pump.



Figure E.6 Particle size distribution (LS 200 microscope).
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Figure E.7 Particles collected from experiment done without injection of CO 2

pulsations.
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Figure E.8 Particles collected from experiment done with injection of CO2 pulsations.



Condition 4
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Figure E.9 Injection of solution into the view cell, P = 100 Bar, T = 35 C, V sol= 0.4

ml/min, v = 1.18 m/s, Dnozzie = 254 VCO2 = 60, CO2 is injected with pulsations
using 20 rpm pump.



98

Figure E.10 SEM images of particles formed P = 100 Bar, T = 35 C, V sol = 0.4

ml/min, v = 1.18 m/s, Driozzle = 254 μm, V002 = 60, CO2 is injected with pulsations
using 20 rpm pump.
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Figure E.11 Particle size distribution (LS 200 microscope) P = 100 Bar, T = 35 C,
Vsol = 0.4 ml/min, v = 1.18 m/s, Dnozzle = 254 μm, VCO2 = 60, CO2 is injected with
pulsations using 20 rpm pump.
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