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ABSTRACT

ANALYSIS OF RANDOM PACKING OF UNIFORM SPHERES
USING THE MONTE-CARLO SIMULATION METHOD

by
Sai Tulluri

The study of random packing of spheres has had a long history. It particularly interests

many researchers because randomly packed hard spheres exhibit some features of the

properties of simple liquid, e.g. the packing density and the radial distribution. Many

researchers have studied random packing both experimentally and also by using

computer simulation.

Monte Carlo simulation method was used to generate random loose packing of

hard spheres. Packing characteristics like packing density, radial distribution function, co

—ordination, angular distribution and fabric tensor have been computed for this packing

system.

The packing density for a system of 8000 particles with a diameter of 0.15 was

computed to be 0.582. The packing density obtained for random packing of loose spheres

is in good agreement with Owe Berg [2], Tory [18] and about 2% less than the

experimental values of Scott [9].

The radial distribution function for the 8000-particle system was also computed

for the packing bed. The peak occurrence in the radial distribution plot was found to be in

good agreement with Scott [9], Nolan [11] and Powell [17].

An average co-ordination number for the same size system was computed to be

6.71291 ± 0.023433 which is in good agreement with Smith [12], Visscher [1], Nolan

[11].



Angular Distribution of the particles was also found by computing the contact

angles for all the spheres with their neighbors. The histogram of the contact angles shows

that there is no preferred direction for the particles, which shows the packing is

completely random and that there is no particular pattern in their arrangement.

The fabric tensor was computed. The analysis of fabric tensor shows that all the

planes in the packing assembly, generated by the Monte Carlo simulation, are principal

planes. Similar situation exists in ideal fluid. Hence it is shown that the Monte Carlo

simulated assembly can serve as model for ideal fluid.
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CHAPTER 1

INTRODUCTION

The implications of packing of spheres are diverse. They are visibly found in the fields of

metallurgy, ceramics, physics, chemistry and various other engineering applications.

Over the years packing of spheres, of equal, unequal sized and non-spherical particles,

has interested many researchers and they have developed numerous methods to describe

and simulate packing of spheres.

1.1 Published Material

In what follows, a discussion of some of the literature on the packing of spheres is

presented. The selected papers are merely representative of the several of the more

important and interesting investigations that have been carried out.

G.D. Scott and D. M. Kilgour [8] proposed that models of randomly packed

spheres exhibit some properties of simple liquids in that their radial distribution function

and packing density are similar. They conducted experiments for both random loose

packing and random close packing with 1/8 in. plexiglass, nylon and steel balls in air and

also with steel balls immersed in oil. A series of measurements for random loose packing

and for random close packing, with help of a mechanical vibrator, were made. The

packing density so obtained for random loose packing was 0.60 and for random close

packing was 0.63.

T.G. Owe Berg, R.L. McDonald and R. J. Trainor Jr. [2] studied the packing of

spheres experimentally with approximately 5,000 ball bearings of 1/8-inch diameter. The

ball bearings were poured into a plexiglass cylindrical container, of 63 mm diameter.
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Water was poured into the container and then frozen. The ice block was taken out of the

container and structure was examined as the thawing of the ice progressed from the

boundary inwards. By weighing the balls and measuring the height to which they filled

the container determined the density, which varied from 0.586 to 0.592. The container

was then placed on a shaker and treated for certain period of time. Three different types

of shakers were used, which yielded densities of 0.615, 0.612 and 0.614. According to the

author, packing of spheres depends very much on the mode of shaking; one-dimensional

shaking gives irregular random packing. On the other hand, three-dimensional shaking

gives an almost perfect hexagonal close packed structure, with packing density of 74%.

All the experiments reported were one-dimensional shaking, which gave a random

packing of 61%.

William M. Visscher and M. Bolster [1] approached the problem of random

packing by means of Monte Carlo computer simulation of the physical process of

dropping spheres into a bin. The spheres position themselves under the influence of a

unidirectional (vertical) gravitational force, rather than toward a center of attraction. The

computer in three-dimensional were set up as follows: Periodic horizontal boundaries

were assumed i.e. the ball (x, y, z) reappears at (x±L„, y±L, z). Balls were dropped

sequentially from a random point above the L„ x L ye bin. When a ball was dropped it hits

ball 'm' or the floor. When it comes in contact with ball rn', then it rolls down in a

vertical plane on 'm' until it is in contact with 'm' and 'n' . Then it rolls downward in

contact with 'm' and 'n' until it makes contact with '13'. If the contact 'm', 'n' and `p' is

stable, it stops. If not it rolls on the double contact that goes down most steeply and so on.

