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ABSTRACT

PHARMACOPHORE DERIVATION USING DISCOTECH AND COMPARISON
OF SEMI-EMPIRICAL, AB INITIAL AND DENSITY FUNCTIONAL COMFA

STUDIES FOR SIGMA 1 AND SIGMA 2 RECEPTOR-LIGANDS

by
Dawoon Jung

This study describes the development of pharmacophore and CoMFA models for sigma

receptor ligands. CoMFA studies were performed for 48 bioactive sigma 1 receptor-

ligands using [H 3](+) pentazocine as the radioligand, for 30 PCP derivatives for sigma 1

receptor-ligands using [ 3H](+)SKF10047 as the radioligand and for 24 bioactive sigma 2

receptor-ligands using the radioligand [H 3](+)DTG in the presence of pentazocine.

Distance Comparisons (DISCOtech) was used as the starting point for CoMFA studies.

The conformers, derived by DISCOtech were optimized using AM, or HF/321G* in

Gaussian 98. The optimized geometries were aligned with the pharmacophore, derived

using DISCOtech. Atomic charges were calculated using AM, HF/321G*, B3LYP/3-

21G*, MP2/321G* methods in Gaussian 98. The CoMFA Maps that were developed

using Sybyl 6.9 were compared on steric and electrostatic field differences. With leave-

one-out cross validation the numbers of optimal components were decided. Using these

numbers of optimal components no cross validation was performed in a training set. After

a test set, it was known that CoMFA models derived from HF/321G* optimized

geometries were more reliable in predicting bioactivities than CoMFA models derived

from AM optimized geometries.
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CHAPTER 1

GENERAL INTRODUCTION

Molecular modeling which includes CoMFA has been an important tool in many areas of

research for determining molecular structure, function and for drug design. Although

there have been some molecular modeling studies on the sigma receptor, few have been

done to differentiate between sigma 1 and sigma 2 subtypes, and only one has been

performed in our group on sigma subtype 2.

The research marks a beginning in combining molecular modeling studies and

CoMFA studies of sigma subtypes to understand each subtype's specific pharmacophore

and its structural activity relationship using different calculational methods.

The objectives of this research were:

1) to derive pharmacophores for sigma receptor subtypes using highly selective and

potent ligands of sigma subtypes.

2) To understand the differences between the sigma 1 receptor and sigma 2 receptor

site binding requirements by studying three-dimensional quantitative structure

activity relationships (3D-QSAR) applying the CoMFA method using the

pharmacophore results from the first step as alignment rules

3) To compare semi-empirical, density functional, and ab initio calculations to

CoMFA studies on sigma receptor ligands.

4) To design new ligands for each subtype using CoMFA results.

Chapter 1 gives outlines, and objectives of this research. Introduction of sigma

receptor-ligands is present in Section 1.1.

1
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Capter 2 is a description of various quantum mechanics methods for ab initio,

density functional, and semi-empirical methods used in this study. This part consists of

nine main Sections. Section 2.1 contains the Schrodinger Equation. Section 2.2 explains

Hartree-Fock Self-Consistent Field theory used in this study. Section 2.3 suggests

limitations of the HF method in electron correlations. Section 2.4 describes the Moller-

Plesset Method used in this study. Section 2.5 gives multiconfiguration SCF methods.

Section 2.6 describes density functional theory that has been used in this research.

Section 2.7 contains properties derived from the wavefunction as electrical properties and

atomic charges used in this study. Section 2.8 explains basis set effects by minimal basis

sets, split valence basis sets, polarized basis sets, diffuse functions, and high angular

momentum basis sets. Section 2.9 describes semi-empirical methods.

Chapter 3 contains QSAS methodology. Section 3.1 describes statistical concepts.

Section 3.2 gives approaches to developing a QSAS.

Chapter 4 contains comparative molecular field analysis (CoMFA) studies using

semi-empirical, density functional, ab initio methods and pharmacophore derivation

using DISCOtech on sigma 1 receptor-ligands. Section 4.1 includes an introduction of

chapter 4. Section 4.2 describes materials and methods. It gives 48 bioactive compounds

from literature data, and computational methods used in this study. Section 4.3 shows

results in chapter 4 in comparative molecular field analysis. Section 4.4 validates this

CoMFA models and designs of new Ligands using the CoMFA models. Section 4.5

concludes in CoMFA studies of sigma 1 receptor-ligands using radioligand, [ 3H](+)

pentazocine.
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Chapter 5 contains pharmacophore derivation using DISCOtech on PCP

derivatives for sigma 1 receptor-ligands and CoMFA studies using semi-empirical,

density functional, ab initio methods. Section 5.1 gives an introduction of PCP

Derivatives for sigma 1 receptor-ligands. Section 5.2 includes biological data of 30

phenyl cyclohexyl piperidine derivatives and computational methods used in chapter 5. It

covers choice of initial conformations, pharmacophore information from DISCOtech.

geometry optimization, atomic charge calculations, alignments, and CoMFA models.

Section 5.3 describes results and discussions in chapter 5. It shows results of comparative

molecular field analysis and their validations of CoMFA models. Using these CoMFA

models, new ligands are designed. Section 5.4 shows conclusions in CoMFA studies of

PCP derivatives for sigma 1 receptor-ligands.

Chapter 6 contains CoMFA studies using semi-empirical, density functional, ab

initio methods and pharmacophore derivation using DISCOtech on sigma 2 receptor-

ligands. Section 6.1 introduces sigma 2 receptor ligands. Section 6.2 shows a selection of

ligands, choice of initial conformations, pharmacophore information using DISCOtech,

geometry optimization and atomic charge calculations, alignments of optimized

molecules, and their CoMFA models. Section 6.3 contains results and discussions of

comparative molecular field analysis, validation of the CoMFA models, and design of

new ligands. Section 6.4 gives conclusions of CoMFA studies of Sigma 2 receptor-

ligands.

Chapter 7 displays general conclusions on this study. Suggestions for further work

is also given in Section 7.1.
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1.1 Sigma Receptor Ligands

It is now well established that sigma (a) receptors represent a unique binding site in the

brain and peripheral organs, distinct from any other known proteins. However, when they

were initially proposed by Martin and colleagues [1] to account for the psychotomimetic

effects of N-allylnormetazocine ((±)-SKF-1O,047) in the morphine-dependent chronic

spinal dog, they were initially classifed as 'opiate/os sites. It was rapidly evident that

most of the behaviors elicited by the drug were resistant to blockade by classical opiate

receptor antagonists naloxone or naltrexone [2]. The sigma (a) receptors were thus

distinguished from other classical P- , Bic- , and s-opiate receptors [3]. The sigma (a)

receptors were then confounded with the high affinity phencyclidine (PCP) binding sites,

located within the ion channel associated with the NMDA-type of glutamate receptor,

because of similar affinities of these sites for several compounds, including PCP and (+)-

SKF-1O,047 [3]. The confusion was cleared up by the availability of more selective

drugs, including dizocilpine or thienylcyclidine for the PCP site; 1,3-di-o-tolylguanidine

cyclohexylamine (BD737), among others, for the a site. The pharmacological

identification of sigma (a) sites was characterized by their ability to bind several

chemically unrelated drugs with high affinity, including psychotomimetic

benzomorphans, PCP and derivatives, cocaine and derivatives, amphetamines, certain

neuroleptics, many new 'atypical' antipsychotic agents, anticonvulsants, cytochrome

P45O inhibitors, monoamine oxidase inhibitors, histaminergic receptor ligands, peptides
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from the neuropeptide Y (NPY) and calcitonin gene-related peptide (CGSP) families, and

several steroids [4-7].

The pharmacological identification and localization of abinding sites was

achieved using various radioligands, including

. Biochemical studies allowed the

distinction of two classes of sigma (a) sites, termed a 1 and a 2 [13]. The two sites can

be distinguished based on their different drug selectivity patterns and molecular weights.

The a 1 site is a 25-30 kDa single polypeptide, and the a 2 site is an 18— 21 kDa protein

that has not yet been cloned [14-16]. The a 1 site presents a high affinity and

stereoselectivity for the (+)-isomers of SKF-1O,047, pentazocine and cyclazocine,

whereas a 2 sites have lower affinity and show the reverse stereoselectivity [15]. DTG,

(+)-3-PPP and haloperidol are non-discriminating ligands with high affinity on both

subtypes. In addition, a 1 sites are allosterically modulated by phenytoin [17] and

sensitive to pertussis toxin and to the modulatory effects of guanosine triphosphate [18-

20]. It also has been shown that several drugs, such as haloperidol, reduced haloperidol,

butanol (BMY-14,802),

rimcazole, or

100) act as antagonists in several physiological and behavioral tests relevant to the a 1

pharmacology [21-25]. However, most of them are non-selective and also bind to other

pharmacological targets.

The a 1 receptor cDNA has been cloned from guinea-pig liver [26], human placental

cell line, T leukemia Ichikawa cell line and human brain [27-29], mouse kidney and brain
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[30,31], and rat brain [32,33]. The amino acid sequences of the purified proteins are

highly similar, with a 87-92% identity and 90-93% homology between species. The

protein sequence also shared a similarity, 33% identity and 66% homology, with a fungal

sterol C8—C7 isomerase [26]. However, it shares no homology to the related mammalian

enzyme or any other mammalian protein, indicating that the al receptor is a distinct

entity from any other known receptors and that an identical al receptor is expressed in

peripheral tissues and brain. The promoter region sequence of the a1 receptor contains

consensus sequences for the liver-specific transcription factors nuclear factor (NF)-1/L,

activator protein (AP)-1, AP-2, IL-6SE, NF-GMa, NF-GMb, NF-m113, steroid response

element, GATA-1, Zeste, for the xenobiotic responsive factor called the arylhydrocarbon

receptor, and for a putative signal for retention in the endoplasmic reticulum [29],

suggesting that the receptor transcription could be related by immediate early genes.

In this research, there are three different studies for sigma receptors; (1) 43 molecules

as a training set and 5 molecules as a test set for the sigma 1 receptor-ligands, using the

radioligand [ 3H](+) pentazocine, (2) 24 PCP derivatives as a training set and three

molecules as a test set for the sigma 1 receptor-ligands, using the radioligand

[ 3H](+)SKF10047, and (3) 21 molecules as a training set and three molecules as a test set

for sigma 2 receptor-ligands, using [3H]DTG in the presence of (+) pentazocine.



CHAPTER 2

QUANTUM CHEMICAL METHODS FOR MOLECULAR MODELING

Many aspects of molecular structure and dynamics can be modeled using classical

methods in the form of molecular mechanics and dynamics. The classical force field is

based on empirical results, averaged over a large number of molecules. Because of this

extensive averaging, the results can be good for standard systems, but there are many

important questions in chemistry that cannot be addressed by means of this empirical

approach. If one wants to know more than just structure or other properties that are

derived only from the potential energy surface, in particular properties that depend

directly on the electron density distribution, one has to resort to a more fundamental and

general approach: quantum chemistry. The same holds for all non-standard cases for

which molecular mechanics is not applicable.

Quantum chemistry is based on the postulates of Quantum Mechanics. In this

chapter, some basic aspects of the theory of quantum chemistry are recalled with an

emphasis on their practical implications for the molecular modeler. In quantum

chemistry, the system is described by a wavefunction which can be found by solving the

Schrodinger equation. This equation relates the stationary states of the system and their

energies to the Hamiltonian operator, which can be viewed as the recipe for obtaining the

energy associated with a wavefunction describing the positions of the nuclei and

electrons in the system. In practice the Schrödinger equation cannot be solved exactly and

approximations have to be made. The approach is called "ab initio" when it makes no use

7
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of empirical information, except for the fundamental constants of nature such as the mass

of the electron, Planck's constant etc., that are required to arrive at numerical predictions.

In spite of the necessary approximations, ab initio theory has the conceptual advantage of

generality, and the practical advantage that (with experience) its successes and failures

are more or less predictable.

The major disadvantage of ab initio quantum chemistry are the heavy demands on

computer power. Therefore, further approximations have been applied for a long time

which go together with the introduction of empirical parameters into the theoretical

model. This has led to a number of semi-empirical quantum chemical methods, which

can be applied to larger systems, and give reasonable electronic wavefunctions so that

electronic properties can be predicted. Compared with ab initio calculations their

reliability is less and their applicability is limited by the requirement for parameters, just

like in molecular mechanics.

In general, one should apply quantum chemistry for "small" systems, which can

be treated at a very high level, when electronic properties are sought (electric moments,

polarizabilities, shielding constants in NMS and ESS, etc.) and for "non-standard"

structures, for which no valid molecular mechanics parameters are available. Examples

are conjugated pi systems, organometallic compounds and other systems with unusual

bond or atom types, excited states, reactive intermediates, and generally structures with

unusual electronic effects [34].
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2.1 The Schrodinger Equation

The energies and wavefunctions of stationary states of a system are given by the solutions

ribs the Hamiltonian operator

which in this case gives the kinetic and potential energies of a system of atomic nuclei

and electrons. It is analogous to the classical kinetic energy of the particles and the

Coulomb electrostatic interactions between the nuclei and electrons.

wavefunction, one of the solutions of the eigenvalue equation. This wavefunction

depends on the coordinates of the electrons and the nuclei. The Hamiltonian is composed

of three parts: the kinetic energy of the nuclei, the kinetic energy of the electrons, and the

potential energy of nuclei and electrons.[35-39]

Four approximations are commonly (but not necessarily) made:

• time independence; looking at states that are stationary in time.

• neglect of relativistic effects; this is warranted unless the velocity of the electrons

approaches the speed of light, which is the case only in heavy atoms with very

high nuclear charge.

• Born-Oppenheimer approximation; separation of the motion of nuclei and

electrons.

• orbital approximation; the electrons are confined to certain regions of space.
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The Born-Oppenheimer approximation implies the separation of nuclear and

electronic wavefunctions, the total wavefunction being a product of the two:

The motivation behind this is that the electrons are so much lighter than the nuclei that

their motion can easily follow the nuclear motion. In practice, this approximation is

usually valid. From this point, the electronic wavefunction life is investigated and Vie is

obtained by solving the electronic SchrOdinger equation:

This equation still contains the positions of the nuclei, however not as variables but as

parameters.

The electronic Hamiltonian contains three terms: kinetic energy, electrostatic

interaction between electrons and nuclei, and electrostatic repulsion between electrons. In

order to simplify expressions and to make the theory independent of the experimental

values of physical constants, atomic units are introduced:
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With these units the electronic Hamiltonian is:

The total energy in the Born-Oppenheimer model is obtained by adding the nuclear

repulsion energy to the electronic energy: 	 .

