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ABSTRACT

NUMERICAL AND EXPERIMENTAL INVESTIGATION
OF DRY PARTICLE COATING

by

Ajit Laxmikant Mujumdar

Dry particle coating is an emerging field in the industries that deal with particulate

products and powder processing. Compared to the widely reported experimental studies

of the dry particle coating, the theoretical modeling of such processes is found to be less

comprehensive. The work presented in this thesis is an attempt to fill this gap.

The first part of the dissertation aims at the numerical investigation of the

hybridization system (Nara Machinery, Tokyo, Japan). The flow behavior of different

materials processed in this device is analyzed using three-dimensional Discrete Element

Method (DEM) as well as the computational fluid dynamics (CFD) models. The

particulate m otion i s directly simulated u sing the D EM c ode, which i ncorporates the

effect of the fluid drag force, computed through the CFD models. The diagnostic

investigation includes various aspects pertinent to the effectiveness of the hybridizer

system in the coating process. Inter-particle collisions and particle-wall collisions as

well as the normal and tangential forces between the particles are estimated which play

an important role in the surface modification process of a powder. Experimentally

measured velocities in the mixing chamber are in good agreement with the computed

velocities. CFD results show that the flow field is not significantly affected as the

volume fraction of particles is varied from 3 to 10 percent. Overall, it is found that the

combined DEM-CFD model appears to be an adequate approximation of the behavior

of the fluid-particle system in the hybridizer.



The experimental part of this dissertation presents an investigation of different

powder processing devices such as the Hybridizer, Mechanofusion and Magnetically

Assisted Impaction Coating (MAIL) devices for a specific application of improving the

humidity resistance of the ground magnesium powder through the dry particle coating

technique. It is shown that coating by wax (1 percent by weight) is sufficient to increase

the humidity resistance of ground magnesium to a level almost as good as the atomized

magnesium powder.

The last part of the dissertation deals with a related, yet different type of

numerical study, carried out using the DEM approach, of the granular flows and mixing

behavior in the oscillating sectorial containers. Mixing patterns are observed for a wide

range of frequencies of oscillation as well as different operating conditions such as the

powder loading, the coefficient of friction, and the coefficient of restitution. It is

observed that the flow patterns follow a particular trend and there exists a critical

frequency at which the mixing rate is very small.



NUMERICAL AND EXPERIMENTAL INVESTIGATION
OF DRY PARTICLE COATING

by
Ajit Mujumdar

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Mechanical Engineering

Department of Mechanical Engineering

January 2003



Copyright © 2003 by Ajit Laxmikant Mujumdar

ALL RIGHTS RESERVED



APPROVAL PAGE

NUMERICAL AND EXPERIMENTAL INVESTIGATION
OF DRY PARTICLE COATING

Ajit Laxmikant Mujumdar

Dr. Rajesh N. Dave, Dissertation Advisor	 Date
Professor of Mechanical Engineering, NJIT

Dr. Ian S. Fischer, Committee Member	 Date
Professor of Mechanical Engineering, NJIT

Dr.I.Joga Rao, Committee Member 	 Date
Assistant Professor of Mechanical Engineering, NJIT

Dr. Chao Zhu, Committee Member 	 Date
Assistant Professor of Mechanical Engineering, NJIT

Dr. Robert Pfeffer, Committee Member	 Date
Distinguished Professor of Chemical Engineering, NJIT



BIOGRAPHICAL SKETCH

Author:	 Ajit Laxmikant Mujumdar

Degree:	 Doctor of Philosophy

Date:	 January 2003

Undergraduate and Graduate Education:

• Doctor of Philosophy in Mechanical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2003

• Master of Technology in Instrument Technology,
Indian Institute of Technology, New Delhi, India, 1997

• Bachelors of Science in Mechanical Engineering
Nagpur University, Nagpur, India, 1994

Major:	 Mechanical Engineering

Presentations and Publications:

Ajit Mujumdar, Dongguang Wei, Rajesh Dave, Robert Pfeffer
"Improvement of Humidity Resistance of Magnesium powder by Dry Particle
Coating" Submitted Powder Technology, August 2002.

Moinuddin Malik, Ajit Mujumdar, Rajesh Dave,
"Numerically-simulated Characteristics of Oscillating Sectorial Containers"
Submitted Powder Technology, November 2002.

Rajesh Dave, Wenliang Chen, Ajit Mujumdar, Wenqiang Wang, Robert Pfeffer
"DEM for Dry Particle Coating", World Congress on Particle Technology,
Sydney, Australia, July 2002.

Ajit Mujumdar, Moinuddin Malik, Robert Pfeffer, Rajesh Dave,
"Numerically-simulated Characteristics of Oscillating and Rotating, Sectorial and
Cylindrical Containers" Proceedings at Annual meeting AIChE conference, Los
Angeles, CA Nov-12-Nov17, 2000.

iv



Ajit Mujumdar, Wenliang Chen, Moinuddin Malik, Robert Pfeffer, Rajesh Dave,
"Diagnostic Analysis of Hybridization system by Numerical Simulation"
Proceedings at Annual meeting AIChE conference, Los Angeles, CA Nov- 12-
Nov17, 2000.

T. P. Ravchandran, A. Mujumdar, Gregory James, R. N. Dave, C. Y. Wu, S. Wantano,
"Study of Powder Discharge from a Vibrated Hopper", Mini-symposium on
Particle Technology, Particle Processing Research Center, New Jersey Institute of
Technology, March 25-26, 1999.

Ravichandran, T. P., A. Mujumdar, C-Y. Wu, S. Watano and R. N. Dave,
"Study of Powder Segregation During Discharge from a Vibrated Hopper,"
Advanced Technologies for Particle Processing: 1998 AIChE Conference, Vol. I,
pp. 519-525, November 1998.



To my father (baba), mother (aai), brothers Amol and Amit
for their love, support and encouragement

vi



ACKNOWLEDGMENT

I wish to express my sincere appreciation to my advisor Dr. Rajesh Dave for his

guidance, supervision and support throughout this research. Without his innovative

ideas and constant encouragement, it would have been impossible to finish this

dissertation. Special thanks are due to Dr. Robert Pfeffer, Dr. I. Joga Rao, and Dr. Ian

Fischer, Dr. Chao Zhu for their active participation in my dissertation committee. I am

also thankful to Dr. Moinuddin Malik for his valuable suggestions in this study.

I am grateful to the supports from Graduate Office, National Science

Foundation, New Jersey Commission on Science and Technology, and US Army

(Picatinny Arsenal) for the funding of this research work. Technical assistance from

Tsingua University, Nara machineries and Dr. Otis Walton for providing the numerical

code is also greatly acknowledged.

I would like to thank Dr. Bodhisattwa Chaudhuri, Dr. Wenhiang Chen, Dr.

Dongguang Wei, Mr. Amit Banerjee, and Mr. Yueyang Shen for their valuable help

during research.

In the end, I would like to express my endless gratitude to my parents, Mr.

Laxmikant Mujumdar and Dr. Shyamala Mujumdar, who have always supported my

academic pursuit and encouraged me in every possible ways. Also, I want to thank my

wife, Renuka and son, Ameya for their love and support throughout these years.

vii



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	  1

1.1 Dry Particle Coating 	 1

1.2 Objectives 	 2

2 BACKGROUND 	  6

2.1 Introduction 	 6

2.2 Origin of Dry Particle Coating 	 7

2.3 Dry Particle Coating Devices 	 10

2.3.1 Mechanofusion 	 11

2.3.2 Hybridizer 	 12

2.3.3 Magnetically Assisted Impaction Coating (MAIL) 	 14

2.4 Magnesium Powder Coating 	  15

2.5 Numerical Simulation 	 17

2.5.1 Dynamic Simulation Method Review 	  17

2.5.2 Recent Work on DEM Model 	  20

2.6 Summary 	  22

3 NUMERICAL SIMULATION OF HYBRIDIZATION SYSTEM 	  23

3.1 Introduction 	 23

3.2 Background 	  24

3.3 Description of the Hybridization system 	  26

3.4 Numerical Model 	  27

3.4.1 Force Model and Time Step 	  28

3.4.2 Zone Mapping 	  29

3.4.3 Simulation Method 	  31

3.5 Diagnostic Analyses 	 33

3.5.1 Parameters for the Numerical Study 	 33

3.5.2 Snapshots 	 34

3.5.3 Rotational Kinetic Energy, Total Energy and Pressure Distribution 	 37

3.5.4 Collision Analyses 	 41

3.5.5 Forces 	 47

viii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.6 Conclusions 	  49

4 FLUID ANALYSIS OF HYBRIDIZATION SYSTEM 	  51

4.1 Introduction 	 51

4.2 Numerical Method 	  52

4.2.1 Governing Equations 	  52

4.2.2 Discretization of the Basic Equations 	 54

4.2.3 Method of Three-Dimensional Grid Generation 	  56

4.2.4 Flow Field Analysis 	  57

4.3 Flow Field Analysis Using Fluent 	  60

4.3.1 Simulation Parameters 	 61

4.3.2 Velocity and Pressure Contours 	 61

4.4 Experimental Comparison 	  65

4.5 Conclusions 	  66

5 COUPLING OF PARTICLES-AIRFLOW USING NUMERICAL

TECHNIQUES 	  68

5.1 Introduction 	 69

5.2 Coupling Using DEM 	  70

5.2.1 Simulation Scheme 	  70

5.2.2 Collision Analyses 	 72

5.2.3 Forces 	 77

5.2.4 Number Density Distribution 	  80

5.2.5 Coating Time 	  82

5.2.6 DEM of Re-circulation Pipe 	  83

5.3 Coupling Using CFD 	  88

5.3.1 Introduction 	 88

5.3.2 The Continuity Equation 	  88

5.3.3 The momentum Equation 	  89

5.3.4 The Relative Velocity and Drift Velocity 	 89

5.3.5 The Volume Fraction Equation for Secondary Phase 	  90

ix



TABLE OF CONTENTS
(Continued)

Chapter	 Page

5.3.6 Simulation Parameters 	  90

5.3.7 Results 	 91

5.3.8 Scaling Investigation of Hybridizer System 	  94

5.4 DEM of Original Size System 	  100

5.5 Conclusions 	  102

6 IMPROVEMENT OF HUMIDITY RESISTANCE
OF MAGNESIUM POWDER USING DRY PARTICLE COATING 	  103

6.1 Introduction 	  104

6.2 Experimental 	  107

6.3 Results and Discussion 	  110

6.3.1 Determination of Coating Material 	  110

6.3.2 Surface Morphology 	  111

6.3.3 Water Immersion Test 	  114

6.3.4 Humidity Tests 	  115

6.3.5 XRD 	  122

6.4 Summary 	  126

7 NUMERICAL STUDY OF OSCILATING PARTICULATE SYSTEM
USING DEM 	  128

7.1 Introduction 	  128

7.2 Simulation Model 	  129

7.3 Results and Discussion 	  133

7.3.1 Simulation of Unary Particulate System 	  135

7.3.2 Simulation of Binary Particulate System 	  141

7.3.3 Critical Frequency of Oscillations 	  155

7.4 Conclusions 	  159

8 CONCLUSION AND RECOMMENDATIONS 	  162

8.1 Closing Remarks 	  162

8.2 Recommendations 	  166

APPENDIX A VELOCITY CONTOURS FOR SINGLE PHASE MODEL 	  168



TABLE OF CONTENTS
(Continued)

Chapter	 Page

APPENDIX B VELOCITY CONTOURS FOR MULTI-PHASE MODEL 	  171

APPENDIX C SPRING STIFFNESS AND DASHPOT CONSTANT 	  173

REFERENCES 	  174

xi



LIST OF TABLES

Table Page

3.1 Parameters for the Simulation 	 34

6.1 Physical Properties of Materials 	 109

6.2 Experimental Conditions of the Coating Processes 	 109

7.1 Data for Simulation of Granular Bed in an Oscillating Sectorial Container 	 134

7.2 Effect on Number of Particles on Critical Frequency of Containers 	 158

ii



LIST OF FIGURES

Figure	 Page

1.1 Objectives of the dry particle coating studies 	 3

2.1 Dry particle coating 	 6

2.2 Schematic of Mechanofusion 	  12

2.3 Schematic of Hybridizer 	 13

2.4 Schematic of MAIC 	  14

3.1 Mixing Chamber of Hybridization system 	  26

3.2 Recycling pipes and rotor with blades 	  26

3.3 Simplified sketch of a numerical model of the system 	  28

3.4 Zone mapping of the simulation system 	  30

3.5 Volume fraction when two zones are occupied by the same particle i 	  30

3.6 Snapshots of the system of lighter particles 	 35

3.7 Snapshots for the system of heavier particles 	 36

3.8 Pressure distributions across the chambers for the system of lighter particles  	 38

3.9 Rotational Kinetic Energy across different chambers for heavier particles 	  39

3.10 Total Energy across different chambers for lighter particles 	 39

3.11 Rotational Kinetic Energy for the system of heavier particles 	  40

3.12 Total Energy distribution for the system of heavier particles 	  40

3.13 Pressure distribution for the system of heavier particles 	 41

3.14 Particle-Particle collisions at 10000 rpm 	 42

3.15 Number of particle-particle collisions for different rotational speeds 	 43

3.16 Particle-Boundary collisions at 10000 rpm 	  44



LIST OF FIGURES
(Continued)

Figure	 Page

3.17 Particle-Boundary collisions for different rotational speeds 	 44

3.18 Particle-Particle interactions at 1000Orpm for different loading of particles 	 45

3.19 Particle-Boundary interactions at 1000Orpm for different loading of particles  	 46

3.20 Average Tangential Force Analysis 	  48

3.21 Average Normal Force Analysis 	  48

4.1 Three-dimensional Computation domain of the hybridization system 	  56

4.2 Schematic of the meridian domain of the hybridization system 	  57

4.3 Airflow field inside the mixing chamber of hybridization system at 5000 rpm 	 58

4.4 Airflow field inside the mixing chamber of hybridization system at 8000 rpm 	 58

4.5 Airflow field inside the mixing chamber of hybridization system at 10000 rpm 59

4.6 Airflow field inside the mixing chamber of hybridization system at 15000 rpm 59

4.7 System Geometry 	  61

4.8 System Scale and Two Cross Sections 	  61

4.9 Pressure distribution inside the mixing chamber and
the re-circulation tube at 5000 rpm 	  63

4.10 Comparison of velocity vectors near the exit of
re-circulating tube using computational fluid code and Fluent 	  64

4.10 Comparison of velocities in the re-circulating pipe 	 65

4.11 Comparison of velocities near the center of the mixing chamber 	  65

5.1 Sectorial section considered for the calculation of drag force 	 70

5.2 Designated regions in DEM code 	  71

5.3 Particle-particle interactions for 5000 rpm 	 73

xiv



LIST OF FIGURES
(Continued)

Figure	 Page

5.4 Particle-particle interactions for 6000 rpm 	 73

5.5 Particle-particle interactions for 8000 rpm 	 74

5.6 Particle-particle interactions for 10000 rpm 	 74

5.7 Particle-boundary interactions for 5000 rpm 	  75

5.8 Particle-boundary interactions for 6000 rpm 	  76

5.9 Particle-boundary interactions for 8000 rpm 	  76

5.10 Particle-boundary interactions for 10000 rpm 	  77

5.11 Average Tangential forces 	  78

5.12 Average Normal forces 	  79

5.13 Three regions of the mixing chamber for evaluating the number density 	  80

5.14 Number density plots for 5000 rpm 	  81

5.15 Coating Time Calculation 	  82

5.16 Velocity field (5000 rpm) inside the re-circulating tube at the section cut-1  	 83

5.17 Snapshots of particles inside the re-circulating tube 	 84

5.18 Cumulative collisions of particles inside the re-circulating tube 	 85

5.19 Collisions per particle inside the re-circulating tube 	 86

5.20 Average forces per particle inside the re-circulating tube 	 87

5.21 Pressure Contours (Volume Fraction of 0.03) 	  92

5.22 Velocity Contours (Volume Fraction of 0.03) 	  92

5.23 Volume Fraction Contours (Volume Fraction of 0.03) 	  92

5.24 Pressure Contours (Volume Fraction of 0.1) 	  93

Dv



LIST OF FIGURES
(Continued)

Figure 	 Page

5.25 Velocity Contours (Volume Fraction of 0.1) 	  93

5.26 Volume Fraction Contours (Volume Fraction of 0.1) 	  93

5.27 Velocity contours of scaled up and down systems 	  95

5.28 Cuts taken at different sections inside the mixing chamber 	  95

5.29 Velocity field across the section taken at cut-1 	 96

5.30 Pressure field across the section taken at cut-1 	 97

5.31 Turbulent Intensity field across the section taken at cut-1 	 98

5.32 Comparison of Multiphase model velocities 	  99

5.33 Particle-particle interactions for 5000 rpm 	  100

5.34 Particle-boundary interactions for 5000 rpm 	  101

5.35 Velocity comparison for original size system 	  101

6.1 SEM image of ground magnesium particles (as received) 	  105

6.2 Hydroxide formation on the surface of as-received magnesium
after 100 hours of exposure to atmosphere 	  105

6.3 Comparison of H2 pressure increase from coated samples
with wax, hydrophobic fumed silica (processed in Hybridizer)
and as-received magnesium powder 	  111

6.4 SEM images of magnesium coated with various loadings of wax
in MAIC (a) 1% (b) 2% (c) 4% 	  112

6.5 SEM images of magnesium coated with 2% wax:
(a) Hybridizer (5000 rpm, 2min) (b) Mechanofusion (1000 rpm, 10 min) 	  113

6.6 Ground magnesium powder settled in water (right) while the coated sample
floating on water (left) after 30 days of exposure to atmosphere 	  114

xvi



LIST OF FIGURES
(Continued)

Figure	 Page

6.7 Humidity test for the Hybridizer products (2 minutes processing time):
(a) 5000 rpm (b) 10000 rpm 	  116

6.8 Humidity test for samples processed in the Mechanofusion system:
(a) 5 minutes, (b) 10 minutes, (c) 20 minutes 	  118

