
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

A COMBINED CHANNEL-MODIFIED ADAPTIVE ARRAY MMSE
CANCELLER AND VITERBI EQUALIZER

by
Richard M Friedman

In this thesis, a very simple scheme is proposed which couples a maximum-likelihood

sequence estimator (MLSE) with a X-element canceller. The method makes use of the

MLSE's channel estimator to modify the locally generated training sequence used to

calculate the antenna array weights. This method will increase the array's degree of

freedom for interference cancellation by allowing the dispersive, desired signal to pass

through the array undisturbed. Temporal equalization of the desired signal is then

accomplished using maximum-likelihood sequence estimation. The T-spaced channel

estimator coefficients and the array weights are obtained simultaneously using the

minimum mean square error criteria. The result is a X-element receiver structure capable

of canceling X-1 in-band interferences without compromising temporal equalization.
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CHAPTER 1

INTRODUCTION

The achievable capacity and quality in a narrowband mobile cellular environment is

limited by three major environmental impairments. Even though there is other factors

which effect system performance, signal fading, interference, and multi-path propagation

are the dominant impairments. Interference is mainly in the form of co-channel users

being serviced by base stations in close proximity to the end user's location. At the same

time, the signal from the servicing base station can undergo both fading and multi-path

propagation due to the topology and morphology of the environment the mobile traverses.

An example of how these impairments can come about is shown in Figure 1.1. The result

to the desired signal from the latter two environmental impairments is a time domain

spreading of the information signal referred to as time dispersion, and a complex

amplitude variation referred to as fading.

Figure 1.1 The Mobile Radio Environment.
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When faded multi-path waveforms arrive at the mobile, they form a composite

signal that distorts the desired information-bearing signal. Without a method to neutralize

environmental impairments that affect the desired signal, the system's performance will

be degraded. In Figure 1.2, a graph is shown which illustrates the limiting effect these

impairments have on the bit error rate (BER) of an IS 136 digital mobile system. As an

example, in Figure 1.2 one can see that multi-path propagation can have a limiting effect

on the receiver's BER. This error floor effect is a critical issue that must be dealt with to

assure the end-user good quality of service over the entire service network.

The need to combat environmental impairments has been the topic of much

research. Much of the work suggests using multiple antennas to combat signal fading and

to cancel interference, along with some form of equalization to reduce the affect of multi-

path propagation. Since these structures work on the observed signals in the temporal and

spatial domains, they can all be generalized as some form of space-time processor (STP).

Figure 1.2 Error floor effect for 7t/4 DQPSK. Two equal power rays,fmax=180 Hz.



3

1.1 Linear Space-Time Processing

There are a variety of space-time receiver structures. Each STP is derived using some

form of optimization criteria, as well as assumptions on which environmental

impairments will be dominant. The choice of optimization criteria and environmental

factors one assumes govern the resultant design. As an example, in [24] the author shows

that by weighting each element in a mobile antenna array by it's local signal to noise ratio

(SNIR), then summing across the array, the SNIR at the array's output can be maximized.

The technique is referred to in the literature as maximal-ratio-combining (MRC). The

vector representation of the weighting factors for a X-element array is given by,

The expression in Equation 1.1 relies heavily on the assumption that the channel

is frequency-flat, and the interfering signals at each antenna element are statistically

independent of one another [24]. In other words, the user signal experiences no delay

spread, and the interfering signals impinging on each antenna element are unique. The

MRC technique has been used in a wide range of mobile receiver applications due to its

simplicity and ease of implementation, as well as significant performance gain [24]. The

claim of optimality though, seems unreasonable due to the strict constraint imposed on

the statistical properties of the interfering signals. In a mobile radio environment, it seem

more reasonable to assume, that for a duration of time small compared to the fading rate

(I<<< fd^-1), both the desired and interfering signals impinging on the array are spatially

correlated. By spatially correlated, it means that between antenna elements, signals

exhibit some form of statistical similarity. With this in mind, given an array is made up of
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a sufficient number of antenna elements, the output from each antenna should be able to

be combined with other elements in the array in such a way as to both suppress co-

channel interference, and simultaneously optimize the desired signal.

In [4] it was concluded, for a frequency-flat fading channel, a N-element array,

can suppress up to N-2 interfering signals while at the same time provide diversity gain to

the desired signal. To obtain this result the author used an antenna-combining scheme

known in the literature as an optimum combiner (OC). The OC weights are given by the

following expression,

where R„„ is the statistical interference plus noise correlation matrix expressed by,

and n(nT) is a X-element vector whose elements are the interfering signals and noise at

each antenna, and u d is desired signals' propagation vector. As was mentioned above the

expectation in Equation 1.3 should be taken over a period of time that is small compared

to the fading rate.

As was the case with MRC, it can be proven that the OC maximizes the user's

SNIR. Actually, if one were to assume no correlation between antenna elements, which is

the model used to develop the MRC, it can be proven that the OC reduces to MRC.

Therefore, in the context of a flat-fading channel, the OC is a generalized structure that

maximizes the user's SNIR without the need of correlation that may or may not exist

between antenna elements. In [4] the author showed that if one assumes correlation
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between antenna elements, in the context of a frequency-flat fading channel with co-

channel interference, the OC outperformed MRC for an IS 136 digital mobile system. The

result isn't surprising, since with the OC correlation that exists between antenna elements

is utilized as seen by the use of the term R„,, in the expression for the OC weights in

Equation 1.2.

As was mentioned previously, the need to combat multi-path propagation, in an

effort to reduce the impact the error floor effect has on system performance, requires that

some from of equalization be implemented as part of any digital mobile receiver design.

To address the issue of multi-path the OC would have to be extended to include temporal

processing. In [11,12] an OC receiver was proposed which included both spatial and

temporal components. The structure consists of a bank of analog filters, a filter for each

antenna, which are summed, sampled, than fed to a discrete, possibly infinite tap symbol

spaced transversal filter.

The operation of this OC can be broken down into two basic steps. First, because

the analog filter at each antenna is matched to the desired signal's channel response for

that specific element, maximum SNR at the output of each filter is achieved. Next, the

transversal filter, operating on the combined output from the bank of matched filters,

neutralizes the multi-path by flatting the response at the output. More detail on this

combiner is presented in Chapter 2 along with some performance results. The OC

structure is shown below in Figure 1.3.

With regard to optimality, the only caveat here is that even though this structure

minimizes the mean square error (MMSE) between the desired signal and the combiner
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output, it does so only if one assumes the noise at the receiver to be temporally and

spatially white, and the transversal filter of possibly infinite length.

If for example, one assumes co-channel interference, which is correlated between

antenna elements when one develops the OC, the resultant structure would be very

different. An extension of the OC for channels with correlated co-channel interference

was proposed in [6] The design is just a generalization of the structure in [9] to provide

for multiple antennas.

Figure 1.3 Optimum Combiner for signals with delay spread in AWGN.

Since in theory the bank of discrete filters that are used in this design may require

an infinite number of taps to reach maximum performance, a relationship between the tap

length and performance was developed [5]. The results show that for a two-path symbol

spaced channel with one equal power interferer and an Eb/No of 18 db fourteen causal

taps and five non-causal taps are necessary.
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A logical optimization criterion for any digital communications receiver is the

minimization of the bit error rate (BER). Since BER is directly proportional to quality of

service, a structure that yields a minimized BER can be used as a performance benchmark

to compare against various other receivers. Even though some structures mentioned in the

previous paragraphs did maximize the SNIR, few could claim to minimize the end-user's

bit error rate (BER). For this reason, many authors have investigated the use of non-linear

space-time processors in the hope of finding structures that achieve this goal. As was the

case for linear space-time processors, the environmental impairments one assumes play a

vital role in the resultant design of these non-linear structures.

1.2 Non-Linear Space-Time Processing

Many authors have investigated the development of structures that minimize the

probability of error in the context of a single channel system, single channel meaning one

transmitter and one receive antenna [3], [8]. In Chapter 3 it is shown, for a single channel

system, given all possible signals are equal-likely and the random noise at the input of the

channel can be statistically defined, a receiver designed to maximize the so-called

likelihood function, will, at the same time minimizes the probability of sequence error.

These structures are referred to in the literature as Maximum Likelihood Estimators

(MLSE). Their derivation stems from a classic detection problem, in which one of N-

possible signals embedded in noise is selected as the most likely to have been transmitted,

based on the signal observed at the receiver and the statistical nature of the noise. It was
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shown in [25] that by using this maximum likelihood decision rule the probability of a

detection error is minimized.

One particular benefit in using the MLSE is it's passive nature, passive in the

sense that the observed signal is left unmodified. This eliminates the possibility of noise

enhancement due to deep nulls in the desired signal's channel response, which can be a

problem for linear equalizers. The interest in the MLSE is due to its' superior

performance over other methods, its' drawback is its' complexity. In recent years though,

faster digital signal processors (DSP) with on-board MLSE units have become popular.

This drastically reduces the complexity of implementation, making it easier than ever to

integrate the MLSE into future receiver designs.

Array processing MLSE structures have been investigated by many authors. The

largest body of work suggests incorporating the output from a bank of antennas into the

calculations for the MLSE state transition metrics. In order to perform these calculations

one needs to accurately describe the statistical properties of the noise at the input to the

antenna array. This is a daunting task at best when interference is present. The difficulty

comes from the non-stationary nature of the interference. As was the case for linear

equalization there becomes a need to make some assumptions with regard to the nature of

the interference.

In the present non-linear case, our interest is in the statistical properties of the

interference in both the temporal and spatial domains. If one could accurately characterize

these statistics, it is theoretically feasible that one could derive an array processing MLSE

that provides optimum performance. To do this would require a very complex design, so,
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instead, to reduce complexity most authors invoke the central limit theorem, inferring that

the interference and noise process at the input to the array is Gaussian.