The total energy defines a potential energy hypersurface E=f(Q) which can be

used to subsequently solve a Schrädinger equation for the nuclear motion:

In the following Section, the important problem of solving the electronic Schrodinger

equation will be studied.
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2.2 Hartree-Fock Self-Consistent Field Theory

The electronic Hamiltonian contains two terms that act on one electron at a time, the

kinetic energy and the electron-nucleus attraction, and a term that describes the pairwise

repulsion of electrons. The latter depends on the coordinates of two electrons at the same

time, and has turned out to be a practical computational bottleneck, which can be passed

only for very small systems:

To avoid this problem the independent particle approximation is introduced: the

interaction of each electron with all the others is treated in an average way. Suppose:

Then the SchrOdinger equation which initially depended on the coordinates x

(representing spatial and spin coordinates) of all electrons can be reduced to a set of

equations:
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) are called one-electron spin-orbitals.

The obvious problem is that for each electron the potential due to all other

electrons has to be known, but initially none of these is known. In practice trial orbitals

are used which are iteratively modified until a self-consistent solution (a "Self-Consistent

Field") is obtained, which can be expressed as a solution to the Hartree-Fock equations:

It is important to realize that convergence of the SCF procedure is by no means

guaranteed. Many techniques have been developed over the years to speed up

convergence, and to solve even difficult cases. In practice, difficulties often occur with

systems with an unusual structure, where the electrons "do not know where to go". The

eigenvalues are interpreted as orbital energies. The orbital energies have an attractively

simple physical interpretation: they give the amount of energy necessary to take the

electron out of the molecular orbital, which corresponds to the negative of the

experimentally observable ionization potential (Koopmans' Theorem) [35-39]:
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Figure 2.1 The eigenvalues, interpreted as orbital energies.

In addition to being a solution of the electronic Schrädinger equation the wavefunction

must be normalized and satisfy the Pauli principle. The normalization condition is

connected with the interpretation of the wavefunction as a distribution function which

when integrated over entire space should give a value of one:

in "bra-ket" notation:

The Pauli principle states that the wavefunction must change sign when two independent

electronic coordinates are interchanged:
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For a two-electron system the spin-orbital5

(in which sigma is either alpha or beta spin state) can be combined as follows:

According to the definition of a determinant this antisymmetrized product is equal to:

This type of wavefunction is known as a Slater determinant, commonly abbreviated as:

An important property of the SCF method is that its solutions satisfy the Variation

Principle, which states that the expectation value of the energy evaluated with an inexact

wavefunction is always higher than the exact energy:

As a consequence the lowest energy is associated with the best approximate

wavefunction and energy minimization is equivalent with wavefunction optimization.

The energies of Slater determinants from a Hartree-Fock calculation are readily

expressed in one- and two-electron integrals. For the ground state it is:



Here, the following abbreviations have been used:
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The two-electron integral (MIA which describes the repulsion between two electrons each

localized in one orbital is called a Coulomb integral, (ijlij) for which a classical picture

cannot be drawn so easily is called the Exchange integral.

In many cases it is advantageous to apply the restriction that electrons with

opposite spin pairwise occupy the same spatial orbital. This leads to the Sestricted

Hartree Fock method (SHF), as opposed to the Unrestricted version (UHF). An important

advantage of the SHF method is that the magnetic moments associated with the electron

spin cancel exactly for the pair of electrons in the same spatial orbital, so that the SCF

wavefunction is an eigenfunction of the spin operators and . Note that the UHF

wavefunction is more flexible than the SHF wavefunction, thus can approximate the

exact solution better and give a lower energy. In practice SHF is mostly used for closed

shell systems, UHF for open shell species. SHF models for open shell systems and more

advanced models can used when necessary. The total energy for a closed shell ground

state SHF model can be written as:
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2.3 Limitations of the HF Method; Electron Correlation

Sestricted Hartree-Fock SCF theory has some painful shortcomings. Consider for

example the dissociation of the H2 molecule:

A "dissociation catastrophe" occurs because the separated hydrogen atoms cannot be

described using doubly occupied orbitals, so that H2 tends to dissociate in H+ and H-,

which can be described with a doubly occupied orbital on H-. This problem does not

occur in the UHF method, but this method has the disadvantage that it does not give pure

spin states.

An additional limitation of the HF method in general is that due to the use of the

independent particle approximation the instantaneous correlation of the motions of

electrons is neglected, even in the Hartree-Fock limit. The difference between the exact

energy (determined by the Hamiltonian) and the HF energy is known as the correlation

energy: Ecorrelation = Eexact - EHF < 0

Even though EHF is approximately 99% of Esub>exact the difference may be
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chemically important. Several approaches are known that try to calculate the correlation

energy after Hartree-Fock calculations (post-HF methods).

• Configuration Interaction (CI),

• Moller-Plesset Perturbation Theory and

• Multi-Configuration SCF (MCSCF or CASSCF).

HF theory gives a wavefunction which is represented as a Slater determinant. In the

conceptually simple Configuration Interaction (CI) method, a linear combination of

Slater determinants is constructed, using the unoccupied "virtual" orbitals from the SCF-

calculation:

Figure 2.2 Configuration Interaction (CI) method, a linear combination of slater
determinants

The total wavefunction is written as:
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In principle, the exact correlation energy can be obtained from a full CI

calculation in which all configurations are taken into consideration. Unfortunately this is

not possible for all but the smallest systems. Moreover, the problem is aggrevated when

the size of the basis set is increased, on the way towards the Hartree-Fock limit. Thus, the

theoretical limit of the exact (time-independent, non-relativistic) Schrödinger equation

cannot be reached.

Figure 2.3 The Hartree-Fock limit as the size of the basis set is increased.

Even for small systems the number of excited configurations is enormously large.

A popular way to truncate the CI expansion is to consider only singly and doubly excited

configurations (CT-SD). The energy, calculated as the expectation value of the

Hamiltonian for CID is:
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To perform the calculation one needs the two-electron integrals over Molecular Orbitals.

The computation of these is very time-consuming, even when the integrals over AO's are

available:

In general, CI is not the practical method of choice for the calculation of

correlation energy because full CI is not possible, convergence of the CI expansion is

slow, and the integral transformation time-consuming. Moreover truncated CI is not size-

consistent, which means that the calculation of two species at large separation does not

give the same energy as the sum of the calculations on separate species. This is because a

different selection of excited configurations is made in the two calculations. An

advantage of the CI method is that it is variational, so the calculated energy is always

greater than the exact energy. Although CI is not recommendable as a method for ground

states CI-singles (CIS) has been advocated as an approach to computation of excited state

potential energy surfaces [40].

2.4 Moller-Plesset Method

A different approach to electron correlation has become very popular in recent years:

Moller-Plesset perturbation theory. The basic idea is that the difference between the Fock

operator and the exact Hamiltonian can be considered as a perturbation:



21

An enormous practical advantage is that MP2 is fast (of the same order of

magnitude as SCF), while it is rather reliable in its behavior, and size consistent. A

disadvantage is that it is not variational, so the estimate of the correlation energy can be

too large. Subsequent MP-levels MP3, MP4 (usually MP4 SDQ) are more complicated

and much more time-consuming. For example, for pentane (C5H12) with the 6-31G(d)

basis set (99 basis functions) an MP2 energy calculation took about 4 times the amount of

time needed for SCF, while MP4 took almost 90 times that time [39].

2.5 Multiconfiguration SCF Method

Multiconfiguration SCF (MCSCF) or Complete Active Space SCF (CASSCF) is a special

method in which HF-orbitals are optimized simultaneously with a "small" CI. This can be

used to study problems where the Hartree-Fock method is inappropriate (e.g. when there
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are low-lying excited states), or to generate a good starting wavefunction for a subsequent

CI calculation.

The MCSCF method requires considerable care in the, selection of the basis set

and especially the active space, and should not be considered for routine use.

In contrast to the HF, MPn and CI methods, MCSCF does not provide a "model

chemistry" because each problem requires different choices. MCSCF methods are

essential for the study of processes in which transitions between potential energy surfaces

occur, such as in photochemical reactions [41, 42]. A combination of MP2 with MCSCF

has recently been explored by Roos et al. [43]. This seems to be a very promising method

for excited states.

Other methods to determine the correlation energy are under development. At this

point it is useful to note another promising development, that of density functional theory.

This is a method in which the two-electron integrals are not computed in the conventional

way. Application of this approach to molecular systems is still in its infancy, but rapid

developments are to be expected in the next few years, in particular driven by the desire

to be able to compute larger systems, e.g. metal complexes and organometallic

compounds.
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2.6 Density Functional Theory [44]

The existence of correlations between the particles, the main formal difficulty

encountered in treating a materials problem in quantum mechanics, is a familiar one in

many contexts. The positions and motions of the particles that make up a molecule or

material are correlated because the particles interact with each other and exert forces

upon each other as they move. In quantum mechanics, the situation is further

compounded by the mysterious forces that devolve from the Pauli exclusion principle

governing electrons. This causes correlations to appear even between ( fictitious)

noninteracting particles that have no direct interaction with each other. Such forces are

referred to as exchange forces because they have to do with the set of rules in quantum

mechanics that govern what happens when the labels characterizing indistinguishable

particles are exchanged.

Whether due to interactions (e.g., the Coulomb force) or exchange, correlations

can be characterized as either long- or short-range. The former can be dealt with by

averaging techniques and a mean-field or a self-consistent field (meaning that the field

experienced by an atom depends on the global distribution of atoms). Short-range

correlations involve the local environment around a particular atom, i.e., deviations of the

local environment from average behavior, and are much more difficult to treat. In large

part, the central problem of quantum methods in chemistry and condensed matter physics

has been the search for more and more accurate ways of incorporating short-range

correlations into mean-field theory. The massive cpu requirement of codes that employ

modern methods such as coupled clusters or Quantum Monte Carlo bear witness to the

degree of difficulty of the problem. These methods are applicable only to relatively small
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molecules or very simple crystalline solids and their scaling properties as the system size

increases are very unfavorable.

Fortunately, the fine details of short range correlations are often of only minor

importance so that a theory based on the concept of a mean or self-consistent field is

sufficiently accurate for many purposes. Where this is not the case, as in the high

temperature ceramic superconductors, or valence-mixed solids, one refers to strongly

correlated systems, implying that the shortrange correlations between electrons due to

exchange and their mutual Coulomb repulsions must be accounted for very accurately if

even the qualitative features of observed behavior are to be reproduced.

Several promising methods of dealing with the problem of strong correlations

have been developed in recent years but this is still at the cutting edge of research in

condensed matter physics and none of these methods is quite ripe for inclusion in a suite

a general software tools. An important advance in the calculation of the energy of

collections of atoms and the forces on each atom was made by Kohn and Sham (1965),

who showed how a mean-field theory could be applied to this problem. In their method,

the electron density plays a crucial role so that, although the term has more general

applicability, the Kohn-Sham method is commonly referred to as density functional

theory. This has since advanced to become a very important method for determining the

energy of many-electron, and therefore many-atom systems. In addition, Kohn-Sham

density functional theory is equally applicable to molecules (bounded collections of

atoms) and crystalline materials (where a specific unit cell is repeated throughout space).
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In density functional theory, the energy is not written in terms of the many-

electron wavefunction as is conventional in quantum chemistry, but as a functional of the

electron density. Kohn and Sham proposed that the functional for a system of electrons

with external field Vext(x) be written in the form

where the terms refer to the kinetic energy of non-interacting electrons having density P

(x), the electrostatic energy, the so-called exchange-correlation energy, and the potential

energy of non-interacting electrons having density P (x) in the external field Vext(x). The

important advance of Kohn and Sham was the correction of a defect of earlier forms for

the density functional (such as the Thomas-Fermi-Dirac functional) with regard to

reproducing the shell structure of atoms. This is achieved in the Kohn-Sham functional

via the kinetic energy term which is expressed by a set of orbitals, on, emanating from a

one-particle Schrodinger equation;

The link between Ts and P (x) is then indirect, via the orbitals, (11 n , in terms of which
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Here the an are occupation numbers that determine the electron configuration. Ts[ P (x)]

and P(x), as given by Equation 2.2 and Equation 2.3, provide the required link between a

density and the kinetic energy with which it is associated.

For purposes of practical calculation, the Kohn-Sham functional must be

supplemented by an approximation for the exchange and correlation term. The traditional

approximation, proposed by Kohn and Sham, is referred to as the "local density

approximation" (LDA) and takes the form

where is the exchange correlation energy of a homogeneous electron gas having density r.

Although this form of the exchange correlation energy appears to be valid only in the

limit that the electron density is slowly varying (in which case Equation 2.4 is the first

term in a gradient expansion), a posteriori calculation showed that the expression remains

relatively accurate in general, even when the density is so rapidly varying that a gradient

expansion of it does not exist. Arguments of a dimensional nature having nothing to do

with gradient expansions help to explain the general accuracy of Equation 2.4 and

suggest why this expression gives a reasonable estimate of the exchange-correlation

energy irrespective of the nature of the density distribution. The quantity 2hxc( P) has

been calculated in several ways by different groups. The calculations give similar, but not

identical results. The differences to be expected on switching from one LDA functional to

another are, in general, only marginal.
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The LDA remained the approximation of choice for Exc for many years (and is

still for some applications, particularly in extended systems). In applications to

molecules, however, it was found that the LDA tends to overbinding (too large values of

molecular binding energies). This can be understood as a consequence of a known defect

of Equation 4. In regions of low electron density. Here, the exact form of Ehxc is known

(it is some kind of electrostatic interaction having the functional form of a power law)

and deviates greatly from the LDA which falls off exponentially with the electron

density. This means that the exchange correlation contribution emanating from regions of

low electron density is underestimated, which, in turn, implies that the difference in

energy between two systems whose electron distributions have different "surface areas"

will be in error. This is the case when two atoms combine to form a molecule and the

sign of the effect is consistent with overbinding of the molecule.

Over the past decade, a class of corrections to the LDA has been developed that

correct this deficit to a large extent by going over explicitly to the power law form in

regions of low density. This is usually done by introducing a dependence on the gradient

of the density and the new class of corrected exchange-correlation functionals is referred

to as gradient corrected or Generalized Gradient Approximations (GGA). The use of

gradient corrections has little influence on local properties such as bond lengths or

vibration frequencies, but does lead usually to a significant improvement in global

changes in the energy such as those that result when two atoms form to make a molecule,

or a molecule binds on a surface. The hunt for yet further improvement in exchange-

correlation functionals continues, though this is unsystematic and there is no guarantee



28

that higher accuracy can be attained than is already exhibited by the functionals

commonly in use today.

The energy of a system of electrons in an external field (such as that due to a

collection of nuclei) is given by minimizing the density functional Equation 2.1. This is

equivalent to solving a set of Kohn- Sham equations comprising a one-particle

Schrodinger equation together with a so-called self-consistency condition. The

Schrodinger equation links the input potential to the output density of the Schrodinger

equation:

and the output density, P (x), is given in terms of the orbitals by Equation 2.3, Equation

2.5a, and Equation, 2.5b are usually solved by iteration. Beginning with a start potential,

Equation 2.5a is solved and its out density calculated from the orbitals via Equation 2.3.