6.9 Humidity test for MAIC 10 min sample 	  119

6.10 Humidity test for samples coated in the Mechanofusion system 	  120

6.11 Humidity test for samples coated in the MAIC system 	  121

6.12 Humidity test for samples coated in the Hybridizer system 	  121

6.13 Typical XRD pattern for ground magnesium, atomized magnesium
and samples processed in different systems 	  124

6.14 XRD for magnesium hydroxide peaks for coated and uncoated magnesium
(a) exposed for 150 hours (b) exposed for 400 hours
(c) coated with 10% wax (d) coated with 20% wax 	  125

7.1 Oscillating sectorial container 	  129

7.2 Interaction model of two contacting particles 	  131

7.3 Setting of unary particulate bed before simulation 	  135

7.4 Snapshots of unary particulate beds at the end of 20 oscillation cycles
for various oscillation frequencies 	  137

7.5 Snapshots of unary particulate beds at quarter-cycle intervals
in the 20 th cycle of oscillation; the snapshot (b) is at critical frequency,
and the snapshots (a) and (c) are at frequencies below
and above the critical frequency 	  139

7.6 Loci of the mass center of oscillating unary particulate bed
at frequencies below, equal, and above the critical frequency
during first and last two oscillation cycles of 20-cycle simulations 	  142

7.7 Variation of unit fluctuation energy of unary particulate bed
at frequencies below, equal, and above the critical frequency

xvii



LIST OF FIGURES
(Continued)

Figure	 Page

during first and last two oscillation cycles of 20-cycle simulations 	  143

7.8 Setting of binary particulate bed before simulation 	  144

7.9 Snapshots of binary particulate beds at the end of 20 oscillation cycles
for various oscillation frequencies 	  145

7.10 Snapshots of binary particulate beds at quarter-cycle intervals
in the 20 th cycle of oscillation; the snapshot (b) is at critical frequency,
and the snapshots (a) and (c) are at frequencies below
and above the critical frequency 	  146

7.11 A cell used for determining concentration of two types of particles
of binary bed during oscillations 	  149

7.12 Variation of concentration and standard deviation of large particles
with simulation time for various frequencies of oscillation 	  152

7.13 Loci of the mass center of oscillating binary particulate bed
at frequencies below, equal, and above the critical frequency
during first and last two oscillation cycles of 20-cycle simulations 	  153

7.14 Variation of unit fluctuation energy of binary particulate bed
with simulation time at frequencies below, equal, and above the critical 	  154

7.15 Least-square initial and long time fitting of Equation (7.15)
on simulated particle concentration versus oscillation cycles data 	  155

7.16 Variation of initial and long time mixing rate constants
with oscillation frequency 	  156

7.17 Snapshots at the end of 20 oscillation cycles of two types of unary
particulate beds having different number of particles;
the snapshot (b) is at critical frequency, and the snapshots (a) and (c)
are at frequencies below and above the critical frequency 	  157

7.18 Snapshots at the end of 20 oscillation cycles of two types of binary
particulate beds having different number of particles;
the snapshot (b) is at critical frequency, and the snapshots (a) and (c)
are at frequencies below and above the critical frequency 	  159

xviii



CHAPTER 1

INTRODUCTION

1.1 Dry Particle Coating

Dry particle coating is an emerging technology in the field of chemical and powder

processing industries. Traditionally, powder processing and coating is done by wet

coating methods such as fluidized beds, pan coaters etc, or by wet chemistry based

techniques such as coacervation, interfacial polymerization etc. These techniques have

certain drawbacks, in particular from the environmental point of view, as these methods

tend to produce waste products, which may be hazardous. Hence, over the last decade,

researchers in the field of powder technology (Yokoyama et al., 1987; Tanno 1990; Naito

et al., 1993) have diverted their attention to find an alternative or other suitable means of

coating of powders. Dry particle coating technique has drawn tremendous attention of

many researchers as these methods do not produce any hazardous waste products and do

not require any binder or solvent for coating.

Dry particle coating processes were developed in Japan about fifteen years ago,

and are still in the stages of optimization. Typically, in dry particle coating, smaller

particles (guests) are mixed with the bigger particles (host), and by means of mechanical

processes such as high shear, high impaction etc, the particles are forced to collide with

each other as well as with the boundaries of the system. This results in the mechanical

fixing of smaller particles onto the surface of the host particles. The strength of this force

by which the guest particles are attached onto the surface of the host particles depends

upon number of factors, such as size and density of particles, the type of processing

1



2

device, the operating conditions of the processing device etc. Depending upon all these

factors, the coating may be categorized into partial coating, continuous coating, film

coating, deep embedding, encapsulation etc. Due to the lack of a general rule governing

the coating process, the studies have to be carried out mostly by trial and error method.

As the characterization of these powders often takes a long time, trial and error is not an

ideal way to decide the parameters for coating, which necessitates the development of

some kind of a guideline, which would help determining the type of dry particle coating

device and also the close prediction of the operating conditions.

Much emphasis has been given to the experimental studies in the recent years.

Compared to the widely reported experimental studies, less attention has been paid to

theoretical modeling of the dry particle coating devices. Since the different coating

devices use different mechanisms of coating, the modeling of these processes is not

straightforward. The performance of the commercially available devices used for dry

particle coating is under investigation by researchers in this field and this lack of

information makes the study of these dry coating devices from numerical modeling point

of view extremely important, and that is the major focus of this dissertation.

1.2 Objectives

This research is dedicated to several aspects of dry particle coating. The study is divided

into two broad areas. The first area is the numerical investigation of one of the dry

particle coating devices, called as Hybridization system, which is a commercial coating

device developed by Nara Machinery, Japan. The numerical investigation also includes a

preliminary study of granular flows in oscillating containers. The second area of research
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is the experimental study of an application of dry particle coating process to improve the

humidity resistance of ground magnesium powder.

Figure 1.1 Objectives of the dry particle coating studies.

The general outline of the research work carried out and presented in this dissertation is

shown in Figure 1.1.

For the numerical simulation of hybridization system, a numerical model is

developed based on the Discrete Element Method (DEM) to analyze the diagnostic

properties of the mixing chamber of the hybridization system. The diagnostic properties

such as the rotational kinetic energy, pressure distribution inside the system are
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evaluated. The inter-particle collisions as well as the collisions of the particles with the

walls of the container are calculated. The effect of different operating conditions on the

performance of the hybridization system is computed. The inter-particle forces are also

calculated which show the possible impaction strength of the particles.

Induced airflow due to the high-speed rotation of the blades inside the mixing

chamber of the hybridization system is also analyzed using computational flow dynamics

techniques. Velocity and pressure contours for different rotational speeds of the

hybridization system are studied and their importance from the simulation point of view

is outlined. Numerically simulated and experimentally measured values of the velocities

in the system are compared. Coupling of particles and fluid velocities is done in the

DEM studies. The effect of the airflow field on the particles is studied. A multi-phase

model is also developed to compute the velocity contours. Different operating parameters

such as rotational speeds, and volume fraction are studied through this multi-phase

model.

The second part of the numerical studies is devoted to the investigation of the

flow characteristics of the granular flows in an oscillating sectorial container. The

numerical simulation of the particles behavior inside the sectorial container is carried out

for the set of unary and binary system of particles. The idea is emerged from the fact that

the hybridization system, which typically has six blades rotating inside a circular

chamber, forms a sectorial portion between the regions formed by two blades. Hence, in

order to study the DEM modeling from the mixing and segregation point of view, these

simulations are performed. Degree of mixing of the binary system of particles is studied

and the mixing rate constants are calculated. The effect of different range of frequencies
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on the performance of oscillating sector is outlined. Critical frequency when the

particulate bed becomes stationary is computed for the unary and binary system of

particles, for different loading conditions.

The last part of the dissertation deals with the experimental investigation of an

application of dry particle coating technique to improve the humidity resistance of ground

magnesium powder. Dry particle coating devices such as Magnetically Assisted

Impaction Coating (MAIC), Hybridization system, and Mechanofusion are used to coat

ground magnesium particles using carnuba wax, which is hydrophobic in nature. The

coated products are treated and characterized in the humidity chamber, XRD, SEM etc.

The performance of the coated product is compared with atomized magnesium particles,

which absorb a little amount of water. A potentially cost-effective method for the

improvement of humidity resistance of the ground magnesium powder using dry particle

coating is suggested.

The above outlined studies are presented in subsequent chapters with an idea that

not only will they provide valuable information and understanding of the dry particle

coating process/devices, but will also lead to other extensive and exciting applications of

dry particle coating. In general, the numerical and experimental studies carried out in this

dissertation are aimed to have a better understanding of the operation of these dry

particle-coating devices.



CHAPTER 2

BACKGROUND

2.1 Introduction

As outlined in the previous chapter, dry particle coating is a process where guest particles

are embedded onto the surface of host particles by means of mechanical forces. These

new coated products have value-addition. Due to the small size of guest particles, the van

der Waal' s forces are sufficient to hold the guest particles onto the surface of the host

particles. The simple schematic illustrating the process of dry particle coating is shown in

Figure 2.1 below.

Figure 2.1 Dry particle coating.

Dry particle coating can be used for altering the properties of the materials, which are

also called as 'engineered materials'. Typical applications include but are not limited to

flowability, solubility, dispersibility, wettability (hydrophobic/hydrophilic properties),

electric, electrostatic, magnetic, optical, color, flavor, taste, shape, sphericity, solid phase

6
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reactivity. These are whole new areas of research where dry particle coating finds its

applications.

Another advantage of dry particle coating is that these processes are

environmentally benign. As the catalyst or binder/solvent is not required, the processes

are environmentally safe. Moreover, the use of dry particle coating can be used as a cost

saving approach, as the cheaper material, produced by altering the properties to the

desired level, can replace highly expensive material.

Dry particle coating methods find applications in various industries such as food,

pharmaceutical, herbal/cosmetic, agricultural, chemical, powder processing industries etc.

There are many interesting applications of dry particle coating (Alonso et al., 1989a and

1989b; Chaudhuri et al.., 1998; Watano et al.., 1998; Ramlkhan et al.., 2000).

2.2 Origins of Dry Particle Coating

The subject of dry particle coating is very closely related to the subject of dry mixing of

powders. Ideally, a binary mixing process should intimately mix the two species so that

any small sample taken from the mixture would contain the same proportion of the two

constituents. This is hard to achieve, particularly when the powders are either cohesive,

or the two species to be mixed are quite different in size. When the powders are

cohesive, they naturally form agglomerates and mixing two constituents requires

breaking up the agglomerates. When the constituents differ in size, there is an increased

tendency for segregation, as the size difference becomes larger. However, when the two

components to be mixed are very different in size (one or two orders of magnitude), then

segregation may no longer be a problem. In such cases, the smaller particles tend to
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adhere onto the larger particles. The adhesion force between the smaller particle and the

larger particle is greater than the weight of the smaller particle, and hence it is not easily

removed from the host. This phenomenon is usually referred to as "ordered mixing" or

"structured mixing".

The advantage of ordered mixing is that it provides a much better degree of

homogeneity as long as the particle size distribution of the larger size species is not too

wide (Hersey, 1975; Bannister et al.., 1983; Enstad, 1981). Hence in terms of subsequent

segregation, ordered mixtures are more stable than ordinary mixtures (Hersey, 1975; Yip

and Hersey, 1977; Staniforth, 1985; Bannister et al.., 1983; Bryan et al.., 1979; Lai and

Hersey, 1981; Thiel et al.., 1982). It was also discussed in this literature that having a

very wide size distribution of the large size species may lead to "ordered unit

segregation" (Hersey and Thiel, 1979; Lai and Staniforth, 1981; Thiel et al.., 1982; Yip

and Hersey, 1977), which should be avoided.

While there is little available in terms of quantitative modeling of the ordered

mixing process (except work by Alonso et al.., 1989a, 1989b, 1990, and 1991), a

qualitative explanation is given in Bannister and Harnby, (1983). Three stages are

identified: (1) separation of the agglomerates of the fine constituent into their primary

particles, (2) bonding of these fines to the carrier particles, and (3) redistribution and

exchange of fines among the carrier particles until a random distribution is achieved.

While the real process may not take place exactly in that order, it is clear that the de-

agglomeration of fines must occur in order to create such a mixture. Therefore, any

mixing device, in order to achieve ordered mixing, must provide sufficient mechanical or

other means of agitation to promote de-agglomeration of fines, i.e., provide a large
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number of particle collisions involving high normal and shear impact forces. Machines

that can be used for this purpose are high intensity mixers and grinding machines such as

ball and media mills.

There is another reason why ordered mixing and/or dry coating work well when

using grinding type machines. It is easier to break up agglomerates into primary size

particles in the presence of coarser particles in the mix when processed in a milling

machine, than having fine particle agglomerates alone. While this behavior was only

speculated by Yeung and Hersey, in 1977, later in 1991, Alonso showed this through

statistical computer simulations. This phenomenon works to the advantage of dry

particle coating when performed in a milling type machine because the host particles act

as the media and help in de-agglomerating the fines.

The concept of ordered mixing was also taken one step further (to dry coating) by

using dry impact blending, as described in a series of papers by another Japanese group

(Honda et al.., 1987, 1988, 1989, and 1991). They argued that an ordinary dry blending

process would result in an ordered mixture, as the fine particles attach to the larger host

particles through electrostatic forces (Honda et al.., 1991). However upon processing in

an impact-blending device, the large impulsive forces cause the fine particles to become

firmly attached to the core particle and a coated composite particle is obtained. This

device, called the Hybridizer, is manufactured by Nara Machinery of Japan. The

hybridizer has proven very useful for pharmaceutical applications; for example, it

accelerated aspirin dissolution when coated onto an excipient such as potato starch

(Iskizata et al.., 1988).
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The mechanofusion and hybridizer machines referred to above can produce

chemical as well as physical surface interactions between the host and guest particles.

While most of the literature in dry coating comes from Japan, during the last few

years, several concentrated activities in this area (some proprietary, and not yet described

in the literature) have been initiated in the US. At the New Jersey Institute of

Technology (NIT), a new device was invented based on the principle of centrifugal

fluidization. This device called the Rotating Fluidized Bed Coater (RFBC) (Watano et

al.., 1998) can also produce soft coatings. Most recently, a novel class of coating

technique has been proposed based on the concept of direct fine particle generation and

subsequent coating onto host particles. In one such process, nano-sized guest particles are

generated by laser ablation of a target (e.g., Ag, Y 2O3:Eu+3, and TaSi2), and the particle

flux in a plasma is directed towards a small fluidized (caused by vibration) bed omicron

sized host particles (Fitz-Gerald et al.., 1998, 1999a and 1999b). While difficult to scale-

up, this laser ablation technique can coat very fine (less than 5 um) host particles by

ultrafine guest particles, an important consideration for the pharmaceutical industry.

Similar processes based on sputtering and other techniques that allow for producing a

flux of nano-particles, have also been proposed.

2.3 Dry Particle Coating Devices

As already discussed in the previous section, there are numerous devices available for dry

particle coating. These devices, although different in their manner of supplying the

necessary mechanical forces, all strive to efficiently promote the de-agglomeration of the

guest particles and their adhesion onto the surface of the host particles. In the hybridizer,
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the ultra high rotational speed of the blades and recirculation of the powder allows the

host and guest particles to violently collide with each other. In mechanofusion, the

particles are also subjected to severe shear and compressive stresses as they travel

between the clearance of a rotating drum and inner piece. In MAIC, the magnetic

particles spin furiously due to an oscillating electromagnetic field causing collisions

between the host and guest particles, and the walls of the device. In the theta composer,

the guest particles are impacted onto the host particles by the high-speed motion of an

elliptical rotor in an elliptical mixer. In RFBC, de-agglomeration and impaction of the

guest particles onto the hosts occur because the bed is fluidized at very high gas

velocities resulting in very good mixing and high shearing stresses. All of these devices

have been used successfully by many investigators to produce composite particles with

unique and improved functionality. With the exception of the theta composer, all the

other devices are available at NJIT. In the next section, these dry coating devices will be

described in more detail.

2.3.1 Mechanofusion

A schematic of the mechanofusion machine is shown in Figure 2.2. The device consists

mainly of a rotating outer vessel, a stationary inner piece and a stationary scraper (the

scraper and inner piece can be either ceramic or stainless steel). A measured amount of

host and guest particles is placed into the rotating vessel. As the vessel rotates at speeds

between 200 to 1600 rpm, the powder is forced outward towards the walls of the vessel.

The gap between the inner piece and the rotating drum is controlled, and as a result, the

particles passing through the gap are subjected to intense shearing and compressive

forces. These forces generate sufficient heat energy to "fuse" the guest particles onto the
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surface of the host particles. The gap size between the inner piece and the walls of the

vessel is very important in controlling the thickness of the desired coating. The gap

between the scraper and the wall of the vessel is also controlled. The scraper breaks-up

and disrupts any build-up or caking of the particles on the walls of the vessel. This is a

batch-operated device.

Figure 2.2 Schematic of Mechanofusion system.

There are several advantages in using the mechanofusion system. First, the shape of the

inner piece, the small gap, and the high rotation speed of the drum allow the particles to

be subjected to very high shear and compressive forces. Second, there is a local

temperature build-up due to these strong forces acting on the particles, which can result

in the fusion of the surface of the host and guest particles. This produces very strong

physical and/or chemical bonds, which enhance the coating process.

2.3.2 Hybridizer

The hybridizer, shown schematically in Figure 2.3, consists of a high-speed rotor with six

blades, a stator and a powder re-circulation circuit. Similar to the mechanofusion system,
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the rotor with six blades and the powder re-circulation circuit (the inner lining) can be

made with ceramic or stainless steel.

The powder (host and guest particles) placed in the processing part of the vessel is

subjected to high impaction and dispersion due to the high rotating speed of the rotor.

The particles undergo many collisions, and this allows for break-up of fine agglomerates

and powder coating due to the embedding or filming of the guest particles onto the

surface of the host particles. Currently, this is a batch-operated device.

The hybridizer has several advantages that make it a powerful dry coating device.

