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ABSTRACT

ACOUSTICAL CHARACTERIZATION AND PARAMETER OPTIMIZATION
OF POLYMERIC NOISE CONTROL MATERIALS

by
Emile N. Homsi

The sound transmission loss (STL) characteristics of polymer-based materials are

considered. Analytical models that predict, characterize and optimize the STL of

polymeric materials, with respect to physical parameters that affect performance, are

developed for single layer panel configuration and adapted for layered panel construction

with homogenous core. An optimum set of material parameters is selected and translated

into practical applications for validation.

Sound attenuating thermoplastic materials designed to be used as barrier systems

in the automotive and consumer industries have certain acoustical characteristics that

vary in function of the stiffness and density of the selected material. The validity and

applicability of existing theory is explored, and since STL is influenced by factors such

as the surface mass density of the panel's material, a method is modified to improve STL

performance and optimize load-bearing attributes. An experimentally derived function is

applied to the model for better correlation. In-phase and out-of-phase motion of top and

bottom layers are considered. It was found that the layered construction of the co-

injection type would exhibit fused planes at the interface and move in-phase. The model

for the single layer case is adapted to the layered case where it would behave as a single

panel.

Primary physical parameters that affect STL are identified and manipulated.

Theoretical analysis is linked to the resin's matrix attribute. High STL material with



representative characteristics is evaluated versus standard resins. It was found that high

STL could be achieved by altering materials' matrix and by integrating design solution in

the low frequency range.

A suggested numerical approach is described for STL evaluation of simple and

complex geometries. In practice, validation on actual vehicle systems proved the

adequacy of the acoustical characterization process.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Numerous methods exist for the control of noise, vibration and harshness (NVH) within a

certain environment. These can range from simple barrier and damping systems to more

sophisticated electronic noise canceling techniques not covered in this study (see Figure

1.1). In some applications, these methods are implemented in combination. Absorptive

techniques are typically utilized to prevent or reduce airborne acoustic energy from

reaching a receiving site. Similarly, vibration-damping techniques are usually applied in

close contact with the vibrating structure to prevent or reduce structure-borne energy

from propagating to the protected area. Both techniques utilize internal damping for

reducing sound energy levels. For lower frequency attenuation, absorptive materials are

usually combined with a rigid material separated by a decoupling air space, which may

increase the overall weight and thickness of the resulting sound attenuating structure.

Another approach embodies the "mass law" [15], which states that the loss of energy as it

transmits through an attenuating barrier is a function of the surface density of the barrier

material and the frequency in question.

The main goal of this thesis is to describe a new approach for predicting STL, and

to illustrate how analytical and numerical predictive techniques can be used as material

property characterization tools, and to effectively understand their relationship and effect

on sound transmission control when developing polymer-based materials with superior

sound insulation characteristic. Optimal sound reduction or insulation can be achieved

1
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with minimal weight penalty and adequate structural integrity. The focus of this study

revolves around the optimum sound transmission criteria as it relates to the macroscopic

physical parameters of polymer-based materials such as the thermoplastic Nylon 6. In

many applications, the current interest is to improve the barrier properties of

thermoplastic materials, especially those targeted for replacing the incumbent metal

counterparts. In the context of this study, the increase in sound energy emission stems

primarily from structural differences inherent of plastic materials when compared to

metals. For corresponding practical applications, the passenger-vehicle manufacturing

industry is the target field for validation studies.

In this case, the use of analytical and numerical techniques for acoustic

characterization of plastics is tailored initially around the STL properties of finite

homogenous and heterogeneous panels. These techniques can facilitate the simulation of

an infinite plate behavior in predicting trends for a finite size plate. Results may be

backward integrated into the chemical formulation stage of a material and linked to

parameters at the microscopic level. Depending on the application, this approach can

permit STL gain without the added weight, which has been a significant limitation to-

date. The real life systems of interest are numerous and can be classified into open and

closed systems. Here, open systems are related to barrier-type panels, and closed systems

to enclosures. Overall, the study concentrates on the application and expansion of

existing theories for predicting sound transmission loss, and employing the experimental

"mass law" approach, which applies to relatively thin, homogenous, single layer panels,

but modified for multi-layered panel systems. This experimental approach can be used to

validate analytical STL parameter estimation for various heterogeneous systems. Based
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on the findings from this study, it is shown that materials formulated from a set of

characterized parameters can also be evaluated via measurements on actual closed

systems, and thus optimized right from the onset of the conceptualization process.

1.2 Background

1.2.1 Prediction of STL

While the STL of single, double and multi-layered panels can be measured

experimentally, it is often time consuming and costly to go through the process, since

STL international testing standards require it be done in laboratories approved for such

purpose [9], [10]. In a nutshell, STL is a measure of the ability of a structure to serve as a

mechanism for acoustic isolation. As a guideline, good STL performance can be

achieved using analytical predictive techniques. Typically, an STL-efficient panel would

exhibit effective reflection of incident acoustical energy and sound energy dissipation

through it with little or no transmission across. When the design of a certain component

is finalized, STL can be used as one of the key parameters for material selection among

candidate materials that meet the structural and acoustical requirements of that

component. In order to select a material from a group of candidates, it is sufficient to

understand the acoustical behavior of the material with respect to traveling sound waves,

and to use analytical predictive techniques to characterize the STL capacity of the

materials in consideration.



Figure 1.1 Absorption, transmission and damping are common methods of
acoustic control often used in combination as one system package. Noise
cancellation is not covered in this study.

4
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1.2.2 Sound Reduction STL Prediction Models in Panels

In this section a general overview of the prediction models of sound transmission will be

presented. The words "panels," "barriers" and "partitions" are used interchangeably

throughout the text and each refers to the same. The STL and transmission loss (TL) are

also used interchangeably to mean the same. STL is a laboratory measure of a barrier's

ability to reduce the noise level resulting from passage through it, and does not include

diffracted sound that bends around the top or ends of a freestanding barrier. A typical

polymeric barrier is shown in Figure 1.2.

Cremer [1] presented the most referred to STL prediction model for thin infinite

panels in 1942. In his theory, Cremer included the effect of bending stiffness and the

sound incidence angle 0 on STL. This model has been incorporated in several other

models dealing with more complex structures; however, one important limitation was its

non-applicability to finite panels. According to Guy (1981) [17], the limitation of

Cremer's model was its lack of direct applicability to finite panels. Indeed, freely

propagating flexural waves do not exist in finite panels, because their dimensions and

boundary conditions define the wavenumbers of such panels. In general, the theory for

infinite panels has been regarded as being capable of approximating the finite one, but it

has been also a matter of concern what special features of finite panels influence the

sound transmission characteristics.

The STL performance of a sound partition or panel can be predicted by several

methods [11], such as mass law-Cremer model [1], mass law-Sharp-Cremer model [2],

and Sewell-sharp-Cremer model [3]. STL is usually referred to as the single most

important sound reduction measure, and is defined as ten times the log (to the base ten) of
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the ratio of the sound power incident on one side of a partition, wall or a panel

obstruction, to the sound power transmitted through the partition, wall or panel

obstruction, to a space on the other side. The STL measured in the two-reverberation

rooms is conveniently represented as a function of frequency in accordance with

international standards [4], [9], [10]. The predicted STL of a sound insulation or sound

reduction panel is calculated by the theoretical mass law equation

, where poc is the characteristic impedance of air, co

and I), are angular frequency and surface density of panel material, respectively [5]. The

theoretical mass law can be rewritten in the familiar form,

where f is the frequency of the panel. This indicates that STL for a

single panel increases with the thickness of the panel and frequency [8], [13]. However,

STL decreases drastically at a given frequency, which coincides with the frequency of

bending resonance. This is commonly referred to as the critical frequency. The concept

of coincidence theory for a single panel can also be restated, as that the occurrence where

the mechanical impedance of the panel equals the bending impedance [8]. The STL dip

at coincidence frequency is a result of the bending resonance, and the resulting vibration

radiates the acoustic wave in phase with the transmitted sound wave

The coincidence is also referred to in later text.

STL often disagrees with the prediction made by mass law and explicit prediction

of STL is not possible because of the coincidence effect [5], [11], [14]. Many published

results of STL lack close agreement in magnitude as well. This is affected by different

measurement conditions, such as volumes of sound and receiving room, opening size,

sample size, and room shape, etc. [14], and the customary assumption of incident energy
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uniformity over all angles of incidence [14], [15], used to represent a perfectly diffuse

field. It has also been usual to estimate forced vibration transmission by using the

formula for an infinite partition and placing an empirical upper limit on the angles of

incidence field in order to produce closer agreement with experiments [14], [15]. Sewel

[3] derived a formula for forced vibration transmission that did not need the arbitrary

assumption required with the infinite panel formula. His equation led to better agreement

with experimental data than the mass law at low frequencies below half of the critical

frequency, however, it was limited to specific panel mass densities exceeding 10 kg/m2 .

To bridge the gap between the mass law prediction and the coincidence dip, Sharp

suggested an empirical linear interpolation scheme that worked well only between the

mass law and one half the coincidence frequency [2], [11]. Callister et al. [11] suggested

a prediction scheme combining the three equations of Sewel, Sharp and Cremer, and

devised a scheme for single layers. They claimed its usefulness for multi-layers, but no

corresponding specific examples were given. A. D. Bruijn [23] used a modified spatial

correlation function by introducing experimentally scaled coefficients to study the

influence of diffusivity on STL through a single-leaf finite size panel. He was able to

describe the diffusivity near the panel of a reverberant chamber and obtained excellent

correlation with experiments in the mass law region, however, his model was not

extended to layered panels [14]. In this case, the transmission coefficient for an

unbounded flexible panel is derived by adopting a directional distribution of incident

energy weighting function to better approximate the actual sound field impinging on

panel fitted on a common wall to two reverberation chambers.
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For double and multi-layered panels, several studies have dealt with such a

construction including air cavities and sandwiched cores. Since the focus here is to adapt

the formulation for single panels to layered plastic panels with fused interphase at the

interface planes (co-injection processed panel types), only the relevant background is

noted. Price and Crocker [16] used the statistical energy techniques for predicting the

STL, but the technique is valid for frequency bands with fairly high modal densities,

which inherently excludes low frequencies and/or small model consideration [17].

Disagreement between the measured and the predicted STL of a double wall with air

cavity were inherent within the earlier work by London [18]. His model assumed the

diffuse field and accounted for the effects of incident angle, however, it was restricted to

double panels with empty cavities. He also introduced an empirically determined term

into the panel impedance in order to achieve better agreement with measurements.

Mulholland et al. [19] followed London's work and used a more physically meaningful

term. They used the empirical limit angle approach and accounted for cavity absorption

based on unrealistic values for the coefficients to obtain a good fit to the experiment. The

cavity edge absorption corrections made later by Cummings and Mulholland [20] proved

to be of limited use because of the high absorption value required for a good match. Guy

[17] used the mode coupling between two rooms of common double wall to describe that

the angle of incidence was related to the excitation term only, however, his model was

applicable to small panels. Tillery et al. [59] showed that a significant increase of STL

could be achieved by careful choice of a distributed coupling material within a double

leaf construction. Their work, which was based on Fahy's [12] maximum pressure

transmission ratio, was predominantly experimental and no clear link to the accuracy of a
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model was presented. Several impedance formulations were developed and some were

used to address coating materials in layer systems [21], [22], which present some

relevance to the approach adapted in this study.

