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ABSTRACT

TIME-FREQUENCY INVESTIGATION OF HEART RATE VARIABILITY AND
CARDIOVASCULAR SYSTEM MODELING OF NORMAL AND CHRONIC

OBSTRUCTIVE PULMONARY DISEASE (COPD) SUBJECTS

by
Douglas A. Newandee

A study has been designed to add insight to some questions that have not been fully

investigated in the heart rate variability field and the cardiovascular regulation system in

normal and Chronic Obstructive Pulmonary Disease (COPD) subjects. It explores the

correlations between heart rate variability and cardiovascular regulation, which interact

through complex multiple feedback and control loops. This work examines the coupling

between heart rate (HR), respiration (RESP), and blood pressure (BP) via closed-loop

system identification techniques in order to noninvasively assess the underlying

physiology.

In the first part of the study, the applications of five different bilinear time-

frequency representations are evaluated on modeled HRV test signals, actual

electrocardiograms (ECG), BP and RESP signals. Each distribution: the short time

Fourier transform (STFT), the smoothed pseudo Wigner-Ville (SPWVD), the Choi-

Williams (CWD), the Born-Jordan-Cohen (BJC) and wavelet distribution (WL), has

unique characteristics which is shown to affect the amount of smoothing and the

generation of cross-terms. The CWD and the WL are chosen for further application

because of overcoming the drawbacks of other distributions by providing higher

resolution in time and frequency while suppressing interferences between the signal

components.



In the second part of the study, the Morlet, Meyer, Daubechies 4, Mexican Hat

and Haar wavelets are used to investigate the heart rate and blood pressure variability

from both COPD and normal subjects. The results of wavelet analysis give much more

useful information than the Cohen's class representations. Here we are able to

quantitatively assess the parasympathetic (HF) and sympatho-vagal balance (LF:HF)

changes as a function of time. As a result, COPD subjects breathe faster, have higher

blood pressure variability and lower HRV.

In the third part of the study, a special class of the exogenous autoregressive

(ARX) model is developed as an analytical tool for uncovering the hidden autonomic

control processes. Non-parametric relationships between the input and outputs of the

ARX model resulting in transfer function estimations of the noise filters and the input

filter were used as mechanistic cardiovascular models that have shown to have predictive

capabilities for the underlying autonomic nervous system activity of COPD patients.

Transfer functions of COPD cardiovascular models have similar DC gains but show a

larger lag in phase as compared to the models of normal subjects.

Finally, a method of severity classification is presented. This method combines

the techniques of principal component analysis (PCA) and cluster analysis (CA) and has

been shown to separate the COPD from the normal population with 100% accuracy. It

can also classify the COPD population into "at risk", "mild", "moderate" and "severe"

stages with 100%, 90%, 88% and 100% accuracy respectively. As a result, cluster and

principal component analysis can be used to separate COPD and normal subjects and can

be used successfully in COPD severity classification.
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CHAPTER 1

INTRODUCTION

1.1 Scope of Research

It is of interest to use noninvasive autonomic techniques to learn more about differences

in the physiology of diseased patients. The development of improved treatments for

these patients is important, and the development of improved monitoring techniques to

assess risk of morbidity and mortality, as well as to assess response to treatment is

needed. One particular population of patients, which is used in this study, is those with

chronic obstructive pulmonary disease (COPD).

The monitoring of the progression of pulmonary disease and the prediction of

mortality and morbidity in these conditions is usually performed through the

measurement of static and dynamic lung volumes, and through tests which measure the

physiologic efficiency of gas exchange in the lungs. However, the effects of severe

pulmonary disease are not limited to the lungs. Often there are serious accompanying

cardiac problems and severe alterations to the normal state of autonomic regulation.

Patients with pulmonary disease are subject to a hyperadrenergic state and have many

alterations in their autonomic physiology that can be documented. [1] There are three

non-invasive measures of autonomic function, which can be performed in a simple

fashion and can offer a clear window into the state of the subject. These include the

heart rate variability (HRV), beat-to-beat blood pressure variability (BPV), and

baroreceptor sensitivity. In subject populations with cardiac disease, the abnormalities

found in these measures were found to have very strong correlations with subsequent
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mortality and sudden death. [2] Because of some of the similarities between patients

with severe pulmonary disease and patients with severe heart disease, the systematic

study of the autonomic disturbances in these individuals, along with an analysis of the

survival of the patients with and without treatment should be undertaken.

Respiratory sinus arrhythmia (RSA) is a phenomenon that has been recognized

and studied for years, and it has been described as a rhythmical fluctuation in R-R

intervals that is characterized by a decrease in the RR interval length during inspiration,

and an increase in the R-R interval length during expiration [2]. Spectral analysis

techniques have allowed researchers to conclude that RSA can primarily be attributed to

vagal activity and can be used as an index of vagal control of the heart. It has been

shown that the variation of blood pressure seen with respiration is also associated with

the heart rate variability. The physiologic mechanism of heart rate variability is

mediated through respiratory afferents synapsing in the medulla oblongata and

entraining the central regulatory oscillator. Similarly, the mechanism of blood pressure

variability (BPV) is entrained to respiration, and is a combination of the effects of the

changes of stroke volume and the increase in vagal tone with inspiration. With the use

of spectral analysis, the raw data obtained by blood pressure and heart rate monitoring

can be broken down into useful observations. The interpretation of the significance of

the data are still being refined, but for several cardiac disease states there have been

clear indications that the loss of RSA is associated with increased morbidity, and

increased sudden death.

Since the relationship of altered heart rate variability and increased mortality

have been documented in cardiac populations, the population of patients with severe
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pulmonary disease (COPD) is an excellent candidate to now be studied. Patients with

pulmonary disease also have significant alterations of their autonomic regulation. In

COPD patients breathing patterns are altered, causing abnormalities in the entrainment

of the normal central oscillators.

A recent study by Pagani, et al [3] demonstrated that there is a decrease in the

high frequency (parasympathetic) activity detected in patients with COPD compared to

age matched controls, and a decrease in low frequency (sympathetic) activity. This

work also demonstrated that the RSA vagal index, which provides an assessment of the

gain of respiratory modulation of RR variability, is altered in patients with COPD.

Unfortunately, there has not been much focused work studying the relationship of the

pulmonary functions and alterations in autonomic regulation as monitored by HRV,

BPV, or BRS and linking these parameters to morbidity and mortality. Since there are

several physiological correlations between the populations of patients with COPD and

congestive heart failure (CHF), there is a good reason to believe that some of the

findings in the CHF population may also extend to patients with COPD.

With the correlations that are possible to see from the previous work that has

been done in cardiac disease and heart failure, it should be possible to demonstrate that

these autonomic tests are clear predictors of morbidity and mortality, and that

improvements in the parameters that one measures, correlate with improved outcomes.

The first part of this study has been designed to answer questions about

interactions between the nervous system, the cardiac and the pulmonary system; and

issues concerning heart rate variability activity. The study consists of several sections

that were performed on different days on the population of:
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1) Patients with severe pulmonary disease that are being enrolled into the National

Emphysema Treatment Trial (NETT) to study lung volume reduction surgery

(LVRS) as well as to the elective population undergoing lung volume reduction

surgery.

2) Normal individuals with no known cardiac or pulmonary disease.

Our hypotheses are as follows:

In COPD patients:

1) The most severely diseased patients will have the lowest HRV, BPV and

decreased BRS, corresponding to decreased survival and higher morbidity.

2) The results of the autonomic testing of the patients will improve after pulmonary

rehabilitation.

3) Regardless of the treatment arm of the study, the patients that improve the results

of their autonomic testing will have better survival and decreased morbidity.

In normal individuals:

1) HRV, BPV and BRS are higher in normal individuals than in COPD patients.

2) The results of the autonomic testing are better for normal individuals than COPD

patients.

The application of the data analysis in the time and frequency domain is

continued in studying a regulatory feedback loop, called the baroreflex mechanism,

which exits in the cardiovascular system in which autonomic nervous system activity is

altered in response to changes in blood pressure. The results from this part of the

research will allow one to discuss the influence of respiration on heart rate variability in

response to different means of paced-breathing maneuvers (by COPD patients) such as
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breathing room air (RA) or with oxygen supplement (02) during rest and exercise, that

alter baroreflex activity, in order to assess COPD related changes in baroreflex response.

When HRV is analyzed in the frequency domain, the power spectrum of HRV

does not show its temporal changes. There are many physiological situations of interest

where heart rate changes rapidly over time and the monitoring of these temporal changes

may be very important. Time frequency representations are perfect candidates to

monitor these temporal-spectral changes. Time frequency analysis is performed on the

HRV data to show vagal tone and the sympatho-vagal balance as a function of time. In

this part of the study, several time frequency representations such as the short time

Fourier transform, the smoothed pseudo Wigner-Ville, the Choi-William, the Born-

Jordan-Cohen are used in comparison with wavelet distributions (Morlet, Meyer,

Daubechies, Mexican Hat and Haar) for analyzing HRV and physiological signals.

Coherence spectral plots are graphical representations of the coherence between

two signals. Coherence can be viewed as correlation coefficients in the frequency

domain [5]. It is a measure of the linear dependence between two signals, normalized to

values between zero and one. The applications of coherence in past studies have been

directed toward the analysis of the electroencephalogram or EEG signals. In this study,

however, coherence is used not for EEG signals but for the combinations between heart

rate, blood pressure and respiration signals. The coherence spectral plots in the whole

HRV frequency range (0.04 to 0.7 Hz) are presented and the average weighted sum, the

weighted coherence values, in the low frequency band (LF: 0.04 to 0.15 Hz) and in the

high frequency band (HF: 0.15 to 0.4 Hz) are obtained for further statistical analyses

(i.e. principal component analysis, PCA and cluster analysis, CA). These values are
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examined for determining the inter-relationship between heart rate, blood pressure and

respiration of the cardiovascular system.

Once the study of the relationships between heart rate, blood pressure and

respiration are established, the influence of one component was removed while the

coherence between the two residual (signal) components were examined. It is here the

technique of partial coherence is introduced as another novel technique in investigating

HRV. Again the weighted partial coherence values in the LF and HF bands are obtained

for further analysis.

Beside the traditional data analysis in the time domain and frequency domain the

last part of this study also used other control system techniques of system identification

to examine stationary and non-stationary conditions of heart rate variability. To further

investigate the role of the autonomic nervous system and to understand the complex

links between respiratory activity and arterial pressure, the transfer functions between

respiration, heart rate (HR), and arterial systolic blood pressure in COPD and healthy

subjects were determined during 5-min periods in which the respiratory rate was

controlled in a predetermined but pseudo-random fashion.

Linear analyses of fluctuations in heart rate and other hemodynamic variables

have been used to elucidate cardiovascular regulatory mechanisms. Since the role of

nonlinear contributions to fluctuations in hemodynamic variables has not been fully

explored, this study also presents a nonlinear system analysis of the effect of fluctuations

in respiration and arterial blood pressure (ABP) on heart rate (HR) fluctuations.

A time domain technique is presented to estimate transfer characteristics from

fluctuations of respiration to heart rate (HR). Pure moving average (MA) and
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autoregressive (ARX) system identification techniques [6] are introduced to characterize

the system. Pre-processing (pre-filtering of the HR fluctuations and pre-enhancement of

the high frequency contents of respiration) was proven to be effective in obtaining stable

estimates of MA coefficients. Model order selection of the ARX system based on a

priori knowledge of the system characteristics is proposed. Data analysis using the time

domain techniques may reveal some temporal transfer characteristics which are poorly

resolved using frequency domain analysis.

This study also employs a new approach to Exogenous Input AutoRegressive

(ARX) modeling [7], which automatically seeks the best model order to represent,

investigated linear, time invariant systems using their input/output data. The algorithm

seeks the ARX parameterization, which accounts for variability in the output of the

system due to input activity and contains the fewest number of parameters required to do

so. The unique characteristics of the proposed system identification algorithm are its

simplicity and efficiency in handling systems with delays and multiple inputs. Results

of applying the algorithm to simulated data and experimental biological data are

presented. In addition, a technique for assessing the error associated with the impulse

responses, calculated from estimated ARX parameterizations, is presented. This

technique is one example of a variety of techniques of system identification. It was

shown that system identification techniques could yields new insight into the sequence

of changes that occurs with COPD autonomic neuropathy and provided an accurate

easily comprehensible measurement of respiratory induced HR variability.

The last task of this study is normal-COPD separation and COPD severity

classification. Major contributing components of the cardiovascular system are
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identified using principal component analysis. Cluster analysis is used to separate the

normal subjects from the COPD subjects in a mixed population. Once the separation is

completed, cluster analysis is again used to assign the COPD subjects according to their

severity group. The severe COPD subjects are identified and recommended for lung

reduction surgery if necessary.

1.2 Goals and Contributions

The goals of this research are:

1. To apply time-frequency analysis to heart rate variability in order to investigate the

difference in HRV during rest and exercise between normal subjects and COPD

subjects.

2. To use time-frequency analysis to understand and to develop tools that can describe

rapid changes in the time varying spectrum due to exercise. Expansion of the concept of

spectral analysis of heart rate variability to time-frequency analysis gives one the ability

to quantitatively assess the parasympathetic and sympatho-vagal balance changes as a

function of time for normal and COPD subjects.

3. To use four different kernels of the general class of time-frequency distributions

(linear: the short time Fourier transform, and bilinear: the smoothed pseudo Wigner-

Ville, the Choi-William, the Born-Jordan-Cohen) and wavelet distribution (linear) to

investigate the transitions between rest, exercise and recovery.

4. To evaluate and assess which distribution among the bilinear time-frequency

distributions and wavelet distribution give the most physiologically significant

information from the data of COPD subjects.
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5. To use the best choice of the time-frequency distribution and wavelet distribution

performed on the heart rate variability signal to quantify the area under the low

frequency and high frequency ranges during different breathing conditions (room air, 30

% oxygen supplement) at rest and exercise as reflected in the heart rate variability signal

of COPD subjects.

6. To use coherence and partial coherence in learning the relationships between heart

rate variability, blood pressure variability and respiration as well as the sympatho-vagal

balance of the autonomic nervous system.

7. To develop a general class of Exogenous Input AutoRegressive (ARX) models for

the cardiovascular system from experimental data using system identification

techniques. Once the model is obtained it can be used for COPD parameter testing

(since the values of some of these parameters may not be attainable for COPD patients).

This may provide COPD cardiovascular models for further study of the disease

noninvasively.

8. To use principal component analysis and cluster analysis as tools that allow

diagnosing the COPD severity noninvasively and accurately. This may help physicians

further in deciding who may be best suited for lung reduction surgery.

This work clarifies some of the questions about heart rate variability on COPD

subjects which are of fundamental importance in diagnosing the severity of the disease,

in assessing the benefit of the rehabilitation procedure and ultimately in determining

who may benefit the most from lung reduction surgery. The major contributions of this

work can be summarized as follows:
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1. Present the application of time-frequency analysis as an innovative approach to better

represent the biological signals, namely HRV, BP and respiration on normal and COPD

subjects. Four different time-frequency representations (Short-time Fourier Transform,

the smoothed-pseudo Wigner, the Choi-William and the Born-Jordan-Cohen) and

wavelet distribution are applied on modeled HRV test and experimental signals taken

from COPD and normal subjects.

2. Compare the best Cohen class time-frequency representation to the wavelet

distribution to see which representation overcomes the drawbacks of others by providing

higher resolution in time and frequency while suppressing interferences between the

signal components. Use these 2 distributions (one from the Cohen class and the wavelet

distribution) to investigate the degradation of health from a change in activity of the

autonomic nervous system (ANS) due to the COPD condition as reflected in the HRV

signal. By expanding the concept of spectral analysis of HRV into time-frequency

analysis, it is possible to quantitatively assess the parasympathetic (HF) and sympatho-

vagal balance (LF:HF) changes as a function of time. As a result, the assessment of the

ANS during rapid changes is made.

3. Analyze HRV and physiological signals using coherence and partial coherence to

look at their inter-relationship as a whole or just residual components with the effect of

the third component removed. This combination of techniques allows researchers to

have unique opportunities to examine the vagal and sympatho-vagal systems.

4. A general class of Exogenous Input AutoRegressive (ARX) model is developed for

the cardiovascular system using system identification techniques as an analytical tool for

uncovering the hidden autonomic control processes in order to explain the physiological
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mechanism behind HRV in both normal and COPD. The ARX model for each subject

consists of filtered inputs plus additive noise and the output is the heart rate variability

signal under investigation. Non-parametric relationships between the inputs (respiration

and BP signals) and output (HRV) of the model will result in transfer function

estimation of the noise filters and the input filters of these highly non-linear models.

Through a series of model transformations, the cardiovascular control

mechanism can be expressed as a multiple-input single output linear system. The

estimation of parameters for this class of ARX models is then defined as a maximum

likelihood estimation (MLE) problem through state-space representations of input filters

and noise filters. MLE techniques available in the MatLab System Identification

toolbox then provide the means by which these ARX models can be parameterized to

describe the observed HRV.

5. A severity-classification technique of the COPD disease states is developed using

principal component analysis and cluster analysis on HRV parameters to identify and

classify different subjects into proper disease states. In COPD, this helps identify severe

patients who may be best candidates for surgery while in other diseases it may provide

more accuracy and information in diagnosing a particular disease.
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1.3 Outline of the Dissertation

The dissertation covers three topics in heart rate variability study of normal and COPD

subjects. They are:

1. Time frequency representation and comparison of Cohen class and wavelet

distribution;

2. Heart rate variability and cardiovascular modeling using non-parametric ARX

model;

3. Normal, COPD separation and COPD severity classification.

Chapter 1 summarizes the scope of research involving both the normal and the

Chronic Obstructive Pulmonary Disease population. The list of goals and contributions

and a short outline of the dissertation are described.

Chapter 2 summarizes the physiology background for studying the human

cardiovascular system. The description and operating mechanism of the heart, lung, the

electrocardiogram (ECG), the blood pressure and the respiration are presented.

Chapter 3 presents the engineering tools to analyze the biological signals of

ECG, BP and respiration. The basic signal representation used in this dissertation is the

time — frequency representation. It includes both the linear (STFT and wavelet

distributions) and the quadratic time — frequency distributions (Cohen's class:

Wigner-Ville, Choi-Williams, and Born-Jordan-Cohen distributions).

Chapter 4 presents the experimental protocols and data analysis methods used in

the study of this dissertation. The data analysis methods included spectral analysis,

time-frequency analysis (linear: STFT, WL and bilinear: WVD, CWD, BJC), cross-
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spectral analysis, system identification, principal component and cluster analyses on

HRV, BPV of normal and COPD subjects.

Chapter 5 presents the results and discussion of the study. First, the spectral

analysis results as a method for describing periodic processes are presented. Second, the

results of the time-frequency analysis for Cohen's class distributions and wavelet

distributions applied to sine waves, HRV and BPV of both normal and COPD subjects

are discussed. Third, the criteria are determined and the selection of the best wavelet is

performed. Fourth, the activity plots of both normal and COPD subjects that

represented the vagal tone and sympathovagal balance are also presented and discussed.

Fifth, the cross-spectral analysis of the weighted coherence and partial coherence of the

HRV of normal and COPD are presented. Sixth, the open loop and closed loop

cardiovascular models for normal and COPD are discussed. Seventh, the principal

components of the normal and COPD HRV study are found. Finally, the results of the

normal, COPD blind separation and. COPD severity classification are shown and

discussed.

Chapter 6 concludes the work and suggests topics for future study. Hopefully,

these topics, in addition to this research work, will motivate the prospective researcher

to explore further unresolved issues in the field of heart rate variability, biological

modeling and disease severity classification in the direction of signal processing

application to signal analysis using time-frequency representation techniques such as

wavelet distributions, adaptive signal decomposition or reconstruction and beyond.
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CHAPTER 2

PHYSIOLOGY BACKGROUND

Biomedical engineering is the application of the principles of engineering, science, and

mathematics to biology and medicine. In this dissertation the electrical signals or

waveforms are examined because they can yield information of clinical significance

about the biological systems. Therefore, in order to conduct biomedical research, the

relevant physiological systems must be understood. The purpose of this section is to

provide a general, but concise, background to the physiological systems that are relevant

to the work in this research.

2.1 Cardiovascular Systems and The Heart

The cardiovascular system or simply, the circulatory system [5] consists of the heart,

which is a muscular pumping device, and a closed system of blood vessels called

arteries, veins, and capillaries. Blood contained in the circulatory system is pumped by

the heart around a closed circle or circuit of vessels as it repeatedly passes through the

various "circulations" of the body. The vital role of the cardiovascular system in

maintaining homeostasis is dependent upon the continuous and controlled movement of

blood to reach every cell in the body. Regulation of blood pressure and flow must

change in response to cellular activity. Consequently, numerous control mechanisms

help to regulate and integrate the diverse functions and component parts of the

cardiovascular system to supply blood to specific body areas according to need.
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Figure 2.1 The heart. (From E. N. Marieb, Human Anatomy and Physiology, 3 rd ed.
New York: The Benjamin/Cummings Publishing Company, Inc., 1995.)

The heart, illustrated in Figure 2.1, is divided into two functional halves, each

half containing two chambers: an atrium and a ventricle. The atrium of each side

empties into the ventricle on that side. There is no direct flow between the two atria or

the two ventricles in a healthy individual. Blood is pumped by the pulmonary circuit

from the right ventricle through the lungs and then into the left atrium. The blood is then

pumped by the systemic circuit, from the left ventricle, through all the tissues of the

body except the lungs, and then to the right atrium.
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Figure 2.2 The systemic and pulmonary circulations. (From E. N. Marieb, Human
Anatomy and Physiology, 3 rd ed. New York: The Benjamin/Cummings Publishing
Company, Inc., 1995.)

In both circuits, the vessels carrying blood away from the heart are called arteries

and those carrying blood from either the lung or all other parts of the body back to the

heart are called veins. Figure 2.2 illustrates the heart with the systemic and pulmonary

circulations.
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The heart, located in the chest, is a muscular organ, which is enclosing in a

fibrous sac called the pericardium [5]. The walls of the heart are primarily composed of

cardiac-muscle cells called the myocardium. Cardiac-muscle cells combine properties of

both skeletal muscle and smooth muscle. However, even more important, approximately

one percent of the cardiac-muscle fibers has specialized features that are essential for

normal heart excitation [6]. They constitute a network known as the conducting system

of the heart and are connected to other cardiac-muscle fibers by gap junctions. The gap

junctions allow action potentials to spread from one cardiac-muscle cell to another.
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Figure 2.3 The intrinsic conduction system of the heart and succession of the action
potential through selected areas of the heart during one heart beat. B. The sequence of
potentials generated across the heart is shown from top to bottom beginning with the
pacemaker potential generated by the SA node and ending with an action potential.
(From E. N. Marieb, Human Anatomy and Physiology, 3 rd ed. New York: The
Benjamin/Cummings Publishing Company, Inc., 1995.)

Thus, the initial excitation of one myocardial cell results in excitation of all cells,

and as a result, the pumping action of the heart. The conducting system of the heart is



illustrated in Figure 2.3. The initial depolarization normally arises in a small group of

conducting-system cells called the sinoatrial (SA) node. The SA node is located in the

right atrium near the entrance of the superior vena cava (the vein returning from the body

tissues that are above the heart). The SA node has the fastest inherent discharge rate of

any of the myocardial cells with pacemaker activity. Therefore, the SA node is the

normal pacemaker for the entire heart [4]. The action potential initiated in the SA node

spreads throughout the myocardium, passing from cell to cell by way of gap junctions.

The spread throughout the right atrium and the left atrium does not depend on fibers of

the conducting system. The spread is rapid enough that the two atria are depolarized and

contract at essentially the same time.

The spread of the action potential from the atria to the ventricles involves a

portion of the conducting system called the atrioventricular (AV) node. The AV node is

located at the base of the right atrium. The AV node has an important characteristic that

makes the cardiac cycle more efficient. For several reasons related to the electrical

properties of the cells that make up the AV node, the propagation of action potentials

through the AV node results in a delay of approximately 0.1 seconds [4]. This delay

allows the atria to finish contracting and, therefore, completely emptying their contents

of blood into their respective ventricles before ventricular excitation occurs.

Upon leaving the AV node, the action potential then travels to the septum, the

area between the two ventricles, by the conducting-system fibers called the bundle of His

[6]. The bundle of His then divides into the left and right bundle branches which

eventually leave the septum and enter the walls of their respective ventricles. These

fibers then make contact with the Purkinje fibers, which are large conducting cells that
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rapidly distribute the action potential throughout most of the ventricles. The rapid

conduction along the Purkinje fibers and the distribution of these fibers cause the

depolarization of the left and right ventricular cells approximately simultaneously, thus

resulting in a single coordinated contraction. Figure 2.4 illustrates the sequence of

cardiac excitation.
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2.2 Blood Pressure

The force that blood exerts against the walls of a vessel is called blood pressure.

Normally, some amount of blood is present in every blood vessel of the body, including

all arteries, arterioles, capillaries, venules and veins.

Blood volume is greatest in the veins. Venous blood pressure, however, is quite

low because the vein walls are thin and compliant. Skeletal movement, mechanical

movement from respiration and one-way valves, facilitates return of deoxygenated blood

to the heart.

Less than fifteen percent of the blood volume is present in the arteries. Mean

arterial pressure, however, is approximately 100 mm Hg. Mean arterial pressure (MAP)

[6] depends upon total peripheral resistance (TPR) and cardiac output (CO).

Specifically:

The resistance of a particular arteriole depends upon the associated organ's

requirements. Under different conditions, an arteriole radius will be varied by control

mechanisms to accommodate the need of the associated organ. If the overall radius of all

arterioles decreases, then the TPR is increased, which may cause arterial blood pressure

to increase, depending upon the CO value.

When blood flows into arteries and arterioles, stretching occurs due to the

pressure that blood exerts on the arterial walls. The maximum pressure, which is

reached when the ventricles eject blood, is called the systolic pressure. The minimum

arterial pressure occurs just before ventricular ejection begins and is called diastolic

pressure [5].
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2.3. Metabolic Function/Respiration

In the human, respiration serves to provide cells with oxygen, eliminate carbon dioxide

and regulate the pH of the blood. In order to provide cells with oxygen, air from the

environment enters the body during inhalation. Carbon dioxide and other unwanted

substances are removed from the body during exhalation. Upon inhalation, air enters the

body via the trachea, and then flows into the bronchi. The air then reaches the alveoli.

The properties of the alveoli allow rapid and efficient exchange of gasses between the

blood within the capillaries and the alveoli. The volume of oxygen per unit time (V02 )

that is transported from the capillaries to the body cells is equal to the volume of the

inspired oxygen that is diffused from the alveoli into the blood at any given instant.

Analogously, the volume of CO2 produced by the body cells per unit time (VCO2  ) is equal

to the amount of CO2 that diffuses from the blood to the alveoli. The total amount of air

entering and leaving the body per unit time is the called ventilation (VE).

The Fick equation expresses the important relationship of tissue oxygen uptake

( V02 ) to cardiac output (CO) and the arterial-venous oxygen content difference

(Ca02 — Cv02 ) [10] as shown below:

21



2.4 The Nervous System

Human behavior is controlled and regulated by two major communication systems, the

endocrine system and the nervous system. The nervous system can be divided into two

separate, but interconnected, parts. The first part consists of the brain and spinal cord

and is called the central nervous system. The second part, which consists of nerves,

which extend from the brain and the spinal cord out to all points of the body, is called the

peripheral nervous system.

The peripheral nervous system consists of both an afferent division and

efferent division. The afferent division conveys information from primary receptors to

the central nervous system. The efferent division carries signals from the central nervous

system out to effector cells such as muscles and organs. The efferent division is

subdivided into a somatic nervous system and an autonomic nervous system. The

somatic nervous system consists of all the nerve fibers going from the central nervous

system to skeletal-muscle cells. The efferent innervation of all tissues other than skeletal

muscle is done by the autonomic nervous system. Table 2.1 illustrates the organization

of the human nervous system.

Table 2.1 The Nervous System

I. Central Nervous System II. Peripheral Nervous System

A. Brain
B. Spinal Cord

A. Afferent Division
B. Efferent Division

1. Somatic Nervous System
2. Autonomic Nervous System

a. Sympathetic Nervous System
b. Parasympathetic Nervous System
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2.4.1 The Autonomic Nervous System

Cardiac muscle cells, smooth muscle cells, and glands are innervated by the autonomic

nervous system. Although it is not entirely true, the autonomic nervous system controls

bodily functions that one often assumes to be automatically controlled. Such functions

are heart rate, blood pressure, and body temperature. For example, when one is placed

under a lot of physical stress such as climbing three flights of stairs, the person's heart

rate and respiration rate automatically increase to supply the body with the energy

needed on demand. Likewise, when a person is resting, the heart rate and respiration rate

slow down due to the decrease in energy expenditure. Therefore, one can assume that

the body automatically controls heart rate and respiration rate. However, it is possible to

override the autonomic nervous system and consciously control some of its functions. A

good example of this is that under certain meditation techniques, it has been shown that

some people can actually lower their heart rate substantially below their resting rate, or

even stop their heart from beating for a brief period of time. In addition, some people

can slow their breathing rate to only one breath for every few minutes during deep

meditation.

As shown in Table 2.1, the autonomic nervous system is divided into two

anatomically and physiologically different systems [5][6]. These two systems are termed

the sympathetic nervous system and the parasympathetic nervous system. Anatomically,

the sympathetic and parasympathetic nervous systems differ for two reasons. One

difference is that the nerve fibers of each system leave the central nervous system at

different levels.

23



The sympathetic nerve fibers leave the central nervous system from the thoracic

and lumbar sections of the spinal cord. The parasympathetic nerve fibers leave the

central nervous system from the brain through cranial nerves III, V, VII, IX, and X and

the second and third sacral spinal nerves. Cranial nerve X is also called the vagus nerve.

The parasympathetic innervation of much of the thorax and abdomen, and especially the

heart, is done by the nerve fibers, which leave from the brain through cranial nerve X.

Therefore, parasympathetic activity related to the heart is often called vagal activity.

Figure 2.5 illustrates the anatomic difference between the sympathetic nervous system

and parasympathetic nervous system as well as some of their respective effector organs.

The second anatomical difference between the sympathetic and parasympathetic

nervous systems has to do with the location of the ganglia. Each connection of the

autonomic nervous system between the central nervous system and the effector cell

consists of two-neuron chains connected by a synapse. Most, but not all, of the

sympathetic ganglia are located close to the spinal cord and form two chains of ganglia,

one on each side of the spinal cord, called the sympathetic trunk. Conversely, the

parasympathetic ganglia lie within the organs innervated by the postganglionic neurons.

Physiologically, the sympathetic and parasympathetic nervous systems are also

different [5]. One common physiological characteristic is that the major

neurotransmitter released between the pre- and post-ganglionic fibers is acetylcholine.

However, in the sympathetic division, the major neurotransmitter between the

postganglionic fiber and the target cell is usually norepinephrine, a neurotransmitter that

activates excitatory receptors, but in some cases can inhibit certain organs. In the

parasympathetic division, the major neurotransmitter between the postganglionic fiber
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and the target cell is the same as the pre- and post- ganglionic neurotransmitter,

acetylcholine. Although acetylcholine generally has an excitatory effect, it is also known

to have inhibitory effects as well, such as the slowing of the heart by the vagus nerve. In

Figure 2.5, it is important to realize that some organs, such as the heart, eyes, and

stomach, receive autonomic activity from both the sympathetic and parasympathetic

nervous systems. This is often called "dual innervation". Usually, but not always,

whatever affects the sympathetic nervous system has on the effector cells; the

parasympathetic nervous system has the opposite effect [5]. In general, the sympathetic

nervous system increases its response under conditions of stress. It is responsible for

what is known as the fight-or-flight response. On the other hand, activity of the

parasympathetic nervous system is associated with relaxing and the storing of energy.

For example, heart rate increases with sympathetic activity and decreases with

parasympathetic activity. Table 2.2 summarizes the effects of the autonomic nervous

system on selected organs.

Dual innervation by nerve fibers that cause opposite responses provides a very

fine degree of control over the effector organ- it is like equipping a car with both an

accelerator and a brake [5]. One can slow the car simply by decreasing the pressure on

the accelerator; however, the combined effects of releasing the accelerator and applying

the brake provide faster and more accurate control. Analogously, the sympathetic and

parasympathetic divisions are usually activated reciprocally; that is, as the activity of one

division is increased, the activity of the other is decreased.

In addition to dual innervation, another important physiological characteristic is

that the sympathetic and parasympathetic nervous systems are continually active.
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Without these sympathetic and parasympathetic tones, each nervous system would only

be able to produce one desired output, such as increasing heart rate. For instance, when

sympathetic tone increases, heart rate increases. Conversely, when sympathetic tone

decreases below its basal rate, the heart rate will decrease because of less sympathetic

influence.
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Figure 2.5 The sympathetic nervous system and parasympathetic nervous system. (From
E. N. Marieb, Human Anatomy and Physiology, 3rd ed. New York: The
Benjamin/Cummings Publishing Company, Inc., 1995.)



Table 2.2 Autonomic Effects on Selected Organs of The Body (From A.J. Vander, J.H.
Sherman, and D.S. Luciano, Human Physiology, 1994)

Effector Organ Effect of Sympathetic
Stimulation

Effect of Parasympathetic
Stimulation

Eyes
Iris muscles
Ciliary muscle

contracts (dilates pupil)
Relaxes (flattens lens)

relaxes (constricts pupil)
Contracts

Heart
SA node
Atria
AV node
Ventricles

Increases heart rate
Increases contractility
Increases conduction velocity
Increases contractility

Decreases heart rate
Decreases contractility
Decreases conduction velocity
Decreases contractility slightly

Arterioles
Coronary
Skin
Skeletal muscle
Abdominal viscera
Salivary glands

Dilates (β2); constricts (a )
Constricts
Dilates (β2); constricts (a)
Dilates (β2); constricts (a )
Constricts

Dilates
None
None
None
Dilates

Lungs
Bronchial Muscle Relaxes Contracts
Stomach
Motility, tone
Sphincters
Secretion

Decreases
Contracts
Inhibits (?)

Increases
Relaxes
Stimulates

2.4.2 The Baroreflex Mechanism

Of primary importance in circulation is the maintenance of the proper flow of oxygen-

enriched blood to the brain and the rest of the body. Baroreceptors are stretch receptors

located in the walls of the carotid sinus and the aortic arch [4], which are pressure

sensors that monitor the arterial blood pressure. They are stimulated by distension of the

structural tissue in which they are located, and exhibit an increased rate of discharge

when the pressure in the structure increases. Afferent nerve fibers, specifically the ninth

and tenth cranial nerves [4], communicate their activity directly to the cardio inhibitory
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center in the medulla, which controls tonic vagal discharge at rest. A rise in systemic

arterial pressure stimulates the cardio inhibitory center, which in turn increases vagal

tone, resulting in decreased cardiac rate and vasodilation. A decrease in systemic arterial

pressure decreases stimulation of the cardio-inhibitory center, producing a decrease in

vagal tone and an increased discharge from the sympathetic cardiac nerves, resulting in

an increased cardiac rate and vasoconstriction [4]. The result is a negative feedback

mechanism that is vital in maintaining proper oxygen transport in the face of external

perturbations.
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2.5 Heart Rate and Heart Rate Variability

2.5.1 Physiology of Changes in Heart Rate

Change in heart rate is sensitive to changes in body temperature, plasma electrolyte

concentrations and hormone concentrations [5]. However, the most important influence

of beat-to-beat variations of heart rate comes from the autonomic nervous system. More

specifically, sympathetic activity increases heart rate, whereas activity in the

parasympathetic (vagus) nerves causes the heart rate to decrease. Due to considerably

more parasympathetic activity to the heart than sympathetic activity in the resting state,

the normal resting heart rate is below the inherent rate of 100 beats/minute.