Then this density is used to form a new potential for Equation 2.5a. The self- consistency

cycle is then continued until the in potential and the out-density satisfy Equation 5b to

some desired accuracy. This often involves many iterations because the self-consistency
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procedure is inherently unstable. Sophisticated "feedback" techniques are necessary to

prevent oscillations.

Once self-consistency is achieved, the calculational output includes the energy,

Equation 2.1, it's derivatives with respect to the nuclear coordinates (i.e., the atomic

forces), the eigenvalues of Equation 2.5a, (which in extended systems give the energy

bands), and the one electron orbitals P (x). According to formal density functional theory,

only the energy and its derivatives (the forces on the ions) have physical significance.

However, practical calculation over many decades has shown that many other quantities,

calculated approximately in a "one-electron picture" using the eigenvalues (energy bands)

and orbitals or Equation 2.5a, are given with equal accuracy. These include (in many

cases) the optical absorption, which is treated by assuming the electrons of the system to

be excited from occupied to unoccupied levels as the result of photon absorption, and the

magnetic structure of materials. This is calculated using a spin-polarized version of the

theory in which the electrons of up-spin and down-spin may experience different

potentials. It is then possible for the system to adopt a symmetry broken configuration

wherein there is a preponderance of one kind of spin and therefore a magnetic state. The

use of the local spin-density approximation for the exchange correlation energy, which is

analogous to Equation 2.4 but with allowance for different densities for up- and down-

spins, gives surprisingly accurate data for the magnetic structure of metals and alloys.

Spin-polarized calculations are also important in dealing with open-shell atoms and

molecules.

In short, the solution of the Kohn-Sham equations, Equation 2.5a and Equation

2.5b, for a collection of atoms, whether in a molecule, cluster or extended solid provides
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a wealth of information about the system. This includes structural information, such as

the equilibrium geometry, and a wide variety of important electronic properties. In

addition, dynamical and thermal behavior can be studied using forces generated by the

solution of the Kohn-Sham equation in, e.g., molecular dynamics calculations (so-called

ab-initio molecular dynamics). Although Eqs. 5 are very much simpler than standard

quantum mechanics - because the Coulomb interaction is treated via a mean-field - this

does not mean that they can be easily solved. The functional dependence of the exchange

correlation energy density on the electron density is non analytic, so exact, analytic

solutions are not possible even for the hydrogen atom. Methods yielding numerically

exact solutions are possible, but only for very small systems (atoms and small, light

molecules). In general, approximate methods must be used. Over the years, a number of

standard methods have been applied with varying degrees of success. Each has strengths

and weaknesses in terms of the systems and/or properties for which it is most accurate.

2.7 Properties Derived from the Wavefunction

The electronic wavefunction which is computed in ab initio as well as semi-empirical

quantum chemical methods can be used to derive observable quantities of a molecule, but

it can also be analyzed and used to rationalize certain chemical phenomena.
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2.7.1 Electrical Properties

The electric dipole moment p of a molecule can be calculated directly from the positions

of the nuclei and the electronic wavefunction [45]:

The dipole moment can be viewed as the first term of an expansion of the electric field

due to the molecule, the next higher term being the quadrupole moment. It is also

possible to obtain the dipole moment and polarizabilities directly as derivatives of the

energy with respect to a uniform electric field [35]. The electrostatic potential of the

molecule represents the interaction between the charge distribution of the molecule and a

unit point charge located at some position p:

Calculation of the molecular electrostatic potential at the surface of the molecule

(described by the total electron density) can indicate how the molecule will interact with

polar molecules or charged species. Visualization of this can be nicely accomplished

using color coding [45].
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2.7.2 Atomic Charges

Although concepts like atomic point charges or bond dipoles are widely used in

molecular mechanics, there is no unique definition of atomic charge in a molecule. All

ways to attribute a part of the electron density to individual atoms are to a certain extent

arbitrary. As a first analysis, or as a way to compare related systems, Mulliken Population

Analysis can be applied. The electron density distribution (the probability of finding an

electron in a volume element dr) is:

Integrated over entire space this gives the total number of electrons (Spy is the overlap):

This can be separated into diagonal and off-diagonal terms, where the former represent

the net population of the basis orbitals and the latter are make up the overlap population.
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In the Mulliken scheme the overlap population is simply shared between the

contributing atoms, which leads to the following charge for each basis orbital:

Summing of the charges in the orbitals associated with each atom gives the atomic

charge. An important disadvantage of the Mulliken population analysis is that extended

basis sets can lead to unphysical results, e.g. charges of more than 2e, which result from

the fact that the basis orbitals centered at one atom actually describe electron density

close to another nucleus. Population Analysis based on Natural Atomic Orbitals does not

have this problem.An approach which may be physically more relevant is to fit charges at

the atomic positions to the molecular electrostatic potential measured at a grid of points.

This still leaves some arbitrariness in the choice of the grid, and the procedure is

computationally much more demanding than the other types of population analysis.

2.8 Basis Set Effects

A basis set is the mathematical description of the orbitals within a system(which in turn

combine to approximate the total electronic wavefunction) used to perform the theoretical

calculation. Larger basis sets more accurately approximate the orbitals by imposing

fewer restrictions on the locations of the electrons in space. In the true quantum

mechanical picture, electrons have a finite probability of existing anywhere in space. The

standard basis sets use linear combinations of gaussian functions to form the orbitals.

Gaussian offers a range of pre-defined basis sets, which may be classified by the number

and types of functions that they contain. Basis sets assign a group of basis functions to
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each atom within a molecule to approximate its orbitals. These basis functions

themselves are composed of gaussian functions; the former are then referred to as

contracted gaussians (or contracted functionn), and the latter are referred to as primitives.

2.8.1 Minimal Basis Sets

Minimal basis sets contain the minimum number of basis functions needed for each atom,

as in these examples:

H: Bs

Minimal basis sets used fixed-size atomic-type orbitals. The STO-3G [46] basis set is a

minimal basis set (although it is not the smallest possible basis set). It uses three

gaussian primitives per basis function, which accounts for the "3G" in its name. "STO"

stands for "Slater-type orbitals", and the STO-3G basis set approximates Slater orbitals

with gaussian functions.

2.8.2 Split Valence Basis Sets

The first way that a basis set can be made larger is to increase the number of basis

function per atom. Split valence basis sets, such as 3-21G [47] and 6-31G [48], have two

(or more) sizes of basis function for each valence orbital. For example, hydrogen and

carbon are represented as:
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Figure 2.4 The Diagram of split valence basis sets.

The double zeta basis sets, such as the Dunning-Huzinaga basis set (D95), form all

molecular orbitals from linear combinations of two sizes of functions for each atomic

orbitals. Similarly, triple zeta basis sets, like 6-311G [49], use three sizes of contracted

functions for each orbital-type.

2.8.3 Polarized Basis Sets

Split valence basis sets allow orbitals to change size, but not to change shape. Polarized

basis sets remove this limitation by adding orbitals with angular momentum beyond what

is required for the ground state to the description of each atom. For example, polarized

basis sets add d functions to carbon atoms and f functions to transition metals, and some

of them add p functions to hydrogen atoms.



36

Figure2.5 The diagram of polarized basis sets.

Experience suggests that d-type functions are required on second row and heavier

main-group elements even though they are not occupied in the free atoms. (This situation

is very much like that found for alkali and alkaline earth elements where p-type

functions, while not occupied in the ground-state atoms, are required for proper

description of bonding in molecules.) This applies not only to molecules with expanded

valence octets (so-called "hypervalent molecules") but also to normal-valent systems.

The polarized basis set 6-31G), indicates that it is the 6-31G basis set with d functions

added to heavy atoms. This basis set is becoming the standard basis set for calculations

involving up to medium-sized systems. This basis set is also known as 6-31G*. The

popular polarized basis set is 6-31G(d,p), also known as 6-31G**, which adds p functions

to hydrogen atoms in addition to the d functions on heavy atoms [50]. Other basis set

which has proven to be quite successful for molecules incorporating heavy main-group

elements is 3-21G*, constructed from 3-21G basis sets by the addition of a set of d-type

functions on second-row and heavier by main-group elements only [51].
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2.8.4 Diffuse Functions

Basis sets with diffuse functions are important for systems where electrons are relatively

far from the nucleus: molecules with lone pairs, anions and other systems with significant

negative charge, systems in their excited states, systems with low ionization potentials,

descriptions of absolute acidities. Diffuse functions are large-size versions of s- and p-

type functions (as opposed to the normal, contracted functions). They allow orbitals to

occupy a larger region of space.

The 6-31+G(d) basis set is the 6-31G(d) basis set with diffuse functions adde3d to

heavy atoms. The double plus version, 6-31++G(d), adds diffuse functions to the

hydrogen atoms as well. This addition is usually relatively inexpensive, but seldom

makes a tremendous difference in accuracy. Diffuse functions have no significant effect

on the optimized structure of methanol but do significantly affect the bond angles in

methoxide anion. They are required to produce an accurate structure for the anion [39].

2.8.5 High Angular Momentum Basis Sets

Even larger basis sets are now practical for many systems. Such basis sets add multiple

polarization functions per atom to the triple zeta basis set. For example, the 6-

311G(2d,p) basis set adds two d functions per heavy atom instead of just one, while the

6-311++G(3df, 3pd) basis set contains three sets of valence region functions, diffuse

functions on both heavy atoms and hydrogens, and multiple polarization functions: 3 d

and 1 f function on heavy atoms and 3 p and 1 d function on hydrogen atoms. These

basis sets are useful for describing the interactions between electrons in electron

correlation methods; they are not generally needed for Hartree-Fock calculations [39].



38

2.9 Semi-empirical Method

Ab initio quantum chemical methods are limited in their practical applicability because of

their heavy demands of cpu-time and storage space on disk or in the computer memory.

At the Hartree-Fock level the problem is seen to be in the large number of two-electron

integrals that need to be evaluated. Without special tricks this is proportional to the fourth

power of the number of basis functions. In practice this can be reduced to something

close to the third power for larger molecules, e.g. because use is made of the fact that

integrals between orbitals centered on distant atoms need not be calculated because they

will be zero anyway.

Still, the size of systems that can be treated is limited, and this holds much more

strongly for correlated treatments. MP2 for example formally scales with the fifth power

of the number of basis functions. Therefore there is a place for more approximate

methods that retain characteristics of the quantum-chemical approach, in particular the

calculation of a wavefunction from which electronic properties can be derived. In this

Section, There is overview of commonly used semi-empirical methods [45].

The semi-empirical methods are based on the Hartree-Fock approach. A Fock-

matrix is constructed and the Hartree-Fock equations are iteratively solved. The

approximations are in the construction of the Fock matrix, in other words in the energy

expressions. Secall how the Fock matrix elements are expressed as integrals over atomic

basis functions:
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in which P is the density matrix:

To simplify matters drastically, the Zero Differential Overlap (ZDO) approximation

assumes:

This can be justified when the atomic basis orbitals are orthogonalized (Lowdin

orthogonalization).

As a result of the ZDO approximation many two-electron integrals vanish:

Another common feature of semi-empirical methods is that they only consider the

valence electrons.The core electrons are accounted for in a core-core repulsion function,

together with the nuclear repulsion energy. In the most popular semi-empirical methods

used today (MINDO, AM and PM3) the ZDO approximation is only applied to basis

functions on different atoms. This is called the NDDO approximation (Neglect of
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integrals by parameters, which can either have fixed values, or depend on the distance

between the atoms on which the basis functions are located. At this stage empirical

parameters can be introduced, which can be derived from measured properties of atoms

or diatomic olecules. In the modern semi-empirical methods the parameters are

however mostly devoid of this physical significance: they are just optimized to give the

best fit of the computed molecular properties to experimental data. Different semi-

empirical methods differ in the details of the approximations (e.g. the core-core repulsion

functions) and in particular in the values of the parameters. Note that in contrast to

molecular mechanics, only parameters for single atoms and for atom pairs are needed.

The number of published parameters increases steadily. The semi-empirical methods can

be optimized for different purposes. The MNDO, AM and PM3 methods were designed

to reproduce heats of formation and structures of a large number of organic molecules.

Other semi-empirical methods are specifically optimized for spectroscopy, e.g. INDO/S

or CNDO/S, which involve CI calculations and are quite good at prediction of electronic

transitions in the UV/VIS spectral region.

Some even more approximate methods are still quite useful. In the HUckel and

Extended Bickel methods the whole sum over two-electron integrals is replaced by a

single diatomic parameter (the resonance integral), so that no search for a self-consistent

field is necessary (nor possible). These methods have proven extremely valuable in

qualitative and semi-quantitative MO theories of pi-electron systems and of

organometallic systems [36]. For pi-electron systems ZDO treatments have been

developed that take only pi-centers (p-atomic orbitals) into account, but do perform the

SCF calculation. In the MM2 and MM3 programs pi-electron calculations are used to
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adjust the force constants and equilibrium values of bond lengths to the prevailing bond

order. The pi-bond order between two atoms is simply the sum over Mos of the product

of the coefficients of the basis functions on the atoms in the MO, multiplied by the

occupation number of the MO:

For a given geometry the pi-electron calculation is done, and the bond-orders

computed. Then the force field is adjusted: the force constants for stretching and torsion

are scaled and the equilibrium bond length for the bonds between the pi-centers are

calculated.

When the geometry changes too much, the pi-electron treatment is repeated to adjust the

force field to the new situation. For the pi-electron calculation, the pi-system is treated as

if it is planar. Otherwise the bond order for a twisted semi-single bond would become

smaller as the bond is twisted more, and the " restoring force" towards planarity

(conjugation) would vanish.



CHAPTER 3

QSAR METHODOLOGY

Drug design is an iterative process which begins with a compound that displays an

interesting biological profile and ends with optimizing both the activity profile for the

molecule and its chemical synthesis. The process is initiated when the chemist conceives

a hypothesis which relates the chemical features of the molecule (or series of molecules)

to the biological activity. Without a detailed understanding of the biochemical process(es)

responsible for activity, the hypothesis generally is refined by examining structural

similarities and differences for active and inactive molecules. Compounds are selected for

synthesis which maximize the presence of functional groups or features believed to be

responsible for activity.

The combinatorial possibilities of this strategy for even simple systems can be

explosive. As an example, the number of compounds required for synthesis in order to

place 10 substituents on the four open positions of an asymmetrically disubstituted

benzene ring system is approximately 1O,000. The alternative to this labor intensive

approach to compound optimization is to develop a theory that quantitatively relates

variations in biological activity to changes in molecular descriptors which can easily be

obtained for each compound. A Quantitative Structure Activity Relationship (QSAS) can

then be utilized to help guide chemical synthesis. This chapter develops the concepts used

to derive a QSAS and reviews the application of these techniques to medicinal research.