First, the rotor of the hybridizer can rotate anywhere from 5000 rpm to 16000 rpm. Due

to the strong forces applied to the materials at these high rpm, very short processing times

are required to achieve coating. Second, the device consists of a re-circulating unit that

continuously moves the particles in and out of the processing vessel and against the

blades of the rotor. Lastly, similar to mechanofusion, there is a temperature build-up due
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to the high impaction forces caused by the high rotation speeds, which aids in coating

the guest particles onto the surface of the host particles.

2.3.3 Magnetically Assisted Impaction Coater (MAIC)

A schematic of the magnetically assisted impaction coating device is shown in Figure 2.4.

Although MAIC can be used in a continuous mode (Hendrickson and Abbott, 1997), the

small bench-scale device used at NJIT operates in a batch mode. A measured mass of

both host and guest particles is placed into a processing vessel (125 ml glass bottle). A

measured amount of magnetic particles is also placed in the processing vessel. The

magnetic particles are made of barium ferrite and coated with polyurethane to help

Figure 2.4 Schematic of MAGIC.

prevent contamination of the coated particles. An external oscillating magnetic field is

created using a series of electromagnets surrounding the processing vessel. When a

magnetic field is created, the magnetic particles are excited and move furiously inside the

vessel resembling a gas-fluidized bed system, but without the flowing gas. These agitated

magnetic particles then impart energy to the host and guest particles, causing collisions
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and allowing coating to be achieved by means of impaction or peening of the guest

particles onto the host particles.

There are several unique features of MAIC that make it advantageous as a dry

particle coating device. Firstly, the MAIC can coat soft organic host and guest particles

without causing major changes in the material shape and size. Secondly, although there

is some heat generated on a microscopic level due to the collisions of particles, there is

negligible heat generation on a macroscopic level and hence no increase in temperature

of the material during processing by MAGIC. This is desirable when processing

temperature sensitive powders such as pharmaceuticals. Lastly, the device can be

operated both as a batch and continuous system making it versatile in the amount of

material it can process.

2.4 Magnesium Powder Coating

As an application of dry particle coating technique, magnesium powder in the ground and

atomized form was studied. As will be explained later in detail about this coating in

chapter 7, coating carnuba wax on the surface of the magnesium powder increased the

humidity resistance of ground magnesium powder.

Magnesium is the eighth most abundant element in the earth's crust although not

found in it is elemental form. It is a Group II element called alkaline earth metals.

Magnesium is a light, silvery-white, and fairly tough metal. It tarnishes slightly in air, and

finely divided Mg readily ignites upon heating in air and burns with a dazzling white

flame. Normally Mg is coated with a layer of Mg oxide - Mg0, which protects Mg from

air and water.
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The uses of Mg largely center on 3 properties of the metal:

• Its ability to form intermetallic compounds with other metals

v Its high chemical reactivity

v Its low density

Uses of Magnesium

• It is one third lighter than aluminum, and in alloys is essential for airplane and

missile construction, racing bikes and other things that need light metals.

• The metal improves the mechanical, fabrication, and welding characteristics of

aluminum when used as an alloying agent. Also used in fireplace bricks, flashbulbs,

pigments and filters

• Magnesium is used in producing nodular graphite in cast iron, and is used as an

additive to conventional propellants.

• For cast metal components from either sand or die-casting. This is the area of

strongest demand growth for Mg; particularly in the US automotive market as US car

producers attempt to meet current and future fuel economy standards.

• It is also used as a reducing agent in the production of pure uranium and other

metals from their salts.

• The hydroxide (milk of magnesia), chloride, sulfate (Epsom salts), and citrate are

used in medicine: Chemical reagents.

• Dead-burned magnesite is employed for refractory purposes such as brick and

liners in furnaces and converters.

• Flashlight photography, flares, and pyrotechnics, including incendiary bombs.

There are 2 detrimental mechanisms that undermine the ground Mg powder, these are:
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1.	 Presence of a larger surface area to the volume ratio, due to fragmentation during

grinding in the ground Mg powder, which provides more surface for Mg (OH)2 formation

than the atomized Mg powder.

2.	 Non-coherent nature of the Mg (OH) 2 layers that form on the ground Mg powder

particles with no limitation due to lack of protective layer formation.

The result of powder coating suggest that ordered mixing proceeds essentially as a

chemical reaction, i.e. through collisions between the "reacting" components. As a result

of collisions, the exchange of fine particles between large particles (carriers) occurs

simultaneously with the gradual de-agglomeration (homogeneity) of the fine component

over the surface of carriers. Three different types of devices are used to coat Mg powder

with carnauba wax. All these devices are based on the principle of high shear stress and

impaction force causing the guest particles to get embedded onto the surface of the host

particles. These devices were:

• Mechanofusion (a high shear mill)

• Hybridizer

• Magnetically Assisted Impaction Coating (MAIL)

The Hybridizer and Mechanofusion systems generate high temperatures as compared to

other methods, due to high speed rotating blades.

2.5 Numerical Simulations

2.5.1 Dynamic Simulation Method Review

Particle simulation provides a direct route from the microscopic details of a system

(molecular geometry, the interactions between them, etc.) to macroscopic properties of
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experimental interests (the equation of state, transport coefficients, structural order

parameters, and so on). As well as being of academic interest, this type of information is

technologically useful. It may be difficult or impossible to carry out experiment under

extreme condition or special requirement, but can be conducted easily from computer

simulation. Particle simulation technology started in the early 1970s'. Basically, there are

two mechanisms dealing with particle simulation: kinematics method and dynamic

method. The theory of kinematics method is based on the fluid dynamics. It is mostly

used to simulate the dynamics system including particle flow. Here the constitutive

equations are analyzed for the particle assembly. This type of continuum approach is

capable of providing some useful information on macroscopic behaviors of powder

assembly during process. However, it is impossible to elucidate the effects of particle

geometrical factor like size and distribution, surface factors like friction and cohesion as

well as physical factor like interaction forces between particles to the system, because the

developed constitutive equations are not related to them. Particle dynamic simulation

investigates the behavior of particles in this respect. It treats the particle as an assembly

of particles instead of a continuum. The behavior of each particle is described to relate to

the macroscopic behavior of the assembly.

Most particle dynamic simulations use the discrete element (DE) method. The

term "discrete element" refers to the fact that the simulation models the particles as a

system of individual particles. Examples of DE model include Molecular Dynamics

(MD) method, Monte Carlo (MC) techniques, etc. Molecular dynamics is the term used

to describe the solution of the classical equations of motion (Newton's equations) for a

set of molecules. Monte Carlo simulation is so called because of the rule that random
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numbers play in the method. By MD simulation, it is possible to solve the dynamic

problem without making any approximations within the limits imposed by machine

accuracy. MD simulation has been applied widely to the study of the structure and

dynamics of molecular liquids and solids. It is well used in the granular flow simulation

including studies of size segregation due to shaking.

Computer simulation of dense-phase discrete particle systems was first reported

by Cundall and Strack (1979). The scheme developed was termed the "distinct element

method (DEM)". The method is analogous to molecular dynamics simulation. However,

the discrete element simulation of particles is more complicated because of the non-linear

and non-central inter-particle interactions arising from auto adhesion, friction and

presence of a viscous fluid. Because of the different treatment of particle interaction in

DEM simulation, soft spheres and hard spheres models are available. The hard spheres

approach assumes that the particles interact by instantaneous collisions such that linear

and angular momentum is balanced using collision operators to dissipate energy. Such a

simulation uses a kinematics approach that describes the individual particles by their

instantaneous positions and velocities. Hard spheres simulations are mainly concerned

with rapid granular flows (Campbell and Brennen, 1985). In contrast to hard spheres

where the collisions are instantaneous, the soft spheres go through certain deformations

during collisions and have a finite contact time. This is a generally a better representation

of what actually happens during impact. So the soft spheres method is one of the more

common discrete element simulation techniques since it can handle a variety of inter-

particle forces. In soft spheres simulation, the interactive forces exerted on each particle

are computed as continuous functions of the distance between contiguous particles and
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are based on physically realistic interaction laws. This approach is more computationally

intensive, but provides information on the structure and dynamics of system including

details of position, velocities, forces and energy partitions. During the simulation, the

forces (body and surface forces) acting on each particle in the system are calculated.

Newton's second law is then used to determine the resulting accelerations for each

particle, which are then integrated in time to find the particle's new state. This process is

repeated until the simulation ends.

2.5.2 Recent Work on DEM Model

♦ Walton et al. (1988), Walton (1993) used three-dimensional discrete particle models

to calculate inelastic, frictional granular flows. Good quantitative agreements have

been achieved with experiment measurements and with theories when the same

assumptions are made in the models and the theories.

♦ Walton (1992) reviewed numerical simulation of inelastic, frictional particle-particle

interaction by discrete particle simulations.

♦ Kafui and Thornton (1993), Thornton (1996) and Ning et al. (1997) used DEM to

simulate agglomerates impacting a wall.

♦ Muguruma et al. at (1997) applied DEM to simulate the three-dimensional motion of

all individual particles in a rotating mixer with two baffles. The effect of the baffles

on the particle mixing and on the motion of particles is studied.

♦ Lian et al. (1997, 1998) described computer simulation of pendular state wet

agglomerates undergoing pair-wise collisions based upon soft spheres formulation.

♦ McCarthy (1998) proposed a hybrid technique based on soft spheres model for

granular mixing. By focusing the particle dynamics simulation only where it is
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needed, the new technique can yield more than an order of magnitude increase in

computational speed and number of particles system can deal with.

♦ Matchett, et al. (2000) compared the experimental data from a vibrating bed of

particles with that from 2D DEM simulation on the basis of energy dissipation. It

shows that DEM simulation is able to qualitatively reproduce features found in the

experimental data. However, the DEM simulation did not perform well at low

accelerations and the calculation of applied force based on work done was not

successful.

As will be explained later, the importance of air draft through the re-circulation

tube, essential for the coating and effective use of hybridization system, it becomes

important to investigate the literature available in this area where the researchers in the

past have employed DEM technique together with the effect of fluid in the system.

As seen from the literature, many research scientists from Japan have been

actively working in this field. Pioneers in the multi-phase flow analysis are Anderson and

Jackson (1961) who developed the "Two-fluid models". Discrete element models and

two-fluid models have been the major two approaches in the direct numerical simulation

of powders applied to the fluidized beds, where the particle phase is treated like a

continuum. It was first solved numerically by Pritchett (1978). For the constitutive

equation, i.e. the stress term of the dispersed solid phase, Pritchett (1978) used the elastic

modulus of emulsion phase determined experimentally by Rietema (1973). To treat the

constitutive equation more rigorously, the kinetic theory was extended to the fluidized

solids, e.g. Ding and Gidaspow (1990), Blazer and Sinomin (1996) and Syamlal (1993).

However, the constitutive equations for the solid phase, which the two fluid models have
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adopted, seem still not sufficiently validated as indicated by Boemer et al. (1995).

Furthermore, the particle pressure predicted by the kinetic theory faces a problem when

the particles are not completely fluidized.

2.6 Summary

By taking a look at the literature, it is quite clear that many efforts have been made in the

development of dry particle coating technique to enhance the surface modification of

powders. Much emphasis has been given to the experimental side of this research field

but strong numerical work, which links these two, is somewhat missing. Experimental

validation of the numerical results is not much, which becomes the motivation and the

objective of the research work proposed.



CHAPTER 3

NUMERICAL SIMULATION OF HYBRIDIZATION SYSTEM

3.1 Introduction

The first part of this dissertation deals with the numerical studies of dry particle coating

process focusing the hybridization system. This work presents the investigation of

numerical modeling of a commercial powder surface modification system, called as

hybridizer (Nara Machinery Co. Ltd., Tokyo, Japan). The work presented in this chapter

is the first attempt on numerical simulation of the hybridization system based on the

DEM technique. The numerical study performed is on the mono-dispersed system based

on a three-dimensional simulation. The results of the diagnostic analysis of the

hybridizer system, based on numerical simulation, are presented. The diagnostic studies

include various aspects pertinent to the effectiveness of the hybridizer system in coating

process. The effect of various parameters on the flow characteristics of particles is

analyzed. Inter-particle collisions and particle-wall collisions as well as the normal and

tangential forces between the particles are estimated which play an important role in the

surface modification process of a powder. Also, the pressure distribution across the

different zones inside the chamber is calculated. The pressure imposed on powders by

hybridization is greatly affected by the geometry of the device, rotational speed of the

blades and the material properties. In addition, some basic kinematic variables are

estimated to give the overall picture of the flow distribution inside the chamber.

The numerical study is done on the system scale. Due to the large difference

between the radii of host and guest particles in the system scale simulation, only the host

23
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particles are taken into the consideration. Behavior of two different types of particles in

the system is studied by performing the diagnostic analysis. The purpose of this system

scale simulation is to understand the effects of different functional parameters vital for

the effective operation of the hybridization system from the coating point of view.

3.2 Background

Discrete element method has been employed widely in the past to analyze flows

involving particle motion inside a system subjected to high shear forces. Various

industrial processes such as mixing, coating make use of many commercial devices such

as Mechanofusion (Hosokawa), Hybridizer (Nara Machinery), where particles are rotated

in a processing device running at very high speeds. For instance, the Mechanofusion and

the Hybridizer are operated at the speeds as high as 3000 rpm and 15000 rpm

respectively. The diagnostic analyses of the flow behavior inside the operating chambers

hence become necessary to understand the effects of other parameters that affect the

performance of these devices.

Many researchers have studied the experimental aspects of a machine operating

on the similar principle as above. For instance, Yokoyama et al. (1987) has studied the

dry coating method using a high shear mill commercially known as Mechanofusion.

Honda et al. (1987) Masaru et al. (1996) have analyzed dry particle coating method using

Hybridizer. Singh et al. ( 1997), Ramlakhan et al. (1998) investigated the magnetically

assisted impaction-coating system. All these devices are based on the principle of high

shear s tress and impaction force, forcing the guest p articles t o get embedded onto the

surface of host particles.
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Though much attention has been given to the experimental studies of

Hybridization system, very little literature is available for the numerical analyses of this

system. Most particle dynamics simulations use the discrete element method. Discrete

element method approach considers the particles as distinct and hence particles can be

treated individually. Cundall and Strack (1979) developed a model based on this

approach. The method is analogous to molecular dynamics simulation. The discrete

element simulation of particles is more complicated because of the nonlinear and non-

central inter-particle interactions arising from auto-adhesion, friction and presence of

viscous fluid. The soft sphere approach is used to model this system.

Walton et al. (1986) used a three-dimensional discrete particle model to calculate

inelastic, frictional granular flows. Good qualitative agreement has been achieved with

experimental measurements and with theories when similar assumptions are made in the

model. The same model has been used to simulate Hybridization system. Other recent

work on DEM done by Kafui et al. (1993) includes the simulation of agglomerates

impacting a wall. Lian et al. (1997) studied the pendular state wet agglomerates

undergoing pair-wise collisions based upon soft sphere approach. By focusing the

particle dynamics simulation only where it is used, this new technique can yield more

than an order of magnitude increase in computational speed and number of particles, a

system can deal with. It showed that DEM simulation is able to qualitatively reproduce

features found in experimental data. However, DEM simulation did not perform well at

low accelerations and the calculation of applied force based upon the work done was not

entirely successful.
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In the present study, the DEM model developed by Walton et al. (1986) is used

and further modified to analyze the Hybridization system. Other relevant details of the

DEM technique are already explained in the previous chapter.

3.3 Description of the Hybridization System

The hybridization system as shown in Figure 3.1 is primarily used for coating purposes,

considers the host particles, which are bigger in size as compared to the guest particles,

are mixed together and rotated in a high-speed rotation chamber. The guest particles are

embedded onto the surface of host particles resulting in a dry particle coating. These

guest and host particles are mixed simultaneously from the top of a circulating pipe as

shown in Figure 3.2. The mixing chamber has six rotating blades, which typically rotate

in the range of 5000 ~ 15000 rpm. As the rotor is switched on, host and guest particles

mix and collide with each other as well as with the walls of the chamber. Due to high

centrifugal forces, particles move to the upper part of the rotating chamber and recycle

continuously till the end of the process.
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The hybridization system also has a temperature sensor, which monitors the temperature

developed inside the mixing chamber during the operation. Typically, the batch size of a

run during experimental studies varies from 15 to 30 gm depending upon the size and the

density of particles. The unique feature of this system is the two-way motion of the

particles during the operation, one in the mixing chamber and the other through the re-

circulating pipe which provides a distinct advantage over the other dry coating machines

from the coating point of view as one would expect more collisions between the particles

to take place. The numerical model developed in this study is explained in the following

section.

3.4 Numerical Model

A numerical model developed for the mixing chamber of hybridization system is shown

in Figure 3.3. The exact modeling of the whole hybridization system including the re-

circulating pipe is extremely complicated; hence in this study only the mixing chamber is

modeled. As shown, the outer circle represents the outer wall of the mixing chamber. The

blade mounted o n the rotor i s approximated a s three overlapping c ylinders. P article i s

forced to leave the outer cylinder from the exit zone when it touches the predefined outer

boundary and every particle going out is replaced with another particle generated at the

outer boundary of the inner cylinder using a random number generator. While the

simulation in 3-D, the front and back walls have periodic boundaries. Particles are mono-

disperse, hence the guest particles are not considered explicitly. Also, dimension of the

unit is smaller than the actual system to have the same volume fraction of particles used

in the experiments.



28

3.4.1 Force Model and Time Step

The accuracy of the any simulation depends upon the type of force model used in the

numerical model as it determines the new positions and velocities of the particles after

each time step. The detailed description of the force model used is already explained in

chapter 2. The force model used here uses the Walton Braun approach. The particles are

treated as frictional elastic-plastic. Normal force is computed using a partially latching

spring model. The loading resistance force is calculated by linear spring with stiffness k 1 .

A stiffer spring resistance, k 2 is provided during the unloading (restoration) of particles

during a collision, allowing a finite plastic deformation. The tangential force uses an

incrementally slipping friction model. The new tangential force computed takes the

loading history and direction into consideration.

The time step during the simulation is calculated by the following equation,



where e is the coefficient of restitution; m is the mass of particle; a n  is the spring stiffness

during loading and n is the number of time steps desired during one collision. (For the

simulations presented here, n = 40)

Equation 3.1 shows that the time step is proportional to the mass of particles as

well as the coefficient of restitution and inversely proportional to the spring stiffness.

