

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

AN EXPERIMENTAL STUDY ON NETWORK INTRUSION
DETECTION SYSTEMS

by
Peng FU

A signature database is the key component of an elaborate intrusion detection

system. The efficiency of signature generation for an intrusion detection system

is a crucial requirement because of the rapid appearance of new attacks on the

World Wide Web. However, in the commercial applications, signature generation

is still a manual process, which requires professional skills and heavy human effort.

Knowledge Discovery and Data Mining methods may be a solution to this problem.

Data Mining and Machine Learning algorithms can be applied to the network traffic

databases, in order to automatically generate signatures.

The purpose of this thesis and the work related to it is to construct a feasible

architecture for building a database of network traffic data. This database can then

be used to generate signatures automatically. This goal is achieved using network

traffic data captured on the data communication network at the New Jersey Institute

of Technology(NJIT).

AN EXPERIMENTAL STUDY ON NETWORK INTRUSION
DETECTION SYSTEMS

by
Peng FU

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Computer Science

August 2003

APPROVAL PAGE

AN EXPERIMENTAL STUDY ON NETWORK INTRUSION
DETECTION SYSTEMS

Peng FU

Dron Tsong Li Wang, Thesis Advisor Date
Professor, Department of Computer Science, NJIT

Dr. Chengjun Liu, Committee Member Date
Assistant Professor, Department of Computer Science, NJIT

Dr. Michael M. Yin Committee Member 	 g bate
Senior Technical Staff Member, AT&T Labs

BIOGRAPHICAL SKETCH

Author: 	 Peng FU

Degree: 	 Master of Science

Date: 	 August 2003

Date of Birth:

Place of Birth:

Education:

• Masters of Science, Computer Science
New Jersey Institute of Technology, Newark, New Jersey, August 2003

• Ph.D. Candidate, Biochemistry and Molecular Biology
University of Medicine and Dentistry of New Jersey (UMDNJ), 1999-2001

• Master of Science, Molecular Genetics and Molecular Virology
College of Life Sciences, Nankai University, Tianjin, CHINA, 1997

• Bachelor of Science, Biochemistry
College of Life Sciences, Nankai University, Tianjin, CHINA, 1994

Major: 	 Computer Science

Publications:

• Deng L, de la Fuente C, Fu P, Wang L, Donnelly R, Wade JD, Lambert P, Li
H, Lee CG, Kashanchi F.
"Acetylation of HIV-1 Tat by CBP/P300 Increases Transcription of Integrated
HIV-1 Genome and Enhances Binding to Core Histones", in Virology, vol. 277
No, 2, November 2000. Pages 278 -295.

• de La Fuente C, Santiago F, Chong SY, Deng L, Mayhood T, Fu P, Stein D,
Denny T, Coffman F, Azimi N, Mahieux R, Kashanchi F,
"Overexpression of p21(waf1) in Human T-cell Lymphotropic Virus Type 1
Infected Cells and Its Association with Cyclin A/cdk2", in Journal of Virology,
vol. 74, No. 16, August 2000, Pages 7270-7283.

iv

• Clark E, Santiago F, Deng L, Chong S, de La Fuente C, Wang L, Fu P, Stein
D, Denny T, Lanka V, Mozafari F, Okamoto T, Kashanchi F,
"Loss of G1/S Checkpoint in Human Immunodeficiency Virus Type 1-Infected
Cells Is Associated With a Lack of Cyclin-Dependent Kinase Inhibitor
p21/ Waf1", in Journal of Virology, vol. 74, No. 11, June 2000 Pages
5040-5052.

• FU Peng, LIU Shuhong, Chen Qimin, GENG Yunqi,
"Construction of in vitro Culture System for BIV92044 Strain", in Acta Scien-
tiarum Naturalium Universitatis Nankaiensis, vol. 31, No. 2, February 1998,
Pages 22-27.

• FU Peng, LIU Shuhong, Chen Qimin, GENG Yunqi,
"Cloning and Sequence Analysis of Functional Fragments of BIV92044", in
Acta Scientiarum Naturalium Universitatis Nankaiensis, vol. 31, No, 2,
February 1998, Pages 96-98.

• FU Peng GENG Yunqi, et al. ed.,
"HIV and Related Viruses", Nankai University Press, Tianjin, P. R. China,
1997.

• CHEN Qi-min, LIU Shuhong, JI Yonggang, Xue Zhihong, FU Peng, GENG
Hairong, MA Ming, SUN Qing, LIANG Dong and GENG Yunqi,
"Effect of the Changes of Amino Acids on the Mature Protein N-Terminal
Region to the Secretion of a-Amylase in B.subtilis", in Acta Genetica Sinica
(Domestic Edition), vol. 25, No. 3, March 1998, Pages 278-285.

• Peng Fu, Yunqi Geng,
"Immunological Detection of BIV92044 and Cloning and Sequence Analysis
of its Structural Genes", Meeting Communication; Chinese Society for
Biochemistry, 1997 Annual Meeting; July 1997; Haikou City, Hainan Province,
P. R. CHINA

To My Beloved Family

vi

ACKNOWLEDGEMENT

First of all, I would like to thank my thesis advisor, Dr. Jason Tsong Li Wang, for his

precious direction and guidance. His words always inspire thoughts and bring great

complexity down to simple workable ideas. Doing research under his instruction is

my honorable privilege. I will benefit from this experience throughout my life. I also

would like to acknowledge and thank Dr. Chengjun Liu and Dr. Michael M. Yin,

for their kindness to be my committee members, and their time spent on reviewing

my research.