Many researchers have investigated the STL of single, double and triple panels

(multi-layered) systems, and various analytical prediction formulations have been devised

over the years, some of which have been described above. However, no serious attempts

by practical users have been made to control the STL over the frequency range with

respect to "real-life" noise control material applications. The analytical predictions of

STL gained little focus as a potential tool to characterize the mechanical properties of

injection and co-injection molded polymers for best acoustic control, starting at the

formulation phase. In this work, an attempt is made to demonstrate the significance of

such an analytical tool and its usefulness in tuning polymer-based material properties.

In this chapter a general overview on the motive of this study and on the

background of STL prediction was presented for single and layered panels. While the

concepts of STL for single and layered panels is quite related, there have been numerous

and distinct models for both aspects throughout the literature [8], [11], [12], [14], [15],

[63], etc. The main concern here is the application and expansion of existing models for

predicting and measuring sound transmission. In Chapter 2, the theory behind a

suggested STL prediction model is explored based on existing theories for mass law and

coincidence effects. The formulation presented is limited to homogenous flat and thin

panels. The random diffuse field approach, which is based on the uniform distribution of

incident energy, is adopted, and a weighting function for the directional distribution of

incident energy is employed in the calculation of the transmission coefficient. The
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formulation is extended to the layered case, which represents a practical co-injection type

layered construction with homogenous core. It is demonstrated that the basis of the

model for the single case is adequate for the specific layered case, since the layers tend to

behave as a single layered panel due to their fused regions at each layer's interface.

Fahy's [12] suggested transmission coefficient for infinite, unbounded, and flexible panel

is used as the baseline in the model. In Chapter 3, an analytically driven STL

characterization approach is discussed. The focus is on presenting how the optimization

and knowledge of important physical properties that directly affect the acoustical

characteristics of a certain compound, such as stiffness and mass density, can be directly

linked to a material's microstructure and microscopic properties, thus enabling the

attainment of the end-use criteria. Selected sets of properties, which can induce high STL

performance are identified and used to fabricate a polymeric material that is later used as

the subject of validation studies. Chapter 4 gives a brief description of the computational

boundary element approach as it relates to an integrated FEM-BEM analysis for

structural acoustic characterizations. The indirect baffled BEM technique is reviewed

and adopted by introducing acoustic transparency for quick evaluations of STL through

finite size panels of different materials. Chapter 5 gives a highlight of some of the

materials and experimental procedures employed throughout the study.

All measurement methods used in this study are standardized. The STL

laboratory measurements were done using the sound reduction method as outlined in

SAE J1400 [9]. Most measurements were done in third octave bands. The frequency

range of interest for practical purposes was 100 to 5000 Hz. Field system measurements

were done primarily using pressure or sound intensity methods. In Chapter 6, panels of
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different thickness and parameter configurations are evaluated and it is confirmed that

high STL performance materials can be analytically tuned using simple shape panels.

More importantly, actual system validations on vehicle engine covers and the more

complex geometries such as vehicle air intake manifold, exhibit a promising trend for

progressive sound insulation against phenomena like noise transmission and noise

radiation.
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thermoplastic resin.

ANECHOIC RECEIVING
CHAMBER

PEAKER

Figure 1.3 Typical reverberation/anechoic room set-ups for measuring STL of
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CHAPTER 2

THEORETICAL ACOUSTICAL CHARACTERIZATION OF NYLON BASED

POLYMER IN SIMPLE FLAT SHAPE

2.1 Introduction

In general, the transmission loss increases by 6 dB for each octave increase in frequency

and for each doubling of material mass. This gain in transmission loss is at the cost of

added barrier weight. As a guideline, good STL performance can be achieved using

analytical predictive techniques. STL gain can exceed that obtained using costly systems

in various practical applications. It follows that an empirical technique to obtain

predictive measures of STL for an infinite panel is described over the frequency range of

interest. This method suggests good agreement with experiments [62]. A modified

method is proposed and validated by good correlation with measurements conducted on

finite size panels. Applied analytical models can be used to predict the physical

acoustical parameters of an infinite single or multi-layered panel. Indeed, the behavior of

noise control materials in simple shapes, such as flat panels, may be estimated using

analytical methods without the use of conventional modeling associated with numerical

techniques such as finite element and boundary element methods. Physical parameters

can be varied to obtain the best characteristics that meet the target criteria. This allows

the rapid evaluation of the acoustical performance since no modeling is required.

STL is measured using ASTM E90-90 (building partitions) [10], 1S0140-III

(building elements) [4], and SAE J1400 (automotive materials and assembly) [9], which

14
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utilize a sealed opening fitted with the test panel, described in more detail in Chapter 5.

The primary factors that control the sound transmission through single panels are:

• The surface mass density associated with forced vibration,

• The panel's bending stiffness which acts with the surface mass density to

determine the critical frequency of the panel,

• The panel's physical dimensions, which act with bending stiffness and surface

mass density to determine the lowest natural frequencies of the panel,

• The loss factor (damping factor), which controls the amplitude of resonance,

• The sound incidence angle, and

• Leaks (air paths through the barrier).

Critical frequency is denoted as the coincidence frequency of a single panel, and it

occurs when the wavelength of sound in air and the bending wave of the panel coincide.

This happens when the panel becomes fairly flexible and its STL performance is

significantly diminished. At this point, the structural damping of the panel is an

important factor affecting the extent of the sound transmission through it. Forced

vibration is mainly the characteristic STL behavior below the critical frequency [60].

The region where this occurs is denoted as the mass-controlled region where the slope of

the STL curve is 6 dB/octave.

Resonant vibration, on the other hand, is characteristic of the region at and above

the critical frequency, which is denoted as the stiffness-controlled region where the slope

of the STL curve is 9 dB/octave. In this region, STL values greater than mass law values

are achievable when the panel is heavily damped. However, resonant vibration may
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occur as well below the critical frequency, but the sound radiation efficiency is only

significant at the lowest normal modes.

For single panels or partitions, previous work has shown that results of infinite

theory possibly differ from those of the finite one [63]; however, this study shows that

good agreement between the analytical prediction of STL for infinite panels and the

experimental STL for finite panels can be achieved up to the critical frequency region,

depending on the following factors: the analytical theory considered, the angle of

incidence, and the experimental set-up. Thus, despite the fact that STL depends on the

angle of incidence, perfect coincidence will only occur at the critical frequency, which is

independent of the latter.

2.2 Formulation of The Transmission of Sound Through an Infinite Plate

The sound transmission loss through infinite panels has been studied extensively, and

analytical predictions have commonly been based on the assumption of random sound

incidence which was based in turn on a perfectly diffused sound field, with uniform

incident energy at all incidence angles.

The actual sound field around a panel is better depicted by the filed incidence

(diffuse-field) approach, which takes into account the directional distribution of incident

energy, and which suggests truncating the angle of incidence up to a limit angle Oh m . An

empirically-determined limit angle of 78° for single panels was suggested by Beranek

[15], who chose it to yield best agreement with measurements and laboratory settings.

The sound field is thus, better modeled as a diffuse field. In general, the angle dependent

transmission coefficient r(0, f) is smallest at normal sound incidence and approaches
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unity at grazing sound incidence. Cremer [1] applied the Paris equation to calculate the

diffuse field transmission coefficient using

is the maximum sound field incidence angle and commonly limited to

approximately 78°...85°, and fis the frequency in Hz..

The average sound transmission coefficient r(f) can be obtained by weighting

the directional energy density D() per unit solid angle 'II, where 0 and 0 are the azimuth

and cone angles, respectively (see Figure 2.2), in the direction of propagation as follows

[14]:

Here, and n represent the unit directional and normal vectors incident on the wall of the

panel under consideration, respectively. The directional energy density on a wall has

usually been assumed to be independent of for a perfectly diffuse field with equal

probability of plane incident waves from all directions. In this case, D is equal to

where E is the energy density [14]. Thus, the average transmission coefficient

reduces to



Following the derivation of the equations of motion presented by Fahy [12], the

expression for the sound power transmission coefficient through an unbounded, flexible

partition is given by

where Bo  is the density of air, c is the speed of sound in air, f is the frequency, m is the

mass density of the partition material/unit-area, k is the wavenumber in air, kb is

wavenumber in the partition, i7 is the structural loss factor (damping factor), and 0. is the

angle of incidence as shown in Figure 2.1.



Figure 2.1 Transmission of obliquely incident sound through an unbounded
flexible barrier [12].
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Figure 2.2 Description of angles in the formulation of the transmission
coefficient (after ref 14).
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The STL of the panel is then calculated for each angle of incidence at each

frequency of interest, up to a 07i,, = 90°. The effect of the angle of incidence as a function

of frequency is shown in Figure 2.3 above. The limit angle was chosen as such, since the

transmission coefficient is considered to be weighted by the function that describes the

directional distribution of incidence angle, and which was depicted to better represent a

reverberation test chamber, where incident energy is actually not uniform over all

incidence angles. The Gaussian weighting function is

constant that varies between 1 and 2, and incorporates the effects of parameters such as

the room shape and source position on directional distribution of energy (see Figure 2.2

for angles description) [14].

Based on this set of equations an analytical scheme was coded to evaluate the

STL for any considered thermoplastic material using a 7=1.5 in the weighting function

that is applied to the calculation of the transmission coefficient, and a

improve correlation with measured data as shown later in chapter 6. The approach of the

code was to evaluate Equation 2.2 for a given angle of incidence across frequency. The

angle of incidence was incremented and the calculation of r(f0, 0) was repeated across

frequency. In this manner the following matrix of values for r(f0)= 'Of) was created,
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which then led to the calculation of STLd from Equation 2.1.

The general interest in the automotive industry is polymer noise materials that can

displace the heavier metal counterparts, and that offer lower manufacturing cost

advantage through the integration of sub-components [64], [65], etc. This is done,

however, at the detriment of decreased acoustical performance primarily due to the wide

differences in material properties that directly affect STL. Thus, it is customary to

compare data obtained from polymer-based noise materials with data calculated using

metal.