The autonomic nervous system innervates the heart in a number of places. The

sympathetic nervous system terminates at the SA node, the conduction system, atrial and

ventricular myocardium, and coronary vessels. The parasympathetic fibers terminate in

the SA and AV nodes, atrial and ventricular musculature, and coronary vessels.

Interplay between the two systems will cause the heart to speed up or slow down,

depending on which system is more active. Figure 2.6 illustrates the autonomic

innervation of the heart [5].

Perhaps the most important site of innervation of the autonomic nervous system

on the heart occurs at the SA node. As matter of fact, the SA node possesses an inherent

discharge rate, often referred to as the pacemaker potential. The pacemaker potential is a

slow depolarization of the cells of the SA node. The innervation of the sympathetic and

parasympathetic nervous system on the SA node changes the characteristics of

depolarization within the SA node cells, thus changing heart rate. Figure 2.7 illustrates

these changes due to autonomic innervation.
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Figure 2.6 Autonomic innervation of the heart. (From G. J Tortora and N. P
Anagnostakos, "Principles of Anatomy and Physiology," Harper and Row, Publishers,
New York, 1990.)

For comparative purposes, the pacemaker potential labeled "Control" is the

normal. From the figure, one can observe that sympathetic stimulation increases the

slope of the pacemaker potential. As a result, the SA node cells reach the threshold more

rapidly, thus increasing the heart rate. Conversely, parasympathetic stimulation

decreases the slope of the pacemaker potential. Consequently, the SA node cells reach

the threshold more slowly, and heart rate decreases. In addition to decreasing the slope

of the pacemaker potential, parasympathetic stimulation also hyperpolarizes the plasma

membrane of the SA node cells so that the pacemaker potential starts from a more

negative membrane potential. As a result, the time it takes the SA node cells to reach the

threshold increases, which decreases heart rate.
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Figure 2.7 Effect of autonomic stimulation on the slope of the pacemaker potential.
(From A.J. Vander, J.H. Sherman, and D.S. Luciano, Human Physiology, 1994.)

2.5.2 Heart Rate Variability as a Measure of Autonomic Function

Changes in heart rate usually involve the reciprocal action of the two divisions of the

autonomic nervous system. An increased heart rate is the result of reduced

parasympathetic tone and a concomitant increase in sympathetic activity. A decrease in

heart rate is usually the result of increased parasympathetic tone and a simultaneous

decrease in sympathetic tone. Therefore, changes in heart rate reflect the action of the

sympathetic and parasympathetic nervous systems on the heart. However, under certain

conditions, it is possible for heart rate to change by activity of only one division of the

autonomic nervous system, independent of the other division, rather than reciprocal

changes in both [8].

Initially, the effect of the autonomic nervous system on the heart was estimated

by utilizing the traditional technique of average heart rate [8]. As a reference, the
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average heart rate was measured under normal resting conditions. Then the average heart

rate was measured under the administration of drugs. The drugs used were atropine,

which blocks the effects of the parasympathetic nervous system, and propranolol, which

masks the effects of the sympathetic nervous system. A qualitative assessment can then

be made of the autonomic nervous system by comparing the reference heart rate to the

heart rate while under the administration of the drugs. This method looks at the average

over time of heart rate. However, when the ECG is looked at on a beat-to-beat basis,

rather than over a period of time, fluctuations in the heart rate are observed [8]. Recent

research indicates that fluctuations in heart rate are a healthy sign. In fact, one

hypothesis is that the larger variations in the heart rate correlate to a healthier autonomic

nervous system.

By contrast a number of physiologic and disease states produce alterations in

autonomic function, which reduce the variability in heart rate [8].

2.5.3 Baroreflex Response

A decrease in blood pressure sensed by the baroreceptors produces an increase in

sympathetic activity and a decrease in parasympathetic activity, resulting in an increase

in heart rate and therefore an increase in blood pressure. An increase in blood pressure

sensed by the baroreceptors produces an increase in parasympathetic activity and a

decrease in sympathetic activity, resulting in a decrease in heart rate and therefore a

decrease in blood pressure. The oscillations that result from this negative feedback loop

have been shown to occur in the low frequency range (0.05-0.15Hz) [16].
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In 1985, Akselrod et al. studied beat-to-beat variability of blood pressure, as well

as heart rate, in response to respiration [11]. They concluded that blood pressure

fluctuations at the respiratory frequency result almost entirely from the direct effect of

centrally mediated heart rate fluctuations. Lower frequency fluctuations in blood

pressure were associated with variability in vasomotor activity. Madwed et al.

specifically investigated the low frequency oscillations in arterial blood pressure and

heart rate using a simple computer model [12], but later applied their techniques to

evaluate low frequency oscillations in arterial pressure during induced hemorrhage in

dogs [13]. During hemorrhage, they found that the low frequency oscillations were

dominant over the higher frequency respiratory related fluctuations, in contrast with the

baseline condition. Lipsitz et al. studied the spectral characteristics of heart rate

variability in response to postural tilt [14]. They found that total heart rate variability

increases upon tilting in the young, while heart rate variability remained unchanged for

older subjects during tilt. Malliani et al. studied cardiovascular neural regulation in the

frequency domain, and found that the ratio of high frequency to low frequency power in

heart rate variability is reflective of sympatho-vagal balance [15]. They concluded that

functional states accompanied by an increased sympathetic activity are characterized by

a shift in the balance of heart rate spectral power towards low frequency, and the

opposite occurs during increased vagal activity, where the balance shifts towards high

frequency spectral power in heart rate. Sleight et al. investigated the physiology and

pathophysiology of heart rate and blood pressure variability in humans, finding that

spectral analysis of cardiovascular variability is more a measure of baroreflex gain than

of specific sympathetic or parasympathetic tone, or the balance between them [16].
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However, they do note that there is often a correlation between gain of baroreflex

activity and the autonomic balance of parasympathetic and sympathetic activity.

2.6 The Electrocardiogram

The electrocardiogram (ECG) is primarily a tool for evaluating the electrical events

within the heart. The action potentials of cardiac muscles can be viewed as batteries that

cause charge to move throughout the body fluids. These moving charges, or currents,

represent the sum of the action potentials occurring simultaneously in many individual

cells and can be detected by recording electrodes at the surface of the skin [6]. Figure

2.8 illustrates a typical normal ECG recorded between the right and left wrists for one

heartbeat.
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Figure 2.8 An electrocardiogram tracing (lead I) illustrating the three normally
recognizable deflection waves and the important intervals. (From E. N. Marieb, Human
Anatomy and Physiology, 3 rd ed., 1995.)



The first deflection, the P wave, corresponds to the current flow during atrial

depolarization (contraction). The second deflection, the QRS complex, is a result of

ventricular depolarization. The third and final deflection is the T wave. The T wave is a

result of ventricular repolarization (relaxation). It should be noted that atrial

repolarization is usually not evident in the ECG because it occurs at the same time as the

QRS complex.

As mentioned earlier, the ECG is a measure of the electrical activity of the heart

measured on the skin. In order to measure the ECG, bipolar leads are required. The

bipolar method of acquiring ECG detects electrical variations at two different locations

on the skin and displays the difference to obtain one waveform. Figure 2.9 is an

illustration of the standard limb lead connections that form the Einthoven's triangle. In

addition, the diagram also shows the names of the respective leads. To record lead I, the

negative terminal of the ECG monitor is connected to the right arm (RA) and the positive

terminal is connected to the left arm (LA). To record lead II, the negative terminal of the

ECG monitor is connected to the right arm and the positive terminal is connected to the

left leg. To record lead III, the negative terminal of the ECG monitor is connected to the

left arm and the positive terminal is connected to the left leg (LL). The reference point

or ground is connected to the right leg (RL). It is important to realize that depending on

where the electrodes are attached, a different waveshape will be obtained for the same

electrical events occurring in the heart. In other words, leads I, II, and III all have a

different waveform shape.
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Figure 2.9 The placement of the positive and negative electrodes for three commonly
used leads, as shown. (From J. G. Creager, Human Anatomy and Physiology. Belmont,
CA: Wadsworth Inc., 1983.)
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2.7 Chronic Obstructive Pulmonary Disease (COPD)

Chronic obstructive pulmonary disease (COPD) includes emphysema and chronic

bronchitis--diseases that are characterized by obstruction to airflow. Emphysema and

chronic bronchitis frequently coexist. Thus physicians prefer the term COPD. It does

not include other obstructive diseases such as asthma. Nearly 16 million Americans

suffer from COPD, which is the fourth leading cause of death, claiming the lives of

almost 103,000 Americans annually. The annual cost to the nation for COPD is

approximately $31.9 billion, including healthcare expenditures of $20.7 billion and

indirect costs of $11.2 billion. Smoking causes approximately 80 to 90 percent of COPD

cases. A smoker is 10 times more likely than a nonsmoker to die of COPD. Other

known causes are frequent lung infections and exposure to certain industrial pollutants.

[9 ]

Chronic bronchitis is an inflammation and eventual scarring of the lining of the

bronchial tubes. An estimated 14 million people suffer from chronic bronchitis, the

seventh leading chronic condition in America. The rate of chronic bronchitis is 42

percent higher in females than in males. Symptoms of chronic bronchitis include chronic

cough, increased mucus, frequent clearing of the throat and shortness of breath.

Emphysema causes irreversible lung damage. The walls between the air sacs

within the lungs lose their ability to stretch and recoil. They become weakened and

break. Elasticity of the lung tissue is lost, causing air to be trapped in the air sacs and

impairing the exchange of oxygen and carbon dioxide. Also, the support of the airways

is lost, allowing for obstruction of airflow. An estimated two million Americans have

emphysema. Of the emphysema sufferers, 61 percent are male, and 39 percent are
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female. While more men suffer from the disease than women do, the condition is

increasing among women. Between 1982 and 1994 the emphysema prevalence rate in

women increased 11 percent. Symptoms of emphysema include cough, shortness of

breath and a limited exercise tolerance. Diagnosis is normally made by pulmonary

function tests, along with the patient's history, examination and other tests.

As far as treatment for COPD is concerned, first the quality of life for a person

suffering from COPD diminishes as the disease progresses. At the onset, there is

minimal shortness of breath. People with COPD may eventually require supplemental

oxygen and may have to rely on mechanical respiratory assistance. Depending on the

severity of the disease, treatments may include bronchodilators, which open up air

passages in the lungs; antibiotics; and exercise to strengthen muscles. To reduce and

control symptoms of chronic bronchitis, sufferers should live a healthy lifestyle by

exercising, avoiding cigarette smoke and other air pollutants, and eating well.

Pulmonary rehabilitation is a preventive health-care program provided by a team

of health professionals to help people cope physically, psychologically, and socially with

COPD. Lung transplantation is being performed in increasing numbers and may be an

option for people who suffer from severe emphysema. Additionally, a new surgical

procedure, lung volume reduction surgery, shows promise and is being performed with

increasing frequency. Current research into COPD is focusing on gene therapy; it is

hoped that clinical trials of this type of therapy will take place within the decade.
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2.7.1 Classification of COPD by Severity

When classifying COPD severity in clinical settings, physicians rely on the results

obtained from standardized spirometry. When performing spirometry, one measures:

1. Forced Vital Capacity (FVC) and

2. Forced Expiratory Volume in one second (FEV1).

3. The FEV1/FVC ratio is then calculated.

Spirometric results are expressed as % predicted using appropriate normal

values for the person's sex, age, and height. Patients with COPD typically show a

decrease in both FEV1 and FEV1/FVC. A postbronchodilator spirometric measurement

of forced expiratory volume in one second (FEV1) less than 80% predicted and a ratio of

FEV1 to forced vital capacity (FEV1/ FVC) below 70% suggest airflow limitation that is

not fully reversible and according to Rennard: "A decreased ratio is considered an early

sign of COPD, even if the FEV1 is normal." [7]

COPD is classified from stage 0 to stage III (Table 2.3) according to the

guideline of the Global Initiative for Chronic Obstructive Lung Disease Committee

(GOLD) as follow:

Stage 0: At Risk - Chronic cough and sputum production; lung function is still normal.

Stage I: Mild COPD - Mild airflow limitation (FEV1/FVC < 70% but FEV1 > or equal

to 80 % predicted) and usually, but not always, chronic cough and sputum production.

• At this stage, the individual may not be aware that his or her lung function is

abnormal.
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Stage II: Moderate COPD - Worsening airflow limitation (30% < or equal to FEV1 <

80% predicted), and usually the progression of symptoms, with shortness of breath

typically developing on exertion.

• Acute exacerbations of symptoms, which have an impact on a patient's quality of

life and prognosis, are especially seen in patients with FEV1< 50% predicted.

Stage III: Severe COPD - Severe airflow limitation (FEV1 < 30% predicted) or the

presence of respiratory failure or clinical signs of right heart failure. Patients may have

severe (Stage III) COPD even if the FEV1 is > 30% predicted, whenever these

complications are present.

• At this stage, quality of life is very appreciably impaired and exacerbations may

be life threatening.
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TABLE 2.3 GOLD Severity Classification of COPD (From the Global Initiative for
Chronic Obstructive 'limo Disease GOT .D Workshop, 1999)
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GOLD, Global Initiative for Chronic Obstructive Lung Disease; COPD, chronic
obstructive pulmonary disease; FEV1, forced expiratory volume in one second; FVC,
forced vital capacity; respiratory failure, arterial partial pressure of oxygen < 60 mm Hg
with or without arterial partial pressure of carbon dioxide greater than or equal to 50 mm
Hg while breathing air at sea level.

Data extracted from The GOLD Workshop Panel. [9]



CHAPTER 3

ENGINEERING BACKGROUND

The transformation of the electrocardiogram, blood pressure and respiration signals into

heart rate variability, blood pressure variability and respiration spectra requires many

intermediate steps such as peak detection, interpolation, resampling and spectral

analysis. To date, there are no standardized ways to process this data to study heart rate

variability, blood pressure variability, and respiration. This leads to varying

experimental results and difficulties in the comparison of the experimental results from

one research facility to another.

The purpose of this chapter is to introduce a brief background of various signal-

processing methods used in this dissertation. First, a brief introduction to time-

frequency distributions is presented. The uncertainty principle, the concepts of analytic

signal, instantaneous frequency and the desired properties of the time-frequency

distribution are discussed. The importance of covariance and invariance notion of the

density function as an operator in the time-frequency distribution is mentioned. A brief

theoretical background comparison of the short time Fourier transform, Wigner,

windowed Wigner, Choi-Williams distributions and wavelets are discussed. Other

methods of analysis including spectral analyses of HRV and BPV are also presented.

The concepts of the cross-spectral analysis (coherence, weighted coherence, and partial

coherence) and system identification are covered. Finally, the classification technique

using principal component analysis and cluster analysis are also presented in detail.
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3.1 Time-Frequency Distributions

From a given time series signal, x(t), one can easily see how the "energy" of the signal

is distributed in time. By performing a Fourier transform to obtain the spectrum, X(ω) ;

one can readily see how the "energy" of the signal is distributed in the frequency

domain. For a stationary signal, there is usually no need to go beyond the time or

frequency domain. Unfortunately, most real world signals have characteristics that

change over time, and the individual time domain or frequency domain does not provide

means for extracting this information. There is obvious need for creating a function,

W(t,ω), that represents the energy of the signal simultaneously in time and frequency.

This function, W(t, co), is commonly referred to as a time-frequency representation or

time-frequency distribution. The most well-known time-frequency distribution is the

spectrogram (squared magnitude of the short-time Fourier transform). However, there is

a rich theory behind time-frequency analysis of which the spectrogram is just a small

part. Two other well-known time-frequency distributions are the continuous wavelet

transform and the Wigner (or Wigner-Ville) distribution.

The areas of time- frequency and time-scale analysis have seen many exciting

developments in recent years [18-24]. The theory has been progressing rapidly and has

been successfully applied to a wide variety of signals including the following: speech,

biological, geophysical, machine monitoring, radar, and others. While there has been

rapid progress in recent years, there are still many open questions regarding the

construction of time-frequency distributions.

Since there are a wide variety of methods for constructing time-frequency

distributions, it is useful to classify them according to their structure and properties.
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Two common types of time-frequency distributions are those that are linear or quadratic

functions of the signal. Examples of linear time-frequency distributions are the short-

time Fourier transform and the wavelet transform. Examples of quadratic time-

frequency distributions are the spectrogram, the scalogram (squared magnitude of the

wavelet transform), and the Wigner distribution.

Time-frequency distributions are also often characterized by their behavior when

an operator is applied to a signal. Three prominent examples of these operators are the

time-shift operator, the frequency-shift operator (or frequency-modulation operator), and

the scale operator. A time-frequency distribution is said to be covariant to an operator if

the change in the signal is reflected in the time-frequency distribution. For example, if

y(t) = x(t — to )then a time-frequency distribution that is covariant to the time-shift

operator should satisfy Wy (t, co) = Wx (t — to , co) . The class of all quadratic time-

frequency distributions covariant to time-shifts and frequency-shifts is called Cohen's

class. Similarly, the class of all quadratic time-frequency distributions covariant to time-

shifts and scales is called the affine class. The intersection of these two classes contains

time-frequency distributions, like the Wigner distribution, that are covariant to all three

operators.

Spectrograms are quadratic functions of the signal and are also covariant to time

shifts and frequency shifts, so spectrograms are also members of Cohen's class.

Similarly, scalograms are quadratic functions of the signal and are covariant to time

shifts and scales, so scalograms are members of the affine class. Recently, quadratic

time-frequency distributions have been defined that are covariant to operators other than

the three mentioned above. One example is the hyperbolic class of time-frequency
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distributions [24]. Time-frequency distributions in the hyperbolic class are covariant to

scales and hyperbolic time shifts. The hyperbolic class intersects with the affine class

but not with Cohen's class. Baraniuk [30] has recently presented a fundamental result

concerning the existence of quadratic time-frequency distributions covariant to arbitrary

operators. One troublesome aspect of quadratic distributions is that they always contain

"cross terms". The cross terms are undesirable for two reasons. First, a true distribution

function should be non-negative and cross terms can have negative values. Second, the

cross terms do not usually represent any energy present in the signal.

It is often desired that a time-frequency distribution be positive valued, and

Cohen has created a general class of time-frequency distributions that are always

positive valued [21]. Since this class is very general, it intersects with every class

(quadratic and non-quadratic) of time-frequency distributions. The main difficulty with

this class is that it is not clear how to construct time-frequency distributions in the class.

Loughlin et. al. [32] and also Sang et. al. [33] have created positive time-frequency

distributions by iterating quadratic time-frequency distributions. There has also been

recent work in constructing distributions of quantities other than time and frequency [28-

32]. The most common distributions outside of time and frequency are those of time

and scale. The concept of scale is closely related to the concept of frequency and some

time-frequency distributions have analogous time-scale distributions. A summary of the

above methods for computing the distribution of a signal is presented in Figure 3.1
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STFT: Short-Time
Fourier Transform,
WT: Wavelet
Transform,

CC: Cohen's Class,
AC: Affine Class,
HC: Hyperbolic Class,
WD: Wigner
Distribution,
SP: Spectrograms,
SC: Scalograms,
RGK: Radially
Gaussian Kernel,
LWD: L-Wigner
Distributions,
PWD: Polynomial
Wigner Distributions,
WHOMS: Wigner
Higher Order Moment
Spectra.
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3.2 The Uncertainty Principle

The uncertainty principle in time-frequency analysis provides the lower limit on the

spread of signal energy in time and frequency. To define the spread of a signal in time

and frequency, one first need to define the average time and average frequency of a

signal [38]:

The spread of the signal in time (duration) and frequency (bandwidth) are

defined as:

The uncertainty principle states that:

Therefore a signal cannot have an arbitrarily small duration and bandwidth. A

Gaussian signal:
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3.3 The Analytic Signal and Instantaneous Frequency

Most signals are real valued functions of time. Since the Fourier transform of a real

signal will be even, there is an unnecessary redundancy in a real signal. To eliminate the

redundancy, one can compute what is called the "analytic signal" from the real valued

signal. The analytic signal, x a (t) , is of the form:

where H[.] is the Hilbert transform operator.

There are three reasons for using the analytic signal in calculating a joint time-

frequency distribution [68]:

1. The analytic signal only has positive frequencies; hence there are no

interference terms between negative frequencies and positive frequencies. However,

there is still interference between one positive frequency and another. This is an

inherent property of bilinear distributions.

2. In computing examples of time-frequency distributions, one often uses

signals of the form:

The above is the analytic signal corresponding to A(t)cos(φ(t)). The frequency

of a signal at a given time is denoted the instantaneous frequency, and for the signal in

equation 3.8 it is defined as:

Thus for a signal of the form in equation 3.9, the "ideal" time-frequency

distribution should be similar to:

48



where 8(.) is a Dirac delta function. The above equation implies that the energy of the

time-frequency distribution is concentrated along the instantaneous frequency of the

signal. A dual quantity is the average time of a signal at a given frequency. This

quantity is called the group delay. For a signal of the form:

the group delay is defined as:

3. Dr. Leon Cohen has proposed a simple procedure to mathematically

formulate the general class of time-frequency representations using bilinear distributions

[69]:

The g(v,r) is an arbitrary function called the kernel and it determines the

characteristics of the time-frequency distribution. Note that z is an analytic signal and

z* is the complex conjugate of z. Integrating equation (3.13) with respect to v, one

gets:
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The advantage of using equation 3.13b is that once the desired kernel is chosen,

the distribution is fixed.

3.4 Properties of Time-Frequency Distributions

As indicated in the introduction, there are many methods for constructing time-

frequency distributions. To provide guidelines for constructing time-frequency

distributions, authors have proposed many "desirable" properties that time-frequency

distributions should satisfy. For example, since time-frequency distributions are usually

considered to be energy distributions, they should be real and positive functions. Also,

the time marginal of a time-frequency distribution is the integral of the time-frequency

distribution over frequency, and the time marginal should be identical to the distribution

of signal energy over time. These properties and several others are listed in Table 3.1.

For a more complete listing see [38].
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Table 3.1 Some Desirable Properties of Time-Frequency Distributions
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3.5 Covariance and Invariance

The notion of a density function being covariant or invariant to an operator plays an

important role in time-frequency analysis. Three commonly used operators are the time-

shift operator, the frequency-shift operator, and the scale operator defined, respectively

as:

Definition 1. A function of a signal is said to be covariant to an operator if the change

in the signal is reflected in the function. A function of a signal is said to be invariant to

an operator if the function remains the same despite the changes in the signal. For

example, the time energy density, |x(t)|2 , is covariant to time shifts and invariant to

frequency shifts. Similarly, the frequency energy density, IMO 2 is covariant to

frequency shifts and invariant to time shifts. In general, it is desirable for time-frequency

distributions to be covariant to the above three operators. Let y(t) be a shifted version

of x(t) in time and frequency:

A time-frequency distribution is covariant to time shifts and frequency shifts if it

satisfies:
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Similarly let z(t) be a scaled version of x(t) :



A time-frequency distribution is scale covariant if it satisfies:

3.6 Comparison of Time-Frequency Distributions

3.6.1 Short Time Fourier Transform

The short time Fourier transform was the first tool devised for analyzing a signal in the

time-frequency domain [20]. This is done by extracting a small piece of the signal and

taking its Fourier transform, and by continuing this process, one can show the existing

frequency components at each instant of time. This idea can mathematically be

presented by first designing a window function, h(r — t) which will emphasize the times

around the fixed time of interest t . The signal is then multiplied with the window

function and Fourier transform is taken:

As this process is continued for each particular time, one obtains a different

spectrum. The totality of these spectra makes a time-frequency distribution. The energy

density of the signal at the fixed time t is

where p5p (t, f) is called the spectrogram. The spectrogram can be also written in terms

of the Fourier transforms of the signal and window function.



where H(f), S(f) are Fourier transforms of the signal and window function

respectively. Note that equation (3.23) can be used to study the behavior of the signal

around the fixed frequency of interest f . The spectrogram should not be thought of as

a different distribution because it is a member of a general class of distributions [22].

How large should the window be or how should one weigh each piece of the

signal? To answer these questions one need to understand the time-bandwidth relation,

or the uncertainty principle.

Now define the duration of a signal s(t) by At :

where I. is mean time and is defined as:

Now also define the bandwidth of the signal S(f) in the frequency domain by

where f is mean frequency and is defined as:

The time bandwidth relation is:

in /1 \



The physical interpretation of time bandwidth is that the duration and bandwidth

cannot be both made narrow because |s(t)|^ 2 and |S(f)|^ 2 cannot be changed

independently [21]. The advantage of the short-time Fourier transform is that it has an

easily understandable interpretation and is positive everywhere. This is a desirable

property when one wants to interpret the spectrogram as the signal energy distribution in

the time-frequency plane.

One of the shortcomings of the short-time Fourier transform is the trade off

between time and frequency resolution. Consider two extreme choices of the analysis

window h(t). The first case is that of perfect time resolution, that is, if the analysis

window h(t) is a Dirac impulse.

where s(t),  (t, f) are the signal and short time Fourier transform of the signal

respectively. In this case, the short time Fourier transform essentially reduces to the

signal s(t), preserving all time variations of the signal but not providing any frequency

resolution. The second case is that of perfect frequency resolution obtained with the all-

constant window h(t) = 1 , then;

where H(f ), S(f ) are Fourier transform of window and signal respectively. Here the

short time Fourier transform reduces to the Fourier transform and does not provide any

time resolution. Therefore, because of the uncertainty principle, both h(t)and H(f ) can

not be made arbitrarily narrow.
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Another shortcoming of the spectrogram is that it does not satisfy time and

frequency marginal properties at the same instant. If one write the signal s(t) and

window h(t) in terms of their amplitudes and their phase;

and similarly for their Fourier transforms:

Then the marginals are:

These do not equal the instantaneous energy or energy density spectrum, namely

A 2 (t) and B 2 (f) [38]. But they do approach them as one narrow the window in the

respective domains. However window h(t) and H (f) cannot be narrowed concurrently.

The short time Fourier transform is a linear signal decomposition, and there are

no cross-terms between signal components. However, the spectrogram is also a bilinear

signal energy distribution due to the magnitude squaring operation. Thus, the

spectrogram has cross terms that are not noticeable because they are inherently filtered

out by a low-pass filter defined by the ambiguity function of the window [37].

3.6.2 Wigner Distribution

Among all the bilinear TFD, the Wigner distribution (WD) is the most studied and

applied [40]. The Wigner distribution can be obtained from the Cohen general class

equation:
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where ρw (t, f), z(t), and z * (t) are the Wigner distribution, an analytic signal and the

complex conjugate of the analytic signal respectively. From equation (3.36) one see that

for each particular time one are adding up pieces made from the product of the signal at

a past time multiplied by the signal at an equal future time. The Wigner distribution

satisfies many properties, which are described as follows:

The WD is a real valued function that is:

Since the kernel of the WD is one for any value of v and r, then the complex

conjugate of the kernel is always one. That is;

This is the constraint of the kernel for the distribution to be real.

The WD satisfies the time and frequency shift properties as long as the kernel of

the WD is not a function of time and frequency that is;

where z(t),s(t),ρz(t, f) and ρs(t,f) are the signal, the shifted signal, the distribution of

signal and the distribution of the shifted signal respectively. To prove this property, one



should take the kernel of the WD independent of time and frequency and set it equal to

hone, that is:

Let ρz (t, f), P 9 (t, f) represent the WD of the signal z(t) and the shifted signal

s(t), then:

To prove the frequency shifting one can use a similar argument. The WD is

uniquely related to the signal up to a constant phase factor [38]. To understand this idea,

take the inverse Fourier transform of equation 3.36 with respect to f,
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One can therefore recover the original signal from the Wigner distribution for a

given resolution. The preceding relation can be used to determine whether a signal

exists which will generate a given ρw(t,f).

The Wigner distribution also satisfies the marginals properties. To prove these,

one can use the constraint of the kernel for marginals properties, that is:

By inspection, the kernel of the Wigner distribution g(v, r) = 1 satisfies both

marginals. Thus, the Wigner distribution satisfies the total energy. Note the converse is

not true [38]. For the first conditional moment at a fixed time, the Wigner distribution

gives the instantaneous frequency and at a fixed frequency the first conditional moment

would be the group delay.

For a finite duration signal, the Winger distribution is zero before the signal

starts and after the signal ends [38]. If one have a band limited signal, the Wigner

distribution will be zero for all frequencies that are not included in that band. These

properties are called the support properties of the Wigner distribution. In general the

Wigner distribution is not zero when the signal is zero [40].

Consider the multicomponent signal z(t):
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The Wigner distribution is:



called the cross Wigner distributions. Therefore the Wigner distribution of the sum of

the two signals is not the sum of their respective Wigner distributions. In general the

Wigner distribution puts cross terms in between any two frequencies and any two times

[40].
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Figure 3.2 The Wigner distribution of the sum of two finite duration sine waves.

The figure above presents the Wigner distribution of a signal, which is the sum

of two sine waves of one-second duration with frequencies of 100 and 400 hertz. Note

the cross term in the middle of the two frequencies at 250 hertz. This is the most

important draw back of the Wigner distribution (WD).

Another draw back of the Wigner distribution is that it always has negative

regions throughout the time-frequency plane, except in the case of the Gaussian signal

where the amplitude is modulated [40].



3.6.2.1 Windowed Wigner Distribution. In practice, one is forced to calculate the

Wigner distribution using the equation:

where h(t) is a window function. This is due to the finite nature of the data. The

resulting distribution has the effect of smoothing the Wigner distribution over frequency

and is called the Pseudo Wigner distribution (PWD)[22]. The PWD sometimes results

in a better-looking distribution in that certain cross terms are suppressed. One can clean

the cross terms by smoothing the Pseudo Wigner distribution over time which is called

the Smoothed Pseudo Wigner distribution (SPWD). Smoothing the Pseudo Wigner

distribution is performed as follows:

where L, ρws(t, f) and ρw (t, f)are smoothing function, the Smoothed Pseudo

Wigner distribution and the Pseudo Wigner distribution respectively. The advantages of

the Smoothed Pseudo Wigner distribution are that for certain types of smoothing, a

positive distribution is obtained and the cross terms are suppressed. However smoothing

destroys some of the desirable properties of the Wigner distribution: if L is taken to be

independent of the signal, then the only way to obtain a positive distribution is by

sacrificing the marginals properties [41].
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3.6.3 The Choi-Williams (Exponential) Distribution

Choi and Williams presented a new approach where they address the main draw back of

the Wigner distribution (cross terms)[40]. They used a generalized ambiguity function

[40] and chose an exponential kernel, that is:

Substituting equation (3.53) in equation (3.36) and integrating with respect to v

one obtains:

where pew (t, f),z(t),z * (t) are the Choi-Williams distribution, an analytical signal and

complex conjugate of the analytical signal. The ability to suppress the cross terms

comes by controlling a .

In Figure 3.3, three cases were presented, where each contains two sine waves

with frequencies of 100 and 400 hertz. The Choi Williams distribution was performed

for the three cases but with different values for a . Note, in case "a", a is 10000, which

makes the kernel equal to one, and the Wigner distribution is obtained. In case "b" and

"c", a is 50 and 1 respectively which produces a kernel, which is peaked, near the origin

in the v, r plane and hence offers better cross term suppression.

Hence one can control the relative suppression of the cross terms by reducing the

value of a . The Choi Williams distribution satisfies many of the desirable properties, as

described below:

1. The Choi Williams distribution is real. To prove this, one can replace the v, r with

— v,—r respectively in to the kernel function and perform the manipulation:
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2. The Choi Williams distribution satisfies both the marginal properties, since:

and similarly for the other marginal. Since the marginal properties are satisfied, the total

energy property will be satisfied.

3. The Choi Williams distribution does not satisfy the finite support properties. To show

this, one introduces the following condition for determining whether a distribution is

zero before a signal starts and after the signal ends. This work was done by Claasen and

Mecklenbrauker [39] and is expressed as follows:

Similarly, for the signal that is bandlimited in the region (fl , f2 ) the distribution

should be zero for values of frequency less than	 and greater than f2 .

If one replace the kernel of the Choi Williams distribution in equation (3.52) and

carry out the integration using a table of integrals [40], one obtain:

Note, the right hand side of equation (3.59) is not equal to zero; therefore, the

Choi -Williams distribution does not satisfy the support properties.

63



64

Figure 3.3 Performance of the Choi-William distribution upon three cases with
a) o- = 1000 , b) o- = 50 , c) a = 1.



3.7 Wavelet Transforms

Analysis of signals using appropriate basis functions is one of the fundamental problems

in the signal processing field. Fourier proposed the complex sinusoids as the basis

functions for signal decomposition [41]. The Fourier transform of a finite energy

continuous time signal f (t) , (i.e. f (t) E L2 ) is defined as:

The strength of the standard Fourier analysis is that it allows the decomposition

of a signal into its individual frequency components and establishes the relative intensity

of each frequency component. Because of the infinite durations of these basis functions,

any time-local information (e.g. an abrupt change in the signal) is spread over the whole

frequency spectrum. Therefore, this transform cannot reflect any time-localized

characteristic of f (t) into the frequency domain. It only provides the frequency

behavior of f (t) in the interval -00< t<00. Gabor addressed this problem by introducing a

window function to localize f (t) and calculating the Fourier transform of the windowed

signal as [42]

where ω(t — 1-) is the appropriate time-frequency localized window function. This

transform is called the Windowed or Short-Time Fourier Transform (STFT) (also

referred to as the Gabor transform when the window function used in the STFT is

Gaussian).

The major advantage of the Short-Time Fourier Transform is that if a signal has

most of its energy in the given time interval [-T,T] and in the frequency interval
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], then its STFT will be localized in the region [-T,T]x [– Q, n] of the time-

frequency plane. Of course, the uncertainty principle prevents the possibility of having

arbitrary high resolution in both time and frequency domains, since it lower-bounds the

time bandwidth product of any basis function by ΔTΔΩ>=

1 where (ΔT)2 and
4,r

(A0) 2 are the variances of the time function and its Fourier transform respectively

[43][44].