Thus, if k is higher, the simulations require a long computational time. On the contrary,

an cannot be too small which will make the particles too soft, resulting in the deformation

of the particle during the simulation and thus exceeding the model limitations. Hence, the

maximum deformation of the particle is taken to be less than 1% of the particle diameter.

Therefore, based on the impact mechanics and the condition that maximum deformation

is less than 1% of particle diameter, the normal stiffness is calculated by the following

equation.

where E is the Young's Modulus and rib is the particle radius.

3.4.2 Zone Mapping

For diagnostic analyses, the mixing chamber of the hybridization system is divided into

seven different zones as marked by concentric circles shown below in Figure 3.4. The
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"averaged" zone is the radius of outer cylinder. Each zone has the same volume as

calculated by V, = V/ N, where V is the total volume of the system and N is the total

number of zones. Number of zones is selected in such a way that the width of each zone

is equal or greater than the maximum diameter of particles. This way it is ensured that at

any given instant a particle cannot occupy more than two zones.

Figure 3.4 Zone mapping of the simulation system.

During the numerical simulation, the particles are considered to be frozen in each time

step in order to compute the kinematic variables such as kinetic energy and pressure. If

the particle i occupies two zones in a time instant, then the upper fraction belongs to zone

k and the lower fraction belongs to zone k+1 as shown in Figure 3_5_
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The distance of particle center to the zone k is represented as "a" and it is calculated by

where lo, is the distance of particle i's center to the chamber and rk is the radius of zone k.

The volume of particle i in zone k is given as

3.4.3 Simulation Method

During the simulation, the blades are considered as boundary particles and these

boundary particles interact with the system particles. Initially, particles are randomly

placed inside the system domain with some initial overlap allowed. However, the overlap

between the system particles and boundary particles is not allowed. The initial velocities

are assigned to the particles by keeping the net momentum of the system equal to zero.

Inter-particle forces are computed for all the particles using a force model, during each
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time step. The gravity is applied in y-direction. The new translational as well as the

rotational acceleration is computed using Newton's law of motion.

m is the particle mass, d is the particle diameter and I is the particle moment of Inertia.

Fix and Mix are the inter-particle force and the moment acting on the particle due to the

interaction with other particle.

Similar equations can be written for other directions as well. The new velocities

and positions of the particles can be calculated by explicit integration of the equation 3.7

via time-centered, finite difference " leap-frog" m ethod. The finite difference equations

for the particle are given as follows.

Equations 3.8 and 3.9 are for the x-directions. Again, similar equations can be written for

other directions. After computing new positions and velocities, the contact forces and the

new positions of particles are updated, and the new contacts as well as the broken
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contacts are also updated. This cycle is repeated until the end of simulation. Meanwhile,

diagnostic quantities are computed.

3.5 Diagnostic Analyses

3.5.1 Parameters for the Numerical Study

In the numerical studies, first, the simulation of the hybridization system was done for

two different sets of particles. The parameters for this study are given in the Table 3.1.

Simulations were carried out for different system parameters such as density of particles,

particle diameters etc. Results are presented below. The first set of simulation was carried

out for 75 microns diameter magnesium particles (density 2500 kg/m 3  rotated at 5000

rpm. The second set of simulation was run for dense titanium particles with density 5000

kg/m3 . Particle diameter was taken as 400 microns. The numbers of particles used were

1500, simulation run time being 1-2-sec. Different kinematic variables for pressure

distribution inside the mixing chamber, rotational kinetic energy, and total energy are

computed and presented in the next section. Also, the inter-particle forces and the

collisions are computed for the first set of particles.

The quantities of interest for the diagnostic analysis of the system are the time-

averaged values. The time over which average is taken must be long enough compared to

the typical time taken by any particle interaction, for example particle-particle or particle-

wall interaction. But, at the same time it should be short compared to the time scale of

changes of the major properties of the particles of interest.
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3.5.2 Snapshots

The snapshots of the simulated system of magnesium (lighter) particles and the titanium

(heavier) particles are shown in Figures 3.6 and 3.7, respectively. The differences in the

positions of particles for these two different types of simulated systems are evident. As

clear from Figure 3.6, as the simulation starts, initial drag is observed due to the sudden

motion of blades. The particles tend to follow the motion of the blades and the system

becomes stabilized after a short time. The overall position of the particles is random and

there is no typical trend observed. On the contrary, for the system of heavier particles, as

shown in Figure 3.7, after initial motion of particles, the system tends to settle down
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under the force of gravity and due to the inertia of particles. After about 0.2 seconds of

simulation, particles seem to be settling down in the gap of blades and outer chamber.

The same trend was also observed during the experiments, when the heavy particles were

used to carry out coating. After the experiment, very few of particles were seen to be

coming out of the product pipe and majority of the particles were seen to be settled down

in the gap of the blade and the mixing chamber as well as in the re-circulation tube.

Figure 3.6 Snapshots of the system of lighter particles.



Figure 3.7 Snapshots for the system of heavier particles.

The snapshots of particles inside the system show qualitatively the difference between the

system of lighter and heavier particles affecting the performance of the hybridization

system. In order to get quantitative understanding, the kinetic energy, pressure etc. are

computed and presented in the following sections. For these two systems, diagnostic

analysis is carried out to understand the dynamic condition inside the system. Each

diagnostic quantity is a volume average inside each zone during a time period.
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where, Vi is the volume of that zone, F 1 is the repulsive force between particles i and j

and R 1 is the distance between two particles i and j. The first term in above equation
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represents the kinetic contribution to the granular pressure due to the motion of particles

corresponding to the average velocity field of particle i, and the second term is the

potential or collisional contribution to the pressure due to the forces of interaction

between particles.

Plots for pressure distribution, rotational kinetic energy and total energy are

shown from Figures 3.8-3.10 for the system of lighter particles.

From the estimation of these kinematics variables, it is seen that initially in the transit

zone till about 0.2 seconds, particles reach the maximum velocities, pressure and energy

and then the system is stabilized. A steady state condition is reached, which may be due

to the particles following the motion of the rotating blades inside the chamber.
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Pressure distribution and energies are higher in the outermost zone due to the centrifugal

action as well as the higher number of collisions taking place with the outer wall of the

rotating chamber.

In case of heavier particles, the particles picked up high velocities, and energies at

the start of the run due to the inter-particle collisions but as the time increased, settled

down in the clearance between the rotating blades and the outer chamber resulting into

nearly zero values. Results are shown from Figures 3.11-3.13.
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Figure 3.13 Pressure distribution for the system or heavier particles.

When these two sets of conditions were simulated as explained above, it was observed

that particles fall down in the chamber due to gravity. It may be noted that these

simulations were carried out assuming vacuum inside the chamber. Hence, as the density

of particles is increased, particles seem to be settling down in to the narrow gap between

the outer cylinder and the blades mounted on the rotating disc.

3.5.4 Collisions Analyses

In order to understand the behavior of Hybridization system under different operating

conditions such as loading and rotational speeds, number of collisions as well as the

forces inside the particulate system were analyzed. It is obvious that the inter-particle

interactions as well as the magnitude of the impact of particles inside the system are the

key parameters to the coating process occurring in the hybridization system. Therefore,

estimation of these quantities provides vital information from the coating point of view.

As shown in Figure 3.14, cumulative number of particle-particle collisions is computed

for different loading conditions for 500, 600, 800 and 1000 particles. The rotational speed

for this run was 10000 rpm. As seen the number of collisions showed a gradual and
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uniform increasing trend as the simulation time increased. As the simulation was started,

the increase in the number of collisions was seen to be in the similar range for the case of

500, 600 and 800 particle loading. As the run time progressed, the number of collisions

was observed to be increasing at the higher rate for higher loading of particles. At the end

of 0.5 seconds, the total number of cumulative collisions was seen to be increasing

exponentially as the loading was increased from 500 to 1000 particles. Collisions were

computed in the range of 10 10 .
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The number of collisions was seen to be increasing with the increase in the rotational

speed. (Figure 3.15) For each case of loading of particles, the total number of collisions

was increased by 19% at the end of simulation time going from 5000 to 10000 rpm.

Figure 3.15 Number of particle-particle collisions for different rotational speeds.

In order to see the behavior of particles colliding with the boundaries of the system as

well as with the blades of the wall, simulations were carried out for the different loadings

and rotational speeds as above. The results in Figure 3.16 and 3.17 show that the total

number of particles- boundary cumulative collisions was more than that of the particle-

particle collisions by the order of 104 .
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The gradual increasing trend in the number of collisions was not as uniform as seen in the

case of particle-particle collisions, though the total number of collisions was more.

Similarly, an increase of 16%-18% in the number of collisions was recorded with the

increase in the rotational speed, as seen in the case of particle-particle collisions.

3
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Figure 3.19 Particle-Boundary interactions at 1000Orpm for different loading of particles.

Particle-particle and Particle-boundary interactions with respect to different loading of

particles for the rotational speed of 10000 rpm are also computed and shown in Figure

3.18 and 3.19, respectively. The difference in the trend of curves is evident. Particle-

particle collisions increases at lower rate as compared to particle-boundary interactions.

Also, as the simulation time is increased, the rate of increase of interactions in both the

cases seems to gradually decreasing.

Thus, overall the interactions of particles with the boundary and with the particles

are computed, which explains some basic phenomenon happening inside the system.
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3.5.5 Forces

Computations of forces inside the mixing chamber of the Hybridization system were

carried out in order to understand the impact of particles on one another. Tangential

forces and normal forces were computed for different loadings and rotational speeds.

These forces are the long-term average values and are obtained by all the instant values

during the simulation. As seen (Figure 3.20) in case of tangential forces, the forces were

seen to be in the range of 10 -3 N. Forces were higher for the higher loading cases.

Up to 8000 rpm, the forces for the loading cases of 500, 600 and 800 particles

were seen to be in the similar range. At 10000 rpm and 1000 particles loading case, the

tangential forces were particularly seen to be very high as compared to other loading

cases. On the other hand, in the case of normal forces (Figure 3.21), there was not much

significant change observed as the loadings and rotational speeds changed, which means

the tangential forces had an important role in the operation of the system. However, the

normal force was seen to be much higher than the tangential forces, which was in the

range of 10-2.
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The results of DEM shown in the sections above are computed from the smaller size of

the hybridizer system where the rotational speed is varied from 5000 to 10000 rpm.

However, in the reality, the scale up/down of any hybridization system is based on the

idea of keeping the tip velocity of the blade c onstant. Further detailed analysis of this

smaller system is shown in Chapter 5, in order to understand the change in the behavior

of the system under the effect of air-drag. Also the original size system is also studied for

the rotational speeds of 5000 and 10000 rpm. Velocities of particles obtained from this

original s ize s ystem are t hen c ompared t o the v elocities obtained from the fluid c ode,

which is also explained in details.

3.6 Conclusions

Numerical simulation of hybridization system based upon Discrete Element Method is

presented in this chapter. The numerical modeling is carried out based on the approach by

Walton-Braun's partially latching spring model. The simulation clearly provides valuable

information about the different operating parameters affecting the performance of the

system. Two different sets of particles are studied and a diagnostic analysis is carried out.

Heavier particles settle down in the system without going through the re-circulation tube.

The lighter particles are randomly positioned at the end of simulation inside the system,

which also tend to settle down in the system as seen by the reduction in the rate of

number of collisions with the time. Computations of forces for different rotational speeds

are shown. The normal forces seem to be dominant than the tangential forces. Normal

forces do not have much effect on either the loading or rotational speeds. Tangential

forces seem to be increasing with the rotational speeds as well as the loading of particles.
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Particle-particle interactions as well as the particle-boundary interactions are also

computed which demonstrates the frequency of c ollisions happening inside the system

for different operating parameters. Particle-boundary interactions are more than particle-

particle interactions. Rate of increase of particle-particle interactions is less than that of

particle-boundary interactions. The increase in the number of collisions for both particle-

particle as well as particle-boundary interactions is equal to nearly 18%, when the

rotational speed of the hybridization system is doubled.

Since the blades of the hybridizer are rotating at high speeds, there is a formation

of air-draft, which a ssists the particles to force their way t o the re-circulation tube. In

order to avoid the hybridization system from settling down, this induced air-draft due to

the blades needs to be analyzed, which plays a very important role in the re-circulation of

the particles through the re-circulation tube. Analysis of airflow using different CFD

techniques inside the mixing chamber is therefore carried out in the next chapter.



CHAPTER 4

FLUID ANALYSIS OF HYBRIDIZATION SYSTEM

Numerical simulation of airflow field induced due to the high-speed rotating blades

inside the mixing chamber of hybridization system is carried out and the results of single-

phase flow are presented in this chapter. Importance of airflow field inside the

hybridization system and its effect on the pattern of particles necessitates the calculations

of quantities such as velocity flow fields/contours, pressure distribution, temperature, and

forces due to the airflow on blades. Computational fluid dynamics techniques are used to

compute the airflow field inside the mixing chamber o f t he hybridization sy stem. The

flow field using a three dimensional fluid code developed by Tsingua University as well

as the commercial fluid analysis software, Fluent is computed. Numerically computed air

velocities are then compared with the experimental data. The effect of different rotational

speeds of the blades on the airflow field is also analyzed.

4.1 Introduction

Numerical simulation of three-dimensional incompressible flow problems using

Reynolds-averaged Navier-Stokes equations are now becoming more feasible in many

theoretical analyses and engineering applications. In many real flow problems, such as

the flows in the impeller passage of turbo-machinery, and the flows in hybridization

systems w ith rotating b lades, the b oundary geometries are s o c omplex t hat it ism uch

more accurate to describe the problems using body-fitted coordinate systems, which is

also convenient from the computer programming point of view.
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The main difficulty and feature of solvihg incompressible flow problems is to find

a way to obtain a pressure field such that the flow field can be close to divergence-free as

much as possible. In another words, the mass conservation law should be satisfied.

Generally, there are two kinds of approaches, first is to employ the pseudo-

compressibility approach and time-iterative scheme to generate the pressure field so that

the continuity equation is satisfied when a steady state is reached. Second way is to apply

a pressure-velocity correction scheme by using a Poisson's equation for pressure

correction derived from the continuity and momentum equations for which grid

staggering between velocity vectors and the pressure nodes must be used to ensure

numerical stability.

There are several possible grid staggering methods that are discussed by Maliska

and Raithby (1984). In the present work, the method of grid staggering developed by

Vanka (1980) and Maliska (1984) is employed in which the same control volume is used

for velocity components and scalar quantities. Thus, the problem of solving the velocity

components and scalar quantities using different control volumes is avoided. In addition,

for turbulent flow computations, the numerical code uses the standard k-c turbulence

model (1972) to provide the turbulent eddy viscosity.

4.2 Numerical Method

4.2.1 Governing Equations

For incompressible Newtonian fluid, the continuity, momentum and energy equations

with standard k-c turbulence model in Cartesian coordinate system rotating around z axis

with rotating speed co can be written as:



Ut+Ex+Fy+Hz=S

where	 U = p pub pu pwu pk
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The effective viscosity can be calculated from

P eff = J + p 1 = p + KC PA 2 / A	 (4.4)

The turbulent kinetic energy production term is defined as

Pr = Cp[(uy + Mx )2 (vz ay )2 (ax Buz )2 ± 2(ux vy2 wz2 )]/c 2 / 	 (4.5)

The constants of the turbulence model are

=0.09, 6k =1.0, a6=1.3, C1 =1.44, C2 =1.92

(4.3)



results in the following equation:

can simplify the computation of the transformation coefficients.

4.2.2 Discretization of the Basic Equations

The governing equation (4.6) can be represented by the following model transport

equation in which y denotes all the dependent variables, and F the diffusion coefficient
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Discretization of equation (4.7) is performed using finite difference method in the

transformed domain by the method of SIMPLEC. For the diffusion terms the second-

order central difference is used. For the convection terms, the hybrid difference scheme

by Patankar (1980) is employed. In the hybrid scheme, central difference is used for cell

Peclet number less than or equal to 2 and upwind difference is used when the cell Peclect

number is larger than 2. The difference equation can be arranged to the following form by

collecting terms according to the grid points around a control volume:

formulation is employed for solving the problems. The nonlinear equations of motion are
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approximated by a system of linear algebraic equations of the form of equation (4.8).

Detailed information about the grid staggering and solution procedures is given in Chen

(1980).

4.2.3 Method of Three-Dimensional Grid Generation

The computational domain of the hybridization system with rotating blades is shown in

Figure 4.1. The inlet and outlet pipes are simplified as straight pipes. To avoid the

the complexity of the grid generation, the geometry of the cross-section of the outlet pipe

is changed to rectangular with same area of cross-section.

The grid generation of the hybridization system is divided into two steps. First

step is to generate the two-dimensional grid of the meridian section; second step is to

generate the three-dimensional grid based on the meridian grid.



Figure 4.2 Schematic of the meridian domain of the hybridization system.

4.2.4 Flow Field Analysis

The numerical code is run for different rotational speeds ranging from 5000 to 15000

rpm. The results of airflow field are presented in Figures 4.3-4.6 for the rotational speeds

of 5000, 8000, 10000 and 15000 rpm, respectively. As seen from these velocity contours,

there are certain regions where the velocity field of air is very high as compared to other

areas. Near the outer wall and between the blades, the velocity is maximum in all the
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cases and increases linearly with the rotational speed. Maximum velocities attained by

the airflow are approximately equal to 50, 75, 100 and 150 mks, respectively. Velocity of

air is minimum at the center of the mixing chamber and increases towards the outer wall.

Thus, it can be concluded that the general pattern of air flow remains the same for all the

rotational speeds, however, the magnitude of velocities goes on increasing linearly. Also,

as shown in Figure 4.3, the airflow field near the re-circulation pipe is in the range of

about 10 mks. Due to the sudden expansionkopening, there is a drop in the velocity of the

flow field and formation of vortices takes place. Due to high velocities and the air drag

near the outer wall, it can be estimated that the particles settled down between the gap of

blade and the mixing chamber can be lifted and revolved in the mixing chamber as well

as re-circulated in the re-circulation pipe increasing the efficiency of the coating process.