I would like to thank Mr. Wenping Yang, who is the System Manager at

Department of Computer Science of NJIT. He kindly provided suggestions on the

research topic as well as some of the facilities that were used in the research.

I want to thank Ms. Katherine Herbert, who is a Ph.D. candidate in the

Data and Knowledge Engineering Lab. Her valuable advice nourishes my mind in

many ways. I want to thank Mr. Sen Zhang and Mr. Huiyuan Shan, who are also

Ph.D. candidates in the Data and Knowledge Engineering Lab. Their knowledge on

network has greatly enriched my research.

Finally, I would like to thank my dear wife, Xing Kuang. The love, support,

encouragement and spiritual happiness she brings me always keeps me going.

vii

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 INTRUSION DETECTION SYSTEMS 	 4

2.1 Detection Methods 	 4

2.1.1 Anomaly Detection 	 4

2.1.2 Misuse Detection 	 4

2.2 Intrusion Detection Systems 	 5

3 ESTABLISHMENT OF NETWORK TRAFFIC DATA WAREHOUSE . . 	 7

3.1 The Limitations of Current IDSs 	 7

3.2 Data Ming and Signature Generation Framework 	 8

3.3 Construction of the Data Warehouse 	 9

3.4 Implementation on NJIT's Campus Network 	 12

4 CONCLUSIONS AND FUTURE WORK 	 16

APPENDIX A MAJOR NETWORK PROTOCOLS 	 17

A.1 Internet Protocol 	 17

A.2 User Datagram Protocol 	 18

A.3 Transmission Control Protocol 	 19

APPENDIX B SITE SPECIFIC CONFIGURATIONS 	 20

B.1 MySQL Configuration 	 20

B.2 Snort Configuration 	 21

APPENDIX C CODE SAMPLES 	 24

C.1 A Basic Network Traffic Dumper 	 24

C,2 A Basic Network Traffic Data Logger Engine 	 27

REFERENCES 	 31

viii

LIST OF FIGURES

Figure 	 Page

1.1 Trends of reported security incidents, data obtained from CERT[1].. 	 2

3.1 An Intrusion Detection Framework with Automated Data Analyzer
and Signature Generator 	 8

3.2 Tables for DARPA 98 Training Database, showing in MySQL Control
Center. 	 11

3.3 Contents of ICMP table in DARPA 98 Training Database, showing in
MySQL Control Center 	 12

3.4 Some of the captured network traffic data that are labeled as DoS
attacks. 	 13

3.5 Reconstructed network traffic by Ethereal[20] showing real DoS attacks. 14

3.6 Real DoS attack packets between host 128.235.34.132 and host
128.248.170.138 in the NJIT Network Traffic Database 	 15

A.1 IP packet format and ethernet packet format, IP packet is encap-
sulated in an ethernet packet 	 17

A.2 UDP packet format, UDP packet is encapsulated in an IP packet,
which is encapsulated in an ethernet packet 	 18

A.3 TCP packet format, which is encapsulated in the same way us UDP
is shown in Figure A.2. 	 19

B.1 Local host MySQL server configuration for MySQL 4.0 running on
Windows 2000 Professional. 	 20

ix

CHAPTER 1

INTRODUCTION

The emergence of the Internet has profoundly and permanently changed the shape of

the world. One of the greatest advantages Internet brings is its accessibility, which

brings vast and diverse information to users with just a mouse click. With this

greatest advantage comes its inherent opposite side, the greatest threat. While it

facilitates the usage by all the legitimate users, accessibility also provides convenience

for illegal users to probe into networked systems, steal sensitive information or even

disable the entire World Wide Web for days. This could happen at any moment to

any computer on the Internet. When considering this problem, the biggest issues are

when do the intrusions happen, where do they come from and who commits them.

These problems are well known to any security professional. Since the early devel-

opment of data communication protocols developers considered functionalities and

efficiency much more than they did network security issues, almost all established and

widely used protocols "genetically" contain insecure weakness. This makes solving

the above problems much more difficult. It will be a long run for the whole world to

have a safe World Wide Web.

With the dramatic growth of the Internet, these kinds of intrusions happen

more and more frequently. According to CERT [1], in the Year of 1988 there were

only 6 security incidents reported; in the Year of 2002, there were 82,094 incidents;

and as of August 2003, there have been 76,404 (Figure 1.1). Since 1988, there have

been a total of 258,867 incidents that may involve one site or even hundreds of

thousands of sites. Furthermore, with the evolution of technology, the malicious

computing techniques and tools have been constantly progressing. Subsequently,

intrusions are more complicated and it requires more and more professional skills to

find them.

1

2

Figure 1.1 Trends of reported security incidents, data obtained from CERT[1].

This severe situation leaves us in great need of countermeasures for network

intrusions. First of all, security is a policy issue that has to be always kept in mind

by the people who administrate data communication networks. Without the proper

regulations and management on security related matters, even the finest technologies

can become useless investment. Security policies for data communication networks

can also reinforce the technical strength in many ways. For example, publicly empha-

sizing or even exaggerating that user activity is being closely monitored by adminis-

trator may deter an intrusion attempt before it happens.

However, policy management and psychological strategies are not enough to

prevent the system from being invaded by experienced attackers. Technically, anti-

network intrusion tools that are capable of helping an organization or network secure

its information are still needed. These tools could be used to detect an intruder,

identify and block the intruders, support investigations to find out how the intruder

3

got in, stop the exploit that the intruder used from being used by future intruders,

and provide forensic evidence to carry out legal actions.