An important parameter of a window function is its size (or scale). The selection

of an appropriate window size poses a fundamental problem in signal analysis. Thus, by

varying the window function used, one can trade the resolution in time for the resolution

in frequency. An intuitive way to achieve this is to have short time duration high

frequency basis functions, and long time duration low frequency ones. Fortunately, the

wavelet transform provides for this desired feature and is defined as,

where a E R+ ,b E R . Here a, and b are the scale and shift variables respectively, and

they are continuous variables. Depending on the scaling parameter a, the wavelet

function ψ(t) dilates or contracts in time causing the corresponding contraction or

dilation in the frequency domain. Therefore a flexible time-frequency resolution is

achievable with the wavelet transform. Another significant difference of these

transforms is that the STFT is never a real function on the time-frequency plane

regardless of the choice of co(t), but the wavelet transform is real if the basic wavelet

ψ(t) is chosen to be real.
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3.7.1 Continuous Wavelet Transform

The continuous wavelet transform maps a function f (t) onto time-scale space as

This operation can be expressed in a simpler inner product notation as

ψab (t) represents a family of functions obtained from a single wavelet function ψ (t) and

the dilation and translation parameters a and b as

where a and b are continuous.

The wavelet function ψ(t) is a band-pass function. It is desired that this function

have a good time and frequency localization so that f (t) is decomposed into elementary

building blocks which are jointly well localized in time and frequency. The wavelet

function has to satisfy the "admissibility" condition that makes it an isometry (up to a

constant) of I! (R) onto 1,2 (R x R) . This requirement limits the wavelet functions which

must satisfy [45][46]

where ψ(Ω) is the Fourier transform of the wavelet function ψ(t). The admissibility

condition is directly related to the decay of the wavelet function ψ(t) which is required

to have good localization. The admissibility condition for a continuous ψ(Ω) is

equivalent to a zero-mean wavelet function in time:
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This condition forces that the wavelet function is a band pass function and

decays at least as fast as |t|^1-ε  in time where e is some decay constant. (In practice one

needs to have much faster decay of tit (t) , in order to have good time localization).

The admissibility condition assures that the "resolution of the identity" holds

[45]. This guarantees that any function f(t) E 1,2 (R^n) can be reconstructed from the

wavelet space as

where the wavelet coefficients were defined earlier in Eq. (3.63). Its mathematical proof

is given in the references [45][46]. Whenever ψ(t) is a real function, the integral limits

of Ch in Eq. (3.68) are changed from 0 to 00 .

Resolution of the identity ensures that the continuous wavelet transform (CWT)

is complete if W f (a,b) are known for all a and b. A continuous signal f(t) is

represented by a pass band function ψ(t) and its dilated and translated versions. The

dilation in time leads to different resolutions in frequency. ψ(t) is a prototype window

and is normally referred to as the mother wavelet. The digital implementation of the

CWT can be computed directly by convolving the signal with a scaled and dilated

version of the mother wavelet. For a reasonably efficient implementation, an FFT may

be applied to perform the convolution [46a].

In its discrete form, a = ao^j and z-=n • a0-3where j and n are integers. This is

referred to as the discrete wavelet transform (DWT), which is discussed in more detail in
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section 3.7.3. If one chooses a 0≈1andn≈0 , one is close to the continuous case. The

choice of a = 2' and r = n • is the most common choice; this is referred to as a dyadic

wavelet basis. It allows much greater computational efficiency than the CWT; fast

algorithms have been developed that are 0(n) . The dyadic form also simplifies the

constraints on the mother wavelet to achieve another desirable property: orthogonality of

the analysis windows, which subtends an efficient representation. The dyadic DWT is

almost always the chosen implementation because of its computational efficiency and

the mutual orthogonality of its analysis windows (or subbands), and it will heretofore be

referred to as simply the wavelet transform (WT) unless otherwise specified.

Because the mother wavelet may take many forms, the term scale is often

preferred to frequency when using the WT. An analogy between scale and frequency is

useful however, at this point, to illustrate the difference between the STFT and the WT.

Consider a mother wavelet chosen to be

where g(t) is the STFT analysis window, and f0  is the fundamental frequency in the

STFT analysis. This implies that the frequency analogous to the WT scale is

f = af0 = 2 1 f0 . As the scale is increased, however, the frequency resolution (or

equivalently, the bandwidth) of the orthogonal WT analysis window is proportional to

its center frequency:
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where c is a constant. Thus, the bandwidths of the analysis windows are spread

logarithmically with respect to frequency, instead of linearly as with the STFT. This is

illustrated in Figure 3.4.
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Figure 3.4 Division of the frequency domain for the STFT and the WT.

What ensures is that the time resolution At becomes arbitrarily good at high

frequencies, and the frequency resolution Af becomes arbitrarily good at low

frequencies. For this reason, wavelet analysis is more effective than Fourier analysis

when the signal of interest is dominated by transient behavior or discontinuities.

Figure 3.5 displays a wavelet function ψ(t)and its dilations for different values

of parameter "a" in the right column along with their short time Fourier transform

equivalent counterpart in the left column. This figure helps to visualize the time-

frequency plane and emphasizes the band pass nature of ψ(t) and its dilations. The

STFT gives fixed resolution (for a given window size), whereas the WT gives variable

resolution, which results in higher frequencies better resolved in time and lower



frequencies better resolved in frequency. Furthermore, instead of keeping the size of the

window constant and filling it with oscillations of different frequencies (like the FFT),

the WI does the reverse. It keeps the number of oscillations constant and changes the

width of the "window". The STFT yields the decomposition of a signal into a set of

equal bandwidth functions sweeping the entire frequency spectrum. On the other hand

the wavelet transform provides the decomposition of a signal by a set of constant Q (or

equal bandwidth on a logarithmic scale) band pass functions. The roles played by the

transform parameters are different for the STFT and wavelet transforms. The time

parameter r in the STFT refers to an actual time instant, while the parameter b in the

continuous wavelet transform refers to the time instant 	 .
a

There is a time-frequency resolution trade-off in the wavelet transform. To

quantify how the continuous wavelet transform spans the time-frequency plane, the

measures of time and frequency resolutions are defined. Let a, and au be the standard

deviations of the mother wavelet function ψ (t) in the time and frequency domains

respectively and the corresponding variances are defined as [47]
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Figure 3.5 The time-frequency plane resolution cells of the STFT vs. Wavelet
Transform (Mexican Hat).



Let the wavelet function ψ(t) be centered at (t0, Ω0) in the time-frequency plane.
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3.7.2 Parseval Relation of Wavelet Transforms (Energy Preservation Property)

The CWT has an energy conservation property that is similar to Parseval's formula of

the Fourier transform. Now the Parseval relation in the wavelet transform can be shown

as:

holds for any signal f (t) which is squared-integrable.	 Its proof requires the

admissibility condition, which was defined in Eq. (3.66). By using the dual relation of

the wavelet transform in the time-frequency domain



The measure 
dadb 

used in the transform domain is consistent with the discussion
a 2

of the scaling property. Scaling by s while conserving the energy will spread the

wavelet transform by s in both the dimensions a and b, and thus a renormalization by

1
is necessary. It is worth noting that the wavelet transform energy between the

a

different scales is also preserves such that

3.7.3 Discrete Wavelet Transform

Although the admissibility condition assures the complete representation of f (t) with its

wavelet transform coefficients W f (a ,b) , it requires the wavelet transform operation to

be performed for all values of a and b which are continuous parameters. This transform

representation is not practical. One would prefer to perform the wavelet transform

operation as few times as possible. Therefore these scaling or dilation, and translation or

shift parameters, a and b respectively, are discretized. This discretization provides a

transform grid or frame on the time-scale plane for the representation of signal f (t) . It

is intuitive that this grid or frame should be defined properly such that the complete

representation of f (t) is still possible. This is called the Discrete Wavelet Transform

(DWT). This version of the wavelet transform reduces the redundancies of the wavelet

space W f (a,b) significantly. The mathematical reasoning on the choice of frames or

grids is perfectly treated in the literature.
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Now one can define the basis functions of a Discrete Wavelet Transform as the

subset of continuous wavelet function [45 - 48]

with the corresponding discrete transform lattices or grids

Hence, the discrete wavelet transform basis functions can be expressed as

Here m and n are integers. It is intuitively seen that this discrete wavelet family

approaches a continuous wavelet family when a 0 —31 	 b0 ----> 0

It can be shown that the functions of a discrete wavelet transform basis

ψmn(t) can form a frame or the sets of m and n parameters are proper for the

completeness if the wavelet function (At) satisfies the admissibility condition. Then the

frame bounds are constrained by the inequalities [45] 0<A<B< ∞

These inequalities hold for any choice of a 0 and b0 . These bounds diverge for

non-admissible wavelet functions.

The discrete wavelet transform is defined on the grid points or in the frame of

time-scale plane as
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and the wavelet transform representation of the signal

There is a particular interest on a binary or dyadic grid where a0 = 2 and b0 = 1,

which leads to the conventional multiresolution concept and the orthogonal discrete

wavelet transforms.
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3.8 Power Spectral Analysis of Heart Rate Variability

Power spectral analysis of heart rate variability is a potentially powerful tool for

evaluating the activity of the autonomic nervous system noninvasively. Power spectral

analysis is a technique which transforms a signal from the time domain to the frequency

domain. The time domain signal used for computing the heart rate variability power

spectrum is known as the interbeat interval (IBI). The following is a brief description of

how to obtain the MI signal.

To begin the analysis, the ECG is converted from analog to digital form and

stored in ASCII format on the data acquisition computer running in LabVIEW. The data

is then transferred over to a signal-processing computer. Another LabVIEW program is

used to obtain the HRV power spectrum. The following is a description of the necessary

steps to obtain the power spectrum of HRV.

The first step to obtain the power spectrum of HRV is to detect every R-wave in

the ECG. Because the R-wave complex is pronounced in the ECG, the LabVIEW

detection program can easily detect these R-waves.

Before trying to detect the R-waves, the ECG signals are detrended using a

locally weighted robust regression algorithm built in LabVIEW. To help detect each R-

wave, a vertical threshold (which the R-wave must exceed) and a horizontal threshold

(to prevent detecting an R-wave for a period of time after one was detected) can be

varied. If an error occurs during the R-wave detection, the analyst can use existing

software to manually detect or undetect the incorrectly detected R-waves.
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Figure 3.6 Figure depicting the construction of the MI signal. (From S.J. Shin, W.N.
Tapp, S.S. Reisman, and B.H. Natelson, "Assessment of autonomic regulation of heart
rate variability by the method of complex demodulation," 1989.)

Once the R-waves are properly detected, an interbeat interval (IBI) signal can be

constructed. To obtain the IBI signal, the distance in time between a specific beat ( T„)

and the beat previous in time (Tm-1) is calculated. This value of time difference then

becomes the amplitude of the MI signal at that specific beat. Mathematically, the IBI

signal is computed by the formula IBIm = Tm — Tm-1. See Figure 3.6 for a graphical

representation.

Although the MI represents the heart period at discrete points, the IBI signal is

not suitable for FFT analysis because the discrete points, located at each R-wave, are not

evenly spaced. In order to produce equidistant IBI samples suitable for analysis, the IBI

signal must be interpolated. The interpolation method used was that of a backward step

function. This method assumes no new information about the direction of the time
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series is available until the next heartbeat occurs. Therefore, the amplitude of all of the

interpolated values between a beat at time T m-1 , and the beat at Tm, were set equal to the

time difference between Tm and Tm-1 . The interpolated interbeat interval (IIBI) is then

sampled to produce an IIBI with evenly spaced samples. For example, in Figure 3.6(c)

if a beat occurs at a time equal to 2 seconds and the next beat occurs at a time equal to

2.9 seconds, then the interpolated values between time 2 seconds and 2.9 seconds are all

0.9 as shown in Figure 3.6(d). After the IIBI signal is obtained, it is detrended using a

locally weighted robust regression algorithm (available in LabVIEW), which acts like a

filter. Essentially, this removes low frequency components below .05 Hz. If these low

frequency components are not removed, they can dominate the power spectrum and

decrease the detail of the components in the frequencies above 0.05 Hz. Another

example of an IBI signal and an IIBI signal is shown in Figure 3.7.
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Figure 3.7 1131 and IIBI signals of heart rate.



The final step to obtain the power spectrum of HRV is to take the FFT of the

detrended IIBI signal. In the existing software, this is done by decimating the IIBI signal

by a factor of ten (the ECG is sampled at 200 Hz) and taking an 8192 point FFT of the

decimated IIBI signal. When the signal is decimated by a factor of ten, every tenth point

of the original signal is kept, and the nine points in between every tenth point are not

used. In a time series of samples, every tenth point occurs at the same time as in the

undecimated signal, except that there are no samples in between. In effect, decimating is

similar to down-sampling. In other words, because the length of the IIBI signal is

approximately the same length of the sampled ECG, which is acquired using a sampling

frequency of 200 Hz, decimating the IIBI by a factor of 10, is similar to sampling the

IIBI at 20 Hz. This can be done because the IIBI signal contains no frequency

components above 6 Hz.

The software is programmed to take an 8192-point FFT by default regardless of

the input signal length. In the experiments, 300 seconds of ECG were collected. At a

sampling frequency of 200 Hz, this corresponds to 60,000 samples. Recall that the IIBI

is approximately the same length as the ECG. If an 8192-point FFT were taken, only the

first one-eighth of the 1113I would be represented in the spectrum. In addition, the

frequency resolution would be 200/8192= 0.0244 Hz and the spectrum would be

between 0Hz and 100 Hz. However, the spectrum of the IIBI, the heart rate variability

spectrum, consists of low frequencies less than 6 Hz; therefore, the spectrum does not

need to be calculated up to 100 Hz. As a result, the 11131 is decimated by a factor of ten.

In this case, the IIBI signal would then be 6,000 samples long for a 300-sec long ECG

signal. Note in Figure 3.6 that the length of the IIBI signal is 6,000 points long. The
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length of the IBI signal depends on the number of heartbeats. Now, in order to take an

8192-point FFT of a signal that has only 6,000 samples, a technique called zero padding

must be used. Essentially all samples from 6001 to 8192 are given the value of zero.

The only effect this has on the spectrum is that it increases the frequency resolution.

When the FFT is calculated, the spectrum is limited from 0 Hz up to 10 Hz. The

frequency resolution is now 20/8192=0.00244 Hz. Once the power spectrum is

obtained, it is smoothed twice by applying a modified Daniel Rectangular smoothing

algorithm. Figure 3.8 illustrates the power spectrum of the IIBI signal in Figure 3.7.
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Figure 3.8 Power spectrum of the heart rate IIBI signal in Figure 3.7.

It should also be noted that when performing the FFT, the IIBI signal is

windowed by applying a split cosine bell taper. The taper begins at 20 percent from

each end of the time signal. The application of the split cosine bell taper is done before

the zero padding takes place so as to provide a smooth transition to zero rather than the

window's abrupt changes from one to zero.



It should be noted that if the window were a simple rectangular function, the

sharp one to zero changes are the cause of the side lobes in the FFT output sinc function

(sin(x)/x). To minimize the spectral leakage caused by those sidelobes, one has to

reduce the sidelobe amplitudes by using window functions other than the rectangular

window. The purpose of the split cosine bell taper window is to reduce any additional

spectral components that result from the shape of the window. Multiplying the time

signal by the window function does the windowing. The split cosine bell taper for a

6,000-point long signal is shown in Figure 3.9.
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Figure 3.9 Plot of the split cosine bell taper used as a window for FFT calculation.

Past research in power spectral analysis of heart rate variability correlates three

distinct frequency regions peaks with certain physiological parameters [14] as illustrated

by a more classical power spectrum of the IIBI signal in Figure 3.10. The very low

frequency band (0.003-0.04 Hz) is associated with vasomotor control and temperature

control. The low frequency band (0.04-0.15 Hz) is associated with baroreceptor-

mediated blood pressure control. The high frequency band (0.15-0.5 Hz) has been linked

with respiration.



Figure 3.10 Example of power spectral density of HRV. Blue: power of spectrum of
RR interval in VLF range, red: power in LF range and yellow: power in HF range.
(From www.skyaid.org/S kyaid%20 Org/Medical/HRV_Courses htm, 12/2001.)

To date, the best-known and best-defined peak in power spectral analysis of

heart rate variability is the high frequency peak. The high frequency peak reflects

changes in the interbeat interval that cycles up and down at the same frequency as

respiration. This influence of respiration on heart rate has been known for more than

one century and is called respiratory sinus arrhythmia (RSA). Properly defined, RSA is

a rhythmical fluctuation in heart periods at the respiratory frequency that is characterized

by a shortening and lengthening of heart periods in a phase relationship with inspiration

and expiration, respectively [15]. RSA is being used increasingly as a measure of vagal

control of the heart. As a result, the high frequency peak, which often occurs at the

same frequency as the respiration peak, corresponds approximately to the RSA and it is

purely parasympathetic in origin [17]. From experience, one might contest that the

frequency of respiration is not limited to within the narrow band of 0.15 Hz to 0.4 Hz.
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The normal respiration rate can be as low as only a few breaths per minute at

rest and as high as up to 40 breaths per minute during intense exercise [15]. This

stresses the fact that, when doing research on heart rate variability to determine

parasympathetic activity, the frequency of respiration must be known. More

specifically, the power spectrum of the respiration waveform should be computed. Once

the power spectrum of the respiration is obtained, the coherence between the respiration

spectrum and the heart rate variability spectrum could be computed. Frequencies with a

high coherence (i.e. >0.9) could then be considered of parasympathetic origin. Although

this is the theoretical approach, in the field, the area under the frequencies of 0.15 to 0.4

Hz is considered parasympathetic in origin.

Unlike parasympathetic activity, the sympathetic activity is not easily separated

from the power spectrum of heart rate variability [14]. It has been hypothesized that the

low frequency peak (0.04 to 0.15 Hz) is a mixture of both parasympathetic activity and

sympathetic activity. A better concept that is used to isolate the sympathetic activity is

that of "sympatho-vagal balance" which recognizes both reciprocal and non-reciprocal

parasympathetic and sympathetic influences on heart rate by computing the low

frequency to high frequency ratio [49]. An increase in the low frequency to high

frequency ratio indicates either an increase of sympathetic activity, a decrease in

parasympathetic activity, or a reciprocal change in both.
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3.9 Power Spectral Analysis of Blood Pressure

The necessary steps required to obtain the power spectrum of the blood pressure

variability are similar to those of HRV with the exception of obtaining the blood

pressure MI signal. Similar to R-wave detection of heart rate, the systolic blood

pressure peaks are also detected by the LabVIEW program and the analyst can also

manually correct any error during detection. Once all the systolic blood pressure peaks

are properly detected, a BP interbeat interval (BP IBI) signal can be constructed. To

obtain the BP MI signal, the height of the systolic BP peak becomes the amplitude of

the BP IBI signal at that specific beat. See Figure 3.11 for a presentation. The BP MI

signal is then interpolated in the same manner as the ECG IBI signal to get the BP

interpolated interbeat interval (BP IIBI) and the same steps are used to obtain the BP

power spectrum waveform. See Figure 3.12 for the illustration of the power spectrum of

the BP IIBI signal.
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Figure 3.11 One-minute plot of raw blood pressure and its 11131 signal.



Figure 3.12 Power spectrum of BP IIBI in Figure 3.10.
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3.10 Coherence Analysis

Within the present framework, the dependence between two signals can be characterized

by parameters, which assess the correlation between the signals. In the frequency

domain it is customary to consider the magnitude squared of the correlation between the

Fourier transforms of the two signals under consideration. For the bivariate point

processes (N0 , N 1 ) this leads to [61][62]

as a measure of the correlation between processes N0 and N1 . This quantity is called

the coherence function [63], denoted by 1710 (f )1
2
 , estimates of which provide a measure

of the strength of correlation between N 0 and N1  as a function of frequency. The

definition of the correlation corr{FN1(ω),FN0 (ω)} between the Fourier transforms of the

two point processes N0 and N 1 in terms of variance and covariance, given by the

leads to the alternative definition for the coherence function between point processes N 0

and N1 as

Coherence functions provide a normative measure of linear association between

two processes on a scale from 0 to 1, with 0 occurring in the case of independent

processes [61][62]. Equation (3.84b) leads to an estimation procedure by substitution of

the appropriate spectral estimates to give
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similar manner to give:

When computing the coherence using equation (3.85a), the important step is to

compute the coherence by means of averaged estimates based on segments of the

original signals. In other words, the signals x(t) and y(t) are broken up into N segments

of equal length and the power spectra ( Pxx (ω) and PH (ω)) and cross spectrum ( Pxy(ω))

are estimated on the basis of averages taken from the individual spectra of the segments.

To increase the number of individual spectra, which increases the accuracy, the

segments may overlap. In addition, care must be taken to assure that the segments are

long enough to obtain an accurate spectrum. Therefore, there is a compromise required

in the choice of the segment length. It must be long enough to obtain accurate frequency

resolution, but short enough to allow a sufficient number of segments in the average. In

addition, each segment must be extracted using a time-domain window to control the

sidelobes in the frequency domain. To make things more complicated, if too many
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segments are taken then the accuracy declines due to a greater correlation between

segments.

Coherence estimates obtained in this way all have the same large sample

properties for any combination of point process and/or time series data [64]. A

confidence interval at the 100% point which is based on the assumption of

independence, i.e. Irxi(f)1 2 =0 , is given by the value 1 — (1 — a)^1/(L-1) , where L is the

number of disjoint sections used to estimate the second order spectra [65][66].

Therefore an upper 95% confidence limit can be set at the constant level

and estimated values of coherence below this level can be taken as evidence for a lack of

correlation between the two processes at a particular frequency. The setting of

confidence limits about the estimated values of coherence when significant correlation is

present is discussed in [64].

Coherence estimates assess the magnitude of correlation between two signals in

the frequency domain. Information relating to timing can be obtained by examining the

phase difference between the two signals. For point process N 1 and time series x, the

phase spectrum, Фx1(f) is defined as the argument of the cross-spectrum

Similarly, the estimated function is given as:

Phase spectra between other combinations of point-process and/or time series

data can be defined and estimated in similar fashion. Phase estimates are only valid
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when there is significant correlation between the two signals. In practice |γx1(f)|^2 can be

used to indicate the regions where Фx1(f) has a valid interpretation. Phase estimates

can be interpreted as the phase difference between harmonics of N 1 and x at frequency f.

The arctan function can be used to obtain the argument of the cross-spectrum, resulting

in a phase estimate over the range [—Tr / 2,71- /2] radians. However, the signs of the real

and imaginary parts of Px1(f ) can be used to determine in which quadrant the arctangent

falls, so extending the range to [ -π, π] radians.

Phase estimates can often be interpreted according to different theoretical

models. A useful model is the phase curve for two signals, which are correlated with a

fixed time delay, where the theoretical phase curve is a straight line, passing through the

origin (0 radians at 0 frequency) with slope equal to the delay, and a positive slope for a

phase lead, and negative slope for a phase lag (see [67]). In situations where there is

significant correlation over a wide range of frequencies and a delay between two signals,

it is reasonable to extend the phase estimate outside the range [-π,π] radians, which

avoids discontinuities in phase estimates. Such a phase estimate is often referred to as

an unconstrained phase estimate. The representation of phase estimates is discussed in

[66]. Different theoretical phase curves for other forms of correlation structure are

discussed in [67]. Details for the construction of confidence limits about estimated

phase values can be found in [64]. In situations where the correlation structure between

two signals is dominated by a delay it is possible to estimate this delay from the phase

curve. Such an approach, based on weighted least squares regression, is described in the

Appendix in [62]. This method has the advantage of providing an estimate of the



standard error for the estimated delay. In this dissertation, phase spectra are not being

considered. However, these studies of the phase curves and their slopes obtained from

correlation between two physiological signals such as HR and Respiration, BP and

Respiration or HR and BP can be performed in the future. This will help in

understanding the time delay, phase lead or phase lag between the regulatory systems

that cause the changes in HR, BP and respiration.

3.11 Weighted Coherence

Weighted coherence is defined by Porges et al. (1980) as the proportion of the total

variance of one signal that is shared with the other signal within a certain frequency

band [51]. It can be computed easily from the values of the coherence function and the

spectral density values of one of the signals in that frequency region. It has the

advantage that one measure can be derived for a whole frequency band of interest, for

example the low or high frequency band of the heart rate variability spectrum. The

weighted coherence function can be computed by the following formula:

In which:

CWxy (f 1, f 2) = Weighted coherence in the frequency band between fl and f2

CohXY  (f)	 = Coherence between the signals x and y for frequency f

Pyy (f )	 = Power spectral density of the signal y for frequency f.
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3.12 Partial Coherence Analysis

3.12.1 Multivariate Analysis

The above methods can be extended to examine the correlation structure between

several simultaneously recorded signals. This is called a multivariate analysis, and is

equivalent to multivariate regression analysis, except that parameters are estimated at

each frequency of interest.

Two related questions which can be addressed by such analysis are 1) whether

the correlation between two signals results from the common (linear) influence of a third

signal, and 2) whether a third signal is capable of predicting the correlation between two

signals. Both these questions can be addressed by estimating the partial coherence, and

partial phase which characterize the correlation between the two original signals after

removing the common linear effects of the third (predictor) signal from each. This

multivariate analysis can be performed on any combination of point process and/or time

series data [64].

3.12.2 Partial Spectra

The starting point for the multivariate analysis is the estimates of second order spectra

described in Section 3.10 of the coherence analysis, with the requirement of three

simultaneously recorded signals and spectral estimates which have been estimated with

the same segment length, T. For example, to estimate the partial correlation between

point process N 0 and time series x, with time series y as predictor, one starts by defining

partial spectra, estimates of which are then used to construct estimates of the other
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partial parameters. The partial cross-spectrum between N0 and x, with y as predictor, is

defined as [66]
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The other partial auto-spectrum, P00/y(ω), is defined in a similar manner. These

partial spectra can be used to estimate the first order partial coherence between N0 and

This equation has a similar form to that for the ordinary coherence function,

(3.85a). The corresponding first order partial phase is defined as

This function provides information about the timing relation of any residual

coupling between N0 and x after the removal of the common effects of process y. Partial

coherence functions, like ordinary coherence functions, are bounded measures of

association, with values between 0 and 1 [61, 62, 64, 66].

An alternative definition of the first order partial coherence, |γ  x0/y (C0)1 2 , as the

magnitude squared of the correlation between the finite Fourier transforms of N0 and x,



after removal of the effects of process y from each, may be written (suppressing the

dependencies on ω) as [61, 62, 64, 66].

Expansion of this expression in a similar manner to (3.84a) leads to equation

(3.89). The two terms (Pxy/Pyy ) and (P0y/Pyy ) represent the regression coefficients

which give the optimum linear prediction of Fx (ω) and FNo(ω)), respectively, in terms

of Fy (ω). Estimates of |γx0/y(ω)|^2 test the hypothesis that the coupling between N 0 and

x can be predicted by process y, in which case the parameter will have the value zero.

The partial coherence defined in (3.89) and (3.91) is a first order partial coherence,

which examines the correlation between two signals after removing the common effects

of a single predictor. This framework can be extended to define and estimate partial

coherence functions of any order. Full details, including estimation procedures and the

setting of confidence limits can be found in [64].

For further in-depth details about these calculations, see Bendat and Piersol [50].

For all the partial coherence equations used in the LabVIEW program, refer to Appendix

C.
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3.13 System Identification

Measuring the frequency response of a linear system is a typical first step in

characterizing its dynamic behavior. To understand a system and its signal processing

often demand information beyond the frequency response. Underlying differential

and/or difference equations provide a concise mathematical description defining all

other dynamic behavior. The task of estimating these equations from measurements of

the input and output signals is referred to in the control literature as the process of

System Identification (SID).

In 1971 two Swedish researchers, Aström and Eykhoff, published a paper that

started the field of System Identification (SID) [53]. Although many advances have

been made in unifying the underlying theories, there continues to be a wide variety of

approaches promoted in technical journals, textbooks, and conferences over three

decades after the original paper.
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Figure 3.13 Examples of typical plant.



The bulk of the theory and applications of SID evolved from control systems

research. In control language, the dynamic system being identified (or modeled) is

called the plant. The plant can take on a wide variety of forms. In general, a plant is an

object or collection of objects, producing an output by modifying an input. The input to

the plant could be temperature, pressure, voltage, current, position, velocity,

acceleration, and so on. The input can also contain more than one variable (e.g., several

signals from transducers measuring various conditions of an engine). The output from

the plant can be in the form of any of the inputs (temperature, pressure, position, etc.)

and it also can contain several signals.

Single-input, single-output (siso) plants are addressed here since they are the

most prevalent. The siso models can be combined to create multi-input, multi-output

models if necessary.

Figure 3.13 depicts an example of an electrical plant. The plant can be

accurately described mathematically by linear constant/coefficient, differential

equations. A plant described by these equations is said to be Lumped-Linear-Time-

Invariant (LLTI). Even plants that are mildly non-linear, slowly time varying, and

possibly distributed in nature (e.g., those requiring partial differential equations for a full

description) can often be adequately modeled using these LLTI assumptions.

3.13.1 Estimating Transfer Functions of Non -linear Systems

Accurate transfer function estimation of linear, noise-free, dynamic systems is typically

an easy task. Often, however, the system being analyzed is noisy or not perfectly linear.

All real-world systems suffer from these deficiencies to a degree, but biological systems
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are particularly bad in this regard. Dealing with the combination of noise and non-

linearity requires the understanding of the necessary measurement tradeoffs to assure an

accurate transfer function estimation.

3.13.1.1 Imperfections in Dynamic Systems. Biological control systems typically

have higher noise and less linearity than the typical electrical or purely mechanical

system. The non-linear behavior is often due to the physiological components involved

in the system. The measurement noise is often a result of the system being characterized

under actual operating conditions.

3.13.1.2 Balancing Noise and Non -linearity. To make a transfer function

measurement on a dynamic system, an excitation is supplied to the system and the

system's response to this excitation is measured. If the system is noisy but linear, the

excitation level can be increased to improve the signal to noise ratio by simply

overpowering the noise. If the system is non-linear (for example at high excitation

amplitudes), but noise free, the excitation can be lowered to a point where the linearity is

acceptable.

When the system is both non-linear and noisy, a tradeoff must be made balancing

the poor signal-to-noise ratio at low excitation amplitudes with the non-linear system

behavior at high excitation amplitudes.

There are two possible approaches of transfer function estimation: swept-sine

and a broadband FFT based network analyzer.

The swept sine (or more accurately stepped-sine) estimation technique is the

least affected by noise and non-linear system behavior. The tradeoff with the swept-sine
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technique is measurement time. The transfer function is estimated over a user defined

frequency range at a single frequency point at a time.

In measurement situations where there is reasonable linearity and good signal to

noise ratio, the broad-band FFT based network analyzer provides the transfer function

estimate in a fraction of the time that is normally needed by the swept sine approach.

The excitation is usually a periodic chirp or bandlimited random signal, but the

adventuresome user has full control over the excitation including user defined (arbitrary)

excitation.
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Figure 3.14 Optimal data acquisition measurement system.

In the end, the amount of time required for a transfer function estimate is set by

five factors:

1) the system's noise

2) the system's linearity

3) the number of frequency points in the estimate

4) the accuracy required

5) the time for basic data acquisition
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3.13.1.3 The Optimal Measurement Configuration. The main goal here is to

determine the system transfer function H(ω ) from measurements on the system. The

optimal measurement configuration is shown in Figure 3.14. There is no assumption

made at this point as to what kind of system is being characterized, biological system or

otherwise.

This configuration allows the excitation (often called the reference) signal to the

system being analyzed, to be measured with negligible error. This is a valid assumption

when the output source is measured directly by an input channel as shown in Figure

3.14. Often in biomedical work, the excitation to the system is not in the form of

voltage (as is assumed in Figure 3.14). Transducers must be used to convert the system

excitation into a voltage which can be measured by the acquisition system. For instance,

a force-to-voltage transducer would be used to measure the force in a muscle study. In

cases such as this, precautions must be taken to insure that minimal electrical noise

corrupts the signal from the electrodes or transducer and that they are operated in their

linear region.

As shown in Figure 3.14, the entire measurement uncertainty is accounted for in

the response signal y,„ (t ) by the additional (unwanted) noise term ny (t) . There are no

assumptions about the character of this noise other than when the excitation is zero, the

response of the system y (t) is zero, and it is left with ym(t ) = ny (1) . It is important to

note that ny (t) is usually not an actual external source but merely a representation of the

system output when there is no excitation.

At first it might seem that the restriction of having a noiseless reference channel

is an unreasonable measurement condition. In practice, however, this requirement is



usually attainable. The key point is that an unbiased estimate of the transfer function is

relatively easy to obtain if an accurate measurement of the reference channel is made.

The transfer function estimation, H(ω), is computed from cross and auto power

spectra estimates as shown in (3.92):

where Pxy (ω) is the cross power spectrum between the excitation x m (t ) and response

ym (t ) and i3„, (ω) is the auto power spectrum of the excitation signal.

These spectral estimates (P„,, (ω) , Pxy (ω)) are computed in MatLab or Lab VIEW

using the FFT, windowing, and frequency-domain averaging. When more averaging is

used, more data is acquired and processed to refine these estimates.

As the amount of averaging used in the computations of the cross and auto power

spectra are increased, the estimate H(ω) will converge to the actual transfer function

H(ω). This is the key property of an unbiased estimator. The amount of averaging

required to attain a given accuracy for the transfer function is a function of the noise

ny (t): less noise, less averaging.

The coherence is an auxiliary computation often made in conjunction with the

transfer function estimate. The coherence calculation in (3.93) gives an indication of the

portion of the systems output power due to the input excitation.
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The quantity C(ω) has a range of 0.0 to 1.0, where 1.0 indicates that all of the

measured output power is due to the input excitation. This is the most desirable

situation and will only be true at frequencies where the spectral energy of the noise

ny (t) is negligible. The coherence can therefore be viewed as a measurement quality

indicator. When a significant portion of the measured output is not related to the

excitation, a low coherence results. This indicates that for a given amount of averaging,

the variance of the transfer function at these frequencies will be higher than the variance

where there is good coherence (closer to 1.0).

It is important to recognize that since this estimator is unbiased, given sufficient

averaging, the transfer function estimate will converge to the system's actual transfer

function in spite of possibly low coherence.

The above transfer function and coherence estimation calculations are calculated

in Lab VIEW and/or MatLab System Identification Toolbox.

3.13.2 The ARX Models

The timing of electrical and mechanical events within the heart is vital to its function. In

"normal" healthy humans, a bundle of spontaneously depolarizing cells located on the

right atrium of the heart, called the sino-atrial (SA) node, acts as the pacemaker for the

heart. Through an upward drift in electrical potential, the cells spontaneously reach a

threshold potential, at which point the cells rapidly depolarize, or "fire", as a group. This

is followed by a reset which marks the start of a new cycle. The firing initiates the

spread of electrical activity through the heart, and therefore initiates the contraction that

is necessary for blood to be delivered to the rest of the body. Although temporal
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variability exists in the propagation of the electrical activity across the tissue of the

heart, the primary interest is in the temporal variability from "beat-to-beat", which can

be captured through observations of a distinct electrical event contained within each

cycle. The spontaneous depolarization of SA nodal cells has an intrinsic rate that is

modulated by direct input from the two branches of the autonomic nervous system

(ANS). The basal activity of each branch has an effect on the mean rate of

depolarization, but also the vast majority of variability in the timing of the electrical

events of the heart is produced via this autonomic innervation by varying how quickly

the SA nodal cells reach the threshold and "fire". Activity of the respiratory rhythm

generator has been shown to modulate the rate of depolarization of SA nodal cells at the

respiratory frequency via the parasympathetic branch, and baroreflex feedback

mechanisms have been shown to modulate the rate through both branches at sub

respiratory frequencies. The goal of the modeling, therefore, will be to capture the

dynamics of these mechanisms in a relatively simple ARX-modeling scheme, which has

direct physiological interpretation.