In order to validate the model, the calculated sound transmission loss of a constant

thickness (3mm) plastic panel with constant specific gravity (1.38), was compared in

shape to the published steel STL curve depicted in Figure 2.4, and to measurements from

two different laboratories, including that was suggested in the SAE J1400 standard [9],

and that was obtained from the theoretical model (see Figure 2.6). A good match

between theory and experiment is readily observable throughout the frequency range, (the

SAE J1400 calculations do not account for the critical frequency). The difference in the

inter-laboratory testing data could be attributed to differences in laboratory structures,

and in particular, to the test panel mounting and the design of aperture in the separation

wall [39], [24]. In addition, in order to determine how the plastic panels' STL behave

relative to metal, the STL of steel panel of the same thickness as several plastic panels,

with various mechanical properties in consideration, was calculated as the baseline. The

frequency range of interest for the materials is typically between 0 Hz and 1500 Hz,
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however, the frequency range calculated was 0 Hz to 10000 Hz, so that the coincidence

or critical frequency of the steel plate, described earlier (the large dip in the STL curve),

would be shown. This provided a reference as to the frequency range, low or high, in

which the selected plastic materials were responding relative to the steel panel. The

material properties for comparison are given in Table 1.1 on page 28, and the STL

composite graph for all materials is shown in Figure 2.5. The data confirms the decrease

in the critical frequency with the increase in stiffness and mass.
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Figure 2.4 Sound transmission loss of single wall panels as a function of surface
density (after ref. 72).
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Figure 2.6 Variation of Transmission Loss measurements from inter-laboratory
data are significant in the lower frequency range < mass law frequency. The
field incidence theoretical prediction curve correlates well with lab2 data up to
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2.3 Model Adaptation For Fused Layered Plates

It is of particular interest in this study to understand the effects of layered panels on the

reduction of STL. It was previously highlighted that the mass-law theory is bounded in

the lower frequency range by the resonance region. It is felt that a layered construction

panel of a polymeric material fabricated by standard co-injection molding processes can

provide the transmission reduction and stiffness criteria that will lead to reduce resonance

effects. The analysis is limited to relatively thin (2mm to 5mm) panels that have identical

homogenous materials in their face and bottom sheets, and homogenous core layers.

Since sound waves would seek the path of least resistance, it would be suggested later to

avoid core layers that exhibit voids or pores in order to realize a measurable STL

advantage. The validity of the analysis for the layered case is confirmed by deducing the

single layer case. In so far as the mathematical manipulation is concerned, the analysis

for the elastic and viscoelastic cases will only differ with respect to the form of the Lame

constants A, and 1.1 [57], [58], which are complex and frequency dependent in the latter

case.

Motions in the core are described by the superposition of motions resulting from

dilatational or irrotational and distortional plane traveling waves through the layers [66].

Since the physical treatment of this case is applied in nature, the problem in

consideration, will be illustrated more clearly by following and restating the derivation

steps suggested by Moore in reference [38], and making modifications and substitutions

where appropriate. Motions in the face layers (which are considered to be of the same

thickness h) are characterized by bending and extensional displacements. Shear

deformations in the core layer are assumed negligible, and the core layer is assumed to be
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rigid along the perpendicular plane. The normal bending displacements of the top and

bottom layers are assumed identical (anti-symmetric mode of vibration). The neutral

plane of bending is considered to occur in the middle of the core, and the extensional

displacements to lie in the plane of the layers. An additional mode of vibration

(symmetric mode), when the displacements of the top and bottom layers are out of phase,

is assumed to exist and to promote the occurrence of coincidence effects. The expression

for STL is obtained in terms of mechanical impedances of the layered panel construction

for the symmetric and anti-symmetric modes of vibration. The formulation for the

infinite case is adopted and modified to approximate the finite case in the calculation of

the transmission coefficient, as presented in the previous section.

The geometry depicting the case of determining STL for a flexible layered panel

of infinite extent is shown in Figure 2.7. The excitation is an impinging plane wave

incident on the panel at an angle 0, with the normal to the plane of panels (the z axis) and

the angle 9. The azimuth angle 9 is defined as the angle that a vertical plane containing

the z axis makes with the vertical plane defined by the x and z axes. The incident plane

wave has a frequency w in radians, and wavenumbers Ica , kb , Ice, in the x, y, z directions,

respectively. The wave numbers ka, kb, cc and w are related to the acoustic wavespeed

c0 , as follows:
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is the wave number in the surrounding medium (air), co is the speed of sound

and Boa is the density.

The layered panel responds to the incident wave by reflection and radiation

simultaneously. The formulation follows the reflection case first, which simulates a rigid

boundary condition with no top and bottom layer motion, then the radiation case is

treated with assumed normal displacements such that

represent a constant amplitude acoustic plane wave reflected upward in the +z direction,

and incident in the —z direction respectively.

The sum of the incident plus reflected plane waves at the top layer (z = h) is equal

to
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where T is the thickness of the core, and the amplitudes Po and Pr,b are complex

constants determined from the acoustic boundary condition applied to the motions of the

top and bottom layers. For small-amplitude motions, the momentum balance at the

layers' surface boundaries, requires that the normal fluid's particle velocity u = t.tr be

related to P through [151:

where poco  is the specific acoustic impedance of air and Boa is the density of air.

The sum of the incident and reflected waves can then be superimposed on the radiated

waves and evaluated at the corresponding surfaces of the panel to fully describe the

acoustic pressure field acting on the panel at steady state.

The angle dependent transmission coefficient, r(Ø), is defined as the ratio of the

transmitted acoustic intensity, F rans , to the incident acoustic intensity, 4c, as
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In random incidence sound field (diffuse sound field), the sound intensity incident on a

unit area of the panel from any angle, will be equal to the product of the incident intensity

of the plane wave and the cosine angle of incidence. The total transmitted intensity is

computed over a hemisphere of solid angle

where di = sin OdØd8 and whose center is on the area of the panel. Using Equation 2.4,

the expression of the transmitted intensity becomes

In order to approximate experimental reverberant testing environment, the

transmission coefficient is assumed to be independent of the azimuth angle. Thus, the

common practice dictates using the upper limit on the cone angle, which can range from

78° to 85°, and the average transmitted acoustic intensity is computed as

which leads to the average transmission coefficient r computed as



As stated before, the sound transmission loss STL is defined with respect to the average

transmission coefficient as follows

The above procedure describes how to determine the STL in terms of the

amplitudes of the incident and transmitted sound plane waves. The amplitude of the

transmitted plane wave is determined by calculating the amplitude of the normal

displacement of the bottom layer at z=-T. The normal displacements' amplitudes of the

top and bottom face layers are determined from the prescribed pressure excitations on the

faces as described previously. The normal displacements of the face layers are separated

into symmetric and anti-symmetric components as follows (see Figure 2.8),

The symmetric and anti-symmetric forces per unit area acting on the top and bottom face

sheets are defined in a similar manner (see Figure 2.8). The symmetric and anti-

symmetric normal displacements and forces per unit area (F0) are in phase on the top face

layer and 180° out of phase on the bottom layer. The symmetric and anti-symmetric

impedances are thus, defined in terms of the amplitudes of the normal displacements and

the forces per unit area as follows
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and vsym and vasyin are the amplitudes of normal velocities at the face layers for the

symmetric and anti-symmetric modes.

Since the layered panel is considered to be symmetric in the z direction with

respect to the neutral plane, the above separation into symmetric and anti-symmetric is

valid for the case where the core layer is homogenous and the face layers are of the same

material. Due to the separation into the symmetric and anti-symmetric motions,

individual solutions to the problem may be obtained independently and linearly

superimposed to obtain the complete solution.

The symmetric and anti-symmetric force per unit area amplitudes may be

determined from the acoustic pressure (taking kb as zero due to the azimuth angle

independence assumption) is thus,

, thus, the symmetric and anti-

symmetric pressure amplitudes become
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The pressures expressed in terms of the symmetric and anti-symmetric normal velocities

of the face layers, are

Inserting the expressions for Pasym and Zasym into Equation 2.8, and taking into account that

at the top face layer, a positive pressure is a negative force per unit area (Fo,asym or Fo,asym),

the following results occur:

The expression for r(0) includes radiation loading and the impedance of the acoustic half

The in vacuo symmetric and anti-symmetric mode

impedances Zasym and Pasym occur in series with the radiation loading impedance

The total impedance for the panel is determined by the in-parallel addition
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of the mode impedances including radiation. The impedance of the panel is defined with

respect to the motion of the bottom face layer and incident pressure as

The minus sign in the denominator results from the out of phase motion at the bottom

layer.

From the latter expression, it can be deduced that a case may occur where there is

no radiation from the bottom layer. Indeed, for a particular set of properties, incidence

angle, and frequency, the response of the top layer to the incident wave is depicted by the

symmetric and anti-symmetric components, which are in phase and have equal

amplitudes. Thus, the transmission coefficient is zero (note that C a = rob/ co sin 0 ), and no

sound is transmitted. Since the impedances Psyn and Zasym are complex quantities, the

normal displacements of the symmetric and anti-symmetric mode components at the

bottom face sheet cancel out, and the absence of motion means that no radiation occurs.

assumes the following form

which is exactly the expression suggested by Beranek [15] for the case of normal

incidence of a plane sound wave on an infinite single layer panel. This is the case when

the faces of the panel vibrate in phase. This case is considered to approximate closely the

practical case where the co-injected layers present fused interphased separation planes,

and behave as a single plate. It has been a common practice that the sandwich



38

construction of double panels, for example, can be considered as a single panel whose

bending stiffness is modified to combine the modulus and thickness of the facing panel

and the interspace distance, in the evaluation of coincidence effects for some cases [8],

[26], and by introducing an equivalent mass term in other cases [30]. If in addition,

which is a condition of high transmission. The

condition where Pasym = 0 above, means that in the absence of internal damping, a

resonance condition exists for which normal displacements of frequency a) and

wavenumber ka propagate in the whole panel, unattenuated, and with phase velocity,

co /lea. The model for the layered panel involves the input of two sets of material

properties. The schematic diagram (see Figure 2.9) defines the multi-layer configuration,

as produced using the co-injection molding process.

Based on the discussion above, the single layer analytical case is adjusted and

adopted for the layered case, as it is well suited for the targeted practical applications

where the frequency range of interest rarely exceeds coincidence. Therefore, when the

thickness of the layers is defined, the skin thickness will be counted for twice since it

occurs on both the top and bottom of the panel. The core layer is defined as a separate

material or a version of the skin material. Inputting a percentage value of skin's density

and thickness for the core material, then performing the calculation, realizes the latter.
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Figure 2.8 Schematic of symmetric and anti-symmetric motion of top and
bottom layers (after ref. 38).



Figure 2.9 Schematic of layered panel cross section depicting a co-injected
configuration with minute delamination at the interface planes.
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2.4 Analytically Driven STL Determination

As mentioned previously, STL is a measure of the ability of a structure to serve as a

mechanism for acoustic isolation. Since the focus here is materials for noise control in

the vehicle environment, the calculation suggested in the SAE J1400 [9] standard (which

is commonly adopted as the baseline in the automotive industry) was chosen as the

matching baseline for analytical studies. It is worthy to mention, that this standard was

derived from the original ASTM E90-90 [10] standard, and carries close similarities to

the other mentioned industry standards, thus, evident that it can be applied to polymer-

based material tuning in other industry applications.

A general modeling approach that compares the various wave incidence formulae

(random, normal, and filed incidence) against the mass-law formula of the STL standard

SAE J1400 is verified (see Figure 2.10), and confirms better matching to the field

incidence theory, which was the basis for the model formulation section. In addition, the

correlation function incorporated in the calculations of the transmission coefficient

increases the model's potential usability to tune the structural characteristics that

influence the STL performance of a polymer-based material.