The most generalized statistical model assumes correlation exits in both the

temporal and spatial domains [20]. In order to use the generalized model one needs to

estimate, for a X-element array, a time dependent X by X dimensional correlation matrix,

an a intimidating undertaking. Due to the complex nature of the estimator, most authors

eliminate the time dependence by assuming the noise plus interference process is

stationary and temporally white. This leads to a simpler design, which can be more easily

implemented. The drawback here is that by simplifying the design in any way the claim of

optimality is no longer valid. An additional simplification can be made by assuming the

interference plus noise to be both spatially and temporally white. The result is a diagonal

correlation matrix, and is likened to the linear method of MRC. In [19] the author shows

that given certain environmental impairments the array processing MLSE can reduce to

either the OC or MRC, both linear combing methods. Even with the simplification

mentioned above, simulations have shown that the array processing MLSE performs as

well or better than any of the linear-combing-methods. Of coarse the more complex the

design the better the performance but simplified designs are easily implemented and the

performance degradation may not be too substantial based on the actual statistical

properties of the interference process.



10

1.3 Proposed Hybrid Method

A method is proposed which is similar in structure to the variety of array processing

MLSE described previously, but that operates on the received signal in a very different

manner. The design is referred to as the Canceller/MLSE. In our receiver, the array and

MLSE work independently. They are linked by a common channel estimator, which is

used by the MLSE for metric calculation, and by the antenna array for training the array

weights. The motivation for separating the MLSE and antenna array is twofold.

First, to eliminate co-channel interference before the signal is applied to the

sequence estimator, reduces the MLSE complexity, since the need for a complex estimate

of the co-channel statistics would be unnecessary. To achieve this goal, the need is to

focus the array on interference cancellation alone. This leads us to the second point for

separating the array and MLSE. If the desired signal undergoes multi-path propagation,

the array will attempt to equalize the signal by neutralizing any multi-path components

present in the composite waveform. This limits the degree of freedom inherent in the

array for interference cancellation. A method for training the array to avoid this

degradation, has been proposed. To accomplish this by filtering, the locally generated

training sequence is filtered through the channel estimator, than the modified sequence is

used to train the array. This prevents the array from wasting any degrees of freedom for

in-band interference cancellation on neutralizing multi-path from the desired signal. The

dispersive desired signal should pass through the array unperturbed. Temporal

equalization can then be handled by the MLSE and all degrees of freedom for signal

suppression are preserved in canceller array.
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Figure 1.4 Proposed Canceller/MLSE design.

A diagram of the proposed design is shown in Figure 1.4. What is not clear from

the figure is that the input to the canceller/mlse is actually the Ts-sampled output from a

predefined receive filter. The receive filter has been designated by the IS 136 standard

which is the digital mobile system used for all the simulations in this thesis. To obtain the

channel estimator weights and the array weights, joint optimization using the MMSE

criteria is performed. This leads us to a result that requires constraints on the coefficients.

Both linear and quadratic constraints on the channel estimator coefficients, have been

investigated. The latter results in an eigenvalue problem, which has been found through

simulation, to produce the best performance.

In Chapter 4, the derivation of the Canceller/MLSE assuming frequency-flat

faded co-channel interference. This model is used to prove the design can be optimal in

the mean square sense. Two possible methods to improve the performance of the

Canceller against dispersive interferers, have been investigated.
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The first is the addition of antenna elements in the canceller array. Through

simulation, it is shown that the additional antennas can adequately suppress dispersive

interference, even when the multi-path components outnumber the antennas used in the

array.

The second method is the addition of temporal taps at the input of each antenna

element. An example of the proposed design is shown in Figure 1.3. The intention is to

use these temporal taps for interference cancellation alone, leaving the desired signal's

equalization to the MLSE. To achieve this goal, joint optimization of the array weights

and estimator parameters is no longer considered. Instead, a two-step process is proposed.

The channel estimator weights and center tap array coefficients are determined using the

procedure developed for the flat-fading interference case. The results from the first step

are used to determine the complete set of array coefficients. Simulations have proven this

method to be an effective one, providing improvement over a canceller with no temporal

taps. The method also outperforms a space-time array differential detector combination,

with more temporal taps than the Canceller/MLSE.

The final method is simply an extension of the flat-faded interference case, but

with the addition of temporal array taps. Results show that it is necessary to constrain the

channel estimator coefficients to be causal when this method is used otherwise the

performance is significantly degraded. However, simulation shows that this method

outperforms the two-step procedure mentioned previously.

A comparison of the performance against interferers with delay spread between

the two enhanced cancellers is performed, one with additional antennas, the other with
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the addition of temporal array taps. It is found that the performance of the two are

comparable given that enough temporal taps are added to the latter Canceller. Results are

presented in Chapter 5.



CHAPTER 2

Spatial Processing Using Multiple Antennas

2.1 Antenna Combining Schemes

In narrow band communication channels where signal fading degrades the performance of

receivers, antenna diversity is usually implemented. These co-located multiple antenna

configurations not only provide diversity gain but also improve performance by

suppressing co-channel interference. There are many techniques used for combining the

signals from the receive antennas. The basic structure used for the majority of the linear

combining methods is given by,

where * denotes convolution, x x (r) is the observed signal at each of X antenna elements,

wx (t, 1-) is a possibly time-varying weight function which needs to be determined based

on the optimization criteria used, and Y(t) is the optimized output. In vector format

Equation 2.1 can be described by,

where boldface denotes a vector and,

Note that in Equation 2.1 the weights are functions of two variables. This is

required since the weight functions generally need to be adapted over time to track the

time variations in the mobile radio channel. The adaptation must be fast enough to track

14
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these variations. Much work has been done on the performance of various tracking

algorithms. In [2], results show that using the DMI algorithm a degradation of less than

0.2 dB can be expected due to tracking errors for speeds up to 60 mph. The focus of this

thesis is the performance of antenna combining schemes in ideal conditions. Therefore, in

all the work presented here the channel is assumed static over the observation period.

Hence, the dependence on time will be removed from Equation 2.1 leaving,

For mobile radio channels in which both desired and interfering channels are

described as frequency flat there is no temporal correlation to utilize so the weight

functions in Equation 2.3 need only take the form of multiplicative constants wx δ(r),

which are just weighted impulses. The Equation 2.3 then reduces to,

2.1.1 Combining Methods for User Signals with No Delay Spread in AWGN

Using Equation 2.4 now attempt to find a weight vector that will maximize some

optimization criteria. A logical criteria would be maximizing the signal to noise ratio

(SNR) at the output of the array. In [24] it was concluded that the maximum SNR at the

output of the array could be obtained by weighting each signal by the SNR at the input to

each antenna element and combining the result. This technique is referred to as maximal

ratio combining (MRC) and the weights are given by ,
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where the H denotes a Hermitian Transpose and the noise term has been removed since

it's assumed the same at each antenna element.

This is essentially a vector representation of a matched filter. The SNR at the

output of the array then becomes,

From Equation 2.5, to implement MRC an accurate estimate of the desired

signals channel vector, a ° is needed. Errors in the estimate of these parameters will result

in degradation of the combiners performance. To eliminate the need for the channel

vector estimate, the signals can be combined (in all these derivations it's assumed that

the signals at each antenna element have been phase aligned) from each of the antennas

using weights with unity gain. The result is referred to as equal gain combining [24]. The

output SNR is given as,

A bound can be found on Equation 2.7 to better compare the SNR's for the combiners,

by using the following inequality,



Expanding Equation 2.8 we get,

17

Inserting Equation 2.11 into Equation 2.7 we get the inequality,

Therefore, we find

Equation 2.13 shows that MRC always has better performance than EGC.
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The technique referred to as Optimum Combing combines the signals in such a

way as to maximize the signal to noise SNR. The weights for the optimum combiner are

calculated as [27, eq 2-41],

where R1  is the interference plus noise correlation matrix (see Equation 2.17 for the

definition of an autocorrelation matrix) and p, is a constant that has no effect on the

overall SNR. For the case of no co-channel interference the expression in Equation 2.14

reduce to Equation 2.5. Therefore, the SNR is the same as for MRC.

The last structure investigated is one that minimizes the mean square error

between the observed signal and a locally generated replica of the desired signal. As is

implied in the definition of the optimization criteria, this method requires that a training

sequence be embedded in the user's data. In IS 136, there is a fourteen-symbol block of

data at the beginning of every data frame to accommodate this need. The weights for the

MMSE combiner are given by [2],

where rxd is cross correlation vector between the locally generated training symbol

sequence "d(nT)" and the observed signal at each receive antenna and Rx is the

observation correlation matrix given by,
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where x is a X-dimensional vector defined in Equation 2.2. The expressions in Equation

2.17 and Equation 2.18 can be approximated assuming an Z-symbol training sequence by,

Applying Equation 2.17 for a flat-faded channel with no co-channel interference we get,

and,

Where the expectation has been taken with respect to the information symbols and the

noise, assumed statistically independent of one another, and the magnitude of the symbols

is assumed unity.

After some manipulation the expression in Equation 2.16 can be represented as [26, eq.

26],

This is the same as Equation 2.14 except for a constant in the denominator.

From Equation 2.23 the SNR for the MMSE combiner for any channel is the same

as OC, so,
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where R s is the desired signal's autocorrelation function.

Noting that from Equation 2.24 the performance of MMSE and OC are identical for

channels with only AWGN.

By inspection of Equation 2.23, it can be seen that this is also the case for a

channel with interference as well just by replacing R„ by The expression in

Equation 2.16 is a much simpler form than in Equation 2.23 since there is no need to

estimate the noise plus interference autocorrelation matrix, instead the correlation matrix

of the observed data can be used.

A graph of results from a simulation of an IS 136 system for all four structures is

shown below. The simulation is for a frequency-flat fading channel with AWGN and no

co-channel interference.

Figure 2.1 No co-channel interference (left) one equal power interferer (right), for an fd
of 0 Hz.
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In the study presented above, it is assumed no co-channel interference in the

signal received at the mobile. One of the major benefits of combiners is their ability to

suppress interference. The combiners that utilize information about co-channel

interference, which might be present in the observed signal, have better performance in

environments that include interference. In [4] a comparison between MRC and OC was

performed. The results showed that OC outperformed MRC in all cases when interferers

were present. This result makes sense if one notices that the MRC weights only include

information about the desired signal, Equation 2.5), whereas OC, Equation 2.14), uses

information about the desired signal, the noise and the interference when calculating the

optimum weights.