Here two models are used for this study. The first model is an open loop input

driven ARX model which can capture the characteristics of the "heart rate" variability.

One input is simply a filtered Gaussian white process, for which several nice results will

be developed. Other inputs correspond directly to autonomic mediation specifically

related to respiration and blood pressure related modulation. The other model includes a

feedback that allows one to investigate the feedback mechanisms in the ARX model,

which will lay the groundwork for capturing the effect of baroreflex activity on heart

rate variability.
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3.13.2.1 Open-loop Input Driven ARX Model. The Open-loop Input Driven ARX

Model is shown in Figure 3.15. The inputs to the model are [54]:

Respiration Vt(n).

Systolic blood pressure, SBP(n)

The output of the model is:

Heart Rate, RR(n).
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Figure 3.15 Open-loop input driven ARX model.

This figure shows an open-loop model-based approach that enables the dynamic effects

of respiration and arterial systolic blood pressure on heart rate to be estimated in both

COPD and normal subjects. This method is based on a two-compartment model of

respiratory sinus arrhythmia (RSA), which includes a vagally mediated central

component (h_rsa), and an arterial baroreflex (h_abr) component driven by both vagal

and sympathetic systems. A parametric linear AutoRegressive representation with



eXogenous input (ARX) was used to estimate the impulse responses (IR) and transfer

function (TF) of the two couplings in the model. A number of indexes derived from the

IR's (peak magnitude, time of peak, delays) and TF's (gains and phases in the frequency

bands of interest) were used for subsequence statistical analysis and the assessment of

autonomic function.

The two-compartment model of RSA in the Figure is described as an ARX

representation by the equation. The coefficient of each polynomials (Bo A) were

estimated from the data by least square minimization of the prediction error W 	 The

orders and the delays of the model were chosen by finding the model that minimized the

cross-correlation of each input and the prediction error, as well as the Minimum

Description Length (MDL)

3.13.2.2 Feedback Closed -loop ARX Model. 	 In this section a more realistic

physiological model involving baroreflex and feedback loop. The depolarization, and

therefore contraction, of the ventricles is associated with the ejection of blood into the

aorta during systole. If one made the assumption that the volume of ejected blood is

roughly the same for each contraction, then the arterial pressure will only be a function

of the timing of the contractions. If several contractions occur close together, arterial

pressure builds, causing simultaneous stimulation and inhibition of the parasympathetic

and sympathetic branches of the ANS, respectively, resulting in a decrease in the rate of

depolarization of the SA nodal tissue. A cascade of contractions that occur further apart
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in time will result in a reduction of arterial pressure, causing simultaneous stimulation

and inhibition of the sympathetic and parasympathetic branches of the ANS,

respectively, producing an increase in the rate of depolarization.

Obviously, the arterial pressure varies in many ways. During systole the

ventricles contract, causing the pressure to build, and during diastole the ventricles relax

and the pressure drops. However, the mean arterial pressure fluctuates in a much slower

manner, and it is this activity that dictates the level of baroreflex response.

In an effort to capture the dynamics of the baroreflex mechanism, it therefore

becomes necessary to extend the previous models to include a class of systems that

exhibit negative feedback, as shown in Figure 3.16. With the extended model to include

a feedback loop and through the baroreflex mechanism, it will provide the baro-related

heart rate variability in the lower frequency range (LF) through the intrinsic oscillations

of the system.
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Figure 3.16 Feedback closed-loop ARX model.



The baroreflex, an autonomic reflex which controls heart rate through efferent

vagal and sympathetic nerves by afferent inputs from pressure sensitive baroreceptors, is

still mostly unknown. The neural control of the total cardiovascular system with several

closed loops, of which the baroreflex is only a part, is very complex and that makes it

difficult to assess characteristics of this reflex. If one was able to create a large enough

broadband input signal and measure the input Blood Pressure (BP) as well as the output

Heart Rate (HR), one could estimate from spectral calculations of input, output and

cross- correlation, the amplitude and phase frequency characteristics of the baroreflex.

Respiration is known to modulate BP as well as HR, the latter phenomenon

called respiratory sinus arrhythmia (RSA). However, the precise relationships are still

under debate. Respiration affects primarily HR by central cardio-respiratory coupling

and changes BP through variations in cardiac output. Respiration also directly

modulates BP through mechanical effects of changing intrathoracic pressure on cardiac

filling, which through the baroreflex causes HR variations at the respiration frequency.

Recent studies [11[3] showed that respiration to a large extent primarily modulates BP

and through the baroreflex, HR. The baroreflex with the respiratory influence can

therefore schematically be visualized as in Figure 3.16. Under these assumptions one

does have the possibility to "control" baroreflex input (BP) by letting a person breathe

voluntarily according to a sinusoid on several fixed frequencies or a slowly changing

frequency (sweep). Here it is desirable to prove the possibility of assessing gain and

phase relations of the transfer function of BP and HR in a human, over a wide frequency

range by voluntarily breathing at predetermined frequencies.
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The results of this ARX model will prove to be a powerful analytical tool for

relating the spectral characteristics of the sequence of observed intervals to the nature of

the input and noise, which serves as a diagnostic for the underlying autonomic nervous

system activity.

3.14 Principal Component Analysis

Principal component analysis is performed in order to simplify description of a set of the

interrelated variables. In principal component analysis the variables are treated equally;

i.e., they are not divided into independent and independent variables, as in regression

analysis.

The technique can be summarized as a method of transforming the original

variables into new, uncorrelated variables. The new variables are called the principal

components. Each principal component is a linear combination of the original variables.

One measure of the amount of information conveyed by each principal component is its

variance. For this reason the principal components are arranged in order of decreasing

variance. Thus the most informative principal component is the first, and the least

informative is the last (a variable with zero variance does not distinguish between the

members of the population).

The investigator may wish to reduce the dimensionality of the problem, i.e.,

reduce the number of variables without losing much of the information. This objective

can be achieved by choosing to analyze only the first few principal components. The

principal components not analyzed convey only a small amount of information since

their variances are small. This technique is attractive for another reason, namely, that
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the principal components are not intercorrelated. Thus instead of analyzing a large

number of the original variables with complex interrelationships, the investigator can

analyze a small number of uncorrelated principal components.

The selected principal components may also be used to test for their normality.

If the principal components are not normally distributed, then neither are the original

variables. Another use of the principal components is to search for outliers. A

histogram of each of the principal components can identify those individuals with very

large or very small values; these values are candidates for outliers or blunders.

In regression analysis it is sometimes useful to obtain the first few principal

components corresponding to the X variables and then perform the regression on the

selected components. This tactic is useful for overcoming the problem of

multicollinearity since the principal components are uncorrelated [55].

Principal component analysis is considered to be an exploratory technique that

may be useful in gaining a better understanding of the interrelationships among the

variables. The original application of principal component analysis was in the field of

educational testing. Hotelling [56] developed this technique and showed that there are

two major components to responses on entry-examination tests: verbal and quantitative

ability. Principal components analysis is also used extensively in psychological

applications in an attempt to discover underlying structure. In addition, principal

components analysis has been used in biological and medical applications [57] [58].
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3.14.1 Basic Concepts of Principal Components Analysis

Suppose that there is a random sample of N observations on X 1 and X2 . For ease of

interpretation the sample mean is subtracted from each observation, thus obtaining

Note that this technique makes the means of x 1 and x 2 equal to zero but does not

alter the sample variances Si and S 22 or the correlation r. The basic idea is to create two

new variables, C 1 and C2 called the principal components. These new variables are

linear functions of x 1 and x 2 and can therefore be written as

It should be noted that for any set of values of the coefficients a11 , a12 , a21 , a 22 ,

one can introduce the N observed .,j and x 2 and obtain N values of C I and C2 . The

means and variances of the N values of C 1 and C2 are

where S,2 =VarXi. Equation 3.98 is true because the means of A and x 2 are zero.

The coefficients are chosen to satisfy three requirements:

1. The VarC1 is as large as possible.

2. The N values of C 1 and C2 are uncorrelated.
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The mathematical solution for the coefficients was derived by Hotelling [56].

The solution is illustrated graphically in Figure 3.17. Principal components analysis

amounts to rotating the original X1 and X2 axes to new C1 and C2 axes. The angle of

rotation is determined uniquely by the requirements just stated. For a given point x 1 ,

x2 (see Figure 13.2) the values of C 1 and C2 are found by drawing perpendicular lines to

the new C, and C2 axes. The N values of C 1 thus obtained will have the greatest

variance according to requirement 1. The N values of C, and C2 will have a zero

correlation.
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Figure 3.17 Principal component analysis illustration.
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These ideas are easily extended to the case of P variables x 1 , x2 ,...,xp . Each

principal component is a linear combination of the x variables. Coefficients of these

linear combinations are chosen to satisfy the following three requirements:

2. The values of any two principal components are uncorrelated.

3. For any principal component the sum of the squares of the coefficients is one.

In other words, C 1 is the linear combination of the largest variance. Subject to the

condition that it is uncorrelated with C 1 , C2 is the linear combination with the largest

variance. Similarly, C3 has the largest variance subject to the condition that it is

uncorrelated with C I and C2 , etc. The VarCi are the eigenvalues. These P variances

add up to the original total variance. In some literature the set of coefficients of the

linear combination for the ith principal component is called the ith eigenvector (also

known as the characteristic or latent vector).



3.15 Cluster Analysis

The term cluster analysis (first used by Tryon, 1939) actually encompasses a number of

different classification algorithms. A general question facing researchers in many areas

of inquiry is how to organize observed data into meaningful structures, that is, to

develop taxonomies. For example, biologists have to organize the different species of

animals before a meaningful description of the differences between animals is possible.

According to the modern system employed in biology, man belongs to the primates, the

mammals, the amniotes, the vertebrates, and the animals. Note how in this

classification, the higher the level of aggregation the less similar are the members in the

respective class. Man has more in common with all other primates (e.g., apes) than it

does with the more "distant" members of the mammals (e.g., dogs), etc.

Note that one talks about clustering algorithms and does not mention anything

about statistical significance testing. In fact, cluster analysis is not as much a typical

statistical test as it is a "collection" of different algorithms that "put objects into

clusters." The point here is that, unlike many other statistical procedures, cluster

analysis methods are mostly used when priori hypotheses are not available, and it is still

in the exploratory phase of the research. In a sense, cluster analysis finds the "most

significant solution possible." Therefore, statistical significance testing is really not

appropriate here, even in cases when p-levels are reported (as in ANOVA).

Clustering techniques have been applied to a wide variety of research problems.

Hartigan (1975) provides an excellent summary of the many published studies reporting

the results of cluster analyses [59]. For example, in the field of medicine, clustering

diseases, cures for diseases, or symptoms of diseases can lead to very useful taxonomies.
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In the field of psychiatry, the correct diagnosis of clusters of symptoms such as paranoia,

schizophrenia, etc. is essential for successful therapy. In archeology, researchers have

attempted to establish taxonomies of stone tools, funeral objects, etc. by applying cluster

analytic techniques. In general, whenever one needs to classify a "mountain" of

information into manageable meaningful piles, cluster analysis is of great utility.

3.15.1 Joining (Tree Clustering)

The examples given in previous sections illustrate the goal of the joining or tree

clustering algorithm. The purpose of this algorithm is to join together objects (e.g.,

animals) into successively larger clusters, using some measure of similarity or distance.

A typical result of this type of clustering is the hierarchical tree.

3.15.2 Hierarchical Tree

Consider a Vertical Hierarchical Tree Plot (see Figure 3.18 below), on the horizontal

axis of the plot; one begins with each object in a class by itself. Now imagine that, in

very small steps, one "relaxes" the criterion as to what is and is not unique. Put another

way, the threshold regarding the decision is lowered when declaring two or more objects

to be members of the same cluster. As a result more and more objects are linked together

and aggregate (amalgamate) larger and larger clusters of increasingly dissimilar

elements. Finally, in the last step, all objects are joined together. In these plots, the

vertical axis denotes the linkage distance (in Horizontal Icicle Plots, the horizontal axis

denotes the linkage distance). Thus, for each node in the graph (where a new cluster is
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formed) one can read off the criterion distance at which the respective elements were

linked together into a new single cluster.

Tree Diagram for 30 Cases

Complete Linkages

Eucledian Distances
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Figure 3.18 Vertical hierarchical tree plot.

When the data contain a clear "structure" in terms of clusters of objects that are

similar to each other, then this structure will often be reflected in the hierarchical tree as

distinct branches. As the result of a successful analysis with the joining method, one is

able to detect clusters (branches) and interpret those branches.

3.15.3 Distance Measures

The joining or tree clustering method uses the dissimilarities or distances between

objects when forming the clusters. These distances can be based on a single dimension



or multiple dimensions. For example, if fast foods were clustered, one could take into

account the number of calories they contain, their price, subjective ratings of taste, etc.

The most straightforward way of computing distances between objects in a multi-

dimensional space is to compute Euclidian distances. If one had a two- or three-

dimensional space this measure is the actual geometric distance between objects in the

space (i.e., as if measured with a ruler). However, the joining algorithm does not "care"

whether the distances that are "fed" to it are actual real distances, or some other derived

measure of distance that is more meaningful to the researcher; and it is up to the

researcher to select the right method for his/her specific application.

3.15.4 Euclidian Distance

This is probably the most commonly chosen type of distance. It simply is the geometric

distance in the multidimensional space. It is computed as:

Note that Euclidian (and squared Euclidian) distances are usually computed from

raw data, and not from standardized data. This method has certain advantages (e.g., the

distance between any two objects is not affected by the addition of new objects to the

analysis, which may be outliers). However, the distances can be greatly affected by

differences in scale among the dimensions from which the distances are computed. For

example, if one of the dimensions denotes a measured length in centimeters, and one

then converts it to millimeters (by multiplying the values by 10), the resulting Euclidian

or squared Euclidian distances (computed from multiple dimensions) can be greatly

affected, and consequently, the results of cluster analyses may be very different.
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3.15.5 Squared Euclidian Distance

One may want to square the standard Euclidian distance in order to place progressively

greater weight on objects that are further apart. This distance is computed as (see also

the note in the previous paragraph):

3.15.6 City-block (Manhattan) Distance

This distance is simply the average difference across dimensions. In most cases, this

distance measure yields results similar to the simple Euclidian distance. However, note

that in this measure, the effect of single large differences (outliers) is dampened (since

they are not squared). The city-block distance is computed as:

3.15.7 Chebychev Distance

This distance measure may be appropriate in cases when one wants to define two objects

as "different" if they are different on any one of the dimensions. The Chebychev

distance is computed as:

3.15.8 Power Distance

Sometimes one may want to increase or decrease the progressive weight that is placed

on dimensions on which the respective objects are very different. This can be

accomplished via the power distance. The power distance is computed as:



where r and p are user-defined parameters. Parameter p controls the progressive weight

that is placed on differences on individual dimensions; parameter r controls the

progressive weight that is placed on larger differences between objects. If r and p are

equal to 2, then this distance is equal to the Euclidian distance.

3.15.9 Percent Disagreement

This measure is particularly useful if the data for the dimensions included in the analysis

are categorical in nature. This distance is computed as:

3.15.10 Amalgamation or Linkage Rules

At the first step, when each object represents its own cluster, the distances between those

objects are defined by the chosen distance measure. However, once several objects have

been linked together, how does one determine the distances between those new clusters?

In other words, one needs a linkage or amalgamation rule to determine when two

clusters are sufficiently similar to be linked together. There are various possibilities: for

example, one could link two clusters together when any two objects in the two clusters

are closer together than the respective linkage distance. Put another way, the "nearest

neighbors" across clusters were used to determine the distances between clusters; this

method is called single linkage. This rule produces "stringy" types of clusters, that is,

clusters "chained together" by only single objects that happen to be close together.
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Alternatively, one may use the neighbors across clusters that are furthest away from

each other; this method is called complete linkage. There are numerous other linkage

rules such as these that have been proposed.

3.15.11 Single Linkage (nearest neighbor)

As described above, in this method the distance between two clusters is determined by

the distance of the two closest objects (nearest neighbors) in the different clusters. This

rule will, in a sense, string objects together to form clusters, and the resulting clusters

tend to represent long "chains."

3.15.12 Complete Linkage (furthest neighbor)

In this method, the distances between clusters are determined by the greatest distance

between any two objects in the different clusters (i.e., by the "furthest neighbors"). This

method usually performs quite well in cases when the objects actually form naturally

distinct "clumps." If the clusters tend to be somehow elongated or of a "chain" type

nature, then this method is inappropriate.

3.15.13 Unweighted pair-group Average

In this method, the distance between two clusters is calculated as the average distance

between all pairs of objects in the two different clusters. This method is also very

efficient when the objects form natural distinct "clumps," however, it performs equally

well with elongated, "chain" type clusters. Note that in their book, Sneath and Sokal
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introduced the abbreviation UPGMA to refer to this method as unweighted pair-group

method using arithmetic averages [60].

3.15.14 Weighted pair-group Average

This method is identical to the unweighted pair-group average method, except that in

the computations, the size of the respective clusters (i.e., the number of objects

contained in them) is used as a weight. Thus, this method (rather than the previous

method) should be used when the cluster sizes are suspected to be greatly uneven. Note

that in their book, Sneath and Sokal introduced the abbreviation WPGMA to refer to this

method as weighted pair-group method using arithmetic averages [60].

3.15.15 Unweighted pair-group Centroid

The centroid of a cluster is the average point in the multidimensional space defined by

the dimensions. In a sense, it is the center of gravity for the respective cluster. In this

method, the distance between two clusters is determined as the difference between

centroids. Sneath and Sokal used the abbreviation UPGMC to refer to this method as

unweighted pair-group method using the centroid average [60].

3.15.16 Weighted pair-group Centroid (median)

This method is identical to the previous one, except that weighting is introduced into the

computations to take into consideration differences in cluster sizes (i.e., the number of

objects contained in them). Thus, when there are (or one suspects there to be)

considerable differences in cluster sizes, this method is preferable to the previous one.
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Sneath and Sokal used the abbreviation WPGMC to refer to this method as weighted

pair-group method using the centroid average [60].

3.15.17 Ward's Method

This method is distinct from all other methods because it uses an analysis of variance

approach to evaluate the distances between clusters. In short, this method attempts to

minimize the Sum of Squares (SS) of any two (hypothetical) clusters that can be formed

at each step. Refer to Ward [46] for details concerning this method. In general, this

method is regarded as very efficient, however; it tends to create clusters of small size.

3.15.18 Two-way Joining

Previously, this method has been discussed in terms of "objects" that are to be clustered

(as in Joining (Tree Clustering)). In all other types of analyses the research question of

interest is usually expressed in terms of cases (observations) or variables. It turns out

that the clustering of both may yield useful results. For example, imagine a study where

a medical researcher has gathered data on different measures of physical fitness

(variables) for a sample of heart patients (cases). The researcher may want to cluster

cases (patients) to detect clusters of patients with similar syndromes. At the same time,

the researcher may want to cluster variables (fitness measures) to detect clusters of

measures that appear to tap similar physical abilities.

Given the discussion in the paragraph above concerning whether to cluster cases

or variables, one may wonder why not cluster both simultaneously? Two-way joining is

useful in (the relatively rare) circumstances when one expects that both cases and
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variables will simultaneously contribute to the uncovering of meaningful patterns of

clusters
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Figure 3.19 Contour graph of a two-way joining clustering. (From Statistic Manual, the
SAS Institute, 2001).

For example, returning to the example of Figure 3.19 above, the medical

researcher may want to identify clusters of patients that are similar with regard to

particular clusters of similar measures of physical fitness. The figure shows the 13

physical fitness patterns on the y axis and the different heart cases in the x axis. The

measures of similarity or distance values are indicated by using various color intensities.

The difficulty with interpreting these results may arise from the fact that the similarities

between different clusters may pertain to (or be caused by) somewhat different subsets

of variables. Thus, the resulting structure (clusters) is by nature not homogeneous. This



may seem a bit confusing at first, and, indeed, compared to the other clustering methods

described (Joining (Tree Clustering) and K- means Clustering), two-way joining is

probably the one least commonly used. However, some researchers believe that this

method offers a powerful exploratory data analysis tool (for more information refer to

the detailed description of this method in Hartigan [52]).

3.15.19 K-means Clustering

This method of clustering is very different from the Joining (Tree Clustering) and Two-

way Joining. Suppose that one already has the hypotheses concerning the number of

clusters in one's cases or variables. The computer may be told to form exactly 3

clusters that are to be as distinct as possible. This is the type of research question that

can be addressed by the k- means clustering algorithm. In general, the k-means method

will produce exactly k different clusters of greatest possible distinction.

In the physical fitness example (in Two-way Joining), the medical researcher

may have a "hunch" from clinical experience that her heart patients fall basically into

three different categories with regard to physical fitness. One might wonder whether

this intuition can be quantified, that is, whether a k-means cluster analysis of the

physical fitness measures would indeed produce the three clusters of patients as

expected. If so, the means on the different measures of physical fitness for each cluster

would represent a quantitative way of expressing the researcher's hypothesis or intuition

(i.e., patients in cluster 1 are high on measure 1, low on measure 2, etc.).
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3.15.20 Computations

Computationally, one may think of this method as analysis of variance (ANOVA) "in

reverse." The program will start with k random clusters, and then move objects between

those clusters with the goal to (1) minimize variability within clusters and (2) maximize

variability between clusters. This is analogous to "ANOVA in reverse" in the sense that

the significance test in ANOVA evaluates the between group variability against the

within-group variability when computing the significance test for the hypothesis that the

means in the groups are different from each other. In k-means clustering, the program

tries to move objects (e.g., cases) in and out of groups (clusters) to get the most

significant ANOVA results.

3.15.21 Interpretation of Results

Usually, as the result of a k-means clustering analysis, one would examine the means for

each cluster on each dimension to assess how distinct our k clusters are. Ideally, one

would obtain very different means for most, if not all dimensions, used in the analysis.

The magnitude of the F values from the analysis of variance performed on each

dimension is another indication of how well the respective dimension discriminates

between clusters.
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CHAPTER 4

METHODS

The purpose of this chapter is to thoroughly explain the methods used to acquire the

biological signals of interest, namely the electrocardiogram (ECG), the systolic blood

pressure, and the respiration signal, as well as to explain the equipment used to acquire

these signals. Also included in this chapter is an explanation of the experimental

protocol, and the different signal processing analysis techniques, which were developed

for system identification.

4.1 Experimental Protocols

4.1.1. Study Procedures

The subject populations of the study include:

1) Patients with severe pulmonary disease that were being enrolled into the

National Emphysema Treatment Trial (NETT) to study lung volume reduction

surgery (LVRS) as well as the elective population undergoing lung volume

reduction surgery.

2) Normal individuals with no known cardiac or pulmonary disease.

Since the study of COPD subjects is a long-term (up to 5 years) project, the

population of COPD patients can be up to several hundred. The data collection for the

COPD population can be as large as required. However, data of 47 COPD subjects were

analyzed for this dissertation. On the other hand, the population of volunteered normal
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subjects is somewhat limited so the data of 8 recruited normal subjects were used for

this study.

The testing of all the subjects was done in the Human Performance Laboratory in

Atchley room 327 of the Columbia Presbyterian hospital in New York City, NY and

included a Pulmonary Stress test on 30% supplemental oxygen as per the NETT

Protocol and HRV, BPV, and BRS.

The autonomic testing was performed in the following manner, as described in

each of the separate subsections below.

4.1.2 Data Acquisition

All exercise stress testing was performed on a bicycle ergometer with a SensorMedics

Vmax 229 series workstation. The protocol was a ramp exercise test with 5-minute

baseline data collection, followed by a three-minute warm-up at no load and then a

maximum exercise test at 5 Watts per minute ramp. All exercise was done on 30%

supplemental oxygen. The autonomic biopotentials were obtained through an interface

board (BNC 2080. National instruments Co., Austin TX) and fed into a 12-bit analog-to-

digital (A/D) converter (DAQCard-700, National instruments Co., Austin TX) and then

into a Pentium computer (Hitachi Vision Book Plus, San Jose, California). Five-minute

resting data collections were also done in a counter-balanced order on room air and 30%

supplemental oxygen. Post acquisition data analyses were carried out separately. The

data were stored on the hard drive of the computer and daily backups were made to

Iomega Zip 100 Mbytes cartridges.
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4.1.2.1 Autonomic Testing. HR Variability and BP Variability: These tests were

carried out for rest, deep breathing, Valsalva maneuver, isometric contraction, and

exercise. These were established noninvasive methods for the quantitative assessment of

autonomic activity based on the analysis of the variability of the cardiac R-R interval

through the assessment of parasympathetic (PNS), sympathetic (SNS), and

sympathovagal balance (S/V). Our laboratory used an established and validated routine

for the spectral decomposition of heart rate variability. Specifically, interbeat 0130

intervals were derived from the electrocardiogram (ECG) using a peak detection routine.

The sequence of the IBI was interpolated to provide a continuous data steam, and the

resulting IBI data were detrended using a robust locally weighted regression procedure.

The resulting data were split in sections, and each section is tapered using a split cosine

window. Finally, the data were transformed into frequency spectra using fast Fourier

transform algorithms and smoothed across blocks of frequencies to produce a spectrum.

The power of the heart rate variability is calculated by measuring the area under

the spectra in the established frequency bands. Power spectra within the 0.04 to 0.15 Hz

range were defined as low frequency components, whereas those at the frequency of

0.15 to 0.40 Hz were defined as the high frequency components. The ratio between low

frequency (LF) and high frequency (HF) components is considered representative of the

sympathovagal balance.
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4.1.2.2 Parasympathetic Activity and Sympathovagal Balance Assessment.

1) Rest: Subjects were seated, at rest, and post absorptive for at least four hours, and

refrained from consuming alcohol and caffeinated beverages for at least 12 hours prior

to the test. ECG recordings were made using lead II and lead V, with an

electrocardiographic machine (Marquette Max-1, Marquette Medical Systems,

Milwaukee, WI). The subject's beat-by-beat blood pressure recordings were made using

a wrist cuff via a noninvasive oscillometric device (Model 7000, Colin Medical

Instruments Corp., San Antonio, TX). Blood pressure recordings were made with the

left arm supported at heart level. In addition, respiration was recorded from respiratory

induced temperature changes using a thermistor (YSI reusable temperature probe,

Yellow Springs, OH) placed under the right nostril. During rest subjects were instructed

to maintain normal breathing patterns. Two data gathering episodes were made while

seated in an upright position, each five minutes in duration (one on room air, another on

30% oxygen). Total test duration was approximately 25 minutes (2 trials with

equilibration on oxygen in between).

2) Deep Breathing: Subjects breathed at 0.2 Hz (12 breaths/minute), as this breathing

rate has been shown to stimulate the respiratory sinus arrhythmia, a noninvasive marker

of parasympathetic activity. Subjects were trained until satisfactory tracings were

obtained. This protocol consisted of 2 trials, each of one minute in duration. Total test

duration was approximately 5 minutes (2 trials with rest in between).

3) Valsalva Maneuver: Subjects breathed at a normal rate for 15 seconds, then were

asked to blow against a fixed resistance to a pressure of 20 mm Hg for 15 seconds, and

then were asked to breathe normally for a 30 second interval. Continuous measurement
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of heart rate, blood pressure, respiratory rate, and oxygen saturation were done over the

one-minute trial. Subjects were trained until satisfactory tracings were obtained. This

protocol consisted of 2 trials, each of one minute in duration. Total test duration was

approximately 5 minutes (2 trials with rest in between). This was done twice, once on

room air, and once on 30% supplemental oxygen, for a total duration of 10 minutes for

the two trials.

4.1.2.3 Baroreceptor Sensitivity Assessment.	 The spontaneous beat-by-beat

interactions of systolic blood pressure (SBP) and R-R interval reflect true baroreflex

events rather than random interactions. In the cases of the more severe COPD subjects

who could not perform the Valsalva maneuver, the following baroreceptor sensitivity

assessment method was used instead. With the subjects in a seated position, and after a

20-minute equilibrium time in a quiet room, R-R interval and SBP data were recorded

for a total of 1024 beats. The subjects were to breathe naturally, at a frequency at or

above 12 breaths/minute (0.2 Hz). The R-R intervals were measured by the standard

electrocardiograph. The spontaneous baroreflex response was determined from the

beat-to-beat changes in the R-R interval and SBP by a modification of the technique of

Bertinieri, et al. [61]. Linear regression was performed on any episodes of three

consecutive beats with R-R interval lags in the same direction (either up or down), and

the resultant data yielded an evaluation of the baroreflex sensitivity.
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4.1.2.4 Interventions. 	 All the patients underwent a full course of pulmonary

rehabilitation prior to randomization (NET) or surgery (Non-NETT). This rehabilitation

was done under the same protocol, and was as follows.

Six-week program of intensive outpatient rehabilitation

- Program 3-5 times a week at hospital program

- Supervised portion of exercise to be done with the following:

Two-hour sessions

- Cross training

- 30 min. continuous treadmill exercise at modified Borg level 7.5

- 15 min. on arm ergometer at modified Borg level 7.5

- 15 min. on stair stepper/bicycle ergometer at modified Borg level 7.5 or

with Karvonen's target heart rate intensity factor 0.6

- Pulse oximetry (Supplemental 02 as needed to maintain Sp02 > 90 %)

- Telemetry

- Blood pressure monitoring

- Patient education sessions with 6 basic topics

- Basic breathing techniques

- Anatomy/Physiology

- Medications

- Stress and relaxation

- Nutrition

- Armchair aerobics

- Patient specific training in breathing and relaxation techniques



The patients who underwent LVRS were given their surgery within a month after

the completion of the initial rehabilitation program. The surgery was to be done as per

the surgeon and/or the NETT protocol. This testing and analysis had no bearing on the

surgical plans for the patients. After surgery, the patients were given treatment and

physical rehabilitation as needed to insure that they could be remobilized. Both the

surgical and medical patients then received a second six-week course of rehabilitation.

The subjects were then followed at 3-month intervals for a year and then for 4 years at

6-month intervals, out to 60 months (5 years). It should be noted that the whole time the

patient participated in the study, qualified personnel with appropriate emergency

equipment and emergency facilities were readily available to treat any problems that

may occur.
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4.2 Data Analysis

All signal processing techniques were performed with the LabVIEW graphical

programming language and MATLAB. This section describes the use of both

LabVIEW and MATLAB and the algorithms by which the different physiological

signals were analyzed. All the programs for spectral analysis, the Wigner time-

frequency analysis program (Sympar.vi), coherence, weighted coherence and partial

coherence were written in LabVIEW. The time-frequency analysis (Cohen's class and

wavelets), system identification techniques, principal component analysis and cluster

analysis were performed using the MATLAB System Identification and Statistics

toolboxes.

4.2.1 Wigner Time-Frequency Analysis

As mentioned previously, the Wigner time-frequency analysis program (Sympar.vi) was

written in LabVIEW. The time-frequency analysis was performed using raw ECG data.

The ECG signal was read from a spreadsheet file acquired together with other signals

such as respiration, blood pressure and Oxygen volume consumption. All of these

signals were represented in spreadsheet form as columns of space delimited data. The

ECG data was filtered through a high-pass filter (HP_FILT.vi) after which point the R

wave locations were detected automatically (Search BP.vi). The array of R wave

locations was then used to calculate the heart rate and to generate graphs of both the

ECG signal with detected R waves and of the heart rate, respectively. The raw ECG

signal was then displayed with markers at each corresponding detected R wave along

with the newly calculated corresponding heart rate. These graphs appear on the control
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panel of the Correct.vi. It was in the Correct.vi block that a cursor was provided

allowing the user to manually detect missing peaks or undetect "bad" peaks by turning

the "Modify" marker on or off. Missing peaks were results of saturation, motion, or

noise artifact during acquisition of the ECG signal. Consequently, peaks must be

manually interpolated in place of the missing data. "Bad" peaks consist of peaks that

were not characteristically R waves, such as those generated by noise artifact. Manual

detection of R waves continued until the user clicks the "Done" button on the control

panel of the Correct.vi, indicating to the program that all detection of R waves was

complete. The output of the Correct.vi consists of the 1131 as calculated from

consecutive R waves detected in the ECG, which was then saved to a spreadsheet file to

be utilized for further analysis. The IBI was interpolated and decimated (Interpolation &

Decimation.vi) to generate a decimated BIM waveform which was analyzed utilizing the

Wigner distribution (Symbar (Wigner).vi). After execution of the final subVl in this

program, two-dimensional time-frequency graphs of both parasympathetic (HF) activity

and of the combined parasympathetic and sympathetic (LF) activity were generated on

the control panel of Symbar (Wigner).vi. The control panel also displayed graphs of the

decimated 1113I waveform, as well as the LF/HF ratio with respect to time.

4.2.2 Power Spectrum Analysis of Heart Rate Variability

The power spectrum analysis program, also written in LabVIEW, consists of several

subVIs that ultimately generate graphs of the LF area and HF area of the corresponding

ECG signal. As with the Wigner program, the signal was read from a spreadsheet file as

a single column of space delimited data (Read From Spreadsheet File.vi). However, in
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this case the data consisted of the previously recorded IBI of the heart rate obtained from

the Correct.vi block in the Wigner time-frequency analysis program rather than the raw

ECG signal. The use of the IBI array was justified because the subVls utilized by the

Wigner program to obtain this array was duplicated in the power spectrum analysis

program. Furthermore, the sequence of data flow through these subVls was identical in

both programs. Therefore, it would follow that the IBI generated by the Wigner time-

frequency analysis program was equivalent to that generated by the power spectrum

analysis program. Essentially, the use of the previously generated IBI provides several

benefits, such as saving time in the analysis process, and more importantly, it provides

consistency in the data being analyzed. This factor was significant when considering the

possibility of variation resulting during the manual interpolation of missing data in the

ECG signal.

The IBI data flowed through the Spectrum1 .vi block where it was interpolated.

Here, the IIBI underwent a series of analyses and mathematical calculations through

subVls that were provided by LabVIEW programming language. First, the IIBI was

input into the Mean.vi block, where the mean average was computed, and then the

resulting output was zero padded (Zero Padder.vi). After this point, the power spectrum

was computed and divided to display the graph of the heart rate power spectrum as well

as the values of the LF area, the HF area, and the length of the data file in minutes. The

graph and calculated data were displayed on the control panel. Because of its interactive

nature, the program allowed for adjustment of sampling frequency as well as the upper

and lower bounds for the VLF, LF, and HF ranges.
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4.2.3 Power Spectrum Analysis of Blood Pressure Variability

The power spectrum of the blood pressure (BP) signal was also obtained from a VI

written in LabVIEW. Again, the physiological signals were read from the same

spreadsheet data file (Read From Spreadsheet File.vi). Each of the raw ECG and blood

pressure signals was independently analyzed and displayed on the control panel.