4.3 Flow Field Analysis Using Fluent

Commercial software FLUENT 5.5 is used for the gaskparticle flow system to predict

particle and gas flow patterns in the Hybridization system. The Bic — gturbulence model is

used to understand the turbulence behavior of the gas phase. The algebraic slip mixture

(ASM) model was employed as the multiphase model in the computation. (This will be

discussed in chapter 5). The velocity and pressure profiles for the gas phase are analyzed.

The result from Fluent is then compared to the results obtained using a numerical code

discussed in the earlier section.
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4.3.1 Simulation Parameters

Simulations were carried out for different rotational speeds as done in the earlier section

of this chapter. Gas properties were set to equal those of air. The system geometry is

shown in Figures 4.7 and 4.8. The mixing chamber geometry is shown in Figure 4.7 and

the re-circulation tube is shown in Figure 4.8. Approximately 278,000 tetrahedral meshes

are used in the simulation.

4.3.2 Velocity and Pressure Contours (Fluent)

Numerical simulations were performed for the different rotational speeds as done in the

earlier section. The results are shown in Appendix A.
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In the mixing chamber of the hybridization system, when the blades are rotating,

high pressure begins to build up near the cylindrical chamber side wall, and then drives

the air flow out through the outlet on the chamber side wall and re-circulates back to the

upper center part of chamber via the re-circulation pipe. From Figures shown in

Appendix A, it can be seen that higher velocity region is located near the sidewall of the

chamber and the maximum value appears around the outlet from the chamber to the re-

circulation pipe.

The flow field in the re-circulation pipe at 5000 rpm is fairly uniform throughout

the pipe except at the exit point, where high velocities are observed. Velocity of the flow

field is in the range of 5 to 15 mks. The flow field computed by Fluent can be broadly

classified into three regions inside the mixing chamber. One near the inner cylinder (point

of entry), second between the blades and the central part of the mixing chamber and third

around the blades. The velocity of the flow field is higher in the third region, and

gradually decreases as we move towards the center of the mixing chamber.

The pressure distribution contours inside the mixing chamber of the hybridization

system is shown in Figure 4.9.
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Figure 4.9 Pressure distribution inside the mixing chamber and the re-circulation tube
at 5000 mm.

It is clear from Figure 4.14 that pressure is built up on the outer wall. Pressure drop is

observed at the exit of the re-circulation tube. Again, the pressure distribution inside the

re-circulation tube remains fairly uniform.

The differences between these two computational codes are seen from the

contours of the flow field; however, the magnitude of the velocities remains almost
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identical. Figure 4.10 illustrates the comparison of velocity vectors at the exit of the re-

circulating pipe. The direction of velocity vectors is identical in both cases. There is a

formation of vortices and a back flow is seen in that region.



65

4.4 EDperimental comparison

In order to validate the simulation results computed by two aforementioned numerical

codes, air velocities inside the mixing chamber and the re-circulating pipe were measured

and compared with the simulation values. The experimental values were measured using

a pitort tube. The results are shown in Figures 4.11 and 4.12.
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As seen, the velocities measured experimentally closely resembles to the

numerically simulated values. The velocities were measured for different rotational

speeds and in each case, the computed as well as experimentally measured velocities

were found to be very close and comparable.

4.5 Conclusions

Numerical simulation of hybridization system from CFD point of view is carried out and

the results are presented in this chapter. The induced air draft due to the high-speed

rotation of the blades, which, is very crucial in the effective and efficient operation of the

hybridization system, is analyzed using two different numerical codes and their results

are compared. These numerical codes employs k-c model. Velocity contours demonstrate

the effect of the airflow field inside the mixing chamber as well as the re-circulating pipe

of the hybridization system. Higher velocities are seen near the outer wall and along the

blades. Velocities are low near the entry of the r c-circulating pipe. Due t o the sudden

expansion at the exit of the re-circulating pipe, the pressure drop is observed and the

vortices are formed. The air velocity is very high near that region. Also, the air velocities

increase 1 inearly with the increase i n the rotational s peed o f t he m ixing c hamber. The

flow pattern is not nearly identical in these two computational codes; however, the

magnitude of the quantities computed is identical. Overall flow inside the system seems

to be symmetrical about the axis of revolution except in the region near the exit of the re-

circulating pipe. Pressure distribution is also computed and found to be higher near the

outer wall of the mixing chamber. The quantities such as velocity, and pressure are

uniform throughout the re-circulating pipe. Simulated values of the air velocities are
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compared with the experimentally measured values and a good agreement between the

values is seen.

After studying these two different methods of numerical simulations, DEM in

Chapter 3 and CFD in Chapter 4, the task remains to study both these effects combined.

Next chapter therefore is focused on the studies of DEM and CFD combined, as well as

using a multi-phase model in Fluent to study both gas and particle phases together.



CHAPTER 5

COUPLING OF PARTICLES-AIR FLOW USING NUMERICAL TECHNIQUES

The importance of airflow field on the performance of the hybridization system is vital.

Numerical simulation of the hybridization system using Discrete Element Method (DEM)

is carried out in Chapter 3, where the particles are simulated and treated as discrete

elements. Effect of air drag on the particles was not considered. A lso, with the aid of

computational fluid dynamics techniques (CFD), the airflow inside the mixing chamber

as well as within the re-circulating pipe is computed in Chapter 4, where the effect of

particles was not taken into account. Hence, the inclusion of air drag effect on the

particles is dealt in this chapter with the coupling of DEM and CFD to further evaluate

the performance of the hybridization system. In addition, the modeling is carried out

using a multi-phase model (CFD). In DEM and CFD coupling, various quantities such as,

number of collisions, work done due to collision, the type and magnitude of forces are

calculated. The distribution of particles inside the system is also evaluated. Effects of

different operating parameters such as loading of particles, rotational speeds are studied.

In the first part of this chapter, DEM results of the smaller size of the hybridization

system are presented to understand the effect of air drag on the particles and are

compared with the quantities diagnosed in chapter 3. Remaining part of this chapter is

devoted to the preliminary DEM simulation of the particles in the re-circulating tube as

well as the DEM simulation of the full size hybridization system. The scaling problem of

the hybridization system is also investigated and various quantities such as velocity,

pressure, and turbulent intensity of the scaled sizes are compared with the original size.
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5.1 Introduction

Coupling of gaseous phase with the solid phase has been studied by number of

researchers in the past. D ifferent techniques and the complexity of the problem under

investigation determine the approach of performing the coupling studies. Coupling

studies have been concentrated in the area of fluidized beds. Y. Tsuji et al. (1998)

performed the numerical studies of two-dimensional fluidized beds using discrete

element method to calculate the motion of particles by solving Newton's laws of motion.

Locally averaged equations derived by Anderson and Jackson (1956) were solved to

calculate the fluid motion taking into account the interaction of fluid and particles. Effect

of drag force on the particles and the particle-fluid interaction force was used to modify

the equation of motion in both the-fluid model as well as the DEM model to solve these

equations simultaneously. Similar approach is used by Horio et al. (1998) to simulate the

behavior of cohesive powder in the fluidized bed. Yue et al. (2000) recently performed

the numerical studies of air-particle motions in bubbling fluidized bed of smaller

particles. Particle-particle interactions were solved using Discrete Element Method. The

Navier-Stokes equations and the Lagrangian type particle equations were simultaneously

solved where the drag and lift forces on the particles, multi-body collisions among

particles and mutual interaction between particles and air were taken into account.

All these coupling studies were done using a strong two-way coupling approach,

which solves the DEM code as well as the fluid code simultaneously. However, due to

the computational limitations and the complexity of the problem in the present study for

the coupling of DEM with the fluid model, a two-way weak coupling is employed, which

is discussed in the following section.
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5.2 Coupling Using DEM

5.2.1 Simulation Scheme

Behavior of airflow field inside the mixing chamber of the hybridization system has

already been explained in details in chapter 4. The airflow field has a symmetrical

pattern. A sector as shown in Figure 5.1 between the two blades is considered. The time

dependant air velocity at every node between this region is computed using Fluent.

In DEM numerical code, the region between the two blades is divided into number of

areas as shown in Figure 5.2.
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Figure 5.2 Designated regions in DEM code.

During the simulation, the particles falling into these regions, (for example the region

highlighted in above figure) finds the nearest node in that region and the air velocity is

assigned to that particle for the consideration of the drag force. This is true for every

particle in the region falling between these two blades as well as in the regions formed

similar to this in the other blades as well. In the next time instant, the particles are

assigned new positions and velocities, thus they may fall under different regions. The

same flow field is mapped according to the new position of particles and the new node,

which is closer to the particle influences the drag associated with it. This process is

continued till the end of the simulation.
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particle velocities in that time instant.

Simulations were run for different rotational speeds as well as different loading

conditions and the quantities such a s the p article-particle, p article-boundary c ollisions,

average tangential and normal forces were computed. The results are presented below.

5.2.2 Collisions Analyses

Particle-particle as well as particle-boundary interactions inside the mixing chamber of

the hybridization sy stem w ere carried o ut including the air drag force. The results for

particle-particle interactions are shown from Figures 5.3-5.6. Particle-boundary

interactions are illustrated from Figures 5.7-5.10.



Figure 5.4 Particle-particle interactions for 6000 rpm.
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The particle-particle collisions, as seen earlier in the case of absence of air drag

(discussed in chapter 3) increases with time. Up to 0.2 seconds of simulation time, the

rise in the collisions is not distinct for different loadings, however, after 0.2 seconds,

number of collisions seem to be rising linearly with time. The number of collisions per

particle is in the order of 10 7 .

Particle-boundary collisions on the other hand present a different scenario. The

number of collisions is less as compared to the case of absence of air drag. The rise in the

collisions is linear unlike the particle-particle collisions. Also, different loading

conditions and different rotational speeds do not seem to make much difference in the

collisions of particles with the boundary.
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Figure 5.10 Particle-boundary interactions for 10000 rpm.

5.2.3 Forces

Computations of forces inside the mixing chamber of the Hybridization system were

carried out in order to understand the impact of particles on one another. Tangential

forces and normal forces were computed for the different loadings and the rotational

speeds. These forces are the long-term average values and are obtained by all the instant

values during the simulation. As seen (Figure 5.11) in the absence of air drag effect on

the particles, tangential forces were seen to be in the range of 10 -3N. Forces were higher

for the higher loading cases. Up to 8000 rpm, the forces for the loading cases of 500, 600

and 800 particles were seen to be in the similar range, these however increased from 8000

to 10000 rpm. At 10000 rpm and 1000 particles loading case, the tangential forces were

particularly seen to be very high as compared to other loading cases. In the presence of



78

air drag, the magnitude of the forces was higher by the order of magnitude. The general

trend with the increasing loading was seen to be the same as compared to the absence of

air drag case.
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On the other hand, in the case of normal forces (Figure 5.12), there was not much

significant change observed as the loadings and rotational speeds changed, which means

the tangential forces had an important role in the operation of the system. However, the

normal force was seen to be much higher than the tangential forces, which was in the
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The strength of normal forces was seen to be even higher when the particles experienced

the air drag due to the fluid force. As seen in Figure 5.12, increase in the loading does

increase the normal force experienced by the particles, but not by a comparable margin.

5.2.4 Number Density Distribution

In order to see the distribution of the particles inside the mixing chamber with the effect

of air drag, the number density of particles were computed in three different zones. The

zones were divided into three concentric circular regions in such a way that the zones

neat the blades is designated as 'Blade', the middle part of the chamber is designated as

`Middle' and the zone near to the inner cylinder is termed as 'Inner'. It is illustrated in the

following Figure 5.13.

Figure 5.13 Three regions of the mixing chamber for evaluating the number density.

As shown, three regions are separated on the basis of velocity profiles obtained from

Fluent. Simulations were run for the rotational speeds of 5000 and 10000 for loading of

particles of 600, 800 and 1000. The results for 5000 rpm are presented below.
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As the simulation started, the particles start colliding with each other as well as with the

walls of the mixing chamber including blades. From the Figure 5.14, it is clear that the

particles due to the effect of air drag and due to the centrifugal force are positioned to the

outer part of the chamber i.e. near the blades region. 90 % of the particles are seen to be

following the motion of the blades, while remaining 10 % particles are seem to be

distributed evenly between the middle and the inner part of the mixing chamber. Same

results are obtained for the case of 10000 rpm, which means that the effect of loading of

particles as well as the rotational speed of the mixing chamber has a very little effect on

the distribution of the particles, and the particles are driven by the air drag force.

Therefore, it can be concluded that the important region in the mixing chamber is the one

near the blades, which may decide the coating quality of the particles.

5.2.5 Coating Time

Coating time calculations are done based upon the minimum time required for the

particles to cover the complete surface area of all the host particles. It can be estimated in

the following way.

Figure 5.15 Coating Time Calculation.
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• Calculate maximum central displacement d for each host-host contact

• Calculate the contact radius a of this contact by equation a = Vd*R

• Calculate the summation of contact area until it equals to the total surface area of

the system, which is equal to N*S, where N is the total number of host particles

and S is the surface area of each host particle.

For the rotational speed of 5000 rpm, and the loading of particles: 500, the total

coating time required is found out to be equal to 0.23 seconds. This time is should be

much less than the actual experimental measurements, since it is assumed here that each

contact occurs on different position of particle surface. There this coating time is the only

estimation and not the exact value.

5.2.6 DEM of Re-circulating Pipe

Numerical simulation of re-circulating pipe is also initiated and the preliminary results

are presented in this section. As shown in Figure 5.16 velocity contour of cross section

taken in the pipe is illustrated. The velocities are in the range of 1-17 mks.
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This velocity field is used to assign the air drag to the particles in DEM modeling. DEM

simulation is run for the set of 100, 200, 300, and 400 particles. Initially, the particles are

arranged randomly and the velocity field is assigned to the particles with the help of the

velocity field taken from fluent. In order to take the bends in the recirculating pipe into

account, an equivalent length of the pipe is estimated and the simulations are run for the

velocity field at 5000 rpm. The snapshots from the DEM results at 0, 0.5 and 1 seconds of

simulation are shown in Figure 5.17. As seen, the particles initially starts moving with the

flow field and at the end of simulation are cornered inside the pipe. In order to get an

estimate of the number and types of collisions, the particle-particle as well as the particle-

boundary interactins is also computed and the results are shown in Figure 5.18.
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It is clear from these plots that the particle-boundary interactions are more than the

particle-particle collisions by at least 3 orders of magnitude. Number of collisions per

particle are also computed and shown below in Figure 5.19.
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The trend seen from above plots clearly indicate that the flow inside the pipe gets

stabilized quickly. The particle-particle interactions computed as per particle is of the

order of 10 6 whereas the particle-boundary interactions per particle is of the order of 10 11 .

Loading does affect the particle-particle collisions but does not seem to affect the

particle-boundary interactions much. It should be noted that with few number of particles

as used in this run (100 to 400), these number of collisions are extremely high and thus

indicate the effect of re-circulating pipe in the coating of particles. The forces calculated

as averaged per particle, normal and tangential are shown in the Figure 5.20.

Figure 5.20 Average forces per particle inside the re-circulating tube.

Average normal force is higher than the average tangential force per particle for different

loading of particles. Average normal force of the order of 0.9 N, while the average

tangential force is of the order of 0.45 N. It may be noted as this magnitude of the forces
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is also extremely high. However, the loading does not seem to affect the the magnitude of

both normal as well as tangential forces.

5.3 Coupling Using CFD

5.3.1 Introduction

Another effort in the direction of coupling of gas and solid phase has been made in this

section, using CFD techniques. Commercial software Fluent (v. 5.5) is used to analyze

the flow inside the mixing chamber of the hybridization system. The algebraic slip

mixture (ASM) model was employed as the multiphase model in the computation. The

velocity profiles, volume fraction and pressure profiles for the gas and particulate phases

were analyzed. In addition, the results of different volume fractions were compared.

The advantage of ASM model is that the two-phase model can be simplified that

allows the phases to move at different velocities. Continuity and the momentum equation

were solved to model the two phases (fluid and particulate), the volume fraction equation

for the secondary phase, and an algebraic expression for the relative velocity. An

interface between two immiscible phases was not considered and the phases were

considered to be interpenetrating. The volume fractions ad and Sp  for a control volume

was taken in the range from 0 and 1, depending on the space occupied by phase q and

phase p.
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Mass transfer is not allowed in the algebraic slip mixture model.

5.3.3 The Momentum Equation

The momentum equation for the mixture was obtained by summing the individual

momentum equations for both phases.

It is expressed as

5.3.4 The Relative (Slip) Velocity and the Drift Velocity

The relative velocity (also referred to as the slip velocity) is defined as the velocity of the

secondary phase (p) relative to the primary phase (q) velocity:



5.3.5 The Volume Fraction Equation for the Secondary Phase

From the continuity equation for the secondary phase, the volume fraction equation for

the secondary phase can be obtained as:

5.3.6 Simulation Parameters

Simulation studies were studied into two different parts. In the first part, to have a better

understanding of the dynamic behavior of gaskparticle flow, a simple case of single phase
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(gas) Hybridizer system was studied. In the second part, two cases with the particle

volume fraction of 3% and 10% were studied respectively for comparisons. The particle

properties were set to those of silicon. Gas properties were set to equal those of air.

The system geometry is previously shown in Chapter 4. A total of around 278,000

tetrahedral meshes were used in the simulation and the rotational speed was set to 5000

rpm for both cases.

5.3.7 Results

Simulated flow fields are shown in Appendix B for the rotational speeds of 5000, 8000,

10000 and 15000 rpm. The velocities of airflow are increasing with the rotational speed

as seen in the fluid only case and as discussed in chapter 4. The magnitude of the

velocities decreases in the multi-phase flow by approximately 10%. There are still three

distinct regions where the velocity field is different. The velocities start increasing from

the center of the mixing chamber till the outer wall. Airflow is dominant near the blade

zones.
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Figure 5.26 Volume Fraction Contours (Volume Fraction of 0.1).