Intrusion Detection System (IDS) is the right tool to meet all these requirements.

It utilizes technologies coming from various fields of computer science to discriminate

inappropriate, incorrect, or anomalous activities. Detection is not the only function

an IDS has. Today's advanced IDSs have the ability to automatically and aggres-

sively counteract intrusions.

CHAPTER 2

INTRUSION DETECTION SYSTEMS

The concept of Intrusion Detection was created by James Anderson in 1980 [2] [3].

Based on the difference between the emphases and methodologies, intrusion detection

falls into two categories: anomaly detection and misuse detection.

2.1 Detection Methods

2.1.1 Anomaly Detection

In anomaly detection, observed behaviors are compared against expected normal

usage profiles that are developed for individual users, groups, applications, or system

resource usage. Activities that are not defined as "normal behavior" are considered

anomalies[4]. Instead of defining what is "bad" for the system, anomaly detection

defines what is "good" , which keeps the control rules in a reasonable size. In practice,

thresholds are set to defining acceptable behavior (for example, the acceptable failed

logins during a certain period of time), which provides a clear line between "normal"

and "anomaly" . In order to cover all the major aspects of a system, normal activities

for individual user and user groups have to be properly and independently profiled.

This process will include analyzing and specifying allowed usage for system recourses

and executables. All the users and groups are expected to comply with the system

recourse assignments and privileges on executables. Activities otherwise will be

treated as anomalies and subject to interruption.

2.1.2 Misuse Detection

In spite of comparing to historically "normal" usage and acting on the entire

unknown, misuse detection essentially locates "bad behaviors" based on the

summarized and abstracted description of known attack activities [5]. Misuse

4

5

detection is signature-based detection. A signature is a pattern that represents

possible attacks, which can be found in network traffic. After careful analysis of raw

network traffic data, rules are generated to identify a single event that represents

a threat to system security, or a series of events that represent a prolonged attack

scenario. Obviously, misuse detection requires comprehensive knowledge of a system,

especially its weakness and vulnerabilities. Misuse detection could be implemented

by developing expert systems, reasoning models, state transition analysis systems, or

neural networks. Applying various Knowledge Discovery or Data Mining algorithms

to misuse detection model may be a new promising way of making the detection

fast, accurate and efficient [10].

2.2 Intrusion Detection Systems

Both anomaly detection and misuse detection can be adopted into a single archi-

tecture to form an intrusion detection system (IDS). Because of the steadily

increasing number of reported computer security incidents, intrusion detection

systems have gained a fast-growing market. For example, Cisco[23], ISS[24],

AXENT[25] and NFR[26] all market commercial systems for intrusion detection.

Intrusion Detection System has the following functions [6]:

• Monitoring and analyzing user and system activity

• Auditing of system configurations and vulnerabilities

• Assessing the integrity of critical system and data files

• Recognizing activity patterns reflecting known attacks

• Statistically analyzing activity for abnormal patterns

• Facilitating operating-system audit-trail management, with recognition of user

activity reflecting policy violations

6

A general model for intrusion detection system contains the following discrete

components [8]:

• Event Generators. They collect events from outside the intrusion detection

system protected environment and present it to other components or store

it into event database both in the format of "generalized intrusion detection

objects" .

• Event Analyzers. They receive events from the Event Generators, analyze the

events statistically or compare the events against signatures or rules. Then

they provide the result to other components, or store it to even database, both

in the format of "generalized intrusion detection objects".

• Event Databases. They are the event repositories for all the components of the

system.

• Response Units. They take generalized intrusion detection objects gathered by

other components and carry out actions against suspicious events based on the

result presented by the Event Analyzers.

All four kinds of units are logical entities. A component might be implemented

as a single process on one computer or a set of distributed processes on different

computers.

Based on the needs that different IDSs may exchange data, there are two

on-going developments for IDS standards. One standard is "The Intrusion Detection

Exchange Protocol (IDXP)" , which is being developed by Intrusion Detection

Working Group under the Internet Engineering Task Force. (IETF) [7]. The other

standard is the "Common Intrusion Detection Framework (CIDF)" [8]. As of the

date of writing of this thesis, none of the two above-mentioned frameworks is widely

accepted nor accepted as a de facto standard.

CHAPTER 3

ESTABLISHMENT OF NETWORK TRAFFIC DATA WAREHOUSE

3.1 The Limitations of Current IDSs

The most widely used and commercially available IDSs are signature-based systems.

They often come with a large set of signatures that have been identified as unique

to a particular vulnerability or exploit. A signature-based system matches features

observed from the network traffic stream to the signatures hand-made by experts and

stored in its signature database. When a signature for an attack matches observed

traffic, an alert is generated, or the event is otherwise recorded [5].

Signature-based methods have some inherent limitations. The most significant

one is that a signature-based method can only detect attacks whose features have

existed in the signature database. Therefore, just like anti-virus software, signature

based IDSs cannot detect unknown attacks because there is no available signature.