The SINR for MRC combing is given by,

Where the expectation is done with respect to the data symbols and the noise. NOTE: The

max fading rate is ~ 184 Hz and 1/184 is ~ 5000us in IS136 the symbol rate is 41.1us so it

is assumed the averages here are over a large enough period to see the symbol statistics (-

25 symbols) but small enough so that the fading is assumed constant.
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Note that the SINR in Equation 2.26 is a random variable that varies at the fading rate [4]

and the average over a period much longer than the fading rate is,

SINR MRC  = E{SINR MRC }• 	 (2.27)

Where notation, SINR MRC is used, instead of SINR MRC to denote an average over the

fading.

Since it is known from Equation 2.13 that MRC outperforms EGC the latter is not

included in the analysis of SINR. Include is OC which has a SINR expression given as,

Using Equation 2.14), Equation 2.26 becomes,

Where x s and x /+„ are the signal portion and interference plus noise portion of x,

respectively.

Using Equation 2.17 the expression in Equation 2.29 becomes,

which is the same as the expression in [27, eq. 2-43].

Since a conditional expectation (short term statistics (i.e.: a period much less than

the fading rate)) has been used in all the previous results the channel coefficients have
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remained fixed. Long-term statistics would take into account the statistical nature of the

channel coefficients. In all the work done for this thesis, the channel coefficients are

assumed zero mean complex Gauss Ian processes with non-flat power spectral densities.

The expressions in Equation 2.29 and Equation 2.26 have been analyzed for one or two

interfering signals in [4] and for multiple interferers in [22]. Below is a graph of the ratio

of the SINR for OC and MRC, which have been derived using Monte Carlo simulations.

Figure 2.2 Performance of three antenna combiners, Eb/N o=17 db, C/I=3 db.

In most mobile radio environments, both the desired and interfering signals are

subject to dispersion in the time domain because of multi-path propagation. In order for

reliable communication to occur in this environment, the mobile receiver must be

equipped with a means to compensate. Temporal equalizers have been shown to provide a

significant improvement in receiver performance by removing distortion from the desired

signal. The methods are either linear as is the case with FIR filtering or non-linear,

examples of which are decision feedback (DFE), and maximum likelihood estimation.

Maximum likelihood estimation, unlike the other two methods is passive in the sense that
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the received signal is not modified and then sent on to a slicer. Instead, the observed

signal is discarded after being used to estimate the desired data. This is a benefit since

other methods can enhance the noise at the input to the receiver while trying to equalize

the desired signal. Multi-path rays incident on the receive antenna cause temporal

distortion of the received signals as mentioned above, but they also possess spatial

characteristics which can be exploited to remove them. Similar to the way the combiners

remove co-channel interference additional antennas can also be used to remove the

temporal distortion caused by the delayed multi-path rays. The method of using additional

antennas follows the same logic as described above for co-channel interference except

that each of the delayed rays is treated as an interferer that must be removed by the

combiner. This scenario was analyzed in the previous section. Here, the concept of joint

spatial-temporal equalization using what is referred to as space-time structures, since they

work on the receive signal in both the spatial and temporal domains, is introduced, by

first investigating the linear filtering method proposed in [11] for a channel with time

dispersion, but no co-channel interference. First, it's necessary to define an upper bound

on the performance of a multi-antenna configuration that can be used as a benchmark

when comparing various techniques.

2.1.2 Matched Filter Bound

The matched filter bound is the performance of a combiner with summed front-end

Matched filters subject to a flat-faded channel. The expression for the matched

Filter bound is given by [11, eq 20],
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2.1.3 Combining Methods for User Signals with Delay Spread in AWGN

2.1.3.1 Linear Methods. 	 Many papers were written which covered the topic of

optimum filtering for an infinite sequence of pulses subject to a dispersive channel and

AWGN. In [7] the author derived a structure for maximizing the SNR at the output of the

filter. He included the desired signal's ISI terms in the overall expression for the noise

introduced by the channel. His result was a receive filter composed of two parts. The first

part is an analog filter matched to the impulse response of the convolution of the transmit

filter and the channel's response. An infinite tapped delay line with tap spacing equal to

the symbol period follows this. The tap coefficients are related to autocorrelation function

of the overall channel response by,

Where No is the noise energy, (I) * (w) is the Fourier transform of the sampled

autocorrelation function of the overall response of the channel, and fn are the tap

coefficients. From Equation 2.32 one can see that by including the noise energy in the

calculation for the tap coefficients the noise enhancement problems that equalizers such

as the zero forcing equalizer face are greatly reduced. In fact if the noise is the dominate

term in the LHS of Equation 2.32 the fn 's are all zero except for n=0. Mathematically

the tap delay line filter response would be fn = 8(n), which would eliminate noise

enhancement by the filter. The overall filter has the effect of first maximizing the signal
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to AWGN ratio by using a front end filter matched to the channel response, then it

eliminates the ISI by using an infinite length tapped delay line filter.

The method described in [11] is essentially an extension of the result obtained in

[7] to channels with multiple receive antennas. The goal in this work was to find a

structure that provided diversity reception and a means of mitigating the effects of inter-

symbol interference. What they found was an optimum receiver which consisted of a

bank of matched filters each matched to it's respective channel whose outputs are first

summed than passed through a infinite length tapped delay line to remove ISI from the

desired signal.

The tap coefficients are given by the following expression,

and Fx (w) is the Fourier transform of the overall sampled channel response, defined as

the convolution of the transmit filter with the receive filter and the impulse response of

the channel. The expression in Equation 2.32 is essentially a special case of the

expression in Equation 2.33 with X=1 (one antenna case) and the addition of a noise

term in the numerator. Of course it has been assumed that each of the antennas is time

synchronized otherwise the tapped delay line concept would not be appropriate. The
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criteria the authors use in [11] to determine this structure is the minimization of the mean

square error defined as,

Where V° (0) is the sampled output from the sum of X filters each at the output of one of

X antenna elements, and ao is the transmitted symbol at time instant t=0. There is no

claim of optimality other than the minimum of the MSE, but it was shown that for

rectangular constellations, the probability of error could be upper-bounded by [11 eq 19],

From the results in [11], it's seen that for a two path Rayleigh fading channel with inter-

ray delay of Ts, the performance of this combiner/equalizer is within approximately three

db of the matched filter bound for a BER of 104 .

From Equation 2.33 and Equation 2.34 one can see that this filter is essentially a zero

forcing filter with the addition of the noise terms to reduce the possibility of noise

enhancement if the overall channel response has deep nulls.

It's interesting to note that in Equation 2.33 when the channel response is flat and

the combination of transmit and receive filters is Nyquist that Rx (w) is a constant and the

tap delay line response is fn = 138(n), which essentially indicates that there is no ISI to be

removed from the desired signal. Also in this case, since the output from each matched

filter is equal to the energy in the desired signal, and since matched filtering results in
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phase equalization the summed output from the bank of matched filters closely

approximates MRC, which is optimal for this type of scenario. From the discussion above

one can see how this structure attains the goals the authors were trying to achieve of both

diversity gain and removal of ISI from the desired signal.

In the paper mentioned above, the authors also touch on DFE structures but these

will not be covered in this thesis. The DFE's performance is usually better than LE but

suffer from error propagation where a symbol detected incorrectly can greatly reduce

performance if the feedback filter has a considerably long length. This is because the error

must propagate through the entire feedback path that affect the detection of succeeding

symbols. In effect, one detection error can result in a possibility of many more errors

since the detection of each succeeding symbol is dependent on the accuracy of the

previous detected symbols through the feedback filter.

2.1.3.2 Non-Linear Methods. To begin with there must be an assumption made

with regard to the statistical properties of the noise process in both the spatial and

temporal domains. For the following structures, it has been assumed that the noise

processes at each of the antennas is AWGN and statistically independent from one

another. This means that the noise is statistically independent in both the spatial and

temporal domains.

Given that the noise at the input to the N-antennas is a temporally white Gaussian random

vector distributed by,

the likelihood function can be written as [3, eq. 9] [19, eq. 7],



where I is the interval over which the signal is observed.

The expression in Equation 2.38 can be expanded to give [3, eq. 8],

where y is the observed signal vector whose elements are the observed signal at each of

the antennas and h is the channel response vector whose elements are the channel

response from the transmitter to each antenna. To find the most likely signal the symbol

sequence {a} that maximizes the expression in Equation 2.39 must be found. To do this,

first Equation 2.39 must be expanded, then simplified to yield [3, eq.11],
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and N is the number of antennas.

The expression in Equation 2.41 is in the same form as a matched filter. Therefore

zn can be thought of as the sampled summation of outputs from N-matched filters, such

that the filter at the Xth antenna is matched to the channel response between the

transmitter and the xth antenna. The expression in Equation 2.42 is the sum of the

convolution of each channel response with itself sampled at time instant /T. As can be
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seen from these expressions, just as in the case of the linear equalizer the channel

response must be estimated. Therefore, both structures suffer degradation in performance

when there are estimation errors in estimating the channel response.

The maximization shown above can be performed iteratively using the Viterbi

algorithm. The algorithm makes the computation linear in time, so that it's feasible to

implement in a real application. Performance analysis for the MLSE is difficult to obtain,

but with some reasonable assumptions, it was shown in [3, eq's. 48,49] that the MLSE

receiver for QAM modulation has a lower BER than the infinite tap linear equalizer.

Using [3, eq's 24,48,49] the expression for the performance gain can be written as,

where S (f) is the Fourier transform of the channel response and T is the symbol period.