Anytime a ball contacts the floor it stops. The density of random stacks of mono-size and
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fuzzy mono-size discs was reported as 0.82. According to the author physical shaking

increases the density by allowing the structure to seek a configuration of lower potential

energy. Code for generating three-dimensional system was built and tested by generating

h.c.p system. For this, the bottom layer was carefully placed in a hexagonal array. The

subsequent balls were dropped from positions directly above these base balls, but

displaced by a certain constant arbitrary amount to fix the direction of initial roll. This

procedure generated h.c.p array, only when the base balls were chosen to have radii

slightly larger than the radii of the subsequent balls. Keeping the same base ball field and

dropping procedure, the distribution of subsequent balls was changed from mono-size to

fuzzy mono-size with 10 -6 spread. This distorted the regular h.c.p structure after 7 or 8

layers of balls, with sudden transition to a random structure with a density of 0.582.

Y.F Cheng, S.J. Guo and H.Y. Lai [16] performed a computer simulation for

evolution of random structure of spherical particles in two-dimensional (2D) by distinct

element method (DEM). The forces among the particles considered were gravity, contact

force, friction force and Van der Waals interaction (VDWI). The motions of the particles

considered were translation and rotation. Two hundred and forty mono-sized spherical

particles were located without overlapping inside a rigid box by generating the co-

ordinate centers of the particles with the help of a random number generator. The initial

packing density was only 0.4712. The particles were allowed to settle down under

gravity. When the co-efficient of friction among the particles and in between the particles

and the walls of the box was 0.364, the packing density was 0.8236, when there was no

friction the density was observed to be 0.8696.
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M.J. Powell [14] generated a structure of randomly packed equal size spheres

using computer simulation. The study was aimed at determining the nearest neighbors in

the assembly. Powell says that the properties of particulate assemblies such as the

structural properties of powders or electrical conductivity depend on the number and

distribution of contacts of each particle, hence, the number of nearest neighbors is of

particular interest in the range of r= 1.0-1.1 sphere diameter since this determines the

number of actual touching contacts and the number of near contacts. Powell determined

the density of random close packing of the computer-generated assembly to be 0.636.

G.T. Nolan and P.E. Kavanagh [11] proposed that the characteristics of random

packing are determined by its interstices. They defined interstices to be a network of

channels passing through the lattice, rather than isolated regions of space. It was stated

that the lattice is transformed from random loose packing to random close packing as the

mean interstices volume decreases from a maximum to minimum. They generated an

algorithm to simulate any random packing between random loose packing to random

close packing. The packing density was calculated by measuring every complete and

fractional sphere positioned within a radius of 5-sphere diameter to the center of lattice.

A contact was defined when there was an overlap between two spheres. The mean

overlap was defined to be 0.002 of the sphere diameter. The packing density ranged from

0.509 to a maximum of 0.638. The random loose packing was 0.52. The mean co-

ordination number varied from 4.4 to 5.9 as the structure changed from random loose

packing to random close packing. The radial distribution function for random close

packing has peaks at 1.0 and a split peak at 1.725 and 1.97.
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J.S. Goodling and M.S. Khader [17] used a simple technique to find the number

of neighboring spheres that are in contact with any given sphere. A single sample was

prepared by casting randomly poured 1/4 inch polystyrene spheres (269 spheres) with

epoxy in a 3.11 in. I. D. plastic pipe. The solidified cylinder was mounted and shaped in a

lathe chuck, yielding a total sample length of 2.5 inch. The r, 0 and Z of each sphere were

determined by photographic means. Having known r, 0 and Z of each particle the co-

ordination number was determined assuming that a contact point existed if two particles

are within one ball diameter plus or minus 0.055 inch of each other. The co-ordination

number distribution in the bed was determined. The lower and upper limits of the

distribution were reported to be 3 and 12 respectively. The bulk of spheres made contact

with 7,8,9,10 other spheres. The average number of contacts for the entire bed was 8.1.

D. J. Adams and A.J. Matheson [5] simulated random close packing of hard

spheres by use of computer. The idea behind the method was to place a new sphere at the

tetrahedral site nearest to the center of packing, thereby producing a spherical model. The

packing fraction was reported to be 0.628.

1.2 Thesis Outline

This thesis is aimed at studying the random loose packing of hard spheres generated by a

Monte Carlo simulation. The simulation generated a loose assembly of spheres under

pouring that settle down under only gravitational force. Hard walls were implemented for

this simulation.
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The thesis is divided into five chapters, each of which presents an analysis of a

computed quantity that characterizes some aspect of the structure. Results were compared

with analogous quantities in the literature.

Chapter 3 explains the details of the Monte Carlo simulation method and explains

the modifications made in the code for this study. Chapter 3 focuses on packing density

calculations as a function of the system size. Chapter 4 discusses the co-ordination

number distribution while the following chapter presents the radial distribution function.