Similar to the raw ECG signal, the raw blood pressure signal passed through a

high-pass filter (HP_FILT.vi) and successively into a peak detection block (Search

BP.vi). The filtered BP array was then analyzed for the detection of each systolic peak.

Unlike the peak detection block for the ECG signal, the location of each consecutive

peak of the blood pressure signal was not directly detected, but rather it was the peak

amplitude of the systolic blood pressure waveform, which was of importance. It was the

detection of the amplitude of each peak that indicates the peak location. Detection of the

BP peak location was dependent upon the maximum amplitude of the peak, i.e. the y-

axis. The first maximum value of amplitude that occurred in the peak was detected.

This value was interpolated over the interval until the next successive peak amplitude

was detected. The BP IBI was then interpolated to generate the IIBI. Each peak

amplitude value was interpolated over the period of time between each successive peak

amplitude detection. For example, if the first peak in succession has an amplitude of

1.135, the next detected peak has an amplitude of 0.850, and there was a period of 200

points between the two detected peaks, then the value of the first detected peak, or

1.135, was interpolated over the 200 points so that each point possesses this amplitude

until the next detection at 0.850. The resulting array then underwent a series of analyses

and mathematical calculations, similar to the heart rate IIBI, to graphically display the
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BP power spectrum. This graph in addition to graphs of the heart rate power spectrum,

the raw BP signal, and the BP IBI were displayed on the control panel. In addition to

the graphical displays, the calculated values of the LF area, the HF area, and the length

of the data file in minutes could be found on the control panel. Because of its interactive

nature, the program allowed for adjustment of sampling frequency as well as the upper

and lower bounds for the VLF, LF, and HF ranges.

4.2.4 Coherence and Weighted Coherence Analysis of Heart Rate and Respiration

The coherence and weighted coherence analysis between heart rate and respiration were

performed using the coherenc.vi of LabVIEW. Again, the physiological signals were

read from a spreadsheet file (Read From Spreadsheet File.vi) as consecutive, space

delimited data columns, where one column consisted of the raw ECG signal and the

other column consisted of the raw respiration signal. Each signal was independently

analyzed and displayed on the control panel. The raw ECG signal was again passed

through a high-pass filter (HP_FILT.vi) and successively into peak detection (Search

(BP).vi) and correction (Correct.vi) blocks. The user then manually detected and

corrected the bad or missing R peaks as before to generate the IIBI array. This IIBI

array just obtained from the detection and correction of the raw ECG was then input

together with the filtered raw respiration signal into the coherenc.vi where the power

spectra and cross-power spectrum of the ECG IIBI and the raw respiration signal were

calculated. From these power spectra a coherence plot between the derived heart rate

and respiration was generated and the weighted coherence value was calculated. Two

movable cursors on the coherence plot allow the user to selectively choose and obtain a
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weighted-average value of the coherence between the range of frequencies fl and 12.

This value was calculated according to equation 3.85 discussed in section 3.10 before

and would be used as a parameter in the system identification analysis.

4.2.5 Coherence and Weighted Coherence Analysis of HR and Blood pressure

This analysis is similar to the coherence analysis of heart rate and respiration just

described above with the exception that the blood pressure IIBI (detected and corrected

the same way as the blood pressure spectral analysis) was used instead of the raw

respiration signal. The heart rate IIBIs and the blood pressure IIBIs were input into the

coherenc.vi to create the coherence plot and the weighted coherence value in the same

fashion as the coherence and weighted coherence analysis of heart rate and respiration.

4.2.6 Partial Coherence

This analysis was similar to the coherence analysis. The heart rate IIBIs, the blood

pressure IIBIs and the respiration signal were inputted into the pcoherenc.vi to create the

partial coherence plots and the weighted coherence values in the same fashion as the

coherence and weighted coherence analysis but using the equations 3.86 - 3.91 described

in section 3.11 and 3.12.
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4.2.7 Time-frequency Analysis

The original time-frequency analysis program for STFT, SPWD, CWD and BJCD was

written by Adib [45] in 1995 and was intended to analyze electromyogram (EMG) data

in the frequency range from 20 Hz to 500 Hz. In order to use the same program to

analyze HRV data in the frequency range of 0.05 — 0.4 Hz, modifications to the 3D

mesh and contour graphic routine were made for this program to display the plots with

enough frequency resolution even in the low frequency range between 0.05 — 0.4 Hz.

The wavelet analysis programs used were taken from the MATLAB wavelet

toolbox (The Math Works Inc., Natick, MA, 2000) also with the appropriate

modification to fit the low frequency range required for HRV, systolic BP and RESP

signals of the study in this dissertation. The main MATLAB m-file used was the cwt.m

file. This program computed and plotted the wavelet coefficients for the physiological

signals with positive scales, using the wavelets: morl (Morlet), meyr (Meyer), dB4

(Daubechies 4), mexh (Mexican Hat) and Naar (Haar). The program also ran other

wavelets whose names appeared as shown in Table 4.1.

Basically, the process used in the cwt.m file was as follows:

Let s(t) be the analyzed signal and k the wavelet. The wavelet coefficient of s at

scale a and position b is defined by:

Since s(t) is a discrete signal, one can use a piecewise constant interpolation of

the s(k) values, k=1 to length(s) where s is the total number of data points of the

analyzed signal rounded up to the nearest power of two.
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For each given scale a within the vector scales, the wavelet coefficient C b were

computed for b=1 to ls=length(s), and were stored in COEFS(i,:) if a=scales(i). Output

argument COEFS is a la-by-ls matrix where la is the length of scales. COEFS is a real

or complex matrix depending on the wavelet type. The steps of calculating the COEFS

were:
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For any scale a, the wavelet coefficients Ca,b for b=1 to length(s) could be

obtained by convolving the signal s and a dilated and translated version of the integrals

(given by intwave.m), and taking the finite difference using

diff.m.

One of the objectives in studying the HRV in this dissertation was to compare

the time frequency representations of the Short time Fourier transform, Smoothed

Pseudo Wigner-Ville, Choi-William and Born-Jordan-Cohen distributions to the wavelet



distribution. However, the wavelet distribution gave plots in time and scale instead of a

time-frequency axis. In order to make good comparison, the scale axis of the wavelet

distribution had to be converted to a frequency axis. But how frequency and scale are

related?

The scale of the wavelet distribution refers to the width of the wavelet. As the

scale increases and the wavelet gets wider, it includes more of the time series, and the

finer details get smeared out. The scale can be defined as the distance between

oscillations in the wavelet (e.g. for the Morlet), or it can be some average width of the

entire wavelet (e.g. for the Haar or Mexican hat).

The period (or inverse frequency) is the approximate Fourier period that

corresponds to the oscillations within the wavelet. For all wavelets, there is a one-to-one

relationship between the scale and period. The relationship can be derived by finding

the wavelet transform of a pure cosine wave with a known Fourier period, and then

computing the scale at which the wavelet power spectrum reaches its maximum.

For some wavelets, the period has more meaning than others. For the Monet

wavelet, which has several smooth oscillations, the period is a well-defined quantity,

which measures the approximate Fourier period of the signal. For the Daubechies,

which has irregularly-spaced oscillations, the period has less meaning and should

probably be ignored.

In the MATLAB wavelet toolbox, the relationship between scale and frequency

is referred to in terms of the pseudo-frequency corresponding to a scale. The idea is to

associate with a given wavelet a purely periodic signal of frequency Fe . The frequency

maximizing the FFT of the wavelet modulus is F, . If one agrees to associate the
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frequency F to the wavelet function, then the wavelet is dilated by a factor a, and this

center frequency becomes F, /a . Lastly, if the underlying sampling period is A , it is

natural to associate to the scale a the frequency:

The cwt.m file of the MATLAB wavelet toolbox has been modified to provide

time-frequency plots instead of time-scale plots so that the comparison of the wavelet

distribution and the time-frequency distributions can be easily performed as seen in the

next chapter.
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Table 4.1 Wavelet Names Available for Analysis (94+)(From Wavelet Toolbox User's
Guide, Version 2, The MathWorks, Inc., 9/2000)
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4.2.8 System Identification Analysis

All the system identification tasks were performed using the commercially available

MATLAB System Identification Toolbox (The MathWorks, Inc.). The physiological

data acquired from COPD and normal subjects were used for building simplified models

of complex systems from respiration signals as noisy time-series data. The

mathematical ARX models of dynamic cardiovascular systems based on observed

input/output data were obtained. The time and frequency response plots as well as the

pole-zero plots were also acquired. The control parameters of the estimated models

such as ARX coefficients, the model order, and the transfer function parameters such as

the overall gain, DC gain, 3 dB points and phase responses were tabulated for each

subject.

4.2.9 Analysis of generation of Broadband respiration signal

Part of the method of investigation for noninvasively characterizing the ANS in humans

was to determine the system response at all frequencies of interest simultaneously

through the use of broadband input waveforms. Berger, Saul, et al. [44] described a

simple method for eliciting a broadband respiration signal without significantly altering

the normal ventilatory mechanics. In their study the broadband respiratory signal was

obtained by instructing the subject to start inhale/exhale as cued by a sequence of beeps

(100 ms long), which is generated by a PDP-11/23 computer. The computer programs

then beep evenly at a preset rate 2 0 for a few minutes so that the subject can find a

comfortable depth of inspiration. The computer then switches to a mode in which the

beeps were spaced at irregular intervals chosen randomly from a given distribution but
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having the same mean occurrence rate .10 for the period of data collection (typically 6

minutes). The algorithm that the computer used to set the timing of the beeps was as

follows [44]. A Gaussian white-noise (GWN) signal was obtained by constructing a

sequence of Gaussian-distributed random numbers. To confine the GWN signal energy

to the spectral band of interest, the signal was digitally processed with a low-pass filter

in which the corner frequency was typically set to 0.7 Hz. The resulting band-limited

GWN signal f(t) represented the desired instantaneous pulse frequency and its reciprocal

1/f (t) the instantaneous inter-pulse interval. An internal clock kept track of the time T

that elapsed since the last pulse produced. Whenever T exceeded 1/f (t), a new pulse was

produced and T was reset to zero. Stylized representations of the band-limited GWN

signal, its theoretical power spectrum and probability distribution, and the corresponding

GWN frequency-modulated (GWNFM) pulse train are shown in Fig. 4.1. Importantly,

the mean f mean and variance σf  of the (GWN) modulator signal were specified for each

6-min experimental run.
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Figure 4.1 Theoretical power spectrum, time series, and probability distribution of
band-limited Gaussian white noise and corresponding frequency-modulated pulse train.



In this study a simpler approach was chosen. A box with 16 light-emitting

diodes (LED) was built to perform the similar task as described above. LEDs light

source is used since a beeping sound was experienced as an annoyance and could alter

the subject's autonomic activities. The subject was instructed to start the inhale/exhale

cycle as the lighted LED moved from top to bottom and then reversed direction from

bottom to top. Subjects had found that paced-breathing by following the LED

movement also provided a more comfortable and therapeutic experience.

Two different boxes were constructed for this portion of the study. The first box

was built such that the LEDs move at the preset rate 20 (selected by the user) for a few

minutes so that the subject could find a comfortable depth of inspiration. The user then

switched to a random mode in which the LEDs were spaced at irregular intervals chosen

randomly from a uniformly distributed function but having a mean occurrence rate

= 14.5 bpm (breaths per minute) for a short period. This would give a flat power

spectrum over the frequencies of interest. The random interval was repeated over and

over for the entire duration of data collection. The rate of 14.5 bpm was chosen because

it is a good approximate mean breathing rate for all COPD subjects. This first box was

built this way because of its ease of implementation.

Later, a second box was also built such that the LEDs move at the preset rate 2 0

for a few minutes at the subject's comfortable rate of inspiration similar to the first box.

The user then switched to a random mode in which the LEDs were spaced at irregular

intervals chosen randomly from a uniformly distributed function the same as in the first

box. However, the random sequence was generated in such as way that it had the mean

occurrence rate 20 for which the subject was comfortable. This irregular interval was
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again repeated over and over for the entire duration of data collection. Hence each

COPD subject breathed at the random rate at which the subject was comfortable and still

gave a flat power spectrum over the frequencies of interest.

These boxes were used for convenience and simplicity without changing the

objective of broadband respiration signal generation.

4.2.10 Principal Component Analysis

The central idea of Principal component analysis (PCA) is to reduce the dimensionality

of the data set while retaining as much as possible the variation in the data set. Principal

components (PC's) are linear transformations of the original set of variables. PC's are

uncorrelated and ordered so that the first few PC's contain most of the variations in the

original data set [63]. The first PC has the geometric interpretation that it is a new set of

the coordinate axes that maximizes the variation of the projections of the data points

onto the new coordinate axes.

In this dissertation a data set obtained from real data and analysis results

(coherence, partial coherence) that contained 15 parameters is shown in Table 4.2. The

first three parameters were the actual rate values taken from acquired data of normal and

COPD subjects (i.e. heart rate in beats per minute, respiration in breaths per minute and

blood pressure in beats per minute). The other parameters were obtained from LF and

HF weighted values of the coherence/partial coherence cross-spectral analyses.
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Table 4.2 Parameters That Make Up the Data Set Used for PCA and Cluster Analysis

Parameter Name
Respiration RSP
Heart Rate HR
Blood Pressure BP
LF Coherence HR-RESP LF_coh_HR_rsp
LF Coherence HR-BP LF_coh HR_BP
LF Coherence BP-RESP LF coh-BP rsp
HF Coherence HR-RESP HF_coh_HR_rsp

HF Coherence HR-BP HF_coh_HR_BP
HF Coherence BP-RESP HF_coh_BP_rsp
LF Partial Coherence HR-RESP LF_pcoh_HR_rsp

LF Partial Coherence HR-BP LF_pcoh_HR_BP

LF Partial Coherence BP-RESP LF_pcoh_BP_rspHF_pcoh_HR_rsp

HF pcoh_HR_BP
HF Partial Coherence HR-RESP
HF Partial Coherence HR-BP
HF Partial Coherence BP-RESP HF_pcoh_BP_rsp

The data set was entered into the Matlab PCA program. The results are three

principal components with associated eigenvalues of the covariances calculated from the

data set. The range of the eigenvalues was normalized to -1, +1 and the parameter with

the highest positive eigenvalues was the principal component of the data set. In the

example shown in table 4.3, the three PC's of a fictitious data set were:

1. PC1 = BP with eigenvalue 0.3800

2. PC2 = HF_ coh _ BP_ rsp with eigenvalue 0.4961

3. PC3 = RSP with eigenvalue 0.3099
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Table 4.3 Principal Components from Normal and COPD Data Set

P1 P2 P3 Categories

0.0351 -0.3625 0.3099 RSP

0.2960 -0.1943 0.0928 HR

0.3800 0.0271 -0.0793 BP

0.2729 -0.2367 0.1637 LF_coh_HR rsp

0.2725 -0.0886 -0.3849 LF_coh_HR_BP

0.3349 0.2178 -0.0244 LF_coh_BP_rsp

0.3416 0.0691 -0.0556 HF_coh_HR_rsp

0.1389 0.1252 -0.5128 HF coh HR BP_	 _	 _

0.1924 0.4961 0.0194 HF_coh_BP_rsp

0.3386 -0.2607 0.0482 LF_pcoh_HR_rsp

0.0449 0.0540 -0.0351 LF_pcoh_HR_BP

0.3341 0.1433 0.0701 LF_pcoh_BP_rsp

0.2954 -0.2978 0.2039 HF_pcoh_HR_rsp

-0.0170 -0.2281 -0.5558 HF_pcoh_HR_BP

0.1308 0.4691 0.2969 HF_pcoh_BP_rsp
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4.2.11 Cluster Analysis

The same data used for PCA in the previous section were also used for cluster analysis

in separating the normal and COPD subjects and severity classification. The data set

was entered into the Matlab clustering program. The program executed according to the

following syntax:

T = clusterdata(X,cutoff)

where:

X was a matrix of size m by n, interpreted as m observations of n variables.

cutoff was a threshold value that determines how the cluster function creates clusters.

The value of cutoff determined how clusterdata interpreted it.

If 0 < cutoff < 1, cutoff was interpreted as the threshold for the inconsistency

coefficient. The inconsistency coefficient quantified the degree of difference between

objects in the hierarchical cluster tree. If the inconsistency coefficient of a link was

greater than the threshold, the cluster function would use the link as a boundary for a

cluster grouping.

If cutoff >= 1 cutoff was interpreted as the maximum number of clusters to retain in the

hierarchical tree.

The output, T, was a vector of size m that identifies, by number, the cluster in

which each object was grouped. The program used the clusterdata function to compute

the distances between items in the dataset and create a hierarchical cluster tree from the

dataset. Finally, the clusterdata function grouped the items in the dataset into the

number of cluster specified by the value "cutoff'.
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CHAPTER 5

RESULTS

5.1 Spectral Analysis: A Method for Describing Periodic Processes

Spectral analysis is the natural tool for answering questions regarding periodic or

rhythmic processes. Respiration, heart rate variability and blood pressure variability

signals are inherently rhythmic. For example, the physiological construct of a central

respiratory drive is periodic and is often described in terms of specific frequencies.

Spectral analysis is merely a method of quantifying the periodicity and partitioning the

total variance of the series into components associated with specific rhythms.

Although respiratory frequencies may be identified by observing a time domain

record, the frequency components of heart rate and blood pressure activities are more

difficult to identify. The heart is driven and controlled by various neural, mechanical, and

biochemical factors. Hypothetically, each factor may be associated with a specific

periodicity.

Compare the sinusoidal characteristics of the temporal changes in the respiration

signal plotted in Figures 5.1 (a) and 5.2 (a) with the time interval plot between heart rate

IIBI signal in Figure 5.1 (b) and blood pressure IIBI signal in Figure 5.2 (b) of a COPD

subject sitting at rest, breathing at 16 bpm (0.267 Hz) for 5-mimutes. These figures are

time domain representations of the respiration, heart rate and blood pressure physiological

processes. Time domain representations are often the sum of the component sinusoids.

As a general rule, with the exception of processes that are manifested by relatively pure

sinusoids (e.g., respiration), it is difficult or impossible to identify rhythms by viewing the

time series in the time domain of the heart rate and blood pressure variability signals. By
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viewing the time series of sequential heart periods and blood pressure in the frequency

domain, spectral analysis decomposes the summed sinusoids into constituent frequencies.

The frequencies of interest in the study of RSA are the frequencies associated with

the normal spontaneous respiratory activity. If the breathing were constant at a rate of 16

times a min, each breath would take appropriately 3.745 sec and would have a frequency

of 0.267 cycles/sec (0.267 Hz). In Figures 5.1 (c) and 5.2 (c), the power density spectra

for each frequency of heart rate and blood pressure are plotted. These analyses were

conducted on the data plotted in Figures 5.1 and 5.2 (b). Note that both series exhibit a

peak power density estimate at the same frequency, representing the dominant or most

characteristic respiratory frequency of 0.267 Hz.

Even though the spectral decomposition of both heart rate and blood pressure

processes results in similar dominant frequencies, each process exhibits other prominent

frequencies, independent of respiration, that have been theoretically associated with other

physiological processes such as temperature and hormonal fluctuations [19].
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Figure 5.1 HRV analysis of a COPD subject.
(a) Raw respiration signal, 5-mimute rest at 16 bpm (0.267 Hz)
(b) Heart rate IIBI signal.
(c) Frequency spectrum of HR IIBI signal.
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Figure 5.2 BPV analysis of a COPD subject.
(a) Raw respiration signal, 5-mimute rest at 16 bpm (0.267 Hz)
(b) Blood pressure IIBI signal.
(c) Frequency spectrum of BP IIBI signal.



Similar spectral analysis is also performed on the heart rate and blood pressure

variability signals of a "normal" subject at rest and breathing at 10 bpm (0.167 Hz). The

HRV and BPV spectral analysis plots are shown in Figures 5.3 and 5.4. The same

strongly influenced respiration frequency peaks of 0.167 Hz can be seen from both the

heart rate and blood pressure power spectral density plots of Figures 5.3 and 5.4 (c). As

with the COPD subject shown in Figures 5.1 and 5.2, even though the spectral

decomposition of both heart rate and blood pressure processes results includes the

respiration frequency peaks, each process also exhibits other prominent frequencies,

theoretically associated with other physiological processes.

The spectral analysis approach, however, has disadvantages. To illustrate this

point, the heart rate power spectral density plots and the blood pressure power spectral

plots of both the COPD and normal are plotted side by side for comparison, as shown in

Figures 5.4.1 and 5.4.2, respectively. Besides some of the obvious differences between

the power spectral density plots such as the amplitude of the components at 0.1 Hz, 0.167

Hz, 0.2 Hz, 0.267 Hz, 0.3 Hz and 0.4 Hz etc., there are no other information from these

plots that can help to distinguish the COPD subject from the normal subject. These

conventional power spectra clearly fail to reflect an appropriate representation of the

signal characteristics of the heart rate and blood pressure variability signals. All time

information is completely lost; hence there is no way to quantitatively differentiate COPD

from normal. Fortunately, there are other techniques such as time-frequency analysis and

cross-spectral analysis, which will be presented in later sections, which can overcome

these limitations
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Figure 5.3 HRV analysis of a normal subject.
(a) Raw respiration signal, 5-mimute rest at 10 bpm (0.167 Hz)
(b) Heart rate IIBI signal.
(c) Frequency spectrum of HR IIBI signal.
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Figure 5.4 BPV analysis of a normal subject.
(a) Raw respiration signal, 5-mimute rest at 10 bpm (0.167 Hz)
(b) Blood pressure IIBI signal.
(c) Frequency spectrum of BP IIBI signal.



Figure 5.4.1 Comparison of the HRV frequency spectra of COPD and normal subject
during 5 minutes rest.

(a) COPD breathing at 16 bpm (0.267 Hz).
(b) Normal breathing at 10 bpm (0.167 Hz).
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Figure 5.4.2 Comparison of the BPV frequency spectra of COPD and normal subject
during 5 minutes rest.

(a) COPD breathing at 16 bpm (0.267 Hz).
(b) Normal breathing at 10 bpm (0.167 Hz).
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5.2 Time Frequency Analysis

One of the reasons that the time-frequency analysis (TFA) has enjoyed a tremendous

popularity and phenomenal development in the past three decades is that TFA has

overcome some of the shortcomings of the widely used Fourier transform of spectral

analysis. The Fourier transform describes the spectral properties of a time signal [23]. It

provides frequency information that can only be extracted for the complete duration of

the signal. It gives no information about the local variations in time and requires the

signal to be stationary. There is no way of knowing whether the value of the power

spectral density of a signal at a particular frequency is derived from frequencies present

throughout the life of the signal or during one or a few selected periods. The TFA, with

its ability to perform local time-frequency decomposition (as long as it satisfies the

Heisenberg's Uncertainty Principle as mentioned in section 3.2), is able to measure the

time dependent variations of the instantaneous frequency contents of a nonstationary

signal.

5.2.1 Time Frequency Analysis Applied to Sine Waves

Before seeing how TFA perform on real data, the advantages and disadvantages of the

four time frequency distributions (the Short Time Fourier Transform, Smoothed

Pseudo-Wigner Ville, Choi-Williams and Born-Jordan-Cohen distributions) used in this

dissertation are more clearly seen when applied to signals with known spectra. Since all

time frequency analyses used for heart rate variability studies in this dissertation were in

the frequency range between 0.04 Hz to 0.5 Hz, a test signal was constructed with three
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sine waves (0.3, 0.1 and 0.5 Hz sampled at 200 samples per second) as shown in Figure

5.5.

All four time-frequency distributions are shown as 3D mesh and contour plots

with time axis in seconds and frequency axis in Hertz. The results are shown in Figure

5.6. All four time-frequency distributions' shapes showed the expected pattern. However,

the Choi-Williams has a clearer frequency representation at 0.3, 0.1 and 0.5 Hz on the

contour plot than the Short Time Fourier Transform (STFT), Smoothed Pseudo-Wigner

Ville, and the Born-Jordan-Cohen distributions; even though the Smoothed Pseudo-

Wigner Ville is a close second. On the 3D mesh plots the 0.3 Hz component of the Choi-

William and the Smoothed Pseudo-Wigner Ville distributions stop smearing at 0.7 Hz

while the STFT and the BJCD smear out to 0.8 Hz and 1 Hz respectively. The CWD is

better than the BJCD because there is less power smearing at 0.9, 0.6 and 1 Hz of the 0.3,

0.1 and 0.5 Hz components (shown as yellow-green on the contour plots) respectively.

The criterion for a clear representation will be discussed in section 5.2.3. All four

distributions show the amplitudes of the 0.3, 0.1 and 0.5 Hz peaks spread out to other

frequencies, even though the amplitude of the original test signal is the same throughout

and the frequencies of the three sine waves are clearly at 0.3, 0.1 and 0.5 Hz.

The Continuous Wavelet Transform plot is shown in Figure 5.7 (a)-(e) in 3D mesh

and 2D contour with time axis in seconds and the pseudo-frequency axis in Hertz. The

term "pseudo" frequency is used here because in reality wavelet distributions are plotted

in terms of time and scale and frequency is inversely proportional to scale.
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Figure 5.5 Test signal with 3 sine waves at 0.3, 0.1 and 0.5 Hz (top) and its power spectrum
(bottom).

The Morlet wavelet, as well as the Meyer, Daubechies 4, Mexican Hat and Haar

wavelet used, clearly shows the more defined pictures of the 3 sine waves representation

with little interference (or cross-terms) when compared side-by-side with the STFT,

PWVD, CWD and BJCD of the time-frequency representations. The Morlet wavelet may

still not be the best wavelet type used in analyzing the low frequency range (below 2 Hz)

of HRV but still is better than the other time-frequency representations presented here.

The results obtained from the test signal indicate that the linear time-frequency

representations (CWD and wavelets) are the preferred time frequency distributions and

the Morlet wavelet analysis is the better method to use for HRV.



Figure 5.6 (a) STFT of a signal with 3 sine waves at 0.3, 0.1 and 0.5 Hz.
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Figure 5.6 (b) SWVD of a signal with 3 sine waves at 0.3, 0.1 and 0.5 Hz.



Figure 5.6 (c) CWD of a signal with 3 sine waves at 0.3, 0.1 and 0.5 Hz.

Mesh & Contour of signal_3.asc using Born_ Jordan_Coh en distribution
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Figure 5.6 (d) BJCD of 3 sine waves at 0.3, 0.1 and 0.5 Hz.



Figure 5.7 (a) WT (Morlet wavelet) of a signal with 3 sine waves at 0.3, 0.1 and 0.5 Hz.
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Figure 5.7 (b) WT (Meyer wavelet) of a signal with 3 sine waves at 0.3, 0.1 and 0.5 Hz.



Figure 5.7 (c) WT (dB4 wavelet) of a signal with 3 sine waves at 0.3, 0.1 and 0.5 Hz.
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Figure 5.7 (d) WT (Mexican Hat wavelet) of a signal with 3 sine waves at 0.3, 0.1 and
0.5 Hz.



Figure 5.7 (e) WT (Haar wavelet) of a signal with 3 sine waves at 0.3, 0.1 and 0.5 Hz.

5.2.2 Time-frequency Analysis of Heart Rate Variability

The first goal of this research work is dedicated to the use of time-frequency analysis of

heart rate variability as a new and innovative approach to investigate the physical

attributes of both normal and COPD subjects.

Although time-frequency analysis has been extensively studied and universally

used, there is not much experience in its application to very low frequency ranges (less

than 2 Hz). In the previous section, each distribution used: the short time Fourier

transform (STFT), the smoothed pseudo Wigner-Ville (SPWV), The Choi-Williams

(CW), and the Born-Jordan-Cohen (RID), has unique characteristics which affect the

amount of smoothing and the generation of crossterm interference as applied to sinusoid

test signals in the HRV frequency range. The STFT and Cohen's class distributions

(SPWD, CWD and BJCD) provided adequate time frequency representations for low

frequency signals of HRV analysis. However, with the wavelet transform applied to



HRV more information about HRV activities in both time and frequency domains can

now be revealed and be waiting for researcher's new and appropriate interpretations.
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Figure 5.8 HR IIBI and power spectrum plots of a normal subject at 3 min rest paced
breathing at 8 bpm.

Figure 5.8 illustrates the case of a file from a normal subject paced breathing at 8

bpm during a 3 minutes rest period. The HRV analysis was performed using the four

different distributions with the same specifications (length of analysis window equal to

256, the length of the FFT analysis is 1024 and time resolution of 0.195 seconds). Even

though this was a poor choice of resolution, other resolutions showed even worse results.

It is evident from looking at the results in the figures that all the distributions show the

effect of respiration on HRV at about the respiration frequency of 0.133 Hz (due to

paced-breathing at 8 breaths per minute). Figures 5.9 (a) — (d) all show a band at 0.133

Hz and they all smear to other frequencies in various amounts. The 0.133 Hz bands of

the SPWV and CW distributions in figures 5.9 (b) and (c) show less smearing than the

STFT or the BJC distribution. When comparing the contour plots of the SPWV and CW

distributions, it is clear that CW shows the 0.133 Hz band with more intensity and much

sharper than the SPWV distribution. From these observations, the CW is the best

distribution of the four time-frequency distributions.



Figure 5.9 (b) SWVD plots of a normal subject at 3 min rest paced breathing at 8 bpm.



Figure 5.9 (c) CWD plots of a normal subject at 3 min rest paced breathing at 8 bpm.
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Figure 5.9 (d) BJCD plots of a normal subject at 3 min rest paced breathing at 8 bpm.



The time-frequency plots using the Monet wavelet is shown in figure 5.10.

Figure 5.10 (a) shows the 3D plot in time (seconds), frequency (Hertz) and wavelet

coefficient (power). Figure 5.10 (b) and (c) are contour plots of figure 5.10 (a) looking

along the z-axis (wavelet coefficients, power). Figure 5.10 (b) shows a relatively straight

band at the 1024 scale, which corresponds, to 0.133 Hz due to paced breathing at 8 bpm.

Furthermore, the plot also shows another band of high amplitude at 128-256 scales, which

corresponds to 0.635-1.27 Hz; the same is also shown on all other time-frequency plots.

The meaning of this band may possibly be due to the 1 Hz cyclic modulation of the ECG

rhythm that is out of our frequency range of interest. When zooming into a closer

frequency range as illustrated in figure 5.10 (c) the 0.1333 Hz band is not a straight band

but varies in frequencies from 0.09 Hz and up to 0.2 Hz. This information exists on all

time-frequency plots except it is much better represented on all plots using the wavelet

transform. This band is also not solid but made up of many lobes called the cones of

influence. Each cone of influence occurs at the minimum and maximum points of the

original HR 11131 signal being analyzed which is shown in figure 5.10 (d) again for ease of

observation. Figure 5.10 (c) also shows another band of cones of influence along the

lower frequency range of 0.01 — 0.05 Hz that mimics the trend of the lower frequency

modulation present in the HR IIBI signal. This is additional information about the trend

of HRV signals, which is shown for the first time using wavelet analysis. This

information is totally absent when using the Cohen's class time-frequency representations

such as SPWD, CWD or BJCD.
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Figure 5.10 CWT (Morlet) HRV plot of a normal subject at 3 min rest paced breathing at
8 bpm. (a) 3D time frequency plot. (b) Contour plot. (c) Zoom contour plot to frequency
of respiration. (d) HR IIBI signal being analyzed (shown to point out cones of influence).
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5.2.3 Time-Frequency Analysis (Wavelet) of COPD HRV data

In order to analyze COPD HRV signals, it was necessary to use digitized HRV data sets.

One example of the digitized HRV signals is from a COPD subject resting and paced-

breathing at 16 breaths per minute. Figure 5.11 illustrates the HR IIBI and its power

spectrum plots for the case of a file from a COPD subject paced breathing at 16 bpm

during a 5 minutes rest period. The HRV analysis was performed using the five different

wavelet distributions (Morlet, Meyer, Daubechies 4, Mexican Hat and Haar) with the

same specifications (length of analysis window equal to 200 and the length of the FFT

analysis of 256).
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Figure 5.11 HR IIBI and power spectrum of a COPD subject at rest breathing at 16 bpm.

There are an infinite number of possible functions that satisfy the criteria for a

wavelet. For a function to be a wavelet, it must integrate to zero and must be localized in

time. These requirements are shown in equation form below:



The following figures show the results of these transforms. The purpose of this is

to show that, although the output for different wavelets varies, the fundamental

characteristics of the wavelet transform are the same.
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Figure 5.12 CWT (Morlet) HRV plot of a COPD subject at 5 min rest paced breathing at
16 bpm. (a) 3D time frequency plot. (b) Contour plot.



Figure 5.13 CWT (Meyer) HRV plot of a COPD subject at 5 min rest paced breathing at
16 bpm. (a) 3D time frequency plot. (b) Contour plot.
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Figure 5.14 CWT (dB4) HRV plot of a COPD subject at 5 min rest paced breathing at 16
bpm. (a) 3D time frequency plot. (b) Contour plot.



Figure 5.15 CWT (Mexican Hat) HRV plot of a COPD subject at 5 min rest paced
breathing at 16 bpm. (a) 3D time frequency plot. (b) Contour plot.
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Figure 5.16 CWT (Haar) HRV plot of a COPD subject at 5 min rest paced breathing at
16 bpm. (a) 3D time frequency plot. (b) Contour plot.



All of the WT time-frequency representations shown in Figures 5.12 - 5.16 are

somewhat similar. A band of cones of influence corresponding to each minimum and

maximum points on the HR IIBI signal at the frequency of respiration (16 bpm, 0.266667

Hz) appears in each wavelet transform representation. However, the power intensity of

the band is not as high as the similar band shown in the normal subject case investigated

in section 5.2.2. Another band of cones of influence in the very low frequency range

(0.01 — 0.15 Hz) also exists with higher energy and in longer time (from 10 seconds to

120 seconds, to 180 seconds, to 250 seconds). Among the wavelets, the Monet wavelet

provides the best representation in terms of time, frequency resolution and meaningful

details. The band of the cones of influence at 0.266667 Hz is modulated slightly

indicating that the respiration is not a stationary signal.

5.2.4 Best Time-Frequency Representations for HRV Study

In this part of the study, one chooses the best of four time-frequency representations and a

wavelet distribution to analyze the HRV signal. The criterion for the best selection of

distribution includes:

1. Sharp frequency band representation without smearing to the next frequency band.

2. Little or no interference (cross-term).

3. High amplitude representation that corresponds well with amplitude of original

signal.

These criteria are used basically in visual inspection of the 3D and contour time-

frequency plots. However, a more scientifically accepting method is needed that will be

presented in the next section.

175



5.2.5 Best Wavelet Selection for HRV Time-frequency Representation

Wavelet representations show more details than the classical time frequency

representation such as the Cohen's class distributions. Among the different wavelets used

in the analysis, the Monet wavelet seems to be the right choice of wavelet for analyzing

the actual physiological signals of BP, respiration and heart rate variability signal

(derived from the ECG) when visual inspection was performed. Here the author proposes

using the cross-correlation to help make this decision.