But the problem is even worse, as of September 2002, there are only 2,000 IDS

signatures that have been defined, while there are more than 30,000 for anti-virus

[9]. Most IDS vendors provide regular signature updates in an attempt to keep pace

with the rapid appearance of new vulnerabilities and exploits. However, building

up the signature database is a tedious manual work, which requires comprehensive

knowledge and professional skills. Moreover it is very time consuming. This slow

manual process can neither keep pace with the advancement of new attack techniques,

nor help solve the severe problems that IDSs are currently having, such as failure

to recognize large numbers of attack variants, high probability of generating false

positive alerts and/or false negative reports and difficulty in handling overwhelming

network traffic data loads.

Based on all these factors, a feasible automated or at least semi-automated

mechanisms is greatly needed to respond quickly enough to new attacks and produce

reliable signatures for intrusion detection system.

7

8

3.2 Data Ming and Signature Generation Framework

Data mining-based methods could be very promising candidates for automated

signature generation [10]. The major advantage of these methods is that they utilize

the generalization ability of data mining algorithms [11]. In order to detect new and

unknown attacks, a data mining-based intrusion detection system employs machine

learning and data mining algorithms on a large set of system audit data to build up

signature databases.

Figure 3.1 An Intrusion Detection Framework with Automated Data Analyzer and
Signature Generator.

Based on the needs and the above analysis, an intrusion detection framework

is proposed in this thesis as shown in Figure 3.1, the Data Capture Module, Data

Analyzer and Logger Module are implemented and Data Warehouse is established

9

in this thesis. The Data Ming module and Automated Signature Generator will be

implemented in further research works.

In Figure 3.1, the IDS is placed on the external side of a monitored and

protected network, along with a Data Capture Module. The Data Capture Module

captures the network traffic data and writes the data into a raw data file in the

format of the original binary stream. Then the Data Analyzer will use network

protocol based analysis to extract information in every data field of the packets

encapsulated in the binary stream. And the Data Logger will then log the resulted

data items into corresponding positions to build up a Data Warehouse. The Data

Mining Module takes over here. It queries the Data Warehouse and applies appro-

priate Data Mining algorithms. The output is then sent to the Automated Signature

Generator to produce signatures, which will ultimately enhance the performance of

the Intrusion Detection System. Ideally, the whole process needs no human inter-

ference. However, in the preliminary implementations of the system, some human

interaction is still necessary.

3.3 Construction of the Data Warehouse

Under the Defense Advanced Research Project Agency (DARPA [12]) and Air Force

Research Laboratory (AFRL [13]) sponsorship, the Information System Technology

Group at MIT Lincoln Laboratory [14] has been evaluating Intrusion Detection

Systems. Their offline data sets that were used to carry out 1998 and 1999 evaluation

have been widely accepted by researchers in the field of intrusion detection. The 1998

data sets are used to build up the Data Warehouse in this thesis.

The Data Warehouse consists of sets of network traffic databases, namely,

training data sets for the training of Data Mining algorithms and Machine Learning

mechanisms; and real data sets that the trained algorithms will work on. In these

network traffic databases, traffic stream is dissected into fields defined by corre-

8

3.2 Data Ming and Signature Generation Framework

Data mining-based methods could be very promising candidates for automated

signature generation [10], The major advantage of these methods is that they utilize

the generalization ability of data mining algorithms [11], In order to detect new and

unknown attacks, a data mining-based intrusion detection system employs machine

learning and data mining algorithms on a large set of system audit data to build up

signature databases.

Figure 3.1 An Intrusion Detection Framework with Automated Data Analyzer and
Signature Generator,

Based on the needs and the above analysis, an intrusion detection framework

is proposed in this thesis as shown in Figure 3.1, the Data Capture Module, Data

Analyzer and Logger Module are implemented and Data Warehouse is established

11

libpcap [15] and WinPCAP [18] Programming on UNIX/LINUX systems and Win32

systems, respectively. In the work of this thesis, MySQL 4,0 [19] is used as a cross-

platform database server and MySQL Control Center 0.9,2 beta is used as client [19],

The site-specific configuration file of MySQL server is provided in Appendix B,

Figure 3.2 Tables for DARPA 98 Training Database, showing in MySQL Control
Center.

12

Part of the database contents is shown in Figure 3.2 and Figure 3.3 after the

establishment of the databases,

Figure 3.3 Contents of ICMP table in DARPA 98 Training Database, showing in
MySQL Control Center.

3.4 Implementation on NJIT's Campus Network

In order to test the previously established procedure, all the involved modules are

placed on NJIT network to work with real network traffic data. This implementation