The angular contact distribution of the near neighbors is described in Chapter 6. Finally, a

global characterization of the microstructure is given by the fabric tensor. The deviatoric

component of the fabric tensor is also computed.



CHAPTER 2

MONTE-CARLO SIMULATION CODE

2.1 Discussion

A Monte Carlo code [22] was used in this work to generate the loose packing

assemblies. In the simulation, the spheres are randomly placed in a cell with hard vertical

walls. The particles were allowed to 'fall' down to a packed formation at the bottom of

the cell. The system thus obtained is the initial configuration. In order to obtain a system

with lowest possible potential, (a) particles were moved one at a time with in a 8-

neighborhood to generate a trial configuration; (b) System Energies were computed for

trial and original configurations. Trial state was accepted as the new state if the difference

in the system energies between trial and original is less than or equal to zero, if it is

greater than zero then the new state is accepted with a probability of

Where AE: Difference in the potential of trial and original configurations

K: Boltzmann Constant

T: Absolute Temperature

The steps (a) and (b) were carried out until an attempt to move all the particles of the

system, was made, which constitutes one pass. If there is an overlap of any two particles

in the trial configuration, then the trial configuration is rejected. Many passes are required

to collapse the system.

7
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The cell in which the spheres were placed had square base 3.0 units on one side

and height of 6.0 units. The diameter of the sphere was determined by dividing the base

side of the cell by the cube root of number of particles.

The largest system used in the previous study by other students was 512-particle

system for 500,000 passes. For twenty-five trials the average packing fraction for the

systems was found to be 0.5684 with a standard deviation of 0.0026.

2.2 Procedure and Results

It was desired to run the Monte Carlo simulation code for 729-particle system. The

diameters of the particles were determined using the above said procedure of dividing the

base side of the cell by the cube root of number of particles. The diameter was found to

be 0.333. The system was set to run for 500,000 passes. The packing fraction found for

this system was 0.5707. The energy file which gives potential of the system was observed

and it was found that there was no significant fall in the energy of the system after

250,000 passes. It was decided that the system reaches a steady state after approximately

250,000, and the code was to run for only 250,000 instead of 500,000 as did earlier. The

plot in the Figure 2.1 shows the fall of potential of the system with the number of passes.
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Figure 2.1 Fall of Potential with number of passes.

Twenty-five trials for the same size system were run, to generate twenty-five

different configurations, when the plot file (casel.plo) was observed, it was found that all

the configurations were the same. This led to the belief that the part of the code that

generates random number wasn't working properly and on investigation it was observed

that the same number was generated repeatedly, for different random number seed. To

overcome this problem, that part of the code was rewritten and tested. This produced

different configurations for the same size system.

The code was run for 25 times for system of 729 (9 3), 1000 (103), 1728 (12 3),

3375 (15 3), 8000(20 3) particles. The diameter of the particles was determined by dividing

the base side of the cell by the cube root of number of particles. The plots exemplifying

the drop of potential with the number of passes for each number of particles are shown

below.



The potential energy of the systems was observed to remain constant after certain

number of passes. The potential energies for 729, 1000, 1728 and 8000 particle system

at the end of 250,000 passes are 0.081, 0.0801, 0.080 and .079 respectively. The drop in
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potential energy was observed to be about 53 % of the original system energy. It was

concluded that the system reached a steady state.
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The solids fraction, co-ordination number, radial distribution function, angular

distribution and fabric tensor for the set of runs at each number of particles were

examined in the other chapters, to better understand the random loose packing of the

simulated bed.



CHAPTER 3

SOLIDS FRACTION

3.1 Introduction

Spheres may be packed in a container either in regular fashion, or randomly as would

result from pouring. Although the topic of this thesis is on random assemblies generated

via a Monte Carlo method, a brief description of some of the features of regular packing

is included. Complete details of this topic may be found in the literature (see for example

[3]). In this chapter, solids fractions computed from the Monte Carlo simulated

assemblies are presented and compared with published data.

In general, a regular packing may be envisioned to consist of ordered rows and

layers with an angle of intersection between them. There are two types of layers that are

generally considered depending on the value of this intersection angle, depicts in Fig. 3.1.

When the angle between the rows is 90° it is called a square layer and when the angle of

intersection is 60° the layer is called a simple rhombic or triangular layer. Various

structures are possible giving rise to ordered systems having uniform solids fractions (i.e.,

the fraction of the volume occupied by solids) with characteristic lattice spacing. Such an

assembly is in contrast to that which one obtains by simply pouring spheres into a

containment vessel. Here, no global order is present and the solids fraction varies from

point to point in the assembly.