42
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3.1 Statistical Concepts

Computational chemistry represents molecular structures as numerical models and

simulates their behavior with the equations of quantum and classical physics. Available

programs enable scientists to easily generate and present molecular data including

geometries, energies and associated properties (electronic, spectroscopic and bulk). The

usual paradigm for displaying and manipulating these data is a table in which compounds

are defined by individual rows and molecular properties (or descriptors) are defined by

the associated columns. A QSAS attempts to find consistent relationships between the

variations in the values of molecular properties and the biological activity for a series of

compounds so that these "rules" can be used to evaluate new chemical entities.

A QSAS generally takes the form of a linear equation

where the parameters P1 through Pn are computed for each molecule in the series and the

coefficients C 1 through Cn are calculated by fitting variations in the parameters and the

biological activity. Since these relationships are generally discovered through the

application of statistical techniques, a brief introduction to the principles behind the

derivation of a QSAS follows.

The work reported from The Sandoz Institute for Medical Research on the

development of novel analgesic agents [53] can be used as an example of a simple

QSAS. In this study, vanillylamides and vanillylthioureas related to capsaicin were

prepared and their activity was tested in an in vitro assay which measured [54] Ca2+



44

influx into dorsal root ganglia neurons. The data, which was reported as the EC50 (pM),

is shown in Table 3.1 (note that compound 6f is the most active of the series).

In the absence of additional information, the only way to derive a best "guess" for

the activity of 6i is to calculate the average of the values for the current compounds in the

series. The average, 7.24, provides a guess for the value of compound 8 but, how good is

this guess? The graphical presentation of the data points is shown in Figure 3.1.
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The standard deviation of the data, s, shows how far the activity values are spread

about their average. This value provides an indication of the quality of the guess by

showing the amount of variability inherent in the data. The standard deviation is

calculated as shown below.

Figure 3.1 Capsaicin analogs activity data.

Sather than relying on this limited analysis, one would like to develop an

understanding of the factors that influence activity within this series and use this

understanding to predict activity for new compounds. In order to accomplish this

objective, one needs:
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• binding data measured with sufficient precision to distinguish between

compounds;

• a set of parameters which can be easily obtained and which are likely to be related

to receptor affinity;

• a method for detecting a relationship between the parameters and binding data

(the QSAS) and

• a method for validating the QSAS.

The QSAS equation is a linear model which relates variations in biological

activity to variations in the values of computed (or measured) properties for a series of

molecules. For the method to work efficiently, the compounds selected to describe the

"chemical space" of the experiments (the training set) should be diverse. In many

synthesis campaigns, compounds are prepared which are structurally similar to the lead

structure. Not surprisingly, the activity values for this series of compounds will

frequently span a limited range as well. In these cases, additional compounds must be

made and tested to fill out the training set.

The quality of any QSAR will only be as good as the quality of the data which is

used to derive the model. Dose-response curves need to be smooth, contain enough points

to assure accuracy and should span two or more orders of magnitude. Multiple readings

for a given observation should be reproducible and have relatively smaller errors. The

issue being addressed is the signal-to-noise ratio. The variation of the readings obtained

by repeatedly testing the same compound should be much smaller than the variation over

the series. In cases where the data collected from biological experiments do not follow
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these guidelines, other methods of data analysis should be utilized since the QSAS

models derived from the data will be questionable.

Once biological data has been collected, it is often found that the data is expressed

in terms which cannot be used in a QSAS analysis. Since QSAS is based on the

relationship of free energy to equilibrium constants, the data for a QSAS study must be

expressed in terms of the free energy changes that occur during the biological response.

When examining the potency of a drug (the dosage required to produce a biological

effect), the change in free energy can be calculated to be proportional to the inverse

logarithm of the concentration of the compound.

Further, since biological data are generally found to be skewed, the log

transformation moves the data to a nearly normal distribution. Thus, when measuring

responses under equilibrium conditions, the most frequent transformation used is to

express concentration values (such as 1050, EC5O, etc.) as log[C] or log 1/[C]. The

transformed data for the capsaicin agonists are shown in Table 3.2.

The effect of this transformation on the spread of the data relative to the average is

shown in Figure 3.2. Note that the data points, projected onto the Y-axis, have become

more uniformly distributed.
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Figure 3.2 Capsaicin analogs transformed data.
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Given the transformed data, the best guess for the activity of 6i is still the average of the

data set (or 0.40). As before, the error associated with this guess is calculated as the

square root of the average of the squares of the deviations from the average.

This is an example data set intended to show the general approach; real data sets would

have many more compounds and descriptors. The purpose of a QSAS is to highlight

relationships between activity and structural features.

There are several potential classes of parameters used in QSAS studies.

Substituent constants and other physicochemical parameters (such as Hammett sigma

constants) measure the electronic effects of a group on the molecule. Fragment counts are

used to enumerate the presence of specific substructures. Other parameters can include

topological descriptors and values derived from quantum chemical calculations.

The selection of parameters is an important first step in any QSAR study. If the

association between the parameter(s) selected and activity is strong, then activity

predictions will be possible. If there is only weak association, knowing the value of the

parameter(s) will not help in predicting activity. Thus, for a given study, parameters

should be selected which are relevant to the activity for the series of molecules under

investigation and these parameters should have values which are obtained in a consistent

manner.
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The Sandoz group divided their analysis of capsaicin analogs into three regions:

the A-region which was occupied by an aromatic ring; the B-region which was defined

by an amide bond; and the C-region which was occupied by a hydrophobic side-chain

(See figure in Table 3.1). The hypothesis for the C-region assumed that a small,

hydrophobic substituent would increase activity. Given this assumption, the parameters

selected to best define this characteristic were molar refractivity (size) and IL, the

hydrophobic substituent constant. These values are given in Table 3.3.

The data above can be analyzed for relationships by two means: graphically and

statistically. The most visual approach to a problem with a limited number of variables is

graphical. In this case, a plot of activity versus either molar refractivity or hydrophobicity
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gives some insight into the relationship between the parameters and activity. The plots

derived by the Sandoz group are reproduced in Figure 3.3.

Figure 3.3 Capsaicin analogs parameter values.

The graph provide insight into the the activity for compound 6i. The values for

either the hydrophobicity or molar refractivity parameters for this compound provide a



52

good estimate for activity, since this is a simple example where only two values are

examined. In more complex situations however, where multiple parameters are correlated

to activity, statistics is used to derive an equation which relates activity to the parameter

set. The linear equation which defines the best model for this set of data is

How much confidence should be placed in this model? The first step to answering

this question is to determine how well the equation predicts activities for known

compounds in the series. The equation above estimates the average value for the EC50

based on the value for It ; because assays vary, it is not surprising that individual values

will differ from the regression estimate. The difference between the calculated values and

the actual (or measured) values for each compound is termed the residual from the model.

The calculated values for activity and their residuals (or the errors of the estimate for

individual values) are shown in Table 3.4.

The residuals are one way to quantify the error in the estimate for individual

values calculated by the regression equation for this data set. The standard error for the

residuals is calculated by taking the root-mean-square of the residuals (in this calculation,

the denominator shown as decremented by two to reflect the estimation of two

parameters).
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In order to be an improved model, the standard deviation of the residuals

calculated from the model should be smaller than the standard deviation of the original

data. The standard error about the mean was previously calculated to be 0.76 whereas the

standard error from the QSAS model is 0.28. Clearly, the the use of linear regression has

improved the accuracy of the analysis. The plot of measured values versus calculated is

shown in Figure 3.4 with a 45° line.
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Figure 3.4 Capsaicin analogs predicted versus actual EC5O values.

There are several assumptions inherent in deriving a QSAS model for a series of

compounds. First, it is assumed that parameters can be calculated (or measured in some

cases) more accurately and cheaply than activity can be measured. Second, it is assumed

that deviations from the best fit line follow a normal (Gaussian) distribution. Finally, it is

assumed that any variation in the line described by the QSAS equation is independent of

the magnitude of both the activity and the parameters. Given these assumptions, the

quality of the model can be gauged using a variety of techniques.

Variation in the data is quantified by the correlation coefficient, r, which measures

how closely the observed data tracks the fitted regression line. Errors in either the model

or in the data will lead to a bad fit. This indicator of fit to the regression line is calculated

as:
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where the Segression Variance is defined as the Original Variance minus the Variance

around the regression line. The Original Variance is the sum-of-the-squares distances of

the original data from the mean. This can be viewed graphically as shown in Figure 3.5.

Possible values reported for r2 fall between 0 and 1. An r2 of 0 means that there is

no relationship between activity and the parameter(s) selected for the study. An r 2 of 1

means there is perfect correlation. The interpretation of the r 2 value for the capsaicin

analogs is that 89% of the variation in the value of the Log EC5O is explained by

variation in the value of IL, the hydrophobicity parameter.



Figure 3.5 Capsaicin analogs derivation of r2 values.

While the fit of the data to the regression line is excellent, how can one decide if

this correlation is based purely on chance? The higher the value for r 2 the less likely that

the relationship is due to chance. If many explanatory variables are used in a regression

equation, it is possible to get a good fit to the data due to the flexibility of the fitting

process; a line will fit two points perfectly, a quadratic curve will fit three, multiple linear

regression will fit the observed data if there are enough explanatory variables2. Given the



5 7

assumption that the data has a Gaussian distribution, the F statistic below assesses the

statistical significance of the regression equation. The F statistic is calculated from r 2 and

the number of data points (or degrees of freedom) in the data set. The F ratio for the

capsaicin analogs is calculated as:

This value often appears as standard output from statistical programs or it can be checked

in statistical tables to determine the significance of the regression equation. In this case,

the probability that there is no relationship between activity and the re value is less than

1% (p=0.01). It is found that hydrophobicity values correlate well with biological

activity. Does the addition of a size parameter (MS) improve the model? In order to

analyze a relationship which is possibly influenced by several variables (or properties), it

is useful to assess the contribution of each variable. nand MS appear to be somewhat

correlated in this data set so the order of fitting can influence how much the second

variable helps the first. Multiple linear regression is used to determine the relative

importance of multiple variables to the overall fit of the data.

Multiple linear regression attempts to maximize the fit of the data to a regression

equation (minimize the squared deviations from the regression equation) for the

biological activity (maximize the r 2 value) by adjusting each of the available parameters

up or down. Segression programs often approach this task in a stepwise fashion. That is,

successive regression equations will be derived in which parameters will be either added

or removed until the r2 and s values are optimized. The magnitude of the coefficients
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derived in this manner indicate the relative contribution of the associated parameter to

biological activity.

There are two important caveats in applying multiple regression analysis. The first

is based on the fact that, given enough parameters any data set can be fitted to a

regression line. The consequence of this is that regression analysis generally requires

significantly more compounds than parameters; a useful rule of thumb is three to six

times the number of parameters under consideration. The difficulty is that regression

analysis is most effective for interpolation and it is extrapolation that is most useful in a

synthesis campaign (i.e., the region of experimental space described by the regression

analysis has been explained, but projecting to a new, unanalyzed region can be

problematic).

Using multiple regression for the capsaicin analogs, one can derive the following

equation which relates hydrophobicity and molar refractivity to biological activity.

To judge the importance of a regression term, three items need to be considered.

1. Statistical significance of the regression coefficient.

2. The magnitude of the typical effect bixi (in this case, 0.011 .25.36).

3. Any cross-correlation with other terms.

As more terms are added to multiple linear regression, r2 always gets larger. The

previous calculations (r 2 = 0.89) were recomputed carrying three significant figures so

that rounding does not lead to confusion. These results of this analysis indicate that,
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within this series, steric bulk is not an important factor in activity. The influence of the

hydrophobicity constant confirms the presence of a hydrophobic binding site. Given the

limited number of substituents in this analysis, it is unlikely that more can be learned

from further analysis.

This Section has developed the fundamental mathematics of QSAS studies.

Several authors have published reviews of QSAR and have discussed various aspects of

the methods3-8. Each of the examples to follow uses these techniques to derive

information about the chemical factors which are important for activity.

3.2 Approaches to Developing a QSAR

Drugs exert their biological effects by participating in a series of events which include

transport, binding with the receptor and metabolism to an inactive species. Since the

interaction mechanisms between the molecule and the putative receptor are unknown in

most cases (i.e., no bound crystal structures), one is reduced to making inferences from

properties which can easily be obtained (molecular properties and descriptors) to explain

these interactions for known molecules. Once the relationship is defined, it can be used to

aid in the prediction of new or unknown molecules.

The first approach to developing quantitative relationships which described

activity as a function of chemical structure relied on the principles of thermodynamics.

The free-energy terms A E, I H and A S were represented by a series of parameters

which could be derived for a given molecule. Electronic effects such as electron donating

and withdrawing tendencies, partial atomic charges and electrostatic field densities were

defined by Hammett sigma (a) values, resonance parameters (S values), inductive
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parameters (F values) and Taft substituent values (P *, a*, Es). Steric effects such as

molecular volume and surface area were represented by values calculated for Molar

Sefractivity and the Taft steric parameter. Enthalpic effects were calculated using

partition coefficients (LogP) or the hydrophobic parameter, u, which was derived from

the partition coefficient. In addition, an assortment of structural indices were used to

describe the presence of specific functional groups at positions within the molecule. The

linear equation which described the relationship between activity and this parameter set

was the Hansch equation

Multiple linear regression analysis was used to derive the values of the

coefficients. In general, Hansch type studies were performed on compounds which

contained a common template (usually a rigid one such as an aromatic ring) with

structural variation limited to functional group changes at specific sites.

Hansch utilized this approach in his analysis of 256 4,6-diamino-1,2-dihydro-2,3-

dimethy1-1-(X-phenyl)-s-triazines which were active against tumor dihydrofolate

reductase9. It was demonstrated that for 244 of the compounds, activity could be

correlated to the presence of hydrophobic groups at the three and four positions of the N-

phenyl ring. The parameters used to derive this correlation were the hydrophobic constant

(11) and molar refractivity constant (MS) for meta and para substituents on the N-phenyl

ring and six indicator variables 11-16 which were used to indicate the presence (a value of

1) or absence (a value of 0) of specific structural features. The equation which was

formulated from these data using the method of least squares is shown in Figure 3.6.



Figure 3.6 Analysis of the Baker Triazines.

The optimal values for MS4 (4.7) and 1L3 (2.9) were obtained from the partial

derivatives of the equation. Note that the number of compounds in the data set was

reduced to 244. Hansch and Silipo reported improvements in the value for r and s by

removing 12 compounds which were incorrectly predicted by a factor of 10 or more.