2.1.4 Combining Methods for User Signals with Delay Spread and Co-channel
Interference in AWGN

2.1.4.1 Linear Methods. 	 Up to this point, all the receiver structures were

optimized assuming AWGN as the only impairment to reliable reception of the end-users

information signal. Due to the limitations of spectrum allocation imposed on wireless

service providers base stations which share the same user channel are usually within close

enough proximity to one another that co-channel interference becomes a major part in the

degradation of the mobile users' quality of service. Therefore, it becomes necessary to

optimize receivers taking into account the interference from co-channel users. In [11] the

optimum linear receiver was developed assuming only AWGN on the channel, the same

concept can be expanded to include dispersive co-channel interference [5].
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Using the same derivation described in [12], the optimum single antenna linear

filter assuming a dispersive user channel with co-channel interference can be expressed as

[10],

where, q), (t) is the channel response of the ith co-channel interferer and φ0(t) is the

desired signal's response. The expression in Equation 2.44 shows that the optimum

MMSE linear filter can be interpreted as a bank of filters at each antenna element

matched to each of the L+1 arriving signals with a T-spaced infinite tapped delay line

whose tap coefficients are given by an, following each matched filter. The outputs from

each transversal filter are summed to form the optimum filtered output. As can be seen in

Equation (2.44 the optimum filter now takes the co-channel interference into account as

well as the noise. The noise component in the filter has been included in the expression

for the taped delay line coefficients given as,

In [6], the problem was expanded to include a X-element antenna array. The

expression for the optimum vector filter is given by,



32

is a vector whose elements are the channel

response between the desired user's transmitter and each antenna element. The vector

has elements, which are the optimum filters for

each of the X antennas. The output from each of the antenna filters is then summed to

form the final output. As was the case in Equation 2.44 the optimum vector filter takes

into account both the noise and the co-channel interference. In this case, the correlation in

both the time and spatial domain is utilized unlike Equation 2.44 where only the

correlation in the time domain was utilized since only one antenna was used.

Since it's difficult to obtain an expression for the SNR, the MSE is usually used

as a measure of the performance for these receiver designs. The expression for the MSE

is given by [6],

For the IS 136 case, the BER was obtained through simulation and is shown in the figures

below.



Figure 2.3 Performance of OC for constant BER of 10 -2 .

2.1.4.2 Non-Linear Methods. The final topic of this section is the extension of the

method shown in section 2.1.3.2 for the case where there is co-channel interference. For

this case, it is necessary to take into account correlation between signals in both the

spatial and time domains. The formulation becomes very cumbersome and is usually not

used in practical applications because of this. Instead, it is usually assumed that the

interference and noise on each of the X-channels can be modeled as stationary and white.

Of course, this is not the case especially when there are few interferers present but the

assumption has been shown to provide very good performance in simulation results.

However, for completeness the derivation of a structure making no assumptions of this

kind has been included following the derivation of [20] and assumming that each

interference signal v1 (t) can be modeled as a white Gaussian noise source with unity

variance. This eliminates the rapid cyclostationary variation of the interference [20]. The

interference signal passes through a transmit filter followed by the channel impulse

response before impinging on the mobile's antenna array. The input to the array can be

written as,

33
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where g1(τ) is the composite response of the transmit filter and vector channel response.

The time domain autocorrelation function for the interference process can be expressed

as,

The expression for the interference plus AWGN correlation matrix can now be written as,

and the generalized expression for Equation 2.39 for channels with co-channel

interference can be given as,

The final expression now becomes,

which reduces to the same expression as Equation 2.40), repeated here as,

hence, with the proper definition of the parameters given by,
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From Equation 2.55), it can be seen that to obtain the parameters necessary for the

metric calculation, an estimate, not only of the vector channel response for the desired

user h(t), but also the inverse of the interference plus noise time domain correlation

function .12 -1 (t1 , t2 ) is necessary. Where IC' (t„ t,) is defined as,

The accurate estimation of these parameters is essential for optimum performance of the

MLSE. Possible inaccuracies in estimating metric parameters along with substantially

increased complexity make this design impractical for real applications. The performance

of a two-antenna configuration is shown below [20].

Figure 2.4 Performance for non-dispersive user signal, and one interferer, Eb/No=30 db.



CHAPTER 3

MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION

In the following, a structure is derived that is optimal for minimizing the probability of

sequence error. This non-linear structure uses information about the channel to determine

all possible data sequences that could be transmitted. The sequence that comes closest in

signal space to the observed noisy signal is selected as the most likely sequence. It will be

shown that finding the most likely sequence minimizes the probability of the sequence

being in error.

If the transmitted symbols take on one of M possibly complex values, and the

received block of data is N symbols in length, than there are a total of MA N possible

sequences which could have been sent by the transmitter. The issue is which of the MA N

possible sequences is the most likely one. To find it, the entire block of observed noisy

signal samples will be needed. It will be shown in the proceeding sections, that these

samples along with knowledge of both the channel impulse response, and the statistical

nature of the noise, are enough information for determining, with minimum probability of

error, which of the MAN possible sequences was transmitted. In the following derivation,

it's assumed the noise at the input to the receiver is white and Gaussian with zero mean

and an unknown variance a. Before the derivation can begin, it will be necessary to

introduce the concepts of a signal-space and sufficient statistics. This will follow below.

36
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3.1 Signal Space Representation of Signals

Briefly any determinate, finite-energy signal can be represented, over a specific time

interval, by a series expansion of orthonormal bases functions of the form,

The representation is in the sense that the mean square error between the LHS and

the RHS of the Equation is minimized for a given value of K. Signal space is defined as a

K-dimensional vector of the possibly complex values given by the weighting terms in the

expansion. The signal space representation for the signal in Equation 3.1 has the form,

3.2 Sufficient Statistics

If the mean square error between the LHS and RHS of Equation 3.1 approaches zero as

the value for K is increased, the set of orthonormal functions is said to be complete for

that signal. The signal is fully represented by the sum of expansion terms. The functions

have been assumed to be complete for all the signals studied in this thesis. Given that the

orthonormal functions in the expansion are deterministic, when the signal is statistical in

nature, the coefficients in the expansion contain all the statistical information to describe
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the signal. The vector of coefficients in Equation 3.4 form a set of sufficient statistics for

the signal that can be used to identity it.

3.3 Derivation of MLSE Receiver

To begin, assume that the mobile receives over a time period t E {0,T} (T is assumed to

be longer than the period required to receive the complete sequence) the summation of

the transmitted signal and additive white Gaussian noise (AWGN). From the discussion

of signal space and sufficient statistics, the signal received by the mobile can be described

as an expansion, of the form given in Equation 3.1. Because the additive noise is white

its' expansion will require an infinite number of terms. It's reasonable to assume that only

a finite number of terms (K is used to describe the number of terms) is needed for a

complete expansion of all the MAN possible transmitted signals. The obvious question is

how many terms will be needed for the correct detection of one out of MAN possible

signals, embedded in AWGN that could have been sent by the transmitter.

First, note that of the infinite number of expansion terms required to describe the

signal at the mobile, only the first K statistics contain a desired signal component. If it

can be proven that the remaining statistics are independent of the first K we can eliminate

them since they add no additional information to the decision making process. To prove

statistical independence,
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where rj and n, are the projection of the received signal and noise "r" and "n"onto the jth

and ith dimension respectively of the signal space given by Equation 3.2 and E{.} is the

expectation operator. The rj in Equation 3.5 can be expanded as,

than Equation 3.5 becomes,

Expanding Equation 3.7 we get,

"I" is the period in time the signal is observed.

Since the noise is assumed zero-mean and white Equation 3.9 reduces to,

Since i never equals j, Equation 3.10 is always equal to zero, and the proof is complete.

It can be concluded that all the information necessary for the detection of the desired

signal is contained in the output of K correlators, of the form,

The original analog detection problem has essentially been transformed into a

discrete one (discrete in the sense that the indexes are not of time but signal dimension),

for which a detection rule must be found.
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An optimum detection rule should define decision regions in K-dimensional signal space

such that the probability of selecting the wrong sequence is minimized. Mathematically,

we will select s^m(t) if,

where O. is the decision region in K-dimensional signal-space for the signal.

To determine these decision regions first it is necessary to characterize the distribution of

a K—dimensional random vector whose elements are the outputs from each of the

correlators. Noting that the correlators in Equation 3.11 are linear, the noise at the output

of each will be Gaussian with variance an and mean equal to the projection of the

transmitted signal onto that specific basis function. The set of K outputs forms the vector,

where the boldface denotes a vector.

Due to the orthomorallity of each of the basis functions, the noise at the output of

each correlator will be uncorrelated. Therefore, it's correct to write the joint density

function of the K-dimensional Gaussian vector conditioned on a particular signal

transmitted as,

Since there are MAN possible sequences which can be transmitted there will be M AN

possible distributions that the observed vector could have been drawn from and hence

MAN decision regions to determine. First, it's necessary to determine an expression for the
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probability for making a wrong decision. To do this, start by finding the probability of

making a correct decision.

The probability of a correct decision can be written as,

the probability of an error occurring is then 1— P(correct) , or

But the probability of a correct decision given signal "m" was sent is just,

so Equation 3.16 becomes,

Minimizing Equation 3.18 can be accomplished by selecting the decision regions O.

such that P(s^m )P(r/s^m )is maximum within the region.

The regions can then be selected by the following rule

If signals are assumed to be equal likely, than Equation 3.19 becomes,

and the maximum likelihood receiver rule can be described.

then S. was the most likely signal sent.

Plugging Equation 3.14 into Equation 3.20 we select the signal that maximizes,
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To simplify the calculation the natural logarithm of Equation 3.21 can be used since the

natural logarithm is a monotonically increasing function and we get,

The constants can be discarded since they don't affect the maximization. The result is,

The expression in Equation 3.23), sometimes referred to as the minimum distance rule,

can be expanded,

Since the power term is common to all hypotheses, the observed power term in Equation

3.24 can be omitted from the final expression. Finally, we have,

The rule in Equation 3.26 can be related to the original problem by using the

relationships in Equation 3.1 and, Equation 3.2 and the orthomormality of the bases

functions,
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The expression in Equation 3.28 now becomes,

A receiver, as the one described by Equation 3.29 is impractical for large sequences since

there are MAN possible signals hence MAN correlators are needed. To reduce this number

to only one, expanding Equation 3.29 we get,

which can be simplified to give,

where,

The result in Equation 3.31 is exactly the expression found in the classic paper by

Ungerboeck [3] on maximum-likelihood reception. As stated before a single filter can

now replace the bank of matched filters, shown in Equation 3.30 sampled at the symbol

rate. The N samples in Equation 3.32 now become the sufficient statistics for detection of

the transmitted sequence. Since it is assumed the CIR is known Equation 3.33 is just a set

of known parameters that must be calculated. By whitening the expression in Equation
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3.29 with a discrete whitening filter one can obtain a Euclidean distance metric exactly

like the one found in the classic paper on maximum-likely receivers by Forney [8].