13



3.2 Random Packing

If the particles are arranged in an unsystematic or haphazard manner, then the

arrangement is termed as random packing. Studies of random packings of hard spheres

have been of interest since they can serve as models of liquid and glassy states. Random

packing of spheres can be classified into two types.

a. Random Loose Packing

If the particles settle down randomly into a stable state under static gravitational force,

such random packing is considered as loosely packed. The arrangement is stable under

gravitational force but not stable when tapped or shaken. It has been reported that the

solids fraction of random loose packing varies from 0.58 to 0.60.

b. Random Close Packing

A loosely packed random arrangement is stable under static gravitational force; but when

such an arrangement is subjected to shaking or tapping it forms a denser arrangement, the

density of which depends on the frequency of shaking. Values of the solids fraction for

vibrated systems of spheres between 0.625 and 0.64 reported in the literature are

generally denoted as being "random close".
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3.3 Solids Fraction

Solids Fraction [3] v can be defined as the ratio of volume of particles to the total volume

Many experimental and computational investigations focused on the solids

fraction of random loose packing have appeared in the literature. The results of several of

these are discussed here and the solids fractions are listed in Table 2.1

Scott and Kilgour [15] used a 1/8 in Plexiglas, nylon and steel balls in air and also

in with steel in balls immersed in oil. The packing density obtained for steel balls in air

for random loose packing was 0.60 and 0.63 for close packing.

Nolan and Kavanagh [11] measured the packing density, for a simulated packing

bed by measuring every complete and fractional sphere positioned within a radius of 5-

sphere diameter from the center of lattice. They defined contact when there was an

overlap between two spheres. The mean overlap was 0.002 of the sphere diameter. The

packing density ranged from a minimum of 0.509 to 0.638 as the system moved from
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random loose packing to random close packing. The value of random loose packing for

this system was 0.52.

Owe Berg, McDonald and Trainor Jr. [2] experimentally studied packing of

particles with 1/8-inch ball bearings. The packing fraction varied between 0.586 and

0.592 for loose packing.

Visscher and Bolsterli [1] approached by means of Monte Carlo computer

simulation by the physical process of dropping spheres into a bin. The density of random

structure was noted to be 0.582.

3.4 Monte Carlo Simulated Results

Packing density was calculated using the plane growth method. In this method, the entire

length of packing bed was divided into a number of equal intervals, and packing fraction

is calculated at the end of each interval. The packing fraction at 80% of the length of the

packing bed was taken as the packing fraction of the entire system. This was done to

avoid the variations in the packing fraction due to the irregularities on the top of the

packing bed and also to account for the part of particles which were lost at the bottom of

the cell since the cell was assumed to have hard walls.

The solids fraction was computed for 25 ensembles for different size packing

assemblies that is (N= 729, 1000, 1728, 3375 and 8000 particles). The mean of the solids

fraction for the 25 ensembles is taken as the solids fraction for that particular size of

assembly. The sample deviation for the 25 ensembles was also computed. The mean

solids fraction was found to be increasing as the system size increases. Table 3.2 shows

the mean solids fraction along with sample deviation for each of the assemblies.
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Figure 3.2 Solids fraction versus inverse of number of particles.

The solids fraction was plotted against the inverse of the number of particles and

the curve was extrapolated to determine the solids fraction for infinitively large systems.
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The packing fraction obtained for infinitively large systems (extrapolated) is 0.5842. The

plot is shown in the Figure 3.1.

The solids fraction obtained for the system generated by Monte Carlo simulation

was 0.582 for the 8000 particle system, which is in excellent agreement with Visscher

and Bosterli [1] and is also in close agreement with Owe Berg [2], Tory[18].



CHAPTER 4

CO-ORDINATION NUMBER

4.1 Definitions and Overview

Co-ordination number n is defined as the number of spheres in contact with any given

sphere. The value of n varies depending on packing arrangements. The table below shows

the co-ordination number for various packing groups as well as the Packing volume

fraction.

According to Smith, Foote and Busang [12], the regular closed packed hexagon

array has the minimum porosity of 0.26 as compared to simple cubic array, which has the

maximum porosity of 0.48. A random pack has porosity within the vicinity of 0.40.The

loosest packing porosity was 0.447, obtained by pouring, and had the mean co-ordination

number of 6.92. By shaking, the porosity was reported to be 0.440, 0.426 and 0.372 with

corresponding mean co-ordination numbers of 7.34, 8.06 and 9.51. Table 4.2 below

shows the results calculated from experimental data of Smith, Foote and Busang.

19
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Wadsworth [13] studied the distribution of co-ordination number of smooth hard

uniform spheres; the method of marking contacts was a modified version of Smith [12].