The technique of cross-correlation was used to compare the power spectrum

derived wavelet coefficients (power) versus frequency obtained from the 3D scalogram

representations of the HRV 11131 signals of COPD subjects to the power spectrum of the

same signal using Fourier analysis. The Fourier analysis power spectrum was used

because Fourier analysis provided the perfect representation of the signal power in the

frequency domain. Any wavelet representation considered as best representation must

have the highest cross-correlation index value when comparing the wavelet power

spectrum with the Fourier power spectrum. The cross-correlation between two signals

measures the way the signals change with respect to one another. In other words, if f(x)

always increases and decreases as g(x) increases and decreases, then f(x) and g(x) are

positively correlated. The correlation of two continuous functions f(x) and g(x), denoted

as f (x) • g(x), is defined by the following equation [25]:

where * is the complex conjugate. For this study, the power spectrum signals were not

complex. Therefore, to calculate the cross-correlation, the function g(x) is shifted, by
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different values of A, over the length of f(x), the signals are multiplied, and the area

under the product of the two signals is computed. If the cross-correlation function is

normalized by the product of the square root of the auto cross-correlation of each

function, then the normalized cross correlation will have a range from 0 to 1. For two

signals that are the same, the cross-correlation at zero lag (when A= 0) is equal to 1.

The closer the cross-correlation value is to 1, the more similar the waveforms are to one

another.

It should be pointed out that the power spectra (Fourier and wavelets) in this study

are not continuous, but discrete. Therefore, to compute the discrete cross-correlation, the

following equation was used [26]:

where N is the number of points in the signal. To compute the cross-correlations for this

section, a Matlab program was written and is listed in Appendix B.

Based on the cross-correlation method presented, the cross-correlation coefficient

between the Fourier power spectrum and the wavelet power spectrum was calculated for

each COPD subject. Table 5.1 tabulates the cross-correlation results. It should be noted

that the table displays the maximum absolute value of the cross-correlation function.

From the table and the graph in figure 5.17, the values are from 0.2 to over 0.9 but all

values indicated that the Morlet wavelet is the best representation.
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Table 5.1 Correlation Indices of Wavelet Representations

Subject Wigner Morl Meyer dB4 Mex Hat Haar
1 0.551 0.655 0.625 0.613 0.443 0.436

2 0.532 0.864 0.845 0.725 0.523 0.441

3 0.189 0.690 0.600 0.662 0.659 0.484

4 0.577 0.926 0.841 0.797 0.579 0.483

5 0.571 0.733 0.661 0.676 0.434 0.479

6 0.524 0.857 0.789 0.611 0.430 0.466

7 0.487 0.661 0.516 0.516 0.500 0.665

8 0.438 0.720 0.537 0.684 0.221 0.211

9 0.357 0.547 0.521 0.259 0.222 0.222
10 0.532 0.864 0.845 0.725 0.523 0.441
11 0.189 0.690 0.600 0.662 0.659 0.484
12 0.551 0.655 0.625 0.613 0.314 0.211
13 0.577 0.917 0.865 0.711 0.579 0.408
14 0.537 0.760 0.681 0.686 0.434 0.491
15 0.544 0.840 0.793 0.616 0.432 0.485
16 0.476 0.661 0.516 0.516 0.500 0.665
17 0.348 0.820 0.737 0.684 0.221 0.211
18 0.395 0.550 0.523 0.256 0.200 0.222
19 0.524 0.875 0.835 0.755 0.593 0.461
20 0.352 0.852 0.640 0.780 0.635 0.408
21 0.593 0.682 0.652 0.599 0.229 0.109
22 0.554 0.921_ 0.866 0.556 0.627 0.425
23 0.463 0.698 0.609 0.627 0.504 0.593
24 0.461 0.697 0.688 0.659 0.531 0.544
25 0.492 0.686 0.629 0.727 0.305 0.339
26 0.399 0.861 0.755 0.623 0.167 0.214
27 0.548 0.820 0.662 0.267 0.261 0.195
28 0.531 0.865 0.836 0.691 0.520 0.411
29 0.260 0.892 0.600 0.702 0.682 0.478
30 0.573 0.918 0.865 0.502 0.581 0.409
31 0.613 0.765 0.661 0.641 0.436 0.517
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Table 5.1 (Cont.) Correlation Indices of Wavelet Representations

Subject Wigner Morl Meyer dB4 Mex Hat Haar
32 0.554 0.828 0.817 0.656 0.346 0.490
33 0.584 0.720 0.668 0.539 0.487 0.629
34 0.603 0.611 0.594 0.620 0.303 0.222
35 0.440 0.639 0.750 0.684 0.238 0.226
36 0.532 0.729 0.565 0.244 0.282 0.216
37 0.537 0.866 0.845 0.731 0.542 0.408
38 0.279 0.649 0.630 0.780 0.598 0.459
39 0.564 0.917 0.850 0.525 0.592 0.411
40 0.588 0.748 0.657 0.641 0.446 0.516
41 0.550 0.837 0.828 0.680 0.410 0.510
42 0.551 0.840 0.769 0.759 0.559 0.644
43 0.639 0.700 0.621 0.580 0.475 0.243
44 0.445 0.619 0.758 0.679 0.235 0.253
45 0.549 0.706 0.537 0.260 0.253 0.262

179

Figure 5.17 Graph of correlation indices for wavelet representations.



5.2.6 Vagal Tone and Sympathovagal Balance via Time-Frequency Distribution of
COPD Subjects

Although the inherent rhythmicity of the heart is due to a natural pacemaker situated in

the sinoatrial node, continuous beat-to-beat control of the heart is dependent on the

relative balance of the sympathetic and the parasympathetic impulses delivered from the

brain to the sinus node. From drug studies, three discrete frequency ranges in the

spectrum of HRV were found to be of importance: a very low frequency range (VLF,

0.02 to 0.04 Hz), a low frequency range (LF, 0.04 to 0.15 Hz) and a high frequency range

(HF, 0.15 to 0.5 Hz). The VLF band was equated with the rennin-angiotensin system, the

LF band with blood pressure and baroreflex control, and the HF band with respiration.

The LF band is mediated by both the sympathetic and the parasympathetic pathways

while the HF band is mediated by the parasympathetic pathways only.

Assessment of the parasympathetic activity from spectral analysis is obtained via

a measurement of the area under the HF peak. Sympathetic activity is less easy to

quantify using this methodology [49]. A realizable goal is that of the sympathovagal

balance measurements (LF/HF ratio), which recognizes both the reciprocal and the non-

reciprocal parasympathetic and sympathetic influences on heart rate. [49] Factors other

than the cardiac nerves can also alter the heart rate (HR). The HR is also sensitive to

changes in body temperature, plasma electrolyte concentrations and hormones. However,

these factors are normally less important than the sympathetic and the parasympathetic

nerve pathways to the heart [49].
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This section looks at some applications of the wavelet time frequency distribution

techniques. At the same time, comparisons of different wavelets are done to find the best

wavelet for the sympathovagal case.

The wavelet distributions were calculated using our wavelet time frequency

distribution software. The program then analyzed the representative heart rate and blood

pressure RBI signals of a COPD subject. The 3D, contour plots and the activity plots

were obtained for the entire file by calculating the areas under the LF, HF ranges for each

instant of time. The sympathovagal balance (the ratio of the LF to the HF range, LF:HF)

was also obtained. As mentioned earlier drug studies indicate that the LF range is a

mixture of sympathetic and parasympathetic division activity. The ratio is an indication

of both reciprocity and non-reciprocity [50].

Figures 5.18 — 5.27 display the 5-minute activity plots of a COP subject at rest

breathing at 16 breaths per minute using the Morlet, Meyer, Daubechies 4, Mexican Hat

and Haar wavelet. The even figures (5.18, 5.20, 5.22, 5.24 and 5.26) present the low

frequency, the high frequency and the ratio of low frequency to high frequency as

obtained by summing the areas under the curves in the LF and HF bands at each instant of

time throughout the whole experiment period. The odd figures (5.19, 5.21, 5.23, 5.25

and 5.27) present the normalized low frequency, the normalized high frequency and the

normalized ratio of the low frequency to high frequency. The normalized LF and HF

activity plots are obtained by dividing at each instant of time the LF and HF power by the

sum of both as follows:
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These figures basically show that at rest, the trend of the relative power is higher

in the high frequency range than in the low frequency range. In addition, the oscillation

in the HF range is more than double the oscillation in the LF range. Fast oscillation in the

HF range indicates that the parasympathetic activity of the COPD subject had to make

faster and more regular adjustments to sustain the resting state and at the same time to

compensate for the higher than normal breathing rate that contributes to more power in

the HF range. The ratio of the LF to HF emphasizes the dominance of the LF activity

during rest even though there is a regular compensation in the HF activity due to higher

respiration rate.

Figures 5.18 — 5.27 replicate the same findings using the Morlet, Meyer, dB4,

Mexican Hat and Haar wavelet. The differences between these wavelets relate back to

the properties of the mother wavelet. The Mexican Hat and the Haar wavelets still

present the cross-term interference problem. The dB4 is the higher order Haar wavelet

that improves the cross-term a little. However, the clarity of presentation and the

smoothest display of Morlet wavelet have demonstrated its use as a suitable HRV time-

frequency analysis method.
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Figure 5.18 Sympathetic and parasympathetic mixture plots of RR using Morlet wavelet
(COPD subject in 5 min rest, breathing at 16bpm).

Figure 5.19 Normalized sympathetic and parasympathetic mixture plots of HR using
Morlet wavelet (COPD subject in 5 min rest, breathing at 16bpm).



Figure 5.20 Sympathetic and parasympathetic mixture plots of HR using Meyer wavelet
(COPD subject in 5 min rest, breathing at 16bpm).
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Figure 5.21 Normalized sympathetic and parasympathetic mixture plots of HR using
Meyer wavelet (COPD subject in 5 min rest, breathing at 16bpm).



Figure 5.22 Sympathetic and parasympathetic mixture plots of HR using Daubechies 4
wavelet (COPD subject in 5 min rest, breathing at 16bpm).
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Figure 5.23 Normalized sympathetic and parasympathetic mixture plots of HR using
Daubechies 4 wavelet (COPD subject in 5 min rest, breathing at 16bpm).



Figure 5.24 Sympathetic and parasympathetic mixture Plots of HR using Mexican Hat
wavelet (COPD subject in 5 min rest, breathing at 16bpm).
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Figure 5.25 Normalized sympathetic and parasympathetic mixture plots of HR using
Mexican Hat wavelet (COPD subject in 5 min rest, breathing at 16bpm).



Figure 5.26 Sympathetic and parasympathetic mixture plots of HR using Haar wavelet
(COPD subject in 5 min rest, breathing at 16bpm).
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Figure 5.27 Normalized sympathetic and parasympathetic mixture plots of HR using
Haar wavelet (COPD subject in 5 min rest, breathing at 16bpm).



5.2.7 Time-Frequency Analysis (Wavelet) of Blood Pressure Variability

In order to experiment with analyzing COPD BPV signals, the BP IIBI signal is used.

One example of the BP IIBI signals is from a COPD subject resting and paced-breathing

at 16 breaths per minute. Figure 5.28 illustrates the BP IIBI and its power spectrum plots

for the case of a file from a COPD subject paced breathing at 16 bpm during a 5 minutes

rest period. The BP analysis was also performed using the five different wavelet

distributions (Morlet, Meyer, Daubechies 4, Mexican Hat and Haar) with the same

specifications (length of analysis window equals to 200 and the length of FFT analysis of

256).
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Figure 5.28 Plot of blood pressure IBI and its power spectrum using Fourier transform.



The purpose of this is to show that, although the output for different wavelets

varies, the fundamental characteristics of the wavelet transform are the same. Figure 5.29

— 5.33 show the results of these transforms. A band of cones of influence corresponding

to each minima and maxima on the BP IIBI signal at the frequency of respiration (16

bpm, 0.266667 Hz) appears in each wavelet transform representation. In addition, the

power intensity of the band is as high as the similar band shown in the normal subject

case investigated in section 5.2.2. Another band of cones of influence in the very low

frequency range (0.01 — 0.15 Hz) also exists with high energy and in longer time (from 10

seconds to 120 seconds, to 180 seconds, to 250 seconds). This matches the trend of the

blood pressure IIBI signal that can be seen in figure 5.28 (top panel, signal in green).

Among the wavelets, the Morlet wavelet again provides the best representation in terms

of time, frequency resolution and meaningful details. The band of the cones of influence

at 0.266667 Hz modulated slightly indicating that the BPV is also dominated by the

respiration signal and is also not a stationary signal.

There are also many interesting observations unveiled from the data and the

experimental setup of the normal and COPD subjects. The first was the interplay of the

two opposing physiological factors that were simultaneously revealed in the time-

frequency analysis of the heart rate variability signal during stressful exercise conditions

for normal subjects and during rest for COPD patients. Another was the compensation of

the HR in COPD by having a cyclic modulation at about 4 to 5 minutes while normal

subjects took longer to have these HR modulations and in a more random nature.
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Figure 5.29 3D and contour plot of blood pressure spectrum using Morlet wavelet.
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Figure 5.30 3D and contour plot of blood pressure spectrum using Meyer wavelet.



Figure 5.31 3D and contour plot of blood pressure spectrum using DB4 wavelet.
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Figure 5.32 3D and contour plot of blood pressure spectrum using Mexican Hat wavelet.



Figure 5.33 3D and contour plot of blood pressure spectrum using Haar wavelet.

Figures 5.34 — 5.43 display the 5-minute BPV activity plots of a COPD subject at

rest breathing at 16 breaths per minute using the Morlet, Meyer, Daubechies 4, Mexican

Hat and Haar wavelet. The figures present the non-normalized and the normalized low

frequency, the high frequency and the ratio of low frequency to high frequency activity

plots. At rest, the trend of the relative power is much higher in the high frequency range

than in the low frequency range. However, the parasympathetic relative power cycles

from high to low in two minutes and then repeats. While the LF and HF plots are

different, the plots of the ratio of the LF to HF for BPV are similar to those ratio plots for

HRV of the same COPD subject.
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The activity plots for BPV using the Monlet, Meyer, dB4, Mexican Hat and Haar

wavelet all show similar trend. The non-normalized plots paint a better picture of what is

happening. The LF starts out high and decreases to near zero in about 2 minutes, then

changes direction trying to get back to the beginning state. The HF also starts out high

but decreases to near zero value in half the time as the LF and stays near zero for almost 4

minutes before heading back up to the beginning state. All the normalized plots of LF

and HF show mirror images but totally opposite of each other. The LF/HF ratio plots all

start near zero indicating that there is stronger parasympathetic effect at the beginning.

However, the sympathovagal balance tries to reach to a level of twice that of the vagal

tone for almost the entire 5-minute session.
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Figure 5.34 Sympathetic and parasympathetic mixture plots of BP using Morlet wavelet.
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Figure 5.35 Normalized sympathetic and parasympathetic mixture plots of BP using
Morlet wavelet.



Figure 5.36 Sympathetic and parasympathetic mixture plots of BP using Meyer wavelet.

195

Figure 5.37 Normalized sympathetic and parasympathetic mixture plots of BP using
Meyer wavelet.



Figure 5.38 Sympathetic and parasympathetic mixture plots of BP using Daubechies 4
wavelet.
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Figure 5.39 Normalized sympathetic and parasympathetic mixture plots of BP using
Daubechies 4 wavelet.



Figure 5.40 Sympathetic and parasympathetic mixture plots of BP using Mexican Hat
wavelet.
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Figure 5.41 Normalized sympathetic and parasympathetic mixture plots of BP using
Mexican Hat wavelet.



Figure 5.42 Sympathetic and parasympathetic mixture plots of BP using Haar wavelet.
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Figure 5.43 Plot of normalized LF, HF, and sympathovagal balance of blood pressure
using Haar wavelet.



5.3 Coherence/Partial (Weighted) Coherence Analysis of Heart Rate Study

The typical results of the cross-spectral analysis for a subject (either normal or COPD) are

shown in Figures 5.44 - 5.46. The first two panels of figure 5.44 are the plots of the raw

respiration and ECG signals, respectively. The third panel is the heart rate IBI obtained

from the ECG. The fourth and fifth panels show the raw blood pressure and the blood

pressure MI signals. The last two panels are the heart rate and blood pressure spectra,

respectively. Figure 5.45 shows the coherence plots of HR & Resp, HR & BP and BP &

Resp in the LF range with their weighted coherence values. Figure 5.46 shows the partial

coherence plots of HR & Resp, HR & BP and BP & Resp in the LF range with their

weighted partial coherence values. Similarly, figures 5.47 and 5.48 show the coherence

and partial coherence plots in the HF range, respectively.

The analysis for all 8 normal subjects was performed and tabulated in table 5.2.

The results of the coherence/partial (weighted) coherence analysis for all 47 COPD

subjects was performed and tabulated in table 5.3.

199



200

Figure 5.44 Plot of raw respiration, ECG, BP, HR IIBI, BP IIBI, HR and BP power
spectrum signals of a subject (COPD subject Agul), 5 min at rest breathing at 16 bpm.
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Figure 5.45 'the LF coherence plots of a subject (COPD subject Agul), 5 min at rest
breathing at 16 bpm.
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Figure 5.46 The LF partial coherence plots of a subject (COPD subject Agul), 5 min at rest
breathing at 16 bpm.



Figure 5.47 The HF coherence plots of a subject (COPD subject Agul), 5 min at rest
breathing at 16 bpm.
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Figure 5.48 HF partial coherence plots of COPD subject AGU1, 5 min at rest breathing
at 16 bpm.



Table 5_2 Cross-spectral Analysis of 211 R Normal Subjects



Table 5.2 Cross-Spectral Analysis of all 8 Normal Subjects (Continued)



Table 5.3 Cross-Spectral Analysis of all 47 COPD Subjects



Table 5.3 Cross-Spectral Analysis of all 47 COPD Subjects (Continued)



The LF coherences for all COPD and normal subjects are plotted in figure 5.49.

The 47 COPD subjects are indicated as data points 1-47. The 8 normal subjects are

shown as data points 48-55. The HF coherences for all COPD and normal subjects are

plotted in figure 5.50. The LF partial coherences for all COPD and normal subjects are

plotted in figure 5.51. The HF partial coherences for all COPD and normal subjects are

also plotted in figure 5.52. From these figures, it is quite difficult to compare the

differences of the coherence and partial coherence values for the COPD and the normal

subjects. Other statistical methods are needed.
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Figure 5.50 HF coherence of COPD (1-47) and normal (48-55) subjects.
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Figure5.51 LF partial coherence of COPD (1-47) and normal (48-55) subjects.
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Figure 5.52 HF partial coherence of COPD (1-47) and normal (48-55) subjects.



For better presentation of the cross-spectral data, a descriptive statistical analysis

is performed. The statistical analysis of coherence and partial coherence for both normal

and COPD subjects is summarized in table 5.3.1. From this table, the mean weighted

coherence and partial coherence values are plotted as shown in figure 5.53. From this

figure, both the coherence and partial coherences in the LF range of normal subjects are

almost double the values of COPD subjects. In the HF range, only the coherence and

partial coherence values between HR & Rsp of normal are significantly higher than

COPD subjects. These observations may indicate that heart rates in normal subjects are

affected by respiration a lot more than COPD subjects. With much higher

coherence/partial coherence in the LF range, both the sympathetic and parasympathetic

activities of the ANS contribute much more to variation in heart rate of normal subjects

than COPD subjects.

Figure 5.53 also shows higher coherence and partial coherence values between BP

and respiration of COPD subjects in the HF range than those of normal subjects. This

may be due to a more dominant coupling effect of the respiration signal on the blood

pressure in COPD subjects while this phenomenon is absent in the normal population.

Since COPD subjects breathe faster and more shallow, with the coupling effect of

respiration on blood pressure, it causes the blood pressure to have less variability which

in turn causes less changes in heart rate variability in COPD subjects.
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Figure 5.53 Coherence and partial coherence comparison between normal and COPD.
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5.4 Cardiovascular System Models for Normal Subjects

A model of heart rate (HR) and arterial blood pressure (ABP) control similar to that

shown in Figure 5.54 has recognized the complex interactions between FIR and ABP

during closed-loop operation of the cardiovascular system. This model has been

previously proposed and now widely accepted as a simple feedback and control model of

the cardiovascular system [29].
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Figure 5.54 Simple feedback and control model of ABP and HR regulation. Respiration
enters as input, ABP and HR are outputs.

Previous studies have successfully used non-parametric transfer function analysis

in combination with broadband noise sources to address the following problems:

1. Identification of the transfer relations between HR, ABP and the respiratory noise

sources experimentally has been limited during spontaneous operation because the

frequency content of the noise sources is relatively narrow-band and provides

insufficient excitation energy at any relevant physiological frequencies.



2. Interpretation of the transfer relations has been limited by insufficient

characterization of the central and peripheral mechanisms, which mediate these

relations (e.g. — the sino-atrial (SA) nodal responses, the mechanical coupling

relations, and the baroreceptors).

In this research the author uses the same model of the cardiovascular system for

normal subjects using the experimental data taken from ten normal healthy subjects. In

the HRV modeling task, the transfer functions of the HRV model is estimated from a

black box model using the actual respiration (rsp) data as input and

1) The iibi signal derived from the actual ECG as output, and/or

2) The actual blood pressure data as output.

In previous studies the transfer or frequency response functions were all

calculated using the cross spectral method. The autospectra of the input signal (e.g.

respiration), S1 (f) and of the output signal (e.g. — HR), Soo (f) were estimated. The

cross-spectra, S t, (f ), between the input and output signals were also computed. Then,

the complex transfer function, H(f), and its magnitude and phase, |H(f)| and 0(f)
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where R and I are the real and imaginary components of the complex transfer function.



In addition, group-average transfer function estimates were derived for all the studies by

using a weighting algorithm based on the coherence estimates 7 2 (f) for each individual

transfer function [29].

However, in this research the MATLAB System Identification toolbox is used to

estimate the transfer function. As one can see below, with minor modification to the

programs in the toolbox, the model transfer function can be easily obtained and the results

are quite acceptable. Once the transfer function is obtained, the cardiovascular system

model for normal subjects is estimated. It can now be examined and be used for further

investigation. This estimated model of normal subjects would also be used as reference

in developing the diseased cardiovascular model for COPD patients.

Figures 5.55 — 5.59 present the case of a file from a normal subject resting and

breathing at 14 breaths per minute (bpm). The HRV iibi signal was derived from the

ECG signal and the first half of this signal was used as output of the cardiovascular model

while the first half of the respiration signal was used as the single input. The two halves

of the input/output were used to calculate the coefficients of the transfer function for the

model.

Figure 5.55 shows the rsp input and the iibi signal derived from the actual ECG as

output. Below the figure are the transfer function coefficients of the estimated model in

System Identification format. The basic format for representing models in the System

Identification Toolbox is called the theta format. It stores all relevant information about

the model structure used, including the values of the estimated parameters, the estimated
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covariances of the parameters, and the estimated variance and so on. It also contains

some information about how and when the model was created.
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Figure 5.55 Plot of output HR IIBI (Top) and input RSP (Bottom) signals.

» present(th);

This matrix was created by the command ARX on 4/16 2001 at 5:55

Loss fcn: 0.071384 Akaike's FPE: 0.071431 Sampling interval 0.005

The polynomial coefficients and their standard deviations are:

B=

Columns 1 through 7

0 0 0 -0.0072 -0.0103 -0.0008 -0.0003
0 0 0 0.0174 0.0177 0.0180 0.0181



Columns 8 through 13

-0.0114 0.0063 0.0139 0.0169 0.0216 0.0175
0.0182 0.0182 0.0181 0.0180 0.0177 0.0174

A=

Columns 1 through 7

1.0000 -0.9960 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
0 0.0041 0.0058 0.0058 0.0058 0.0058 0.0058

Columns 8 through 11

-0.0000 0.0000 0.0000 -0.0019
0.0058 0.0058 0.0058 0.0041

>>

The information in the theta format is displayed by the present command

present(th) and the results are shown above. This spells out the information in the

calculated model th. Depending on the character of the underlying model structure, the

information is given
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Estimated standard deviations for the parameters are always supplied. For

multivariable ARX models and for state-space matrices, the standard deviations are given

as imaginary numbers added to the parameters. For the polynomials they are given as a

second row. For the case shown above, the polynomial coefficients and their standard



deviations are interpreted as A(q) =1 — 0.9960q -1 — 0.0019e 0 and the standard deviation

of "1" is zero (naturally enough, since it is not estimated). The standard deviation of a l is

0.0041, a 2 through a9 is 0.0058 and a10 is 0.0041.

Note that leading zeros in the B(q) polynomial indicate the delay. In this case,

Figure 5.56 shows the actual iibi output (derived HRV signal) (blue) and the

estimated model simulated output (green). From this figure, it is cleared that the simple

ARX model does not estimate the amplitude of the HRV output well. However, the

period of the simulated output mimics the heart rate variability period very closely. The

period of the iibi signal is the desired information needed to be obtained from the model

and the amplitude needs not be matched exactly since the iibi of the ECG gives twice the

HRV information. The estimated model provides the period variation information and

this is all one can ask for out of the simple ARX model provided by the System

Identification.
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Figure 5.57 Poles and zeros graph of the HRV model using RSP as input and HR IIBI as
output.

221



Figure 5.58 Bode plot of the HRV model using RSP as input and HR IIBI as output.

Figures 5.58 and 5.59 show the poles/zeros plot and the Bode plot of the blackbox

model calculated using the rsp as input and iibi as output. Figure 5.60 indicates the

comparison between the system and the simulated amplitude and phase response. Notice

that even with a simple ARX model, the amplitude and the low frequency phase of the

Bode plot of the system and the simulated model match relatively well. The phase plot of

the real system and the simulated model seem to diverge greatly for frequencies beyond

the cut-off frequency.
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Figure 5.59 Compare the estimate of the transfer function by spectral analysis (Blue)
and by model (Green) using RSP as input and HR IIBI as output.

The data for all 8 normal subjects were analyzed, tabulated and statistically summarized

as shown in table 5.4:

Table 5.4 Gain and Phase Data of Normal Subjects

3dB Gain 3dB Freq Hz -45 (Hz) -90 (Hz) -180 (Hz)

Mean 243.83 0.0735 0.0808 0.7062 5.7767

Std Error 51.31 0.0152 0.0188 0.2835 1.1347

Median 185.42 0.0670 0.0796 0.4216 4.77

STD 162.26 0.0480 0.0593 0.8965 3.8840

Variance 26327.25 0.0023 0.00352 0.8037 12.8764
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In this section a simple model of cardiovascular-respiratory interaction in humans

is presented. The data analyzed, ECG, BP and respiratory signals, have these features:

1. The physiological signals have different forms (respiration is a narrow-band signal,

while BP and ECG can be reduced to spike pulse trains);

2. The characteristic time scales of the signals are different (there are always several

heart beats or BP cycles per respiratory cycle) and vary within each data recording

period.

3. Oscillation coupling is probably related to modulation of the HR and BP by

respiration.

From table 5.4 one cannot give much insight to what is happening until this table

is compared to a similar table obtained from the COPD model in section 5.5
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5.5 Cardiovascular System Models for COPD Subjects

The next goal of this research was to use system identification techniques to develop a

HRV model first for healthy normal subjects and then use this normal cardiovascular

model as reference for the design of the diseased model that can represent the physical

attributes of the COPD patients using an adaptive controller. An adaptive controller

differs from an ordinary controller in that the controller parameters are variable, and there

is a mechanism for adjusting these parameters online based on signals in the system. In

this research the author used the so-called Model-Reference Adaptive Control (MRAC)

model. A schematic of the MRAC system is represented in Figure 5.59.1. It is composed

of four parts: a plant of the COPD cardiovascular system containing unknown parameters,

a reference model of the cardiovascular system for compactly specifying the desired

output (e.g. HR and ABP) of the control system, a feedback control law containing

adjustable parameters, and an adaptation mechanism for updating the adjustable

parameters [50].
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Figure 5.59.1 An adaptive COPD cardiovascular system model.



The data for all 47 COPD subjects were also analyzed, tabulated and statistically

summarized as shown in table 5.5:

Table 5.5 Gain and Phase Data of COPD Subjects

3dB Gain 3dB Freq Hz -45 (Hz) -90 (Hz) -180 (Hz)

Mean 213.42 0.0857 0.1633 0.6722 93.1328

Std Error 35.84 0.0215 0.0838 0.8285 5.3413

Median 195.11 0.0730 0.0918 0.2356 11.47

STD 181.42 0.0512 0.0633 0.8657 8.8880

Variance 6147.49 0.0048 0511 0.8792 20.4733

Comparing tables 5.4 and 5.5, the 3dB gains and 3dB frequencies of the normal

and COPD subjects are similar. However, all three phase data points at —45, -90 and —

180 degrees of COPD show a significant lag in response time. The lag time is commonly

referred to as propagation time or dead time because no output is produced during this

time.

The gain and phase data obtained from cardiovascular modeling of normal and

COPD show definite changes in the way the baroreflex behaved in normal and COPD

subjects. Since the COPD model represents a disease state, it is obvious that the lag time

affects the stability of a control system. Although lag time in COPD cannot be eliminated

from the model, it may certainly be reduced. In addition, the system loop gain may be

adjusted until the system is stable. This is verified from the fact that the cardiovascular

system still works in COPD and that the COPD 3dB gain is slightly smaller than that of

normal subjects.
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5.6 Principal Component Analysis

As mentioned in section 3.14, the principal components were arranged in order of

decreasing variance with the most informative principal component listed first, and the

least informative listed last. The dimensionality of the problem was reduced, i.e.,

reduces the number of variables without losing much of the information. Thus instead of

analyzing a large number of the original variables with complex interrelationships, the

data could be analyzed by a small number of uncorrelated principal components.

Figure 5.60 presented a principal component plot of the data set containing 48

COPD and 8 normal subjects at rest. The data set gave the following principal

components (PC):

1 st PC: LF_coh_HR_rsp — Coherence of HR and respiration signals in the LF

range (0.04 - 0.15 Hz).

2nd PC: HF _ coh _ BP _rsp — Coherence of BP and respiration signals in the HF

range (0.15 - 0.4 Hz).

3 rd PC: rsp — The respiration rate.

This indicated that the largest variance between COPD and normal subjects was

the interrelationships between heart rate and respiration. The second largest variance was

the interrelationships between blood pressure and respiration. The third largest variance

was the respiration rate itself.
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Figure 5.60 Normal and COPD classification using principal component analysis
(PCA).
Note: (o: Normal; +: COPD)

Table 5.6 Principal Components from Normal and COPD Data

P1 P2 P3 Categories
rsp0.0351 -0.3625 0.3099

0.2960 -0.1943 0.0928 HR
0.2729 -0.2367 0.1637 BP
0.3800 0.0271 -0.0793 LF_coh HR_rsp
0.2725 -0.0886 -0.3849 LF_coh_HR_BP

0.3349 0.2178 -0.0244 LF coh BP rsp
0.3416 0.0691 -0.0556 HF_coh_HR_rsp
0.1389 0.1252 -0.5128 HF cohHRBP
0.1924 0.4961 0.0194 HF_coh BP rsp
0.3386 -0.2607 0.0482 LF_pcoh_HR_rsp
0.0449 0.0540 -0.0351 LFpcoh_HR_BP
0.3341 0.1433 0.0701 LFpcoh_BP rsp
0.2954 -0.2978 0.2039 HF_pcoh_HR_rsp
-0.0170 -0.2281 -0.5558 HF_pcoh_HR_BP
0.1308 0.4691 0.2969 HF_pcoh_BP_rsp
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Figure 5.61 presents a principal component plot of the data set containing 47

COPD at rest and 8 normal subjects at 50%, 75% and 100% load. The data set gave the

following principal components (PC):

1 st PC: rsp — The respiration rate.

2nd PC: HF _ coh_ HR_ BP — Coherence of HR and BP IIBI signals in the HF range

(0.15 - 0.4 Hz).

3 rd PC: HF_pcoh_HR_BP — Partial Coherence of HR and BP IIBI signals in the

HF range (0.15 - 0.4 Hz).

This indicated that the largest variance between COPD at rest and normal subjects

during exercise was the breathing rate (respiration). The second largest variance was the

interrelationships between HR and blood pressure in the HF range. The third largest

variance was the partial interrelationships between HR and blood pressure in the HF

range. The 1 st PC of the respiration indicated that the higher breathing rate of the COPD

subjects was not the same in the HRV sense even though normal subjects increased their

respiration rate to a similar level. Once the respiration PC was removed, the residual

interrelationship was that between HR and blood pressure in the HF range.
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Figure 5.61 Normal and COPD classification using principal component analysis (PCA).
Note: (+: COPD; others: Normal).

Table 5.7 Principal Components from Normal and COPD Data

P1 P2 P3 Categories
0.2786 -0.2679 0.0641 rsp
0.1821 -0.4329 -0.0664 HR
0.2003 -0.4289 -0.0794 BP
-0.3381 -0.2261 0.0720 LF_coh_HR_rsp
-0.2748 -0.0542 0.2845 LF_coh_HR_BP
-0.3504 -0.1026 -0.0994 LF_coh_BP_rsp
-0.3003 -0.2006 0.0039 HF_coh_HR_rsp
-0.3012 0.1989 0.2501 HF_coh_HR_BP
-0.3300 0.1176 -0.3431 HF_coh_BP_rsp
-0.2354 -0.3680 0.2052 LF_pcoh_HR_rsp
-0.0736 -0.0101 -0.0148 LF_pcoh_HR_BP
-0.3184 -0.1643 -0.1079 LF_pcoh_BP_rsp
-0.1085 -0.4427 0.1169 HF_pcoh_HR_rsp
-0.1080 0.1885 0.5983 HF_pcoh_HR_BP
-0.2463 0.0679 -0.5323 HF_pcoh_BP_rsp
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Figure 5.62 presents a principal component plot of the data set of 8 normal

subjects exercised at 50%, 75% and 100% load. The data set gave the following principal

components (PC):

1 st PC: rsp — The respiration rate.

2nd PC: BP — The blood pressure rate.

3 rd PC: LF_pcoh_ HR_ BP — Partial Coherence of HR and BP IIBI signals in the

LF range (0.04 - 0.15 Hz).

This indicated that the largest variance between normal subjects during exercise

was the breathing rate (respiration). The second largest variance was the blood pressure.

The third largest variance was the partial interrelationships between HR and blood

pressure in the LF range. The 1 st PC of the respiration showed the obvious indication of

exercise in normal subjects with increased breathing rate followed by the increased in

blood pressure in order to meet the increased oxygen demand. Once the respiration PC

was removed, the residual interrelationship was that between HR and blood pressure in

the LF range.
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Figure 5.62 Normal classification using principal component analysis (PCA).
Note: (red: 50%, blue: 75% and black: 100% AT exercise).