13

time Security Type SeverityDirection Protocol Dst_Host Src IP_ Count
05/05/2003 03:09:17 Denial of Service Major Incoming TCP 210.187.13.70 128.235.34.132 4
05/05/2003 03:09:18 Denial of Service Major Incoming TCP 210.187.13.70 128.235.34.132 2
05/05/2003 03:09:27 Denial of Service Major Incoming TCP 210.187.13.70 128.235.34.132 2
05/05/2003 03:09:38 Denial of Service Major Incoming TCP 210.187.13.70 128.235.34.132 2
05/05/2003 03:10:00 Denial of Service Major Incoming TCP 210.187.13.70 128.235.34.132 2
05/05/2003 03:10:52 Denial of Service Major Incoming TCP 210.187.13.70 128.235.34.132 2
05/05/2003 13:12:43 Denial of Service Major Laming TCP 218.244.107.200 128,235.34.132 2
05/05/2003 13:12:51 Denial of Service Major holing TCP 218.244.107,200 128,235,34,132 2
05/05/2003 13:14:19 Denial of Service Major Incoming TCP 218.244.107,200 128,235,34,132 2
05/05/2003 13:15:53 Denial of Service Major Incoming TCP 218.244.107,200 128.235.34,132 2
05/06/2003 01:06:05 Denial of Service Major Incoming TCP 128.248.170,138 128.235.34.132 2
05/06/2003 01:06:10 Denial of Service Major Incoming TCP 128.248,170.138 128.235.34.132 2
05/06/2003 01:06:15 Denial of Service Major Incoming TCP 128.248.170,138 128.235.34.132 2
05/06/2003 01:06:31 Denial of Service Major Incoming TCP 128.248.170.138 128.235.34,132 2
05/06/2003 01:06:52 Denial of Service Major Incoming TCP 128.248.170.138 128.235,34,132 2
05/06/2003 01:07:45 Denial of Service Major Incoming TCP 128.248.170.138 128.235.34.132 2
05/06/2003 01:09:13 Denial of Service Major Incoming TCP 128.248.170.138 128.235.34.132 2
05/06/2003 03:13:46 Denial of Service Major Incoming TCP 211.156.96.11 128,235.34.132 2
05/06/2003 03:13:47 Denial of Service Major Incoming TCP 211.156.96.11 128,235.34.132 4
05/06/2003 03:14:02 Denial of Service Major Incoming TCP 211.156.96.11 128.235.34.132 2
05/06/2003 03:14:12 Denial of Service Major Incoming TCP 211.156.96,11 128,235.34.132 2
05/06/2003 03:14:37 Denial of Service Major Incoming TCP 211,156.96,11 128,235,34.132 2
05/06/2003 03:16:59 Denial of Service Major Inca* TCP 211,156,96.11 128,235.34.132 2
05/06/2003 14:34:21 Denial of Service Major Incoming TCP 217,209.63.102 128,235.34.132 4
05/06/2003 14:34:23 Denial of Service Major Incoming TCP 217,209,63.102 128.235.34.132 2
05/06/2003 14:34:29 Denial of Service Major Icon* TCP 217,209,63.102 128.235.34.132 2
05/06/2003 14:34:41 Denial of Service Major honing TCP 217,209,63.102 128.235.34.132 2
05/06/2003 14:35:05 Denial of Service Major Incoming TCP 217.209.63.102 128.235.34.132 2

Figure 3.4 Some of the captured network traffic data that are labeled as DoS attacks.

is conducted to comply with the framework proposed in Figure 3.1, with only one

exception that the data capture module is placed inside the NJIT campus network

to capture traffic data going through a certain domain, instead of the whole campus

network.

During capturing, the network traffic is also monitored by a third-party software

to calibrate the data labeling. Figure 3.4 shows part of the labeling result.

After the capturing and labeling, the traffic stream is reconstructed by Ethereal

[20]. Figure 3.5 shows this reconstruction, in which highlighted frame is previously

labeled as DoS from 128.235.34.132 to 128.248.170.138.

Under the same database structure used for the training set, the DARPA 98

Datasets, the captured network traffic data are logged into the database called

14

Figure 3.5 Reconstructed network traffic by Ethereal[20] showing real DoS attacks.

"realdata". In this database, the targeted traffic information can be retrieved in

many ways. For example, by carefully comparing the TCP ports and time stamps,

all the traffic between host 128.235.34.132 and host 128.248.170.138 can be

found, weather it is normal or malicious, as shown in Figure 3,6. These databases

now contain valuable information to feed data mining algorithms in further research

works.

15

Figure 3.6 Real DoS attack packets between host 128.235.34.132 and host
128.248.170.138 in the NJIT Network Traffic Database.

CHAPTER 4

CONCLUSIONS AND FUTURE WORK

In this research, a workable preliminary procedure has been established to build up

the network traffic data warehouse, which thus forms the basis of the automated

intrusion detection signature generator.

It has to be pointed out that the data analyzer and logger used in this research

is still very crude. It only dissects IP, TCP, UDP and ICMP data streams. More

protocol analysis modules need to be added. The database schema also needs

improvement for this matter. It will be great news for researchers in the field of

Intrusion Detection if Ethereal is rendered database connectivity, given the fact that

Ethereal can dissect more 200 protocols as of the time of writing this thesis [20].

Fighting against network intrusion is such a charming yet extremely challenging

job that it demands prolonged enthusiasm and continuous hard working. It is

obviously true that the more people pay attention to security issues, the safer the

Internet would be.

16

APPENDIX A

MAJOR NETWORK PROTOCOLS

A.1 Internet Protocol

Figure A.1 shows an Internet Protocol version 4 packet is embedded in an Ethernet

Frame, which is indicated in the Frame Type field with a hexadecimal value 0080.

In the IP packet, IP header occupies the first 20 bytes of space (top five rows in

the figure). There have been some changes in the meaning of data fields since the

Internet Protocol was established. For example, Time to Live now means "how

many hops (routers) the packet can pass before it expires (dropped by the system

that receive it). Protocol field is a very informative; it implies what kind of data is

embedded after IP header. A decimal value of 17 means it is UDP; 6, TCP and 1,

ICMP.

Figure A.1 IP packet format and ethernet packet format, IP packet is encapsulated
in an ethernet packet.

17

18

A.2 User Datagram Protocol

User Datagram Protocol (UDP) is a connectionless, unreliable transport service. It

does not provide mechanism to ensure connection. It does not acknowledge. It

does not re-order the received packets. It may lose or duplicate data packets during

transmission. Further more, it has no error messaging functions to inform the upper

layer applications or to request a re-send from the sender. It is the duty of the

application program, which employs UPD at transport-layer, to ensure the quality

of service.