Increasing the density of the material while maintaining the thickness constant, or

vice versa, increases the surface mass and tends to shift the critical frequency down. This

will reduce the effective range of application of the material. Previous studies have

demonstrated that doubling the surface density of a panel will improve its STL

performance by 6 dB [59], and that by doubling the surface density once more, the

performance is improved by 12 dB. The negative effects to this improvement are the

increase in weight and the undesirable decrease in critical frequency. In order to
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establish a baseline for analytically tuning a polymer-based noise material in automotive

applications, where aluminum is the usual incumbent baseline material, theoretical STL

curves are compared to curves obtained with aluminum. The doubling of the wall

thickness effect is shown in Figure 2.11 for the Aluminum panel alone. The curves

clearly show the increase in performance due to the thickness effects.

In order to understand the specific gravity and density effects on STL

performance, two variations in plastic panel properties (based on material filler content)

are shown in Figure 2.12 (P1 with 15% glass fiber filler and 25% mineral filler, and P2

with 33% glass fiber filler, respectively) and compared to those of the Aluminum panel,

while maintaining a constant panel thickness throughout (see Table 2.2, below for

material properties).

It is clear from the plots that absent a significant change in the specific gravity, and thus

the mass density at constant panel thickness, the stiffness effects dominate as depicted by

the performance represented by the aluminum curve. The issue was to determine in

theory the effects of a significantly higher specific gravity (of such materials) on their

sound transmission capacity, which is a positive advantage as shown in Figure 2.13.
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For the multilayer case, the same materials listed in Table 2.2 were evaluated.

Variations in the skin and core materials were considered using the standard material in

the skin and the noise reduction material properties in the core in one case, and the

standard material in both skin and core, in the other case. Initially, each layer thickness

was considered to be equal to 6mm, however the skin layer's thickness was later doubled.

Analytical results from the second case showed an incremental improvement with

the noise reduction material in the core. The positive effects of the mulltilayer

construction on STL were also observed (see Figures 2.14a and 2.14b). However, upon

selecting a core density equal to a small percentage of the skin's density (equivalent to

co-injected foamed core construction with large voids), there was no noticeable

advantage. In fact the corresponding STL curves were completely overlapped. This

effect correlated well with experimental measurements highlighted later in Chapter 6.

Variations in STL performance with respect to changes in materials and thickness

attributes were in concert with the previous findings from the single layer case. Thus, to

avoid redundancy, it was sufficient to extrapolate the STL improvements from the single

layer case results. It was also concluded, that the layered case offered advantages in STL

as long as voids or pores from processing could be avoided or minimized within the

cores. This fact was later validated by experimental measurements (see Chapter 6).
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Figure 2.10 STL curves using various wave incidence concepts as compared to
the SAE J1400 standard curve.
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Figure 2.12 Diffuse STL (calculated) of standard 33% GF Nylon 6 and 15/25%
GF/Mineral filled Nylon 6 vs. Metal. 6mm thick panels.
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2.5 Summary

An analytical model to predict the sound transmission loss of a polymer-based panel has

been explored and applied to the single layer configuration. The formulation was

presented for the classical infinite dimension case and was modified to approximate the

finite size geometry in a diffuse sound field medium. A correlation weighting function

was applied in the calculation of the transmission coefficient for better approximation

with measured data.

The sound transmission coefficient model for the layered case was formulated in

terms of the impedance expressions for the specific configuration representing co-

injected panels with fused inter-phase at the layers' interface planes. The impinging

sound wave was assumed to cause bending and extension deformations in the top and

bottom layers. For practical purposes, however, the core layer was assumed to be

homogeneous with no shear deformation. The case for the co-injected panel was deduced

to be a special case where the layers exhibit in-phase motion and behave as one plate.

Parameter manipulations and attribute evaluations for high STL, obtained from the single

layer case, were repeatable in trends for the special layered case. A percent adjustment in

the core density with respect to the skin densities, along with mass and stiffness

modifications, established the original model's usability for both configurations.

Analytically driven physical property determination for high STL revealed that

critical macroscopic parameters could be linked to the resin matrix. By manipulating the

primary factors affecting STL in the low and mid frequency range, and the secondary

factors that can impact the high frequency range, an optimum set of properties could be

backward integrated into the resin's formulation stage.



CHAPTER 3

MATERIAL TUNING FOR NVH CONTROL

3.1 Abstract

The control of noise and vibration in a wide range of applications inevitably requires the

use of passive acoustical materials. As mentioned previously, there are three

predominant methods to control noise, vibration and harshness (NCH). These include the

panel/barrier, absorption, isolation and damping approach. Passive noise control

materials are used in the latter applications/systems. For instance, barrier material

systems are used in enclosures and walls; absorption materials are used as acoustical

foams, fibrous blankets and acoustical tiles, and vibration isolators are used in equipment

mounts and plastic or (rubber-based) bushings and grommets applications, and damping

materials used as in plastic sheets and adhesive films.

In barrier and absorption systems the main mechanism of sound transmission is

defined as airborne noise (noise propagating in the air). Isolation and damping deal with

the aspects of structural vibrations, which can appear as airborne noise if either isolation

or damping is lacking. In general, effective noise control can be achieved using a single

or a combination of both barriers and absorbers for airborne noise, and both isolation and

damping for structure-borne noise. It is worthy to note that a sound wave is an aspect of

mechanical energy that follows the path of least resistance as it propagates away from the

noise source. Thus, noise control is a process that interrupts the transmission path and

transforms or eliminates that type of energy wherever possible.
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3.2 Property Characterization For High STL Material

A sound panel usually acts as an acoustical reflector, interrupting the path of a sound

wave, and may be a rigid structure, such as a concrete wall, or a limp sheet material such

as a flexible noise curtain (see Figure 3.1). Noise reduction by a barrier is a function of

primary and secondary physical parameters as stated before. The product of the specific

gravity and thickness of a panel is the most important parameter; within a frequency

range described as the "mass-law," and is typically referred to as the surface mass

density. Thus, the weight per unit area is a good indicator of the sound attenuation

capacity of a barrier. The modulus of elasticity, loss factor, and angle of incidence

constitute the secondary parameters that affect the sound attenuation characteristics of a

certain panel over the whole frequency range. Commonly, a lead sheet is considered the

best choice for panel/barrier applications and is used as a calibrating tool when doing

comparative STL measurement studies among different materials. Polymeric materials

can be used as flexible panel/barriers to reduce noise in automotive engine and vehicle

cabin compartments, and a wide range of other applications that encompass the

appliance, off-road equipment, office space, marine and construction markets. They can

also be fabricated into shielding enclosures for noisy machinery. One criteria for

optimizing the performance of a barrier material lies in reducing the number and size of

holes, gaps and other penetrations in the assembly to an absolute minimum, taking into

account service accessibility and ventilation. In this case, the focus is on polymeric type

panel/barriers, and more specifically, those that are made with Nylon 6 based materials.

One way to improve the STL performance of a polymer-based material without

necessarily increasing the "mass," is to have a layered barrier construction achievable by
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co-injection molding techniques. One distinct feature of such a construction is that the

layers will exhibit fused interphase planes with small delamination characteristics. Due

to their relatively small thickness (in real applications, the total thickness of such panels

is usually less than 5mm), the construction can be considered to behave as a single panel

with a modified bending stiffness [8]. Thus, a resin material can be tuned to offer the

capacity of applying a flexible noise treatment in a single construction design.

The various factors to be taken into account in tuning the acoustical

characteristics of a polymer-based material, are linked not only to the reduction in

material's mass, but also to its structural stiffness and surface mass density. The density

parameter directly affects the STL of the material (see Figures 3.2 and 3.3). Depending

on the application, stiffness plays an important role in the materials' capacity to control

sound. This is especially true in the low frequency range, where rigidity against

structural-borne low frequency vibrations is paramount. Increasing the critical frequency

can also expand the frequency range of usability. This can be accomplished by varying

the material's stiffness attributes starting with damping, then modulus and specific

gravity respectively. The higher the damping, the less potential for the coincidence dip

(see Figure 3.4). It is, thus possible to raise the critical frequency by increasing the

stiffness and damping, however, below the critical frequency, the density affects the STL

in a positive way. Thus, adjusting material properties for better balance between

damping and density, improves the STL performance (see Figure 3.5), and the overall

stiffness can be controlled by design.

The previously described theoretical model was formulated in terms of

"macroscopically" measurable physical properties of the panel and material. The
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advantage of such an approach is that it enables the investigation of the influence of the

directly measurable physical properties, so that an optimum variation in a particular set of

physical parameters can be identified. These can result in a polymer-based material

having a targeted optimal performance. It should also be noted that there is a direct link

between the microscopic structure of a material and its macroscopic properties. User-

friendly analytical models should provide the preliminary step in linking the microscopic

properties of a material to its macroscopic properties [25]. The analysis example

described in the latter, provides a clear direction on what to target with respect to

damping and stiffness. Accordingly, various material compositions can be conceived to

provide a bracket of properties for narrower evaluations.

3.3 Summary and Conclusion

It is concluded that in practice, an optimum noise control material can comprise at least

one of Nylon 6, Nylon 6/6 and Nylon 6/66 (also referred to as Polyarnides). The high

specific gravity filler can comprise a mineral and/or metal filler, and more preferably at

least one of barium sulfate and tungsten. The reinforcement fiber, if present, can

comprise at least one of glass fibers, carbon fibers and steel fibers. Preferably, the

polyamide is present in an amount of about 20 to about 45% weight, and the high specific

gravity filler ranges from about 40 to about 70% weight. The reinforcement fiber may be

present in amounts up to about 30% weight. One polyamide resin is found especially

well suited for resin containing glass fibers and mineral filler. The mineral filler has a

specific gravity in the range of 4-20, such as barium sulfate or tungsten. In the resin,
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barium sulfate is present in an amount substantially equal to about 53% by weight, and

the amount of the glass fiber reinforcement is substantially equal to about 15% by weight.

Optionally, in the lower frequency regions, noise can be reduced by shifting the

local natural frequencies away from the input driving frequency domain, and adding

lumped mass. The location and number of the distributed masses or blisters can be

optimized based on the locus and amplitude of noise appointed for filtering out (see

Figure 3.6). Such an arrangement of blisters increases the mass effect, and their locations

are selected to increase noise transmission losses. Where feasible, and depending on the

type of application considered, double layer panel construction, comprising an inner and

outer layer of high STL polyamide resin, separated by air core cavity, may be employed.

Preferably the air gap has a thickness ranging from 1 to about 25mm, and the polyamide

resin layers contain glass fiber reinforcement and mineral filler. The mineral filler is

barium sulfate, and is present from 40% to about 70% by weight of the polyamide resin

composition (see Figure 3.7). The amount of the glass fiber reinforcement present ranges

from about 0% to about 30% by weight of the composition. An alternate approach to

noise reduction is to adopt layered constructions utilizing a high STL skin material, and a

percentage of the skin thickness in the core.



-\

TransmissionReflection

Noise Barrier\

Figure 3.1 Typical barrier panel sound insulating characteristics.