Two cases of different volume fraction were studied using the multi-phase model. The

volume fraction was taken as 0.03 and 0.1 for these cases, respectively. The results are
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shown in Figures 5.21-5.23 and 5.24-5.26 for the volume fractions of 0.03 and 0.1

respectively. The velocity contours for both the cases remain almost identical, thus we

can conclude that the flow is dominant enough not to be affected by the increase in the

volume fraction. However, the pressure profiles are different. As the volume fraction is

changed from 0.03 to 0.1, the pressure distribution becomes wider. Higher pressure is

obtained near the outer walls of the mixing chamber. This may be because of higher

gradient of pressure, needed to drive the particles flowing with the gas stream since the

average density for the two-phase flow is increased with higher volume fraction of the

particles. The regions where velocities endured greater changes in values were also

evident. These areas included the regions near the outer rims of the six blades and the

outlet region from chamber to pipe. Based on Newton's Second Law, these areas must

also be the regions that experience higher forces. From the volume fraction contours, it

was seen that the volume fraction of particles fluctuated by a small amount around the

average value of the whole system.

5.3.8 Scaling Investigation of the Hybridizer System

Another attempt to further investigate the hybridization system is done by scaling up and

down its normal size by keeping the tip velocity constant. The scaled versions are studied

using CFD techniques to understand the effect on velocity, pressure, and turbulent

intensity profiles for both single and multi-phase flows. The scaled down version used is

20% of the original size while the scaled up version is 5 times bigger than the original

size. The results of velocity profiles are shown in Figure 5.27.
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Figure 5.29 Velocity field across the section taken at cut-i.

As shown in the Figure 5.28, cuts are taken at different sections to analyze these velocity

contours quantitatively. The plots shown in Figure 5.29, illustrate the velocity magnitudes

at these cuts. As seen, the velocities are not affected significantly even after scaling up

and down the original size of the hybridizer system.



Figure 5.30 Pressure field across the section taken at cut-1.
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As shown from Figures 5.30, and 5.31, pressure as well as the turbulent intensity

distributions across the chamber varies significantly for the scaled down system, however

the scaled up system has close resemblence to the values of original size system.

Similar approach is adopted while analyzing the multiphase model of the scaled

up and scaled down systems. Volume fraction is varied from 1 to 3%. It is seen that the
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velcoties of particles as well as the airflow are not affected by increasing the volume

fraction even upto 10%. Figure 5.32 shows the magnitude of velocities comparison for

1% and 3% volume fractions for the original size system. Similar trend is seen for the

scaled sizes.

Figure 5.32 Comparison of Multiphase model velocities.



100

5.4 DEM of Original Size System

As may be noted, the DEM simulations carried out earlier in this chapter as well as

explained in chapter 3, the size of the system was scaled down, in order to achieve the

faster computational speed. In this section, attempt has been made to model the

hybridizer system by increasing the particle diameter up to Imm. Results shown here

include the particle-particle as well as particle-boundary interactions and the forces.

Velocities in different zones inside the mixing chamber are compared to the velocities

obtained using multiphase model of Fluent. Rotational speeds used for the simulations

are 5000 and 10000 for the loading of 1000 and 1500 particles. Figure 5.33 and 5.34

show the particle-particle and particle-boundary collisions as calculated per particle for

5000 rpm.
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Figure 5.35 Velocity comparison for original size system.
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As seen from these plots, the particle-particle interactions are of the order of 10 8 , while

the particle-boundary interactions are of the order of 10 9 . The particle-particle

interactions are not affected by the loading particles but there is a significant rise in the

number of collisions for the particle-boundary interactions. Velocities are compared for

the different zones in the mixing chamber. The values are found to be in good agreement.

5.5 Conclusions

In this chapter, the effect of air drag on the particles inside the mixing chamber of the

hybridization system is studied using different available numerical techniques. The effect

of air drag on the particles studied using the coupling of DEM and the fluid velocities

obtained from Fluent indicated an increase of normal and tangential forces on the

particles. The normal forces indicated that the effect of loading of particles is not a

predominant factor. The number of collisions between the particles as well as with the

boundaries of the system were seem to be reduced under the affect of air drag. The non-

cumulative curves of the collisions indicated that the system got stabilized after about 0.2

seconds of simulation. Number density distribution of particles showed that the particles

were occupying about 90% of the region near the blades. Hence, the flow of particles

under this drag effect is dominated near the outer part of the chamber, where the blades

are rotating a t v ery high speeds. The m ulti-phase m odel w as studied for two different

volume fractions. The velocity c ontours did not indicate much change, however, there

was a pressure rise for the higher volume fraction of particles.



CHAPTER 6

IMPROVEMENT OF HUMIDITY RESISTANCE OF

MAGNESIUM POWDER USING DRY PARTICLE COATING

Dry particle coating is used to enhance the humidity resistance of ground magnesium

powder (primary size 75mm) by coating its surface with carnuba wax (primary size

15mm). Coating is done using MAIC (Magnetically Assisted Impact Coating), and two

high-speed impaction-coating devices, the Hybridizer and Mechanofusion system. The

uncoated and coated samples are characterized by scanning electron microscopy (SEM),

humidity tests, and X-ray diffraction (XRD). SEM images indicate that in addition to

being coated, ground magnesium particles, which are irregularly shaped, are smoothened

and rounded off in all of the coating machines. The wax particles coated onto the surface

of the magnesium particles in MAIC are mainly observed in and around the cracks,

whereas in the Hybridizer and Mechanofusion the wax is softened and spread more

evenly over the magnesium surface. The results of the humidity tests show a significant

improvement in the humidity resistance of ground magnesium powder after coating in all

three devices. These results are also verified by XRD analysis. It is shown that the

humidity resistance of the coated ground magnesium is comparable to that of atomized

magnesium even when only 1 to 2% by weight of wax is applied.

Powdered magnesium has a wide range of applications in various chemical,

pharmaceutical, metallurgical, and agricultural industries. Specific applications include

steel d esuiphurization, p yrotechnics, m fetal matrix c omposite filler, p owder m etallurgy,

etc., see Dreizen et al. (2001), Shoshin et al. (2001).
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6.1 Introduction

Magnesium is a highly energetic material, i.e., it has a tendency to catch fire, and it also

has a high affinity for oxygen and water. Figure 6.1 shows a scanning electron

micrograph (SEM) image of commercially available magnesium powder. In its ground

form as shown, the particle is irregularly shaped with a large number of cracks where the

formation of hydroxide occurs, when exposed to moisture. Figure 6.2 shows a higher

magnification SEM image of as-received ground magnesium after 100 hours of exposure

to the atmosphere. It clearly shows the very different morphology of magnesium

hydroxide, a needle type structure. The formation of magnesium hydroxide deteriorates

many of the desirable properties of ground magnesium, e.g., the reduction or even

elimination of its pyrotechnic properties and hence severely limits its applications.

An alternative to ground magnesium powder is atomized magnesium. Atomized

magnesium particles are spherical shaped and have a lower tendency to form hydroxide

on its surface, i.e., it has a greater shelf life than ground magnesium. Kalyon et al. (1996)

showed that when ground and atomized magnesium powders were exposed to 100%

humidity and 65°C for a short test duration, ground magnesium powder formed

hydroxide close to 5% by weight, or about 2.5 times greater than that formed by atomized

magnesium powder. The main reason for this difference appears to be the larger surface

area to volume ratio in the ground form. However, the manufacturing and handling cost

of atomized magnesium is significantly higher than that of ground magnesium. Hence, it

is desirable to develop a method that can cost-effectively improve the moisture resistance

property of ground magnesium.
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Kaneyasu et al. (1995) observed that crushing ground magnesium powder into

finer particles increases the water absorption properties of magnesium. In order to

achieve a better hydration resistance, they used a wet coating technique to add organic

silicon compounds on the surface. Surface modification of metal powders such as

sodium, magnesium, aluminum and tantalum was also done using a resin binder in a

solvent by Mitsui Mining and Smelting (1990). The metal was coated with metal

alkoxides, the condensate having non-hydrolyzable groups attached to the metal. The

hydrophobic nature of the non-hydrolyzable groups improves the hydration resistance.

Alternatively, dry particle coating techniques can be used to modify particle

surfaces by coating a protection layer to achieve hydration resistance. Several dry

particle-coating systems have been developed, such as Magnetically Assisted Impaction

Coating (MAGIC) (Ramlakhan 1998, Singh et al. 1997), Mechanofusion (Yokoyama et al.

1987, Naito e t a 1. 1983), Theta composer ( Alonso e t a 1. 1989,  M iyanami e t a 1. 1994),

Hybridizer (Honda et al. 1987, Takafumi et al. 1993) and Rotating Fluidized Bed Coater

(Masaru et al. 1996). A comprehensive review of dry particle coating is given in (Pfeffer

et al. 2000). In dry particle coating methods, as we have seen in Chapter 2, fine particles

(guests) are attached or embedded onto the surface of larger particles (hosts) by means of

high shear andkor impaction forces. The Hybridizer and Mechanofusion systems generate

higher local temperatures as compared to MAIC and other dry coating methods. The

coating strength also differs to a great extent depending on the properties of the hosts and

guests and the particular dry coating process that is used. Dry particle coating methods

are becoming more important in powder processing industries because of their ability to

modify particle surface properties to suit the requirements of the particular applications
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(Pfeffer et al. 2000). A distinct advantage of dry coating techniques over conventional

wet coating methods is that they don't require any liquids or binders that may result in

waste products. Additionally, no complex chemistry is involved to achieve the coating.

Moreover, they do not require drying of the product and are therefore highly cost-

effective and save energy.

The objective of this study is to develop a potentially cost-effective technique to

preserve the pyrotechnic properties of ground magnesium by dry coating wax or silica

onto the surface of ground magnesium particles. Various dry coating systems are used to

accomplish this goal. The products are characterized by their morphology, speciation and

moisture absorption. The performance of the various systems is also compared.

6.2 Experimental

Three dry p article-coating sy stems, M AIC, H ybridizer and M echanofusion are u sed i n

this study to coat the particles. The coating mechanism and operating variables of these

processes are described in detail in Chapter 2. Only some of the main features are briefly

reviewed here. The experimental procedure is as follows. A weighed amount of host

particles (magnesium powder) and guest particles (wax or silica) is placed into a

processing chamber. Batch sizes of magnesium powder and guest particles are varied

depending on the type of instrument and time of operation.

In MAIL, a pre-weighed mass of magnetic particles is also placed in the chamber,

followed by the application of an oscillating external magnetic field around the

processing device to agitate the magnetic particles. The magnetic particles spin and

translate which results in collisions with host and guest particles, allowing coating to be
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achieved by means of impaction of the guest particles onto the surface of the host

particles. In the Hybridizer system, guest and host particles are mixed and due to the 6

ultra high-speed rotating blades in the mixing chamber, they collide with each other as

well as with the walls of the unit. Coating is accomplished through the impaction

between hosts and guests resulting from the high-speed rotation of the blades. The

temperature inside the chamber is varied from 22°C to 60°C by controlling the

temperature o f inlet w ater i nto the c ooling j acket o f t he m fixing chamber. The mixing

chamber is flushed with nitrogen gas to prevent ignition of the magnesium powder. In the

Mechanofusion system, a mixture of guest and host particles is forced to pass through a

very narrow clearance in a rotating chamber where high shear and compression forces are

responsible for the coating. A scraper is used to remove the powder layer attached on the

chamber wall.

The physical properties of the materials used in the experiments are given in

Table 6.1. Two sets of experiments were carried out and the experimental conditions are

listed i n T able 6.2. I n the first set o f experiments, the choice o f w hich guest p articles

(hydrophobic fumed silica or carnuba wax) should be used to coat the host particles

(ground magnesium) was determined by comparing the performance of the coated

products by humidity testing. In the second set of experiments, the effect of guest particle

loading and different operating conditions were studied. The coated, as well as the

uncoated, samples were then tested under nearly 100% humidity at 65°C. The

morphologies of the coated products were characterized using a Philips XL 30 scanning

electron microscope (SEM) as well as a Leo 982 Field Emission SEM. The products were
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also characterized using X-ray diffraction (XRD) to determine the level of hydroxide

formation on the surface of the coated and uncoated samples.
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6.3 Results and Discussion

6.3.1 Determination of Coating Material

The first set of experiments was carried out to choose a better coating material between

hydrophobic silica and carnuba wax. The Hybridizer was used to accomplish the coating,

and 2% by weight of the coating material was added. When magnesium comes in contact

with water, hydrogen gas is generated through the following reaction:

Therefore, the amount of water absorbed can be determined by measuring the amount of

hydrogen gas generated. In each test, the magnesium powder batch size was 5g. The

results generated, using the experimental test rig at Picatinny Arsenal, Dover, NJ are

shown in Figure 6.3. The coated samples were also tested (fired) at Picatinny Arsenal

and the coating showed no adverse effect on their pyrotechnic properties.

As shown in the Figure 6.3, the as-received Mg powder generated the highest

amount of H2. Magnesium coated with hydrophobic fumed silica reduced the amount of

hydrogen generated but the wax-coated product showed the best performance, resulting

in about half of the H2 pressure increase as compared to the former. The large difference

can b e explained b y o bserving the m orphologies o f t he c oating 1 ayers. S ilica p articles

were discretely lodged on the surface of the magnesium while wax particles formed a

film, which covered a larger fraction of the magnesium surface (as will be shown in the

later s ections). The film provided a greater c overage and hence 1 ess w ater absorption.
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Due to its superior performance, only wax was used to coat the magnesium in subsequent

experiments.

6.3.2 Surface Morphology (SEM)

In the second set of experiments, the use of different dry coating systems and the effect of

varying operating conditions on the coating were assessed. The surface morphology of

the coated product from the MAIC process with different wax loadings is shown in

Figure 6.4. In SEM, lighter elements absorb more electron energy and emit fewer

electrons when illuminated with a beam of electrons, whereas denser materials
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emit more electrons. Consequently, the dark spots correspond to wax coverage on the

surface of magnesium assuming that carbon is the major component of wax. The SEM

image of the as-received ground magnesium has been shown earlier in Figure 6.1. The

particle in its original form is irregularly shaped with lots of cracks and a rough surface.

As shown in Figure 6.4, particles processed in MAIC were smoother and rounded off as

compared with the uncoated ground magnesium and the wax guest particles were

discretely distributed on the surface. Greater wax coverage is observed on the surface of

magnesium as the wax percentage is increased from 1% to 4%.

The coatings obtained using the Hybridizer and Mechanofusion with 2% wax are

shown in Figure 6.5. Differences in the morphology of the wax coating in the three

different coating devices is readily observed. More wax can be seen on the particles when

they are processed in the Hybridizer or by Mechanofusion. Due to the higher forces and

higher local temperature in these devices, wax was softened and spread over the surface

of the particles, increasing the surface coverage. The higher surface coverage is critical

to better moisture resistance as will be demonstrated in the following sections.
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6.3.3 Water Immersion Test

Since the wax is hydrophobic, the coating should make the hydrophilic magnesium

surface become hydrophobic. To qualitatively test if the coated magnesium becomes

hydrophobic (i.e., less hydrophilic), the coated and uncoated samples were immersed in

water to observe their hydrophilic or hydrophobic behavior. As expected, the uncoated

sample settled in water (Figure 6.6). On the other hand, the coated sample (processed in

the Hybridizer at 10000 rpm, for 2 minutes with 2% wax and exposed to the atmosphere

for several months) floated on water. The coated product was observed to be still floating

on water after 30 days, even though much of the surface was not coated with wax as

shown in the SEM micrographs This transformation is due to the high hydrophobicity of

the wax coatings.
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It is also likely that the wax may have sealed some of the free cracks, preventing

the entry of water into the particle, further reducing its hydrophilicity. While this test

does not provide quantitative results, it indicates that the layers of wax on the magnesium

surface would repel moisture from the atmosphere, making it less hydrophilic. In the next

section, humidity resistance tests, which are more quantitative, are described.

6.3.4 Humidity Tests

To evaluate the impact of the coating on the improvement in moisture resistance,

humidity tests were carried out for the various coated products as well as uncoated

samples. The test samples were kept in a container at nearly 100% humidity at 60°C for

100 hours or more to allow the formation of hydroxide on the surface of the magnesium

particles. These were accelerated tests to simulate the increase in hydroxide formation

after six months of normal shelf life. As the melting point of wax is 65°C, the

temperature inside the chamber was kept at 60°C in order to avoid complete melting of

the wax. Nevertheless, it is high enough to soften the wax so that it would cover the small

cracks remaining o n the surface o f m agnesium after the c oating p rocess. The s amples

were weighed at regular intervals of time. The weight increase in the samples was

compared with the uncoated ground magnesium sample as well as the atomized

magnesium sample tested at the same conditions.

The results of the samples coated in the Hybridizer at 5000 rpm and 10000 rpm

with various wax loadings are shown in Figure 6.7. As seen, the water absorption rate

was the highest for the uncoated ground magnesium, as expected. Very encouragingly,

the coated samples reduced the absorbed amount of moisture to almost the same level as
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the atomized magnesium. The different percentages of wax used in the coating process

did not yield much difference in the humidity tests. All these samples absorbed

approximately the same amount of water indicating that 1% wax was enough to produce

satisfactory results. In addition, there was also no discernable difference in water

absorption for the products processed at different rotating speeds.

It should be noted that since the weight increase in these and subsequent tests is

rather small, and that the test procedure requires frequent handling of these samples to

measure their weight, the results are not highly a ccurate. In other words, they provide

only a semi-quantitative description of the increase in humidity resistance.

Humidity tests were also performed for samples processed in the Mechanofusion

and MAIC systems. The results are shown in Figures 6.8 and 6.9 respectively. For

Mechanofusion, moisture absorption of the coated samples at various processing times is

seen to be marginally less than that for the atomized uncoated magnesium. However,

looking at the trend of these curves, it appears that as time increases beyond 70 hours of

exposure, the atomized magnesium absorbs less water than the coated samples. This may

be attributed to the fact that as the coated sample surface converts to hydroxide, the

integrity of the wax coating is disturbed (refer to Figure 6.2), and its moisture resistance

is somewhat reduced as compared to the uncoated atomized magnesium. It is also noted

that higher processing times do not seem to show any major difference. For the MAGIC

experiments, the moisture absorption of the coated product is quite similar to that of the

Mechanofusion processed samples, except that their degradation is faster, i.e., their

moisture absorption becomes greater after 50 hours of testing.
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Figure 6.9 Humidity test for MAIC 10 min sample.