Even though having these unreliable features, UDP is still widely used by

many applications such as IP phone applications and online multimedia services

that demand speed more than stability. UDP is faster than TCP because it has

much less overhead and simpler procedures to transfer data. An embedded UDP

packet is shown in Figure A.2.

Figure A.2 UDP packet format, UDP packet is encapsulated in an IP packet, which
is encapsulated in an ethernet packet.

19

A.3 Transmission Control Protocol

Transmission Control Protocol (TCP) is a reliable connection-oriented protocol

employed by many applications that require stable connections between two hosts

to ensure correct data transfer. TCP guarantees the reliability by the following

mechanisms:

• TCP uses unique sequence numbers to identify the data sent to destinations.

• TCP uses acknowledgement numbers to inform the sender which exact data

has been received. Acknowledgement numbers are generated by adding 1 to

the corresponding sequence number.

• TCP uses three-way handshake procedure to establish a exclusive unicast

connection between two hosts.

Figure A.3 shows the organization of a TCP packet. SYN flag is used at

startup to establish the connection. FIN flag is used to terminate the existing

connection.

Figure A.3 TCP packet format, which is encapsulated in the same way us UDP is
shown in Figure A.2.

APPENDIX B

SITE SPECIFIC CONFIGURATIONS

B.1 MySQL Configuration

MySQL 4.0 configuration used in this thesis is shown in Figure B,1. In order to

avoid system configuration conflicts with Windows 2000, "localhost" is used as the

bind-address, instead of the real IP address of the server,

Figure B.1 Local host MySQL server configuration for MySQL 4,0 running on
Windows 2000 Professional.

20

21

B.2 Snort Configuration

The snort configuration file is included in below. It is modified according to the

default setting of Snort 2.0. This configuration has been tested on Windows 2000

with MySQL 4.0 in the given environment.

#################################
The Snort Configuration File
#################################

var HOME_NET any

var EXTERNAL_NET any

List of DNS servers
var DNS_SERVERS $HOME_NET

List of SMTP servers
var SMTP_SERVERS $HOME_NET

List of web servers
var HTTP_SERVERS $HOME_NET

List of sql servers
var SQL_SERVERS $HOME_NET

List of telnet servers
var TELNET_SERVERS $HOME_NET

Ports you run web servers on
var HTTP_PORTS 80

Ports you want to look for SHELLCODE on.
var SHELLCODE_PORTS !80

Ports you do oracle attacks on
var ORACLE_PORTS 1521

Path to the rules files

var RULE_PATH c:/snort/rules

Configuration for preprocessors

preprocessor frag2

preprocessor stream4: detect_scans, disable_evasion_alerts

preprocessor stream4_reassemble

preprocessor http_decode: 80 unicode iis_alt_unicode double_encode
iis_flip_slash full_whitespace

preprocessor rpc_decode: 111 32771

preprocessor bo: -nobrute

preprocessor telnet_decode

preprocessor conversation: allowed_ip_protocols all, timeout 60,
max conversations 32000

The output plugin used for MySQL database
output database: log, mysql, user=pengfu password=12345678

dbname=realdata host=localhost
port=3306 sensor_name=<nobody>

Include classification & priority settings
include c:\snort\etc\classification.config

Include reference systems
include c:\snort\etc\reference.config

Include rule sets
include $RULE_PATH/bad-traffic.rules
include $RULE_PATH/exploit.rules
include $RULE_PATH/scan.rules
include $RULE_PATH/finger.rules
include $RULE_PATH/ftp.rules

22

include $RULE_PATH/telnet.rules
include $RULE_PATH/rpc.rules
include $RULE_PATH/rservices.rules
include $RULE_PATH/dos.rules
include $RULE_PATH/ddos.rules
include $RULE_PATH/dns.rules
include $RULE_PATH/tftp.rules

include $RULE_PATH/web-cgi.rules
include $RULE_PATH/web-coldfusion.rules
include $RULE_PATH/web-iis.rules
include $RULE_PATH/web-frontpage.rules
include $RULE_PATH/web-misc.rules
include $RULE_PATH/web-client.rules
include $RULE_PATH/web-php.rules

include $RULE_PATH/sql.rules
include $RULE_PATH/x11.rules
include $RULE_PATH/icmp.rules
include $RULE_PATH/netbios.rules
include $RULE_PATH/misc.rules
include $RULE_PATH/attack-responses.rules
include $RULE_PATH/oracle.rules
include $RULE_PATH/mysql.rules
include $RULE_PATH/snmp.rules

include $RULE_PATH/smtp.rules
include $RULE_PATH/imap.rules
include $RULE_PATH/pop3.rules
include $RULE_PATH/pop2.rules

include $RULE_PATH/nntp.rules
include $RULE_PATH/other-ids.rules
include $RULE_PATH/experimental.rules
include $RULE_PATH/local.rules

23

APPENDIX C

CODE SAMPLES

The code listed here contains two parts. Part one is a basic network packet

dumper, and part two is a basic data logger engine. Both parts are written in C

Language. Based on the assumption that users of the code have basic knowledge

about C, network, and MySQL C API, only the core routines are shown for better

understanding, all the other unnecessary details are omitted. If any problem

is encountered, refer to Reference [15], [18] and [19] for a more comprehensive

description.