Table 5.8 Principal Components from Normal Exercise Data

P1 P2 P3 Categories
0.1808 -0.3223 0.3405 rsp
0.1516 0.5183 0.1746 HR
0.1428 0.5321 0.1498 BP
-0.3332 -0.0238 -0.0139 LF_coh_HR_rsp
-0.2823 0.0823 0.3773 LF_coh_HR_BP
-0.2901 -0.0642 0.3060 LF_coh_BP_rsp
-0.2851 0.0547 -0.3642 HF_coh_HR_rsp
-0.2326 0.0083 -0.2892 HF_coh_HR_BP

-0.2361 0.3173 -0.1673 HF_coh_BP_rsp
-0.3458 -0.0110 0.0223 LF_pcoh_HR_rsp
-0.2652 0.0979 0.3797 LF_pcoh_HR_BP
-0.2982 -0.0385 0.3181 LF_pcoh_BP_rsp
-0.2627 -0.0339 -0.3151 HF_pcoh_HR_rsp
-0.2155 -0.3432 0.0706 HF_pcoh_HR_BP
-0.2523 0.3145 -0.0252 HF_pcoh_BP_rsp
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Table 5.9 Principal Components of Different Population Groups

PC1 PC2 PC3

Normal
(Exercise)

RSP BP LF_PCOH_HR_BP

Normal
+ COPD1

RSP HF_COH_HR_BP HF_PCOH_HR_BP

Normal
+ COPD2

LF COH HR RSP_	 _	 _ HF' COH BP RSP_	 _	 _ RSP

Table 5.9 shows the summary of the principal component analysis for the three

cases of the HRV study for both normal and COPD subjects. The data set for normal

subjects during exercise shows the respiration rate was first principal component (PC);

the blood pressure was the second PC and the partial coherence value between heart rate

and blood pressure in the low frequency range was the third PC. When the first set of

data that combined the COPD and normal data was used, only the first PC of respiration

was the same and the other two PC's were different. When the second set of the

combined COPD-normal data was used, the three PC's were completely different. This

fact indicates that the PCA method is not "event" dependent but the technique is only

adaptive to the actual data used.
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5.7 Cluster Analysis

The purpose of using principal component analysis (PCA) and cluster analysis (CA) is

illustrated by the results of figures 5.63 and 5.64 and summarized in Table 5.10. First,

PCA-CA was used to blindly separate the normal subjects and COPD patients using a

data set that contained the physiological data such as heart rate, blood pressure rate and

respiration rate as well as the cross-spectral results of the (weighted) coherence and

partial coherence in both the LF and HF range. Figure 5.63 clearly shows the separation

between the COPD group (green squares and blue pluses) from the normal group (red

circles). In the same figure, one red circle of a normal subject was placed near a blue plus

and a green square of the COPD subject. The reason for this may be that the COPD

subjects represented by blue plus and green square may only be at risk of the disease.

Hence, their physiological parameters placed them near that of the normal subject. The

COPD group is represented in green and blue markers because their data came from the

same COPD group, but were from two different testing trials. This proves that cluster

analysis could separate the normal and COPD subjects and the results were reproducible,

i.e. same results for the same COPD group even with different data sets from different

experimental trials.

Figure 5.64 shows the results of not only normal and COPD blind separation but

also the COPD severity classification. When the desired number of clusters was set prior

to running the cluster analysis program to separate the normal group (cluster 1) from the

"at risk" group (cluster 2), the "mild' group (cluster 3), the "moderate" group (cluster 4)

and the "severe' group (cluster 5), the result was the graph of figure 5.64. This is the first

attempt at this type of blind separation and classification. Another more fine-tuned
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attempt by adjusting the threshold of the correlation coefficients would provide a better

and more defined group of clusters. However, this would defeat the purpose of blind

separation and classification.

The COPD assignment of the 47 COPD and 8 normal subjects are

presented in Table 5.10. When compared to the clinical classification using FEV1 over

FVC data the PCA-CA classification technique produces very high accuracy results. It

has been shown to separate the COPD from the normal population with 100% accuracy.

It can also classify the COPD population into "at risk", "mild", "moderate" and "severe"

stages with 100%, 90%, 88% and 100% accuracy respectively. As a result, cluster and

principal component analysis can be used to separate COPD and normal subjects and can

be used successfully in COPD severity classification.
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Figure 5.63 Separation of normal (Red) from COPD subjects (Blue/Green).



Figure 5.64 Severity classification of normal and COPD subjects.
(Normal: blue circle, At Risk: green star, Mild: cyan pentagon, Moderate: magenta
square and Severe: red diamond).

Table 5.10 Summary of Normal-COPD Severity Classification
Stage Clinical PCA-CA % Accuracy

Severe 4 4 100.00

Moderate 17 15 88.23

Mild 18 20 90.00

At Risk 8 8 100.00

Normal 8 8 100.00

236



CHAPTER 6

CONCLUSIONS

Recently, joint time-frequency signal representation has received considerable attention as

a powerful tool for analyzing a variety of signals and systems of biological origin, which

do not comply with the stationarity assumptions. The time-frequency representations of

signals can be classified as linear and quadratic. The linear time-frequency representations

(TFR) include the short-time Fourier transform (STFT) and the wavelet transform. All

linear TFR's satisfy the superposition or linearity principle. On the other hand, the

quadratic TFR's provide a time-frequency energy distribution or instantaneous power

spectrum [27]. They are called quadratic since the energy is a quadratic signal

representation. An energy distribution-based TF representation combines the

instantaneous power and the spectral energy density. The temporal and spectral

correlations can also be combined as an alternative quadratic representation [27].

In reality signals may have unknown spectral components. In that case, TFR's

may suffer significantly from cross-terms of these spectral components. This problem

may be partially overcome by designing specific kernels for the signal at hand. In this

dissertation, the author explored the possibility of better representation of three particular

biological signals, heart rate variability, blood pressure variability and respiration. The

author evaluated the use of time-frequency analysis to investigate the physical and

respiratory effects attributed to COPD.

In the first phase of this work, the application of five different bilinear

representations on modeled HRV test signals, and experimental HRV and BPV signals of
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both the normal and COPD subjects were evaluated. Each distribution: the short time

Fourier transform (STFT), the smoothed pseudo Wigner-Ville (SPWVD), the Choi-

Williams (CWD) and the Born-Jordan-Cohen (BJCD), has unique characteristics which

was shown to affect the amount of smoothing and the generation of cross-terms

differently. The same biological signals were also analyzed using five different types of

wavelets: the Morlet, Meyer, Daubechies 4, Mexican Hat and Haar wavelets. The

resulting 3D and contour plots were compared: first, visually and second, by using the

proposed correlation indices of the Wigner distribution, which was cited in the literature

[38] as the best distribution of the Cohen's class, and five presented wavelets. Although

four Cohen's class distributions and five wavelets were used to analyze the physiological

data, it was found that the Morlet wavelet was consistently proven to be the best time-

frequency technique for HRV, BPV and respiration analysis.

In all, the difficulty with TF analysis was the ability to extract the relevant

information. The resulting time-dependent spectra contained a lot of information and

knowing how to extract the information was crucial to the interpretation of the physiology.

By expanding the concept of spectral analysis of heart rate variability (HRV) into time-

frequency analysis, one was able to quantitatively assess the parasympathetic (HF) and

sympatho-vagal balance (LF:HF) changes as a function of time. As a result, the re-

assessment of the autonomic nervous system during rapid changes was made. The results

also demonstrated that TF analysis provided temporal and spectral localization that could

not be revealed by the use of standard spectral methods. The five wavelets were chosen

for further application because of overcoming the drawbacks of the other distributions by
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providing higher resolution in time and frequency while suppressing interferences between

the signal components.

The respiration analysis validated the physiological states the COPD subjects were

in. With shortness of breath, the breathing rate has to increase to supply the body with

more oxygen and remove more carbon dioxide, thus shifting the frequency of respiration

into higher ranges that could reach as high as 0.55 Hz (33 bpm). The HRV analysis of

normal subjects showed that with rest the average heart rate slows down while the

variability in the heart rate increases. On the other hand, with exercise, the average heart

rate speeds up while the variability in the heart rate decreases. Both the time-frequency

and statistical analysis of the HRV signals showed that a stressful exercise level drastically

changed the HRV signal and that there was a significant difference between the three

states of rest, exercise, and recovery.

In the second phase of this research, the cross spectral analyses (i.e. coherence,

weighted coherence and partial coherence) were used to investigate the increase or

decrease of the HRV, BPV or any of the combinations of HRV, BPV and respiration that

changed the behavior in the autonomic nervous system. Examination of the results for the

47 COPD and 8 normal subjects presented some real challenge because the peaks of the

ECG R-waves, blood pressure peaks and even respiration signals of COPD patients were

difficult to detect and analyze. However, the interrelationships between heart rate and

respiration, heart rate and blood pressure, and blood pressure and respiration could be

quantified and helped in understanding the various coupling effects between various

systems inside the body.

239



In summary, COPD subjects had higher respiratory rate, heart rate and blood

pressure while HRV and BPV were always lower than those of normal subjects.

From examining the transfer function and frequency response of the cardiovascular

system ARX models from both normal and COPD subjects, COPD models showed a

similar DC gain response (slightly less). However, there was a significant lag in phase (at

—180 °) for COPD models as compare to those of normal subjects.

In the last phase, a new methodology was proposed that used principal component

analysis and cluster analysis to identify diseased subjects from a normal population. This

method combines the techniques of principal component analysis (PCA) and cluster

analysis (CA) and has been shown to separate the COPD from the normal population with

100% accuracy. It can also classify the COPD population into "at risk", "mild",

"moderate" and "severe" stages with 100%, 90%, 88% and 100% accuracy respectively.

As a result, cluster and principal component analysis can be used to separate COPD and

normal subjects and can be used successfully in COPD severity classification.

In conclusion, wavelets as time-frequency representation provide great visual

benefit in analyzing HRV, BPV and other biological signals. Using cross-spectral

techniques such as coherence, partial coherence, and modeling transfer function analysis

also provided important insights to understanding the behavior of complex physiological

systems. Statistical techniques such as PCA and CA could be used as accurate tools of

severity classification and could be a great help in diagnosing different disease states non-

invasively.
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6.1 Future Work

The applications of time-frequency analysis are countless. The constantly improving

wavelet algorithms have provided more insight into a large number of clinical applications

in quantifying rapid (transient) changes in biological signals. One application may be the

assessment of exercise in athletes in order to find ways to induce an increase in the

parasympathetic activity during or immediately after strenuous exercise. It may also be

used to study electromyographical changes during various conditions or to assess

autonomic nervous system damage. A future project may be the assessment of the

autonomic nervous system in spinal cord injury patients. Comparison of the rate of change

of the vagal tone during a provocation of healthy subjects to spinal cord injured subjects

may allow us to categorize the severity of the injury as well as increase our understanding

of the nervous system dysfunction in spinal cord injured people. At last there are now

many new methods available to biomedical researchers to help them in their research.

In this dissertation, many signal processing techniques in time domain, frequency

domain, time-frequency domain as well as statistical techniques have helped providing

more insights to the heart rate variability field. Other helpful insights that might affect the

variability in the data are the gender, smoking, and fitness conditions, which should be

included in normal data for future research. With such a small sample of participants

(eight), these conditions should be limited to one gender and one fitness level, with no

smoking to assess better the findings in a specified population.
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APPENDIX A

EXERCISE PHYSIOLOGY

A.1 Borg Perceived Exertion Scale

Figure A.1 shows the Borg scale of perceived exertion. The original Borg scale of

perceived exertion has been modified. The number from 6 to 10 are in green, the

numbers from 11 to 15 are in yellow, and the numbers from 16 to 20 are in red, similar in

concept to traffic lights.

A.2 The Karvonen Formula

The Karvonen's Formula is an accurate way to calculate your desired aerobic training

intensity. The required information:

1. Your age in years.

2. Resting Heart Rate — in beats per minute. Take your resting heart rate in the

morning. Lie quietly and take a one-minute pulse. Do this for three mornings

in a row to record the average.

3. Percentage of Maximum Heart Rate. The American College of Sport

Medicine recommends exercising between 60% and 90% of your Maximum

Heart Rate.
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Figure A.1 The Borg scale of perceived exertion.



A.3 Figure Out Your Target Heart Rate!

To get the maximum benefit from exercise, it is best to work at a pre-determined target

heart rate.

A.3.1 Taking your Pulse

The pulse is most commonly taken either at the carotid artery on the neck or at the wrist.

Use your index finger and middle finger to locate your pulse (never use your thumb). Use

a very light touch and avoid pressing too hard. You may use a 6 or 10 second pulse

check, then multiply by the appropriate number (10 or 6 respectively) to get a 60 second

count.

A.3.2 Maximum heart rate

This heart rate generally declines with age from about 220 beats per minute in childhood

to about 160 beats per minute at age 60. This fall in heart rate is fairly linear, decreasing

by approximately 1 beat per minute per year. There is no strong evidence to suggest that

training influences the decline in maximal heart rate. It should be remembered that

individuals of the same age might have quite different maximal heart rates. Therefore it

is more accurate to calculate this value by undergoing a stress test than by using an age-

related formula. On the other hand, resting heart rate is greatly influenced by endurance

training.
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A.3.3 Resting Heart Rate

This is your heart rate at complete rest. To determine this, take your pulse for 60 seconds

just before you get out of bed...or take it for 30 seconds and multiply by 2. The typical

adult has a resting heart rate of about 72 bpm whereas highly trained runners may have

readings of 40 bpm or lower.

A.3.4 Target Heart Rate Range

Training intensity should range from 40% - 85% of adjusted maximal heart rate.

Beginning exercisers should work between 50% - 65%. More advanced exercisers may

be comfortable in the 70% - 80% range. Very fit exercisers may tolerate a level up to

85%.

A.3.5 Calculate

For your age, use a whole year. (Between 0 and 100)

Put your Resting Heart Rate. (Between 30 and 100)

Enter your maximum heart rate if you know it (use a number between 50 and 85)

Otherwise use an estimate as follows:

Males: 214 - (0.8*age).

Females: 209 - (0.7*age).

Calculate your target heart rate using the Karvonen's formula:
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APPENDIX B

ANALYSIS PROGRAM LISTINGS

The analysis programs were written in both LabVIEW and MATLAB. The cross-

spectral analysis which calculated and provided the weighted coherence and weighted

partial coherence values between heart rate and respiration, heart rate and blood pressure

and blood pressure and respiration was included in one LabVIEW program. The

LabVIEW graphical program is presented in Section B.1. All the time-frequency

representations (linear and bilinear), the PCA, cluster analysis and correlation index

calculation for choosing the best time-frequency distributions were written in MATLAB

as shown in Section B.2.

B.1 Cross-Spectral Analysis Steps

This section outlines the procedure for performing heart rate variability (weighted)

coherence and partial coherence between heart rate and blood pressure, heart rate and

respiration, and blood pressure and respiration combination. The programs are written in

LabVIEW using the data file that includes ECG, BP and respiration signals as input. The

outputs of the front panel include the plots of the raw data for the respiration, ECG and

blood pressure signals. The graphs of the derived heart rate, blood pressure IIBI, and the

respective power spectra of each as well as the values of the areas under the heart rate

spectral curves in the LF and HF ranges are also shown in the front panel. The outputs of

the coherence-partial coherence panel are the coherence and partial coherence plots with

the appropriate weighted values for each coherence/partial coherence combination.
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As an example, the procedure of the cross-spectral analysis using a data file of a

COPD subject in text format acquired using the National Instrument data acquisition

system, saved as file name agu1baseline.txt is presented below:

1) Find the data acquisition sampling frequency, sf, of the data file. Use WinEdit or

Notepad to open the data file. A single integer number on line 1 of the data file is the

sampling frequency of the file. Record this number for reference. In all studies used for

this dissertation, the sampling frequency is 200 samples per second.

2) Next, the information of what signal on what channel is needed. Click on the

LabVIEW icon to start running LabVIEW. The National Instrument LabVIEW dialog

box opens. Click on Open VI bar to select the data file to load. The Choose the VI to

open: dialog box opens. Click on the down arrow of the Look in: bar to navigate the

windows directory and select the VI program. Double click to select 4dsp.vi. The

4dsp.vi front panel is displayed. Click on the right arrow on the command bar to run the

LabVIEW (4dsp.vi) program. The choose file to read dialog box appears. Use the down

arrow button in the Look in: bar to navigate the directory to select the data file to be

analyzed (in the example, the data file is agu1baseleine.txt). Double click on the data file

name to run the program.

3) In a few seconds, the plots of all four data signals are displayed. Resize the x-axis

on each plot to zoom in to a small section of the signal. Record the signals and their

channel numbers for reference. (In the example, the channels are shown below)

Signal	 Channel

CO2	 0
BP	 1
Resp	 2
ECG	 3
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4) Click on file, close to exit the 4dsp.vi program. Click No when the save changes

dialog box appears.

5) Click on open VI of the LabVIEW dialog box. Use the down arrow button of the

Look in: task bar to select partcoh3.11b library of LabVIEW programs. Use the mouse to

move the up/down bar until the partial coherence betwn HR, BP & RESP vi file appears.

Double click on this file to run the LabVIEW program.

6) Enter the SF, ECG, BP and RESP in the text boxes on the front panel with the

information obtained in steps 1 and 3 above. Click the right arrow on the command bar

to run the program.

7) The Choose file to read dialog box appears. Use the down arrow button of the Look

in: task bar to select the data file (agu1baseline.txt) to be analyzed.

8) After a few seconds, the heart rate IIBI and the ECG plots of the Correct.vi appears.

Move the yellow cursor inside the }IR IIBI plot to the end of the HR IIBI signal then

click the MOVE button to see any missed or false R wave detection. Use the blue cursor

inside the ECG correction plot to manually remove or correct the false R wave detection

indicated by the white bar under each ECG R-wave. Click the round green Done button

when done.

9) The Choose HR IIBI file to write dialog box appears. Enter the HR IIBI ASCII file

name (agu1baselineHR.asc) in the file name field then click the save button.

10) The Choose BP IIBI file to write dialog box appears. Enter the BP IIBI ASCII file

name (agu1baselineBP.asc) in the file name field then click the save button.

11) The panel partial coherence HR-BP-RESP.vi appears. Move all the red cursors

(Cur 0) to 0.04 Hz positions and all the blue cursors (cur 1) to position 0.15 Hz of the
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coherence and partial coherence plots. Click the right arrow to calculate the weighted

values in the LF range. Once the LabVIEW program stops, print the coherence and

partial coherence panels with the associated LF weighted values for records.

12) Move all the red cursors (Cur 0) to 0.15 Hz positions and all the blue cursors (cur 1)

to position 0.40 Hz of the coherence and partial coherence plots. Click the right arrow to

calculate the weighted values in the HF range. Once the LabVIEW program stops, print

the coherence and partial coherence panels with the associated HF weighted values for

records.

B.1.1 4dsp.vi

Below is the listing of the 4dsp.vi LabVIEW program. This program shows what signal

is acquired on what channel in the data file

4disp.vi
Connector Pane
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Block Diagram
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B.1.2 Partial Coherence Between HR, BP & RESP

Below is the listing of the partial coherence between HR, BP & RESP LabVIEW

program. This program displays the plots of coherence and partial coherence and the

weighted values in both the LF and HF of the data file:

partial coherence betwn HR, BP & RESP

Connector Pane
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Panel of the "partial coherence HR - BP-RESP.vi" sub VI.
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B.2 MATLAB Programs

This section provides the listing of different MATLAB programs used for analysis in this

dissertation.

B.2.1 Test Signal of Three Sinusoids at 0.3, 0.1 and 0.5 Hz

This MATLAB program generates a test signal of three sinusoids with frequencies of 0.3,

0.1 and 0.5 Hz and saves the output signal in an ASCII file called signal_3.asc.

% signal.m

% This is the source code for creating three different signals which each signal
% is made of three sine wave with frequencies of 0.2, 0.5 and 1.0 Hertz. The
% sampling frequency for the all signals is 200 samples per second.
% Each signal is located as a one column of matrix sig_tes. The length of FFT is
% 2048 points.
% The plots of power spectrum are zoomed in. The last two lines of the instructions
% is used to save the figures in Metafile format and then is imported to Microsoft
% word (ver. 6.0a).

V-0:0.005:29.99;
signal_3=[sin(2*pi*0.3*t)zeros(1,1000)sin(2*pi*0.1*Ozeros(1,1000) sin(2*pi*0.5*t)]';
ref=length(signal_3);
Pyy=abs(fft(signal_3,4096));
F=(200*(0:63)/4096)'; 	 %sampling rate 200 sps
T=(ref/200)/(ref-1)*(0:ref-1);
figure(1);

plot(T,signal_3,'r');xlabel('Time(second)');ylabel('Amplitude');
pause
figure(2);
plot(F,Pyy(1:64),'r');xlabel('Frequency(Hertz)');ylabel('Power Density');
save signal_3.asc signal_3 -ascii;
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B.2.2 Time — Frequency Analysis and Activity Plot Program

This program is a MATLAB m-file. Upon starting MATLAB, type whitebg for a white

graphic background.

1. The data needed is the interpolated inter-beat interval ASCII file. In LabVIEW,

after you have created the heart rate or blood pressure IIBI file, you must make sure it is

an ASCII file with channel data in column format with the extension (filename.asc). In

order to run the MATLAB program, type:

tfrs

2. A "select your distribution" graphical user interface will pop up. Use the mouse to

click on the desired time-frequency distribution for analysis.

Short Time Fourier Transform

Wigner

Smoothed Wigner

Choi-Williams

Born Jordan Cohen (RID)

Rihaczek Margeneau

3. The program will ask you to enter the filename without extension. Type in the

filename then hit return.

Agu 1 hrbp	 (of the Agu1hrbp.asc file)

4. Enter the channel number you want to analyze.

1	 (or 2, 3, 4...)

5.	 Enter the sampling rate of the data.

200	 (or the appropriate sampling rate)
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6. The program will run and output the appropriate time-frequency plots and the

activity plots (LF, HF and LF/HF: non-normalized and normalized) of the channel that

was analyzed using the selected time-frequency distribution.
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This program provides the STFT and the bilinear time-frequency analysis (Wigner,

Smoothed Wigner, Choi-William, Born-Jordan-Cohen and Rihaczek-Margenau) with 3D

power spectra versus time and frequency, contour plots and activity plots using the

selected time-frequency distribution as outputs.

% This program is a modified version of the original work of Adib Mansour (1994)
% by Rindala Saliba (1996)
% Modified by Douglas Newandee 7/14/2001 for better 3D Graphs and to work with
% MATLAB 6.0 and later.

clear
clc

choose=menu('SELECT YOUR DISTRIBUTION', 'Short Time Fourier Transform',...
`Wigner','Smoothed Wigner',...
`Choi Williams',...

`Born_Jordan_Cohen (RID)','Rihaczek_Margenau');
clc
disp(")

disp([blanks(30) 'WELLCOME TO'])
disp([blanks(21) 'TIME FREQUENCY DISTRIBUTION'])
disp([blanks(33) 'WORLD'])
disp(")
disp(")
SIGNAL=input('Please enter name of datafile with no extension --> ','s');
filename=[SIGNAL,'.asc'];
eval(['load ' filename]);
original_rawdata=eval(SIGNAL)';clear SIGNAL;
Question 1=input('Which column do you want to analyze? [1 2 3] --> ','s');
if	 Question_1=='1'

rawdata=original_rawdata(1,:);
elseif Question_1=='2'

rawdata=original_rawdata(2,:);
elseif Question_1=='3'

rawdata=original_rawdata(3,:);
end
Signa=rawdata;

Lwin=input('Please enter the length of analysis window --> ');
fftlen=input('Please enter the length of FFT analysis --> ');
skip=input('Please enter the number of the skip points --> ');
sample=input('Please enter the sample rate of the data --> ');
Question_2=input('Do you want to detrend the input signal? [y/n] --> ','s');
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if Question_2='y'
order=input('Please enter the order of the lowpass filter --> ');

freq=input('Please enter the cutoff frequency for LPF --> ');
nfreq=freq/sample;
[poles,zero]=butter(order,nfreq);
dtrend=filtfilt(poles,zero,rawdata);
Result Signa=rawdata-dtrend;
Signa=Result_Signa;

else
end
Question_3=input('Do you want to calculate Instantaneous Frequency? [y/n] --> ','s');
Question_4=input('Do you want to calculate Median Frequency? [y/n] --> ','s');
if Question_4=='y'

LF=input('Please enter the low frequency? [Hz] -->');
HF=input('Please enter the High frequency? [Hz] -->');

else
end
Question_6=input('Do you want to extract certain Frequency range? [y/n] --> ','s');
if Question_6=='y';
LFC=input('Please enter the low frequency range in index -->');
HFC=input('Please enter the high frequency range in index -->');

else
end
hlf=(Lwin+1)/2-1;
1=2*hlf+Lwin/2;

signal=hilbert([zeros(1,2*hlf),Signa,zeros(1,2*hlf]);
signal_conjugate=conj(signal);

%	 (Smoothed WVD using a rectangular window of odd length)

if choose==3
P=input('Please enter the length of smoothing region --> ');
distribution=['smoothed WVD'];
G=(1/(2*P-1))*ones(hlf+1,hlf+1);
G(:,hlf+1)=zeros(hlf+1,l);

(Choi-Williams)

elseif choose==4
distribution=['Choi_Williams'];
Sigma= 1 ;
G=zeros(hlf+1,hlf+1);
G(1,1)=1.0;
for j= 1 :hlf;
for i=0:hlf, G(i+1,j+1)=exp(((-1)*Sigma*i*i)/(4*j*j));
end
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G(:j+1)=G(:,j+1)/(2*sum(G(:j+1))- G(1j+1));
end

(Short Time Fourier Transform)

elseif choose==1
distribution=['Short Time Fourier Transform'];
G=(11(2*hlf-1))*fliplr(triu(ones(hlf+1,hlf+1),0));

(Born-Jordan-Cohen)

elseif choose==5
distribution=['Born_Jordan_Cohen'];

G=fliplr(flipud(triu(ones(hlf+1,hlf+1),0)));
for i=0:hlf, G(i+1,:)=(1/(1+0)*G(i+1,:),
end

(Rihaczek-Margenau)

elseif choose==6
distribution=['Rihaczek Margenau'];
G=ones(hlf+1,hlf+1);
G=0.5 *diag(diag(G));
G(1,1)=1;
end

(Computation of TFDs)

Timeslice=floor((length(signal)-4*hlf-(Lwin/2))/skip);
kernel=zeros(fftlen,Timeslice);
TFDs=zeros(Lwin,Timeslice);
if Timeslice<=0
disp(")
disp('---> The size of data file is less than the length of FFT');
disp('---> Therefore the process will be terminate now.');
disp('---> Please reduce the length of FFT and try again.');
break;
end
h = waitbar(0,'Please wait while it is processing...');
if choose<6
for n=0:skip:skip*(Timeslice-1);
for m=0:hlf,
kernel(m+ 1 ,(n/skip)+ 1 )=(G( 1,m+ 1 )*signal(I+m+n)*signal_conjugate(I-m+n))...
+sum(G(2 :hlf+ 1,m+ 1 )'.*(signal(I+ 1 +m+n:I+hl f+m+n).*signal_conj ugate(I+ 1 -m+n:I+hlf-
m+n)...
+signal(I- l+m+n: - 1 :I-hlf+m+n). *signal_conjugate(I- 1 -m+n:- 1 :I-hlf-m+n)));
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end
waitbar(n/(length(signal)-4*hlf-1))
end
kernel(fftlen-hlf+1:fftlen,:)=flipud(conj(kernel(2:hlf+1,:)));
TFDs=2/fftlen*abs(fft(kernel,fftlen));
close(h)
else
distribution=['Wigner'];
for n=0:skip:skip*(Timeslice-1);
V 1=(signal(I+n:I+hlf+n). *s ignal_conjugate(I+n:- 1 :I-hlf+n));
kernel(1 :11lf+ 1,(n/skip)+ 1 )—(V 1 +(sqrt(- 1 )*V 1))';
kernel(fftlen-
hlf+1:fftlen,(n/skip)+1)=flipud((conj(V1(2:hlf+1))+[imag(V1(2:hlf+1))+(sqrt(-
1)*real(V1(2:hlf+1)))]));
waitbar(n/(length(signal)-4*hlf-1))
end
TFDs=2/fftlen*abs(fft(flipud(kernel)));
close(h)
end
% (Algorithm to calculate instantaneous frequency)

if Question_3=='y';
[r,C]=size(TFDs);
for i=1:C,
W=TFDs(:,i);
Y=(1:r)';
M=W. *Y;
S=sum(M);
F=sum(W);
E(i)=S/F;
end
elseif Question_3=='n';
end
%end	 % correct mismatched end (DAN)

(Algorithm to extract certain frequency)

if Question_6=='y';
symvag=sum(TFDs(LFC,1:Timeslice));
vagal=sum(TFDs(HFC, 1 : Time slice));
symtopar=symvag./vagal;
end

elseif Question_6='n';
end

(Three Dimensional Graphics)
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T=(length(Signa)/sample)/(Timeslice)*(0:Timeslice-1);
f=(sample/(2*fftlen))*(0:fftlen-1);
c=length(Signa);
ref=(c/sample)/(c-1)*(0:c-1);

if Question_4=='y';
low=1;
while f(low)<LF
low=low+1;
end

low_freq=low;
high=fftlen/2+1;

while f(high)>HF
high=high-1;
end

high_freq=high;
lo_hi=low_freq:high_freq;

desire_median_power=sum(TFDs(lo_hi,:))/2;
[ROW,COL]=size(TFDs);
medianfrequency=zeros( 1 ,COL);

for slice_power=1:COL
col_index=low_freq;
Median_Power=TFDs(low_freq,slice_power);

while Median_Power < desire_median_power(slice_power)
col_index=col_index+ 1;
Median_Power=Median_Power+TFDs(col_index,slice_power);

end
median_frequency(slice_power)=f(col_index);

end

(Algorithm to Line fit the Median frequency)

feeding=polyfit(T,median_frequency,1);
fit=polyval(feeding,T);

elseif Question_4=='n';
end
disp('Do you want to look at (a)mesh&Contour , (b)mesh')
disp([blanks(24) '(c)contour, 	 (d)None'])
FigType=input('-->','s');
if FigType=='a';

figure(1);
subplot(2,1,1), mesh(T,f,TFDs);
xlabel('Time(sec)');
ylabel('Frequency(hertz)');
zlabel('Magnitude');
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title(['Mesh & Contour of ',eval('filename'),' using ',eval('distribution'),' distribution']);
subplot(2,l,2), contour(T,f,TFDs);
xlabel('Time(sec)');
ylabel('Frequency(Hz)');

pause
elseif FigType=='b';

figure(1);
mesh(T,f,TFDs);
xlabel('Time(sec)');
ylabel('Frequency(Hz)');
zlabel('Magnitude');
title(['Mesh of ',eval('filename'),' using ',eval('distribution'),' distribution']);

pause
elseif FigType=='c';

figure(1);
contour(T,f,TFDs);
xlabel('Time(sec)');
ylabel('Frequency(hertz)');
title(['Contour of ',eval('filename'),' using ',eval('distribution'),' distribution']);

pause
elseif FigType=='d';
end

(Algorithm to calculate Median frequency)

if Question_4=='y';
slope=(fit(3)-fit(1))/(T(3)-T(1));
Si = sprintf('slope is %5.2f,(fit(3)-fit(1))/(T(3)-T(1)));
S2 = sprintf('Y_intercept is %5.1f,fit(2)-slope*T(2));
figure(2);
plot(T,fit,T,median_frequency,'*');
title(['Median frequency of,",eval('filename),",eval('S1'),",eval('S2'),",'Hertzl);
xlabel('Time(sec)');
ylabel('Frequency(Hertz)');
else
end
pause
if Question_3=='y' & Question_2=='y';

figure(3);
subplot(3 , 1,1), plot(ref,rawdata);
title(['Superimpose of rawdata & detrended & IF of ',eval('filename')]);
xlabel('Time(sec)');
ylabel('Amplitude');
subplot(3,1,2),plot(ref,Signa);
xlabel('Time(sec)');
ylabel('Amplitude');
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subplot(3, 1,3), plot(T,E);
xlabel('Time(sec)');
ylabel('frequency');

elseif Question_3=='y' & Question_2='n'
figure(3);
subplot(2, 1, 1 ), plot(ref,rawdata);
title(['Superimpose of rawdata of ',eval('filename)]);
xlabel('Time(sec)');
ylabel('Amplitude');
subplot(2,1,2),plot(T,E);
xlabel('Time(sec)');
ylabel('Amplitude');

elseif Question_3=='n' & Question_2='y'
figure(3);
subplot(2, 1,1 ), plot(ref,Signa);
title(['plot of rawdata & detrended of ',eval('filename')]);
xlabel('Time(sec)');
ylabel('Amplitude');
subplot(2,l,2),plot(ref,Signa);
xlabel('Time(sec)');
ylabel('Amplitude');

elseif Question_3=='n' & Question_2='n'
figure(3);
plot(ref,Signa);
title(['plot of rawdata of ',eval('filename)]);
xlabel('Time(sec)');
ylabel('Amplitude');

end
pause

if Question_6=='y';
figure(4);
subplot(3 ,l, 1 ), plot(T,symvag);
title(rMixture of Sym&Parasym & Parasym range & Ratio of Lowfreq to HighFreql);
xlabel('Time(sec)');
ylabel('Amplitude');
subplot(3,1,2), plot(T,vagal);
xlabel('Time(sec)');
ylabel('Amplitude');
subplot(3 , 1,3 ), plot(T,symtopar);
xlabel('Time(sec)');
ylabel('Amplitude');

if Question_6=='ne;
end
end
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B.2.3 Program to Generate Activity Plots Using Wigner Distribution

This program is a MATLAB m-file. Upon starting MATLAB, type whitebg for a white

graphic background.

1. The data needed is the interpolated inter-beat interval ASCII file. In LabVIEW,

after you have created the heart rate or blood pressure IIBI file, you must make sure it is

an ASCII file with channel data in column format with the extension (filename.asc). In

order to load it into MATLAB. Type:

load Agu1hrbp.asc;	 Note: Agu109hrbp.asc is the filename.

If you now type whos, the file should show up as the variable Agu1hrbp.

2. Run the program:

symparl(data,'graphtitle')

Here, data is Agu1hrbp, and graphtitle is the title you choose. It must, however,

be in single quotes as shown.

3. The program will ask for frequency index ranges for the calculation of the area

under the high and low frequency peaks:

For the low frequency (LF) range:

.05-.15 Hz use 1:4 (rest, pace 12 & 18, exercise, recovery)

.05-.10 Hz use 1:3 (pace 8)

For the high frequency (HF) range:

.15-.4 Hz use 4:10 (rest, pace 12 & 18)

.10-.4 Hz use 3:10 (pace 8)

.15-.8 Hz use 4:20 (exercise and recovery)
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4. The program creates five output graphs. If you want to print them you can do so

manually.

5. On three graphs you will see a cross hair. Place it where you want your graph title

to go and click the left mouse button.