While there are limits to the Hansch approach, it permitted complex biological systems to

be modeled successfully using simple parameters. The approach has been used

successfully to predict substituent effects in a wide number of biological assays. The

main problem with the approach was the large number of compounds which were

required to adequately explore all structural combinations. Further, the analysis methods

did not lend themselves to the consideration of conformational effects. Several authors
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have published articles which provide additional background on the Hansch approach

[55-57].

Alternative approaches to compound design have been suggested which avoid the

combinatorial problem found in Hansch type analyses. Free and Wilson used a series of

substituent constants which related biological activity to the presence of a specific

functional group at a specific location on the parent molecule 12. The relationship

between biological activity and the presence or absence of a substituent was then

expressed by the following equation:

where A was defined as the average biological activity for the series, Gij the contribution

to activity of a functional group i in the jth position and Xij the presence (1.0) or absence

(0.0) of the functional group i in the jth position.

The procedure used the equation above to build a matrix for the series and

represented this matrix as a series of equations. Substituent constants then were derived

for every functional group at every position. Statistical tests were used to test the

importance of the constants. If the models were shown to be valid, the model was used to

predict activity values for compounds which had not been prepared. In general, while a

large number of compounds are required to explore the effects of multiple substitution

patterns, the Free-Wilson approach substantially reduces the number of analogs required.

However, the method demands that the effects of substituents are additive.

In 1972, John Topliss published a paper which detailed methodology to automate

the Hansch approach [58]. The method assumed that the lead compound of interest
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contained at least one phenyl ring which could serve as the template for functional group

modifications. The first modification to the template was preparation of the para-chioro

derivative to examine lipophilicity. Additional substitution patterns were then made

sequentially in an attempt to explore and optimize the relationship between activity and

the hydrophobic and electronic character of the molecule. While the Topliss approach is

easy to follow, it has several drawbacks. The primary problems are that the procedure is

not applicable to all types of studies and that there is a high degree of risk associated with

its use (it essentially ignores the possibility of interactions between substituents as it

changes one substituent at a time).

The use of classical QSAS was expanded during the 1960's as a means of

correlating observed activity to chemical properties. However, there are many areas

where these techniques could not be used or where they failed to provide useful

correlations. These included situations in which activity was found to be determined by

3-dimensional geometry, where poor training sets of compounds were used or the set of

compounds were too small or insufficiently diverse and cases where biological activity

could not be well quantified. Many of these problems were addressed by extensions to

the Hansch method and the development of alternative approaches to QSAS.

There are cases where biological activity values cannot be determined accurately

for a variety of reasons, e.g. lack of sensitivity of a particular test system. Alternative

statistical techniques can be used in these cases; the problem is simplified to a

classification scheme in which compounds are labeled as active, partially active, inactive,

etc. The resulting data set is then searched for patterns which predict these categories.

The methods which have been used for this type of analysis include SIMCA (Soft,
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Independent Modeling of Class Analogy) [59], ADAPT (Automated Data Analysis by

Pattern recognition Techniques) [60], CASE (Computer Automated Structure Evaluation)

[61] and CSA (Cluster Significance Analysis) [62].

Pattern recognition methods [63] attempt to define the set of parameter values

which will result in clustering compounds of similar activity into regions of n-

dimensionally space. The methods used to accomplish this goal can be parametric or

nonparametric. Parametric methods search the n-dimensional space for clusters of

compounds based on their calculated properties. These methods do not use derived values

(e.g., mean vectors and covariance matrices), but instead use the original data to find

clustering definitions and apply iterative procedures to find the linear set of parameters

which best define the classification scheme.

Where the methods described above develop discriminant functions, SIMCA

methods use Principal Component Analysis (PCA) to describe the data set. The objective

of PCA is to create a reduced number variables which describe biological activity or

chemical properties into a relatively few independent ones. This is accomplished through

an analysis of the correlation matrix of biological or chemical properties.

Principle component analysis can be used to create derived variables for each

class (e.g., active and inactive) separately by decomposing the correlation matrix; this

method is useful to point out redundancies or interrelationships among the variables.

PCA seeks to find simplified relationships in data by transforming the original parameters

into a new set of uncorrelated variables which are termed principal components. The

symmetric correlation matrix is decomposed by an eigenvalue decomposition. The largest

eigenvalue and its eigenvector are used to form a linear combination of the original
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variables with maximum variance. Successively smaller eigenvalues and vectors produce

linear combinations of the original variables with diminishing variance. Successive

eigenvectors are independent of one another. The simplification is derived by

disregarding eigenvectors associated with small eigenvalues. In summary, the procedure

finds the set of orthogonal axes for the data which decompose variance in the data.

Another approach to examining the effects of chemical structure on activity was

developed by the Jurs' group. Sather than rely on multivariant statistics to highlight these

relationships, Jurs used the combination of cluster analysis and pattern recognition

techniques as a tool to develop these correlations. The ADAPT program generated a data

set of molecular descriptors (topological, geometrical and physicochemical) derived from

three dimensional model building, projected these data points onto an n-dimensional

surface and analyzed them using pattern recognition methods. The goal of this analysis

was to discriminate between active and inactive compounds in a series.

Jurs has reported several applications of the methodology contained in ADAPT.

In one study of chemical carcinogens [64], a linear discriminant function was derived

from a set of 28 calculated structure features including fragment descriptors, substructure

descriptors, environment descriptors, molecular connectivity descriptors and geometric

descriptors. Two hundred and nine compounds from twelve structural classes (130

carcinogens, 79 noncarcinogens) were selected for this study. The program was used to

identify a training set of 192 compounds which was used to find the best set of

descriptors and analyze the entire data set. A predictive success of 90% for carcinogenic

compounds and 78% for noncarcinogenic compounds was obtained in randomized

testing. The CASE program extended the techniques in ADAPT by using topological
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methods to define substructural fragments which were essential for activity. CASE was

able to differentiate between positional isomers. Both CASE and ADAPT are limited to

analyzing structurally similar data sets.

The analysis methods described to this point have not explicitly incorporated the

contribution of three dimensional shape in the analysis of the activity of a molecule.

While the use of chemical graph indexes [65], intermolecular binding distances [66],

molecular surface areas [67] and electrostatic potentials [68] contain some information

about the 3-D shape of molecules, the Hopfinger [69] and Marshall [70] groups were the

first to exhaustively analyze these effects.

In 1979, Marshall extended the 2-D approach to QSAS by explicitly considering

the conformational flexibility of a series as reflected by their 3-D shape [70]. The first

step of the Active Analog Approach was to exhaustively search the conformations of a

compound which was highly active in a particular biological assay. The result of the

search was a map of interatomic distances which was used to filter the conformational

searches of subsequent molecules in the series. The implicit assumption of the method

was that all compounds which display similar activity profiles were able to adopt similar

conformations. Once the "active conformation" was determined, molecular volumes for

each molecule were calculated and superimposed. Segression analysis of the volumes

was used to establish a relationship to biological activity. Marshall and co-workers

commercialized the Active Analog Approach and a suite of other drug design techniques

in the SYBYL [71] molecular modeling program.
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Hopfinger and co-workers also used 3-D shape in QSAS. In molecular shape

analysis [72] of the Baker Triazines, the common space shared by all molecules of a

series and the differences in their potential energy fields were computed. When these

calculations were combined with a set of rules for overlapping the series, comparative

indicies of the shape of different molecules were obtained. Inclusion of these shape

descriptors in standard Hansch analysis schemes lead to improved descriptions relating

computed parameters to biological activity such that no compounds in the original data

set had to be eliminated from the calculations. The techniques developed by Hopfinger

and co-workers were made available in the CAMSEQ, CAMSEQ-II, CHEMLAB and

CAMSEQ-M computer programs.

In 1988, Richard Cramer proposed that biological activity could be analyzed by

relating the shape-dependent steric and electrostatic fields for molecules to their

biological activity [73]. Additionally, rather than limiting the analysis to fitting data to a

regression line, CoMFA (Comparative Molecular Field Analysis) utilized new methods

of data analysis, PLS (Partial Least Squares) and cross-validation, to develop models for

activity predictions. The approach used in the CoMFA procedure requires that the

scientist define alignment rules for the series which overlap the putative pharmacophore

for each molecule; the active conformation and alignment rule must be specified. Once

aligned, each molecule is fixed into a three-dimensional grid by the program and the

electrostatic and steric components of the molecular mechanics force field, arising from

interaction with a probe atom (e.g., an SP3 C atom), are calculated at intersecting lattice

points within the 3-D grid. The equations which result from this exercise have the form



Traditional regression methods require that the number of parameters must be

considerably smaller than the number of compounds in the data set (or the number of

degrees of freedom in the data). The data tables which result from CoMFA analysis have

far more parameters than compounds. PLS, which removes this limitation, is used to

derive the coefficients for all of the steric and electrostatic terms. PLS essentially relies

upon the fact that the correlations among near parts of a molecule are similar so that the

real dimensionality is smaller that the number of grid points. Since these coefficients are

position dependant, substituent patterns for the series are elucidated which define regions

of steric bulk and atomic charge associated with increased or decreased activity. The size

of the model (the number of components27 needed for the best model) and the validity of

the model as a predictive tool are assessed using cross-validation.

As opposed to traditional regression methods, cross-validation evaluates the

validity of a model by how well it predicts data rather than how well it fits data. The

analysis uses a "leave-one-out" scheme; a model is built with N-1 compounds and the

Nth compound is predicted. Each compound is left out of the model derivation and

predicted in turn. An indication of the performance of the model is obtained from the

cross-validated (or predictive) r2 which is defined as
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The SD is the Sum-of-Squares deviation for each activity from the mean. Press

(or Predictive Sum of Squares) is the sum of the squared differences between the actual

and that predicted when the compound is omitted from the fitting process.

As it was discussed, values for conventional r2 range from 0 to 1. Values for the

cross-validated r2 are reported by the method to range from -1 to 1. Negative values

indicate that biological activity values are estimated by the mean of the activity values

better than they are by the model (i.e, the predictions derived from the model are worse

than no model). Once a model is developed which has the highest cross-validated r 2 , this

model is used to derive the conventional QSAS equation and conventional r2 and s

values. The results of the final model are then visualized as contour maps of the

coefficients.

The first CoMFA study reported analyzed the binding affinities of 21 steroid

structures to human corticosteroid-binding globulins and testosterone-binding globulins.

This class of compounds is rigid and was selected to eliminate conformationally

dependant effects from the study. The models for each steroid were built from

coordinates from the Cambridge Crystallographic Database which were minimized using

the Tripos force field. Side chain positioning was accomplished using systematic

conformational searching. The Field Fit algorithm was used to align each structure within

the fixed lattice (the 3-D grid used to calculate the CoMFA field effects). The fit of the

regression line for the predicted versus actual binding values for the corticosteroids

showed a cross-validated r2 of 0.65 (conventional r2 = 0.897, s = 0.397). For the

testosterone-binding steroids, the cross-validated r2 was 0.555 (conventional r2 = 0.873, s

= 0.453).
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As noted, CoMFA starts with defined pharmacophores and overlap rules and

derives a 3-D model which can be used to predict activity for new chemical entities. The

DISCOtech program is used to identify pharmacophores from databases of chemical

structures and biological activity. DISCOtech [74-78] can find different conformers using

the Tripos field in reasonable energy limits and suggest possible matcing

pharmacophore.

Developing a quantitative structure activity relationship is difficult. Molecules are

typically flexible and it is possible to compute many possibly useful properties that might

relate to activity. Early in a research program there are typically few compounds to

model. It is clear that many training compounds need to span through the space and

model fitting techniques need to address not only deriving a fit, but the predictive quality

of the fit. While these methods have not discovered a new compound, they have aided

scientists in examining the volumes of data generated in a research program. As the

methods evolve, they will find broader applications in areas such as combinatorial

chemistry.



CHAPTER 4

COMPARATIVE MOLECULAR FIELD ANALYSIS (COMFA) STUDIES USING
SEMI-EMPIRICAL, DENSITY FUNCTIONAL, AB INITIO METHODS AND

PHARMACOPHORE DERIVATION USING DISCOTECH ON
SIGMA 1 RECEPTRO LIGANDS

4.1 Introduction

Sigma receptors have been the focus of extensive studies because of their potentially

important roles in biochemical, physiological, and behavioral processes [80-84].

Potential therapeutic usage has been foreseen in psychiatric diseases [85], in the

treatment of cocaine abuse, in neuroprotection, in the treatment of schizophrenia, and in

mediating antipsychotic effects of inhibiting neurotransmitter release [86-89]. Although

the exact structure of the sigma receptor is unknown, it is possible to refer to the receptor

properties by finding important commonalities of the most active sigmal ligands.

Comparative molecular field analysis (CoMFA) of the three-dimensional quantitative

structure-activity relationship (3D-QSAS) proves to be appropriate for such problems.

CoMFA is a widely used 3D-QSAS method for correlating biological activities with

three-dimensional structural properties which may be described by a steric and an

electrostatic molecular field [90-99]. The CoMFA method systematically samples the

steric and electrostatic fields surrounding a set of ligands and constructs a 3D-QSAS

model by correlating these 3D steric and electrostatic fields with the corresponding

experimental binding affinities.

In my research, there are three different CoMFA studies; (1) 43 molecules as a

training set and 5 molecules as a test set for the sigma 1 receptor-ligands, using the

radioligand [ 3H](+) pentazocine, (2) 24 PCP derivatives as a training set and three
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molecules as a test set for the sigma 1 receptor-ligands, using the radioligand

[3H](+)SKF10047, and (3) 21 molecules as a training set and three molecules as a test set

for sigma 2 receptor-ligands, using [ 3H]DTG in the presence of (+) pentazocine.

In these studies, the pharmacophore of sigma receptor-ligands were developed by

DISCOtech using Sybyl 6.9 and the suggested conformers by DISCOtech were optimized

using AM or HF/321G* calculation by Gaussian 98 and atomic charges were calculated

using AM, HF/321G*, B3LYP/3-21G*, MP2/321G* methods. They were analyzed

comparatively on steric and electrostatic field contour map to do CoMFA study.

Ab Initio and Density functional produces reliable structures and good result in

QSAS compared to semi-empirical, and molecular mechanics but they are expensive to

calculate bulky molecules like medicinal ligands or proteins. As CPU has been faster, it

has been easier to calculate higher level methods. It is good time to apply quantum

mechanics in molecular modeling of 3D QSAS.