C.1 A Basic Network Traffic Dumper

/* Copyright information coming with LibPcap library
*
* Copyright (c) 1993, 1994, 1995, 1996, 1997
* The Regents of the University of California. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgement:
* This product includes software developed by the Computer
* Systems Engineering Group at Lawrence Berkeley Laboratory.
* 4. Neither the name of the University nor of the Laboratory
* may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS

24

* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.

*/

	 /*necessary "include"s*/

#include <pcap.h> /*the libpcap library header*/
#include <sys/socket.h>
#include <netinet/in.h>

	 /*necessary declarations*/

int main(int argc, char* argv){

pcap_t *packet; /*the packet capture descriptor*/
pcap_dumper_t * _datafile; /*pointer to he datafile that

the data will be written into*/
char interface_name[16]; /*name of the network interface

on the host*/
char errbuf[PCAP_ERRBUF_SIZE]; /*buffer for error messages*/
int snaplen; /*maximum number of bytes to capture in a packet*/
int promisc; /*flag to determine if the interface is

in promiscuous mode or not*/
int to_ms; /*read timeout in milliseconds*/
char datafile[32]; /*the datafile that captured packets

will be written into*/
int count; /*number of packets that are designated to capture*/
int packetnumber; /*number of packets read

during a live capture*/

25

/*First, pcap looks up the network interfaces
on which it will capture packets*/

if(!(interface_name=pcap_lookupdev(errbuf))){
fprintf(stderr, "Error Message, %s\n",

interface_name, errbuf);
exit(1);

}

/*Open the network device interface to capture packets*/
if(!(packet=pcap_open_live(interface_name, snaplen, promisc,

to_ms, errbuf))){
fprintf(stderr, "Cannot open network interface %s: %s\n",

interface_name, errbuf);
exit(1);

}

/*Open the dump device to write captured packet
data into a datafile*/

if((_datafile=pcap_dump_open(packet, datafile))==NULL){
fprintf(stderr, "cannot open datafile!\n")
exit(1);

}

/*pcap_dispatch() is used to collect and process packets
on the openned interface. Then it passes the collected
packets to pcap_dump(), which will out the packets to
the saved datafile. pcap_dispatch() will return when
the number of count packets have been collected. instead
of using pcap_dispactch(), we can also use pcap_loop()
in the similar way.*/

if((packetnumber=pcap_dispatch(packet, count, &pcap_dump,
(u_char *)_datafile))<O){

fprintf(stderr, "cannot capture packets on interface %s:",
interface_name);

exit(0);
}

pcap_dump_close(_datafile); /*saved data file is closed*/
pcap_close(packet); /*packet descriptor openned by

pcap_open_live() is closed*/

26

C.2 A Basic Network Traffic Data Logger Engine

	

/*
* The same copyright information as listed above

	*
* The following is a sample data logger with connectivity to
* MySQL. It reads the saved data file previously dumpped by the
* data capture engine, it then logs into the MySQL database
* server running on localhost, and then inserts the data items
* into relavent tables.
	 */

	 /*necessary "include"s*/

#include <pcap.h> /*the libpcap library header*/
#include <sys/socket.h>
#include <netinet/in.h>

#include <mysql.h> /*MySQL C API headers*/
#include <my_global.h> /* MySQL C API header*/

	 /*necessary declarations*/

int main(int argc, char *argv){

pcap_t *packet; /*the packet capture descriptor*/
pcap_dumper_t * _datafile; /*pointer to he datafile that

the data will be written into*/
char interface_name[16]; /*name of the network

interface on the host*/
char errbuf[PCAP_ERRBUF_SIZE]; /*buffer for error messages*/
int snaplen; /*maximum number of bytes to capture in a packet*/
int promisc; /*f lag to determine if the interface

is in promiscuous mode or not*/
int to_ms; /*read timeout in milliseconds*/
char datafile[32]; /*the datafile that captured

packets will be written into*/
int count; /*number of packets that are designated to capture*/
int packetnumber; /*number of packets read*/
struct pcap_pkthdr *packet_header; /*packet header*/
u_char* packet_data; /*pointer to packet data*/

27

28

char* host_name = "localhost"; /*server host (default==localhost)*/
char* user_name = "pengfu"; /*user name (default == login name)*/
char* password = "12345678"; /*password(default == none)*/
unsigned int port_num = 3306; /*default mqsql port number*/
char* socket_name = NULL; /*socket name (use build-in value)*/
char* db_name = "realdata"; /*database name (default == none)*/
unsign int flags = 0; /*connection flags

(0 when no connection option chosen)*/

MYSQL *connection; /*pointer to connection handler*/

char* query;

/* prototype function that handles the operations on MySQL
database. mysql_db() also serves as the callback function
called by pcap_loop()*/

void mysql_db(MYSQL *, u_char *);

/*prototype function that handles the insertion on MySQL
database. it returns 0 when succeeds, otherwise fails*/

int myInsert(char *, u_char *);

/*pcap_open_offline() opens a saved file, presents it
for reading if pcap_open_offline()fails, it returns NULL*/

if((packet=pcap_open_offline(argv[1], errbuf))==NULL){
fprintf("cannot open file Yos\n", argv[1]);
exit(1);

}

/*when pcap_loop() finds packets (returns positive integer)
or there is no error occuring (returns zero), packet data is
inserted into the relational database*/

while((packetnumber=pcap_loop(packet, count, &mysql_db, NULL))>=0){

/*pcap_next() reads the next packet
and returns a pointer to data in that packet*/

if((packet_data=pcap_next(packert, packet_header))==NULL){
fprintf("Error: %s\n", pcap_geterr(packet));
exit(1);