B.2.3.1 Some Important Equations	 This section explains some of the terms and

their relations in the various MATLAB programs:

#skip * #time slices < (or =) #data points in the file

LP Butterworth filter used: Cutoff frequency: 	 0.03 Hz

LF Range:	 0.05-0.15 Hz

HF Range:	 0.15-0.4 Hz

FFT:	 512 points

#skip:	 25 pt

1St time slice:	 at 256 pt

2nd time slice:	 at 256 + 25 = 281 pt

3 rd time slice:	 at 281 + 25 = 306 pt
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1:3

1:4

4:10

4:20
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B.2.3.2 Frequency to Indices Conversions 	 The equation for converting the

frequency ranges to the corresponding indices used in the analysis program is shown

below:

Freq (Hz) Index Freq (Hz) Index_ Freq (Hz) Index
0.039 1 0.351 9 0.663 17
0.078 2 0.390 10 0.702 18
0.117 3 0.429 11 0.741 19
0.156 4 _ 0.468 12 0.780 20
0.195 5 0.507_ 13 0.819 21
0.234 6 0.546 14 0.858 22
0.273 7 0.585 15 0.897 23
0.312 8 0.624 16 0.936 24

Frequency

LF Range:

HF Range:

Indices

0.04-0.10 Hz

0.04-0.15 Hz

0.15-0.4 Hz

0.15-0.8 Hz

B.2.3.3 MATLAB Time-Frequency Analysis Matrix

Row represents Frequency

Column represents Time



B.2.3.4 Program to Generate SympathoVagal Activity Plots Using Wigner

Distribution This .m MATLAB program calculates the vagal tone and sympatho-vagal

ratio. It is an implementation of time-frequency analysis using the Wigner distribution.

The MATLAB code for the program is given below:

function symparl(rawdata,top)
% SYMPAR1(iibi,gtitle)

% iibi is the interpolated interbeat interval calculated
% by pslwsu, either in Matlab or in S-plus. Gtitle is the
% title of the output graphs.

% Written by Sanjay Fernando.

% last revision: 7/16/01 by Douglas Newandee (MATLAB 6.)

rawdata=rawdata(:);
order=5;
freq=0.03;
sample=20;
nfreq=freq/sample;
dtrendata=rawdata;
[row,col]=size(dtrendata);
I=1:row;
I=I(:);
A=(I/sample)/60;

% This part is for testing Janse Kaiser Wigner calculation
% algorithm with no window

fs=1000;
m=512;	 % The size of the fft we will be computing.
skip=25;	 % Number of points we skip to get the next segment.
p=60;	 % The number of freq vals we will be plotting
k=fix((row-m)/skip);	 % the number of spectra we compute
w=ones(size(1:m));	 % window specification. Can be changed.
w=w(:);
x=hilbert(dtrendata);	 % Forms the analytic function of x
L=m/2;
l=-(L-1):(L-1);
n=L;
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Z=zeros([p,k]);
for i=1:k

g=x(n+l).*conj(x(n-l));
g(2 *L)=0;
y=w.*g; % Apply window to g or kernel.

Y=2/m*abs(fft(y,m)); % evidently because it's analytic
% we only need 2/N

Z(:,i)=Y(1 :p);
n=n+skip;

end

LFC=1:4;
symvag=sum(Z(LFC,1:k));
HFC=4:20;
vagal=sum(Z(HFC,1:k));
symtopar=symvag./vagal;

% This section is for determining the instantaneous frequency
% from the Wigner distribution.
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[r,c]=size(Z);
for i=1:c;

W=Z(:,i);
Y=(1:r)';
M=W. *Y;
S=sum(M);
F=sum(W);
E(i)=S/F;

end

% Plotting commands

J=[ 12.8+(1:k)*

subplot(211);
plot(A,dtrendata);
title('IBI detrended');
xlabel('time');
ylabel('amplitude');

subplot(212);
plot(J,E);
xlabel('time');

%Determines the size of the matrix created by wgjka4.m.
%Repetition based on number of columns.
%W is assigned the values of the column.
%Y represents the frequencies.

%Sum of the Wigner Distribution values.



ylabel('frequency');
title('Instantaneous frequency');

faxis=(1:p)*(.0391/2);
figure

mesh(J,faxis,Z);
xlabel('time');
ylabel('frequency');
title(top);

figure
contour(J,faxis,Z);
gtext(top);
xlabel('time');
ylabel('frequency');
title('Contour plot of WD');

figure

subplot(3,1,1);
plot(J,symvag);
gtext(top);
title(' Mixture of Sympathetic and Parasympathetic');
xlabel('time');
ylabel('amplitude');

subplot(3,1,2);
plot(J,vagal);
title('Parasympathetic range');
xlabel('time');
ylabel('amplitude');

%figure
subplot(313)
plot(J,symtopar);
%gtext(top);
title('Ratio of Low Frequency to High Frequency')
xlabel('time');
ylabel('amplitude');
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B.2.4 Wavelet Analysis and Activity Plot Program

This program is a MATLAB m-file. Upon starting MATLAB, type whitebg for a white

graphic background.

1. The data needed is the interpolated inter-beat interval ASCII file. In LabVIEW,

after you have created the heart rate or blood pressure IIBI file, you must make sure it is

an ASCII file with channel data in column format with the extension (filename.asc). In

order to run the MATLAB program, type:

d_wvlet

2. The program will ask you to enter the filename without extension. Type in the

filename then hit return.

Agu1hrbp	 (of the Agu1hrbp.asc file)

3. Enter the channel number you want to analyze.

1	 (or 2, 3, 4...)

4. Enter the sampling rate of the data.

200	 (or the appropriate sampling rate)

5. Enter the window size in seconds.

1

6. Enter the fft size:

256

Make sure fftsize sampling rate * window size. Otherwise, 3D plots will be badly

scaled. Choose fft to be 128, 256, 512, 1024, 2048 or any other number in power of 2.

7. Enter name of the wavelet used:

morl	 (Morlet:morl, Meyer:meyr, Daubechies 4:dB4,...)

275



The program will run and output the 9 appropriate time-frequency and activity plots

of the channel that was analyzed.

The MATLAB program given below calculates the wavelet coefficients and plots

them in 3D as power intensity versus time and frequency as well as the regular and

normalized activity plots.

% d_wvlet.m

% Matlab Wavelet Toolbox 2.0.
% Modified by D. Newandee
% 7-13-2001: using time - freq spectrogram and change to run with MATLAB 6.0
% 10-23-2001: add calculation of normalized sympathovagal ratio using chosen
% wavelet.

% This program will accept any wavelet from the Matlab Wavelet Toolbox 2.0 by
% entering the wavelet name in " for the 'wave' variable below.

clear all;
close all;

SIGNAL=input('Please enter name of datafile with no extension --> ','s');
filename=[SIGNAL,'.asc'];
eval(['load ' filename]);
original_rawdata=eval(SIGNAL)';clear SIGNAL;
Question_l=input('Which channel do you want to analyze? [1=02, 2=BP, 3=resp,
4=ECG] --> ','s');
if	 Question_1=='1'

rawdata=original_rawdata(1,:);
elseif Question_1=='2'

rawdata=original_rawdata(2,:);
elseif Question_1=='3'

rawdata=original_rawdata(3,:);
elseif Question 1=='4'

rawdata=original_rawdata(4,:);
end

sf=input('Please enter the sampling rate of the data --> ');
T=input('Please enter the window size in seconds --> ');
nfft=input('Please enter the fft size --> '); % must be larger than window size and in ^^2
wave = input('Please enter name of wavelet used --> Vs');
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x = decimate(rawdata,10);
N = length(x);

%*sf = 1000;
%*N = 500;
%%T = 1/400;
ws = T*sf;
%*nfft = 256;

%*wave = 'mexh';
Tool Box v 2.0

t = ( (1:(N)) )* (1/s0;
f= ( (0:(N-1))/N) * sf;
index = 1:N;

% decimate data array
% number of samples

% sampling frequency
% number of samples
% window size in seconds (1/400 = 0.025 sec)
% window size in samples
% fft size in spectrogram command. Must be larger than
% window size in samples
% the wavelet to use (see wavelets table in Matlab Wavelet

% times
% frequencies
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% first construct the time domain and frequency domain plots
fx = abs(fft(x));

% spectrumlD.m
% function [Pyy,f]=rspec(x,Fs)

fftsize=length(x);

% put alternative fft method here
x=x-mean(x);
fftx=fft(x,fftsize);
Pyy=fftx.*conj(fftx)/fftsize;

%	 f=sf*(0:(fftsize/2-1))/fftsize;
f=sPc(0:(fftsize-1))/fftsize;

clear fftx

P=PYY;

figure;
subplot(2,1,1)

plot(t,x);
% axis([0 20 -2 5]);

grid on;
xlabel('Time (sec)');
ylabel('Amplitude');
title(['Raw data in time domain of',eval('filename')]);

subplot(2,1,2);
% plot(f(400:800),p(400:800)/max(p),'r');

plot(f(1:200),p(1:200)/max(p),er');



axis([0 1 0 2]);
grid on;
xlabel('Frequency (Hz)');

ylabel('Power');
title(['Power Spectrum of ',eval('filename')]);

%subplot(3,1,3);
% plot(f(index)/10,fx(index));
% grid on;
% axis([0 2 -2 5]);
% xlabel('frequency');
% title('frequency domain');

%*orient landscape;
print -dps wvleta.eps

% construct a spectrogram with window size, ws

[B,frequencies,times] = specgram(x, nfft, sf, ws);

% plot the spectrogram
figure;

imagesc(times, frequencies, abs(B));
colormap('hot');
colorbar('vert');axis('xy');
axis([0 100 0 2]);
xlabel('Time (sec)');
ylabel('Frequency (Hz)');

% title(['Spectrogram with T = ' num2str(1000*T) ' ms']);
title(['Spectrogram of ',eval('filename'),' using ',eval('wave'),' wavelet']);

%*orient landscape;
print -dps wvletb.eps

% make a 3D plot for better viewing
figure;

mesh(times, frequencies, abs(B));
xlabel('Time (sec)');
ylabel('Frequency (Hz)');

% title(['3D Spectrogram with T = ' num2str(10000*T) ' ms']);
title(['3D Spectrogram of ',eval('filename'),' using ',eval('wave'),' wavelet']);
% view(-60,30);
axis([0 100 0 2 0 50]);

%*orient landscape;
print -dps wvletc.eps;
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% Time axis in minutes

% The size of the fft we will be computing.
% Number of points we skip to get the next segment.
% the number of spectra we compute

% now work out the scales at which to compute the CWT
% There is a connection between scale and frequency as follows

factor = 5/(2*pi);
%freq = [100:100:4000]; % range of interested frequency
freq = [0.01:0.01:2.0]; % HRV: 0.01 - 2 Hz
scale = factor * sf ./ freq;

% make sure the string wave is set before executing the m-file

% compute the CWT plotting at the same time
figure;

coef=cwt(x, scale, wave, 'plot');
% title('scalogram - Scale vs. Time');

title(['Scalogram - Scale vs. Time of',eval('filename'),' using ',eval('wave'),' wavelet']);
%* orient landscape;

print -dps wvletd.eps;
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% Extract LF and HF

[row,col]=size(rawdata');I=1:row;

I=I(:);
A=I/sf/60;

m=512;
skip=25;
k=fix((row-m)/skip);

TFDs=abs(coef);
[r,C]=size(TFDs);
for i=1:C,
W=TFDs(:,i);
Y=(1 :r)';
M=W.*Y;
S=sum(M);
F=sum(W);
E(i)=S/F;
end

%LFC = input('Please enter the low frequency range in index numbers. ');
LFC=1:4;
symvag=sum(TFDs(LFC,1:k));
%HFC=input('Please enter the high frequency range in index numbers. ');
HFC=4:20;



vagal=sum(TFDs(HFC,1:k));
symtopar=symvag./vagal;

% Normalize

n_symvag=symvag./(symvag+vagal);
n_vagal=vagall(symvag+vagal);
n_symtopar=n_symvag./n_vagal;

% Plotting commands

%J=[ 12.8+(l:k)*
J=(length(x)/sf)/(k)*(0:k-1);

% Make a "spectrogram" type plot
figure;

imagesc(t, freq, coef);
colormap('hsv');
colorbar('vert');
axis('xy');	 % flip the vertical axis over
xlabel('Time (sec)');
ylabel('Frequency (Hz)');

% title('Scalogram - Frequency vs. Time');
title(['Scalogram - Frequency vs. Time of ',eval('filename'),' using ',eval('wave'),'

wavelet']);
%* orient landscape;

print -dps wvlete.eps;

% make a 3D plot for better viewing, rotate by 45 degrees
figure;

subplot(2,1,1), mesh(t, freq, abs(coef));
%* [az,el]=view;
%*view(az+45,el);
%* view(az,el);
% axis([0 300 0 0.5 0 3]);
% view([55,15]);
% grid on;

colormap('jet);
colorbar('vert');
brighten(0.5);
shading interp;

xlabel('Time (sec)');
ylabel('Freqency (Hz)');
title(['3D scalogram of ',eval('filename'),' using ',eval('wave'),' wavelet']);
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%* orient landscape;
%* print -dps wvletf.eps;

subplot(2,1,2), contour(t, freq, abs(coef),20);
axis([0 100 0 2]);
grid on;
xlabel('Time (sec)');
ylabel('Frequency (Hz)');
title(['Contour of ',eval('filename'),' using ',eval('wave'),' wavelet']);

% print -dps wvletf.eps;

figure;
subplot(2,1,1);
%plot(A,x);
plot(t,x);
title(['Detrended IIBI Plot of ',eval('filename'),' using ',eval('wave'),' wavelet']);
xlabel('Time (sec)');
ylabel('Amplitude');

subplot(2,1,2);
plot(t,E);
%plot(A,E);
axis([0 50 0 2]);
xlabel('Time (sec)');
ylabel('Frequency (Hz)');
title(['Instantaneous frequency Plot of',eval('filename ')]);

figure;
subplot(3,1,1);
plot(J,symvag);
%plot(A,symvag);
%gtext(top);
title(['Symp. and Parasymp Mixture (LF) Plot of ',eval('filename'),' using ',eval('wave'),'
wavelet']);
%xlabel('time (sec)');
ylabel('Amplitude');

subplot(3,1,2);
plot(J,vagal);
%plot(A,vagal);
title('Parasympathetic range (HF)');
%xlabel('time (sec)');
ylabel('Amplitude');
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subplot(3,1,3)



plot(J,symtopar);
%plot(A,symtopar);
%gtext(top);
title('Ratio of LF to HF)
xlabel('Time (sec)');
ylabel('Amplitude');

%order=input('Please enter the order of the lowpass filter. ');
%freq=input('Please enter the cuttoff frequency for LPF. ');
%sample=input('Please enter the sample rate of the data. ');
%order=12;
%freq=0.03;
%nfreq=freq/sf;
%[poles,zeros]=butter(order,nfreq);
%dtrnd_nsymvag=filtfilt(poles,zeros,n_symvag);
%dtrnd_nvagal=filtfilt(poles,zeros,n_vagal);
%dtrnd_nsymtopar=filtfilt(poles,zeros,n_symtopar);

figure
subplot(3,1,1);
plot(J,n_symvag);
%plot(A,n_symvag);
%gtext(top);
title(['Normalized Symp and Parasymp Mixture (NLH) Plot of ',eval('filename'),' using
',eval('wave'),' wavelet']);
%xlabel('time (sec)');
ylabel('Amplitude');

subplot(3,1,2);
plot(J,n_vagal);
%plot(A,n_vagal);
title('Normalized Parasympathetic range (NHF)');
%xlabel('time (sec)');
ylabel('Amplitude');

%figure
subplot(3 13)
plot(J,n_symtopar);
%plot(A,symtopar);
%gtext(top);
title('Ratio of NLF to NHF')
xlabel('Time (sec)');
ylabel('Amplitude');

282



B.2.5 System Identification Procedure

Make sure that there is an "ident" MATLAB toolbox (Version 4.0 or later) exist in the

toolbox directory of MATLAB. The procedure described here is essentially the same as

demo #2 in iddemo. It shows an example of a typical session with the System

Identification Toolbox. First, invoke MATLAB and follow along.

1. Data have been collected from a COPD or a normal subject during one of the

experimental session. Sixty thousand data points (5 minutes) were collected. The

sampling interval is 5 ms (0.005 sec, 200sps). The data were loaded into MATLAB in

ASCII form and are now stored as the vectors hr2 (Heart Rate: output) and

rp 2 (Respiration: input) in the file agul.asc. First load the data:

load agul.asc;

2. This example selects the first 25,000 data points for building a model. For

convenience, the input-output vectors are merged into a matrix:

z2 =Ihr2 (1:25000) rp 2 (1:25000)];

Take a look at the data,

idplot(z2)

The toolbox makes frequent use of default arguments. Default values are used

when trailing arguments are omitted. In the case above, by default, all data points are

graphed and the sampling interval is one time unit.

3. One can select the values between sample numbers 10,000 and 20,000 for a close-

up, and at the same time obtain correct time scales, with

idplot(z2,10000:20000,0.005)
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4. Remove the constant levels and make the data zero mean with

z2 = dtrend(z2);

5. Now, fit to the data a model of the form:

where T is the sampling interval (here 0.005 seconds). This model, known as an ARX

model, tries to explain or compute the value of the output at time t, given previous values

of y and u.

The best values of the coefficients a l , a2 , b 1 and b2 can be computed with

th = arx(z2,[10 10 31);

6. The numbers in the second argument tell arx to find a model (B.1) with ten a-

parameters, ten b-parameters, and three delays. The result is stored in the matrix th in a

somewhat coded form. To specify the actual sampling interval, enter

th = sett(th,0.005);

7. There are several ways to display and illustrate the computed model. With

present(th);

the coefficient values of (B.1) and their estimated standard deviations are presented on

the screen.

8. Next, one might ask how to evaluate how well the model fits the data. A simple test

is to run a simulation whereby real input data is fed into the model, and compare the

simulated output with the actual measured output. For this, select a portion of the data

that was not used to build the model. for example, from sample 25.101 to in NM.



ysim = idsim( rp , th );

plot([ hr (40000:50000) ysim(40000:50000)])

Note that the function compare does this sequence of commands more efficiently.

One can see that the model is quite capable of describing the system, even for data that

were not used in calculating the fit.

9. To compute and graph the poles and zeros of the ARX model, use

zpth = th2zp(th);

zpplot(zp th);

10. If one wants to know the frequency response, one can compute the frequency

function of the model and present it as a Bode plot by entering

gth = th2ff(th);

bodeplot(gth);

11. Compare this transfer function with a transfer function obtained from a

nonparametric, spectral analysis method. Such an estimate is obtained directly from the

data

gs = spa(z2);

gs = sett(gs,0.005);

The sampling interval, 0.005, is set by the second command in order to obtain

correct frequency scales. The function spa also allows you to select window sizes,

frequency ranges, etc. All these values have been given as default values.

12. One can then compare the estimate of the transfer function obtained by spectral

analysis versus the one obtained from the model (B.1) with

bodeplot([gs gth]);
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Make sure the agreement is quite good. Else rerun the

13. Finally, plot the step response of the model. The model comes with an estimate of

its own uncertainty. Ten different step responses are computed and graphed. They

correspond to "possible" models, drawn from the distribution of the true system

(according to our model):

step=ones(30,1);

idsimsd(step,th);

Spectral Analysis

14. The function spa performs spectral analysis according to the procedure in (3.35)-

(3.37) of [42].

[G,PHIV] = spa(z);

15. Here z contains the output-input data as above. G and PHIV are matrices that

contain the estimated frequency function GN and the estimated disturbance spectrumФv

 in (3.37). They are coded into a special format, the freqfunc format, which allows you

to plot them using the function bodeplot or ffplot:

[G,PHIV] = spa(z);

bodeplot(G);

bodeplot(PHIV);

bodeplot gives logarithmic amplitude and frequency scales (in rad/sec) and linear

phase scale, while ffplot gives linear frequency scales (in Hz). The details of the freqfunc

format are given in [42] and by typing:

help freqfunc;
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16. To obtain correct frequency scales you can operate with the command sett on G or

give the sampling interval as an optional argument to spa. By omitting the argument

PHIV, only the transfer function estimate G is computed:

G =spa(z);
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B.2.6 Principal Components Analysis

Make sure that there is a MATLAB "Stats" toolbox (Version 3.0 or later) exist in the

toolbox directory of MATLAB. The procedure described here is essentially the same as

the principal component analysis tutorial of the Multivariate statistics section of [68]. It

shows an example of a typical PCA session with the Statistics Toolbox. A new data set

has been created from the actual physiological data of the respiration, heart rate and

blood pressure signals as well as the coherence and partial coherence in the LF and HF

regions for both COPD and normal subjects. The data set is saved as an excel file

(cpcohdata.xls) with columns as names of the subjects and 15 HRV parameters. The 55

rows show the values of the 15 HRV parameters for all 47 COPD and 8 normal subjects.

The 47 COPD subjects are numbered as rows 2-48. Rows 49-56 show the data for the

normal subjects. The 15 different HRV parameters of the normal and COPD subjects in

the data file are:

'rsp'	 respiration (rate)
'HR'	 heart rate
'BP'	 blood pressure

1F_coh_HR_rsp'
'LF_coh_HR_BP'
'LF_coh_BP_rsp'

'HF_coh_HR_rsp'
'HF_coh_HR_BP'
'HF_coh_BP_rsp'

'LF_pcoh_HR_rsp'
'LF_pcoh_HRBP'
'LF_pcoh_BP_rsp'

'HF_coh_HR_rsp'
'HF_coh_FIR_BP'
'HF_coh_BP_rsp'

LF coherence between heart rate and respiration
LF coherence between heart rate and blood pressure
LF coherence between blood pressure and respiration

HF coherence between heart rate and respiration
HF coherence between heart rate and blood pressure
HF coherence between blood pressure and respiration

LF partial coherence between heart rate and respiration
LF partial coherence between heart rate and blood pressure
LF partial coherence between blood pressure and respiration

HF partial coherence between heart rate and respiration
HF partial coherence between heart rate and blood pressure
HF partial coherence between blood pressure and respiration



l. Invoke MATLAB. Let's start by clearing all figures and work area and load the

data in cpcohdata.xls.

>> close all

>> clear all

>> Icpdata,categories]=xlsread('cpcohdata.xls);

>> whos

Name	 Size	 Bytes Class
categories	 2x15	 1962 cell array
names	 55x3	 330 char array
cpdata	 55x15	 3720 double array

The whos command generates a table of information about all the variables in the

workspace.

The cpcoh data set (cpcohdata.xls file) contains 3 variables:

•categories, a string matrix containing the names of the HRV parameters.

• ames, a string matrix containing the names of the COPD and normal subjects.

•cpdata, the data matrix with 55 rows and 15 columns.

2.	 Let's look at the value of the categories variable.

>> categories

categories =

Columns 1 through 6
'rsp"HR' 'BP"LF_coh_"LF_coh_"LF_coh_'
[] [] [i 	'HR_rsp"HR_BP"BP_rsp'

Columns 7 through 11

'HF_coh_"HF_coh_"HF_coh_"LFpcoh_"LF_pcoh:
'HR_rsp' HR_BP"BP_rsp"HRrsp' 	 'HR BP'
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Columns 12 through 15

'LF_pcoh_"HF_pcoh_"HF_pcoh_"HF_pcog:

'BP_rsp'	 'HR_rsp'	 'HR BP'	 'BP_rsp'

3. To get a quick impression of the ratings data, make a box plot.

>> boxplot(cpdata,O,'+',0)

>> set(gca,'YTicklabel',categories)

These commands generate the plot below. Note that there is substantially more

variability in the ratings of the arts and housing than in the ratings of crime and climate.

Ordinarily one might also graph pairs of the original variables, but there are too

many two-variable plots. Perhaps principal components analysis can reduce the number

of variables we need to consider.

Sometimes it makes sense to compute principal components for raw data. This is

appropriate when all the variables are in the same units. Standardizing the data is

reasonable when the variables are in different units or when the variance of the different

columns is substantial (as in this case).

4. One can standardize the data by dividing each column by its standard deviation.

>> stdr = std(cpdata);

>> sr = cpdata./repmat(stdr,55,1);

5. Now it is ready to find the principal components.

>> [pcs,newdata,variances,t2] = princomp(sr);

The following sections explain the four outputs from princomp:

•"The Principal Components (First Output)"

•"The Component Scores (Second Output)"
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•"The Component Variances (Third Output)"

•"Hotelling's T2 (Fourth Output)"

The Principal Components (First Output)

The first output of the princomp function, pcs, contains the 15 principal components.

These are the linear combinations of the original variables that generate the new

variables.

6.	 Let's look at the first three principal component vectors.

>> p3=pcs(:,1:3)

P3 =

0.2167 -0.1183 -0.1847
0.2066 -0.1977 -0.4588
0.2000 -0.2014 -0.4580
-0.2819 -0.3377 0.1507
-0.3001 0.1087 -0.3137
-0.2786 -0.3063 -0.1575
-0.2915 -0.0762 0.2091
-0.2585 0.3470 0.0879
-0.2663 0.3242 -0.1213
-0.3025 -0.3570 0.0794
-0.2793 0.1323 -0.3511
-0.2737 -0.2694 -0.2520
-0.2049 -0.3636 0.2074
-0.2168 0.2623 -0.0036
-0.2592 0.1920 -0.3122

>>

The largest weights in the first column (first principal component) are the first and

second elements, corresponding to the variables respiration and heart rate. To show the

orthogonality of the principal components, note that premultiplying them by their

transpose yields the identity matrix.

>> I = p3'*p3
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I=
1.0000 -0.0000 -0.0000
-0.0000 1.0000 -0.0000
-0.0000 -0.0000 1.0000

The Component Scores (Second Output)

The second output, newdata, is the data in the new coordinate system defined by the

principal components. This output is the same size as the input data matrix.

7. A plot of the first two columns of newdata shows the ratings data projected onto the

first two principal components.

>> plot(newdata(:,1),newdata(:,2),'+')

>> xlabel('lst Principal Component');

>> ylabel('2nd Principal Component');

8. The function gname is useful for graphically identifying a few points in a plot like

this. You can call gname with a string matrix containing as many case labels as points in

the plot. The string matrix names works for labeling points with the subject names.

>> gname(names)

Move your cursor over the plot and click once near each point at the top right. As

you click on each point, MATLAB labels it with the proper row from the names string

matrix. When you are finished labeling points, press the Return key.

The labeled subjects are the normal subjects in data set. Perhaps one should

consider them as a completely separate group. If gname is called without arguments, it

labels each point with its row number.

9. One can create an index variable containing the row numbers of all the chosen

normal subjects.
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>> normal = [48 49 50 51 52 53 54 55];

>> names(normal,:)

ans =

ba
ja
rajf
rajm
ka
ma
ro
so

10. To remove these rows from the ratings matrix, type the following.

>> rsubset = cpdata;

>> nsubset = names;

>> nsubset(normal,:) = [ ];

>> rsubset(normal,:) = [ ];

>> size(rsubset)

ans =

47 15

11. To practice, repeat the analysis using the variable rsubset as the new data matrix

and nsubset as the string matrix of labels.

The Component Variances (Third Output)

12. The third output, variances, is a vector containing the variance explained by the

corresponding column of newdata.

>> variances
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variances =

3.4083
1.2140
1.1415
0.9209
0.7533
0.6306
0.4930
0.3180
0.1204

13. One can easily calculate the percent of the total variability explained by each

principal component.

>> percent_explained = 100*variances/sum(variances)

percent_explained =

37.8699
13.4886
12.6831
10.2324
8.3698
7.0062
5.4783
3.5338
1.3378

14. A "Scree" plot is a pareto plot of the percent variability explained by each principal

component.

>> pareto(percent_explained)

>> xlabel('Principal Component')

>> ylabel('Variance Explained (%)')

We can see that the first three principal components explain roughly two thirds of

the total variability in the standardized ratings.
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Hotelling's T2 (Fourth Output)

15. The last output of the princomp function, t2, is Hotelling's T2, a statistical measure

of the multivariate distance of each observation from the center of the data set. This is an

analytical way to find the most extreme points in the data.

>> [st2, index] = sort(t2); % Sort in ascending order.

>> st2 = flipud(st2);	 % Values in descending order.

>> index = flipud(index); % Indices in descending order.

>> extreme = index(1)

extreme =

10

>> names(extreme,:)

ans =

ecc

It is not surprising that the ratings for COPD subject `ecc' is the furthest from the

average COPD group.
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B.2.7 Cluster Analysis Program

This program is a MATLAB m-file. Upon starting MATLAB, type whitebg for a white

graphic background.

1. The data needed is the data set formed from 15 HRV parameters as the results of

PCA on real COPD/Normal data and cross-spectral analysis. The data set is saved as an

ASCII file. In order to load it into MATLAB. Type:

load Agul.asc; 	 Note: Agul is the filename.

If you now type whos, the file should show up as the variable Agul.

2. Run the program using the general format:

[RITrue,RISelf,EstIndex]=DoClustering(Algorithm,Data,k,TrueID,Repetitions)

[algo, self, 2]=DoClustering(kmeans, Agu1,5„2)

Here, data is Agul, k=5 clusters and run 2 repetitions.

3. The program will run and output a plot with five separate clusters as asked in the

above command.
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The MATLAB program below performs the cluster analysis on the data set created using

the principal components obtained from the PCA on the 12 different HRV parameters

and actual heart rate, blood pressure and breathing (respiration) rate.

function [RITrue,RISelf,EstIndex]=DoClustering(Algorithm,Data,k,TrueID,Repetitions)
% DOCLUSTERING Performs cluster analysis of specified data using specified
% algorithm.

% [RITrue,RISelf,Index]=DOCLUSTERING(Algorithm,Data,k,TrueID,Repetitions)
% where Algorithm is the name of the clustering algorithm (string),

% Data is 2-d matrix, with variables as columns and records as rows,

% k is number of clusters to search for,

% TrueID is a vector of class labels, one for each row in "Data", ([]->not known)
% and Repetitions is the number of times to repeat the algorithm (default 1).
% RITrue is the (adjusted) Rand Index comparing the solution to the true labels
% (where known). RISelf is the (adjusted) Rand Index between pairs of solutions
% (when Repetitions > l).
% Index is the estimated labels of each record.

% AlgorithmList=DOCLUSTERING with no parameters returns list of all
% the aglorithms available

% Copyright (C) David Corney 2000	 D.Corney@cs.ucl.ac.uk

%If no inputs, then return list of all aglorithms used (arbitrary order).
if nargin == 0

RITrue={'kmeans','EM_spherical','EM_elliptical',
'hier_centroid','hier_complete','hier_single',
'fuzzy','random'};

return
end

if nargin < 3
error(DOCLUSTERING requires at least 3 arguments');
help(mfilename)
return

end
if nargin < 4, TrueID=[]; end 	 %no known class labels
if nargin < 5, Repetitions = 1;end	 %only do it once
if nargin < 6, options = 0;
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end

[R,C]=size(Data);
if length(TruelD)>0 & length(TruelD)—=R

error('DOCLUSTERING number of labels does not match number of records');
return

end
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if k == 1
RITrue=0 ;RIS elf=0 ;
EstIndex=ones(R, 1);
return

end

%Only want one cluster? Well, ...OK

%Hierarchical clustering - calculate distance/dissimilarity matrix
if strncmp(Algorithm,'hier',4) == 1

if Repetitions > 1, warning('Only performing one hierarchical clustering execution');end

%Hier. is deterministic; no point in repeating it
Repetitions = 1;

%Next line does fast distance calculations as given by Peter Acklam, Oslo,
www.math.uio.no/—jacklam

distance=sqrt(sum(abs(repmat(permute(Data, [1 3 2]), [1 R 1]) -
repmat(permute(Data, [3 1 2]), [R 1 1]))."2,3));

distance=distance+diag(ones( 1 ,R).*Inf);
end

%Do the clustering
for i =1:Repetitions

InitCentres = ChooselnitialCentres(Data,k); 	 %randomly choose starting point
%(where needed)

switch Algorithm
case 'kmeans'

Estlndex(i,:) = dcKMeans(Data,k,InitCentres)';
case 'EM_spherical'

[mix, index,likelihood]=dcEMGMM(Data, k, 'spherical', 1);
Estlndex(i,:)=index';

case 'EM_elliptical'
[mix, index,likelihood]=dcEMGMM(Data, k, 'full', 1);
EstIndex(i,:)=index';

case {'hier_complete'}
cluster = dcAgg(distance, 'complete', k);
for j = 1:k

EstIndex(i,cluster {j})=j ;
end



case {'hier_single'}
cluster= dcAgg(distance, 'single', k);
for j = 1:k

Estlndex(i,cluster{j })=j ;
end

case {'hier_centroid'}
cluster = dcAgg(distance, 'centroid', k);
for j = 1:k

EstIndex(i,cluster{j }) j;
end

case 'fuzzy'
m=1.5;
Estlndex(i,:) = dcFuzzy(Data,k,m,InitCentres);

case 'random'
Estlndex(i,:) = floor(rand( 1 ,R)*k+ 1 ); 	 %randomly assign labels

%otherwise
error(sprintf('DOCLUSTERING - unsupported algorithm "%s'",Algorithm))

end	 %of switch/case

%return adjusted Rand index (accuracy) if true labels are given
if length(TrueID)>0

RITrue(i)=RandIndex(EstIndex(i,:), TruelD);
else

RITrue(i)=-1;
end

end %of repetitions loop

%Calculate adjusted Rand index between each pair of solutions found
if Repetitions > 1

l=0;
for i=1 :Repetitions-1

for j=i+ 1 :Repetitions
l=l+1;
RISelf(l)=RandIndex(EstIndex(i,:)',EstIndex(j,:)');

end
end

else
RISelf=0;

end

299



B.2.8 Cross-correlation Program

The program below calculates the correlation indices for selecting the best time-

frequency representation.

function xy = corrcoef(x,y)
%CORRCOEF Correlation coefficients.
% CORRCOEF(X) is a matrix of correlation coefficients formed
% from array X whose each row is an observation, and each
% column is a variable.
% CORRCOEF(X,Y), where X and Y are column vectors is the same as
% CORRCOEF([X YD.

% If C is the covariance matrix, C = COV(X), then CORRCOEF(X) is
% the matrix whose (i,j)'th element is

C(i,j)/SQRT(C(i,i)*C(j,j)).

% See also COV, STD.

% J. Little 5-5-86
% Revised 6-9-88 LS 2-13-95 BJ
% Copyright 1984-2001 The MathWorks, Inc.
% $Revision: 5.8 $ $Date: 2001/04/15 12:01:28 $

switch nargin
case 1
c = cov(x);

case 2
c = cov(x,y);

otherwise
error('Not enough input arguments.');

end

d = diag(c);
xy = c./sqrt(d*d');
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APPENDIX C

CROSS-SPECTRAL ANALYSIS

Equations C.1-C.5 are the equations to calculate the partial coherence function between
to signals with the effect of the third signal removed. Equations C.6-C.20 show the
partial coherence functions for combinations of HR, BP and respiration signals.

H: Heart Rate IIBI signal
B: Blood Pressure IIBI signal
R: Respiration signal
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C.3 Partial coherence of HR and Resp (extract BP)

302

Note:
H: Heart Rate IIBI signal
B: Blood Pressure RBI signal
R: Respiration signal

C.4 Partial coherence of BP and Resp (extract HR)

Note:
H: Heart Rate RBI signal
B: Blood Pressure IIBI signal
R: Respiration signal
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