As seen from these results, while there were some differences, all of the products

processed in the different coating systems showed practically similar results in the

reduction of moisture absorption. The similarity for all the coated samples appears to be

due to the fact that the humidity tests were carried out at 60°C so that the wax coated on

the surface of the magnesium was softened. Therefore, all the cracks remaining on the

surface of magnesium after coating were eventually filled with softened wax, resulting in

better surface coverage and leaving less room for water entry. It should be noted that the

coated product yielded even better moisture resistance (e.g., compare the Mechanofusion
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and MAIC samples showing Mechanofusion to be better) if the wax was already softened

in the coating process.

Generally, the moisture absorbed by the coated samples was about half that of the

uncoated ground magnesium, and nearly the same as that of the atomized magnesium. In

some cases (e.g., Mechanofusion), the coated products fared better than the atomized

magnesium for up to 60 hours of testing. While these results are still not highly

quantitative, they show that our objective of developing a cost effective method to reduce

moisture absorption of ground magnesium powder has been successfully achieved.

Another set of separate experiment was conducted to see the weight increase in

the coated samples tested in the humidity chamber for 400 hours. The results are shown

below from Figures 6.10-6.12.
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Figure 6.11 Humidity test for samples coated in the MAIC system.
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Figure 6.12 Humidity test for samples coated in the Hybridizer system.



122

As seen from Figures 6.10-6.12, the coated samples seemed to be performing better than

atomized magnesium until 100 hours after which the moisture absorption rate in the

coated samples was seen to be higher than the atomized magnesium. At the end of 400

hours, all the coated samples processed in the Mechanofusion system seemed to be

performing better than atomized magnesium, while only 10% and 20% samples were

better than atomized magnesium for the samples processed in the MAIC and Hybridizer

system. Clearly, the Mechanofusion system was seen to be a better choice for coating

ground magnesium.

6.3.5 XRD

In addition to the humidity test, a more quantitative technique, X-ray diffraction, was

used to characterize the hydroxide formation on the surface of the magnesium powder in

order to get further insight into the process. The results for samples exposed to humidity

over 400 hours are shown in Figure 6.13. One representative sample using 5% wax from

each processing device was taken. The sample processed in MAIC was for 10 minutes

using a magnets to particles ratio of 3:1 by weight. The Mechanofusion sample was

processed at 1000 rpm for 10 minutes and the Hybridizer sample was processed for 2

minutes at 5000 rpm. The samples were scanned from 15° to 75°. The major a-

magnesium peak was seen at 34°-36°, whereas, the major a-magnesium hydroxide peaks

were around 18° and 39°.

The XRD scans show that the uncoated ground magnesium was transformed into

much more magnesium hydroxide at the surface than either the coated or atomized

magnesium samples. For clarity, the region between 17° and 20° is highlighted and

shown in Figure 6.14a for samples of 150 hours exposure time. As shown, the uncoated
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ground magnesium sample had the highest concentration of hydroxide on its surface as

compared to the coated as well as the atomized samples. The atomized magnesium

sample appeared to have the least hydroxide formation, and there was no significant

difference in the patterns of hydroxide in the coated samples processed in different

devices. The results of coated samples exposed to more than 400 hours are shown in

Figure 6.14b. The absorbed moisture was higher as compared to the 150 hours test. Still

the ground magnesium had the highest hydroxide content as compared to the other

samples. As a matter of fact, it turned into white powder a t the end of t his prolonged

humidity test while the other coated samples retained their original dark black color. It

should be noted that at this prolonged humidity test, the coated products outperformed the

atomized magnesium as their hydroxide peaks were seen to be lower than that of the

atomized magnesium. XRD analysis was also carried out for 10% and 20% wax coated

samples, exposed to humidity for 150 hours, and the results are shown in Figures 6.14c

and 6.14d. There is no significant difference in the intensity counts of hydroxide

formation on 10% and 20% wax coated samples as compared to the 5% sample. The

results imply that the lower wax loading is enough to obtain excellent hydration

resistance. It should be noted that the samples processed in Mechanofusion showed the

least amount of water absorption for 10% and 20% wax, the same trend reported in the

humidity tests for samples processed by Mechanofusion using much less wax, indicating

that better distribution and softening of wax during the coating process does enhance

moisture resistance.
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6.4. Summary

In this study, a cost-effective, environmentally benign method has been developed which

improves the moisture resistance of ground magnesium to a level comparable to, or even

better than that of uncoated atomized magnesium. This was accomplished using various

dry particle coating methods to coat ground magnesium powder with carnuba wax or

fumed silica. Carnuba wax was found to be a superior coating material as compared to

fumed silica. The wax coated magnesium samples were tested (fired) at Picatinny

Arsenal and the coating showed no adverse effect on their pyrotechnic properties.

Immersing the uncoated and coated samples into water demonstrated that

hydrophilic magnesium can be transformed into a much more hydrophobic product by

coating a layer of wax onto the magnesium surface. The humidity tests showed that the

product's humidity resistance increased significantly even with only 1-2% by weight of

wax. The improved humidity resistance was further verified through XRD tests, which

showed that hydroxide formation on the surface of magnesium was significantly less in

the coated samples as compared to the uncoated one, and was similar to that of atomized

magnesium in the 150-hour (accelerated test) runs. In the extended 400-hours runs, the

wax coated samples actually performed better than the atomized magnesium.

The particles processed in the different coating systems were smoothed and

rounded, as compared to the uncoated product. Wax was softened and spread over the

magnesium surface for the Mechanofusion and Hybridizer samples, but the wax particles

remained discretely distributed over the surface of the MAIC samples. Better distribution

and softening of wax yielded better moisture resistance. Nevertheless, the different

devices used for dry coating of ground magnesium and their different operating
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conditions did not make a significant difference in the humidity tests of the coated

samples, as long as the system temperature was close to the melting point of wax. Thus, it

has been clearly demonstrated that dry c oating techniques c an be used to improve the

moisture resistance, and hence, the shelf life of ground magnesium powders.



CHAPTER 7

NUMERICAL STUDY OF OSCILLATING PARTICULATE SYSTEM
USING DISCRETE ELEMENT METHOD (DEM)

In this work, the well-known Cundall-Strack (1979) discrete element simulation is

employed to investigate the flow characteristics of unary and binary particulate beds in

oscillating sectorial containers. The simulated flow characteristics of both unary and

binary granular beds have similarities with those of particulate beds subjected to

combined vertical and horizontal vibrations in that the granular bed heaps toward one of

the container walls. However, for a given frequency, heaping in an oscillating container

shifts alternately from one radial wall to another during an oscillation cycle. It is found

that there is a critical frequency at which heaping becomes symmetrical and that the

asymmetric heaping patterns at frequencies below and above the critical frequency are

just opposite to each other. In a binary particulate bed, with initially separate layers of

two different size particles, the movement of particles from one layer to another remains

small at frequencies of oscillation below the critical frequency. However, the binary

particulate bed seems to get well mixed at oscillation frequencies above the critical

frequency. Mixing rate constant is calculated for binary system to analyze the mixing of

granular system quantitatively and compared for the wide range of operating frequencies

of the oscillating container.

7.1 Introduction

The particulate system inside the chamber is multidisperse in which a set of host particles

is coatedlmixed with the guest particles. In order to understand the flow characteristics of

128
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the particles inside the coatingkmixing chamber, two-dimensional simulation studies of

granular flows in oscillating, a sectorial container was carried out. Both unary and binary

particulate systems were considered. In what follows herein, the geometry of the

container, the contact model of interacting particles, and the mathematical equations used

for simulation are described. Next, the results of simulation studies are presented and

discussed. The conclusions of the investigations are included in the last section of the

chapter.

7.2 Simulation Method

The sectorial container of interest is shown in Figure 7.1. The container is subjected to

harmonic angular oscillations of the form
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The container is filled partially with a set of non-cohesive, spherical particles. The

motion of the granular material inside the container is confined in the transverse xy-plane

only with each particle having two degrees of translational and one degree of rotational

motion. The motion of particles inside the container is delineated using two-dimensional,

discrete element method (DEM) of Cundall and Strack (1979). Simulation involves the

solution of the Newton's equations of motion of each individual particle taking into

account the various body and interaction forces acting on the particles. The model used in

the present simulations includes force of gravitation as the only body force, and the

interaction forces are the ones that come into play due to collision between the particles.

Accordingly, the equations of motion of an itchparticle may be written as

where nib is the instantaneous number of particles, including the solid boundaries (walls),

in contact with the i-th particle. Note that nib does not include the i-th particle itself. Also

nib < N, the total number of particles in the container. In Equations (7.2)-(7.4), mid is the

mass, I; is the rotational moment of inertia, r ibis the radius, (xi, yid) are the position

coordinates with respect to the Cartesian axes (Figure 7.1), and Oil is the angular rotation

of the i-th particle. and F sii are, respectively, the normal (radial) and tangential (shear)

components of the contact force exerted by the j-th particle on the i-th particle. The n-
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direction is along the outward normal at the point of contact on the particle i, i.e., along

the line of centers from i to j. The direction s is along the common tangent at the point of

contact such that n-s directions make right-handed pair of axes. Subscripts x and y

indicate components along the x and y axes, respectively, and overdots denote time

derivatives.

Figure 7.2 shows a contact model, proposed originally by Cundall and Strack

(1979), that have been used extensively (with some variations, e.g., including a linear

dashpot for tangential contact as well Tsuji et al. (2000) in granular flow simulations. The

same model is employed for the present simulation studies.

Figure 7.2 Interaction model of two contacting particles.
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Based on this model, using the symbols defined in Figure 7.2, the normal contact

force is determined by the linear spring (B r,) and dashpot (i) elements:

where 6,i; is the relative tangential displacement between the particles. The above

equation implies that the tangential force of interaction is determined by the tangential

spring force as long as its magnitude is less than the limiting friction force. However, as

soon as the magnitude of tangential spring force reaches the limiting friction force value,

tangential deformation stops, and frictional sliding sets in between the particles. In the

above equation, sign (-Bs Ssij ) is the sign of the tangential spring force just before the

initiation of sliding. The equations for the constants of spring and dashpot elements are

given in the Appendix C; these are adopted from Wassgren (1997), and are included here

for a ready reference.



133

7.3 Results and Discussion

In this section, the results of discrete-element simulation studies based on the model of

the foregoing section are presented. The data needed for simulation are related to the

geometry of container (R1, R2, 09 the size and number of particles, the model parameters

(k„, on, ks, Ps), and the operating condition (f, 00). In view of the highly time consuming

computations and a rather large number of data variables of the problem, the simulation

studies were aimed to bring out the basic features of granular flow in oscillating

containers. For this reason, it was deemed fit to investigate the effect of frequency of

oscillations for a set of fixed valuess of all other data variables Two types of particulate

beds, namely, one with unary set of uniform size particles, and the other with binary set

of two types of uniform size particles of diameter ratio 1:2, were considered. The data

used for simulation of the two types of particulate beds are given in Table 7.1. In all the

results being presented herein, simulation was initiated with the following conditions of

the container:

i.e., giving an angular speed of 270 0 to the right from the vertical equilibrium position

with a phase angle 4) = 0. The particles were given initial random velocities with a

distribution ±100 times (particle diameter) using a C++ pseudo-random number

generator. The initial rotational velocities of the particles were taBen as zero. In the

following, first the results of simulation of unary particulate bed are presented. The

results of unary particulate simulation are an extension of the worB published in AIChE
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Annual Meeting CD-ROM proceedings, 2000; see Mujumdar et al. (2000). The

simulation results of binary particulate bed are presented next.
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7.3.1 Simulation of Unary Particulate System

Figures 7.3 (a) and (b) show two settings that were used for simulation of unary

particulate bed. In Figure 7.3(a), the particles are set in a regular sector-shaped fashion.

The symmetric heaped setting of Figure 7.3(b) is obtained from that of Figure 7.3(a) in

which, Beeping the container stationary, the particles are given random motion, and then

allowed to settle down until the granular bed becomes almost static. The two settings

were actually used in only a few simulation runs to see the effect of initial setting of the

particulate bed. As expected, no noticeable differences could be found in the stabilized

granular flow patterns ensuing from the two settings. However, for uniformity, all the

results of unary simulations being presented here are the ones obtained from the setting of

Figure 7.3(b).

Figure 7.3 Setting of unary particulate bed before simulation.

Snapshots of the unary granular bed inside a sectorial container obtained at the end of

twenty cycles of oscillations are shown in Figure 7.4 for a wide range of frequency of

oscillation. Asymmetric heaping of the granules to one of the radial sidewalls of the
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container is noticeable. In the lower frequency range, heaping first increases, as indicated

by its height on the right side wall, up to a frequency of about f = 1.5 Hz, and then starts

decreasing. Heaping starts increasing again, but now on the left side, when the container

is subjected to frequencies f > 3 Hz, approximately. It may be seen in Figure 7.4 that the

heaped beds are only slightly asymmetric to the right and left sides at oscillation

frequencies of 2.5 Hz and 3 Hz, respectively.
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There ought to be a critical frequency of oscillation fai t of the container at which the

granular bed would have a symmetric heaping pattern. By trials it was found that in a

container oscillating at f = Brit = 2.6 Hz, approximately, the granular bed actually forms a

symmetric heap. Figure 7.5 illustrates how granular pattern changes during one cycle of

oscillation. Here, granular flow snapshots in the twentieth cycle of oscillations at quarter

cycle steps are shown for f = 1.5, 2.6, and 4.0 Hz. It may be noted that granular bed heaps

alternately to the two sides of container every half cycle of oscillations, Figures 7.5(a)

and 7.5(c). Also, for f = 2.6 Hz, which is the critical frequency of oscillation, the granular

bed seems to retain its symmetrically heaped shape during the whole cycle of oscillation,

Figure 7.5(b). Actually, it is observed in the graphic visualization that the unary bed

becomes almost stagnant when the sectorial container oscillates at the critical frequency.

Heaping of granular bed in oscillating container illustrated in Figures 7.4 and 7.5 is

similar to the well Bnown granular heaping phenomena in vertically-vibrated rectangular

and wedge-shaped containers, which has been reported in many experimental studies;

see, for instance, Wassgren et al. (1996) and the references sighted in that work.

Asymmetric heaping in these containers occurs possibly due to some angular

misalignment between the axes of container and (vertical) vibration resulting in a

horizontal component of vibration. In fact, the occurrence of heaping to be the result of

combined vertical and horizontal vibrations has been shown by two-dimensional discrete

element simulations as well, for both rectangular (Tsuji et al. 2000) and wedge-type

containers (James et al. 2000, 2002). These containers do not change their orientation

during vibration, and heaping stays in one direction, either to the left or to the right, only,

depending on the direction of angular misalignment.



139



140

In the present problem, a granular mass is subjected to both horizontal and vertical

vibrations, and the orientation of the container changes every half-cycle. This accounts

for asymmetric heaping with alternating orientation every half cycle.

A simple explanation of the heaping phenomena in an oscillating container is as

follows. At low frequencies of oscillations, f < 2.6 Hz, as seen in Figure 7.5(a), the

granular mass tends to accumulate near the bottom every quarter cycle due to dominant

gravitational action. Consequently, the bed is seen to be heaping to the left and right sides

after one-half and full cycles, respectively. At higher frequencies, f > 2.6 Hz, the

centripetal force of the granular mass becomes dominant and, as seen in Figure 7.5(c), the

heaping pattern is just reversed.

Figures 7.6 and 7.7 provide two additional sets of results. Figure 7.6 shows the

of granular mass in the initial first two and the last two

cycles of 20-cycles simulation for f = 1.5, 2.6, and 4.0 Hz. As observed through the

graphic visualization and snapshot, particulate motion stabilizes after two or three

oscillation cycles. This is quite apparent from Figure 7.6 (and, as would be seen later,

from Figure 7.7 as well). It may also be seen from Figure 7.6(b) that, for the case of

critical frequency oscillations, the stabilized locus of the center of mass, is a circular arc

(this is also checBed from the actual numbers). This indicates, as pointed out earlier, the

granular bed retains its symmetrically heaped shape during the container oscillations.

Figure 7.7 shows the variation of unit Binetic energy fluctuation Ae with time for

f = 1.0, 2.5, and 4.0 Hz. The unit translational Binetic energy fluctuation is defined as
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are the velocity components of the center of mass of the particulate bed. In Figure 7.7,

cyclic variations of fluctuating energy for f = 1.0 and 4.0 Hz are noticeable. The

fluctuating energy is maximum every half-cycle when the container is close to the

This is expected since every half cycle,

the particulate bed changes its (heaped) orientation quicBly as the container begins

moving either to the left or to the right from the vertical position. LiBewise, the energy

fluctuations are minimum when the container is close to the either ends (0 = r/2, 3r/2

It may further be seen that, for the case of critical frequency oscillations,

the cyclic variation of fluctuating energy remains almost uniform with the simulation

time.

7.3.2 Simulation of Binary Particulate System

As mentioned earlier, the data used for simulation of binary particulate system is given in

Table 7.1. The initial setting of a binary set of particles is shown in Figure 7.8. As shown,

the layers of small particles are set over the layers of large particles. In the present case,

there are four layers of the large particles and fifteen layers of small particles.
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Simulation snapshots of the binary particulate bed for various frequencies of

oscillations are shown in Figure 7.9; each of these snapshots is taken at the end of twenty

oscillation cycles. Comparing these snapshots with those of unary particulate system in
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Figure 7.4, occurrence of heaping and its right-to-left reversal pattern are immediately

apparent. Thus, it may be seen that in the low frequency range, heaping on the right wall

increases, as indicated by its height, up to about f = 1 Hz, and then starts decreasing.

However, at higher frequencies of oscillation, heaping begins to increase, but is shifted to

the left side.

Figure 7.8 Setting of binary particulate bed before simulation.