3.4 The Viterbi Algorithm

What is left, is the daunting task of calculating Equation 3.31 for each possible sequence.

From the expression, one can see that the number of calculations grows exponentially

with the length of the message. This would require extensive processing, and would be an

obstacle in the implementation of the receiver. To be practical the number of

calculations should be constant for each succeeding symbol. By using a modified version

of the Viterbi Algorithm the calculations can be made proportional to 1{ a n } IL where "L" is

the truncated length of the CIR in symbol periods (T s) and I{ an } I is the number of possible

symbol values. To do this, first start by noting that the expression in Equation 3.31 can be

manipulated to produce

where the maximization in Equation 3.34 is taken over all possible sequences {ai } . The

expressions in Equation 3.34, and 3.35 show that the maximization can be accomplished

recursively. First, the problem must be reformed.

Looking at the expression in Equation 3.35 one can see that for each sample this

term can be seen as a representation of a FSM. The possible states are the symbols an-

1...4_1_, and the input to the FSM is the symbol a n . For each possible state depending on
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the input symbol the FSM will transition to a future or next state represented by the

symbols an...a(n-L+1), this continues until the last symbol in the message is received so the

last state is then aN...a(N-L). The number of possible combinations of present state and

future state assuming no coding is |{an}|*|{an}|^L . In the case of QAM with a CIR of length

one (1), there would be 16 possible combinations. If one was to present this FSM

graphically on a time scale it could be represented by a so-called trellis diagram. As can

be seen in Figure 3.1, there are four possible states and from each state, there are four

possible state transitions. The arrows emanating from each state and terminating at each

of the four possible next states depict this. Going back to the expression in Equation 3.35

the value of the second term is the output of the FSM at each sample. Therefore each of

the possible combinations of state {a n-1 ...an -L} and inputan,will be weighted. The weights

associated for each of the possible paths through the trellis will be summed and the path

with the largest summed weight will be chosen as the most likely sequence. The Viterbi

Algorithm is perfectly suited for this type of problem, and is summarized below.

Consider a partial path metric given by Jn{a0,a1,...an} that terminates at one of the

I {an } IL nodes of the trellis at time nTs. All paths through this node must contain one of the

partial paths that terminate there. Any path through this node has a metric, which can be

written as,

The partial path terminating at this node with the largest partial metric (the first

term on the RHS of Equation 3.36 must be part of the path which goes through this node

and has the maximum path metric of all possible paths which go through this node, any
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other path which goes through this node but has a smaller partial metric must have a

smaller accumulated metric according to Equation (3.36). These paths are called survivor

paths and are the only which need be retained for further calculation. Since it isn't know

which of the possible states will be included in the path with the maximum metric a

survivor path for each states must be retained.

The iterative process is now clear. Using Equation 3.35), start at "n=1" and retain

only the survivor paths, then proceed with "n=2" and continue using Equation 3.36 until

the end of the message has been reached. The path with the maximum metric at the last

iteration is the most likely sequence.

This process is depicted in Figure 3.1, the survivor paths at each sample are the

light dashed lines. Therefore, the solid arrows entering each state can be discarded when

determining the most likely sequence. The heavy dashed line is the sequence estimated by

the algorithm.

Figure 3.1 State Trellis for QPSK with channel memory of one symbol and message
length of five.
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What has been found in our derivation is the sequence that has the minimum

probability of sequence error. That is the most likely sequence can contain any number of

symbol errors, it may be one or one hundred.

As long as the accumulated metric is the maximum, it is considered most likely

and will be used as the estimate without any consideration of the symbol errors. The

symbol error rate, or at least a tight bound on it, can be determined through an exhaustive

search for what is called a minimum error event. The details of this derivation will not be

delved into in this thesis. Instead, simulations will be used to determine the maximum-

likelihood receiver's performance. The interested reader can find the details in the

references by Forney Ungerboeck and Proakis. All derivations are basically the same as

the original by Forney. However, Proakis gives the most readable version of the three.

3.5 A Sub-Optimal MLSE Receiver

By inspection of Equation 3.30 one can see that the MLSE is comprised of two sections.

The front end is comprised of a filter, matched to the CIR and sampled at the symbol rate.

Following this is a sequence estimator implemented using the Viterbi algorithm. In the

proceeding derivation, it was assumed that the CIR was known. In a real world

implementation of the MLSE receiver, the CIR would have to be estimated. This adds

complexity to the receiver especially if the CIR is changing at a rate comparable with the

duration of the data block. One method used to simplify the implementation of the

receiver is the use of a receive filter matched only to the transmit filter. This eliminates

the need for tracking the overall CIR, which in general requires sampling at greater than
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the symbol rate. This is sub-optimal of course since the CIR is a composite of the

transmit filter response and the response of the channel but the reduction in complexity is

significant.

There is also an added risk when implementing the receiver in this manner that in-

band nulls can be formed due to ailising caused by symbol rate sampling of the receive

filter. Nulls can form when the composite phase response comprised of transmit, channel

and receive filters is asymmetrical. Ailising occurs using matched filter as well but the

phase response at its' output is flat so there is no chance of the phases in the ailised

portion of the response adding destructively. Never the less the reduction in performance

can be compensated by a significant reduction in complexity. In the IS-136 standard the

composite response of transmit and receive filters has a raised root cosine response so in

the absence of a dispersive channel the response has zero ISI.



CHAPTER 4

COMBINED INTERFERENCE CANCELLER AND MLSE

4.1 Optimum Combined Interference Canceller and Channel Estimator Weights

4.1.1 Linear Constraints

In this section, the channel estimator coefficients and the antenna array weights are

derived simultaneously using a direct matrix inversion (DMI) technique. This technique

supplies an estimate of the results obtained using the statistical minimum mean square

error criteria.

From Figure 1.4, we get,

where X represents a matrix whose columns are the input signals to each of the 'N'

antennas,

L= length of the training sequence. 	 (4.4)

Define the training sequence,

To construct the modified training sequence, first define a matrix 'A' whose width

is equal to the number of taps in the channel estimation (fir) filter. Each column of this

matrix is a time delayed or time advanced version of the training sequence. Since the

49



50

overall channel response can have both a causal and non-causal component, the center tap

of the estimation filter, c, will be used as the reference and the 'A' matrix will be defined

as

Given the definitions above the error function is,

Inserting Equation 4.8 into Equation 4.9 the final expression for the filter coefficients is,

As the expression in Equation 4.10 shows the optimum weights can converge to

the all zeros vector, a useless result. Constraints on the coefficients will be used to

eliminate this problem. For simplicity, a linear constraint on the filter coefficients of the

form, bTc = a is used. Using the method of Lagrange the appended cost function Equation

4.7 becomes,

The expression in Equation 4.9 now becomes,



Inserting Equation 4.8 into Equation 4.12 and solving for c you have,

Inserting Equation 4.14 into Equation 4.13 and solving for v gives,

Finally c can be obtained by inserting Equation 4.15 into Equation 4.14 which gives,

Inserting Equation 4.16 into Equation 4.8 produces an expression for the array weight

Using the expression in Equation 4.16 and the identity in Equation 4.9c, Equation 4.17

can be rewritten to give,

The output from the array can now be obtained by inserting Equation 4.18 into Equation

4.1 which gives,

Noting that the first three terms on the LHS of Equation 4.19 produce a

projection matrix the array output can be rewritten as,
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where Ωx is a projection matrix and the term Ac is the training sequence filtered by the

channel estimation filter c. From Equation 4.20 it can be seen that analogous to the result

for optimum combining [2] the output of the adaptive array Y, is the projection of the

modified training sequence Ac, onto the observation-space. This is an intuitively pleasing

result. Assuming the channel can be represented by a T-spaced Fir filter, and the vector c

converges to the exact channel coefficients, the output from the array represents the best

estimate of the modified training sequence Ac. Therefore, any signals uncorrelated with

this sequence should be suppressed by the array, within the confines of the arrays degrees

of freedom for signal suppression. If the channel estimation filter is an impulse then

Equation 4.20 reduces to the same expression as given by [2]. It's clear that a constraint

vector other then c can be selected. Intensive simulation has shown that b = [0 10]^T of

gives good results, hence such a choice will be included in the following comparison.

4.1.2 Eigen-Decomposition

Choosing a constraint of b=c forces the energy in the filter coefficients to equal some

constant. With this Equation 4.14 becomes,

This eigenvector eigenvalue problem defines c as the eigenvector to the corresponding

eigenvalue X. By expanding the bracketed term in Equation 4.21 one gets,
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where S2 Hx1px1 = Qx± is defined as the orthogonal projection matrix of the columns of

X . The matrix ,6 then becomes the projection of the columns of the matrix A defined in

Equation 4.5), onto a vector space orthogonal to the observation vectors that make up the

columns of the X The matrix defined by β^H β is an (2u+1)x(2u+1) Hermitian matrix

A
and so it can be decomposed into the form UΛU^-1 where A —diag(21,22,....IN) , a

diagonal matrix of eigenvalues and U is a unitary matrix, ( U H = U -') whose columns

are the eigenvectors of the matrix β^H β. The question remains which eigenvector to

select for the channel estimator. Inserting Equation 4.18 into Equation 4.7 and selecting

the vector "c" that minimizes the mean square error we get after simplification,

Inserting Equation 4.21 into Equation 4.23 gives the result for the mean square error,

From Equation 4.24 it's obvious that the eigenvector associated with the smallest

eigenvalue should be selected as the channel estimator.

4.2 Proof of an Optimal Solution

A simple argument was presented will be shown as proof that the adaptive weights

calculated as shown in the previous section will cancel uncorrelated interference while

allowing the channel perturbed desired signal to pass through the array modified only by

multiplication of complex constants. A short generalized proof will be presented below.

See Chapter 5 for details on the derivation of the channel model.
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To simplify the proof the following assumptions will be used. The desired signal

is assumed to have the same multi-path delay profile but a different response at each

antenna. Without loss of generality, assume that each interfering multi-path ray can be

treated as an independent, flat faded interferer, the array must cancel.