56

1.0

0.0

-1.0
a)
a)
a
co
o-2.00

-3.0

-4.0

-5.0
0
	

0.5 	 1 	 1.5
	

2
	

2.5

Specific Gravity

Figure 3.2 STL varies in function of specific gravity. In the mass-law region,
increasing the specific gravity at constant wall thickness results in a positive
STL change.



57



58



59



Figure 3.6 Conceptual cross-sectional design configurations with high STL
material.
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CHAPTER 4

NUMERICAL ACOUSTIC CHARACTERIZATION

4.1 Preface on methodology

One way to integrate acoustic analysis earlier in the design cycle, when it's less costly to

make design changes, is with boundary element analysis techniques using the boundary

element method. The boundary element method (BEM) numerically predicts acoustic

characteristics for both internal and external problems in three dimensions. Although it

doesn't replace finite element analysis (FEA), the BEM is superior to it for acoustic

design optimization because the analyst needs to model only the boundary of the acoustic

domain to solve exterior radiation or interior response problems.

Acoustic boundary element software calculates the sound radiated from the

vibrating structure or generated within an enclosure. Boundary element methods can

compute pressure, intensity, acoustic velocity, radiated power, sound transmission,

insertion losses, and acoustic sensitivities. In addition, they calculate element or element-

group contributions and acoustic mode participation factors to determine their relative

effect on the acoustic response of areas of interest on a model.

The first step in an acoustic analysis, typically, is to obtain velocities from a

structural dynamic FEA (usually modal analysis). The accuracy of the results is critical

to the accuracy of the BEM's noise predictions. When the structural dynamic FEA is

complete, an acoustic boundary element model is created. This model coincides with the

structural FEA model, where the velocity results act as boundary conditions and affect

the acoustic response. (The mesh densities of the structural and acoustic models do not
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have to be equal at their interface; interpolation schemes can be used to map the velocity

boundary conditions from the structural finite element model to the acoustic boundary

element model.)

The next step is to define the acoustic properties of the acoustic medium and

specify the boundary conditions, which are applied as surface velocities, pressures,

acoustic impedances, and simultaneous velocities and acoustic impedances. One can also

specify monopole and plane-wave sources. Analyses can be performed in free-space

(anechoic) or half-space (hemi-anechoic) environments.

Finally, one can use either direct or indirect boundary element methods. Both

methods are commonly used to perform acoustic analysis in the frequency domain, but

they can also be used to perform transient analysis. They are also appropriate for

analyzing couples or uncoupled structural and acoustic problems. Acoustic sensitivities

can be predicted and linked with structural sensitivity results using either method.

Results can be obtained away from the acoustic boundary at data recovery points,

which can be thought of as microphone locations, and on a data recovery mesh (also

commonly known as field point mesh (FPM)), a surface created solely to present a

contour plot of the results. Results may also be obtained on the acoustic boundary

elements, but the computation is more straightforward when the direct method is used.

Both the direct and indirect methods give consistent results on a FPM and are sometimes

used interchangeably. Each, however, has advantages and limitations.

Models are relatively easy to generate with both methods because only the

boundary of the acoustic domain must be defined. The indirect method allows

transmission-loss-type problems to be solved with coupled analysis. The acoustic
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medium is solved simultaneously on both sides of the model with the indirect method.

The direct method should not be used on designs with free edges or for open structures.

Those with ribs and openings can be modeled with a single layer of elements using the

indirect method. Only the indirect method can solve a plate problem with free edges.

With it, constraints can be applied to account for boundary conditions on free edges and

multiple element intersections.

Because the indirect method creates symmetric, fully populated matrices (as

opposed to the direct method, which generates asymmetric ones), models of equivalent

size require less memory with the indirect method. However, the direct method allows

the use of multi-zone analysis, which reduces memory requirements and run times. (In

multi-zone analyses, different acoustic properties can be assigned to each zone.) The

indirect method's formulation limits it to a single zone, and therefore, one acoustic

property. Interior openings can be modeled with the direct method using multi-zone

analysis.

The indirect method is more suited to problems with complex geometries and

structural/acoustic coupling. Because it considers the acoustic media on both sides of a

model, the differences in the acoustic pressure and in the normal gradient of the pressure

between the two sides of the model are used as primary variables.

The indirect methods solve problems of noise transmission through flexible

structures and, as mentioned earlier, accommodate openings and thin ribs. It assembles a

symmetric system of equations, which reduces memory requirements and consequently

allows larger problems to be solved than would be possible with a single-zone model

using the direct method.
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For example, one using the indirect method can predict the noise generated in a

car interior by airborne engine noise coupled through a dash panel. Noise generated by

the engine can excite the dash panel, which in turn excites the air in the completely

enclosed passenger compartment. The modal basis of the dash panel is first calculated by

an FEA code and then processed by a BEM code.

In uncoupled analysis, the acoustic medium does not affect a structure's vibration.

Thus, the structural frequency response analysis is performed first, and the computed

vibration is used to define the velocity boundary conditions for the acoustic analysis. An

uncoupled analysis is usually a two-step process: the structural vibration is computed

using a general-purpose FEA code, and the corresponding radiated noise is calculated

using a BEM program.

In a coupled analysis, both the structural vibration and the acoustic response are

computed within the same BEM. The structural normal modes are computed by the FEA

code, and the modal basis is used to model the coupled part of the structure in the coupled

BEM. The combined structural/acoustic response is calculated by the boundary element

method.

In a coupled analysis the excitation can come from acoustic noise sources,

acoustic boundary conditions, and mechanical loads exerted on the structure. As in the

case with an uncoupled analysis, the structural and the acoustic models can have unequal

mesh densities. However, in the coupled analysis, this is addressed when the coupling

matrices are assembled. When the indirect method is used for coupled acoustic analysis,

both sides of the structural acoustic boundary can be coupled to the structure, allowing

calculation of the pressure loss across a structural boundary.
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4.2 Theory Description of Model for Exterior Problems

As mentioned previously, the indirect formulation allows simultaneous handling of

interior and exterior fluids, meaning that the fluid on both sides of a closed or open

surface is taken into account. The acoustic pressure and the acoustic velocity are the

primary variables defined in the direct method, however, the difference in the pressure

and the difference in the normal gradient of the pressure are the primary variables utilized

in the indirect method [44], [45], [46]. The formulation is developed by accounting for

the acoustic medium on both sides of the model; therefore, the primary variables contain

information from the interior and exterior acoustic space [42]. This is possible using

single and double layer potential densities a and µ, which are related to jumps of pressure

and normal derivative of pressure through the boundary surface S [47]. The indirect

formulation can be combined with a variational approach in deriving the primary system

of equations. Then by taking into account the boundary conditions a numerical solution

can be produced [42], [43]. The attractive feature of such an approach is that the

boundary element system of equations is symmetric, and thus requires reduced computer

time.

What follows allows a brief identification of the mathematical background behind

the computational model. The intention here is to give a general overview and to

describe the modeling technique as applied to actual geometries for acoustical material

characterization. In developing the acoustic equations, reference is made to Figure 4.1

which describes a plate with small deflections, and to Figure 4.2 which depicts an open

surface.
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Starting with the linear wave equation, and taking the divergence of the Euler's

eauation

This equation describes the propagation of waves, and in this particular case, of acoustic

waves traveling with the propagation speed (speed of sound) c . Next, assuming a

separable and time harmonic solution to the linear wave equation

the second time derivative of the pressure can be written as

Substituting this in the linear wave equation and introducing the wave number, or spatial

gives the Helmholtz equation
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Solving the homogeneous Helmholtz equation in terms of the fluid pressure and the

inhomogeneous Helmholtz equation in terms of the Green's function for the Laplacian of

the pressure and Green's function respectively, where S is the three-dimensional Dirac

function, gives

Here, and in the following formulae, the dependency of p and g on r is dropped for

simplicity.

Constructing a function

and applying Gaul's integral theorem

However, in order to apply the Gaul's integral theorem, take the divergence of the

function F

and substitute the solutions of the above Helmholtz functions into this equation. The

volume integral in Gaul's theorem is (applying the definition of the delta function

plate surface. This is physically reasonable because of the assumption of a source and a



69

mirror source, which form one source for a point on the boundary surface, and thus lead

to the double pressure.

The function under the surface integral of Gaul's theorem is given by

which is the Helmholtz integral equation. Since this is an integral over the active surface

area, this is much easier to evaluate than the inhomogeneous Helmholtz equation, which

is an integral over the volume of the fluid. For a closed surface, the general form of

Equation 4.1 becomes



The normal derivative of Equation 4.2 for x located on the surface S must be used for

expressing the velocity boundary conditions on S [40], because

if only velocity boundary conditions are considered on S, a vanishes on S, so that the

only unknowns are the nodal pressure jumps ,u . Thus, Equation 4.2 can be written in a

discretized form

where J is a vector of the unknown nodal pressure jumps, D is a frequency dependent

matrix, which is complex but symmetric, while C is a geometrical coupling matrix, and p

the density of the fluid [40]. If after the solution of Equation 4.2 the vector J is known, it

can be used to determine the sound pressure level at any point x in the vicinity of the
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vibrating system. An exhaustive treatment of the theory has been the topic of several

researchers over the years, and for more reading on the subject, the author refers to some

key publications by Volahopoulos and Coyette

intention of the author to leverage the knowledge and expand application of the theory in

a novel approach for the analysis and characterization of acoustical materials, refer to

Reference [71] for more on the case of enclosures (closed systems).

4.3 Suggested Numerical Approach for STL

An integrated finite element and boundary element method approach offers good

potential for evaluating the acoustical characteristics of a material from simple shape

problems such as flat panel, to more complex geometries such as air intake manifold. A

novel approach to characterize acoustic materials in air intake manifolds is presented in

the Appendix A section of this study. Homsi et al. (2003) [71] described a new practical

method to perform a hybrid simulation thereby avoiding noise contamination in the

solution. The utility of this approach can be expanded to other systems with multiple

airflow orifices where the airborne sound element is the controlling factor. Better

characterization accuracy can be achieved with such approach [67].

For the simple shape case, there have been a handful of modeling examples [53],

[54], [61] based on Biot's theory [51], [52], which was formulated specifically for elastic

porous materials. The work is aimed to suggest a quick and reliable numerical procedure

for the transmission loss prediction of a simple structural component such as panels.

The FEM code in Sysnoise is used to extract the uncoupled structural modes of

the structure, and then a coupled FEM-BEM calculation is performed. In particular, the
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panel structural behavior is assessed by the FEM modal analysis, and the calculated

normal velocities are imposed as boundary conditions for a BEM analysis of the

transmitted noise field. Numerical modeling of sound transmission is based on a baffled

boundary element (BEM) formulation in Sysnoise, which can handle structural

geometries lying outside the plane of the baffle, as well as co-planar with it [56] (see

Figure 4.3). The structural geometry can include double-walled structures, ribs, and

junctions between panels. The acoustic boundary element model is based on the indirect

approach with a variational solution scheme. The modal behavior of the finite structure

with defined edge support conditions is taken into account. The acoustic elements can be

given a known plane wave excitation source. The source reference location is usually

above the baffle, and may have an amplitude of 1Pa (for trend comparisons), independent

of the frequency. The plane waves can be oriented to impinge on the baffle at a skew

angle. By definition, there is no incident field below the baffle if the reference location is

above it. By solving for the forced response case, the transmission loss of the panel can

easily be evaluated. Sound Transmission Loss (or Sound Reduction Index, SRI) has been

defined as the logarithm to the base ten of the ratio of incident sound power to

transmitted sound power.