29

mysql_db(connection, packet_data){

/*initialize the connection handler*/
if((connection = mysql_init())==NULL)1

fprintf(stderr, "fail to initialize the connection\n");
I;

/*this function connects to the mysql server.*/
if((mysql_real_connect(connection, host_name, user_name,

password, db_name, port_name,
socket_name, flags))==NULL){

fprintf(stderr, "fail to connect to mysql server:\n%s",
mysql_error(connection));

mysql_close(connection);
exit(1);

}

/*This is a customly defined insert function
that inserts packet data into database*/

if(!myInsert(query, packet_data)){
fprintf(stderr, "insertion failed\n%s",

mysql_error(connection));

exit(1);
}

I;
}

/*if other query are demanded, the following function
can be used to conduct the query.
however, mysql_real_query() must be used here because
captured data is in binary format, which contains '\0'
character.*/

if(!mysql_real_query(connection, query, strlen(query))){

fprintf(stderr, "query failed \n%s", mysql_error(connection));

/*connection to mysql server is closed*/
mysql_close(connection);

/*packet descriptor openned by pcap_open_offline() is closed*/
pcap_close(packet);

return 0;

30

REFERENCES

1. CERT/CC Statistics 1988-2003
http://www.cert.org/stats/cert_stats.html
(January - July, 2003).

2. Intrusion Detection FAQ, version 1.80, updated June 12, 2003
http://www.sans.org/resources/idfaq/
(January - July, 2003).

3. Brief History of IDS
http://www.chinaitlab.com/www/news/article_show.asp?id=2507
(January - July, 2003).

4. Intrusion detection systems: Defining Protocol Anomaly Detection
http://www.zdnetindia.com/biztech/ebusiness/whitepapers/stories/79205.html
(January - July, 2003).

5. Stephen Northcutt, Lenny Zeltser, Scott Winters, Karen Kent Frederick and
Ronald W. Ritchey,
Inside Network Perimeter Security (2003)
New Riders Publishing, ISBN 0-73571-232-8.

6. ICSALabs,
An Introduction to Intrusion Detection and Assessment
http://www.icsalabs.com/html/communities/ids/whitepaper/index.shtml
(January - July, 2003).

7. B. Feinstein, G. Matthews and J. White,
Intrusion Detection Exchange Format - Internet Draft, October 22, 2002
http://www.ietf.org/internet-drafts/draft-ietf-idwg-beep-idxp-07.txt
(January - July, 2003),

8. Phil Porras, Dan Schnackenberg, Stuart Staniford-Chen, Maureen Stillman
and Felix Wu,
The Common Intrusion Detection Framework Architecture
http://www.isi.edu/gost/cidf/
(January - July, 2003).

9. Stephen Northcutt and Judy Novak,
Network Intrusion Detection 3rd ed.
New Riders ISBN 0-73571-265-4.

10. Wenke Lee,
Applying Data Mining to Intrusion Detection: the Quest for
Automation, Efficiency, and Credibility.
SIGKDD Explorations December 2002. vol. 4, Issue 2.

31

32

11. Jiawei Han and Micheline Kamber,
Data Mining: Concepts and Techniques
Academic Press and Morgan Kaufmann Publishers ISBN 1-55860-489-8.

12. Defense Advanced Research Projects Agency (DARPA)
http://www.darpa.mil/
(January - July, 2003).

13. Air Force Research Labs
http://www.rl.af.mil/
(January - July, 2003).

14. The Information Systems Technology Group (IST) of MIT Lincoln Laboratoryhttp://www.ll.mit.edu/IST/ideval/index.html

(January - July, 2003).

15. tcpdump and libpcap Public Repository
http://www.tcpdump.org
(January - July, 2003).

16. SnortTM, The Open Source Network Intrusion Detection System
http://www.snort.org
(January - July, 2003).

17. Jay Beale, James C. Foster and Jeffrey Posluns,
Snort 2.0 Intrusion Detection
Syngress ISBN 1-931836-74-4.

18. WinPcap: The Free Packet Capture Architecture for Windows
http://winpcap.polito.it
(January - July, 2003).

19. MySQL AB, The World's Most Popular Open Source Database
http://www.mysql.com/
(January - July, 2003).

20. Ethereal, Sniffing the Glue That Holds the Internet Together
http://www.ethereal.com
(January - July, 2003).

21. SUN Microsystems Inc.
http://www.sun.com
(January - July, 2003).

22. System Administration Guide: Security Services, Solaris 9, April 2003
http://docs.sun.com/db/doc/816-4883?q=bsm
(January - July, 2003).

23. Cisco Sytems,
http://www.cisco.com
(January - July, 2003).

24. Internet Security Systems TM ,

http://www.iss.net
(January - July, 2003).

25. AXENT Technologies (merged with Symantec on July 27, 2000),
http://www.symantec.com
(January - July, 2003).

26. NFR Security,
http://www.nfr.com
(January - July, 2003).

33

	Copyright Warning & Restrictions
	Personal Information Page
	Abstract
	Title Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgement
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Intrusion Detection Systems
	Chapter 3: Establishment of Network Traffic Data Warehouse
	Chapter 4: Conclusions and Future Work
	Appendix A: Major Network Protocols
	Appendix B: Site Specific Configurations
	Appendix C: Code Samples
	References

	List of Figures