The channel impulse response of the desired signal at antenna element x can be

represented by,

where 2M+1 is the length of the T-spaced composite channel response and p(t) is the

combined receive and transmit filter response. The a in Equation 4.16 are the J multi-path

complex iid random variables whose magnitudes have a Rayleigh distribution and whose

phases are uniformly distributed between -7E and 7E, and z is the random delay associated

with the j th multi-path component.

From the assumptions described above, any interfering ray from a single interferer

incident on an array element x can be represented as,

The desired signal component at the output of the array,

d(k) being the T-spaced training sequence. The "T" has been dropped for convenience. At

the output of the array any interference can be represented using Equation 4.17 as,
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where Ji is the number of multi-path rays incident on each array element. Using the error

function defined in Equation 4.7 the mean square error at time "k", is in the case of no

noise component,

Which is zero when,

Therefore, the error will be minimized when the adaptive Fir filter response

"c(k)" is equal to the combined channel response modified only by multiplication of the

complex weights wn, which are chosen such that they cancel the interfering rays incident

on the array. In this way the array passes the channel perturbed desired signal and cancels

dispersive interferers provided the number of interfering multi-path rays are less than the

number of antenna array elements. This ends the abbreviated proof.
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4.3 Simulation Results

Below are the results from simulations run for channels where the desired user was

subject to delay spread, but the interferers suffered only from frequency-flat fading. As

stated previously, unless indicated, all simulations assume the channel is static over the

interval of interest. Details about the channel model used for the simulations along with

the theoretical considerations are presented in Chapter 5. The first figure shows the

performance of cancellers for a channel with no delay spread. In the simulation, the

canceller acts as a front-end processor, which feeds a simple differential detector. For

Figure 4.1 and Figure 4.2 + = a single antenna, o = Canceller/Differential Detector with b

= [0 1 * = Canceller/Differential Detector with b = c, x = single tap Optimum

Combiner/Differential Detector. For Figure 4.3 and Figure 4.4 x = 5-Tap OC/Differential

Detector.

Figure 4.1 Performance of arrays in flat fading with differential detection.

The reason for this simulation is to prove that for this degenerative case the

canceller reduces to a structure whose performance is equal to OC. The results are shown

above in Figure 4.1. The simulation in Figure 4.2 is for the same channel except for the
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addition of one equal power interferer. As in the case of the previous graph, all of the

structures perform equivalently.

Figure 4.2 Performance of arrays in flat fading with differential detection and one equal
power interferer.

To investigate the performance of our proposed receiver, the Canceller/MLSE,

additional simulations were performed for a variety of channel impairments. The first

simulation is shown in Figure 4.3, the results are for a two-ray channel with inter-ray

Figure 4.3 Performance of receivers for a two-path Ts-spaced channel with no interferer
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delay of one symbol period, interference is from one frequency-flat faded co-channel

interferer.

The results in Figure 4.3 and Figure 4.4 show that the Canceller/MLSE performs

much better than the 5-Tap OC regardless of whether or not an interferer is present. The

data also shows that the eigen-decomposition technique outperforms the Canceller/MLSE

with a linear constraint on the estimator coefficients. Additional simulations have found

that when one imposes constraints on the array weights, or a combination of constraints

on the array and estimator coefficients, the performance of the Canceller/MLSE is

degraded. For this reason all Canceller/MLSE designs presented in this thesis use

constraints on the estimator coefficients alone. Additional simulations are presented at the

end of Chapter 5.

Figure 4.4 Performance of receivers for a two-path Ts-spaced channel with one flat
faded interferer.

It's reasonable to assume a model of the mobile radio environment in which the

interference signals are also subject to multi-path propagation. The space-time processor

must be able to deal with these additional interfering signals.



Figure 4.5 Multi-path propagation of an interfering signal.

For a simple two-element array, an interferer with additional multi-path ray components

cannot be completely suppressed, so performance is degraded. This is shown graphically

in Figure 4.5. The desired signal was subject to a two-path channel with inter-ray delay of

T. Interference was from a single dispersive interferer with two multi-path components.

The graph on the left shows results for an interferer with no delay spread, and is included

for reference only. The drop in performance shown in the graph on the right of Figure 4.5

can be attributed to the limited available degrees of freedom the space-time processors

have for interference cancellation and equalization. While both the five-tap MMSE (OC)

and the Canceller/MLSE suffer from a loss in performance, the loss suffered by the

Canceller/MLSE is much greater. The reason for this is simple; the Canceller/MLSE has

fewer array coefficients to utilize to combat the dispersive interferer. Therefore the signal

the canceller feeds the MLSE will have a higher contribution from interference than will

the signal at the output of the MMSE (OC). Without some modification to the existing

structure, the Canceller/MLSE would not be practical for many real applications.
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4.4 Enhancements for Interferers with Delay Spread

The need to enhance the Canceller/MLSE is evident from the argument presented in the

previous section. The question now is, what if any, enhancements to the original design

can be made to accommodate dispersive interferers. Two methods to improve the

Canceller's performance when dealing with dispersive interference have been proposed.

The first is the simple addition of an antenna element in the array. While this only

improves the array's spatial processing capability, it has been assumed the multi-path

components are correlated between antenna elements. Therefore, the canceller should be

able to treat each interfering multi-path component as an additional interferer that the

array needs to suppress, improving overall performance. The second method uses the

addition of temporal taps in the canceller array. It has been found though that a constraint

on the channel estimator is necessary when additional temporal taps are added. The

reason for this will be explained in the following sections along with supporting data

from simulation. Additional simulation data is presented at the end of Chapter 5.

4.4.1 Additional Array Antennas

The addition of antenna elements to the array is the simple modification to improve

performance, given that each of the interferering multi-paths can be considered iid in

time, and spatially correlated. The practical considerations can be much more

complicated, the availability of space for more than two antennas on a mobile unit is one

issue which must be addressed. There is a variety of other implementation issues, which

may make the addition of antennas to the mobile unit impractical. With the
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aforementioned in mind, simulations have been conducted in which only one additional

antenna has been included in the antenna array.

The simulations presented in this section are for canceller arrays with three

antenna elements, one additional element more than the structures already presented in

previous sections. In all the simulations, the signals at each antenna have been assumed to

be spatially uncorrelated when averaged over a time interval much longer than a symbol

period. Results of a few simulations are shown below in Figure 4.6.

As expected a single two-path interferer is completely cancelled, this is due to the

additional degree of freedom for interference cancellation the array has gained with the

inclusion of one more antenna.

Figure 4.6 Performance for a Ts-spaced channel with a two-path (left), or three-path
equal power interferer.

A more interesting result is the performance the three-antenna canceller has when

subject to a single interferer with more than two multi-path components. Even though the

canceller cannot eliminate the interferer, it does sufficiently suppress the interferer's

multi-path to a point where adequate performance, which in the case of an IS 136 system
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is usually taken in the literature as a BER of 10 -2, can be obtained. This is shown in

Figure 4.7 where the desired-users and interferer's SNR has been set to 17 db, and

number of interfering multi-path rays has been increased to investigate the effect this has

on performance.

Figure 4.7 Performance of receivers for channel with one interferer.

4.4.2 Addition of Temporal Array Taps

A more practical method to combat dispersive interference is the addition of temporal

taps to the canceller array, since this can be done with software alone. Implementing a

canceller with temporal taps is simply a matter of modifying the equations given in

section 4.1.1 to accommodate temporal coefficients. A center-tap reference for the array

filters has been chosen, so the governing equations take on the forms shown below.

Referring to Equations 4.1 to 4.4 and Figure 1.4, we have,

Expanding the coefficient vector to include temporal taps, we get,
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and,

In Equations 4.22 and Equation 4.23 "N" refers to the number of antenna

elements, while "M" is the number of temporal taps at each antenna. Therefore, the total

number of canceller coefficients has now become "N*M".

Given that the filters at each antenna have a center-tap reference, and that each filter has

(M+1)/2 causal and non-causal taps, the vectors in Equation 4.23 can be grouped into

"M" columns such that they take on the following form for the kth antenna,

so that Equation 4.23 can be rewritten as,

The vectors in Equation 4.24 are written as,

To investigate the performance of the canceller with the addition of temporal taps

simulations have been performed for a variety of environmental scenarios. Some of the

results are shown below in Figure 4.8 and Figure 4.9. One can plainly see that the

performance of this structure is poor when a simple four state trellis is used in the MLSE.

It is necessary to increase the complexity of the MLSE by increasing the state trellis from

four to sixteen states in order to obtain reasonable performance. Although, for modem
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digital signal processing equipment a sixteen state trellis is not too complex to be

implemented, the graph in Figure 4.9 shows a flaw in this design. In the graph the user is

subject to flat fading only, yet the canceller/mlse without temporal taps significantly

outperforms the canceller with temporal taps. One would expect, in this case, that

Figure 4.8 Performance of receivers for a symbol spaced channel with one equal power
interferer subject to a two-path Ts spaced channel (left), and three-path Ts/2 spaced
channel.

Figure 4.9 Performance of receivers for a flat fading channel with no interference.



65

the two structures would have similar performance. To find the reason why these

structures perform differently one needs to look at Equation 4.20, and modify it for a

canceller with temporal taps. The revised expression is given by,

Which is minimum when,

From Equation 4.29, to minimize the MSE the channel estimator and the sum of

the convolution of the array filters and the channel responses need to be equivalent. There

is no constraint on any of the coefficients, so either the channel estimator or the array

filters, or both may have both causal and non-causal components. This can result in a sort

of spreading of the channel estimator, which would make it necessary to increase the

number of states in the MLSE to compensate for the longer channel response.

Investigating the flat faded case shown in Figure 4.9, it was found that the channel

estimator had both causal and non-causal components, which would require a higher state

trellis. This is the cause of the performance degradation.
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To compensate for the problem of estimator spreading a constraint on the channel

estimator has been proposed. The estimator has been constrianed to be causal, with a

memory of one. In other words, a two tap estimator with just one causal tap. This is

reasonable for a four state MLSE trellis. The estimator and array coefficients are

optimizated, as was done previously, using the eigen-decomposition technique to find the

estimator coefficients and Equation 4.18 to find the array weights. Simulations have been

conducted for the same environmental scenarios as before, but this time with the

aforementioned constraint on the channel estimator, the results are shown below.