Wadsworth found that on and above the second layer there existed nearly perfect

rhombohedral packing, which rapidly disappeared as the distance from the base

increased. Wadsworth claimed that Wall effects are felt throughout the container and that

there is no such thing as local wall effects. Wadsworth concluded that in cylindrical flat

bottomed containers only one kind of close packing exists or tend to exists in random

packing i.e. rhombohedral. The plots in Figure 4.1 below show the distribution of the

number of contacts at the 2nd, 4th and 8 th layers.
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Visscher [1] approached the problem of random packing by means of Monte

Carlo simulation of the physical process of dropping spheres into a bin. A random

structure with a density of 0.582 was generated, for which the average number of contacts

per ball was computed to be 6.4.

Cheng [16] generated random structures of spherical particles in two dimensions

by computer simulation as a result of using the distinct element method (DEM). It was

observed that the co-ordination number varies from point to point. Some regions were

found to have a co-ordination number of 6, while other regions had values as low as 2.

The average co-ordination for 5 different regions was found to be 4.458, 3.665, 3.609,

3.397, and 4.31.

Goodling [17] used a simple technique to find the number of neighboring spheres

that are in contact with any given sphere. The r, 0 and Z location of each sphere was

determined by photographic means. The co-ordination number was established under the
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assumption that a contact point exists if two particles are within one ball diameter plus or

minus 0.055 inch of one another. The distribution of co-ordination number is shown in

Figure 4.2. It is observed that the upper and lower limits were 12 and 3 respectively. The

bulk of spheres make contacts mostly with 7, 8, 9 and 10 other particles. The average

number of contacts points for the entire bed was 8.1.

According to Nolan [11] the characteristics of random packing depend on

interstices. The system is said to have loose packing if the mean interstice volume is at

the maximum and if the mean interstice volume is at the minimum then the system is said

to have close packing. Interstices were defined by Nolan, as a network of channels and

not as isolated spaces. According to Nolan the interstice spaces are maximum when the

packing is random in comparison to regular structures, which tend to have to less

interstice spaces and hence maximum packing density. The average co-ordination
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number varied from 4.4 to 5.9 as the system changed from loose packing to close

packing.

4.2 Procedure and Results

A computer code was used to find the co-ordination number, i.e., number of contacts for

each sphere. A contact is defined if two spheres, at 1.05d or less from each other (where d

is the diameter of the particle). Using the code, contacts for all the particles were

determined, and the average co-ordination number was also established. Values in the

plots are averages taken over 25 ensembles that were run for each system size.

Figure 4.3a shows the co-ordination number distribution for a system with 1000

particles (d = 0.3"), where average was found to be 6.71291 ± 0.023433. Fig. 4.3b

contains the sample deviation of the distribution over the 25 ensembles.



4.5, and 4.6, respectively. The sample deviations for these systems were also computed

as shown above in Figure 4.3b.
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The distribution of co-ordination number varies slightly from system to system.

To understand how the size of the system affects its co-ordination number, all the

distributions are plotted on a single plot, and as in Figure 4.9, it is observed that the peak,

i.e., the highest number of particles with same co-ordination number, tends to shift

slightly towards the right. This implies that as the system size increases there is an

increase in the particles with higher co-ordination number, which in turn increases the

average co-ordination number.



The average co-ordination number for each system and is shown in the table below.

The Average co-ordination number of 6.71 for 8000-particle system is in good agreement

with Smith [12], Visscher [1] and Nolan [11].



CHAPTER 5

RADIAL DISTRIBUTION FUNCTION

5.1 Definition and Overview

A better understanding of random packing of materials can be obtained from radial

distribution function. Radial Distribution function [3,4,51 is defined as the number of

particles as the function of distance from the origin. It is mathematically presented as

Where, Nav = Average number of sphere centers per interval

Interval

Radial distance

Sphere diameter

The radial distribution Function is normalized by dividing with 47E1 .2 to be constant over

large `r', where r is defined as the distance from the center of arbitrarily selected particle.

The importance of the study of the radial distribution function in the random

packing of particles is that it serves as a model for liquids and helps to compare the

experimental structure determination of real liquids [11]. Hence various researchers have

studied the radial distribution of neighboring particles, using the radial distribution

function.

A table showing the peak occurrence, which was found by various researchers, is

shown below and comparison with the current values is also shown. The occurrence of

the peaks in the current research is in close agreement with the values of [9, 11, and 14]

as seen in the table below.
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5.2 Procedure and Results

The distribution is plotted with respect to r/D; the plot is shown in the Figure 5.1.The

radial distribution at intervals of 20% of the diameter of the particle was considered. The

first peak occurs at the interval 1.0- 1.1, it is obvious that the first interval falls between

these regions for the simple reason that no value of r/D can occur below 1.0, because the

particles are rigid. That is, we start finding the centers of the particles only after the

interval of 1.0-1.1 since there is no overlapping allowed in the simulated system.