Table 4.2 Binding and Functional Data for Piperidine and Piperazine Analogs [105]
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Table 4.3 Binding and Functional Data for Benzoxazolone and Benzothiazolone Analogs
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4.2 Materials and Methods

4.2.1 Selection of Ligands

The bioactivity of ligands for sigma receptor subtype 1 was critically evaluated for 48

compounds found in the literature. All values were obtained using the radioligand [ 3H](+)

pentazocine. The K values were converted to phi values (phis = -logic). Most of the

obtained compounds belonged to three structurally different families. These are

spipethiane [104] molecules shown in Table 4.1, piperidine and piperazine analogues

[105] shown in Table 4.2, and benzoxazolone and benzothiazolone compounds [106]

shown in Table 4.3. The remaining compounds [107-109] are shown in Table 4.4. Test

compounds were labeled in these tables.

The varied structural diversity and the homogeneous repatriation of the affinities

are necessary to obtain meaningful results from a 3D-QSAS study using the CoMFA

method. It is also important that the test set reflects the affinity range of the training set

to assure a complete evaluation. A training set containing 43 compounds and a test set of

five compounds were used to assess the predictive power of the model. The test set was

created to contain compounds of all three families. Histogram pictures of train and test

sets are shown in Figure 4.1. The range of binding affinities for the training set was —

2.79 to 1.30 log units, while —2.56 to 0.57 log units for the test set.
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Figure 4.2 DISCOtech pharmacophore for Piperidines.

a all piperidines in Table 4.2, b DISCOtech model with compound number 7 in Table 4.2.
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Figure 4.3 DISCOtech pharmacophore for Benzoxazolone and Benzothiazolones.

a all molecules in Table 4.3, b . DISCOtech model with compound number 24 in Table 4.3.
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4.2.2 Choice of Initial Conformations

The CoMFA study began with the selection of the three-dimensional conformation for

each compound. Initial structures were generated by building with SYBYL6.9 [71]

default bond distances and angles, and minimized with the tools MAXIMIIN2 in

SYBYL6.9, in which the Tripos force field was applied with a distance-dependent

dielectric function. Then, DISCOtech [74-78] in SYBYL6.9 [71] was used to search

possible conformations and proper pharmacophores using these initial molecules.

4.2.3 Pharmacophore Information

DISCOtech derived a pharmacophore model based on the following categories;

piperidine and piperazine in Figure 4.2, benzoxazolone and benzothiazolone in Figure 4.3

and spipethiane and the other selective ligands in Figure 4.4. DISCOtech found possible

conformations within reasonable energy (in this study, 25 kcal/mol) and suggested a

proper pharmacophore model. The overall pharmacophores are the triangles including

nitrogen, the center of phenyl ring and the lone pair of electrons. These are in agreement

with the earlier al receptor ligands pharmacophore [109] shown in Figure 4.5.

4.2.4 Geometry Optimzation and Atomic Charges

The conformers derived by DISCOtech were optimized with Gaussian 98 [79] in semi-

empirical AM [99-102] calculation or ab initio HF/321G* [99,103] method. Theses

geometries were single point calculated for atomic charges in semi-empirical AM,
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4.2.5 Alignment

Alignment of the presumed bound conformations of the training set compounds is also an

essential prelude to the CoMFA study. The AM or HF/321G* optimized conformers

were aligned by a match function in SYBYL6.9 using a template molecule in order a to c

in Figure 4.6; the distance from N atom to a lone pair of electrons was scaled in 1.4A

because it was reported that 1.4A performed in the best result on CoMFA study for the

distance from N atom to a lone pair of electrons [109]. The aligned 48 molecules, used in

training and test sets are shown by optimization methods in Figure 4.7 for AM and in

Figure 4.8 for HF/321G*.
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Figure 4.6 Alignment of atoms and groups for CoMFA Study.

Bold atoms were used as match points. a Molecule, number 7 was used as the template to match alignments
of the most active compounds in Table 4.2 and 4.3 (number 7, 24), 5 spipethiane analogues listed in Table
4.1 and all compounds listed in Table 4.4. b Compound, number 7 is used as the template of 18 piperidine
and piperazine analogs listed in Table 4.2. 'Molecule, number 24 was used as the template of 20
benzoxazolone and benzothiazolone analogs listed in Table 4.3.
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4.2.6 CoMFA Model

The CoMFA was carried out using the QSAS option of SYBYL6.9. The grid dimensions

were running from 0 to 10A along the X axis, from -6 to 6A along the Y axis, and from -

4 to 2A along the Z axis, shown as Figure 4.9 to minimize randomness of statistics and

focus on the pharmacophore in this study. This column shows the number of lattice

interSections located "inside" that molecule, which is a very crude volume estimate. A

sp 3-hybridized carbon atom was probed with a +1.0 unit charge, 2.0A for grid spacing,

and the default 3Okcal/mol energy cutoff for steric and electrostatic fields.
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Partial least squares analysis regresses a target property against predictors

calculated as steric and electrostatic components of the intermolecular interaction field.

Scaling was used as the CoMFA standard. The SAMPLS (SAMple-distance PLS)

algorithm developed by Bruce Bush [111] is used to determine "leave-one-out" cross-

validation q2 . The method for cross-validation serves two purposes to find out whether

the CoMFA model was productively useful, and if useful, to decide how many

components to use for the best model. This number of optical components was

considered by the 5% rule; if the q2 increases by at least 5% upon increasing the number

of components by one, then it is justified to add an additional component. The PLS

analysis was then repeated without cross-validation using the optimum number of

components. This final analysis yielded a predictive model, and a CoMFA coefficient

contour plot for the steric and electrostatic potentials.

4.3 Results

4.3.1 Comparative Molecular Field Analysis

The CoMFA model in this study, required three to seven optimal components in different

calculations to explain the variance in binding affinity to sigmal receptors in Table 4.5.

All crossvalidated q2 were more than 0.5 in Table 4.5, which surpassed the generally

accepted criterion, 0.3 [112] for statistical validity. This number means that such a model

to account for 50.9 to 56.9% of the actual variance in activity among additional similar

sigmal ligands in Table 4.5. Using these optimized geometries, the q 2 results derived

from the HF/3-21G method are higher than those from AM.
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Otherwise, AM optimized geometries suggest that AM atomic charges produce

optimized geometries also suggest that AM

atomic charges produce higher q 2 than others.The q2 value and optimal component for

in Table 4.5. Having the

crossvalidation to confirm the predictive ability, a PLS analysis was performed without

any validation to derive the best predictive model for use in graphics and in numerical

prediction. S2 measures of fit were 91.1 to 98.9%, and the standard errors of estimate

were 0.130 to 0.346. The steric fields contributed 43.7 to 51.4% of the model's

information, while the electrostatic fields represented the other 48.6 to 56.3% in Table

4.6. The relationship is shown between experimental and predicted phis values for the

non-cross-validated analysis in Table 4.7 and Figure 4.10 to 4.11. The AM1//HF shows

higher S2 than any others but AM1//AM1 displays the lowest S 2 value in Table 4.6. This

suggests that not only atomic charge, but also optimized geometry is very important in a

CoMFA model. In the case of AM optimized geometry,

charge calculations increase the predictive ability (R2 = 0.966 for HF/321G* and MP2/3-

21G*) from that of AM charge calculation (S2 = 0.911). Ab initio calculations for

atomic charge produce the same predictive ability for AM and HF/321G* optimized



4.3.2 Contour Map

The contour maps, obtained from the training set compounds are shown in Figure 4.12

and 4.13 by the type of calculational method. The most active compound (number 7) is

shown in each contour map. The results are viewed as regions surrounding the sigma

ligands where steric bulk or electrostatic potential most strongly affects the sigmal

activity.
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4.4 Discussion

4.4.1 Validation of the CoMFA Model

The test compounds selected were piperidine and piperazine analogs, benzoxazolone and

benzothiazolone, spipethiane analogs from all three families in Table 4.8. The range of

binding affinities for the test set was —2.51 to 0.57 log units. The predictive utility of the

CoMFA model for five ligands in the test set were considered satisfactory and HF/3-

21G* optimized geometry produced higher accuracy than AM optimized geometry. The
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derived CoMFA model is shown in Table 4.8. The best CoMFA model is satisfactory in

both statistical significance and predictive ability. AM1//HF (HF/3-21G* optimized

geometry and AM charge) shows higher predictive ability (S 2 = 0.989) but HF//HF

(HF/321G* optimized geometry and charge) processed the best CoMFA model.

4.4.2 Design of New Ligands

CoMFA model displays the spatial distribution of important steric and electrostatic

properties affecting the activity. Applying the quantitative model of the sigma 1 receptor,

one can predict the activity of different sigma 1 ligands. A careful investigation of the

CoMFA model with the most bioactive compound (number 7) revealed that attachment of

electron withdrawing groups to cyclopentane could improve its bioactivity (phis) from the

original predicted value of 1.30 to 1.79 in HF/321G* optimized geometry and atomic

charges. These new molecules are shown in Table 4.9.
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Figure 4.11. Graph of experimental pKi(-loghi) versus CoMFA predicted bioactivity

All geometries were optimized using HF/3-21G*. Charges were calculated using a HF/3-21G*, b B3LYP/3-
21G*, MP2/321G*, and d dAM1 methods.
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4.5 Conclusions in CoMFA Studies of Sigma 1 Receptor-Ligands

This study proves the predictive abilities of the CoMFA model. The results suggest that

ab initio HF/321G* optimized geometries show higher q2 and S2 than semi-empirical

AM optimizations. Furthermore, it is in agreement with Tonmunphean's report. [100]

This study also demonstrates that a single CoMFA model can be built from all piperidine

and piperazine analogs, benzoxazolone and benzothiazolone analogs, and spipethiane

analogues examined. Together, the present studies enhance the information available

about ligand interactions with the sigma subtype 1 receptor. This CoMFA model may

prove useful for designing new and more potent sigmal ligands.
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a
	 b

d 
4

Figure 4.13. CoMFA contour map for compound (number 7) derived by various charge
and HF/3-21G* optimized methods a-d using steric e and electrostatic f fields.

All geometries were optimized using HF/3-21G*. Charges were calculated using a aHF/3.21G*, b B3LYP/3-
21G*, C MP2/321G*, and d AM methods. e-f See Figure 4.12.

Table 4.8 Experimental and Predicted Bioactivities (ph is) by Test Set of 5 Molecules
using Various Calculation Methods

Number ExperimentpK AM1//AMla a HF//AM 1 b B3//AMIC  MP MP2//AM1d d HF//AM e B3//HF f MP 1//HF g AM AM1//HF b

Predicted pKi

1 -0.15 0.21 0.5 0.27 0.5 -0.26 -0.36 -0.24 -0.01

9 -0.11 0.15 0.34 0.46 0.35 -0.08 -0.12 -0.05 -0.21

17 0.57 -0.24 0.24 0.11 0.26 0.21 0.16 0.22 0.2

26 -0.93 -0.76 -1.33 -1.26 -1.33 -0.9 -0.89 -0.97 -0.92

40 -2.56 -2.44 -2.14 -2.22 -2.14 -2.28 -2.18 -2.29 -2.19

a-b See in Table 4.5.
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CHAPTER 5

PHARMACOPHORE DERIVATION USING DISCOTECH ON PCP
DERIVATIVES FOR SIGMA 1 RECEPTOR-LIGANDS AND COMFA STUDIES
USING SEMI-EMPIRICAL, DENSITY FUNCTIONAL, AB INITIAL METHODS

5.1 PCP Derivatives for Sigma 1 Receptor-Ligands

Gund [113] reported bioactivity of PCP derivatives, PSE 084, 078, 079, and 082 for the

sigma 1 receptor. The sigma 1 receptor represents a unique intracellular neuronal protein

modulating several neurotransmitter responses with relevant effects on cognitive

functions. There have been several research articles about PRE 084, the sigma 1 receptor-

ligand; (1) antidepressant effects [114], (2) improving spatial memory capacities of aged

rats [115-118] (3) Ca2  signaling via sigmal-receptors [119], and (4) a new strategy

against cocaine addiction and toxicity [120-121]. The sigma 1 receptor was recently

cloned in several animal species and in the human [29,31,32,34]. The protein obtained

shows a 223-amino acid sequence and shares no homology with any known protein, in

particular with classical ionotropic or metabotropic neurotransmitter receptors. However,

the protein mediates a very efficient neuromodulatory action, affecting several

neurotransmitters systems, including the acetylcholine and N-methyl aspartate (NMDA)-

type of glutamatergic receptor [6].

In this study, the pharmacophore of PCP derivatives were developed by

DISCOtech using Sybyl 6.9 and it is the first pharmacophore excluding the lone pair of

nitrogen for bioactive sigma 1 receptor-ligands; when the nitrogen of PRE 079 was

methylated, a ligand had no lone pair of electron from nitrogen but still showed sigma 1

bioactivity. The suggested conformers by DISCOtech were optimized using AM or
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calculation by Gaussian 98 and atomic charges were calculated using AM,

methods. A CoMFA map of steric and

electrostatic fields was analyzed comparatively. Using the CoMFA predicting property

module, the effect of insertion of various groups such as methylene, ethylene, propane,

and butane between the cyclohexyl and amine group of phencyclidine on the bioactivity

of sigma 1 receptor-ligands was investigated.