Figure 4.10 Performance of receivers for a flat fading channel with no interference.

From the results in Figure 4.10 and Figure 4.11, one can see that there is a

significant improvement in the performance of the Canceller/MLSE when a constraint is

imposed on the channel estimator. The question to ask next is whether the addition of

temporal taps can be used obtain performance equivalent to the three-antenna canceller.

This would require an increase in the complexity of the canceller, but the performance

improvement would be without the need for any additional hardware. This is what is the
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focus of the simulation in Figure 4.13. The worse case scenario has been used from

Figure 4.12, which is a two-path Ts-spaced channel and a single interferer with seven

multi-path rays. For this simulation, an odd number of array-taps uses a center tap

reference while an even number has one more non-causal tap. The graph shows that a

canceller with five temporal taps outperforms the three-antenna configuration, and that the

addition of more than five taps does little to improve performance.

Figure 4.11 Performance for a two-path Ts-spaced channel with one equal power
interferer with a two-path Ts-spaced channel (right), and a three-path Ts/2-spaced
channel.

Figure 4.12 The addition of multi-path components to one equal power interferer for a
two path, Ts-spaced channel with Eb/No= 17 db.



Figure 4.13 Performance of receivers for Eb/NO = 17 db, and one 7-path equal power
interferer.
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CHAPTER 5

SIMULATIONS

5.1 The Mobile Radio Channel

In a typical mobile radio environment, the signal transmitted from the base station will

follow many different paths to reach the mobile receiver. The number of paths is usually

very large and each will impose a variation on the signal. In general, each signal arrives at

the mobile receiver at a different time and may undergo a change in phase and amplitude

before arriving at the mobile. This is depicted graphically in Figure 5.1, where a limited

number of paths have been shown for simplicity. The buildings obstructing the direct path

show how this scattering of the signal may occur.

Figure 5.1 Scattering of the incoming signal.

The signal received at a mobile can be modeled as the superposition of many

waves arriving from different directions and with different relative delays. The delays are

measured relative to the first wave incident on the receiving antenna. A signal transmitted
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at frequency wo would arrive as a superposition of N*M*L waves, each from one of N

angles in the horizontal plane, M angles in the vertical plane and with L delays. The

electric field at the receiver can be written as,

where,

and,

The term fd is the maximum Doppler frequency given by the relationship fd = v/λ., where

v is the velocity of the mobile and X is the wavelength of the carrier frequency fo

The "fd"term in Equation 5.2 is referred to as the Doppler frequency. Figure 5.2

depicts graphically how this term comes about.

Figure 5.2 The Doppler effect.

In the figure, the box labeled with do is the position of the mobile at some

reference time. The mobile travels with velocity v and in an elapsed time At has traveled
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a distance "d" to position d 1 . If the transmitter is assumed to be far from the mobile, the

signal will impinge on the mobile's antenna at approximately the same angle 0 at both

positions. The distance traveled by the signal from the base station to the mobile at

position do is shown in the figure as 10, and 1 1 at the position labeled d1. For simplicity,

assume the signal is an un-modulated carrier at frequency wo. The phase of the signal at

it time t 1 . The term c is the speed

of light, 3x106 (m/s). The frequency of the carrier over the time interval At is the change

in phase over At ,

From the figure Al can be written as d cos(0) , or vAt cos(0) , where v is the velocity of

the vehicle. Substituting for Al Equation 5.5 now becomes,

The second term in Equation 5.6 is called the Doppler frequency and is dependent

on the vehicle's speed, the wavelength of the carrier frequency and the angle at which the

signal arrives at the mobile with respect to the direction of the mobile's motion. Each of

the constituent waves that comprise the signal will have a Doppler frequency. The actual

frequency is a random variable that is governed by the angular distribution of the arriving

waves as shown in Equation 5.2. For analysis, assume that there is no deterministic

component in the arriving signal. The effect of a deterministic component would be to
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modify the statistical distribution of the signal's envelope, which will be discussed

shortly. From Equation 5.6 the Doppler frequencies can vary between, 0 and

Radians. In real world situations, the maximum Doppler frequency plays an important

role. It has been shown [33] that the maximum Doppler frequency approximates the

frequency at which the signal strength of the signal will fade from its mean value.

The first term on the RHS of Equation 5.3 is the gain pattern for the receiving

antenna. In our analysis, this function will be assumed unity for all angles. This of coarse

is not possible in practice but is used often in analysis since it greatly simplifies

calculations, so it is used here as well. Equation 5.1 can be re-written as,

By the central limit theorem, the two triple sums in Equation 5.7 are Gaussian distributed

random processes, and are jointly Gaussian. With this in mind the received electric field

at the mobile can be written as,

where xl(t) and xQ(t) are the jointly Gaussian random processes described by the

distribution,

. An equivalent representation for the signal in Equation 5.8 can be written as,

E(t) = Re f r(t) e imt 1 . 	 (5.10)
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is the equivalent base-band representation of the pass-band signal E(t) . It has been

shown that the magnitude of random variable r(t) (i.e.:1 r(t)|) follows a Rayleigh

distribution given by [25],

while the phase, L r(t) follows a uniform PDF [25].

5.1.2 Narrowband Channel Characteristics

For the work presented in this thesis the receiver has been assumed to be narrowband. By

narrowband, it means that the receiver's limited bandwidth cannot distinguish between

individual multi-path waves whose differential delay is small compared to the inverse of

the receiver's bandwidth Given this condition the receiver will interpret these delayed

signals as one composite wave which can be described by Equation 5.7). With the

modification that the delay terms be replaced by constants.

An example is shown in Figure 5.3. The first pulse, shown as the dashed line is

the summation of twenty-five equal-energy square-root-raised-cosine pulses centered at

approximately one eighth of a second. Each wave is separated by one eightieth of the

inverse of the pulse bandwidth. The second pulse, shown as a solid line, is a single

square-root-raised-cosine pulse centered at approximately one eighth of a second. The
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two waves have been normalized so they have equal energy. For all practical purposes,

the waves are identical.

Figure 5.3 Creation of a composite wave due to the narrow-bandwidth of the mobile
receiver.

In Figure 5.4, this concept has been extended by plotting three signals. The first

signal, shown a with dashed line, is a summation of one hundred and twenty equal-energy

square-root-raised-cosine pulses centered at approximately three quarters of a second.

The second, shown with a dotted line, is the summation of two equal-energy square-root-

raised-cosine pulses centered at three eights and nine eights respectively. The center of

this two-pulse composite wave is three quarters of a second, which is the center of the

first pulse as well. The last curve shown in the figure is a single square-root-raised-cosine

pulse centered at three quarters of a second.
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Figure 5.4 Creation of a multiple composite waves due to the narrow-bandwidth of the
mobile receiver.

The figure above plainly shows the first composite wave can be approximated by

two equal-energy waves separated by two thirds of the symbol period. The single pulse is

no longer an accurate representation for the composite wave shown as the first curve.

With the information from Figure 5.3 and Figure 5.4, one can see that when there are

many waves spread over a small period of time compared to the inverse of the receiver's

bandwidth, which in the case shown above is approximately T s^-1, a single pulse

representation is adequate, Figure 5.3. When the arriving waves are sufficiently spread

out in time, as in Figure 5.4, the single pulse representation is no longer accurate and a

multi-pulse composite wave must be used. Therefore for the purpose of simulation the

signal received at the mobile antenna can be modeled as a composite wave comprised of

two or more signals each with a form described by Equation 5.7 with the modification

that the delay terms be replaced by a constants and the statistical nature of them dismissed

in analysis. This is depicted graphically below in Figure 5.5. In an actual mobile

environment, the signals arrive at the mobile antenna in a much more complicated
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manner. The model has been greatly simplified, and has been included for discussion

purposes only.

Figure 5.5 Multi-path propagation scenario.

The signal received by the mobile can now be defined as the sum of

distinguishable composite multi-path rays each of the form given by Equation 5.11).

Therefore, the channel impulse response for a particular receiving antenna element x will

have the form,

where the ad's are the Rayleigh coefficients whose magnitude and phase distributions are

given by Equation 5.12 and Equation 5.13 respectively, and the ti's are delays relative to

the first arriving wave, to, at the receiver. In this thesis, the delay between the arriving

rays was varied to examine the influence the variation has on the performance of the

receivers studied, but the delay was limited to no greater then one-symbol period. This is
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a reasonable assumption given the simulations are for TDMA systems designed using the

IS-136 standard, which uses a symbol period of 41.1 us.

5.1.3 Correlation Properties of Base-band Components

From the previous section a Rayleigh distribution for the envelope of the base-band

channel and a uniform distribution for the phase has been accepted as the appropriate

model for the simulations presented in this thesis This model assumes that there is no

direct path from the transmitter to the receiver for any of the multi-path rays. If a direct

path were considered the model would have an envelope that followed a Ricean

Distribution. There are many more channel models, the interested reader can find useful

information in the references given in [30,32]

The correlation properties of the base-band components will now be examined.

These findings will show that antennas separated a distance of at least half a wavelength

are approximately uncorrelated. In subsequent chapters, it will be shown how these

uncorrelated signals can be used to combat signal fading and supply what is referred to as

diversity gain.

In [31] the author shows that the correlation function for the signal in Equation 5.7 can be

expressed as,

where p(0,0) is the joint distribution of the azimuth and elevation angles.

The cross correlation between the in-phase and quadrature components of the

complex envelope can be written as,
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If the azimuth and elevation angles are considered statistically independent of one

another, and that the elevation angle is distributed as 8(0-7c/ 2) (i.e.: waves arrive in

horizontal plane only) than the results in Equation 5.15 and Equation 5.16 reduce to,

Now the complex correlation function can be defined as,

as in [31]. Note that both the autocorrelation, and the cross-correlation functions defined

above are defined by the distribution of the azimuth angle of arrival. If now a uniform

distribution for the angle of arrival, p(Ф) in Equation 5.17 and Equation 5.18 is

considered the resultant complex correlation function is Clarke's 2-d isotropic scattering

model given by [32],

Equation 5.20 is a zero-order Bessel function of the first kind and is represented in the

literature as,
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Therefore using Equation 5.21 the complex correlation function reduces to a real

expression given by ,

By substituting fd m r with ντ/λ the expression in Equation 5.22 can be re-written as,

A graph of Equation 5.22 is shown below in Figure 5.6 for a normalized delay

such that ντ ,the distance travel by the mobile is replaced by a single variable lambda, and

the amplitude of the correlation function is normalized to one. Figure 5.6 clearly shows

that for antenna separations greater than V2 a wavelength the between base-band

components are approximately uncorrelated.