The second peak occurs in the interval 1.9-2.0, which denotes that the second

highest numbers of centers are found in this interval. Since it is random packing the

values for second peak are less than 2.
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In this analysis, for each system, 25 different configurations were simulated. The

final value is the cumulative of all the 25 trials. Figure 5.2 shows the sample deviation for

the system, showing the maximum and minimum value at that particular point.

A limiting value or critical value for the radial distribution function can be

calculated from the previously determined packing fraction of the system, as in Scott [9].

The plot in figure 5.3 shows the limiting values for that system, which is .071. The

limiting or critical value can be calculated by simple substitutions in radial distribution

function.

The Figures 5.4, 5.5, 5.6 and 5.7 show the plot for 1000, 1728 and 3375 8000

particles respectively.



31



32



33

Figure 5.6 Radial distribution for different size systems.

The Figure 5.6 shows the radial distribution for different size systems on one plot.

It is observed that there is not much difference in the location of the peaks as the system

size increases.

The peaks in the radial distribution plots are in excellent agreement with the value

of peaks obtained from previously published results of Scott [15], Nolan [11] and Powell

[14].



CHAPTER 6

ANGULAR DITRIBUTION

6.1 Introduction

Angular contact distribution is the orientation of particles around its near neighbors.

Angular contact distribution illustrates if any particular angle or direction is preferred by

the particles in the arrangement under pouring conditions. In this chapter, we describe an

attempt made to compute the contact angles of a particle with its near neighbors in the

packing assembly generated by Monte Carlo simulation.

Contact angles of a particle are defined by a set of angles made by its near

neighbors in horizontal and vertical plane. The angle made in the horizontal plane 0 is

defined from 0 to 2n. The angle made in the vertical plane c is defined from 0 to it in

the vertical plane. Both 0 and di are necessary to describe the position of near neighbors

of a particle.

6.2 Procedure and Results

A computer code was used to compute the contact angles of the near neighbors. All the

particles that are within a center distance of 1.05d (where'd' is the diameter of particles)

from the center of particle in consideration are considered to be in contacts. The gap

(0.05d) selected here is concurrent with the gap selected for computing co-ordination

number. If the particles were determined to be contacting each other, then the angle made

by the line joining centers of the particles with the horizontal plane, in which the center

of the initial particle lies, '0' and the angle made with the vertical plane '4:1)', in clockwise

direction are computed. The ordered pair (0, (1)) gives the orientation of the contact

34
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particle with respect to the initial particle. The contact angles for all the contacts were

computed in a similar fashion. The plots below show the histograms for the contact

angles for different size systems.
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Figure 6.2 Distributions of angle 0 (Continued).

The histograms and polar plots in the Figure 6.1(a-d) give the distribution of

contact angle 0 for different size systems. It is observed that there are no appreciable

peaks or valleys in the histograms. This suggests that the particles are evenly distributed

around their neighbors. The polar plots re-affirm the same conclusion. It was concluded

from the histograms that the there is no preferred angle for near neighbors in the

horizontal plane.
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The distribution of angle made in the vertical plane 0 were also plotted in

histograms and polar plots as shown in Figure 6.2(a-e).
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Figure 6.2 Distributions of angle 0 (Continued).

The angular distributions of 0 show similar characteristics as seen in 0

distributions. There were no appreciable peaks observed in the histograms as seen in the

Figure 6.2 (a-d). This indicates to show that the 0 angles made by near neighbors were

evenly distributed around the particle.

It was thus concluded that the particle assembly generated by Monte Carlo

simulation was randomly arranged with no preferred angles in the arrangement of

particles.



CHAPTER 7

FABRIC TENSOR

7.1 Introduction

The term 'fabric' [25] is generally used to denote the spatial arrangement of particles and

associated voids. Local geometry and direction of each contact is important. The

assembly of these unit vectors at N c contact point's stands for the packing characteristic

among neighboring particles. To determine the fabric characteristics for particular

particle with Nc contact points, the unit vectors are introduced in the contact direction.

The sum of the products of the directional cosines over the number of contacts gives the

index measure representing the fabric characteristics for that particle. The average over

many contacts over many particles gives the Fabric Tensor. This can be mathematically

be represented as

Fabric Tensor

Number of Particles

Number of contacts for a particle

n 1 , n2 and n 3 : The directional cosines of contacts.
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The figure below shows the contacts normal for a particle `1 3 ' with its neighbors.

40

The co-ordinate axes are shown as el, e2 and e3. The contacts normal are n 1 , n2

and so on. Now the directional cosines are defined as the cosine of the angle between the

contact normal and the co-ordinate axes. For the contact normal n 1 the directional cosines
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In similar fashion the directional cosines were determined for the other contacts. The

summation of the product of directional cosines over the number of contacts gives the

local fabric tensor. By summation of these local fabrics tensor over the number of

particles gives the global fabric tensor.