It was found by trials that the critical frequency for the binary bed under consideration

was fcri t = 1.7 Hz, at which the binary bed develops symmetrical heap. Figure 7.10 shows

the snapshots of the binary bed at quarter-cycle steps in the twentieth cycle of oscillations

for f = 1, 1.7 and 3.0 Hz. These snapshots are of course similar to those of Figure 7.5 for

the unary bed in that the heaping alternates from one side to another every half cycle.

Also, in a container oscillating at f = fcrit = 1.7 Hz, the symmetric shape of the bed is

maintained during the complete cycle of oscillation. Similar to the case of unary bed, the

graphic visualization shows that the particles in a binary bed appear to be almost

stagnant, and that there is no exchange of particles between the two layers.
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Figure 7.9 Snapshots of binary particulate beds at the end of 20 oscillation cycles for
various oscillation frequencies.
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Figure 7.10 Snapshots of binary particulate beds at quarter-cycle intervals in the 20th
cycle of oscillation; the snapshot (b) is at critical frequency, and the snapshots
(a) and (c) are at frequencies below and above the critical frequency.
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Figures 7.9 and 7.10 further reveal some interesting features of interaction of the two sets

of particulates in three distinct frequency ranges. In a low frequency range of 0<f< 1

approximately, the small particles penetrate from the sides and the large particles disperse

radially upward; see Figures 7.9(a) and 7.9(b). However, the two types of particles

remain visibly separate with no signs of mixing even if simulation is continued beyond

twenty cycles. Next, as shown in Figures 7.9(c), 7.10(b), and 7.9(d), in a moderate

frequency range of 1 < f < 2 approximately, the two layers remain separate with little

exchange of particles between the two layers. At frequencies of oscillation f > 2 Hz,

particulate motion becomes intense beginning with penetration of small particles from the

walls into the lower layer and radially upward dispersion of large particles; see Figures

7.9(e) and (f). As the number of simulation cycles is increased, the particulate motion

becomes increasingly intense, and after some time, the binary particulate body seems to

become a well-mixed mixture.

The mixing characteristics of the binary set of particles may also be understood

quantitatively. For this purpose the sectorial container is divided into cells of radial and

mid-arc lengths each equal to ado, approximately (Figure 7.10), where a is a size

factor and do is a nominal length defined as

where d and N, with subscripts, are the number and diameter respectively, of the two

types of particles. During the course of simulations, the number of either type of particles

is counted in each of the cells at the end of each discrete time interval used for time



where N, is the number of non-empty cells. Also, the standard deviation of concentration

=
Hai of either type of particles is obtained as

for the large-size particles, based

on particles count in cells of size factor a = 5, are plotted against simulation time in

Figure 12. From the number of small and large particles given in Table 2, the gross

concentration of the large-size particles is

oscillating sectorial container, as the binary agglomerate becomes more and more

homogeneous with time, the concentrations of the large and small size particles should

approach the values of 0.13 and 0.87, respectively.
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The mean concentration for various frequencies is in agreement with the granular flow

patterhs of Figure 7.9 discussed earlier. Constant values of mean concentration and

standard deviation for f = 1.7 Hz indicate the state in which there is no movement of

particles from one layer to another. It may further be seen that in a container oscillating

at f = 3 Hz, the mean concentration 62 of large particles approaches to 0 -2= 0.13 and

the standard deviation 62 becomes smaller with increasing simulation time.

KhaBhar et al. (1997) studied granular mixing problems in rotating cylinders

experimentally and using continuum model and plotted the intensity of segregation

against the number of revolutions, where the intensity of segregation is the same as mean

concentration used in the present worB. It was observed that the intensity of segregation

has exponential decay in the initial stages and becomes constant at long times. Figure
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7.12 shows basically the same characteristics of the binary bed in an oscillating sectorial

container. Following KhaBhar et al. (1997), an equation of the form

is used for least squaring on the data of Figure 7.12. In the above equation, X, of units'

cycles per sec is the mixing rate constant Khakhar et al. (1997)]. The simulated results

(reproduced from Figure 7.12) and fitted curves for three oscillation frequencies are

shown in Figure 7.13. As may be seen from Figure 7.13, least squaring fitting is done for

the first cycles as well as the twenty cycles. The constant A, from the 5-cycles fitting gives

a measure of the initial rate of mixing, and the one from 20-cycles fitting of long time

rate of mixing.

It may be noted that in Figure 7.15 one of the frequencies is the critical frequency

(1.7 Hz), and very small value of mixing rate constant for this frequency is expected. In

fact for an exact value of the critical frequency, the long time mixing rate constant ought

to be zero. As the critical frequency is determined by trials, its value of 1.7 Hz cannot be

expected to be an exact value. Of the two other frequencies in Figure 7.15, the initial

mixing rate constant for 3 Hz frequency is higher that for 1 Hz frequency. This indicates

that mixing of the two types of particles is more intense for 3 Hz than that for the 1Hz

frequency; this is actually observed in graphic visualizations as well. The long time

mixing rate constants for both the frequencies are nearly the same, however. The time

taken for a well-mixed binary mixture depends on the initial rate of mixing; this is easily
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seen from Figure 7.12 in which the 62 seems to be reaching the 0.13 value more

quickly for 3 Hz frequency than other frequencies.

As may be expected, both initial and long time mixing rate constants depend on

frequency of oscillations. This dependence is shown in Figure 7.16. Small values of A, for

f = 1.5, 2 Hz are noticeable. For mixing, the frequency of oscillations needs to be away

from the critical frequency. The available range of frequency for mixing below the

critical frequency is limited, and mixing can be time consuming. Mixing at a frequency

above the critical frequency is more time efficient, and theoretically, the frequency range

is unlimited.

Two additional sets of results on the locus of the center of mass and the unit

fluctuating energy of the binary particulate bed in the oscillating container, shown in

Figures 7.13 and 7.14, respectively, are in order. As for the case of unary particulate bed,

the results in Figures 7.13 and 7.14 are in agreement with the foregoing description of the

binary granular flow inside the oscillating container. For the case of critical frequency

oscillations, the stabilized locus of the center of mass is a circular arc, Figure 7.13(b). For

f = 1 Hz, as shown in Figure 7.13(a), the stabilized locus (indicated by the overlapping

loci of the 19th and 20th cycles) is slightly above the locus of the first two cycles due to

the upward dispersion of large particles into the small particles bed; see Figure 7.9(a).
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Figure 7.13 Loci of the mass center of oscillating binary particulate bed at
frequencies below, equal, and above the critical frequency during first and last
two oscillation cycles of 20-cycle simulations.
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Figure 7.14 Variation of unit fluctuation energy of binary particulate bed
with simulation time at frequencies below, equal, and above the critical.
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cycles) is below the locus of the first two cycles due to mixing of the particles.

7.3.3 Critical Frequency of Oscillations

The results presented in the foregoing sections for both unary and binary beds are each

for only one type of setting with respect to the model parameters, number of particles, the

size of sectorial container, and initial conditions. It is therefore natural to look for the

effect of various system parameters on flow and mixing characteristics of granular beds

in oscillating sectorial containers. Here some observations on the effect of some of the

system parameters on the critical frequency are presented.



Figure 7.16 Variation of initial and long time mixing rate constants with
oscillation frequency.

First, as mentioned earlier, in a container oscillating at critical frequency, the particulate

bed after a few initial oscillations acquires a symmetric heap and then becomes stagnant.

In that situation, the particles cease to move and, consequently, there is no interaction

between the particles. It can therefore be expected that the critical frequency would be

independent of the parameters of the interaction model. This was verified by determining

the critical frequency for a range of values of two parameters of the interaction model,

viz., the coefficients of friction and restitution. Leaving aside the interaction model

parameters, the shape of symmetrically heaped bed in a container oscillating at critical

frequency depends apparently on the other system parameter, such as, the size and

number of particles and parameters. The effects of these parameters on the critical

frequency can be guessed by simple reasoning. As an example, for a given size of

container and the size of particle(s), the centroid of the particulate bed moves closer to



157

center of oscillations (i.e., the radius of curvature of sectorial container) with increase in

the depth of the bed. Recalling that critical frequency represents balance of gravitational

and centripetal actions, it is apparent that the critical frequency of oscillation should

increase with increase in the number of particles.
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Simulations were carried out to determine the critical frequencies for different

number of particles for the same size of container and of particles as in Table 7.1 for

unary and binary beds. Table 7.2 gives the critical frequencies for three sets of number of

particles for both unary and binary beds. Note that the frequency for the number of

particles used in Tables 7.1 is included in Table 7.2. The snapshots for the new sets of

number of particle used in Table are shown in Figures 7.17 and 7.18 for unary and binary

beds, respectively. Needless to say, the results in Table verify that the critical frequency

increases with the increase in the number of particles.



159

7.4 Conclusions

In this study, two-dimensional discrete element simulations were carried out to

investigate the flow characteristics of unary and binary particulate beds in oscillating

sectorial containers.
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The simulated unary granular bed c onsisted of uniform size spherical particles.

The binary granular bed also consisted of uniform, but of two different diameters,

spherical particles. For the simulation of binary particulate bed, particulate sets of two

different sizes were laid initially as separate layers. In the results presented in this

chapter, it has been attempted to investigate the granular patterns via-a-vis the oscillation

frequencies of the container. However, the other simulation parameters (container

geometry, number and size of particles, contact model parameters, etc.) were fixed for the

two types of granular beds.

The main conclusions of the present work are as follows,

1. The prominent feature of flow patterns of both unary and binary systems was

heaping of the granular beds.

2. It is found that there is a critical frequency of oscillation for which the granular

bed forms a symmetrical heap in which the granular bed becomes almost stagnant

with little movement of the particles. The symmetric shape of granular heap is

maintained throughout in a complete one cycle of oscillation.

3. Heaping b ecomes a symmetric w ith the granular b ed 1 eaning toward one o f t he

two radial walls at oscillation frequencies on either side of the critical frequency.

The granular bed heaps alternately to the two radial walls of container every half

cycle of an oscillation. Further, heaping patterns are found to be opposite to each

other at frequencies of oscillation below and above the critical frequency.

4. In a container oscillating at critical frequency, the two particulate layers remain

separate in the symmetrically heaped bed.
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5. At frequencies below the critical frequency, there is a noticeable but small amount

of transfer of particles from one layer to another in asymmetrically heaped binary

particulate bed. However, when the container is oscillated at frequencies greater

than the critical frequency, motion of particles from one layer to another becomes

intense, which eventually results into a homogeneous mixture of the two different

size particulates.



CHAPTER 8

CONCLUSION AND RECOMMENDATIONS

8.1 Closing Remarks

A numerical and experimental study of dry particle coating is carried out in this research

work. The main objective of this numerical study was to understand the nature of

particulate flow inside the dry particle-coating device, called the hybridization system.

Numerical simulations were carried out to understand the nature and type of particulate

collisions and the forces, as well as the factors affecting the effective operation of the

hybridization system.

Dry particle coating device, the hybridization system was simulated using

different theories and techniques. In order to simulate the mixing chamber of the device,

Discrete Element Method (DEM) was employed to study the system at the device level

and the host particle level. The diagnostic analysis was performed. Various kinematic

quantities such as rotational energies, pressure distribution were calculated and the effect

of different operating conditions such as loading of the particles, and rotational speeds

was studied. The results illustrated the generic behavior of the system for heavier and

lighter particles. The system of heavier particles was seen to quickly settle down and the

motion of particles was not seen after about 0.5 seconds of simulation. The system of

lighter particles was seen to be stabilized after 0.2 seconds. However, from the particle

collision analysis, the inter-particle interactions were seen to reduce gradually with the

simulation time. Inter-particle collisions were seen to be higher than the particle-

boundary collisions by at least an order of magnitude. The increase in the number of

162
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collisions was seen to be linear. About 18% increase in the number of collisions was

computed when the loading of particles was doubled. The tangential and normal forces

were calculated. Normal forces were seen to be independent of the operating factors such

as rotational speeds and the loading of particles. Tangential forces were seen to be

increasing with the loading of particles as well as with the rotational speed. The normal

forces were seen to be in the range of 10 -3 N and the tangential forces in the range of 10 -4

N.

The settling of particles inside the mixing chamber indicated that the effect of

airflow induced due to the high-speed rotational blades within the system must be

considered in the simulation study. Consequently, the mixing chamber as well as the re-

circulating pipe were analyzed using computational fluid dynamics techniques. The

velocity contours inside the mixing chamber of the hybridization system showed that the

velocities were higher near outer wall (near the blades) due to the centrifugal action.

Also, the velocities of air were seen to be in the range of 30-50 m/s at rotor speeds of

5000 rpm. The vortices were seen to be forming at the exit of the re-circulating pipe. The

velocities of airflow inside the re-circulating pipe were seen to be nearly uniform and

approximately equal to 15-20 mks at 5000 rpm. The velocities of airflow were higher as

the rotational speed was increased. Three different regionskzones of velocities were

observed. Highest velocities were seen to be at the outer wall of the mixing chamber,

lower velocities were at the center of the chamber and the velocities in the middle range

were at the midst of the chamber (between the gap of blades and the inner cylinder). The

velocities of airflow field were compared with experimentally measured velocities using

a pitot tube, and were found to be in good agreement. The velocity flow field was also
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characterized using another CFD code and quantitatively, the results were seen to be

comparable with the velocities obtained using Fluent, a commercial fluid-modeling

program. Also, the airflow was seen to be fairly uniform throughout the mixing chamber.

CFD results indicated that the hybridzer device can be scaled by keeping the blade tip

velocity constant in different sized systems. In other words, the rotation speeds required

for the larger hybridizer device are smaller than those for a smaller hybridizer device.

Coupling of DEM and fluid velocities to understand the effect of the air velocities

on the particles was carried out. The instantaneous air velocities at every node formed

between the sectors were considered. The particles at a time instant close to the node

were assigned the air velocity at that node in order to incorporate the effect of air drag.

The inter-particle collisions and the particle-boundary collisions were calculated. The

number of collisions seemed to be reduced than the earlier case of absence of air drag.

The rise in the inter-particle collisions was seen to be exponential, however, the particle-

boundary collisions were seen to be rising linearly with the simulation time. The normal

forces were seen to be in the order of 10-2 N and the tangential forces in the order of 10-3

N. The tangential and normal forces were seen to be increased as compared to the case of

no air drag. Coating quality and coating time was also estimated based upon the number

of collisions obtained in this simulation. The number distribution of the particles

indicated that the particles were mostly residing in the region surrounded by blades, thus

clearly demonstrating the effect of air drag on the particles. DEM modeling of re-

circulating pipe was also initiated. The number of collisions and the forces were

estimated for a pipe flow assuming an equivalent length of pipe to take the effect of

bends. The forces were seen to be very high of the order of 10 .1 N even for a small
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number of particles (100). Also, the collisions were of the order of 10 8 . The results of

DEM of pipe flow indicated that the particle interactions are very high which may

contribute to the coating of particles inside the whole system.

Another numerical study on the granular flow mixing was done for an oscillating

sectorial container. Unary as well as binary system of particles were simulated for several

range of frequencies and a critical frequency was found for both the systems where the

particulate bed was found to be segregated and stationary. Above and below this critical

frequency, the particulate bed was seen to be heaping on the opposite sides of the

container. For the unary system, this critical frequency was seen to be 2.6 Hz, whereas

for the binary system of particles with the particle ratio of 1:2, this frequency was seen to

be 1.7 Hz. For the lower loading of particles, the critical frequency was seen to be

decreasing and for the higher loading of particles, the critical frequency was seen to be

rising. The mixing degree was also calculated for the case of binary system of particles.

The mixing rate constant was evaluated and was seen to be equal to 0.09 for the 3Hz

case. This mixing rate constant when compared in the literature for the case of rotating

cylinders was found to be on a lower side. Effect of different operating frequencies and

loading conditions clearly demonstrated the ideal way of running the oscillating sectorial

container from the mixing of particles point of view.

The last part of the dissertation was to study the application of dry particle

coating. Three different coating devices were used to coat ground magnesium powder by

using carnuba wax and hydrophobic fumed silica. The SEM images indicated the coating

of wax on the surface of magnesium particle. The water immersion test indicated the

uncoated sample settling down inside the water, on the other hand, the coated sample was
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seen to be floating on the surface of water. The XRD tests revealed the reduction in the

hydroxide formation with the coated products. The humidity tests showed that the weight

increase in the coated samples after being exposed to the moisture and humidity filled

chamber, was about 3 % and less than the uncoated ground magnesium, which was about

6 %. It was concluded that the dry coating of wax would extend the shelf life of ground

magnesium powder.

8.2 Recommendations

The numerical and experimental studies of dry particle coating devices and its application

were carried out in this research work. The field of dry particle coating is still relatively

new and tremendous amount of applications and improvements in the field of dry particle

coating are feasible.

In the hybridization system, a strong two-way coupling can be done in order to

understand the effect of the airflow field on the particles and vice versa. The DEM and

Fluid airflow model can be solved simultaneously to get even more accurate

computationslbehavior of the hybridization system. A high-speed digital camera can be

used to capture the motion of particles inside the mixing chamber, which would assist in

the verification of the simulations carried out. Moreover, the numerical study can be

extended to include the modeling of host and guest particles together. Due to the

computational limitations and the complex nature of the problemlgeometry, this may

require development of novel approaches along with the use of parallel computing.

In the area of granular flows mixing in sectorial containers, the study can

be extended to the simulation of the rotation of the half semi-circular container or other
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particular shapes to see the effect on segregation and mixing of particles. These results

can be then compared with the mixing in rotating cylinders.
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APPENDIX B

VELOCITY CONTOURS OF MULTI-PHASE MODEL
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APPENDIX C

SPRING STIFFNESS AND DASHPOT CONSTANT

In this appendix, the calculation of spring stiffness and dashpot constant is shown.

1. Spring stiffness an and Bs :

where An  , max is some assumed maximum relative velocity of normal impact, and

gnu ,max is the maximum allowable overlap between the particles.

Also,

where e j is the coefficient of restitution between the particles.

For the tangential stiffness, Cundall and StracB [1] recommend that

2. Dashpot constant in:
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