The transmitted power is computed directly as power through the field point mesh

(see Figure 4.5). The incident power is found from the pressure due to the incident plane

wave, assuming free-field propagation and projecting the area of the panel normal to the

plane wave direction. It is worthy to note that a diffuse incident field can be modeled as

a combination of uncorrelated plane waves: a pre-processing step sets up multiple

independent load-cases, with power spectral density spectra (PSDs), and cross-spectra,
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which add up to equal the spectrum of the diffuse field at all points in the half-space on

the "source" side of the baffle. Alternatively, if a pressure distribution is known across

the "loaded" side of the baffled structure, but the pressures are (partially) random, this

can be set up as a random surface pressure loading, with spatial correlation functions

[56]. The procedure can be repeated for various material property comparisons. The

case for the selected glass/mineral filled material versus the standard 33% glass filled

material, confirm the advantage of the noise material (see Figure 4.4 where impinging

wave was evaluated at one angle of incidence). This rather simple procedure is a quick

and effective way to evaluate the effect of material property variations on STL.

4.4 Conclusion

In conclusion, the STL of a structural-acoustic 3-D finite panel can be modeled with the

indirect baffled BEM formulation, which includes coupling to a conventional structural

FEM model. The indirect baffled BEM approach or acoustic transparency approach offer

all possible combinations of acoustic surface characteristics and boundary conditions.

Those elements and boundary conditions can exist in or out of the plane of baffle. This

will enable quick validations of elements with finite and simple geometries, and can be

extended to the more complex shapes.



Figure 4.1 Normal deflections on plate are in global z. Coordinates with zero
index are in the plane of the plate.
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Figure 4.2 Schematic representation of surface and coordinates of jump of
pressure for the indirect BEM [49].



Figure 4.3 Schematic of possible model elements for STL evaluations [56].
Boundary conditions: known velocity, known impedance, known pressure
(single/double sided) and transfer impedance.
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Figure 4.4 Acoustic transparency computational calculation of STL.
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Figure 4.5 Field recovery mesh depicting transmitted power of panels from NCH
material vs. standard 33%GF material.



CHAPTER 5

MATERIALS, METHODS AND PROCEDURES

5.1 Introduction and Description

A polymer-based compound or material can be tuned to offer improved STL

performance. It is believed that targeted applications for such a material can include

engine covers, enclosures, and barriers. Optimal material configuration and overall

material characteristics can be achieved and validated using specific measurement

techniques and test set-ups. What follows is a brief restatement based on reference [24]

describing test procedures that can be used to assess and compare the acoustic

performance of such a compound. Results from these test procedures will be used to

quantify improvements and optimize the overall configuration.

The acoustical performance of a panellbarrier can be characterized by measuring

its power transmission coefficient (or its decibel equivalent, the transmission loss). The

power transmission coefficient is defined as r = Wt / Wi where Wt is the sound power

transmitted by a barrier, and Wig is the incident power. The sound transmission loss is

then STL =10 log-
1

. The STL is normally measured by inserting the barrier in an

aperture between two reverberation rooms or between a reverberation room and an

anechoic space. In the latter case the transmitted sound power can be measured directly

by scanning an intensity probe over the transmission side of the barrier [25].
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5.2 Transmission Loss Measurements of Plastic Panels

The first procedure performed is the assessment of noise reduction. The sound reduction

index SRI, also commonly referred to as the sound transmission loss, is the most usual

product-related acoustical quantity determined in laboratory or field conditions after

noise emission measurements of machinery. The test procedure is conducted in a

specialized two chambers set-up. The configuration of this set-up is illustrated in Figure

5.1 and Figure 5.2. The driver or source will be positioned in the source chamber. The

source microphone is positioned such that it is measuring the free field response. The

receiver microphone is positioned in the receiver chamber as illustrated. Position 1 is

used to measure noise reduction, which is simply a measure of the source sound level

minus the receiver sound level.

The test set-up and measurements follow the SAE J1400 test procedure standard

[9]. The large 200 m3 reverberant chamber is coupled to the reception anechoic chamber

by means of a window, upon which the test sample is installed, usually with a metal

frame. The clamping configuration is such that the frame is clamped at eight locations

some small distance from the edge, and at two positions on each side (for a rectangular or

square panel). The panels' typical dimensions were (508mmx508mm) based on a 0.72m

diagonal opening between the two rooms. A broadband noise signal is generated in the

source room. By measuring the sound pressure levels in the reverberant chamber and in

the reception chamber, the STL of the panel can be determined in 1/3 octave band

frequencies that range from 31.5 Hz to 16K Hz.
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In practice, high STL insulators are frequently installed on the surfaces of the cab

of the vehicle to reduce the outside vehicle noise sources, such as exhaust, engine, wind

and tirelroad noises, from entering the passenger compartment.

The principle of STL measurement method has remained the same over the years.

The first theoretical formulation to determine STL of a partition between two rooms was

presented in the 1920's by Davis and Buckingham [32] and [33]. The first ASTM

standard was based on London's proposal in 1951 [34] and [35]. The present test

where z is the transmission coefficient, and Wi and Wt are the incident and transmitted

sound powers, respectively. The source room is supposed to emulate a diffuse sound

field. Thus, the incident sound power can be determined by the average sound pressure

pi in Pa as follows

where S is the area of the test specimen in m2 , po is the density of air in kglm 3 and co is

the speed of sound in air in m/s. The transmitted sound power is determined,

accordingly, in the steady-state situation, when the sound power radiated by the specimen

equals the absorbed sound power in the receiving room as follows
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where p2 is the average sound pressure in the receiving room, and A is the room

absorption area of the receiving room in m 2. A is approximated by the Sabine equation

where V and T are the volume and reverberation time of the receiving room, respectively.

Thus, the SRI is determined by

where SPL2 and SPL2 are the average sound pressure levels in the source and receiving

room, respectively, that is, the SRI is determined indirectly from the average sound levels

of the adjacent test rooms. The sound reduction index is usually determined in third-

octave frequency bands. Equation 5.2 is based on the assumption that presupposes that

all sound energy is transmitted via the test specimen. In practice, a certain part of the

total sound energy measured in the receiving room is always radiated by other room

surfaces, which is due to flanking transmission discussed in the next chapter.

5.3 Radiation Efficiency Measurements Quantified by Sound Pressure Level

The radiation efficiency of a panel depends on the longest physical dimension of the

sample. Usually, the radiation efficiency drops off significantly when the ratio of panel

length to wavelength is equal to one. In reference to Figure 5.2, the acoustic radiation

component can be evaluated by moving the source to position 2. The distance between

the source and sample will simulate the distance between a typical engine and engine

cover. Two source signals can be emitted; first a broadband random or swept sine signal

can be utilized, a second signal can be a time capture of actual engine compartment
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vehicle signatures. These signals would need to be recorded during normal operating

conditions and the resulting sound pressure levels would be measured in the receiver

chamber. Results from each sample could be overlaid and compared. The relative

amount of radiated acoustic energy could be directly attained from these results.

In laboratory settings, radiated sound power by vehicle components can be

directly calculated from sound intensity (SI) measurements. The SI measurements are

acquired on specific measurement grids providing a locating means for the intensity

probes (see Figure 5.3 and Figure 5.4) for illustration. The amplitude part of sound

pressure is a scalar quantity, which lacks information about the direction and the

magnitude of energy flow. On the other hand, sound intensity in Wlm 2 is a vector

quantity, which describes the sound power per unit area. It is defined as the product of

sound pressure p in Pa and the vector quantity particle velocity 17 in mls. The two-

microphone technique (p-p) is the most usual method to determine the one dimensional

time-averaged particle velocity in the x direction, M x  , and is determined by the time-

averaged pressure gradient between two microphones using Euler's equation [24]

where Or in m, is the distance between the microphones A and B, t in s, is time, and AA

and AB are the pressures sensed by the microphones A and B, respectively. The phase

information contained in the pressure signals is fully utilized in the two-microphone

intensity technique. To calculate the intensity, the pressure is determined by the average

of the two microphone signals by (AA+AB)/2. The distance between the microphones is

usually set at Or = 6 to 50 mm, depending on the frequency range of interest [37].
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The main assumption of the two-microphone method is that the inherent phase

difference between the microphones is negligible. However, in practice, there is always

some inherent phase mismatch between the microphones and the channels of the

analyzer, so that a small residual intensity, LR, is produced. The pressure-residual

intensity index, crpR , is determined as the difference between the pressure level and

intensity level when both microphones are exposed to the same sound pressure (phase

and amplitude). Thus, the SI measurement procedure requires an intricate calibration

process. The microphones are first calibrated using a sound pressure level calibrator.

From this calibration, absolute amplitude adjustments are made. Secondly, the

microphone pair is situated in a sound intensity calibrator. This apparatus is used to

create a function, which compensates for any phase adjustments. Each sound intensity

measurement is then corrected utilizing phase and amplitude corrections.

The main application of the intensity method was the direct determination of

sound power, because the determination of the sound power presupposes the movement

of the probe normally to a hypothetic surface that encloses the sound source (surface

integral) [24], [7]. The vector nature of intensity is lost because the orientation of the

probe is not fixed. It is usual that a small gap exists between the test specimen and the

planar intensity measurement surface, and a proportion of the transmitted power may be

transported via this gap leading to underestimation of radiated sound intensity. The

underestimation can be significant, especially in the neighborhood of the critical

frequency, where the radiation of sound at large angles greater than 75° is stronger than

that radiation perpendicular to the specimen. The best situation is to minimize the gaps
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between the measurement surface and the test specimen by placing the measurement

surface right in front or on top of the test opening.

It is worthy to note that laser Doppler techniques can be used to aid in extracting

the vibratory signature of the test sample subjected to the same vibratory excitation

source. Doppler-shifted light is detected when scattered from a moving surface. A live

color video can readily simulate the operational deflection shape of the test specimen,

over a user defined measurement grid that can confirm the link between the surface

vibrations and the sound measurements (see Figure 5.5).
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Figure 5.1 A schematic representation of specialized two-chamber test set-up
that allows transmission and acoustic radiation measurement on small samples
30mmx30mm. With source in position 2, both microphones are used. With
source in position 2, only the receiver microphone will be used.
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Figure 5.2 Schematic representation of SAE J2400 test set-up. Panels are fitted
with sealed edges in a wall opening separating a source reverberation chamber
and a receiving anechoic chamber [9].



Figure 5.3 Sound Intensity measurement grids are laid on top of tested sample.
Measurements are acquired at grid junctions normal to the radiating surface
using the phase-matched two-microphone technique.