7.2 Procedure and Results

Using the procedure described in the previous section to compute global fabric tensor for

a packing assembly, a computer code was developed. The fabric tensor was computed for

different size system of particles (N= 729, 1000, 1728, 3375 and 8000) generated by

Monte Carlo simulation. A typical fabric tensor for 8000 particle assembly is shown

below.

It was observed that the fabric tensor for this system was a symmetric matrix with

the diagonal elements being almost equal and the off diagonal elements being close to

zero (almost negligible). The fact that the diagonal elements are equal shows that there is

no preferred direction for the orientation of particles, and off diagonal elements being

close to zero indicates the same. The contacts for the particles in Monte Carlo simulated

bed have no preferred direction. The eigenvector [20] for the above fabric tensor was

found to be
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The eigenvalues [20] of the fabric tensor are the principal fabrics corresponding to which

there are three sets of direction cosines, which establish the relationship of the principal

planes to the origin of non principal axes. The eigenvalues are listed below

It is also observed that the sum of the eigenvlaues [20] is equal to the sum of the diagonal

elements of the tensor. The principal fabrics obtained are independent of the orientation

of the original co-ordinate system.

Eigenvalues obtained for the above fabric are almost equal; this shows that all the

planes in the system of packing assembly are principal planes. This further means that the

system of packing is isotropic.

A comparison of the computed fabric tensor for the current simulation is made

with that calculated from an assembly of spheres generated via the "discrete element

method" [27]. Basically, this method involves solving the equations of motion of a

system of spheres that interact via idealized contact models. The integration time step for

this method was of the order of 10 -6 seconds. This is in contrast to the Monte Carlo

method used in this work in which a time scale is absent. Two DEM data sets e were



43

analyzed. The first was obtained by pouring a system of 8000 spheres into a rectangular

box having solid sidewalls, for which the aspect ratio L/d=10. The second set was

generate by vibrating the poured assembly under sinusoidal displacement amplitude a/d

=0.16 for a duration of three seconds and relaxing for one second. The fabric tensor after

pouring for 1 second is represented by O p and the fabric tensor for the system after

vibration is represented by 0, . The component 0 22 for the system generated by DEM

was observed to be 1/3 of the rest of the diagonal components, showing that there was a

preferred direction for this system in y-direction.

The computer code was equipped with a sub-routine to calculate the fabric tensor when

the original co-ordinate axis is rotated. The original co-ordinate axes were rotated by 30°

and the fabric tensor was computed. As expected from the previous results, there was no

change in the fabric tensor; the conclusion is that the system is isotropic. The fabric

tensor for the new co-ordinate system obtained was
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The deviatoric part of the fabric tensor, denoted by (13' , is a measure of the degree

of anisotropy. It is defined as,

Here is the first fabric invariant. For a perfect isotropy, (V = [0] . The computation of

(13' below shows relatively small diagonal components and even smaller off-diagonal

values; and therefore, it is concluded that the degree of anisotropy is negligible, and that

the structure of the Monte Carlo-generated assembly is nearly isotropic.

The analysis of fabric tensor shows that all the planes in the packing assembly,

generated by the Monte Carlo simulation, are principal planes. Similar situation exists in

ideal fluid, in which there are no shearing stresses, and also hydrostatic pressure (such as

submerged bodies). This emphasizes that the packing assembly generated by Monte

Carlo simulation could serve as model for ideal fluids and hydrostatic stresses.



CHAPTER 8

SUMMARY AND CONCLUSIONS

The study of random packing of particles interest many researchers because of the

scientific importance and practical applications. Many researchers have developed

numerous methods to describe and simulate packing of spheres. This involved packing of

spheres, of equal, unequal sized and non-spherical particles.

In this work the packing assemblies of mono-sized spheres generated by Monte

Carlo simulation code were analyzed. Different size packing assemblies were simulated

varying from 729-particle to 8000-particle system. These packing assemblies were

analyzed for packing properties like solids fraction, co-ordination number, radial

distribution function, angular distribution of contact angles and fabric tensor. The results

and conclusions of the above properties are shown here.

Solids fraction is the ratio of volume particles to the number of particles. It is the

property that shows how close the particles are packed in a packing assembly. The solids

fraction in this study was computed using plane growth method, which involves dividing

the entire length of packing bed into different intervals and computing the solids fraction

at end of those intervals. The solids fraction at 80% of the length of the packing bed was

considered to be the solids fraction of the entire assembly. The solids fraction obtained

for the system generated by Monte Carlo simulation was 0.582 for the 8000-particle

system, which is in excellent agreement with Visscher and Bosterli [1] and is also in

close agreement with Owe Berg [2], Tory [18].
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Co-ordination number is the number of spheres in contact with any given sphere.