5.2 Materials and Methods

5.2.1 Biological Data

Sigma 1 receptor affinity values for 30 PCP derivatives, found in the literature [113] were

listed in Table 5.1. All values had been obtained using the radioligand, [ 3H](+)ShF10047

for the sigma 1 receptor. Potencies at sigma 1 receptor was analyzed by various insertion

of methylene, ethylene, or carboxyl ethylene between the cyclohexyl group and amine of

phencyclidine, by several derivatives with various sizes of cycloalkyl group, and by the

effects of phenyl ring substitutions. The pIC50 values were converted to pIC50 values

[pIC5O = -log(1C50)]. A training set containing 27 compounds and a test set of 3

compounds were used to assess the predictive power of the model. Histogram pictures of

train and test sets are shown in Figure 5.1. The range of binding affinities for the training

set was —3.75 to —0.71 log units, and —3.03 to —1.41 log units for the test set in Figure 5.1.
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Table 5.1 PCP Derivatives and Their Bioactivities for Sigma 1 Seceptor-Ligands Using
Sadioligand, [ 3H] +ShF-10047 [113] (Continued)

Nunber Amine R1 R2 R3 n
sigma 1 receptor

1050 (nm)
1 Piperidine 14 C142 14 3 104 ± 24

2 a Piperidine 4-CH3 C142 14 3 223 ± 76
3 Piperidine 4-N02 C142 14 3 249 ± 108
4 Piperidine 3-C1 C142 14 3 71 ± 13

5 Piperidine 3-0CH3 C142 14 3 326 ± 117

6 Piperidine 4-OCH3 C142 14 3 221 ± 50
7 Piperidine 3,4-OCH3 C142 14 3 387 ± 18
8 Piperidine 14 C142 14 2 995 ± 214
9 Piperidine 14 C142 14 0 5589 ± 214

10 a' b Piperidine 14 C(0)0-(CH2)2 14 3 26 ± 7

11 a Pyrrolidine 3-OH C142 14 3 1082 ± 263

12 Pyrrolidine 4-0H C142 14 3 1735 ± 293

13 Pyrrolidine 4-N02 CH2 14 3 282 ± 65
14 Pyrrolidine 3-C1 C142 14 3 248 ± 39
15 Pyrrolidine 4-0CH3 C142 14 3 546 ± 54
16 Pyrrolidine 3,4-0CH3 C142 14 3 1317 ± 167
17 Pyrrolidine 14 C2145 14 3 141 ± 42

18 C Pyrrolidine 14 C(0)0-(CH2)2 H 3 5.1 ± 1.7
19 Pyrrolidine 14 C(0)0-(CH2)2 C143 3 242 ± 123

20 Morpholine 14 C142 H 3 710 ± 68
21 Morpholine 14 C(0)0-(CH2)2 14 3 44 ± 7
22 Morpholine 14 C(0)0-(CH2)2 14 2 454 ± 80

23 d Morpholine 14 C(0)0-(CH2)2 14 0 1463 ± 102
24 N(C2H5)2 14 C142 14 3 208 ± 85
25 N(C2145)2 4-N02 C142 14 3 304 ± 140

26 e N(C2145)2 14 C(0)0-(C142)2 14 3 30 ± 5
27 N(C143)2 14 CH2 14 3 4130 ± 235
28 N(C143)2 4-C143 C142 14 3 541 ± 70
29

N(C1432
3-0C143 C142 14 3 2851 ± 1034

30 f N(C1432) H C(0)0-(C142)2 14 3 9.2 ± 0.8

a Compounds of a test set. b PRE-082, C PRE-079, d PRE-084, e PRE-083, and f PRE-078.
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5.2.2 Computational Methods

The initial conformer searching and pharmacophore study were analyzed using

DISCOtech [74-78] on SYBYL6.9 [71] and the optimization of geometry and calculation

of atomic charge were performed using Gaussian 98 [79]. All CoMFA models were

derived using SYBYL6.9.
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5.2.3 Choice of Initial Conformations

The CoMFA study began with the selection of the three-dimensional conformation for

each compound. Initial structures were generated by building with SYBYL6.9 [71]

default bond distances and angles, and minimized with the tools MAXIMIN2 in

in which the Tripos force field was applied with a distance-dependent

dielectric function. Then, DISCOtech [74-78] in SYBYL6.9 was used to search possible

conformations and proper pharmacophores using these initial molecules. The energy limit

was 35 kcal/mol. The reference structure in computing DISCOtech models was

compound 18, because it is the most bioactive PCP derivative for sigma 1 receptor

ligands, displayed Table 5.1.

5.2.4 Pharmacophore Information

DISCOtech [74-78] derived a pharmacophore model based on PCP derivatives for sigma

1 receptor ligands. DISCOtech found possible conformations within reasonable energy

boundaries (in this study, 35 kcal/mol) and suggested a proper pharmacophore model.

The overall pharmacophore is a triangle that includes two centers of a hydrophobic ring,

and a nitrogen atom in Table 5.2. This is a new trial to derive a pharmacophore model for

sigma 1 receptor-ligands without the lone pair of a nitrogen atom because compound 19

does not contain a lone pair of nitrogen but is still active at the sigma 1 receptor. There

was a previous report about the fitting of PRE-084 and other sigma 1 receptor ligands

using the lone pair as a pharmacophoric point [109].
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Figure 5.3 A Template molecule (compound 18 in Table 5.1) and the green bolded atoms
were used for the alignment of all 30 Molecules.
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5.2.5 Geometry Optimzation and Atomic Charges

The conformers, derived by DISCOtech [74-78] were optimized with ab initio HF/3-

21G* [99,103] method or with semi-empirical AM [99-102] calculation with Gaussian

98 [79]. Theses geometries were calculated for atomic charges in semi-empirical AM,

density functional B3LYP/321G*, ab initio HF/321G* and MP2/321G* levels

according to Mulliken population using Gaussian 98.
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5.2.6 Alignment

Alignment of the presumed bound conformations of the training set compounds is also an

optimized conformers

were aligned by "match" function in SYBYL6.9 using a template compound (number 18

in Table 5.1) using the green bolded atoms, shown Figure 5.3. The aligned 30 molecules,

used in training and test sets are shown by optimization methods in Figure 5.4 for (a)

AM and (b) for HF/321G*.

5.2.7 CoMFA Model

Auto CoMFA columns were calculated using the Tripos Standard CoMFA field class. It

extended 4 A beyond every molecule in all directions, and had a 2 A spacing, and a probe

atom of C.3 (sp 3 carbon) and a charge of +1 with a dielectric function of 1/r, a dielectric

constant c of 1 and the default of 30 kcal/mol energy cutoff for steric and electrostatic

fields. Partial least squares analysis, regresses a target property against predictors

calculated as steric and electrostatic components of the intermolecular interaction field.

Scaling was used as the CoMFA standard. The SAMPLS (SAMple-distance PLS)

algorithm developed by Bruce Bush [111] was used to determine "leave-one-out" cross-

validation q2 . The method for cross-validation serves two purposes; (1) to find out

whether the CoMFA model was productively useful, and (2) if useful, to decide how

many components to use for the best model. The number of optical components was

considered by the 5% rule; if the q2 increases by at least 5% upon increasing the number

of components by one, then it is justified to add an additional component. The Partial

Least Squares (PLS) analysis was then repeated without cross-validation using the
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optimum number of components. This final analysis yielded a predictive model, and a

CoMFA coefficient contour plot for the steric and electrostatic potentials contributions.

5.3 Results and Discussion

5.3.1 Comparative Molecular Field Analysis

There were two types of CoMFA models by AM geometry optimization methods. The

CoMFA model in this study required 2 or 3 optimal components using HF/321G*

optimized geometries, but required 1 optimal component using AM optimized

geometries by

different calculations to explain the variance in binding affinity to sigma 1 receptor-

ligands. in Table 5.2. All crossvalidated q 2 were more than 0.6 by the CoMFA model

using HF/3-21G G* optimized geometries, but they were less than 0.4 using AM
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optimized geometries. Anyway it surpassed the generally accepted criterion, 0.3 [112] for

statistical validity. The highest q 2 (0.641) was for HF/321G* optimized geometries and

B3LYP/321G* atomic charge calculations. The CoMFA models of AM optimized

geometries produced lower q 2 (0.364-0.373) than those of HF/321G* optimized

geometries (0.632-0.641). It suggests that CoMFA models obtained from HF/321G*

optimized geometries give more accurate predication of activity among additional similar

sigma 1 ligands than CoMFA models obtained from AM optimized geometries.

Having the crossvalidation to confirm the predictive ability, a PLS analysis was

performed without any validation to derive the best predictive model for use in graphics

and in numerical prediction. CoMFA models using AM optimized geometries gave

lower R2 (0.586-0.604) values and higher standard errors of estimate (0.468-0.478) than

CoMFA models using HF/321G* optimized geometries (Table 5.3). R 2 measures of fit

were 0.835 to 0.906 by CoMFA model using HF/321G* optimized geometries; only

AM atomic charge displayed a little lower S 2 of 0.835 but other Gaussian type

calculations (HF, B3LYP, MP2 methods with 3-21G* basis set) showed S 2 higher than

0.9 (0.905, 0.906, 0.906, respectively). On the other hand, the standard errors of

estimation were 0.237 to 0.308 from CoMFA model using HF/321G* optimized

geometries; only AM atomic charge displayed a little higher standard error of 0.308 but

other Gaussian type calculations (HF, B3LYP, MP2 methods with 3-21G* basis set)

showed lower standard error of estimation (0.239, 0.237, 0.238, respectively) (Table 5.3).
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This study shows that CoMFA models from HF/3-21G* optimized geometries of 27 PCP

derivatives are successfull in interpreting QSAR (Quantum Structure-Activity

Selationships) through PLS studies but CoMFA models obtained from AM optimized

geometries of the 27 compounds are not good predictors of activity for sigma 1 receptor-

ligands. The experimental and predicted bioactivity using different CoMFA models are

listed in Table 5.4 and their graphs are shown in Figures 5.5 and 5.6.
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Figure 5.6 Graph of experimental pIC5O versus predicted bioactivity by the CoMFA
model using different calculational methods.

a-d All geometries were optimized in HF/3-21G G* and atomic charges were calculated in a HF/3-21G G*, b

B3LYP/3-21G*, C MP2/3-21G*, d AM, methods.

Table 5.5 Experimental and Predicted Bioactivities (pIC5O) by Test Set of Three
Molecules using Various Calculation Methods

Number Experiment  AMI//a 	HA// h 	B3// c 	MPG// d	HA// e 	B3//HF f MPG// g AM// h

pK 	 AM 	 AM 	 AM 	 Predicted pK 	HA	 HA 	 HA

2 -G.35 -G.7 -G.64 -G.69 -G.7 -G.16 -G.15 -G.15 -G.34

10 -1.41 -1.33 -1.37 -1.32 -1.33 -1.28 -1.3 -1.28 -1.18

11 -3.03 -G.37 -G.37 -G.36 -G.35 -G.82 -G.84 -G.81 -3.02

a-b See in Table 5.2.
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5.3.2 Validation of CoMFA Models

Three PCP derivatives were selected for a test set to validate of CoMFA models. The

range of binding affinities for the test set was —3.03 to —1.41 log units and the predicted

range of pIC5O for a test set was —2.70 to —1.33 log units by CoMFA models using AM

optimized geometries, and —3.02 to —1.30 log units by CoMFA models using HF/321G*

optimized geometries. The predictive utility of the CoMFA model for three ligands in the

test set was considered satisfactory only when using HF/321G* optimized geometries. In

Table 5.5, CoMFA models using AM optimized geometries failed to predict the proper

activity range for compound 11.
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5.3.3 Design of New Ligands

CoMFA model displayed the spatial distribution of important steric and electrostatic

properties affecting the activities in Figures 5.7 to 5.10. The contour maps of the steric

field are shown in yellow and green; the green areas (80% contribution) are regions

where more bulk is desirable, and yellow (20% contribution) areas are regions where less

bulk is favorable for the higher sigma 1 activity in Figures 5.7 and 5.8. CoMFA models

of AM 1 optimized geometries, displayed a similar contour map for steric field analysis in

Figure 5.7 and CoMFA models using HF/3-21G G* optimized geometries showed a little

different steric contour map by atomic charge calculations; AM atomic charges show

different steric field analysis from atomic charge calculations of Gaussian type (HF,

B3LYP, MP2 with 3-21G* basis set) in Figure 5.8. The contour maps of the electrostatic

field are shown in red and blue. The red areas (80% contribution) are the regions where

more negative charge is favorable and blue areas (20% contribution) are the regions

where more negative charge is disfavorable for higher sigma 1 activity. The CoMFA

electrostatic contour model of AM1 and HF/3-21G* optimized geometries, are displayed

in Figures 5.9 and 5.10. A careful investigation of the CoMFA model with PCP

derivatives revealed that insertion of various groups such as ethylene, propane, and

butane between the cyclohexyl and amine group of phencyclidine or its derivatives could

improve its bioactivity (pIC5O) from the original PCP derivatives from methyl insertion

between the cyclohexyl and amine group of phencyclidine or its derivatives (compounds

These new molecules are shown in Table 5.6. From

methane to propane, as the number of carbon atoms of insertion was increased, the sigma
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1 bioactivity was increased but when butane was inserted, the bioactivity was decreased

(Table 5.6).
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(a) 

(c)
	

(d)

Figure 5.9 CoMFA electrostatic contour map for compound number 23 (PSE-084),
derived by 27 PCP derivatives for sigma 1 receptor-ligands using various charge and
AM 1 geometry optimization methods.

a-d All geometries were optimized in AM and atomic charges were calculated in a AM, b HF/3-21G*, c
B3LYP/3-21G*, d MP2/3-21G methods.
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5.4 Conclusions in CoMFA Studies of PCP Derivatives for
Sigma 1 Receptor-Ligands

This study derived a pharmacophore for pcp sigma 1 receptor-ligands using DISCOtech.

Three points (nitrogen, the center of a phenyl ring, the center of an alkyl ring) was chosen

for the pharmacophore points. This pharmacophore was successful in aligning AM, or

HF/321G* optimized geometries and was successful in explaining the experimental

activity of various sigma ligands whose atomic chargeswere calculated by AM, HF/3-

' calculations on Mulliken populations. Furthermore

the derived CoMFA model was successful in prediciting activities of new compounds.

This study also proved that ComFA models from HF/321G* optimized geometries are

more reliable in predicting activities of new compounds than CoMFA models obtained

from AM optimized geometries after validation tests.
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CHAPTER 6

COMFA STUDIES USING SEMI-EMPIRICAL, DENSITY FUNCTIONAL, AB
INITIAL METHODS AND PHARMACOPHORE DERIVATION USING

DISCOTECH ON SIGMA 2 RECEPTOR-LIGANDS

6.1 Sigma 2 Receptor-Ligands

Sigma receptors have been classified as al, 62, and o3 receptor subtypes based upon the

differential biochemical and pharmacological properties of structurally diverse ligands.

However, at this time, the precise role of its function, and clinical relevance of three

subtypes sigma 1, 2 and 3 receptors are not well known. The sigma receptor may

represent a new approach for the development of therapeutic agents useful in treating

various mental, motor, and other disorders [80-89]. The high density of sigma 1 and

sigma 2 binding sites found at various cancer cells suggests important cellular functions

of sigma receptors in cancer, as well as potential diagnostic utility for tumor imaging

agents which target sigma sites [122,123]. Secently, it was reported that sigma 2 receptor

agonists had ability to induce cancer cell death by a mechanism consistent with apoptosis.

In breast tumor cell lines that are sensitive (MCF-7) and resistant (MCF-7/Adr-, T47D,

and SKBr3) to antineoplastic agents, incubation with the sigma 2 subtype-selective

agonists CB-64D and CB-184 produced dose-dependent cytotoxicity [124]. Although

many high affinity al ligands have been developed [80-89], very few selective 62

ligands and their SASs have been reported. Examples include azaperol [125], related

BMY-14802 (4-amino-l-arylbutanols) [125], vesamicol analogues [126], alkylamine

derivatives [127], trishomocubane [128], N-alkylazacycloheptane derivatives [129], and

5-(3-hydroxyphenyl)-2-methylmorphan-7-one derivatives [130]. The DISCOtech [74-78]
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was successful in finding initial conformers for Comparative Molecular Field Analysis

(C0MFA) in previous chapters for the al receptor-ligands. It may also enable us to find

and design new selective and potent a2 ligands. Usually semi-empirical AM calculation

or molecular mechanics were used for CoMFA study, but in this study, ab initio HF

calculation with 3-21G* basis set was used to optimize geometry and compared with

6.2 Materials and Methods

The initial conformer searching and pharmacophore study were analyzed using

DISCOtech [74-78] on SYBYL6.9 [71] and the optimization of geometry and calculation

of atomic charge were performed using Gaussian 98 [79]. All CoMFA models were

derived using SYBYL6.9.