Figure 5.4 Sound intensity map from a measurement grid laid over the tested
sample. Sound power is determined by integrating the sound intensity over
the radiating area.
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CHAPTER 6

TRANSLATIONS AND RESULTS

6.1 Sound Transmission of Plastic Panels

6.1.1 Single, Double and Layered Effects

Reducing the sound levels in vehicle passenger compartments, for example, has long

been sought by the motor vehicle industry. In order to improve customer's image, the

focus is on employing high STL attenuating materials in the fabrication of polymeric

components and sub components. It was stated previously that an insulating panel

material could offer good STL because it has the capacity to reflect incident acoustical

energy on one surface, or dissipate the sound energy passing through the material, so that

little sound is transmitted off the secondary surface [29]. The intention here was to verify

the effects on STL of selected material parameters in multiple panel configurations.

While absorbers are effective at dissipating sound, they typically are not good for

STL because sound propagates readily through the pores. However, if two or three layers

of elastic materials are combined so as to mismatch the acoustical impedance at their

interface, the attenuation of sound passing through the system is much improved [29]. It

has also been mentioned that a double panel system separated by an air cavity can

provide STL improvements over single panels [24], [27], [22], depending on the panel

wall thickness and the size of the interspace, and this is readily practiced in window

glazing designs. [8], [26], [27], [28]. On the other hand, appreciable differences in the

performance of small or large components in the vehicle industry with such

configurations may not be feasible due to space limitations.
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For single and double panel STL evaluations of selected material parameters

fabricated by standard extrusion molding techniques, tests were conducted (on 6mm thick

panels) according to the procedures specified in the SAE J2400 standard [9], and

described in Chapter 5. A thin lead panel of 4.9 Kg/m 2  (2.0 lb/ft2) surface weight was

used to compute the correlation factor as referenced in SAE J2400. The lowest usable

frequency band of measurement for this test (in a 508mm by 508mm or, 20 inch by 20

inch opening) is 225 Hz (based on the 0.72m or 2.36 ft diagonal of the opening between

the source room and the receiving room). Measurements were made at six microphone

locations in the source room and at one location 1100mm (4 inches) away from the

sample, and six times in the receiving room. The results in Figure 6.2 and Figure 6.2 are

shown from 32.5 Hz to 26 KHz in third octave frequencies. The theoretically computed

TL "mass law" per SAE J2400 of the lead sheet is also shown in the graphs for

comparison purposes. The panel materials' physical properties are shown in Table 6.2.

These included standard core properties in a single and double panels (with 6mm air gap)

configurations, respectively, and single panels with high STL material properties. The

intention was to show the effects of double panel configuration alone on STL irrespective

of the advantages obtained from an attenuating material in single panel design.

The results shown in Figures 6.2 clearly show the increase in performance

obtained with a high STL parameter material over standard materials. The performance

of the double panel system confirms the theoretical assessment over the single wall in the

mass-law range. The performance dip in the high frequency region is due to the mass-

air-mass resonance, and the other performance dip in the low frequency region is likely

due to the inter-panel depth resonance effect [8], [30]. These dips are usually controlled
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by the addition of damping in the high frequency region, and by design and damping in

the lower frequency range.



Frequency HZ

Figure 6.1 STL data obtained from samples of NCH materials overlaid with
calculated lead sheet data from SAE J2400. The results shown in the figure
show increase in STL performance obtained with mass density at constant
wall thickness of 6mm vs. Standard 33% GF material.
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Figure 6.2 STL curve of single panel of 33% GF material vs. the double wall
configuration with 6mm air space. Significant increase in STL in mass-law
region. Double wall resonance in the low frequency region decreases STL.
Panel thickness constant 6mm.
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A second set of tests was conducted using the same set-up and procedure as

described above, on sample panels (520mm x 520mm) fabricated by standard co-

injection molding techniques using standard Nylon 6 polymer with 35% glass fiber. All

samples had varying surface mass densities determined by their respective thickness. In

addition, four of the samples had a core layer with scattered voids created by utilizing

chemical blowing agents during the injection process. The intention was to evaluate the

effects of non-homogenous core layers on STL performance. The samples' pertinent

physical parameters are listed in Table 6.2.

Comparing the STL of the foamed core samples as well as the single layer

samples with respect to their increasing surface mass density (see Figures 6.3) confirm

the increase in STL and the corresponding decrease in critical frequency in compliance

with the mass-law theory. However, results obtained by comparing the foamed core

panel sheets to the single layer panels did not show an improvement in STL for the same

thickness and surface mass density. It was also observed that a decrease in STL at

coincidence had occurred. The void inclusions within the core did not provide a

decoupling effect but likely a leak-through path for the propagating waves. It was

concluded that the foamed core layer alone did not offer any STL advantage. The same

comparative results were obtained as samples 2 and 7 were compared for different wall

thickness, but similar surface mass density (see Figure 6.5), however, no appreciable STL

improvement up until coincidence. Comparing the single to layered panel for the same

surface density but for double the thickness (see Figure 6.4), it was concluded that no

appreciable change in the STL was obtained by creating voids in the core layers.
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Figure 6.3 Increase in the surface density results in higher STL up until
coincidence, but decreases coincidence and limiting the useful range of
frequencies — layered panels.
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Figure 6.5 Increase in the thickness with constant surface density results in no
STL change up until coincidence, but decreases coincidence and limiting the
useful range of frequencies.
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Figure 6.6 Increase in the surface density results in higher STL up until
coincidence, but decreases coincidence and limiting the useful range of
frequencies — single layer panels.
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6.1.2 Summary of Results

Starting with an empirical method to predict the STL of polymer-based materials

typically used in automotive applications based on basic expressions of STL performance

in single and layered wall configurations, one can characterize and tune the primary and

secondary physical parameters that affect the STL performance of the material. Once an

optimum set of parameters is identified, it is linked to the basic material properties at the

microscopic level.

The field incidence mass-law, applicable to uniform, thin, unbounded elastic

panels, suggests that the STL for a single panel barrier increases by 6 dB if the surface

mass of the barrier material is doubled. However, for a finite size barrier, the stiffness

and resonance regions at low frequencies and the coincidence at high frequencies bound

the mass-law performance [30]. The STL prediction method is also based on basic STL

theory of double-wall systems, which accounts for the double-wall resonance and the

standing wave resonance between the two walls.

In the lower frequency regions, the two panels are coupled together and behave

as a single mass, which results in an STL performance analogous to the single barrier.

The upper limit of the coupled mass is bounded by the mass-air-mass resonance, where

the frequency of motion of the walls is out of phase, and the mass densities and the

spacing in between the walls affect resonance. At this frequency, the STL performance is

drastically reduced. Above this resonance, the STL of the double wall increase at a rate

of 28dB, until the double wall decoupled region is attained. The portion of the STL curve

that represents this increase is referred to as the transition region, and is bounded by a
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point, which defines the double wall decoupled region. This region in turn is limited at

high frequencies by the coincidence effect [30].

The material considered for high STL as shown exhibited better performance as

predicted by theory, over standard materials. The double panel system with air space

proved to offer superior STL readings, and the layered system with foamed cores proved

ineffective at high frequency and did not produce any noticeable improvement in the

lower frequency regions. In practice, an ideal double wall system may not be possible

due to space limitations, and intermediate decouplers are typically used to control the

double wall resonance effects. A single layer high STL material is a better option from a

manufacturability and cost point of view, and layered constructions may provide an

intermediate option if the core's homogeneity is kept close to that of the skin layers.
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6.2 Acoustic Engine Cover

6.2.1 Acoustic Material Comparative Sound Level

A major characteristic of NCH reduction material development is the continuous balance

of influencing factors with each modification or step of improvement. The risk of

spending effort on ineffective measures is high, and therefore, validation efforts are

definitely required. The validation study aimed at quantifying the relative performance

of engine covers (closest representation of a panel noise barriers) molded from the new

NCH material formulations. Engine noise is one of the dominating sources of vehicle

interior noise [32].

Among other under the hood engine components, engine covers are used as

cosmetic shields in their simplest form and function. Often such configurations are

significant contributors to overall engine noise, since they tend to radiate specific

structural borne noise of various mechanical actions within the engine. Some of these

covers, however, are fully treated with absorbing material layers such as cellular foam or

fiberglass mats that are bonded on the inner face of the cover, and act in conjunction with

the cover material, to reduce sound energy going through or emanating form the system.

Such configurations, though with limited positive effects, are characterized with an

appreciable cost penalty. In practice, single layered polymer-based covers made with an

acoustic materials can provide significant performance and cost advantages over current

design. Traditional acoustic measurement methods, such as 2 m SPL (Sound Pressure

Level) measurement and acoustic intensity measurements are based on single point

microphone data [32].
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6.2.2 Results

Sample acoustic covers fabricated from the acoustic polymer material were fitted on a

PC8 Corvette engine bed simulator. Two specific sets of measurements were taken at top

microphone positions, 2 m above the cover in five locations (see Figure 6.7), for a 900

and 2500 engine rpm sweeps, respectively. Figures 6.8, 6.9, 6.20 show data recovered

directly above the engine cover and the overall sound power for the various

configurations that were evaluated. The configurations were compared according to the

following: cover with no noise layer treatment, and cover with light foam sealing gaps at

the edges. The baseline cover had a layered construction and consisted of a 25% glass

filled nylon 6 material with a glass fiber mat bonded on the inner side. The data showed

no appreciable noise reduction (in the three decibel range). While the noise reduction

above the engine was not significant, the readings were affected by noise leakage and

open source path transmission. The detrimental effects of flanking transmission leakages

(see Figure 6.22) on the acoustic performance of sound attenuating and insulating panels

are shown in Figure 6.22 [29]. Based on the data obtained from these and on previous

investigators' published results, it is evident that sound package design is an important

other factor that influences the acoustical performance of an attenuation system.

Components of a well-designed package should fit snugly in the vehicle and display

minimal amount of openings, except for those that are needed for routing, wiring, and

ducting systems, for example. Avoiding these will ensure better acoustical shielding

performance.
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Figure 6.7 Engine cover molded from NCH material. Each microphone located
lm from the five surfaces: Top and 4 sides.



Figure 6.8 Overall sound level assessments. Four different configurations
including sealed and non-sealed. NCH performance in open systems is highly
sensitive to noise seal.
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Figure 6.10 Sound power at 900 engine rpm of four NCH material versions.
No significant improvement due to flanking transmission.



Figure 6.11 In vehicle system flanking transmission through duct and wiring
opening and gaps reduce the STL capacity of the sound attenuating package
(after ref. 29).



Figure 6.12 Effect of flanking conditions on insertion loss (after ref. 29).
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6.3 Vehicle Air Intake Manifold Acoustics

6.3.1 Comparative Acoustic Evaluations of Various Resins

Noise Cibration and Harshness (NCH) has become an issue for vehicle manufacturers

since the development of plastic underhood components, such as air intake manifolds.

The noise problem has been augmented due to noise reduction legislation that has gained

increasing momentum over the years [69].