Figure 5.6 Theoretical covariance function of the complex envelope.

5.1.4 Spectrum of Base-band Components

Since the received signal was assumed wide-sense-stationary, the frequency spectrum of

the base-band signal can be determined by simply taking the Fourier transform of

Equation 5.23 with respect to T, instead the derivation by Jakes [24] will be used, which
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yields the same result. The derivation begins by noting the relationship between the

received frequency and incident angle shown in Equation 5.6). This relationship can be

written as,

Where fdmax is the maximum Doppler shift given by 2πν/λ. From Equation 5.3), the

fraction of the power incident on an antenna in the incremental angle ∂φ  can be denoted

p(φ)∂φ The differential power variation with frequency may be expressed as swat: Using

Equation 5.24), which shows the relationship between frequency and angle of incidence,

the following relationship can be made for a dipole antenna,

The assumption of a uniform distribution of power as a function of the angle of incidence

when inserted into Equation 5.27 gives the final expression for the spectrum of the base-

band components as,
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This expression is displayed in Figure 5.7 for an fdmax equal to 100 Hz. The singularity at

fdmax in the response has been smoothed to enable a realizable implementation.

Figure 5.7 Jakes' one-sided Doppler spectrum of the base-band components. For a fdmax
of 100 Hz.

5.2 System Model

Given the theoretical analysis presented in previous sections of this chapter, the mobile

channel model used in this work can now be defined. Focusing on the IS 136 TDMA

digital communications standard, which is a narrowband system, the expression in

Equation 5.14 will be adequate for simulations presented in this work. The simulations

are done at base-band, assuming timing and phase variations to be non-existent. This

greatly simplifies the model. Another simplification was to assume the same delay

profile at each antenna element in the array, a reasonable assumption, and one that is
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commonly used in the literature. The final assumption is one of statistical independence

between antenna elements, which can be attained in a real system given certain physical

relationships between antenna elements are maintained. With the aforementioned in

mind, a graphical representation of the model is presented in the Figure 5.8 shown below.

Figure 5.8 Two-antenna, base-band system model.

Using the model in Figure 5.5, the signal observed at antenna x just prior to

sampling, given as xi (t) , has the following general form,

where N is the number of symbols transmitted during the observation period, L is the

number of co-channel interferers (assumed constant over the observation time), 4 -1 is a

delay associated with the lth interferer, an are the possibly complex transmitted symbols,
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n x (t) is the AWGN for the xth antenna, and 17,°,(t — nT) and 17 1 (t — nT —4' 1 ) are the pulses

received from the desired and PI interferer respectively given by,

where p (t) and p r (t) are the transmit pulse and receive pulse respectively, and g x (t) is

the channel response between the ith user and the xth antenna.

If in Equation 5.14 it is assumed that the channel is frequency-flat, g (t) takes the simple

form given by,

where ax is a complex variable whose statistics are dependent on the channel model that

is assumed.

In all the work presented in this thesis the IS 136 standard has been used to model

the digital communication system analyzed. In IS 136, both transmit and receive filters are

specified. The output from the convolution of these two filters is a Nyquist pulse,

therefore the expression in Equation 5.30 can be re-written to include both the transmit

and receive filters such that,

where Nyq(t) is a Nyquist pulse, which is normalized so that Nyq(0) is equal to one.

If the output of the xth receive filter is sampled at the symbol rate T s^-1 (we have

assumed perfect symbol timing between the transmitter and the receiver) the expression

in Equation 5.29 becomes, assuming the same delay profile at each antenna,
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where 4-1 has been constrained to be E (0, Ts ), and the delay profile at each antenna to

be the same.

The first term on the RHS of Equation 5.33 is in the form of a discrete time convolution.

Using Equation 5.32, and Equation 5.14 the desired user's composite channel response at

antenna x as can be given as ,

Where p(t) = Nyq(t) , and the width of the discrete channel is assumed to be finite such

that the variable "m " extends from +K to —K, a reasonable assumption given the shape of

the pulse p(t) = Nyq(t) . A similar argument can be made for the interference term, and

the expression in Equation 5.33 can be re-written as,

Now the term xx (mT) can be expressed as the summation of two discrete time

convolutions and additive white Gaussian noise. Given that the noise at the input to the

receive filter is white, the filtered noise will also be white since the correlation between

two Ts-spaced samples of the receive filter is zero.

Given the expression for the envelope in Equation 5.11 and the properties for the

frequency response of its' base-band components given by Equation 5.28 along with the

discussion in section 5.5.1, each multi-path wave's envelope can be formed using the

method shown below in Figure 5.9.
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Figure 5.9 Creation of in-phase and quadrature components for Rayleigh weights.

Using this method, two iid, white Gaussian noise processes are formed and each is

individually filtered using the response given by Equation 5.28). This gives each

component the right correlation properties. The output from each filter is then inverse

transformed to give the in-phase and quadrature terms in Equation 5.11. Shown below in

Figure 5.10 is a typical spectrum at the input to an IFFT block taken during a simulation

run. It comes very close to the theoretical spectrum given in Figure 5.7. To get insight

into the time domain properties of the simulated envelopes the covariance function taken

at the output from the IFFT block is also shown.

Figure 5.10 Spectrum of base-band components for a fn. of 10 Hz (left), and covariance
function.
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The "+" marks in the figure are the theoretical covariance function given by

Equation 5.21). The results show a very close match between both measured and

theoretical functions.

To verify the statistical properties of the simulator two histograms have been

compiled, taken from two hundred thousand samples, they appear in Figure 5.11.

Included in the graphs, shown as the solid curve, are the theoretical expressions given by

Equation 5.12, and 5.13.

Figure 5.11 PDF's of the simulated fading envelope (left), and phase (solid lines are the
theoretical values).

Included below are addition graphs which show the covariance functions of both

the phase and envelope over the period of one IS 136 TDMA frame. The solid line in the

graphs is for a fading rate of one hundred, and eighty Hertz, which for PCS frequencies is

approximately highway speed (~ 60 Mph). The dashed line represents, again for PCS

frequencies, a fading rate of ten Hertz, or walking speed (-3 Mph).
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Figure 5.12 Normalized covariance functions of phase (left), and envelope, over one
TDMA frame.

This has been done to illustrate why the simulations presented in this work have

been simplified by making the assumption that the envelope and phase of the fading

signals are constant over one IS136 TDMA bust, approximately seven milliseconds long.

From Figure 5.12, it's obvious that a time-flat fading model would not be appropriate for

highway speeds. The model is more suitable for walking speed, approximately three

miles-per-hour, since both envelope and phase are stay highly correlated over the length

of a data burst. By using the time-flat fading for all the simulations presented in this

thesis, a walking speed for the mobile user is implied. For completeness, sample

functions from the simulator of the signal envelope and cross correlation of the Rayleigh

coefficients are shown below.



Figure 5.13 Actual Rayleigh fading envelope for fn., of 10 Hz (left), and measured
cross covariance of multi-path ray envelopes.

5.3 Results

Additional results from simulations have been included, and are presented below. These

simulations are for the standard two-ray multi-path user channel with inter-ray delay of

half a symbol period. Even though, in the literature most authors like to use the one

symbol delay model for the user's channel, the results are much too favorable when a

MLSE is used in the receiver. This is because the MLSE can achieve better performance

through time diversity. Since as shown in Figure 5.13, each multi-path ray fades

independently, the MLSE will achieve time diversity through it's metric calculations. For

convenience the metric variables from Chapter 3 have been reproduced below in

Equation 5.36 and Equation 5.37,



When Equation 5.14 is inserted, for a two-path channel, into Equation 5.36 we

Which, for n-m=0 is us the following result;
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is the pulse correlation function. A plot of this function, for an IS 136 system is shown

below.

Figure 5.14 Pulse correlation function for IS 136 system.
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Note that the pulse correlation function becomes smaller as r becomes larger,

and for z = Ts. the function is very small. The first and second terms in Equation 5.40

show how diversity is obtained within the transition metric. Only the third term can

reduce the diversity gain, so if that term is small than its' effect on the diversity gain will

be negligible. On the other hand if the term is large, as might be the case when r is small

than the effect of this term on the diversity gain cannot be discounted. This is why two-

path channel with an inter-ray delay of one symbol will result in better overall

performance. The same argument as that mentioned above also applies to the other metric

variables given by Equation 5.36 and Equation 5.37. A plot of the effect of inter-ray delay

on performance is given below for a channel with no co-channel interferer.

Figure 5.15 Effect of inter-ray delay on performance.

The graphs presented below show that, as expected, the performance of the

Canceller/MLSE degrades when the inter-ray delay is reduced. The results presented in

Figure 5.16 are for a two-antenna single element canceller and reduced inter-ray delay of

half of a symbol length. Comparing the results of the symbol-spaced channels shown in
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Figure 4.3 and Figure 4.4, it is obvious that the performance degrades by an order of

magnitude. The legend for Figure 5.16 is as follows; + = a single antenna, o =

Canceller/Differential Detector with b = [0 1 * = Canceller/Differential Detector with

b = c, x = single tap Optimum Combiner/Differential Detector.

Figure 5.16 Performance of receivers for a two-path channel with inter-ray delay of Ts/2,
and no interferer (left) or one equal power, flat-faded interferer.

The results shown in Figure 5.16 and Figure 5.17 are for a two-element canceller

with five temporal taps on each element, and a constraint on the estimator, limiting the

result to only two causal taps. By comparing the results to Figure 4.11 and Figure 4.12,

one can see that when two additional temporal taps are added to each antenna, the

performance degradation due to the Ts/2 channel is nullified.



Figure 5.18 The addition of multi-path components to one equal power interferer for a
two path, Ts/2-spaced channel with Eb/No= 17 db.
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