6.2.1 Selection of Ligands

o2 receptor affinity values for 24 compounds, found in the literature, were critically

evaluated. All values had been obtained using [ 3H]DTG in the presence of (+)

to three structurally different families. These were the Trishomocubane derivatives [128]

(shown in Table 6.1), Vesamicol analogues [126] (shown in Table 6.2) and 543-

hydroxypheny1)-2-methylmorphan-7-one derivatives [130] (shown in Table 6.3). A
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However, the current available selective 62 ligands are limited. A training set containing

21 compounds and a test set of three compounds were used to assess the predictive power

of the model. Histogram pictures of train and test sets are shown in Figure 6.1. The range

of binding affinities for the training set was —2.94 to —0.85 log units, and —2.45 to —1.55

log units for the test set.

6.2.2 Choice of Initial Conformations

The CoMFA study began with the selection of the three-dimensional conformation for

each compound. Initial structures were generated by building with SYBYL6.9 [71]

default bond distances and angles, and minimized with the tools MAXIM1N2 in

SYBYL6.9 in which the Tripos force field was applied with a distance-dependent

dielectric function. Then, DISCOtech [74-78] in SYBYL6.9 was used to search possible

conformations and proper pharmacophores using these initial molecules. The energy limit
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was 35 kcal/mol. The reference structure in computing DISCOtech models was

compound 5, because it is the most bioactive 62 receptor ligand in main trishomocubane

derivatives. The other important parameters are "Match_All" as structure requirements,

Sange of points consisting of a minimum of 3 to a maximum of 8 selected feature

requirements.

6.2.3 Pharmacophore Information

DISCOtech [74-78] derived a pharmacophore model based on the Trishomocubane

derivatives [128] Vesamicol analogues [126] and 5-(3-hydroxypheny1)-2-

methylmorphan-7-one derivatives [130] (shown in Figure 6.2). DISCOtech found

possible conformations within reasonable energy boundaries (in this study, 35 kcal/mol)

and suggested a proper pharmacophore model. The overall pharmacophore is a triangle

that include a nitrogen and two centers of hydrophobic rings. This is a new trial to derive

a pharmacophore for sigma 2 receptor-ligands.

6.2.4 Geometry Optimzation and Atomic Charges

The conformers, derived by DISCOtech [74-78] were optimized with ab initio HF/3-

21G* [99,103] method or with semi-empirical AM [99-102] calculation. with Gaussian

98 [79]. Theses geometries were calculated for atomic charges in semi-empirical AM,

density functional B3LYP/321G*, ab initio HF/321G* and MP2/321G* levels

according to Mulliken population using Gaussian 98.
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(a)
	

(b)

(c )

	

(d)

Figure 6.2 DISCOtech pharmacophore for sigma 2 receptor-ligands.

a Trishomocubane derivatives with compound number 5 (Table 6.1), b vesamicol analogues with
compound number 21 (Table 6.2),. CB-182, compound number 22 (Table 6.3), d DISCOtech model; A is
the center of a hydrophobic ring. B is a nitrogen atom. C is the center of a phenyl ring.
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6.2.5 Alignment

Alignment of the presumed bound conformations of the training set compounds is also an

essential prelude to the CoMFA study. The AM or HF/321G* optimized conformers

were aligned by a fit function in SYBYL6.9 using a template compound (number 5 in

Table 6.1) using a 4 point pharmacophore (two hydrophobic ring center A, B, nitrogen

atom, and a lone pair of electrons in Figure 6.3). How these centers of hydrophobic ring

were defined is explained in Figure 6.3, also. The aligned 24 molecules, used in training

and test sets are shown by optimization methods in Figure 6.4 for (a) AM and (b) for

HF/3 -2 1 G*.
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Figure 6.4 Alignments of all Molecules, optimized using (a) AM and (b) HF/321G*

methods.
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6.2.6 CoMFA Model

Auto CoMFA columns were calculated using the Tripos Standard CoMFA field class. It

extended 4 A beyond every molecule in all directions, and had a 2 A spacing, and a probe

atom of C.3 (sp 3 carbon) and a charge of +1 with a dielectric function of 1/r, a dielectric

constant s of 1 and the default of 30 kcal/mol energy cutoff for steric and electrostatic

fields. Partial least squares analysis, regresses a target property against predictors

calculated as steric and electrostatic components of the intermolecular interaction field.

Scaling was used as the CoMFA standard. The SAMPLS (SAMple-distance PLS)

algorithm developed by Bruce Bush [111] was used to determine "leave-one-out" cross-

validation q2 . The method for cross-validation serves two purposes; (1) to find out

whether the CoMFA model was productively useful, and (2) if useful, to decide how

many components to use for the best model. The number of optical components was

considered by the 5% rule; if the q 2 increases by at least 5% upon increasing the number

of components by one, then it is justified to add an additional component. The Partial

Least Squares (PLS) analysis was then repeated without cross-validation using the

optimum number of components. This final analysis yielded a predictive model, and a

CoMFA coefficient contour plot for the steric and electrostatic potentials contributions.
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Figure 6.5 Graph of experimental phi(-loghi) versus predicted bioactivity by the
CoMFA model using different calculational methods.

a-d All geometries were optimized in AM and atomic charges were calculated in a AM 1, b HF/321G*, c
B3LYP/3-21G*, d MP2/3-21G* methods.
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6.3 Results and Discussion

6.3.1 Comparative Molecular Field Analysis

The CoMFA model in this study, required four or five optimal components in different

calculations to explain the variance in binding affinity to sigma 2 receptors in Table 6.4.

All crossvalidated q2 were more than 0.4 in Table 6.4, which surpassed the generally

accepted criterion, 0.3 [112] for statistical validity. The highest q2 (0.602) was for HF/3-

21G* optimized geometries and MP2/321G* atomic charge calculations. The CoMFA

models of AM optimized geometries produced lower q 2 (0.475-0.503) than those of

HF/321G* optimized geometries (0.542-0.603). It suggests that CoMFA models of

HF/3-21 G* optimized geometries explain more correctly about the actual variance in

activity among additional similar sigma 2 ligands than those of AM optimized

geometries.

Having the crossvalidation to confirm the predictive ability, a PLS analysis was

performed without any validation to derive the best predictive model for use in graphics

and in numerical prediction. S 2 measures of fit were 0.920 to 0.952 and the standard

errors of estimate were 0.142 to 0.179. The steric fields contributed 36.9 to 40.7% of the

model's information, while the electrostatic fields represented the other 59.3 to 63.1% in

Table 6.6. The relationship is shown between calculated and measured phis values

(predicted) for the non-cross-validated analysis in Table 6.6 and Figure 6.5 and 6.6.

CoMFA models obtained from AM1//AM1 calculations (AM for charge calculation and

AM for geometry optimization) show the highest S2 (0.952) values in Table 6.5, but

AM1//HF calculations (AM for charge calculations and HF for geometry optimization)

displays the lowest q2 (0.920) value in Table 6.4. Otherwise, HF/3-21G G* geometry
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to interpret QSAS (Quantum Structure-Activity Selationships) through PLS studies. The

AM 1 optimized geometries are interpreted well also using AM atomic charges



6.3.2 Validation of the CoMFA Model

The test compounds, selected were two Trishomocubane derivatives (shown in Table 6.1)

and one 5-(3-hydroxyphenyl)-2-methylmorphan-7-one derivative (CB-182, shown in

Table 6.3). The range of binding affinities for the test set was —2.45 to —1.55 log units and

the predicted range of pKi for the test set was —2.90 to —1.71 log units. The predictive

utility of the CoMFA model for the three ligands in the test set was considered

satisfactory. Compounds 8 and 17 were predicted well by all calculational methods but

compound 13 (CB-182) was not predicted well when geometries were optimized by the

AM method. HF geometry optimizations and charges calculated by all methods

produced good results for this compound however.
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6.3.3 Design of New Ligands

CoMFA models (Figures 6.7 and 6.8) illustrate the spatial distributions of important

steric and electrostatic properties affecting the activities of the 21 compounds used in the

derivation of the models. The contour maps of the steric fields are shown in yellow and

green. The green areas (80% contribution) are regions where more bulky substitutions

are desirable, and yellow (20% contribution) areas are regions where less bulk is

favorable for the higher 62 activity. The CoMFA steric contour model derived by AM

and HF/321G* optimized geometries, shows that the Y position of trishmocubane

derivartives in Table 6.1 is greenish, where steric bulk is favored. The X position of

substitutents falls in the yellow areas where less steric bulk is favored for the higher 62

activity. The contour maps of the electrostatic fields are shown in red and blue. The red

areas (80% contribution) are the regions where more negative charge is favorable and

blue areas (20% contribution) are the regions where more negative charge is disfavorable

for the higher 62 activity. The CoMFA electrostatic contour model derived from AM

and HF/321G* optimized geometries, shows that the Y position of trishomocubane

derivartives in Table 6.1 falls in the red region where more negative charge is favorable

for the higher o2 activity. Through the investigation of steric and electrostatic contour

maps the most desired substitutents are those that are sterically small and electron

withdrawing. When NO2 was substituted in the Y position 62 activity increased (Table

6.7).
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Table 6.7 Experimental and Predicted Bioactivities (p1(;) by Test Set of three molecules
using Various Calculation Methods

Compounds Experiment  AM 1 fiat 	HAD// h 	B3// c 	MP2// d 	HAD// e	B3// f 	MI32// g	 AM// b

pKi	 AM 	 AM 	 AM 	 Predicted pIC5O 	 HA	 HA	 HA 

8 -1.73 -1.79 -1.84 -1.81 -1.85 -1.75 -1.74 -1.75 -1.73

17 -2.45 -2.58 -G.59 -2.57 -2.59 -2.6 -G.9 -G.6 -2.52

23 -1.55 -G.23 -G.26 -G.23 -2.26 -1.8 -1.83 -1.8 -1.71

a-h See in Table 6.4

Table 6.8 Prediction of Bioactivity for New Ligands

Y Experiment AM 1 HF// B3// C MP2// d HF// e B3//HA f MPG// g AM// b

pKi AM AM AM Predicted pK HA HA HA

A -1.30 -1.34 -1.38 -1.41 -1.38 -1.32 -1.34 -1.32 -1.54

NO2 Unknown -1.04 -1.21 -1.00 -1.21 -1.08 -1.04 -1.08 -1.31

ash See in Table 6.4
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6.4 Conclusions of CoMFA Studies of Sigma 2 Receptor-Ligands

In this study a plausible pharmacophore for sigma 2 receptor-ligands was derived using

DISCOtech from Sybyl. Four points (nitrogen, lone pair of electrons, and 2 centers of

hydrophobic rings) were used to successfully align 24 compounds whose geometries

were optimized using AM or HF/321G* calculations. A pharmacophore was derived

which consists of four points. A triangle of two hydrophobic points (centroids of two

phenyl rings A,C) and a nitrogen (B) and a lone pair of nitrogen (LP). The distances

found are as follows: A-B (2.93A) B-C (5.19A) A-C (7.77A) and B-LP (1.40A). Using

the derived pharmacophore ,CoMFA studies were performed. CoMFA models were

derived by using several different levels of calculations for charge and geometry

optimizations. Atomic charges were calculated using AM, HF/321G*, B3LYP/321G*,

on Mulliken populations. Geometry optimizations were performed using

AM or HF/321G*leve1 calculations. The CoMFA models were successful in predicting

activities of three new compounds. This study also shows that CoMFA models obtained

with HF/321G* optimized geometries are more reliable in predicting activities of new

compounds than CoMFA models that were derived from AM optimized geometries

after the validation test.



CHAPTER 7

GENERAL CONCLUSIONS

A CoMFA study is composed of a training set and a test set. The training set is used of

PLS study. The PLS study is composed of cross-validated analysis and noncross-

validated analysis. The final result of PLS is noncross-validated analysis but the number

of optimal components is needed for noncross-validated analysis. The number of

components is decided by crossvalidated analysis. The final CoMFA model from these

PLS steps should be validated using a test set. To compare calculational methods for

CoMFA studies, Table 7.1 displayed the best and second result in cross-validated,

noncross-validated PLS studies by training sets and validation steps by test sets.

Table 7.1 suggests that the best methods for obtaining most predictive ComFA maps are

derived using HF/3-21G G* optimized geometries and ab initio HF, MP2, or density

functional B3LYP atomic charge calculations with a 3-21G* basi set. Sometimes AM
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optimized geometries or atomic charges work well but they are proved not as good

methods by validation tests in Table 7.1.

The MP2 method was expensive but suggested almost the same result compared

to HF calculations. The B3LYP calculation also took time but gave similar results

compared to the HF method. Fom these studies it is suggest that the best calculation to

use for CoMFA studies is HF//HF (using HF atomic charges and HF optimized

geometries).

The automatic pharmacophore using DISCOtech showed good agreement with

previously manually derived pharmacophores using similar types of ligands. These are

shown in Figures 7.1 and 7.2. DISCOtech conformers using the Tripos field suggested

good initial starting points for CoMFA studies. They were optimized using AM or

HF.321G* methods. DISCOtech pharmacophores were used in aligning molecules.

Aligned HF/321G* optimized geometries were successful to make proper CoMFA

models to predict correct bioactivities for sigma receptor-ligands. These results are

shown in Chapters 4 to 6.



Figure 7.1 DISCOtech pharmacophore for Spipethiane and other ligands.

a all molecules in Table 4.1 and 4.4, b DISCOtech model with compound number 2 in Table 4.1.
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Figure 7.2 Manual Pharmacophore for sigma 1 receptor ligands for PD144418,
Spipethiane, Haloperidol, and Pentazocine.
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7.1 Suggestions for Further Work

The HF methods are expensive compared to semi-empirical calculations but are not so

expensive compared to B3LYP calculations. BLYP methods with KMLYP is a proper

calculational method to calculate bulky molecules. It can be applied in CoMFA theory

with small basis set.

Unity is a database program in SYBYL6.9 [71]. It can be used to find new

ligands which can fit our suggested pharmacophore by virtual screening. The database in

Unity includes many commercially available ligands. These ligands could be tested for

sigma activity and some could become new drugs.

DISCOtech pharmacophore was used as the initial point for derivation of

CoMFA maps in this study. DISCOtech as a procedure for deriving pharmacophores is

still in its infancy and pharmacophores derived by this method should be checked with

manually derived pharmacophores. The conformations used by DISCOtech should also

be checked with other calculations.
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