It is the property of packing assembly that shows the number of near neighbors for a

particle. A computer code was used to find the co-ordination number, i.e., number of

contacts for each sphere and also the average of the co-ordination number over the entire

packing. The Average co-ordination number of 6.71 for 8000-particle system is in good

agreement with Smith [12], Visscher [1] and Nolan [11].

A better understanding of random packing of materials can be obtained from

radial distribution function. Radial distribution function is the number of particles as the

function of distance from the origin. The importance of radial distribution function is

that, it helps compare random packing with ideal liquids. The peaks in the radial

distribution plots are in excellent agreement with the value of peaks obtained from

previously published results of Scott [15], Nolan [11] and Powell [14].

Angular contact distribution is the orientation of particles around its near

neighbors. Angular contact distribution illustrates if any particular angle or direction is

preferred by the particles in the arrangement under pouring conditions. Contact angles of

a particle are defined by a set of angles made by its near neighbors in horizontal and

vertical plane. Analysis of these angles concluded that the particle assembly generated by

Monte Carlo simulation was randomly arranged with no preferred angles in the

arrangement of particles.

The other property of packing is the fabric tensor; it is generally used to denote

the spatial arrangement of particles and associated voids. Local geometry and direction of

each contact is important. It was observed that the fabric tensor for this system was a

symmetric matrix with the diagonal elements being almost equal and the off diagonal
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elements being close to zero (almost negligible). The eigenvalues for the fabric tensor

were found to be equal. The deviatoric part of the fabric tensor, which measures the

degree of anisotropy for packing system was found to be negligible for this packing

assembly. The analysis of fabric tensor shows that all the planes in the packing assembly,

generated by the Monte Carlo simulation, are principal planes. It was concluded that the

packing assembly generated by Monte Carlo simulation could serve as model for ideal

fluids and hydrostatic stresses.

It would be interesting to subject the packing assembly obtained from pouring to

shaking under different amplitudes and study the packing properties and relating these

properties to those of simple liquid. Study of vornoi polyhedra could be done as

extension of this thesis. These could be considered for further study.



APPENDIX A

ALGORITHMS

The algorithm for the Monte Carlo simulation method along with the algorithms for the

codes used to compute the various properties of packing like solids fraction, co-

ordination number, radial distribution function, angular distribution and fabric tensor are

listed here.
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Figure A.2 Algorithm for Monte Carlo simulation of pouring.
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Figure A.3 Algorithm for plane growth method for solids fraction.
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Figure A.4 Algorithm for co-ordination number.
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Figure A.5 Algorithm for radial distribution function.
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APPENDIX B

B.1 Plane growth method

The code below computes the solids fraction for a packing assembly using plane growth

method. The output file 'Solids-Fraction' contains the solids fraction at each interval.

56



57



58



59



60

B.2 Co-ordination number

(a) Computing the co-ordination number

Co-ordination number was computed using this code; the input for the code is the co-

ordinates of particles, number of particles and the diameter of particles. The output files

from the code are Cord[i], array containing the co-ordination number of frequency of

occurrence and sum[i], nx 1 array containing the number of particles in touch with each

particle in the system.
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(b) Computing the sample deviation for co-ordination number

The program is used to compute the sample deviation of co-ordination number

distribution frequency and the average co-ordination number for the different

configurations. The files 'sum', 'co-ord.dat' and 'cnumber' from the 'co-ord.f are used as

input files.
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B.3 Radial distribution function

(a) To compute the radial distribution function

The code below is used to compute the radial distribution function. The input file

required is the file containing the co-ordinates of the particle. The radial distribution is

written to `Cumal.dat' , `rad.dat'
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(b) To compute the sample deviation for radial distribution function

The code is used to compute the sample deviation for the radial distribution over number

of different configurations. The input files are `Cumal.dat' and `rad.dat' from radial

distribution code. The outputs from the code are 'Max' and 'Min' which has the

maximum and minimum values of radial distribution.
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B.4. Angular distribution

The angular distribution code is used to compute the angles made by the contacting

spheres. The file containing the co-ordinates of the particles is the input file. The angles

made with horizontal plane are written in theta[1-12] and angles made in vertical

direction are written phi[1-12].
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(b)	 To compute rotation of fabric tensor

The code is used to compute the fabric tensor for rotated co-ordinate axes. The tensor

computed in fabric tensor code is the input file. The angles of rotation for each co-

ordinate axes should also be provided.
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APPENDIX C

DATA FROM THE ANALYSIS

Data obtained from the solids fraction and co-ordination number codes are shown

below.
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