The basic material used for such components directly impacts their acoustic

behavior, especially when insulation of airborne noise and damping of structure borne

noise is required. The inherent difference between plastic made components and their

metal incumbent counterparts, stems from the fact that plastics compounds exhibit very

different acoustic characteristics depending on the type of basic polymer and fillers [64].

A major characteristic of an NVH reduction material development is the continuous

balance of influencing factors with each modification or step of improvement. The risk

of spending effort on ineffective measures is high, and therefore validation efforts are

critical.

This phase of the study aims at quantifying the relative performance of air intake

manifolds molded from different materials including that of high STL characteristics.

The construction of these manifolds represents the concepts elucidated in Chapter 3.

Calidation results of SPL testing, to investigate the effects of various composite intake

manifold materials and constructions on vehicle noise are presented. The goal was to

verify performance predictions, identified previously using analytical predictions, of an

NCH material molded in a real component. The test vehicle was a 1995 Chevrolet

Lumina with a 3100 C-6 engine. The baseline intake manifold was aluminum made. In
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addition to the baseline manifold, five other configurations were tested. They were as

follows:

• Standard Grade 33% GF Single Wall Manifold

• NCH Grade Single Wall Manifold

• Standard Grade 33% GF Double Wall Manifold

• NCH Grade Double Wall Manifold

• NCH Grade Isolated Wall Manifold

The objectives of the testing were to evaluate the effects of:

• Composite materials

• Welded double wall construction

• Isolated double wall construction

The bulk of the testing performed included SPL measurements at driver's ear and engine

locations. The testing was conducted in a hemi-anechoic chamber. The vehicle's front

wheels were set-up on rolls to allow them to spin under resistance simulating flat road

conditions. The rear wheels were locked to level the vehicle. The vehicle exhaust was

routed directly into the cell's ventilation system exhaust chamber via a flexible hose

attached to the tailpipe.

In order to quantify small differences in noise radiated from the test samples, a

special hood was made of 12.7mm thick high-density polyethylene (HDPE). The hood

was constructed so that it fit closely over the engine compartment. It was sealed along

the perimeter with foam and duct tape (see Figure 6.13). A hole was cut in the hood to

expose the top surface of the intake manifold. This setup was effective at reducing noise

contamination from other components within the engine space. Noise from these sources
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that is radiated upward toward the hood is thus reflected downward. When the noise

reaches the concrete floor of the cell, it is again reflected-up and toward the wall. When

the noise reaches the wall it is absorbed.

Isolating noise from other engine components is important. Order and/or

frequency analysis can adequately separate the measured noise into parts related to a

particular engine order or frequency [70]. However, when the two phenomena occur at

the same engine order, it is nearly impossible to further separate them into individual

contributions with this type of testing. Intake noise always occurs at the same engine

order as exhaust noise. In order to separate their contributions in this type of testing, it is

essential to design the test setup so that the separation is accomplished experimentally.

In other words, if exhaust noise is not desirable, it must be removed in location by

manipulating the path that the exhaust noise takes to the microphone.



113

Figure 6.14 Microphone position at driver's ear. Engine RPM was measured
using an optical pickup that senses a strip of reflective tape stuck on the
crankshaft pulley.
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Noise measurements were made at three locations:

• Driver's right ear

• lm directly above the manifold

• lm from the manifold above and forward at a 45 degree angle

The microphones were hung loosely in position by their cords (see Figures 6.14 for

driver's ear). A switch was installed to manually over-ride the radiator cooling fans.

This was done to prevent the fans from switching on during the test. The data was

acquired during sweeps from idle (750 RPM) to redline (5400 RPM). Stacking spectra

estimated at intervals of 25 RPM created data for waterfall plots. The sweeps were done

in first gear and lasted approximately 2 minutes. All measurements presented are the

result of averaging 3 independent sweeps. This is done to reduce the variance in the

measurements. All data is A-weighted to reflect subjective response [68].

6.3.2 Summary of Results

The data was processed in two ways. Order tracking was used to produce order spectra

of constant engine order bandwidth, relating the measured sound to engine orders.

Constant frequency waterfall analysis was used to produce spectra of constant frequency

bandwidth at each RPM interval. The order-tracked data is essentially a subset of the

constant frequency data. It allows much more detail about discrete tones related to

engine phenomena. Overall levels and order slices are computed from the appropriate

waterfall data. In this context, and to avoid repetitiveness, only the constant frequency

data is presented.

Figures 6.15 to 6.21 contain the measurements made directly above the manifold.

Figure 6.15 exhibits the overlaid overall level versus rpm for each manifold. The next six
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figures contain waterfall data for the tested configurations. The waterfall figures are

arranged so that single wall and double wall manifolds of the same material fall on the

same page for easier comparison. Annotations are given on the plots explaining

interesting features. Figure 6.22 summarizes overall data measured at the 45 degree

location, and Figure 6.23 summarizes the data from the driver's ear.



Figure 6.16 Standard material 33% GF single wall - manifold



Figure 6.18 NVH material single wall - manifold
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Figure 6.20 NVH isolated wall - manifold
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Figure 6.21 Aluminum - manifold

The significant points in the above measurements are as follows:

• The single wall manifold exhibits reductions when compared to the aluminum

until about 3800 — 4000 RPM. The levels in the aluminum manifold are driven

almost entirely by the strong resonance at 1300 Hz. The corresponding resonance

in the single wall manifolds occurs at a lower frequency of about 700 Hz. The

waterfall plots of Figures 6.16 and 6.18 show that the resonance in the single

walls does not appear to be substantially excited below 3800 RPM. The reason

for the reduction in the excitation of resonance, is due in part to the A weighting

curve, which penalizes one level at 700 Hz by nearly an additional 2 dB when

compared to another level at 1300 Hz.
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• The single wall NCH outperforms the single wall standard, except from 3800 to

4200 Hz. This is where the dominant engine orders pass through a resonance of

the single wall manifolds.

• All double wall manifolds show a drastic reduction in the dominant resonance

compared to the single walls and the aluminum manifold. This is the reason that

the double walls continue to show benefits at and above 3800 RPM.

• The isolated NCH double wall shows an overall reduction in levels. This is

evident both at the forced frequencies, and in the noise floor.

For the sake of brevity, the data acquired at the microphone location 45 degrees

over and in the front of the manifold will not be shown in its entirety. The data at 45

degrees shows the same information as that acquired directly over the manifold.

However the reduction apparent at 45 degrees are not as drastic. This is due in most part

to flanking from other sources. However, this demonstrates the effectiveness of the test

setup in isolating noise from the manifold only.
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It was observed that the same physical phenomenon was driving the levels at the

driver's ear. Again for the sake of brevity, only the overall levels are shown in Figure

6.23 above. Form this data; it was clear that the choice of manifold did not significantly

influence the SPL at the driver's ear, except for one case. The aluminum manifold results

in a definite reduction at the driver's ear.

6.3.3 Conclusion

The choice of material and construction of the manifold have a significant effect on the

noise radiated from its top surface. The NCH material offers reduction in noise radiation

when compared to the standard material in the single wall configuration. The standard

material in the single wall configuration shows a reduction compared to the baseline

aluminum manifold.

The NCH and standard materials show similar benefits in the double wall

configuration. The double wall configuration virtually eliminates the dominant mode

present in both single wall manifolds and aluminum manifold.

The isolated double wall manifold offers further reduction over the normal double

wall construction due to an overall broadband reduction in noise. This offers insight into

the importance of structural borne noise on the overall sound power of the manifold.

Alterations to the manifolds are largely ineffective at reducing levels at the driver's ear in

this testing configuration. A reduction in sound level is only accomplished when the

contribution of a dominant source is reduced. Due to the large number of significant

noise sources in a car, noise radiated by the intake manifold is considered non-dominant.
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In a nutshell, the NVH material manifold shows reduction in the sound radiation

level over the standard material and aluminum-based manifolds. This effect is consistent

with the double wall configuration.



CHAPTER 7

GENERAL CONCLUSIONS

Acoustical characterization of polymer-based materials was presented for the steady state

case of airborne sound transmission through infinite panels. It was shown that the

acoustical characteristics of Nylon6 based resins could be evaluated using analytical

sound transmission loss prediction techniques. This could be done best using flat panel

or sheet geometry designated as barrier configurations in single and layered wall

constructions. The infinite panel theory was assumed to simulate the finite case with

theoretical manipulations. The formulation was presented for the classical infinite

dimension case and was modified to approximate the finite size geometry within a diffuse

sound field medium. A correlation weighting function was used in the calculation of the

transmission coefficient for better approximation with measured data.

The layered panel case was assumed to be a special case of co-injection processed

panels exhibiting fused layers at their interface. The sound transmission coefficient

model for the layered case was formulated in terms of the impedance expressions for the

latter specific configuration. The impinging sound wave was assumed to cause bending

and extension deformations in the top and bottom layers, with lack of shear deformation

in the core. The model devised for the single case was generalized to simulate the special

case configuration sufficiently by adjusting the core density to represent a percentage of

the skin layers' densities. This was done to represent the case in practice where chemical

foaming agents are utilized during the co-injection process to vary the consistency of the

core.
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Analytically driven physical property determination for high STL established the

link among properties at the macro and micro levels. Theoretical manipulation of factors

affecting STL across the frequency range, could lead to an optimum set of parameters

that would be backward integrated into the resin's matrix formulation stage.

An optimum noise control material was conceived with specific element

variations to promote high STL capacity. Different levels of fillers and design

configurations in-combination were also suggested for incremental performance. Patent

protected concepts were recommended, as an option, for optimizing STL in the lower

frequency regions. These included the use of distributed lumped masses in single layers,

double layers with a range of air cavities thickness, and layered constructions with a

variable percentage skin density in their core.

It was further suggested that computational techniques could be applied to

analyze 3-D geometries and expand the theoretical validation, using the indirect baffled

BEM approach or acoustic transparency techniques on simple and more complex shapes.

Employed sound transmission loss, sound intensity and sound radiation

measurement techniques were described. NCH compounds were conceptualized into

high sound transmission loss resin variations. Panels formed from these materials with

balanced sets of properties were fabricated and used for validation. Theoretical

predictions were confirmed. The noise reduction material showed measurable

advantages in STL over standard materials. For layer and double wall configurations, it

was observed that the double wall with air cavity exhibited positive results while the

layered configuration with foamed cores did not offer a viable improvement. This

confirmed the necessity to reduce voids within the cores in such constructions.
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For the purpose of effective sound transmission reduction in vehicle environments, real

components from simple to complex geometries were evaluated for sound transmission

and sound radiation reduction. The performance of open systems such as engine covers

is function of the level of flanking transmission during the measurement phase. The

choice of materials and constructions of engine manifolds had a significant effect on the

noise radiated from its top surface. The NVH material offered reduction in noise

radiation when compared to the standard material in the single wall configuration. The

NVH and standard materials showed similar benefits in the double wall configuration.

However, the isolated double wall manifold offered further reduction over the normal

double wall construction due to an overall broadband reduction in noise. This reinforced

the importance of reducing flanking when acquiring measured data.

Based on the above, it was thus concluded that in practice, NVH criteria was

achieved.
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